1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Audit userspace, documentation, tests, and bug/issue trackers:
42 * https://github.com/linux-audit
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/file.h>
48 #include <linux/init.h>
49 #include <linux/types.h>
50 #include <linux/atomic.h>
51 #include <linux/mm.h>
52 #include <linux/export.h>
53 #include <linux/slab.h>
54 #include <linux/err.h>
55 #include <linux/kthread.h>
56 #include <linux/kernel.h>
57 #include <linux/syscalls.h>
58 #include <linux/spinlock.h>
59 #include <linux/rcupdate.h>
60 #include <linux/mutex.h>
61 #include <linux/gfp.h>
62 #include <linux/pid.h>
63 #include <linux/slab.h>
64
65 #include <linux/audit.h>
66
67 #include <net/sock.h>
68 #include <net/netlink.h>
69 #include <linux/skbuff.h>
70 #ifdef CONFIG_SECURITY
71 #include <linux/security.h>
72 #endif
73 #include <linux/freezer.h>
74 #include <linux/pid_namespace.h>
75 #include <net/netns/generic.h>
76
77 #include "audit.h"
78
79 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
80 * (Initialization happens after skb_init is called.) */
81 #define AUDIT_DISABLED -1
82 #define AUDIT_UNINITIALIZED 0
83 #define AUDIT_INITIALIZED 1
84 static int audit_initialized;
85
86 u32 audit_enabled = AUDIT_OFF;
87 bool audit_ever_enabled = !!AUDIT_OFF;
88
89 EXPORT_SYMBOL_GPL(audit_enabled);
90
91 /* Default state when kernel boots without any parameters. */
92 static u32 audit_default = AUDIT_OFF;
93
94 /* If auditing cannot proceed, audit_failure selects what happens. */
95 static u32 audit_failure = AUDIT_FAIL_PRINTK;
96
97 /* private audit network namespace index */
98 static unsigned int audit_net_id;
99
100 /**
101 * struct audit_net - audit private network namespace data
102 * @sk: communication socket
103 */
104 struct audit_net {
105 struct sock *sk;
106 };
107
108 /**
109 * struct auditd_connection - kernel/auditd connection state
110 * @pid: auditd PID
111 * @portid: netlink portid
112 * @net: the associated network namespace
113 * @rcu: RCU head
114 *
115 * Description:
116 * This struct is RCU protected; you must either hold the RCU lock for reading
117 * or the associated spinlock for writing.
118 */
119 static struct auditd_connection {
120 struct pid *pid;
121 u32 portid;
122 struct net *net;
123 struct rcu_head rcu;
124 } *auditd_conn = NULL;
125 static DEFINE_SPINLOCK(auditd_conn_lock);
126
127 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
128 * to that number per second. This prevents DoS attacks, but results in
129 * audit records being dropped. */
130 static u32 audit_rate_limit;
131
132 /* Number of outstanding audit_buffers allowed.
133 * When set to zero, this means unlimited. */
134 static u32 audit_backlog_limit = 64;
135 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
136 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
137
138 /* The identity of the user shutting down the audit system. */
139 kuid_t audit_sig_uid = INVALID_UID;
140 pid_t audit_sig_pid = -1;
141 u32 audit_sig_sid = 0;
142
143 /* Records can be lost in several ways:
144 0) [suppressed in audit_alloc]
145 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
146 2) out of memory in audit_log_move [alloc_skb]
147 3) suppressed due to audit_rate_limit
148 4) suppressed due to audit_backlog_limit
149 */
150 static atomic_t audit_lost = ATOMIC_INIT(0);
151
152 /* Hash for inode-based rules */
153 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
154
155 static struct kmem_cache *audit_buffer_cache;
156
157 /* queue msgs to send via kauditd_task */
158 static struct sk_buff_head audit_queue;
159 /* queue msgs due to temporary unicast send problems */
160 static struct sk_buff_head audit_retry_queue;
161 /* queue msgs waiting for new auditd connection */
162 static struct sk_buff_head audit_hold_queue;
163
164 /* queue servicing thread */
165 static struct task_struct *kauditd_task;
166 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
167
168 /* waitqueue for callers who are blocked on the audit backlog */
169 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
170
171 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
172 .mask = -1,
173 .features = 0,
174 .lock = 0,};
175
176 static char *audit_feature_names[2] = {
177 "only_unset_loginuid",
178 "loginuid_immutable",
179 };
180
181 /**
182 * struct audit_ctl_mutex - serialize requests from userspace
183 * @lock: the mutex used for locking
184 * @owner: the task which owns the lock
185 *
186 * Description:
187 * This is the lock struct used to ensure we only process userspace requests
188 * in an orderly fashion. We can't simply use a mutex/lock here because we
189 * need to track lock ownership so we don't end up blocking the lock owner in
190 * audit_log_start() or similar.
191 */
192 static struct audit_ctl_mutex {
193 struct mutex lock;
194 void *owner;
195 } audit_cmd_mutex;
196
197 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
198 * audit records. Since printk uses a 1024 byte buffer, this buffer
199 * should be at least that large. */
200 #define AUDIT_BUFSIZ 1024
201
202 /* The audit_buffer is used when formatting an audit record. The caller
203 * locks briefly to get the record off the freelist or to allocate the
204 * buffer, and locks briefly to send the buffer to the netlink layer or
205 * to place it on a transmit queue. Multiple audit_buffers can be in
206 * use simultaneously. */
207 struct audit_buffer {
208 struct sk_buff *skb; /* formatted skb ready to send */
209 struct audit_context *ctx; /* NULL or associated context */
210 gfp_t gfp_mask;
211 };
212
213 struct audit_reply {
214 __u32 portid;
215 struct net *net;
216 struct sk_buff *skb;
217 };
218
219 /**
220 * auditd_test_task - Check to see if a given task is an audit daemon
221 * @task: the task to check
222 *
223 * Description:
224 * Return 1 if the task is a registered audit daemon, 0 otherwise.
225 */
auditd_test_task(struct task_struct * task)226 int auditd_test_task(struct task_struct *task)
227 {
228 int rc;
229 struct auditd_connection *ac;
230
231 rcu_read_lock();
232 ac = rcu_dereference(auditd_conn);
233 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
234 rcu_read_unlock();
235
236 return rc;
237 }
238
239 /**
240 * audit_ctl_lock - Take the audit control lock
241 */
audit_ctl_lock(void)242 void audit_ctl_lock(void)
243 {
244 mutex_lock(&audit_cmd_mutex.lock);
245 audit_cmd_mutex.owner = current;
246 }
247
248 /**
249 * audit_ctl_unlock - Drop the audit control lock
250 */
audit_ctl_unlock(void)251 void audit_ctl_unlock(void)
252 {
253 audit_cmd_mutex.owner = NULL;
254 mutex_unlock(&audit_cmd_mutex.lock);
255 }
256
257 /**
258 * audit_ctl_owner_current - Test to see if the current task owns the lock
259 *
260 * Description:
261 * Return true if the current task owns the audit control lock, false if it
262 * doesn't own the lock.
263 */
audit_ctl_owner_current(void)264 static bool audit_ctl_owner_current(void)
265 {
266 return (current == audit_cmd_mutex.owner);
267 }
268
269 /**
270 * auditd_pid_vnr - Return the auditd PID relative to the namespace
271 *
272 * Description:
273 * Returns the PID in relation to the namespace, 0 on failure.
274 */
auditd_pid_vnr(void)275 static pid_t auditd_pid_vnr(void)
276 {
277 pid_t pid;
278 const struct auditd_connection *ac;
279
280 rcu_read_lock();
281 ac = rcu_dereference(auditd_conn);
282 if (!ac || !ac->pid)
283 pid = 0;
284 else
285 pid = pid_vnr(ac->pid);
286 rcu_read_unlock();
287
288 return pid;
289 }
290
291 /**
292 * audit_get_sk - Return the audit socket for the given network namespace
293 * @net: the destination network namespace
294 *
295 * Description:
296 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
297 * that a reference is held for the network namespace while the sock is in use.
298 */
audit_get_sk(const struct net * net)299 static struct sock *audit_get_sk(const struct net *net)
300 {
301 struct audit_net *aunet;
302
303 if (!net)
304 return NULL;
305
306 aunet = net_generic(net, audit_net_id);
307 return aunet->sk;
308 }
309
audit_panic(const char * message)310 void audit_panic(const char *message)
311 {
312 switch (audit_failure) {
313 case AUDIT_FAIL_SILENT:
314 break;
315 case AUDIT_FAIL_PRINTK:
316 if (printk_ratelimit())
317 pr_err("%s\n", message);
318 break;
319 case AUDIT_FAIL_PANIC:
320 panic("audit: %s\n", message);
321 break;
322 }
323 }
324
audit_rate_check(void)325 static inline int audit_rate_check(void)
326 {
327 static unsigned long last_check = 0;
328 static int messages = 0;
329 static DEFINE_SPINLOCK(lock);
330 unsigned long flags;
331 unsigned long now;
332 unsigned long elapsed;
333 int retval = 0;
334
335 if (!audit_rate_limit) return 1;
336
337 spin_lock_irqsave(&lock, flags);
338 if (++messages < audit_rate_limit) {
339 retval = 1;
340 } else {
341 now = jiffies;
342 elapsed = now - last_check;
343 if (elapsed > HZ) {
344 last_check = now;
345 messages = 0;
346 retval = 1;
347 }
348 }
349 spin_unlock_irqrestore(&lock, flags);
350
351 return retval;
352 }
353
354 /**
355 * audit_log_lost - conditionally log lost audit message event
356 * @message: the message stating reason for lost audit message
357 *
358 * Emit at least 1 message per second, even if audit_rate_check is
359 * throttling.
360 * Always increment the lost messages counter.
361 */
audit_log_lost(const char * message)362 void audit_log_lost(const char *message)
363 {
364 static unsigned long last_msg = 0;
365 static DEFINE_SPINLOCK(lock);
366 unsigned long flags;
367 unsigned long now;
368 int print;
369
370 atomic_inc(&audit_lost);
371
372 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
373
374 if (!print) {
375 spin_lock_irqsave(&lock, flags);
376 now = jiffies;
377 if (now - last_msg > HZ) {
378 print = 1;
379 last_msg = now;
380 }
381 spin_unlock_irqrestore(&lock, flags);
382 }
383
384 if (print) {
385 if (printk_ratelimit())
386 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
387 atomic_read(&audit_lost),
388 audit_rate_limit,
389 audit_backlog_limit);
390 audit_panic(message);
391 }
392 }
393
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)394 static int audit_log_config_change(char *function_name, u32 new, u32 old,
395 int allow_changes)
396 {
397 struct audit_buffer *ab;
398 int rc = 0;
399
400 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
401 if (unlikely(!ab))
402 return rc;
403 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
404 audit_log_session_info(ab);
405 rc = audit_log_task_context(ab);
406 if (rc)
407 allow_changes = 0; /* Something weird, deny request */
408 audit_log_format(ab, " res=%d", allow_changes);
409 audit_log_end(ab);
410 return rc;
411 }
412
audit_do_config_change(char * function_name,u32 * to_change,u32 new)413 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
414 {
415 int allow_changes, rc = 0;
416 u32 old = *to_change;
417
418 /* check if we are locked */
419 if (audit_enabled == AUDIT_LOCKED)
420 allow_changes = 0;
421 else
422 allow_changes = 1;
423
424 if (audit_enabled != AUDIT_OFF) {
425 rc = audit_log_config_change(function_name, new, old, allow_changes);
426 if (rc)
427 allow_changes = 0;
428 }
429
430 /* If we are allowed, make the change */
431 if (allow_changes == 1)
432 *to_change = new;
433 /* Not allowed, update reason */
434 else if (rc == 0)
435 rc = -EPERM;
436 return rc;
437 }
438
audit_set_rate_limit(u32 limit)439 static int audit_set_rate_limit(u32 limit)
440 {
441 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
442 }
443
audit_set_backlog_limit(u32 limit)444 static int audit_set_backlog_limit(u32 limit)
445 {
446 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
447 }
448
audit_set_backlog_wait_time(u32 timeout)449 static int audit_set_backlog_wait_time(u32 timeout)
450 {
451 return audit_do_config_change("audit_backlog_wait_time",
452 &audit_backlog_wait_time, timeout);
453 }
454
audit_set_enabled(u32 state)455 static int audit_set_enabled(u32 state)
456 {
457 int rc;
458 if (state > AUDIT_LOCKED)
459 return -EINVAL;
460
461 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
462 if (!rc)
463 audit_ever_enabled |= !!state;
464
465 return rc;
466 }
467
audit_set_failure(u32 state)468 static int audit_set_failure(u32 state)
469 {
470 if (state != AUDIT_FAIL_SILENT
471 && state != AUDIT_FAIL_PRINTK
472 && state != AUDIT_FAIL_PANIC)
473 return -EINVAL;
474
475 return audit_do_config_change("audit_failure", &audit_failure, state);
476 }
477
478 /**
479 * auditd_conn_free - RCU helper to release an auditd connection struct
480 * @rcu: RCU head
481 *
482 * Description:
483 * Drop any references inside the auditd connection tracking struct and free
484 * the memory.
485 */
auditd_conn_free(struct rcu_head * rcu)486 static void auditd_conn_free(struct rcu_head *rcu)
487 {
488 struct auditd_connection *ac;
489
490 ac = container_of(rcu, struct auditd_connection, rcu);
491 put_pid(ac->pid);
492 put_net(ac->net);
493 kfree(ac);
494 }
495
496 /**
497 * auditd_set - Set/Reset the auditd connection state
498 * @pid: auditd PID
499 * @portid: auditd netlink portid
500 * @net: auditd network namespace pointer
501 *
502 * Description:
503 * This function will obtain and drop network namespace references as
504 * necessary. Returns zero on success, negative values on failure.
505 */
auditd_set(struct pid * pid,u32 portid,struct net * net)506 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
507 {
508 unsigned long flags;
509 struct auditd_connection *ac_old, *ac_new;
510
511 if (!pid || !net)
512 return -EINVAL;
513
514 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
515 if (!ac_new)
516 return -ENOMEM;
517 ac_new->pid = get_pid(pid);
518 ac_new->portid = portid;
519 ac_new->net = get_net(net);
520
521 spin_lock_irqsave(&auditd_conn_lock, flags);
522 ac_old = rcu_dereference_protected(auditd_conn,
523 lockdep_is_held(&auditd_conn_lock));
524 rcu_assign_pointer(auditd_conn, ac_new);
525 spin_unlock_irqrestore(&auditd_conn_lock, flags);
526
527 if (ac_old)
528 call_rcu(&ac_old->rcu, auditd_conn_free);
529
530 return 0;
531 }
532
533 /**
534 * kauditd_print_skb - Print the audit record to the ring buffer
535 * @skb: audit record
536 *
537 * Whatever the reason, this packet may not make it to the auditd connection
538 * so write it via printk so the information isn't completely lost.
539 */
kauditd_printk_skb(struct sk_buff * skb)540 static void kauditd_printk_skb(struct sk_buff *skb)
541 {
542 struct nlmsghdr *nlh = nlmsg_hdr(skb);
543 char *data = nlmsg_data(nlh);
544
545 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
546 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
547 }
548
549 /**
550 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
551 * @skb: audit record
552 *
553 * Description:
554 * This should only be used by the kauditd_thread when it fails to flush the
555 * hold queue.
556 */
kauditd_rehold_skb(struct sk_buff * skb)557 static void kauditd_rehold_skb(struct sk_buff *skb)
558 {
559 /* put the record back in the queue at the same place */
560 skb_queue_head(&audit_hold_queue, skb);
561 }
562
563 /**
564 * kauditd_hold_skb - Queue an audit record, waiting for auditd
565 * @skb: audit record
566 *
567 * Description:
568 * Queue the audit record, waiting for an instance of auditd. When this
569 * function is called we haven't given up yet on sending the record, but things
570 * are not looking good. The first thing we want to do is try to write the
571 * record via printk and then see if we want to try and hold on to the record
572 * and queue it, if we have room. If we want to hold on to the record, but we
573 * don't have room, record a record lost message.
574 */
kauditd_hold_skb(struct sk_buff * skb)575 static void kauditd_hold_skb(struct sk_buff *skb)
576 {
577 /* at this point it is uncertain if we will ever send this to auditd so
578 * try to send the message via printk before we go any further */
579 kauditd_printk_skb(skb);
580
581 /* can we just silently drop the message? */
582 if (!audit_default) {
583 kfree_skb(skb);
584 return;
585 }
586
587 /* if we have room, queue the message */
588 if (!audit_backlog_limit ||
589 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
590 skb_queue_tail(&audit_hold_queue, skb);
591 return;
592 }
593
594 /* we have no other options - drop the message */
595 audit_log_lost("kauditd hold queue overflow");
596 kfree_skb(skb);
597 }
598
599 /**
600 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
601 * @skb: audit record
602 *
603 * Description:
604 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
605 * but for some reason we are having problems sending it audit records so
606 * queue the given record and attempt to resend.
607 */
kauditd_retry_skb(struct sk_buff * skb)608 static void kauditd_retry_skb(struct sk_buff *skb)
609 {
610 /* NOTE: because records should only live in the retry queue for a
611 * short period of time, before either being sent or moved to the hold
612 * queue, we don't currently enforce a limit on this queue */
613 skb_queue_tail(&audit_retry_queue, skb);
614 }
615
616 /**
617 * auditd_reset - Disconnect the auditd connection
618 * @ac: auditd connection state
619 *
620 * Description:
621 * Break the auditd/kauditd connection and move all the queued records into the
622 * hold queue in case auditd reconnects. It is important to note that the @ac
623 * pointer should never be dereferenced inside this function as it may be NULL
624 * or invalid, you can only compare the memory address! If @ac is NULL then
625 * the connection will always be reset.
626 */
auditd_reset(const struct auditd_connection * ac)627 static void auditd_reset(const struct auditd_connection *ac)
628 {
629 unsigned long flags;
630 struct sk_buff *skb;
631 struct auditd_connection *ac_old;
632
633 /* if it isn't already broken, break the connection */
634 spin_lock_irqsave(&auditd_conn_lock, flags);
635 ac_old = rcu_dereference_protected(auditd_conn,
636 lockdep_is_held(&auditd_conn_lock));
637 if (ac && ac != ac_old) {
638 /* someone already registered a new auditd connection */
639 spin_unlock_irqrestore(&auditd_conn_lock, flags);
640 return;
641 }
642 rcu_assign_pointer(auditd_conn, NULL);
643 spin_unlock_irqrestore(&auditd_conn_lock, flags);
644
645 if (ac_old)
646 call_rcu(&ac_old->rcu, auditd_conn_free);
647
648 /* flush the retry queue to the hold queue, but don't touch the main
649 * queue since we need to process that normally for multicast */
650 while ((skb = skb_dequeue(&audit_retry_queue)))
651 kauditd_hold_skb(skb);
652 }
653
654 /**
655 * auditd_send_unicast_skb - Send a record via unicast to auditd
656 * @skb: audit record
657 *
658 * Description:
659 * Send a skb to the audit daemon, returns positive/zero values on success and
660 * negative values on failure; in all cases the skb will be consumed by this
661 * function. If the send results in -ECONNREFUSED the connection with auditd
662 * will be reset. This function may sleep so callers should not hold any locks
663 * where this would cause a problem.
664 */
auditd_send_unicast_skb(struct sk_buff * skb)665 static int auditd_send_unicast_skb(struct sk_buff *skb)
666 {
667 int rc;
668 u32 portid;
669 struct net *net;
670 struct sock *sk;
671 struct auditd_connection *ac;
672
673 /* NOTE: we can't call netlink_unicast while in the RCU section so
674 * take a reference to the network namespace and grab local
675 * copies of the namespace, the sock, and the portid; the
676 * namespace and sock aren't going to go away while we hold a
677 * reference and if the portid does become invalid after the RCU
678 * section netlink_unicast() should safely return an error */
679
680 rcu_read_lock();
681 ac = rcu_dereference(auditd_conn);
682 if (!ac) {
683 rcu_read_unlock();
684 kfree_skb(skb);
685 rc = -ECONNREFUSED;
686 goto err;
687 }
688 net = get_net(ac->net);
689 sk = audit_get_sk(net);
690 portid = ac->portid;
691 rcu_read_unlock();
692
693 rc = netlink_unicast(sk, skb, portid, 0);
694 put_net(net);
695 if (rc < 0)
696 goto err;
697
698 return rc;
699
700 err:
701 if (ac && rc == -ECONNREFUSED)
702 auditd_reset(ac);
703 return rc;
704 }
705
706 /**
707 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
708 * @sk: the sending sock
709 * @portid: the netlink destination
710 * @queue: the skb queue to process
711 * @retry_limit: limit on number of netlink unicast failures
712 * @skb_hook: per-skb hook for additional processing
713 * @err_hook: hook called if the skb fails the netlink unicast send
714 *
715 * Description:
716 * Run through the given queue and attempt to send the audit records to auditd,
717 * returns zero on success, negative values on failure. It is up to the caller
718 * to ensure that the @sk is valid for the duration of this function.
719 *
720 */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb))721 static int kauditd_send_queue(struct sock *sk, u32 portid,
722 struct sk_buff_head *queue,
723 unsigned int retry_limit,
724 void (*skb_hook)(struct sk_buff *skb),
725 void (*err_hook)(struct sk_buff *skb))
726 {
727 int rc = 0;
728 struct sk_buff *skb;
729 static unsigned int failed = 0;
730
731 /* NOTE: kauditd_thread takes care of all our locking, we just use
732 * the netlink info passed to us (e.g. sk and portid) */
733
734 while ((skb = skb_dequeue(queue))) {
735 /* call the skb_hook for each skb we touch */
736 if (skb_hook)
737 (*skb_hook)(skb);
738
739 /* can we send to anyone via unicast? */
740 if (!sk) {
741 if (err_hook)
742 (*err_hook)(skb);
743 continue;
744 }
745
746 /* grab an extra skb reference in case of error */
747 skb_get(skb);
748 rc = netlink_unicast(sk, skb, portid, 0);
749 if (rc < 0) {
750 /* fatal failure for our queue flush attempt? */
751 if (++failed >= retry_limit ||
752 rc == -ECONNREFUSED || rc == -EPERM) {
753 /* yes - error processing for the queue */
754 sk = NULL;
755 if (err_hook)
756 (*err_hook)(skb);
757 if (!skb_hook)
758 goto out;
759 /* keep processing with the skb_hook */
760 continue;
761 } else
762 /* no - requeue to preserve ordering */
763 skb_queue_head(queue, skb);
764 } else {
765 /* it worked - drop the extra reference and continue */
766 consume_skb(skb);
767 failed = 0;
768 }
769 }
770
771 out:
772 return (rc >= 0 ? 0 : rc);
773 }
774
775 /*
776 * kauditd_send_multicast_skb - Send a record to any multicast listeners
777 * @skb: audit record
778 *
779 * Description:
780 * Write a multicast message to anyone listening in the initial network
781 * namespace. This function doesn't consume an skb as might be expected since
782 * it has to copy it anyways.
783 */
kauditd_send_multicast_skb(struct sk_buff * skb)784 static void kauditd_send_multicast_skb(struct sk_buff *skb)
785 {
786 struct sk_buff *copy;
787 struct sock *sock = audit_get_sk(&init_net);
788 struct nlmsghdr *nlh;
789
790 /* NOTE: we are not taking an additional reference for init_net since
791 * we don't have to worry about it going away */
792
793 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
794 return;
795
796 /*
797 * The seemingly wasteful skb_copy() rather than bumping the refcount
798 * using skb_get() is necessary because non-standard mods are made to
799 * the skb by the original kaudit unicast socket send routine. The
800 * existing auditd daemon assumes this breakage. Fixing this would
801 * require co-ordinating a change in the established protocol between
802 * the kaudit kernel subsystem and the auditd userspace code. There is
803 * no reason for new multicast clients to continue with this
804 * non-compliance.
805 */
806 copy = skb_copy(skb, GFP_KERNEL);
807 if (!copy)
808 return;
809 nlh = nlmsg_hdr(copy);
810 nlh->nlmsg_len = skb->len;
811
812 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
813 }
814
815 /**
816 * kauditd_thread - Worker thread to send audit records to userspace
817 * @dummy: unused
818 */
kauditd_thread(void * dummy)819 static int kauditd_thread(void *dummy)
820 {
821 int rc;
822 u32 portid = 0;
823 struct net *net = NULL;
824 struct sock *sk = NULL;
825 struct auditd_connection *ac;
826
827 #define UNICAST_RETRIES 5
828
829 set_freezable();
830 while (!kthread_should_stop()) {
831 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
832 rcu_read_lock();
833 ac = rcu_dereference(auditd_conn);
834 if (!ac) {
835 rcu_read_unlock();
836 goto main_queue;
837 }
838 net = get_net(ac->net);
839 sk = audit_get_sk(net);
840 portid = ac->portid;
841 rcu_read_unlock();
842
843 /* attempt to flush the hold queue */
844 rc = kauditd_send_queue(sk, portid,
845 &audit_hold_queue, UNICAST_RETRIES,
846 NULL, kauditd_rehold_skb);
847 if (ac && rc < 0) {
848 sk = NULL;
849 auditd_reset(ac);
850 goto main_queue;
851 }
852
853 /* attempt to flush the retry queue */
854 rc = kauditd_send_queue(sk, portid,
855 &audit_retry_queue, UNICAST_RETRIES,
856 NULL, kauditd_hold_skb);
857 if (ac && rc < 0) {
858 sk = NULL;
859 auditd_reset(ac);
860 goto main_queue;
861 }
862
863 main_queue:
864 /* process the main queue - do the multicast send and attempt
865 * unicast, dump failed record sends to the retry queue; if
866 * sk == NULL due to previous failures we will just do the
867 * multicast send and move the record to the hold queue */
868 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
869 kauditd_send_multicast_skb,
870 (sk ?
871 kauditd_retry_skb : kauditd_hold_skb));
872 if (ac && rc < 0)
873 auditd_reset(ac);
874 sk = NULL;
875
876 /* drop our netns reference, no auditd sends past this line */
877 if (net) {
878 put_net(net);
879 net = NULL;
880 }
881
882 /* we have processed all the queues so wake everyone */
883 wake_up(&audit_backlog_wait);
884
885 /* NOTE: we want to wake up if there is anything on the queue,
886 * regardless of if an auditd is connected, as we need to
887 * do the multicast send and rotate records from the
888 * main queue to the retry/hold queues */
889 wait_event_freezable(kauditd_wait,
890 (skb_queue_len(&audit_queue) ? 1 : 0));
891 }
892
893 return 0;
894 }
895
audit_send_list_thread(void * _dest)896 int audit_send_list_thread(void *_dest)
897 {
898 struct audit_netlink_list *dest = _dest;
899 struct sk_buff *skb;
900 struct sock *sk = audit_get_sk(dest->net);
901
902 /* wait for parent to finish and send an ACK */
903 audit_ctl_lock();
904 audit_ctl_unlock();
905
906 while ((skb = __skb_dequeue(&dest->q)) != NULL)
907 netlink_unicast(sk, skb, dest->portid, 0);
908
909 put_net(dest->net);
910 kfree(dest);
911
912 return 0;
913 }
914
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)915 struct sk_buff *audit_make_reply(int seq, int type, int done,
916 int multi, const void *payload, int size)
917 {
918 struct sk_buff *skb;
919 struct nlmsghdr *nlh;
920 void *data;
921 int flags = multi ? NLM_F_MULTI : 0;
922 int t = done ? NLMSG_DONE : type;
923
924 skb = nlmsg_new(size, GFP_KERNEL);
925 if (!skb)
926 return NULL;
927
928 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
929 if (!nlh)
930 goto out_kfree_skb;
931 data = nlmsg_data(nlh);
932 memcpy(data, payload, size);
933 return skb;
934
935 out_kfree_skb:
936 kfree_skb(skb);
937 return NULL;
938 }
939
audit_free_reply(struct audit_reply * reply)940 static void audit_free_reply(struct audit_reply *reply)
941 {
942 if (!reply)
943 return;
944
945 if (reply->skb)
946 kfree_skb(reply->skb);
947 if (reply->net)
948 put_net(reply->net);
949 kfree(reply);
950 }
951
audit_send_reply_thread(void * arg)952 static int audit_send_reply_thread(void *arg)
953 {
954 struct audit_reply *reply = (struct audit_reply *)arg;
955
956 audit_ctl_lock();
957 audit_ctl_unlock();
958
959 /* Ignore failure. It'll only happen if the sender goes away,
960 because our timeout is set to infinite. */
961 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
962 reply->skb = NULL;
963 audit_free_reply(reply);
964 return 0;
965 }
966
967 /**
968 * audit_send_reply - send an audit reply message via netlink
969 * @request_skb: skb of request we are replying to (used to target the reply)
970 * @seq: sequence number
971 * @type: audit message type
972 * @done: done (last) flag
973 * @multi: multi-part message flag
974 * @payload: payload data
975 * @size: payload size
976 *
977 * Allocates a skb, builds the netlink message, and sends it to the port id.
978 */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)979 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
980 int multi, const void *payload, int size)
981 {
982 struct task_struct *tsk;
983 struct audit_reply *reply;
984
985 reply = kzalloc(sizeof(*reply), GFP_KERNEL);
986 if (!reply)
987 return;
988
989 reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
990 if (!reply->skb)
991 goto err;
992 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
993 reply->portid = NETLINK_CB(request_skb).portid;
994
995 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
996 if (IS_ERR(tsk))
997 goto err;
998
999 return;
1000
1001 err:
1002 audit_free_reply(reply);
1003 }
1004
1005 /*
1006 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1007 * control messages.
1008 */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)1009 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1010 {
1011 int err = 0;
1012
1013 /* Only support initial user namespace for now. */
1014 /*
1015 * We return ECONNREFUSED because it tricks userspace into thinking
1016 * that audit was not configured into the kernel. Lots of users
1017 * configure their PAM stack (because that's what the distro does)
1018 * to reject login if unable to send messages to audit. If we return
1019 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1020 * configured in and will let login proceed. If we return EPERM
1021 * userspace will reject all logins. This should be removed when we
1022 * support non init namespaces!!
1023 */
1024 if (current_user_ns() != &init_user_ns)
1025 return -ECONNREFUSED;
1026
1027 switch (msg_type) {
1028 case AUDIT_LIST:
1029 case AUDIT_ADD:
1030 case AUDIT_DEL:
1031 return -EOPNOTSUPP;
1032 case AUDIT_GET:
1033 case AUDIT_SET:
1034 case AUDIT_GET_FEATURE:
1035 case AUDIT_SET_FEATURE:
1036 case AUDIT_LIST_RULES:
1037 case AUDIT_ADD_RULE:
1038 case AUDIT_DEL_RULE:
1039 case AUDIT_SIGNAL_INFO:
1040 case AUDIT_TTY_GET:
1041 case AUDIT_TTY_SET:
1042 case AUDIT_TRIM:
1043 case AUDIT_MAKE_EQUIV:
1044 /* Only support auditd and auditctl in initial pid namespace
1045 * for now. */
1046 if (task_active_pid_ns(current) != &init_pid_ns)
1047 return -EPERM;
1048
1049 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1050 err = -EPERM;
1051 break;
1052 case AUDIT_USER:
1053 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1054 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1055 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1056 err = -EPERM;
1057 break;
1058 default: /* bad msg */
1059 err = -EINVAL;
1060 }
1061
1062 return err;
1063 }
1064
audit_log_common_recv_msg(struct audit_buffer ** ab,u16 msg_type)1065 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1066 {
1067 uid_t uid = from_kuid(&init_user_ns, current_uid());
1068 pid_t pid = task_tgid_nr(current);
1069
1070 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1071 *ab = NULL;
1072 return;
1073 }
1074
1075 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1076 if (unlikely(!*ab))
1077 return;
1078 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1079 audit_log_session_info(*ab);
1080 audit_log_task_context(*ab);
1081 }
1082
is_audit_feature_set(int i)1083 int is_audit_feature_set(int i)
1084 {
1085 return af.features & AUDIT_FEATURE_TO_MASK(i);
1086 }
1087
1088
audit_get_feature(struct sk_buff * skb)1089 static int audit_get_feature(struct sk_buff *skb)
1090 {
1091 u32 seq;
1092
1093 seq = nlmsg_hdr(skb)->nlmsg_seq;
1094
1095 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1096
1097 return 0;
1098 }
1099
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1100 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1101 u32 old_lock, u32 new_lock, int res)
1102 {
1103 struct audit_buffer *ab;
1104
1105 if (audit_enabled == AUDIT_OFF)
1106 return;
1107 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1108 if (!ab)
1109 return;
1110 audit_log_task_info(ab, current);
1111 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1112 audit_feature_names[which], !!old_feature, !!new_feature,
1113 !!old_lock, !!new_lock, res);
1114 audit_log_end(ab);
1115 }
1116
audit_set_feature(struct audit_features * uaf)1117 static int audit_set_feature(struct audit_features *uaf)
1118 {
1119 int i;
1120
1121 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1122
1123 /* if there is ever a version 2 we should handle that here */
1124
1125 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1126 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1127 u32 old_feature, new_feature, old_lock, new_lock;
1128
1129 /* if we are not changing this feature, move along */
1130 if (!(feature & uaf->mask))
1131 continue;
1132
1133 old_feature = af.features & feature;
1134 new_feature = uaf->features & feature;
1135 new_lock = (uaf->lock | af.lock) & feature;
1136 old_lock = af.lock & feature;
1137
1138 /* are we changing a locked feature? */
1139 if (old_lock && (new_feature != old_feature)) {
1140 audit_log_feature_change(i, old_feature, new_feature,
1141 old_lock, new_lock, 0);
1142 return -EPERM;
1143 }
1144 }
1145 /* nothing invalid, do the changes */
1146 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1147 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1148 u32 old_feature, new_feature, old_lock, new_lock;
1149
1150 /* if we are not changing this feature, move along */
1151 if (!(feature & uaf->mask))
1152 continue;
1153
1154 old_feature = af.features & feature;
1155 new_feature = uaf->features & feature;
1156 old_lock = af.lock & feature;
1157 new_lock = (uaf->lock | af.lock) & feature;
1158
1159 if (new_feature != old_feature)
1160 audit_log_feature_change(i, old_feature, new_feature,
1161 old_lock, new_lock, 1);
1162
1163 if (new_feature)
1164 af.features |= feature;
1165 else
1166 af.features &= ~feature;
1167 af.lock |= new_lock;
1168 }
1169
1170 return 0;
1171 }
1172
audit_replace(struct pid * pid)1173 static int audit_replace(struct pid *pid)
1174 {
1175 pid_t pvnr;
1176 struct sk_buff *skb;
1177
1178 pvnr = pid_vnr(pid);
1179 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1180 if (!skb)
1181 return -ENOMEM;
1182 return auditd_send_unicast_skb(skb);
1183 }
1184
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh)1185 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1186 {
1187 u32 seq;
1188 void *data;
1189 int data_len;
1190 int err;
1191 struct audit_buffer *ab;
1192 u16 msg_type = nlh->nlmsg_type;
1193 struct audit_sig_info *sig_data;
1194 char *ctx = NULL;
1195 u32 len;
1196
1197 err = audit_netlink_ok(skb, msg_type);
1198 if (err)
1199 return err;
1200
1201 seq = nlh->nlmsg_seq;
1202 data = nlmsg_data(nlh);
1203 data_len = nlmsg_len(nlh);
1204
1205 switch (msg_type) {
1206 case AUDIT_GET: {
1207 struct audit_status s;
1208 memset(&s, 0, sizeof(s));
1209 s.enabled = audit_enabled;
1210 s.failure = audit_failure;
1211 /* NOTE: use pid_vnr() so the PID is relative to the current
1212 * namespace */
1213 s.pid = auditd_pid_vnr();
1214 s.rate_limit = audit_rate_limit;
1215 s.backlog_limit = audit_backlog_limit;
1216 s.lost = atomic_read(&audit_lost);
1217 s.backlog = skb_queue_len(&audit_queue);
1218 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1219 s.backlog_wait_time = audit_backlog_wait_time;
1220 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1221 break;
1222 }
1223 case AUDIT_SET: {
1224 struct audit_status s;
1225 memset(&s, 0, sizeof(s));
1226 /* guard against past and future API changes */
1227 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1228 if (s.mask & AUDIT_STATUS_ENABLED) {
1229 err = audit_set_enabled(s.enabled);
1230 if (err < 0)
1231 return err;
1232 }
1233 if (s.mask & AUDIT_STATUS_FAILURE) {
1234 err = audit_set_failure(s.failure);
1235 if (err < 0)
1236 return err;
1237 }
1238 if (s.mask & AUDIT_STATUS_PID) {
1239 /* NOTE: we are using the vnr PID functions below
1240 * because the s.pid value is relative to the
1241 * namespace of the caller; at present this
1242 * doesn't matter much since you can really only
1243 * run auditd from the initial pid namespace, but
1244 * something to keep in mind if this changes */
1245 pid_t new_pid = s.pid;
1246 pid_t auditd_pid;
1247 struct pid *req_pid = task_tgid(current);
1248
1249 /* Sanity check - PID values must match. Setting
1250 * pid to 0 is how auditd ends auditing. */
1251 if (new_pid && (new_pid != pid_vnr(req_pid)))
1252 return -EINVAL;
1253
1254 /* test the auditd connection */
1255 audit_replace(req_pid);
1256
1257 auditd_pid = auditd_pid_vnr();
1258 if (auditd_pid) {
1259 /* replacing a healthy auditd is not allowed */
1260 if (new_pid) {
1261 audit_log_config_change("audit_pid",
1262 new_pid, auditd_pid, 0);
1263 return -EEXIST;
1264 }
1265 /* only current auditd can unregister itself */
1266 if (pid_vnr(req_pid) != auditd_pid) {
1267 audit_log_config_change("audit_pid",
1268 new_pid, auditd_pid, 0);
1269 return -EACCES;
1270 }
1271 }
1272
1273 if (new_pid) {
1274 /* register a new auditd connection */
1275 err = auditd_set(req_pid,
1276 NETLINK_CB(skb).portid,
1277 sock_net(NETLINK_CB(skb).sk));
1278 if (audit_enabled != AUDIT_OFF)
1279 audit_log_config_change("audit_pid",
1280 new_pid,
1281 auditd_pid,
1282 err ? 0 : 1);
1283 if (err)
1284 return err;
1285
1286 /* try to process any backlog */
1287 wake_up_interruptible(&kauditd_wait);
1288 } else {
1289 if (audit_enabled != AUDIT_OFF)
1290 audit_log_config_change("audit_pid",
1291 new_pid,
1292 auditd_pid, 1);
1293
1294 /* unregister the auditd connection */
1295 auditd_reset(NULL);
1296 }
1297 }
1298 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1299 err = audit_set_rate_limit(s.rate_limit);
1300 if (err < 0)
1301 return err;
1302 }
1303 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1304 err = audit_set_backlog_limit(s.backlog_limit);
1305 if (err < 0)
1306 return err;
1307 }
1308 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1309 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1310 return -EINVAL;
1311 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1312 return -EINVAL;
1313 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1314 if (err < 0)
1315 return err;
1316 }
1317 if (s.mask == AUDIT_STATUS_LOST) {
1318 u32 lost = atomic_xchg(&audit_lost, 0);
1319
1320 audit_log_config_change("lost", 0, lost, 1);
1321 return lost;
1322 }
1323 break;
1324 }
1325 case AUDIT_GET_FEATURE:
1326 err = audit_get_feature(skb);
1327 if (err)
1328 return err;
1329 break;
1330 case AUDIT_SET_FEATURE:
1331 if (data_len < sizeof(struct audit_features))
1332 return -EINVAL;
1333 err = audit_set_feature(data);
1334 if (err)
1335 return err;
1336 break;
1337 case AUDIT_USER:
1338 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1339 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1340 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1341 return 0;
1342 /* exit early if there isn't at least one character to print */
1343 if (data_len < 2)
1344 return -EINVAL;
1345
1346 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1347 if (err == 1) { /* match or error */
1348 char *str = data;
1349
1350 err = 0;
1351 if (msg_type == AUDIT_USER_TTY) {
1352 err = tty_audit_push();
1353 if (err)
1354 break;
1355 }
1356 audit_log_common_recv_msg(&ab, msg_type);
1357 if (msg_type != AUDIT_USER_TTY) {
1358 /* ensure NULL termination */
1359 str[data_len - 1] = '\0';
1360 audit_log_format(ab, " msg='%.*s'",
1361 AUDIT_MESSAGE_TEXT_MAX,
1362 str);
1363 } else {
1364 audit_log_format(ab, " data=");
1365 if (data_len > 0 && str[data_len - 1] == '\0')
1366 data_len--;
1367 audit_log_n_untrustedstring(ab, str, data_len);
1368 }
1369 audit_log_end(ab);
1370 }
1371 break;
1372 case AUDIT_ADD_RULE:
1373 case AUDIT_DEL_RULE:
1374 if (data_len < sizeof(struct audit_rule_data))
1375 return -EINVAL;
1376 if (audit_enabled == AUDIT_LOCKED) {
1377 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1378 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1379 audit_log_end(ab);
1380 return -EPERM;
1381 }
1382 err = audit_rule_change(msg_type, seq, data, data_len);
1383 break;
1384 case AUDIT_LIST_RULES:
1385 err = audit_list_rules_send(skb, seq);
1386 break;
1387 case AUDIT_TRIM:
1388 audit_trim_trees();
1389 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1390 audit_log_format(ab, " op=trim res=1");
1391 audit_log_end(ab);
1392 break;
1393 case AUDIT_MAKE_EQUIV: {
1394 void *bufp = data;
1395 u32 sizes[2];
1396 size_t msglen = data_len;
1397 char *old, *new;
1398
1399 err = -EINVAL;
1400 if (msglen < 2 * sizeof(u32))
1401 break;
1402 memcpy(sizes, bufp, 2 * sizeof(u32));
1403 bufp += 2 * sizeof(u32);
1404 msglen -= 2 * sizeof(u32);
1405 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1406 if (IS_ERR(old)) {
1407 err = PTR_ERR(old);
1408 break;
1409 }
1410 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1411 if (IS_ERR(new)) {
1412 err = PTR_ERR(new);
1413 kfree(old);
1414 break;
1415 }
1416 /* OK, here comes... */
1417 err = audit_tag_tree(old, new);
1418
1419 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1420
1421 audit_log_format(ab, " op=make_equiv old=");
1422 audit_log_untrustedstring(ab, old);
1423 audit_log_format(ab, " new=");
1424 audit_log_untrustedstring(ab, new);
1425 audit_log_format(ab, " res=%d", !err);
1426 audit_log_end(ab);
1427 kfree(old);
1428 kfree(new);
1429 break;
1430 }
1431 case AUDIT_SIGNAL_INFO:
1432 len = 0;
1433 if (audit_sig_sid) {
1434 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1435 if (err)
1436 return err;
1437 }
1438 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1439 if (!sig_data) {
1440 if (audit_sig_sid)
1441 security_release_secctx(ctx, len);
1442 return -ENOMEM;
1443 }
1444 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1445 sig_data->pid = audit_sig_pid;
1446 if (audit_sig_sid) {
1447 memcpy(sig_data->ctx, ctx, len);
1448 security_release_secctx(ctx, len);
1449 }
1450 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1451 sig_data, sizeof(*sig_data) + len);
1452 kfree(sig_data);
1453 break;
1454 case AUDIT_TTY_GET: {
1455 struct audit_tty_status s;
1456 unsigned int t;
1457
1458 t = READ_ONCE(current->signal->audit_tty);
1459 s.enabled = t & AUDIT_TTY_ENABLE;
1460 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1461
1462 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1463 break;
1464 }
1465 case AUDIT_TTY_SET: {
1466 struct audit_tty_status s, old;
1467 struct audit_buffer *ab;
1468 unsigned int t;
1469
1470 memset(&s, 0, sizeof(s));
1471 /* guard against past and future API changes */
1472 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1473 /* check if new data is valid */
1474 if ((s.enabled != 0 && s.enabled != 1) ||
1475 (s.log_passwd != 0 && s.log_passwd != 1))
1476 err = -EINVAL;
1477
1478 if (err)
1479 t = READ_ONCE(current->signal->audit_tty);
1480 else {
1481 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1482 t = xchg(¤t->signal->audit_tty, t);
1483 }
1484 old.enabled = t & AUDIT_TTY_ENABLE;
1485 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1486
1487 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1488 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1489 " old-log_passwd=%d new-log_passwd=%d res=%d",
1490 old.enabled, s.enabled, old.log_passwd,
1491 s.log_passwd, !err);
1492 audit_log_end(ab);
1493 break;
1494 }
1495 default:
1496 err = -EINVAL;
1497 break;
1498 }
1499
1500 return err < 0 ? err : 0;
1501 }
1502
1503 /**
1504 * audit_receive - receive messages from a netlink control socket
1505 * @skb: the message buffer
1506 *
1507 * Parse the provided skb and deal with any messages that may be present,
1508 * malformed skbs are discarded.
1509 */
audit_receive(struct sk_buff * skb)1510 static void audit_receive(struct sk_buff *skb)
1511 {
1512 struct nlmsghdr *nlh;
1513 /*
1514 * len MUST be signed for nlmsg_next to be able to dec it below 0
1515 * if the nlmsg_len was not aligned
1516 */
1517 int len;
1518 int err;
1519
1520 nlh = nlmsg_hdr(skb);
1521 len = skb->len;
1522
1523 audit_ctl_lock();
1524 while (nlmsg_ok(nlh, len)) {
1525 err = audit_receive_msg(skb, nlh);
1526 /* if err or if this message says it wants a response */
1527 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1528 netlink_ack(skb, nlh, err, NULL);
1529
1530 nlh = nlmsg_next(nlh, &len);
1531 }
1532 audit_ctl_unlock();
1533 }
1534
1535 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_bind(struct net * net,int group)1536 static int audit_bind(struct net *net, int group)
1537 {
1538 if (!capable(CAP_AUDIT_READ))
1539 return -EPERM;
1540
1541 return 0;
1542 }
1543
audit_net_init(struct net * net)1544 static int __net_init audit_net_init(struct net *net)
1545 {
1546 struct netlink_kernel_cfg cfg = {
1547 .input = audit_receive,
1548 .bind = audit_bind,
1549 .flags = NL_CFG_F_NONROOT_RECV,
1550 .groups = AUDIT_NLGRP_MAX,
1551 };
1552
1553 struct audit_net *aunet = net_generic(net, audit_net_id);
1554
1555 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1556 if (aunet->sk == NULL) {
1557 audit_panic("cannot initialize netlink socket in namespace");
1558 return -ENOMEM;
1559 }
1560 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1561
1562 return 0;
1563 }
1564
audit_net_exit(struct net * net)1565 static void __net_exit audit_net_exit(struct net *net)
1566 {
1567 struct audit_net *aunet = net_generic(net, audit_net_id);
1568
1569 /* NOTE: you would think that we would want to check the auditd
1570 * connection and potentially reset it here if it lives in this
1571 * namespace, but since the auditd connection tracking struct holds a
1572 * reference to this namespace (see auditd_set()) we are only ever
1573 * going to get here after that connection has been released */
1574
1575 netlink_kernel_release(aunet->sk);
1576 }
1577
1578 static struct pernet_operations audit_net_ops __net_initdata = {
1579 .init = audit_net_init,
1580 .exit = audit_net_exit,
1581 .id = &audit_net_id,
1582 .size = sizeof(struct audit_net),
1583 };
1584
1585 /* Initialize audit support at boot time. */
audit_init(void)1586 static int __init audit_init(void)
1587 {
1588 int i;
1589
1590 if (audit_initialized == AUDIT_DISABLED)
1591 return 0;
1592
1593 audit_buffer_cache = kmem_cache_create("audit_buffer",
1594 sizeof(struct audit_buffer),
1595 0, SLAB_PANIC, NULL);
1596
1597 skb_queue_head_init(&audit_queue);
1598 skb_queue_head_init(&audit_retry_queue);
1599 skb_queue_head_init(&audit_hold_queue);
1600
1601 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1602 INIT_LIST_HEAD(&audit_inode_hash[i]);
1603
1604 mutex_init(&audit_cmd_mutex.lock);
1605 audit_cmd_mutex.owner = NULL;
1606
1607 pr_info("initializing netlink subsys (%s)\n",
1608 audit_default ? "enabled" : "disabled");
1609 register_pernet_subsys(&audit_net_ops);
1610
1611 audit_initialized = AUDIT_INITIALIZED;
1612
1613 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1614 if (IS_ERR(kauditd_task)) {
1615 int err = PTR_ERR(kauditd_task);
1616 panic("audit: failed to start the kauditd thread (%d)\n", err);
1617 }
1618
1619 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1620 "state=initialized audit_enabled=%u res=1",
1621 audit_enabled);
1622
1623 return 0;
1624 }
1625 postcore_initcall(audit_init);
1626
1627 /*
1628 * Process kernel command-line parameter at boot time.
1629 * audit={0|off} or audit={1|on}.
1630 */
audit_enable(char * str)1631 static int __init audit_enable(char *str)
1632 {
1633 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1634 audit_default = AUDIT_OFF;
1635 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1636 audit_default = AUDIT_ON;
1637 else {
1638 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1639 audit_default = AUDIT_ON;
1640 }
1641
1642 if (audit_default == AUDIT_OFF)
1643 audit_initialized = AUDIT_DISABLED;
1644 if (audit_set_enabled(audit_default))
1645 pr_err("audit: error setting audit state (%d)\n",
1646 audit_default);
1647
1648 pr_info("%s\n", audit_default ?
1649 "enabled (after initialization)" : "disabled (until reboot)");
1650
1651 return 1;
1652 }
1653 __setup("audit=", audit_enable);
1654
1655 /* Process kernel command-line parameter at boot time.
1656 * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1657 static int __init audit_backlog_limit_set(char *str)
1658 {
1659 u32 audit_backlog_limit_arg;
1660
1661 pr_info("audit_backlog_limit: ");
1662 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1663 pr_cont("using default of %u, unable to parse %s\n",
1664 audit_backlog_limit, str);
1665 return 1;
1666 }
1667
1668 audit_backlog_limit = audit_backlog_limit_arg;
1669 pr_cont("%d\n", audit_backlog_limit);
1670
1671 return 1;
1672 }
1673 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1674
audit_buffer_free(struct audit_buffer * ab)1675 static void audit_buffer_free(struct audit_buffer *ab)
1676 {
1677 if (!ab)
1678 return;
1679
1680 kfree_skb(ab->skb);
1681 kmem_cache_free(audit_buffer_cache, ab);
1682 }
1683
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1684 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1685 gfp_t gfp_mask, int type)
1686 {
1687 struct audit_buffer *ab;
1688
1689 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1690 if (!ab)
1691 return NULL;
1692
1693 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1694 if (!ab->skb)
1695 goto err;
1696 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1697 goto err;
1698
1699 ab->ctx = ctx;
1700 ab->gfp_mask = gfp_mask;
1701
1702 return ab;
1703
1704 err:
1705 audit_buffer_free(ab);
1706 return NULL;
1707 }
1708
1709 /**
1710 * audit_serial - compute a serial number for the audit record
1711 *
1712 * Compute a serial number for the audit record. Audit records are
1713 * written to user-space as soon as they are generated, so a complete
1714 * audit record may be written in several pieces. The timestamp of the
1715 * record and this serial number are used by the user-space tools to
1716 * determine which pieces belong to the same audit record. The
1717 * (timestamp,serial) tuple is unique for each syscall and is live from
1718 * syscall entry to syscall exit.
1719 *
1720 * NOTE: Another possibility is to store the formatted records off the
1721 * audit context (for those records that have a context), and emit them
1722 * all at syscall exit. However, this could delay the reporting of
1723 * significant errors until syscall exit (or never, if the system
1724 * halts).
1725 */
audit_serial(void)1726 unsigned int audit_serial(void)
1727 {
1728 static atomic_t serial = ATOMIC_INIT(0);
1729
1730 return atomic_add_return(1, &serial);
1731 }
1732
audit_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1733 static inline void audit_get_stamp(struct audit_context *ctx,
1734 struct timespec64 *t, unsigned int *serial)
1735 {
1736 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1737 ktime_get_coarse_real_ts64(t);
1738 *serial = audit_serial();
1739 }
1740 }
1741
1742 /**
1743 * audit_log_start - obtain an audit buffer
1744 * @ctx: audit_context (may be NULL)
1745 * @gfp_mask: type of allocation
1746 * @type: audit message type
1747 *
1748 * Returns audit_buffer pointer on success or NULL on error.
1749 *
1750 * Obtain an audit buffer. This routine does locking to obtain the
1751 * audit buffer, but then no locking is required for calls to
1752 * audit_log_*format. If the task (ctx) is a task that is currently in a
1753 * syscall, then the syscall is marked as auditable and an audit record
1754 * will be written at syscall exit. If there is no associated task, then
1755 * task context (ctx) should be NULL.
1756 */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1757 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1758 int type)
1759 {
1760 struct audit_buffer *ab;
1761 struct timespec64 t;
1762 unsigned int uninitialized_var(serial);
1763
1764 if (audit_initialized != AUDIT_INITIALIZED)
1765 return NULL;
1766
1767 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1768 return NULL;
1769
1770 /* NOTE: don't ever fail/sleep on these two conditions:
1771 * 1. auditd generated record - since we need auditd to drain the
1772 * queue; also, when we are checking for auditd, compare PIDs using
1773 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1774 * using a PID anchored in the caller's namespace
1775 * 2. generator holding the audit_cmd_mutex - we don't want to block
1776 * while holding the mutex */
1777 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1778 long stime = audit_backlog_wait_time;
1779
1780 while (audit_backlog_limit &&
1781 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1782 /* wake kauditd to try and flush the queue */
1783 wake_up_interruptible(&kauditd_wait);
1784
1785 /* sleep if we are allowed and we haven't exhausted our
1786 * backlog wait limit */
1787 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1788 DECLARE_WAITQUEUE(wait, current);
1789
1790 add_wait_queue_exclusive(&audit_backlog_wait,
1791 &wait);
1792 set_current_state(TASK_UNINTERRUPTIBLE);
1793 stime = schedule_timeout(stime);
1794 remove_wait_queue(&audit_backlog_wait, &wait);
1795 } else {
1796 if (audit_rate_check() && printk_ratelimit())
1797 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1798 skb_queue_len(&audit_queue),
1799 audit_backlog_limit);
1800 audit_log_lost("backlog limit exceeded");
1801 return NULL;
1802 }
1803 }
1804 }
1805
1806 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1807 if (!ab) {
1808 audit_log_lost("out of memory in audit_log_start");
1809 return NULL;
1810 }
1811
1812 audit_get_stamp(ab->ctx, &t, &serial);
1813 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1814 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1815
1816 return ab;
1817 }
1818
1819 /**
1820 * audit_expand - expand skb in the audit buffer
1821 * @ab: audit_buffer
1822 * @extra: space to add at tail of the skb
1823 *
1824 * Returns 0 (no space) on failed expansion, or available space if
1825 * successful.
1826 */
audit_expand(struct audit_buffer * ab,int extra)1827 static inline int audit_expand(struct audit_buffer *ab, int extra)
1828 {
1829 struct sk_buff *skb = ab->skb;
1830 int oldtail = skb_tailroom(skb);
1831 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1832 int newtail = skb_tailroom(skb);
1833
1834 if (ret < 0) {
1835 audit_log_lost("out of memory in audit_expand");
1836 return 0;
1837 }
1838
1839 skb->truesize += newtail - oldtail;
1840 return newtail;
1841 }
1842
1843 /*
1844 * Format an audit message into the audit buffer. If there isn't enough
1845 * room in the audit buffer, more room will be allocated and vsnprint
1846 * will be called a second time. Currently, we assume that a printk
1847 * can't format message larger than 1024 bytes, so we don't either.
1848 */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1849 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1850 va_list args)
1851 {
1852 int len, avail;
1853 struct sk_buff *skb;
1854 va_list args2;
1855
1856 if (!ab)
1857 return;
1858
1859 BUG_ON(!ab->skb);
1860 skb = ab->skb;
1861 avail = skb_tailroom(skb);
1862 if (avail == 0) {
1863 avail = audit_expand(ab, AUDIT_BUFSIZ);
1864 if (!avail)
1865 goto out;
1866 }
1867 va_copy(args2, args);
1868 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1869 if (len >= avail) {
1870 /* The printk buffer is 1024 bytes long, so if we get
1871 * here and AUDIT_BUFSIZ is at least 1024, then we can
1872 * log everything that printk could have logged. */
1873 avail = audit_expand(ab,
1874 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1875 if (!avail)
1876 goto out_va_end;
1877 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1878 }
1879 if (len > 0)
1880 skb_put(skb, len);
1881 out_va_end:
1882 va_end(args2);
1883 out:
1884 return;
1885 }
1886
1887 /**
1888 * audit_log_format - format a message into the audit buffer.
1889 * @ab: audit_buffer
1890 * @fmt: format string
1891 * @...: optional parameters matching @fmt string
1892 *
1893 * All the work is done in audit_log_vformat.
1894 */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)1895 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1896 {
1897 va_list args;
1898
1899 if (!ab)
1900 return;
1901 va_start(args, fmt);
1902 audit_log_vformat(ab, fmt, args);
1903 va_end(args);
1904 }
1905
1906 /**
1907 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1908 * @ab: the audit_buffer
1909 * @buf: buffer to convert to hex
1910 * @len: length of @buf to be converted
1911 *
1912 * No return value; failure to expand is silently ignored.
1913 *
1914 * This function will take the passed buf and convert it into a string of
1915 * ascii hex digits. The new string is placed onto the skb.
1916 */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)1917 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1918 size_t len)
1919 {
1920 int i, avail, new_len;
1921 unsigned char *ptr;
1922 struct sk_buff *skb;
1923
1924 if (!ab)
1925 return;
1926
1927 BUG_ON(!ab->skb);
1928 skb = ab->skb;
1929 avail = skb_tailroom(skb);
1930 new_len = len<<1;
1931 if (new_len >= avail) {
1932 /* Round the buffer request up to the next multiple */
1933 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1934 avail = audit_expand(ab, new_len);
1935 if (!avail)
1936 return;
1937 }
1938
1939 ptr = skb_tail_pointer(skb);
1940 for (i = 0; i < len; i++)
1941 ptr = hex_byte_pack_upper(ptr, buf[i]);
1942 *ptr = 0;
1943 skb_put(skb, len << 1); /* new string is twice the old string */
1944 }
1945
1946 /*
1947 * Format a string of no more than slen characters into the audit buffer,
1948 * enclosed in quote marks.
1949 */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)1950 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1951 size_t slen)
1952 {
1953 int avail, new_len;
1954 unsigned char *ptr;
1955 struct sk_buff *skb;
1956
1957 if (!ab)
1958 return;
1959
1960 BUG_ON(!ab->skb);
1961 skb = ab->skb;
1962 avail = skb_tailroom(skb);
1963 new_len = slen + 3; /* enclosing quotes + null terminator */
1964 if (new_len > avail) {
1965 avail = audit_expand(ab, new_len);
1966 if (!avail)
1967 return;
1968 }
1969 ptr = skb_tail_pointer(skb);
1970 *ptr++ = '"';
1971 memcpy(ptr, string, slen);
1972 ptr += slen;
1973 *ptr++ = '"';
1974 *ptr = 0;
1975 skb_put(skb, slen + 2); /* don't include null terminator */
1976 }
1977
1978 /**
1979 * audit_string_contains_control - does a string need to be logged in hex
1980 * @string: string to be checked
1981 * @len: max length of the string to check
1982 */
audit_string_contains_control(const char * string,size_t len)1983 bool audit_string_contains_control(const char *string, size_t len)
1984 {
1985 const unsigned char *p;
1986 for (p = string; p < (const unsigned char *)string + len; p++) {
1987 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1988 return true;
1989 }
1990 return false;
1991 }
1992
1993 /**
1994 * audit_log_n_untrustedstring - log a string that may contain random characters
1995 * @ab: audit_buffer
1996 * @len: length of string (not including trailing null)
1997 * @string: string to be logged
1998 *
1999 * This code will escape a string that is passed to it if the string
2000 * contains a control character, unprintable character, double quote mark,
2001 * or a space. Unescaped strings will start and end with a double quote mark.
2002 * Strings that are escaped are printed in hex (2 digits per char).
2003 *
2004 * The caller specifies the number of characters in the string to log, which may
2005 * or may not be the entire string.
2006 */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)2007 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2008 size_t len)
2009 {
2010 if (audit_string_contains_control(string, len))
2011 audit_log_n_hex(ab, string, len);
2012 else
2013 audit_log_n_string(ab, string, len);
2014 }
2015
2016 /**
2017 * audit_log_untrustedstring - log a string that may contain random characters
2018 * @ab: audit_buffer
2019 * @string: string to be logged
2020 *
2021 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2022 * determine string length.
2023 */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)2024 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2025 {
2026 audit_log_n_untrustedstring(ab, string, strlen(string));
2027 }
2028
2029 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)2030 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2031 const struct path *path)
2032 {
2033 char *p, *pathname;
2034
2035 if (prefix)
2036 audit_log_format(ab, "%s", prefix);
2037
2038 /* We will allow 11 spaces for ' (deleted)' to be appended */
2039 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2040 if (!pathname) {
2041 audit_log_string(ab, "<no_memory>");
2042 return;
2043 }
2044 p = d_path(path, pathname, PATH_MAX+11);
2045 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2046 /* FIXME: can we save some information here? */
2047 audit_log_string(ab, "<too_long>");
2048 } else
2049 audit_log_untrustedstring(ab, p);
2050 kfree(pathname);
2051 }
2052
audit_log_session_info(struct audit_buffer * ab)2053 void audit_log_session_info(struct audit_buffer *ab)
2054 {
2055 unsigned int sessionid = audit_get_sessionid(current);
2056 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2057
2058 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
2059 }
2060
audit_log_key(struct audit_buffer * ab,char * key)2061 void audit_log_key(struct audit_buffer *ab, char *key)
2062 {
2063 audit_log_format(ab, " key=");
2064 if (key)
2065 audit_log_untrustedstring(ab, key);
2066 else
2067 audit_log_format(ab, "(null)");
2068 }
2069
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)2070 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
2071 {
2072 int i;
2073
2074 audit_log_format(ab, " %s=", prefix);
2075 CAP_FOR_EACH_U32(i) {
2076 audit_log_format(ab, "%08x",
2077 cap->cap[CAP_LAST_U32 - i]);
2078 }
2079 }
2080
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)2081 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2082 {
2083 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
2084 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
2085 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2086 name->fcap.fE, name->fcap_ver);
2087 }
2088
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)2089 static inline int audit_copy_fcaps(struct audit_names *name,
2090 const struct dentry *dentry)
2091 {
2092 struct cpu_vfs_cap_data caps;
2093 int rc;
2094
2095 if (!dentry)
2096 return 0;
2097
2098 rc = get_vfs_caps_from_disk(dentry, &caps);
2099 if (rc)
2100 return rc;
2101
2102 name->fcap.permitted = caps.permitted;
2103 name->fcap.inheritable = caps.inheritable;
2104 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2105 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2106 VFS_CAP_REVISION_SHIFT;
2107
2108 return 0;
2109 }
2110
2111 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,struct inode * inode)2112 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2113 struct inode *inode)
2114 {
2115 name->ino = inode->i_ino;
2116 name->dev = inode->i_sb->s_dev;
2117 name->mode = inode->i_mode;
2118 name->uid = inode->i_uid;
2119 name->gid = inode->i_gid;
2120 name->rdev = inode->i_rdev;
2121 security_inode_getsecid(inode, &name->osid);
2122 audit_copy_fcaps(name, dentry);
2123 }
2124
2125 /**
2126 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2127 * @context: audit_context for the task
2128 * @n: audit_names structure with reportable details
2129 * @path: optional path to report instead of audit_names->name
2130 * @record_num: record number to report when handling a list of names
2131 * @call_panic: optional pointer to int that will be updated if secid fails
2132 */
audit_log_name(struct audit_context * context,struct audit_names * n,const struct path * path,int record_num,int * call_panic)2133 void audit_log_name(struct audit_context *context, struct audit_names *n,
2134 const struct path *path, int record_num, int *call_panic)
2135 {
2136 struct audit_buffer *ab;
2137 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2138 if (!ab)
2139 return;
2140
2141 audit_log_format(ab, "item=%d", record_num);
2142
2143 if (path)
2144 audit_log_d_path(ab, " name=", path);
2145 else if (n->name) {
2146 switch (n->name_len) {
2147 case AUDIT_NAME_FULL:
2148 /* log the full path */
2149 audit_log_format(ab, " name=");
2150 audit_log_untrustedstring(ab, n->name->name);
2151 break;
2152 case 0:
2153 /* name was specified as a relative path and the
2154 * directory component is the cwd */
2155 audit_log_d_path(ab, " name=", &context->pwd);
2156 break;
2157 default:
2158 /* log the name's directory component */
2159 audit_log_format(ab, " name=");
2160 audit_log_n_untrustedstring(ab, n->name->name,
2161 n->name_len);
2162 }
2163 } else
2164 audit_log_format(ab, " name=(null)");
2165
2166 if (n->ino != AUDIT_INO_UNSET)
2167 audit_log_format(ab, " inode=%lu"
2168 " dev=%02x:%02x mode=%#ho"
2169 " ouid=%u ogid=%u rdev=%02x:%02x",
2170 n->ino,
2171 MAJOR(n->dev),
2172 MINOR(n->dev),
2173 n->mode,
2174 from_kuid(&init_user_ns, n->uid),
2175 from_kgid(&init_user_ns, n->gid),
2176 MAJOR(n->rdev),
2177 MINOR(n->rdev));
2178 if (n->osid != 0) {
2179 char *ctx = NULL;
2180 u32 len;
2181 if (security_secid_to_secctx(
2182 n->osid, &ctx, &len)) {
2183 audit_log_format(ab, " osid=%u", n->osid);
2184 if (call_panic)
2185 *call_panic = 2;
2186 } else {
2187 audit_log_format(ab, " obj=%s", ctx);
2188 security_release_secctx(ctx, len);
2189 }
2190 }
2191
2192 /* log the audit_names record type */
2193 audit_log_format(ab, " nametype=");
2194 switch(n->type) {
2195 case AUDIT_TYPE_NORMAL:
2196 audit_log_format(ab, "NORMAL");
2197 break;
2198 case AUDIT_TYPE_PARENT:
2199 audit_log_format(ab, "PARENT");
2200 break;
2201 case AUDIT_TYPE_CHILD_DELETE:
2202 audit_log_format(ab, "DELETE");
2203 break;
2204 case AUDIT_TYPE_CHILD_CREATE:
2205 audit_log_format(ab, "CREATE");
2206 break;
2207 default:
2208 audit_log_format(ab, "UNKNOWN");
2209 break;
2210 }
2211
2212 audit_log_fcaps(ab, n);
2213 audit_log_end(ab);
2214 }
2215
audit_log_task_context(struct audit_buffer * ab)2216 int audit_log_task_context(struct audit_buffer *ab)
2217 {
2218 char *ctx = NULL;
2219 unsigned len;
2220 int error;
2221 u32 sid;
2222
2223 security_task_getsecid(current, &sid);
2224 if (!sid)
2225 return 0;
2226
2227 error = security_secid_to_secctx(sid, &ctx, &len);
2228 if (error) {
2229 if (error != -EINVAL)
2230 goto error_path;
2231 return 0;
2232 }
2233
2234 audit_log_format(ab, " subj=%s", ctx);
2235 security_release_secctx(ctx, len);
2236 return 0;
2237
2238 error_path:
2239 audit_panic("error in audit_log_task_context");
2240 return error;
2241 }
2242 EXPORT_SYMBOL(audit_log_task_context);
2243
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2244 void audit_log_d_path_exe(struct audit_buffer *ab,
2245 struct mm_struct *mm)
2246 {
2247 struct file *exe_file;
2248
2249 if (!mm)
2250 goto out_null;
2251
2252 exe_file = get_mm_exe_file(mm);
2253 if (!exe_file)
2254 goto out_null;
2255
2256 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2257 fput(exe_file);
2258 return;
2259 out_null:
2260 audit_log_format(ab, " exe=(null)");
2261 }
2262
audit_get_tty(struct task_struct * tsk)2263 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2264 {
2265 struct tty_struct *tty = NULL;
2266 unsigned long flags;
2267
2268 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2269 if (tsk->signal)
2270 tty = tty_kref_get(tsk->signal->tty);
2271 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2272 return tty;
2273 }
2274
audit_put_tty(struct tty_struct * tty)2275 void audit_put_tty(struct tty_struct *tty)
2276 {
2277 tty_kref_put(tty);
2278 }
2279
audit_log_task_info(struct audit_buffer * ab,struct task_struct * tsk)2280 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2281 {
2282 const struct cred *cred;
2283 char comm[sizeof(tsk->comm)];
2284 struct tty_struct *tty;
2285
2286 if (!ab)
2287 return;
2288
2289 /* tsk == current */
2290 cred = current_cred();
2291 tty = audit_get_tty(tsk);
2292 audit_log_format(ab,
2293 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2294 " euid=%u suid=%u fsuid=%u"
2295 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2296 task_ppid_nr(tsk),
2297 task_tgid_nr(tsk),
2298 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2299 from_kuid(&init_user_ns, cred->uid),
2300 from_kgid(&init_user_ns, cred->gid),
2301 from_kuid(&init_user_ns, cred->euid),
2302 from_kuid(&init_user_ns, cred->suid),
2303 from_kuid(&init_user_ns, cred->fsuid),
2304 from_kgid(&init_user_ns, cred->egid),
2305 from_kgid(&init_user_ns, cred->sgid),
2306 from_kgid(&init_user_ns, cred->fsgid),
2307 tty ? tty_name(tty) : "(none)",
2308 audit_get_sessionid(tsk));
2309 audit_put_tty(tty);
2310 audit_log_format(ab, " comm=");
2311 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2312 audit_log_d_path_exe(ab, tsk->mm);
2313 audit_log_task_context(ab);
2314 }
2315 EXPORT_SYMBOL(audit_log_task_info);
2316
2317 /**
2318 * audit_log_link_denied - report a link restriction denial
2319 * @operation: specific link operation
2320 */
audit_log_link_denied(const char * operation)2321 void audit_log_link_denied(const char *operation)
2322 {
2323 struct audit_buffer *ab;
2324
2325 if (!audit_enabled || audit_dummy_context())
2326 return;
2327
2328 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2329 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_LINK);
2330 if (!ab)
2331 return;
2332 audit_log_format(ab, "op=%s", operation);
2333 audit_log_task_info(ab, current);
2334 audit_log_format(ab, " res=0");
2335 audit_log_end(ab);
2336 }
2337
2338 /**
2339 * audit_log_end - end one audit record
2340 * @ab: the audit_buffer
2341 *
2342 * We can not do a netlink send inside an irq context because it blocks (last
2343 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2344 * queue and a tasklet is scheduled to remove them from the queue outside the
2345 * irq context. May be called in any context.
2346 */
audit_log_end(struct audit_buffer * ab)2347 void audit_log_end(struct audit_buffer *ab)
2348 {
2349 struct sk_buff *skb;
2350 struct nlmsghdr *nlh;
2351
2352 if (!ab)
2353 return;
2354
2355 if (audit_rate_check()) {
2356 skb = ab->skb;
2357 ab->skb = NULL;
2358
2359 /* setup the netlink header, see the comments in
2360 * kauditd_send_multicast_skb() for length quirks */
2361 nlh = nlmsg_hdr(skb);
2362 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2363
2364 /* queue the netlink packet and poke the kauditd thread */
2365 skb_queue_tail(&audit_queue, skb);
2366 wake_up_interruptible(&kauditd_wait);
2367 } else
2368 audit_log_lost("rate limit exceeded");
2369
2370 audit_buffer_free(ab);
2371 }
2372
2373 /**
2374 * audit_log - Log an audit record
2375 * @ctx: audit context
2376 * @gfp_mask: type of allocation
2377 * @type: audit message type
2378 * @fmt: format string to use
2379 * @...: variable parameters matching the format string
2380 *
2381 * This is a convenience function that calls audit_log_start,
2382 * audit_log_vformat, and audit_log_end. It may be called
2383 * in any context.
2384 */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2385 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2386 const char *fmt, ...)
2387 {
2388 struct audit_buffer *ab;
2389 va_list args;
2390
2391 ab = audit_log_start(ctx, gfp_mask, type);
2392 if (ab) {
2393 va_start(args, fmt);
2394 audit_log_vformat(ab, fmt, args);
2395 va_end(args);
2396 audit_log_end(ab);
2397 }
2398 }
2399
2400 EXPORT_SYMBOL(audit_log_start);
2401 EXPORT_SYMBOL(audit_log_end);
2402 EXPORT_SYMBOL(audit_log_format);
2403 EXPORT_SYMBOL(audit_log);
2404