• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Audit userspace, documentation, tests, and bug/issue trackers:
42  * 	https://github.com/linux-audit
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/file.h>
48 #include <linux/init.h>
49 #include <linux/types.h>
50 #include <linux/atomic.h>
51 #include <linux/mm.h>
52 #include <linux/export.h>
53 #include <linux/slab.h>
54 #include <linux/err.h>
55 #include <linux/kthread.h>
56 #include <linux/kernel.h>
57 #include <linux/syscalls.h>
58 #include <linux/spinlock.h>
59 #include <linux/rcupdate.h>
60 #include <linux/mutex.h>
61 #include <linux/gfp.h>
62 #include <linux/pid.h>
63 #include <linux/slab.h>
64 
65 #include <linux/audit.h>
66 
67 #include <net/sock.h>
68 #include <net/netlink.h>
69 #include <linux/skbuff.h>
70 #ifdef CONFIG_SECURITY
71 #include <linux/security.h>
72 #endif
73 #include <linux/freezer.h>
74 #include <linux/pid_namespace.h>
75 #include <net/netns/generic.h>
76 
77 #include "audit.h"
78 
79 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
80  * (Initialization happens after skb_init is called.) */
81 #define AUDIT_DISABLED		-1
82 #define AUDIT_UNINITIALIZED	0
83 #define AUDIT_INITIALIZED	1
84 static int	audit_initialized;
85 
86 u32		audit_enabled = AUDIT_OFF;
87 bool		audit_ever_enabled = !!AUDIT_OFF;
88 
89 EXPORT_SYMBOL_GPL(audit_enabled);
90 
91 /* Default state when kernel boots without any parameters. */
92 static u32	audit_default = AUDIT_OFF;
93 
94 /* If auditing cannot proceed, audit_failure selects what happens. */
95 static u32	audit_failure = AUDIT_FAIL_PRINTK;
96 
97 /* private audit network namespace index */
98 static unsigned int audit_net_id;
99 
100 /**
101  * struct audit_net - audit private network namespace data
102  * @sk: communication socket
103  */
104 struct audit_net {
105 	struct sock *sk;
106 };
107 
108 /**
109  * struct auditd_connection - kernel/auditd connection state
110  * @pid: auditd PID
111  * @portid: netlink portid
112  * @net: the associated network namespace
113  * @rcu: RCU head
114  *
115  * Description:
116  * This struct is RCU protected; you must either hold the RCU lock for reading
117  * or the associated spinlock for writing.
118  */
119 static struct auditd_connection {
120 	struct pid *pid;
121 	u32 portid;
122 	struct net *net;
123 	struct rcu_head rcu;
124 } *auditd_conn = NULL;
125 static DEFINE_SPINLOCK(auditd_conn_lock);
126 
127 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
128  * to that number per second.  This prevents DoS attacks, but results in
129  * audit records being dropped. */
130 static u32	audit_rate_limit;
131 
132 /* Number of outstanding audit_buffers allowed.
133  * When set to zero, this means unlimited. */
134 static u32	audit_backlog_limit = 64;
135 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
136 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
137 
138 /* The identity of the user shutting down the audit system. */
139 kuid_t		audit_sig_uid = INVALID_UID;
140 pid_t		audit_sig_pid = -1;
141 u32		audit_sig_sid = 0;
142 
143 /* Records can be lost in several ways:
144    0) [suppressed in audit_alloc]
145    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
146    2) out of memory in audit_log_move [alloc_skb]
147    3) suppressed due to audit_rate_limit
148    4) suppressed due to audit_backlog_limit
149 */
150 static atomic_t	audit_lost = ATOMIC_INIT(0);
151 
152 /* Hash for inode-based rules */
153 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
154 
155 static struct kmem_cache *audit_buffer_cache;
156 
157 /* queue msgs to send via kauditd_task */
158 static struct sk_buff_head audit_queue;
159 /* queue msgs due to temporary unicast send problems */
160 static struct sk_buff_head audit_retry_queue;
161 /* queue msgs waiting for new auditd connection */
162 static struct sk_buff_head audit_hold_queue;
163 
164 /* queue servicing thread */
165 static struct task_struct *kauditd_task;
166 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
167 
168 /* waitqueue for callers who are blocked on the audit backlog */
169 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
170 
171 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
172 				   .mask = -1,
173 				   .features = 0,
174 				   .lock = 0,};
175 
176 static char *audit_feature_names[2] = {
177 	"only_unset_loginuid",
178 	"loginuid_immutable",
179 };
180 
181 /**
182  * struct audit_ctl_mutex - serialize requests from userspace
183  * @lock: the mutex used for locking
184  * @owner: the task which owns the lock
185  *
186  * Description:
187  * This is the lock struct used to ensure we only process userspace requests
188  * in an orderly fashion.  We can't simply use a mutex/lock here because we
189  * need to track lock ownership so we don't end up blocking the lock owner in
190  * audit_log_start() or similar.
191  */
192 static struct audit_ctl_mutex {
193 	struct mutex lock;
194 	void *owner;
195 } audit_cmd_mutex;
196 
197 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
198  * audit records.  Since printk uses a 1024 byte buffer, this buffer
199  * should be at least that large. */
200 #define AUDIT_BUFSIZ 1024
201 
202 /* The audit_buffer is used when formatting an audit record.  The caller
203  * locks briefly to get the record off the freelist or to allocate the
204  * buffer, and locks briefly to send the buffer to the netlink layer or
205  * to place it on a transmit queue.  Multiple audit_buffers can be in
206  * use simultaneously. */
207 struct audit_buffer {
208 	struct sk_buff       *skb;	/* formatted skb ready to send */
209 	struct audit_context *ctx;	/* NULL or associated context */
210 	gfp_t		     gfp_mask;
211 };
212 
213 struct audit_reply {
214 	__u32 portid;
215 	struct net *net;
216 	struct sk_buff *skb;
217 };
218 
219 /**
220  * auditd_test_task - Check to see if a given task is an audit daemon
221  * @task: the task to check
222  *
223  * Description:
224  * Return 1 if the task is a registered audit daemon, 0 otherwise.
225  */
auditd_test_task(struct task_struct * task)226 int auditd_test_task(struct task_struct *task)
227 {
228 	int rc;
229 	struct auditd_connection *ac;
230 
231 	rcu_read_lock();
232 	ac = rcu_dereference(auditd_conn);
233 	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
234 	rcu_read_unlock();
235 
236 	return rc;
237 }
238 
239 /**
240  * audit_ctl_lock - Take the audit control lock
241  */
audit_ctl_lock(void)242 void audit_ctl_lock(void)
243 {
244 	mutex_lock(&audit_cmd_mutex.lock);
245 	audit_cmd_mutex.owner = current;
246 }
247 
248 /**
249  * audit_ctl_unlock - Drop the audit control lock
250  */
audit_ctl_unlock(void)251 void audit_ctl_unlock(void)
252 {
253 	audit_cmd_mutex.owner = NULL;
254 	mutex_unlock(&audit_cmd_mutex.lock);
255 }
256 
257 /**
258  * audit_ctl_owner_current - Test to see if the current task owns the lock
259  *
260  * Description:
261  * Return true if the current task owns the audit control lock, false if it
262  * doesn't own the lock.
263  */
audit_ctl_owner_current(void)264 static bool audit_ctl_owner_current(void)
265 {
266 	return (current == audit_cmd_mutex.owner);
267 }
268 
269 /**
270  * auditd_pid_vnr - Return the auditd PID relative to the namespace
271  *
272  * Description:
273  * Returns the PID in relation to the namespace, 0 on failure.
274  */
auditd_pid_vnr(void)275 static pid_t auditd_pid_vnr(void)
276 {
277 	pid_t pid;
278 	const struct auditd_connection *ac;
279 
280 	rcu_read_lock();
281 	ac = rcu_dereference(auditd_conn);
282 	if (!ac || !ac->pid)
283 		pid = 0;
284 	else
285 		pid = pid_vnr(ac->pid);
286 	rcu_read_unlock();
287 
288 	return pid;
289 }
290 
291 /**
292  * audit_get_sk - Return the audit socket for the given network namespace
293  * @net: the destination network namespace
294  *
295  * Description:
296  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
297  * that a reference is held for the network namespace while the sock is in use.
298  */
audit_get_sk(const struct net * net)299 static struct sock *audit_get_sk(const struct net *net)
300 {
301 	struct audit_net *aunet;
302 
303 	if (!net)
304 		return NULL;
305 
306 	aunet = net_generic(net, audit_net_id);
307 	return aunet->sk;
308 }
309 
audit_panic(const char * message)310 void audit_panic(const char *message)
311 {
312 	switch (audit_failure) {
313 	case AUDIT_FAIL_SILENT:
314 		break;
315 	case AUDIT_FAIL_PRINTK:
316 		if (printk_ratelimit())
317 			pr_err("%s\n", message);
318 		break;
319 	case AUDIT_FAIL_PANIC:
320 		panic("audit: %s\n", message);
321 		break;
322 	}
323 }
324 
audit_rate_check(void)325 static inline int audit_rate_check(void)
326 {
327 	static unsigned long	last_check = 0;
328 	static int		messages   = 0;
329 	static DEFINE_SPINLOCK(lock);
330 	unsigned long		flags;
331 	unsigned long		now;
332 	unsigned long		elapsed;
333 	int			retval	   = 0;
334 
335 	if (!audit_rate_limit) return 1;
336 
337 	spin_lock_irqsave(&lock, flags);
338 	if (++messages < audit_rate_limit) {
339 		retval = 1;
340 	} else {
341 		now     = jiffies;
342 		elapsed = now - last_check;
343 		if (elapsed > HZ) {
344 			last_check = now;
345 			messages   = 0;
346 			retval     = 1;
347 		}
348 	}
349 	spin_unlock_irqrestore(&lock, flags);
350 
351 	return retval;
352 }
353 
354 /**
355  * audit_log_lost - conditionally log lost audit message event
356  * @message: the message stating reason for lost audit message
357  *
358  * Emit at least 1 message per second, even if audit_rate_check is
359  * throttling.
360  * Always increment the lost messages counter.
361 */
audit_log_lost(const char * message)362 void audit_log_lost(const char *message)
363 {
364 	static unsigned long	last_msg = 0;
365 	static DEFINE_SPINLOCK(lock);
366 	unsigned long		flags;
367 	unsigned long		now;
368 	int			print;
369 
370 	atomic_inc(&audit_lost);
371 
372 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
373 
374 	if (!print) {
375 		spin_lock_irqsave(&lock, flags);
376 		now = jiffies;
377 		if (now - last_msg > HZ) {
378 			print = 1;
379 			last_msg = now;
380 		}
381 		spin_unlock_irqrestore(&lock, flags);
382 	}
383 
384 	if (print) {
385 		if (printk_ratelimit())
386 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
387 				atomic_read(&audit_lost),
388 				audit_rate_limit,
389 				audit_backlog_limit);
390 		audit_panic(message);
391 	}
392 }
393 
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)394 static int audit_log_config_change(char *function_name, u32 new, u32 old,
395 				   int allow_changes)
396 {
397 	struct audit_buffer *ab;
398 	int rc = 0;
399 
400 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
401 	if (unlikely(!ab))
402 		return rc;
403 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
404 	audit_log_session_info(ab);
405 	rc = audit_log_task_context(ab);
406 	if (rc)
407 		allow_changes = 0; /* Something weird, deny request */
408 	audit_log_format(ab, " res=%d", allow_changes);
409 	audit_log_end(ab);
410 	return rc;
411 }
412 
audit_do_config_change(char * function_name,u32 * to_change,u32 new)413 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
414 {
415 	int allow_changes, rc = 0;
416 	u32 old = *to_change;
417 
418 	/* check if we are locked */
419 	if (audit_enabled == AUDIT_LOCKED)
420 		allow_changes = 0;
421 	else
422 		allow_changes = 1;
423 
424 	if (audit_enabled != AUDIT_OFF) {
425 		rc = audit_log_config_change(function_name, new, old, allow_changes);
426 		if (rc)
427 			allow_changes = 0;
428 	}
429 
430 	/* If we are allowed, make the change */
431 	if (allow_changes == 1)
432 		*to_change = new;
433 	/* Not allowed, update reason */
434 	else if (rc == 0)
435 		rc = -EPERM;
436 	return rc;
437 }
438 
audit_set_rate_limit(u32 limit)439 static int audit_set_rate_limit(u32 limit)
440 {
441 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
442 }
443 
audit_set_backlog_limit(u32 limit)444 static int audit_set_backlog_limit(u32 limit)
445 {
446 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
447 }
448 
audit_set_backlog_wait_time(u32 timeout)449 static int audit_set_backlog_wait_time(u32 timeout)
450 {
451 	return audit_do_config_change("audit_backlog_wait_time",
452 				      &audit_backlog_wait_time, timeout);
453 }
454 
audit_set_enabled(u32 state)455 static int audit_set_enabled(u32 state)
456 {
457 	int rc;
458 	if (state > AUDIT_LOCKED)
459 		return -EINVAL;
460 
461 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
462 	if (!rc)
463 		audit_ever_enabled |= !!state;
464 
465 	return rc;
466 }
467 
audit_set_failure(u32 state)468 static int audit_set_failure(u32 state)
469 {
470 	if (state != AUDIT_FAIL_SILENT
471 	    && state != AUDIT_FAIL_PRINTK
472 	    && state != AUDIT_FAIL_PANIC)
473 		return -EINVAL;
474 
475 	return audit_do_config_change("audit_failure", &audit_failure, state);
476 }
477 
478 /**
479  * auditd_conn_free - RCU helper to release an auditd connection struct
480  * @rcu: RCU head
481  *
482  * Description:
483  * Drop any references inside the auditd connection tracking struct and free
484  * the memory.
485  */
auditd_conn_free(struct rcu_head * rcu)486 static void auditd_conn_free(struct rcu_head *rcu)
487 {
488 	struct auditd_connection *ac;
489 
490 	ac = container_of(rcu, struct auditd_connection, rcu);
491 	put_pid(ac->pid);
492 	put_net(ac->net);
493 	kfree(ac);
494 }
495 
496 /**
497  * auditd_set - Set/Reset the auditd connection state
498  * @pid: auditd PID
499  * @portid: auditd netlink portid
500  * @net: auditd network namespace pointer
501  *
502  * Description:
503  * This function will obtain and drop network namespace references as
504  * necessary.  Returns zero on success, negative values on failure.
505  */
auditd_set(struct pid * pid,u32 portid,struct net * net)506 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
507 {
508 	unsigned long flags;
509 	struct auditd_connection *ac_old, *ac_new;
510 
511 	if (!pid || !net)
512 		return -EINVAL;
513 
514 	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
515 	if (!ac_new)
516 		return -ENOMEM;
517 	ac_new->pid = get_pid(pid);
518 	ac_new->portid = portid;
519 	ac_new->net = get_net(net);
520 
521 	spin_lock_irqsave(&auditd_conn_lock, flags);
522 	ac_old = rcu_dereference_protected(auditd_conn,
523 					   lockdep_is_held(&auditd_conn_lock));
524 	rcu_assign_pointer(auditd_conn, ac_new);
525 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
526 
527 	if (ac_old)
528 		call_rcu(&ac_old->rcu, auditd_conn_free);
529 
530 	return 0;
531 }
532 
533 /**
534  * kauditd_print_skb - Print the audit record to the ring buffer
535  * @skb: audit record
536  *
537  * Whatever the reason, this packet may not make it to the auditd connection
538  * so write it via printk so the information isn't completely lost.
539  */
kauditd_printk_skb(struct sk_buff * skb)540 static void kauditd_printk_skb(struct sk_buff *skb)
541 {
542 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
543 	char *data = nlmsg_data(nlh);
544 
545 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
546 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
547 }
548 
549 /**
550  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
551  * @skb: audit record
552  *
553  * Description:
554  * This should only be used by the kauditd_thread when it fails to flush the
555  * hold queue.
556  */
kauditd_rehold_skb(struct sk_buff * skb)557 static void kauditd_rehold_skb(struct sk_buff *skb)
558 {
559 	/* put the record back in the queue at the same place */
560 	skb_queue_head(&audit_hold_queue, skb);
561 }
562 
563 /**
564  * kauditd_hold_skb - Queue an audit record, waiting for auditd
565  * @skb: audit record
566  *
567  * Description:
568  * Queue the audit record, waiting for an instance of auditd.  When this
569  * function is called we haven't given up yet on sending the record, but things
570  * are not looking good.  The first thing we want to do is try to write the
571  * record via printk and then see if we want to try and hold on to the record
572  * and queue it, if we have room.  If we want to hold on to the record, but we
573  * don't have room, record a record lost message.
574  */
kauditd_hold_skb(struct sk_buff * skb)575 static void kauditd_hold_skb(struct sk_buff *skb)
576 {
577 	/* at this point it is uncertain if we will ever send this to auditd so
578 	 * try to send the message via printk before we go any further */
579 	kauditd_printk_skb(skb);
580 
581 	/* can we just silently drop the message? */
582 	if (!audit_default) {
583 		kfree_skb(skb);
584 		return;
585 	}
586 
587 	/* if we have room, queue the message */
588 	if (!audit_backlog_limit ||
589 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
590 		skb_queue_tail(&audit_hold_queue, skb);
591 		return;
592 	}
593 
594 	/* we have no other options - drop the message */
595 	audit_log_lost("kauditd hold queue overflow");
596 	kfree_skb(skb);
597 }
598 
599 /**
600  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
601  * @skb: audit record
602  *
603  * Description:
604  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
605  * but for some reason we are having problems sending it audit records so
606  * queue the given record and attempt to resend.
607  */
kauditd_retry_skb(struct sk_buff * skb)608 static void kauditd_retry_skb(struct sk_buff *skb)
609 {
610 	/* NOTE: because records should only live in the retry queue for a
611 	 * short period of time, before either being sent or moved to the hold
612 	 * queue, we don't currently enforce a limit on this queue */
613 	skb_queue_tail(&audit_retry_queue, skb);
614 }
615 
616 /**
617  * auditd_reset - Disconnect the auditd connection
618  * @ac: auditd connection state
619  *
620  * Description:
621  * Break the auditd/kauditd connection and move all the queued records into the
622  * hold queue in case auditd reconnects.  It is important to note that the @ac
623  * pointer should never be dereferenced inside this function as it may be NULL
624  * or invalid, you can only compare the memory address!  If @ac is NULL then
625  * the connection will always be reset.
626  */
auditd_reset(const struct auditd_connection * ac)627 static void auditd_reset(const struct auditd_connection *ac)
628 {
629 	unsigned long flags;
630 	struct sk_buff *skb;
631 	struct auditd_connection *ac_old;
632 
633 	/* if it isn't already broken, break the connection */
634 	spin_lock_irqsave(&auditd_conn_lock, flags);
635 	ac_old = rcu_dereference_protected(auditd_conn,
636 					   lockdep_is_held(&auditd_conn_lock));
637 	if (ac && ac != ac_old) {
638 		/* someone already registered a new auditd connection */
639 		spin_unlock_irqrestore(&auditd_conn_lock, flags);
640 		return;
641 	}
642 	rcu_assign_pointer(auditd_conn, NULL);
643 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
644 
645 	if (ac_old)
646 		call_rcu(&ac_old->rcu, auditd_conn_free);
647 
648 	/* flush the retry queue to the hold queue, but don't touch the main
649 	 * queue since we need to process that normally for multicast */
650 	while ((skb = skb_dequeue(&audit_retry_queue)))
651 		kauditd_hold_skb(skb);
652 }
653 
654 /**
655  * auditd_send_unicast_skb - Send a record via unicast to auditd
656  * @skb: audit record
657  *
658  * Description:
659  * Send a skb to the audit daemon, returns positive/zero values on success and
660  * negative values on failure; in all cases the skb will be consumed by this
661  * function.  If the send results in -ECONNREFUSED the connection with auditd
662  * will be reset.  This function may sleep so callers should not hold any locks
663  * where this would cause a problem.
664  */
auditd_send_unicast_skb(struct sk_buff * skb)665 static int auditd_send_unicast_skb(struct sk_buff *skb)
666 {
667 	int rc;
668 	u32 portid;
669 	struct net *net;
670 	struct sock *sk;
671 	struct auditd_connection *ac;
672 
673 	/* NOTE: we can't call netlink_unicast while in the RCU section so
674 	 *       take a reference to the network namespace and grab local
675 	 *       copies of the namespace, the sock, and the portid; the
676 	 *       namespace and sock aren't going to go away while we hold a
677 	 *       reference and if the portid does become invalid after the RCU
678 	 *       section netlink_unicast() should safely return an error */
679 
680 	rcu_read_lock();
681 	ac = rcu_dereference(auditd_conn);
682 	if (!ac) {
683 		rcu_read_unlock();
684 		kfree_skb(skb);
685 		rc = -ECONNREFUSED;
686 		goto err;
687 	}
688 	net = get_net(ac->net);
689 	sk = audit_get_sk(net);
690 	portid = ac->portid;
691 	rcu_read_unlock();
692 
693 	rc = netlink_unicast(sk, skb, portid, 0);
694 	put_net(net);
695 	if (rc < 0)
696 		goto err;
697 
698 	return rc;
699 
700 err:
701 	if (ac && rc == -ECONNREFUSED)
702 		auditd_reset(ac);
703 	return rc;
704 }
705 
706 /**
707  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
708  * @sk: the sending sock
709  * @portid: the netlink destination
710  * @queue: the skb queue to process
711  * @retry_limit: limit on number of netlink unicast failures
712  * @skb_hook: per-skb hook for additional processing
713  * @err_hook: hook called if the skb fails the netlink unicast send
714  *
715  * Description:
716  * Run through the given queue and attempt to send the audit records to auditd,
717  * returns zero on success, negative values on failure.  It is up to the caller
718  * to ensure that the @sk is valid for the duration of this function.
719  *
720  */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb))721 static int kauditd_send_queue(struct sock *sk, u32 portid,
722 			      struct sk_buff_head *queue,
723 			      unsigned int retry_limit,
724 			      void (*skb_hook)(struct sk_buff *skb),
725 			      void (*err_hook)(struct sk_buff *skb))
726 {
727 	int rc = 0;
728 	struct sk_buff *skb;
729 	static unsigned int failed = 0;
730 
731 	/* NOTE: kauditd_thread takes care of all our locking, we just use
732 	 *       the netlink info passed to us (e.g. sk and portid) */
733 
734 	while ((skb = skb_dequeue(queue))) {
735 		/* call the skb_hook for each skb we touch */
736 		if (skb_hook)
737 			(*skb_hook)(skb);
738 
739 		/* can we send to anyone via unicast? */
740 		if (!sk) {
741 			if (err_hook)
742 				(*err_hook)(skb);
743 			continue;
744 		}
745 
746 		/* grab an extra skb reference in case of error */
747 		skb_get(skb);
748 		rc = netlink_unicast(sk, skb, portid, 0);
749 		if (rc < 0) {
750 			/* fatal failure for our queue flush attempt? */
751 			if (++failed >= retry_limit ||
752 			    rc == -ECONNREFUSED || rc == -EPERM) {
753 				/* yes - error processing for the queue */
754 				sk = NULL;
755 				if (err_hook)
756 					(*err_hook)(skb);
757 				if (!skb_hook)
758 					goto out;
759 				/* keep processing with the skb_hook */
760 				continue;
761 			} else
762 				/* no - requeue to preserve ordering */
763 				skb_queue_head(queue, skb);
764 		} else {
765 			/* it worked - drop the extra reference and continue */
766 			consume_skb(skb);
767 			failed = 0;
768 		}
769 	}
770 
771 out:
772 	return (rc >= 0 ? 0 : rc);
773 }
774 
775 /*
776  * kauditd_send_multicast_skb - Send a record to any multicast listeners
777  * @skb: audit record
778  *
779  * Description:
780  * Write a multicast message to anyone listening in the initial network
781  * namespace.  This function doesn't consume an skb as might be expected since
782  * it has to copy it anyways.
783  */
kauditd_send_multicast_skb(struct sk_buff * skb)784 static void kauditd_send_multicast_skb(struct sk_buff *skb)
785 {
786 	struct sk_buff *copy;
787 	struct sock *sock = audit_get_sk(&init_net);
788 	struct nlmsghdr *nlh;
789 
790 	/* NOTE: we are not taking an additional reference for init_net since
791 	 *       we don't have to worry about it going away */
792 
793 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
794 		return;
795 
796 	/*
797 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
798 	 * using skb_get() is necessary because non-standard mods are made to
799 	 * the skb by the original kaudit unicast socket send routine.  The
800 	 * existing auditd daemon assumes this breakage.  Fixing this would
801 	 * require co-ordinating a change in the established protocol between
802 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
803 	 * no reason for new multicast clients to continue with this
804 	 * non-compliance.
805 	 */
806 	copy = skb_copy(skb, GFP_KERNEL);
807 	if (!copy)
808 		return;
809 	nlh = nlmsg_hdr(copy);
810 	nlh->nlmsg_len = skb->len;
811 
812 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
813 }
814 
815 /**
816  * kauditd_thread - Worker thread to send audit records to userspace
817  * @dummy: unused
818  */
kauditd_thread(void * dummy)819 static int kauditd_thread(void *dummy)
820 {
821 	int rc;
822 	u32 portid = 0;
823 	struct net *net = NULL;
824 	struct sock *sk = NULL;
825 	struct auditd_connection *ac;
826 
827 #define UNICAST_RETRIES 5
828 
829 	set_freezable();
830 	while (!kthread_should_stop()) {
831 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
832 		rcu_read_lock();
833 		ac = rcu_dereference(auditd_conn);
834 		if (!ac) {
835 			rcu_read_unlock();
836 			goto main_queue;
837 		}
838 		net = get_net(ac->net);
839 		sk = audit_get_sk(net);
840 		portid = ac->portid;
841 		rcu_read_unlock();
842 
843 		/* attempt to flush the hold queue */
844 		rc = kauditd_send_queue(sk, portid,
845 					&audit_hold_queue, UNICAST_RETRIES,
846 					NULL, kauditd_rehold_skb);
847 		if (ac && rc < 0) {
848 			sk = NULL;
849 			auditd_reset(ac);
850 			goto main_queue;
851 		}
852 
853 		/* attempt to flush the retry queue */
854 		rc = kauditd_send_queue(sk, portid,
855 					&audit_retry_queue, UNICAST_RETRIES,
856 					NULL, kauditd_hold_skb);
857 		if (ac && rc < 0) {
858 			sk = NULL;
859 			auditd_reset(ac);
860 			goto main_queue;
861 		}
862 
863 main_queue:
864 		/* process the main queue - do the multicast send and attempt
865 		 * unicast, dump failed record sends to the retry queue; if
866 		 * sk == NULL due to previous failures we will just do the
867 		 * multicast send and move the record to the hold queue */
868 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
869 					kauditd_send_multicast_skb,
870 					(sk ?
871 					 kauditd_retry_skb : kauditd_hold_skb));
872 		if (ac && rc < 0)
873 			auditd_reset(ac);
874 		sk = NULL;
875 
876 		/* drop our netns reference, no auditd sends past this line */
877 		if (net) {
878 			put_net(net);
879 			net = NULL;
880 		}
881 
882 		/* we have processed all the queues so wake everyone */
883 		wake_up(&audit_backlog_wait);
884 
885 		/* NOTE: we want to wake up if there is anything on the queue,
886 		 *       regardless of if an auditd is connected, as we need to
887 		 *       do the multicast send and rotate records from the
888 		 *       main queue to the retry/hold queues */
889 		wait_event_freezable(kauditd_wait,
890 				     (skb_queue_len(&audit_queue) ? 1 : 0));
891 	}
892 
893 	return 0;
894 }
895 
audit_send_list_thread(void * _dest)896 int audit_send_list_thread(void *_dest)
897 {
898 	struct audit_netlink_list *dest = _dest;
899 	struct sk_buff *skb;
900 	struct sock *sk = audit_get_sk(dest->net);
901 
902 	/* wait for parent to finish and send an ACK */
903 	audit_ctl_lock();
904 	audit_ctl_unlock();
905 
906 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
907 		netlink_unicast(sk, skb, dest->portid, 0);
908 
909 	put_net(dest->net);
910 	kfree(dest);
911 
912 	return 0;
913 }
914 
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)915 struct sk_buff *audit_make_reply(int seq, int type, int done,
916 				 int multi, const void *payload, int size)
917 {
918 	struct sk_buff	*skb;
919 	struct nlmsghdr	*nlh;
920 	void		*data;
921 	int		flags = multi ? NLM_F_MULTI : 0;
922 	int		t     = done  ? NLMSG_DONE  : type;
923 
924 	skb = nlmsg_new(size, GFP_KERNEL);
925 	if (!skb)
926 		return NULL;
927 
928 	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
929 	if (!nlh)
930 		goto out_kfree_skb;
931 	data = nlmsg_data(nlh);
932 	memcpy(data, payload, size);
933 	return skb;
934 
935 out_kfree_skb:
936 	kfree_skb(skb);
937 	return NULL;
938 }
939 
audit_free_reply(struct audit_reply * reply)940 static void audit_free_reply(struct audit_reply *reply)
941 {
942 	if (!reply)
943 		return;
944 
945 	if (reply->skb)
946 		kfree_skb(reply->skb);
947 	if (reply->net)
948 		put_net(reply->net);
949 	kfree(reply);
950 }
951 
audit_send_reply_thread(void * arg)952 static int audit_send_reply_thread(void *arg)
953 {
954 	struct audit_reply *reply = (struct audit_reply *)arg;
955 
956 	audit_ctl_lock();
957 	audit_ctl_unlock();
958 
959 	/* Ignore failure. It'll only happen if the sender goes away,
960 	   because our timeout is set to infinite. */
961 	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
962 	reply->skb = NULL;
963 	audit_free_reply(reply);
964 	return 0;
965 }
966 
967 /**
968  * audit_send_reply - send an audit reply message via netlink
969  * @request_skb: skb of request we are replying to (used to target the reply)
970  * @seq: sequence number
971  * @type: audit message type
972  * @done: done (last) flag
973  * @multi: multi-part message flag
974  * @payload: payload data
975  * @size: payload size
976  *
977  * Allocates a skb, builds the netlink message, and sends it to the port id.
978  */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)979 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
980 			     int multi, const void *payload, int size)
981 {
982 	struct task_struct *tsk;
983 	struct audit_reply *reply;
984 
985 	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
986 	if (!reply)
987 		return;
988 
989 	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
990 	if (!reply->skb)
991 		goto err;
992 	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
993 	reply->portid = NETLINK_CB(request_skb).portid;
994 
995 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
996 	if (IS_ERR(tsk))
997 		goto err;
998 
999 	return;
1000 
1001 err:
1002 	audit_free_reply(reply);
1003 }
1004 
1005 /*
1006  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1007  * control messages.
1008  */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)1009 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1010 {
1011 	int err = 0;
1012 
1013 	/* Only support initial user namespace for now. */
1014 	/*
1015 	 * We return ECONNREFUSED because it tricks userspace into thinking
1016 	 * that audit was not configured into the kernel.  Lots of users
1017 	 * configure their PAM stack (because that's what the distro does)
1018 	 * to reject login if unable to send messages to audit.  If we return
1019 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1020 	 * configured in and will let login proceed.  If we return EPERM
1021 	 * userspace will reject all logins.  This should be removed when we
1022 	 * support non init namespaces!!
1023 	 */
1024 	if (current_user_ns() != &init_user_ns)
1025 		return -ECONNREFUSED;
1026 
1027 	switch (msg_type) {
1028 	case AUDIT_LIST:
1029 	case AUDIT_ADD:
1030 	case AUDIT_DEL:
1031 		return -EOPNOTSUPP;
1032 	case AUDIT_GET:
1033 	case AUDIT_SET:
1034 	case AUDIT_GET_FEATURE:
1035 	case AUDIT_SET_FEATURE:
1036 	case AUDIT_LIST_RULES:
1037 	case AUDIT_ADD_RULE:
1038 	case AUDIT_DEL_RULE:
1039 	case AUDIT_SIGNAL_INFO:
1040 	case AUDIT_TTY_GET:
1041 	case AUDIT_TTY_SET:
1042 	case AUDIT_TRIM:
1043 	case AUDIT_MAKE_EQUIV:
1044 		/* Only support auditd and auditctl in initial pid namespace
1045 		 * for now. */
1046 		if (task_active_pid_ns(current) != &init_pid_ns)
1047 			return -EPERM;
1048 
1049 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1050 			err = -EPERM;
1051 		break;
1052 	case AUDIT_USER:
1053 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1054 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1055 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1056 			err = -EPERM;
1057 		break;
1058 	default:  /* bad msg */
1059 		err = -EINVAL;
1060 	}
1061 
1062 	return err;
1063 }
1064 
audit_log_common_recv_msg(struct audit_buffer ** ab,u16 msg_type)1065 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1066 {
1067 	uid_t uid = from_kuid(&init_user_ns, current_uid());
1068 	pid_t pid = task_tgid_nr(current);
1069 
1070 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1071 		*ab = NULL;
1072 		return;
1073 	}
1074 
1075 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1076 	if (unlikely(!*ab))
1077 		return;
1078 	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1079 	audit_log_session_info(*ab);
1080 	audit_log_task_context(*ab);
1081 }
1082 
is_audit_feature_set(int i)1083 int is_audit_feature_set(int i)
1084 {
1085 	return af.features & AUDIT_FEATURE_TO_MASK(i);
1086 }
1087 
1088 
audit_get_feature(struct sk_buff * skb)1089 static int audit_get_feature(struct sk_buff *skb)
1090 {
1091 	u32 seq;
1092 
1093 	seq = nlmsg_hdr(skb)->nlmsg_seq;
1094 
1095 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1096 
1097 	return 0;
1098 }
1099 
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1100 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1101 				     u32 old_lock, u32 new_lock, int res)
1102 {
1103 	struct audit_buffer *ab;
1104 
1105 	if (audit_enabled == AUDIT_OFF)
1106 		return;
1107 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1108 	if (!ab)
1109 		return;
1110 	audit_log_task_info(ab, current);
1111 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1112 			 audit_feature_names[which], !!old_feature, !!new_feature,
1113 			 !!old_lock, !!new_lock, res);
1114 	audit_log_end(ab);
1115 }
1116 
audit_set_feature(struct audit_features * uaf)1117 static int audit_set_feature(struct audit_features *uaf)
1118 {
1119 	int i;
1120 
1121 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1122 
1123 	/* if there is ever a version 2 we should handle that here */
1124 
1125 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1126 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1127 		u32 old_feature, new_feature, old_lock, new_lock;
1128 
1129 		/* if we are not changing this feature, move along */
1130 		if (!(feature & uaf->mask))
1131 			continue;
1132 
1133 		old_feature = af.features & feature;
1134 		new_feature = uaf->features & feature;
1135 		new_lock = (uaf->lock | af.lock) & feature;
1136 		old_lock = af.lock & feature;
1137 
1138 		/* are we changing a locked feature? */
1139 		if (old_lock && (new_feature != old_feature)) {
1140 			audit_log_feature_change(i, old_feature, new_feature,
1141 						 old_lock, new_lock, 0);
1142 			return -EPERM;
1143 		}
1144 	}
1145 	/* nothing invalid, do the changes */
1146 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1147 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1148 		u32 old_feature, new_feature, old_lock, new_lock;
1149 
1150 		/* if we are not changing this feature, move along */
1151 		if (!(feature & uaf->mask))
1152 			continue;
1153 
1154 		old_feature = af.features & feature;
1155 		new_feature = uaf->features & feature;
1156 		old_lock = af.lock & feature;
1157 		new_lock = (uaf->lock | af.lock) & feature;
1158 
1159 		if (new_feature != old_feature)
1160 			audit_log_feature_change(i, old_feature, new_feature,
1161 						 old_lock, new_lock, 1);
1162 
1163 		if (new_feature)
1164 			af.features |= feature;
1165 		else
1166 			af.features &= ~feature;
1167 		af.lock |= new_lock;
1168 	}
1169 
1170 	return 0;
1171 }
1172 
audit_replace(struct pid * pid)1173 static int audit_replace(struct pid *pid)
1174 {
1175 	pid_t pvnr;
1176 	struct sk_buff *skb;
1177 
1178 	pvnr = pid_vnr(pid);
1179 	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1180 	if (!skb)
1181 		return -ENOMEM;
1182 	return auditd_send_unicast_skb(skb);
1183 }
1184 
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh)1185 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1186 {
1187 	u32			seq;
1188 	void			*data;
1189 	int			data_len;
1190 	int			err;
1191 	struct audit_buffer	*ab;
1192 	u16			msg_type = nlh->nlmsg_type;
1193 	struct audit_sig_info   *sig_data;
1194 	char			*ctx = NULL;
1195 	u32			len;
1196 
1197 	err = audit_netlink_ok(skb, msg_type);
1198 	if (err)
1199 		return err;
1200 
1201 	seq  = nlh->nlmsg_seq;
1202 	data = nlmsg_data(nlh);
1203 	data_len = nlmsg_len(nlh);
1204 
1205 	switch (msg_type) {
1206 	case AUDIT_GET: {
1207 		struct audit_status	s;
1208 		memset(&s, 0, sizeof(s));
1209 		s.enabled		= audit_enabled;
1210 		s.failure		= audit_failure;
1211 		/* NOTE: use pid_vnr() so the PID is relative to the current
1212 		 *       namespace */
1213 		s.pid			= auditd_pid_vnr();
1214 		s.rate_limit		= audit_rate_limit;
1215 		s.backlog_limit		= audit_backlog_limit;
1216 		s.lost			= atomic_read(&audit_lost);
1217 		s.backlog		= skb_queue_len(&audit_queue);
1218 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
1219 		s.backlog_wait_time	= audit_backlog_wait_time;
1220 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1221 		break;
1222 	}
1223 	case AUDIT_SET: {
1224 		struct audit_status	s;
1225 		memset(&s, 0, sizeof(s));
1226 		/* guard against past and future API changes */
1227 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1228 		if (s.mask & AUDIT_STATUS_ENABLED) {
1229 			err = audit_set_enabled(s.enabled);
1230 			if (err < 0)
1231 				return err;
1232 		}
1233 		if (s.mask & AUDIT_STATUS_FAILURE) {
1234 			err = audit_set_failure(s.failure);
1235 			if (err < 0)
1236 				return err;
1237 		}
1238 		if (s.mask & AUDIT_STATUS_PID) {
1239 			/* NOTE: we are using the vnr PID functions below
1240 			 *       because the s.pid value is relative to the
1241 			 *       namespace of the caller; at present this
1242 			 *       doesn't matter much since you can really only
1243 			 *       run auditd from the initial pid namespace, but
1244 			 *       something to keep in mind if this changes */
1245 			pid_t new_pid = s.pid;
1246 			pid_t auditd_pid;
1247 			struct pid *req_pid = task_tgid(current);
1248 
1249 			/* Sanity check - PID values must match. Setting
1250 			 * pid to 0 is how auditd ends auditing. */
1251 			if (new_pid && (new_pid != pid_vnr(req_pid)))
1252 				return -EINVAL;
1253 
1254 			/* test the auditd connection */
1255 			audit_replace(req_pid);
1256 
1257 			auditd_pid = auditd_pid_vnr();
1258 			if (auditd_pid) {
1259 				/* replacing a healthy auditd is not allowed */
1260 				if (new_pid) {
1261 					audit_log_config_change("audit_pid",
1262 							new_pid, auditd_pid, 0);
1263 					return -EEXIST;
1264 				}
1265 				/* only current auditd can unregister itself */
1266 				if (pid_vnr(req_pid) != auditd_pid) {
1267 					audit_log_config_change("audit_pid",
1268 							new_pid, auditd_pid, 0);
1269 					return -EACCES;
1270 				}
1271 			}
1272 
1273 			if (new_pid) {
1274 				/* register a new auditd connection */
1275 				err = auditd_set(req_pid,
1276 						 NETLINK_CB(skb).portid,
1277 						 sock_net(NETLINK_CB(skb).sk));
1278 				if (audit_enabled != AUDIT_OFF)
1279 					audit_log_config_change("audit_pid",
1280 								new_pid,
1281 								auditd_pid,
1282 								err ? 0 : 1);
1283 				if (err)
1284 					return err;
1285 
1286 				/* try to process any backlog */
1287 				wake_up_interruptible(&kauditd_wait);
1288 			} else {
1289 				if (audit_enabled != AUDIT_OFF)
1290 					audit_log_config_change("audit_pid",
1291 								new_pid,
1292 								auditd_pid, 1);
1293 
1294 				/* unregister the auditd connection */
1295 				auditd_reset(NULL);
1296 			}
1297 		}
1298 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1299 			err = audit_set_rate_limit(s.rate_limit);
1300 			if (err < 0)
1301 				return err;
1302 		}
1303 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1304 			err = audit_set_backlog_limit(s.backlog_limit);
1305 			if (err < 0)
1306 				return err;
1307 		}
1308 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1309 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1310 				return -EINVAL;
1311 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1312 				return -EINVAL;
1313 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1314 			if (err < 0)
1315 				return err;
1316 		}
1317 		if (s.mask == AUDIT_STATUS_LOST) {
1318 			u32 lost = atomic_xchg(&audit_lost, 0);
1319 
1320 			audit_log_config_change("lost", 0, lost, 1);
1321 			return lost;
1322 		}
1323 		break;
1324 	}
1325 	case AUDIT_GET_FEATURE:
1326 		err = audit_get_feature(skb);
1327 		if (err)
1328 			return err;
1329 		break;
1330 	case AUDIT_SET_FEATURE:
1331 		if (data_len < sizeof(struct audit_features))
1332 			return -EINVAL;
1333 		err = audit_set_feature(data);
1334 		if (err)
1335 			return err;
1336 		break;
1337 	case AUDIT_USER:
1338 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1339 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1340 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1341 			return 0;
1342 		/* exit early if there isn't at least one character to print */
1343 		if (data_len < 2)
1344 			return -EINVAL;
1345 
1346 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1347 		if (err == 1) { /* match or error */
1348 			char *str = data;
1349 
1350 			err = 0;
1351 			if (msg_type == AUDIT_USER_TTY) {
1352 				err = tty_audit_push();
1353 				if (err)
1354 					break;
1355 			}
1356 			audit_log_common_recv_msg(&ab, msg_type);
1357 			if (msg_type != AUDIT_USER_TTY) {
1358 				/* ensure NULL termination */
1359 				str[data_len - 1] = '\0';
1360 				audit_log_format(ab, " msg='%.*s'",
1361 						 AUDIT_MESSAGE_TEXT_MAX,
1362 						 str);
1363 			} else {
1364 				audit_log_format(ab, " data=");
1365 				if (data_len > 0 && str[data_len - 1] == '\0')
1366 					data_len--;
1367 				audit_log_n_untrustedstring(ab, str, data_len);
1368 			}
1369 			audit_log_end(ab);
1370 		}
1371 		break;
1372 	case AUDIT_ADD_RULE:
1373 	case AUDIT_DEL_RULE:
1374 		if (data_len < sizeof(struct audit_rule_data))
1375 			return -EINVAL;
1376 		if (audit_enabled == AUDIT_LOCKED) {
1377 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1378 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1379 			audit_log_end(ab);
1380 			return -EPERM;
1381 		}
1382 		err = audit_rule_change(msg_type, seq, data, data_len);
1383 		break;
1384 	case AUDIT_LIST_RULES:
1385 		err = audit_list_rules_send(skb, seq);
1386 		break;
1387 	case AUDIT_TRIM:
1388 		audit_trim_trees();
1389 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1390 		audit_log_format(ab, " op=trim res=1");
1391 		audit_log_end(ab);
1392 		break;
1393 	case AUDIT_MAKE_EQUIV: {
1394 		void *bufp = data;
1395 		u32 sizes[2];
1396 		size_t msglen = data_len;
1397 		char *old, *new;
1398 
1399 		err = -EINVAL;
1400 		if (msglen < 2 * sizeof(u32))
1401 			break;
1402 		memcpy(sizes, bufp, 2 * sizeof(u32));
1403 		bufp += 2 * sizeof(u32);
1404 		msglen -= 2 * sizeof(u32);
1405 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1406 		if (IS_ERR(old)) {
1407 			err = PTR_ERR(old);
1408 			break;
1409 		}
1410 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1411 		if (IS_ERR(new)) {
1412 			err = PTR_ERR(new);
1413 			kfree(old);
1414 			break;
1415 		}
1416 		/* OK, here comes... */
1417 		err = audit_tag_tree(old, new);
1418 
1419 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1420 
1421 		audit_log_format(ab, " op=make_equiv old=");
1422 		audit_log_untrustedstring(ab, old);
1423 		audit_log_format(ab, " new=");
1424 		audit_log_untrustedstring(ab, new);
1425 		audit_log_format(ab, " res=%d", !err);
1426 		audit_log_end(ab);
1427 		kfree(old);
1428 		kfree(new);
1429 		break;
1430 	}
1431 	case AUDIT_SIGNAL_INFO:
1432 		len = 0;
1433 		if (audit_sig_sid) {
1434 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1435 			if (err)
1436 				return err;
1437 		}
1438 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1439 		if (!sig_data) {
1440 			if (audit_sig_sid)
1441 				security_release_secctx(ctx, len);
1442 			return -ENOMEM;
1443 		}
1444 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1445 		sig_data->pid = audit_sig_pid;
1446 		if (audit_sig_sid) {
1447 			memcpy(sig_data->ctx, ctx, len);
1448 			security_release_secctx(ctx, len);
1449 		}
1450 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1451 				 sig_data, sizeof(*sig_data) + len);
1452 		kfree(sig_data);
1453 		break;
1454 	case AUDIT_TTY_GET: {
1455 		struct audit_tty_status s;
1456 		unsigned int t;
1457 
1458 		t = READ_ONCE(current->signal->audit_tty);
1459 		s.enabled = t & AUDIT_TTY_ENABLE;
1460 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1461 
1462 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1463 		break;
1464 	}
1465 	case AUDIT_TTY_SET: {
1466 		struct audit_tty_status s, old;
1467 		struct audit_buffer	*ab;
1468 		unsigned int t;
1469 
1470 		memset(&s, 0, sizeof(s));
1471 		/* guard against past and future API changes */
1472 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1473 		/* check if new data is valid */
1474 		if ((s.enabled != 0 && s.enabled != 1) ||
1475 		    (s.log_passwd != 0 && s.log_passwd != 1))
1476 			err = -EINVAL;
1477 
1478 		if (err)
1479 			t = READ_ONCE(current->signal->audit_tty);
1480 		else {
1481 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1482 			t = xchg(&current->signal->audit_tty, t);
1483 		}
1484 		old.enabled = t & AUDIT_TTY_ENABLE;
1485 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1486 
1487 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1488 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1489 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1490 				 old.enabled, s.enabled, old.log_passwd,
1491 				 s.log_passwd, !err);
1492 		audit_log_end(ab);
1493 		break;
1494 	}
1495 	default:
1496 		err = -EINVAL;
1497 		break;
1498 	}
1499 
1500 	return err < 0 ? err : 0;
1501 }
1502 
1503 /**
1504  * audit_receive - receive messages from a netlink control socket
1505  * @skb: the message buffer
1506  *
1507  * Parse the provided skb and deal with any messages that may be present,
1508  * malformed skbs are discarded.
1509  */
audit_receive(struct sk_buff * skb)1510 static void audit_receive(struct sk_buff  *skb)
1511 {
1512 	struct nlmsghdr *nlh;
1513 	/*
1514 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1515 	 * if the nlmsg_len was not aligned
1516 	 */
1517 	int len;
1518 	int err;
1519 
1520 	nlh = nlmsg_hdr(skb);
1521 	len = skb->len;
1522 
1523 	audit_ctl_lock();
1524 	while (nlmsg_ok(nlh, len)) {
1525 		err = audit_receive_msg(skb, nlh);
1526 		/* if err or if this message says it wants a response */
1527 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1528 			netlink_ack(skb, nlh, err, NULL);
1529 
1530 		nlh = nlmsg_next(nlh, &len);
1531 	}
1532 	audit_ctl_unlock();
1533 }
1534 
1535 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_bind(struct net * net,int group)1536 static int audit_bind(struct net *net, int group)
1537 {
1538 	if (!capable(CAP_AUDIT_READ))
1539 		return -EPERM;
1540 
1541 	return 0;
1542 }
1543 
audit_net_init(struct net * net)1544 static int __net_init audit_net_init(struct net *net)
1545 {
1546 	struct netlink_kernel_cfg cfg = {
1547 		.input	= audit_receive,
1548 		.bind	= audit_bind,
1549 		.flags	= NL_CFG_F_NONROOT_RECV,
1550 		.groups	= AUDIT_NLGRP_MAX,
1551 	};
1552 
1553 	struct audit_net *aunet = net_generic(net, audit_net_id);
1554 
1555 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1556 	if (aunet->sk == NULL) {
1557 		audit_panic("cannot initialize netlink socket in namespace");
1558 		return -ENOMEM;
1559 	}
1560 	aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1561 
1562 	return 0;
1563 }
1564 
audit_net_exit(struct net * net)1565 static void __net_exit audit_net_exit(struct net *net)
1566 {
1567 	struct audit_net *aunet = net_generic(net, audit_net_id);
1568 
1569 	/* NOTE: you would think that we would want to check the auditd
1570 	 * connection and potentially reset it here if it lives in this
1571 	 * namespace, but since the auditd connection tracking struct holds a
1572 	 * reference to this namespace (see auditd_set()) we are only ever
1573 	 * going to get here after that connection has been released */
1574 
1575 	netlink_kernel_release(aunet->sk);
1576 }
1577 
1578 static struct pernet_operations audit_net_ops __net_initdata = {
1579 	.init = audit_net_init,
1580 	.exit = audit_net_exit,
1581 	.id = &audit_net_id,
1582 	.size = sizeof(struct audit_net),
1583 };
1584 
1585 /* Initialize audit support at boot time. */
audit_init(void)1586 static int __init audit_init(void)
1587 {
1588 	int i;
1589 
1590 	if (audit_initialized == AUDIT_DISABLED)
1591 		return 0;
1592 
1593 	audit_buffer_cache = kmem_cache_create("audit_buffer",
1594 					       sizeof(struct audit_buffer),
1595 					       0, SLAB_PANIC, NULL);
1596 
1597 	skb_queue_head_init(&audit_queue);
1598 	skb_queue_head_init(&audit_retry_queue);
1599 	skb_queue_head_init(&audit_hold_queue);
1600 
1601 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1602 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1603 
1604 	mutex_init(&audit_cmd_mutex.lock);
1605 	audit_cmd_mutex.owner = NULL;
1606 
1607 	pr_info("initializing netlink subsys (%s)\n",
1608 		audit_default ? "enabled" : "disabled");
1609 	register_pernet_subsys(&audit_net_ops);
1610 
1611 	audit_initialized = AUDIT_INITIALIZED;
1612 
1613 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1614 	if (IS_ERR(kauditd_task)) {
1615 		int err = PTR_ERR(kauditd_task);
1616 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1617 	}
1618 
1619 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1620 		"state=initialized audit_enabled=%u res=1",
1621 		 audit_enabled);
1622 
1623 	return 0;
1624 }
1625 postcore_initcall(audit_init);
1626 
1627 /*
1628  * Process kernel command-line parameter at boot time.
1629  * audit={0|off} or audit={1|on}.
1630  */
audit_enable(char * str)1631 static int __init audit_enable(char *str)
1632 {
1633 	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1634 		audit_default = AUDIT_OFF;
1635 	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1636 		audit_default = AUDIT_ON;
1637 	else {
1638 		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1639 		audit_default = AUDIT_ON;
1640 	}
1641 
1642 	if (audit_default == AUDIT_OFF)
1643 		audit_initialized = AUDIT_DISABLED;
1644 	if (audit_set_enabled(audit_default))
1645 		pr_err("audit: error setting audit state (%d)\n",
1646 		       audit_default);
1647 
1648 	pr_info("%s\n", audit_default ?
1649 		"enabled (after initialization)" : "disabled (until reboot)");
1650 
1651 	return 1;
1652 }
1653 __setup("audit=", audit_enable);
1654 
1655 /* Process kernel command-line parameter at boot time.
1656  * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1657 static int __init audit_backlog_limit_set(char *str)
1658 {
1659 	u32 audit_backlog_limit_arg;
1660 
1661 	pr_info("audit_backlog_limit: ");
1662 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1663 		pr_cont("using default of %u, unable to parse %s\n",
1664 			audit_backlog_limit, str);
1665 		return 1;
1666 	}
1667 
1668 	audit_backlog_limit = audit_backlog_limit_arg;
1669 	pr_cont("%d\n", audit_backlog_limit);
1670 
1671 	return 1;
1672 }
1673 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1674 
audit_buffer_free(struct audit_buffer * ab)1675 static void audit_buffer_free(struct audit_buffer *ab)
1676 {
1677 	if (!ab)
1678 		return;
1679 
1680 	kfree_skb(ab->skb);
1681 	kmem_cache_free(audit_buffer_cache, ab);
1682 }
1683 
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1684 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1685 					       gfp_t gfp_mask, int type)
1686 {
1687 	struct audit_buffer *ab;
1688 
1689 	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1690 	if (!ab)
1691 		return NULL;
1692 
1693 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1694 	if (!ab->skb)
1695 		goto err;
1696 	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1697 		goto err;
1698 
1699 	ab->ctx = ctx;
1700 	ab->gfp_mask = gfp_mask;
1701 
1702 	return ab;
1703 
1704 err:
1705 	audit_buffer_free(ab);
1706 	return NULL;
1707 }
1708 
1709 /**
1710  * audit_serial - compute a serial number for the audit record
1711  *
1712  * Compute a serial number for the audit record.  Audit records are
1713  * written to user-space as soon as they are generated, so a complete
1714  * audit record may be written in several pieces.  The timestamp of the
1715  * record and this serial number are used by the user-space tools to
1716  * determine which pieces belong to the same audit record.  The
1717  * (timestamp,serial) tuple is unique for each syscall and is live from
1718  * syscall entry to syscall exit.
1719  *
1720  * NOTE: Another possibility is to store the formatted records off the
1721  * audit context (for those records that have a context), and emit them
1722  * all at syscall exit.  However, this could delay the reporting of
1723  * significant errors until syscall exit (or never, if the system
1724  * halts).
1725  */
audit_serial(void)1726 unsigned int audit_serial(void)
1727 {
1728 	static atomic_t serial = ATOMIC_INIT(0);
1729 
1730 	return atomic_add_return(1, &serial);
1731 }
1732 
audit_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1733 static inline void audit_get_stamp(struct audit_context *ctx,
1734 				   struct timespec64 *t, unsigned int *serial)
1735 {
1736 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1737 		ktime_get_coarse_real_ts64(t);
1738 		*serial = audit_serial();
1739 	}
1740 }
1741 
1742 /**
1743  * audit_log_start - obtain an audit buffer
1744  * @ctx: audit_context (may be NULL)
1745  * @gfp_mask: type of allocation
1746  * @type: audit message type
1747  *
1748  * Returns audit_buffer pointer on success or NULL on error.
1749  *
1750  * Obtain an audit buffer.  This routine does locking to obtain the
1751  * audit buffer, but then no locking is required for calls to
1752  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1753  * syscall, then the syscall is marked as auditable and an audit record
1754  * will be written at syscall exit.  If there is no associated task, then
1755  * task context (ctx) should be NULL.
1756  */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1757 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1758 				     int type)
1759 {
1760 	struct audit_buffer *ab;
1761 	struct timespec64 t;
1762 	unsigned int uninitialized_var(serial);
1763 
1764 	if (audit_initialized != AUDIT_INITIALIZED)
1765 		return NULL;
1766 
1767 	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1768 		return NULL;
1769 
1770 	/* NOTE: don't ever fail/sleep on these two conditions:
1771 	 * 1. auditd generated record - since we need auditd to drain the
1772 	 *    queue; also, when we are checking for auditd, compare PIDs using
1773 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1774 	 *    using a PID anchored in the caller's namespace
1775 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1776 	 *    while holding the mutex */
1777 	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1778 		long stime = audit_backlog_wait_time;
1779 
1780 		while (audit_backlog_limit &&
1781 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1782 			/* wake kauditd to try and flush the queue */
1783 			wake_up_interruptible(&kauditd_wait);
1784 
1785 			/* sleep if we are allowed and we haven't exhausted our
1786 			 * backlog wait limit */
1787 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1788 				DECLARE_WAITQUEUE(wait, current);
1789 
1790 				add_wait_queue_exclusive(&audit_backlog_wait,
1791 							 &wait);
1792 				set_current_state(TASK_UNINTERRUPTIBLE);
1793 				stime = schedule_timeout(stime);
1794 				remove_wait_queue(&audit_backlog_wait, &wait);
1795 			} else {
1796 				if (audit_rate_check() && printk_ratelimit())
1797 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1798 						skb_queue_len(&audit_queue),
1799 						audit_backlog_limit);
1800 				audit_log_lost("backlog limit exceeded");
1801 				return NULL;
1802 			}
1803 		}
1804 	}
1805 
1806 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1807 	if (!ab) {
1808 		audit_log_lost("out of memory in audit_log_start");
1809 		return NULL;
1810 	}
1811 
1812 	audit_get_stamp(ab->ctx, &t, &serial);
1813 	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1814 			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1815 
1816 	return ab;
1817 }
1818 
1819 /**
1820  * audit_expand - expand skb in the audit buffer
1821  * @ab: audit_buffer
1822  * @extra: space to add at tail of the skb
1823  *
1824  * Returns 0 (no space) on failed expansion, or available space if
1825  * successful.
1826  */
audit_expand(struct audit_buffer * ab,int extra)1827 static inline int audit_expand(struct audit_buffer *ab, int extra)
1828 {
1829 	struct sk_buff *skb = ab->skb;
1830 	int oldtail = skb_tailroom(skb);
1831 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1832 	int newtail = skb_tailroom(skb);
1833 
1834 	if (ret < 0) {
1835 		audit_log_lost("out of memory in audit_expand");
1836 		return 0;
1837 	}
1838 
1839 	skb->truesize += newtail - oldtail;
1840 	return newtail;
1841 }
1842 
1843 /*
1844  * Format an audit message into the audit buffer.  If there isn't enough
1845  * room in the audit buffer, more room will be allocated and vsnprint
1846  * will be called a second time.  Currently, we assume that a printk
1847  * can't format message larger than 1024 bytes, so we don't either.
1848  */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1849 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1850 			      va_list args)
1851 {
1852 	int len, avail;
1853 	struct sk_buff *skb;
1854 	va_list args2;
1855 
1856 	if (!ab)
1857 		return;
1858 
1859 	BUG_ON(!ab->skb);
1860 	skb = ab->skb;
1861 	avail = skb_tailroom(skb);
1862 	if (avail == 0) {
1863 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1864 		if (!avail)
1865 			goto out;
1866 	}
1867 	va_copy(args2, args);
1868 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1869 	if (len >= avail) {
1870 		/* The printk buffer is 1024 bytes long, so if we get
1871 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1872 		 * log everything that printk could have logged. */
1873 		avail = audit_expand(ab,
1874 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1875 		if (!avail)
1876 			goto out_va_end;
1877 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1878 	}
1879 	if (len > 0)
1880 		skb_put(skb, len);
1881 out_va_end:
1882 	va_end(args2);
1883 out:
1884 	return;
1885 }
1886 
1887 /**
1888  * audit_log_format - format a message into the audit buffer.
1889  * @ab: audit_buffer
1890  * @fmt: format string
1891  * @...: optional parameters matching @fmt string
1892  *
1893  * All the work is done in audit_log_vformat.
1894  */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)1895 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1896 {
1897 	va_list args;
1898 
1899 	if (!ab)
1900 		return;
1901 	va_start(args, fmt);
1902 	audit_log_vformat(ab, fmt, args);
1903 	va_end(args);
1904 }
1905 
1906 /**
1907  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1908  * @ab: the audit_buffer
1909  * @buf: buffer to convert to hex
1910  * @len: length of @buf to be converted
1911  *
1912  * No return value; failure to expand is silently ignored.
1913  *
1914  * This function will take the passed buf and convert it into a string of
1915  * ascii hex digits. The new string is placed onto the skb.
1916  */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)1917 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1918 		size_t len)
1919 {
1920 	int i, avail, new_len;
1921 	unsigned char *ptr;
1922 	struct sk_buff *skb;
1923 
1924 	if (!ab)
1925 		return;
1926 
1927 	BUG_ON(!ab->skb);
1928 	skb = ab->skb;
1929 	avail = skb_tailroom(skb);
1930 	new_len = len<<1;
1931 	if (new_len >= avail) {
1932 		/* Round the buffer request up to the next multiple */
1933 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1934 		avail = audit_expand(ab, new_len);
1935 		if (!avail)
1936 			return;
1937 	}
1938 
1939 	ptr = skb_tail_pointer(skb);
1940 	for (i = 0; i < len; i++)
1941 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1942 	*ptr = 0;
1943 	skb_put(skb, len << 1); /* new string is twice the old string */
1944 }
1945 
1946 /*
1947  * Format a string of no more than slen characters into the audit buffer,
1948  * enclosed in quote marks.
1949  */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)1950 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1951 			size_t slen)
1952 {
1953 	int avail, new_len;
1954 	unsigned char *ptr;
1955 	struct sk_buff *skb;
1956 
1957 	if (!ab)
1958 		return;
1959 
1960 	BUG_ON(!ab->skb);
1961 	skb = ab->skb;
1962 	avail = skb_tailroom(skb);
1963 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1964 	if (new_len > avail) {
1965 		avail = audit_expand(ab, new_len);
1966 		if (!avail)
1967 			return;
1968 	}
1969 	ptr = skb_tail_pointer(skb);
1970 	*ptr++ = '"';
1971 	memcpy(ptr, string, slen);
1972 	ptr += slen;
1973 	*ptr++ = '"';
1974 	*ptr = 0;
1975 	skb_put(skb, slen + 2);	/* don't include null terminator */
1976 }
1977 
1978 /**
1979  * audit_string_contains_control - does a string need to be logged in hex
1980  * @string: string to be checked
1981  * @len: max length of the string to check
1982  */
audit_string_contains_control(const char * string,size_t len)1983 bool audit_string_contains_control(const char *string, size_t len)
1984 {
1985 	const unsigned char *p;
1986 	for (p = string; p < (const unsigned char *)string + len; p++) {
1987 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1988 			return true;
1989 	}
1990 	return false;
1991 }
1992 
1993 /**
1994  * audit_log_n_untrustedstring - log a string that may contain random characters
1995  * @ab: audit_buffer
1996  * @len: length of string (not including trailing null)
1997  * @string: string to be logged
1998  *
1999  * This code will escape a string that is passed to it if the string
2000  * contains a control character, unprintable character, double quote mark,
2001  * or a space. Unescaped strings will start and end with a double quote mark.
2002  * Strings that are escaped are printed in hex (2 digits per char).
2003  *
2004  * The caller specifies the number of characters in the string to log, which may
2005  * or may not be the entire string.
2006  */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)2007 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2008 				 size_t len)
2009 {
2010 	if (audit_string_contains_control(string, len))
2011 		audit_log_n_hex(ab, string, len);
2012 	else
2013 		audit_log_n_string(ab, string, len);
2014 }
2015 
2016 /**
2017  * audit_log_untrustedstring - log a string that may contain random characters
2018  * @ab: audit_buffer
2019  * @string: string to be logged
2020  *
2021  * Same as audit_log_n_untrustedstring(), except that strlen is used to
2022  * determine string length.
2023  */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)2024 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2025 {
2026 	audit_log_n_untrustedstring(ab, string, strlen(string));
2027 }
2028 
2029 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)2030 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2031 		      const struct path *path)
2032 {
2033 	char *p, *pathname;
2034 
2035 	if (prefix)
2036 		audit_log_format(ab, "%s", prefix);
2037 
2038 	/* We will allow 11 spaces for ' (deleted)' to be appended */
2039 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2040 	if (!pathname) {
2041 		audit_log_string(ab, "<no_memory>");
2042 		return;
2043 	}
2044 	p = d_path(path, pathname, PATH_MAX+11);
2045 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2046 		/* FIXME: can we save some information here? */
2047 		audit_log_string(ab, "<too_long>");
2048 	} else
2049 		audit_log_untrustedstring(ab, p);
2050 	kfree(pathname);
2051 }
2052 
audit_log_session_info(struct audit_buffer * ab)2053 void audit_log_session_info(struct audit_buffer *ab)
2054 {
2055 	unsigned int sessionid = audit_get_sessionid(current);
2056 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2057 
2058 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
2059 }
2060 
audit_log_key(struct audit_buffer * ab,char * key)2061 void audit_log_key(struct audit_buffer *ab, char *key)
2062 {
2063 	audit_log_format(ab, " key=");
2064 	if (key)
2065 		audit_log_untrustedstring(ab, key);
2066 	else
2067 		audit_log_format(ab, "(null)");
2068 }
2069 
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)2070 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
2071 {
2072 	int i;
2073 
2074 	audit_log_format(ab, " %s=", prefix);
2075 	CAP_FOR_EACH_U32(i) {
2076 		audit_log_format(ab, "%08x",
2077 				 cap->cap[CAP_LAST_U32 - i]);
2078 	}
2079 }
2080 
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)2081 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2082 {
2083 	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
2084 	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
2085 	audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2086 			 name->fcap.fE, name->fcap_ver);
2087 }
2088 
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)2089 static inline int audit_copy_fcaps(struct audit_names *name,
2090 				   const struct dentry *dentry)
2091 {
2092 	struct cpu_vfs_cap_data caps;
2093 	int rc;
2094 
2095 	if (!dentry)
2096 		return 0;
2097 
2098 	rc = get_vfs_caps_from_disk(dentry, &caps);
2099 	if (rc)
2100 		return rc;
2101 
2102 	name->fcap.permitted = caps.permitted;
2103 	name->fcap.inheritable = caps.inheritable;
2104 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2105 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2106 				VFS_CAP_REVISION_SHIFT;
2107 
2108 	return 0;
2109 }
2110 
2111 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,struct inode * inode)2112 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2113 		      struct inode *inode)
2114 {
2115 	name->ino   = inode->i_ino;
2116 	name->dev   = inode->i_sb->s_dev;
2117 	name->mode  = inode->i_mode;
2118 	name->uid   = inode->i_uid;
2119 	name->gid   = inode->i_gid;
2120 	name->rdev  = inode->i_rdev;
2121 	security_inode_getsecid(inode, &name->osid);
2122 	audit_copy_fcaps(name, dentry);
2123 }
2124 
2125 /**
2126  * audit_log_name - produce AUDIT_PATH record from struct audit_names
2127  * @context: audit_context for the task
2128  * @n: audit_names structure with reportable details
2129  * @path: optional path to report instead of audit_names->name
2130  * @record_num: record number to report when handling a list of names
2131  * @call_panic: optional pointer to int that will be updated if secid fails
2132  */
audit_log_name(struct audit_context * context,struct audit_names * n,const struct path * path,int record_num,int * call_panic)2133 void audit_log_name(struct audit_context *context, struct audit_names *n,
2134 		    const struct path *path, int record_num, int *call_panic)
2135 {
2136 	struct audit_buffer *ab;
2137 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2138 	if (!ab)
2139 		return;
2140 
2141 	audit_log_format(ab, "item=%d", record_num);
2142 
2143 	if (path)
2144 		audit_log_d_path(ab, " name=", path);
2145 	else if (n->name) {
2146 		switch (n->name_len) {
2147 		case AUDIT_NAME_FULL:
2148 			/* log the full path */
2149 			audit_log_format(ab, " name=");
2150 			audit_log_untrustedstring(ab, n->name->name);
2151 			break;
2152 		case 0:
2153 			/* name was specified as a relative path and the
2154 			 * directory component is the cwd */
2155 			audit_log_d_path(ab, " name=", &context->pwd);
2156 			break;
2157 		default:
2158 			/* log the name's directory component */
2159 			audit_log_format(ab, " name=");
2160 			audit_log_n_untrustedstring(ab, n->name->name,
2161 						    n->name_len);
2162 		}
2163 	} else
2164 		audit_log_format(ab, " name=(null)");
2165 
2166 	if (n->ino != AUDIT_INO_UNSET)
2167 		audit_log_format(ab, " inode=%lu"
2168 				 " dev=%02x:%02x mode=%#ho"
2169 				 " ouid=%u ogid=%u rdev=%02x:%02x",
2170 				 n->ino,
2171 				 MAJOR(n->dev),
2172 				 MINOR(n->dev),
2173 				 n->mode,
2174 				 from_kuid(&init_user_ns, n->uid),
2175 				 from_kgid(&init_user_ns, n->gid),
2176 				 MAJOR(n->rdev),
2177 				 MINOR(n->rdev));
2178 	if (n->osid != 0) {
2179 		char *ctx = NULL;
2180 		u32 len;
2181 		if (security_secid_to_secctx(
2182 			n->osid, &ctx, &len)) {
2183 			audit_log_format(ab, " osid=%u", n->osid);
2184 			if (call_panic)
2185 				*call_panic = 2;
2186 		} else {
2187 			audit_log_format(ab, " obj=%s", ctx);
2188 			security_release_secctx(ctx, len);
2189 		}
2190 	}
2191 
2192 	/* log the audit_names record type */
2193 	audit_log_format(ab, " nametype=");
2194 	switch(n->type) {
2195 	case AUDIT_TYPE_NORMAL:
2196 		audit_log_format(ab, "NORMAL");
2197 		break;
2198 	case AUDIT_TYPE_PARENT:
2199 		audit_log_format(ab, "PARENT");
2200 		break;
2201 	case AUDIT_TYPE_CHILD_DELETE:
2202 		audit_log_format(ab, "DELETE");
2203 		break;
2204 	case AUDIT_TYPE_CHILD_CREATE:
2205 		audit_log_format(ab, "CREATE");
2206 		break;
2207 	default:
2208 		audit_log_format(ab, "UNKNOWN");
2209 		break;
2210 	}
2211 
2212 	audit_log_fcaps(ab, n);
2213 	audit_log_end(ab);
2214 }
2215 
audit_log_task_context(struct audit_buffer * ab)2216 int audit_log_task_context(struct audit_buffer *ab)
2217 {
2218 	char *ctx = NULL;
2219 	unsigned len;
2220 	int error;
2221 	u32 sid;
2222 
2223 	security_task_getsecid(current, &sid);
2224 	if (!sid)
2225 		return 0;
2226 
2227 	error = security_secid_to_secctx(sid, &ctx, &len);
2228 	if (error) {
2229 		if (error != -EINVAL)
2230 			goto error_path;
2231 		return 0;
2232 	}
2233 
2234 	audit_log_format(ab, " subj=%s", ctx);
2235 	security_release_secctx(ctx, len);
2236 	return 0;
2237 
2238 error_path:
2239 	audit_panic("error in audit_log_task_context");
2240 	return error;
2241 }
2242 EXPORT_SYMBOL(audit_log_task_context);
2243 
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2244 void audit_log_d_path_exe(struct audit_buffer *ab,
2245 			  struct mm_struct *mm)
2246 {
2247 	struct file *exe_file;
2248 
2249 	if (!mm)
2250 		goto out_null;
2251 
2252 	exe_file = get_mm_exe_file(mm);
2253 	if (!exe_file)
2254 		goto out_null;
2255 
2256 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2257 	fput(exe_file);
2258 	return;
2259 out_null:
2260 	audit_log_format(ab, " exe=(null)");
2261 }
2262 
audit_get_tty(struct task_struct * tsk)2263 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2264 {
2265 	struct tty_struct *tty = NULL;
2266 	unsigned long flags;
2267 
2268 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2269 	if (tsk->signal)
2270 		tty = tty_kref_get(tsk->signal->tty);
2271 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2272 	return tty;
2273 }
2274 
audit_put_tty(struct tty_struct * tty)2275 void audit_put_tty(struct tty_struct *tty)
2276 {
2277 	tty_kref_put(tty);
2278 }
2279 
audit_log_task_info(struct audit_buffer * ab,struct task_struct * tsk)2280 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2281 {
2282 	const struct cred *cred;
2283 	char comm[sizeof(tsk->comm)];
2284 	struct tty_struct *tty;
2285 
2286 	if (!ab)
2287 		return;
2288 
2289 	/* tsk == current */
2290 	cred = current_cred();
2291 	tty = audit_get_tty(tsk);
2292 	audit_log_format(ab,
2293 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2294 			 " euid=%u suid=%u fsuid=%u"
2295 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2296 			 task_ppid_nr(tsk),
2297 			 task_tgid_nr(tsk),
2298 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2299 			 from_kuid(&init_user_ns, cred->uid),
2300 			 from_kgid(&init_user_ns, cred->gid),
2301 			 from_kuid(&init_user_ns, cred->euid),
2302 			 from_kuid(&init_user_ns, cred->suid),
2303 			 from_kuid(&init_user_ns, cred->fsuid),
2304 			 from_kgid(&init_user_ns, cred->egid),
2305 			 from_kgid(&init_user_ns, cred->sgid),
2306 			 from_kgid(&init_user_ns, cred->fsgid),
2307 			 tty ? tty_name(tty) : "(none)",
2308 			 audit_get_sessionid(tsk));
2309 	audit_put_tty(tty);
2310 	audit_log_format(ab, " comm=");
2311 	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2312 	audit_log_d_path_exe(ab, tsk->mm);
2313 	audit_log_task_context(ab);
2314 }
2315 EXPORT_SYMBOL(audit_log_task_info);
2316 
2317 /**
2318  * audit_log_link_denied - report a link restriction denial
2319  * @operation: specific link operation
2320  */
audit_log_link_denied(const char * operation)2321 void audit_log_link_denied(const char *operation)
2322 {
2323 	struct audit_buffer *ab;
2324 
2325 	if (!audit_enabled || audit_dummy_context())
2326 		return;
2327 
2328 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2329 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_LINK);
2330 	if (!ab)
2331 		return;
2332 	audit_log_format(ab, "op=%s", operation);
2333 	audit_log_task_info(ab, current);
2334 	audit_log_format(ab, " res=0");
2335 	audit_log_end(ab);
2336 }
2337 
2338 /**
2339  * audit_log_end - end one audit record
2340  * @ab: the audit_buffer
2341  *
2342  * We can not do a netlink send inside an irq context because it blocks (last
2343  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2344  * queue and a tasklet is scheduled to remove them from the queue outside the
2345  * irq context.  May be called in any context.
2346  */
audit_log_end(struct audit_buffer * ab)2347 void audit_log_end(struct audit_buffer *ab)
2348 {
2349 	struct sk_buff *skb;
2350 	struct nlmsghdr *nlh;
2351 
2352 	if (!ab)
2353 		return;
2354 
2355 	if (audit_rate_check()) {
2356 		skb = ab->skb;
2357 		ab->skb = NULL;
2358 
2359 		/* setup the netlink header, see the comments in
2360 		 * kauditd_send_multicast_skb() for length quirks */
2361 		nlh = nlmsg_hdr(skb);
2362 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2363 
2364 		/* queue the netlink packet and poke the kauditd thread */
2365 		skb_queue_tail(&audit_queue, skb);
2366 		wake_up_interruptible(&kauditd_wait);
2367 	} else
2368 		audit_log_lost("rate limit exceeded");
2369 
2370 	audit_buffer_free(ab);
2371 }
2372 
2373 /**
2374  * audit_log - Log an audit record
2375  * @ctx: audit context
2376  * @gfp_mask: type of allocation
2377  * @type: audit message type
2378  * @fmt: format string to use
2379  * @...: variable parameters matching the format string
2380  *
2381  * This is a convenience function that calls audit_log_start,
2382  * audit_log_vformat, and audit_log_end.  It may be called
2383  * in any context.
2384  */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2385 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2386 	       const char *fmt, ...)
2387 {
2388 	struct audit_buffer *ab;
2389 	va_list args;
2390 
2391 	ab = audit_log_start(ctx, gfp_mask, type);
2392 	if (ab) {
2393 		va_start(args, fmt);
2394 		audit_log_vformat(ab, fmt, args);
2395 		va_end(args);
2396 		audit_log_end(ab);
2397 	}
2398 }
2399 
2400 EXPORT_SYMBOL(audit_log_start);
2401 EXPORT_SYMBOL(audit_log_end);
2402 EXPORT_SYMBOL(audit_log_format);
2403 EXPORT_SYMBOL(audit_log);
2404