• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64 
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67 
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74 
kprobe_lookup_name(const char * name,unsigned int __unused)75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 					unsigned int __unused)
77 {
78 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80 
kretprobe_table_lock_ptr(unsigned long hash)81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 	return &(kretprobe_table_locks[hash].lock);
84 }
85 
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88 
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97 	struct list_head list;
98 	kprobe_opcode_t *insns;		/* Page of instruction slots */
99 	struct kprobe_insn_cache *cache;
100 	int nused;
101 	int ngarbage;
102 	char slot_used[];
103 };
104 
105 #define KPROBE_INSN_PAGE_SIZE(slots)			\
106 	(offsetof(struct kprobe_insn_page, slot_used) +	\
107 	 (sizeof(char) * (slots)))
108 
slots_per_page(struct kprobe_insn_cache * c)109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113 
114 enum kprobe_slot_state {
115 	SLOT_CLEAN = 0,
116 	SLOT_DIRTY = 1,
117 	SLOT_USED = 2,
118 };
119 
alloc_insn_page(void)120 void __weak *alloc_insn_page(void)
121 {
122 	return module_alloc(PAGE_SIZE);
123 }
124 
free_insn_page(void * page)125 void __weak free_insn_page(void *page)
126 {
127 	module_memfree(page);
128 }
129 
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 	.alloc = alloc_insn_page,
133 	.free = free_insn_page,
134 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 	.insn_size = MAX_INSN_SIZE,
136 	.nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139 
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
__get_insn_slot(struct kprobe_insn_cache * c)144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 	struct kprobe_insn_page *kip;
147 	kprobe_opcode_t *slot = NULL;
148 
149 	/* Since the slot array is not protected by rcu, we need a mutex */
150 	mutex_lock(&c->mutex);
151  retry:
152 	rcu_read_lock();
153 	list_for_each_entry_rcu(kip, &c->pages, list) {
154 		if (kip->nused < slots_per_page(c)) {
155 			int i;
156 			for (i = 0; i < slots_per_page(c); i++) {
157 				if (kip->slot_used[i] == SLOT_CLEAN) {
158 					kip->slot_used[i] = SLOT_USED;
159 					kip->nused++;
160 					slot = kip->insns + (i * c->insn_size);
161 					rcu_read_unlock();
162 					goto out;
163 				}
164 			}
165 			/* kip->nused is broken. Fix it. */
166 			kip->nused = slots_per_page(c);
167 			WARN_ON(1);
168 		}
169 	}
170 	rcu_read_unlock();
171 
172 	/* If there are any garbage slots, collect it and try again. */
173 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 		goto retry;
175 
176 	/* All out of space.  Need to allocate a new page. */
177 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 	if (!kip)
179 		goto out;
180 
181 	/*
182 	 * Use module_alloc so this page is within +/- 2GB of where the
183 	 * kernel image and loaded module images reside. This is required
184 	 * so x86_64 can correctly handle the %rip-relative fixups.
185 	 */
186 	kip->insns = c->alloc();
187 	if (!kip->insns) {
188 		kfree(kip);
189 		goto out;
190 	}
191 	INIT_LIST_HEAD(&kip->list);
192 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 	kip->slot_used[0] = SLOT_USED;
194 	kip->nused = 1;
195 	kip->ngarbage = 0;
196 	kip->cache = c;
197 	list_add_rcu(&kip->list, &c->pages);
198 	slot = kip->insns;
199 out:
200 	mutex_unlock(&c->mutex);
201 	return slot;
202 }
203 
204 /* Return 1 if all garbages are collected, otherwise 0. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 	kip->slot_used[idx] = SLOT_CLEAN;
208 	kip->nused--;
209 	if (kip->nused == 0) {
210 		/*
211 		 * Page is no longer in use.  Free it unless
212 		 * it's the last one.  We keep the last one
213 		 * so as not to have to set it up again the
214 		 * next time somebody inserts a probe.
215 		 */
216 		if (!list_is_singular(&kip->list)) {
217 			list_del_rcu(&kip->list);
218 			synchronize_rcu();
219 			kip->cache->free(kip->insns);
220 			kfree(kip);
221 		}
222 		return 1;
223 	}
224 	return 0;
225 }
226 
collect_garbage_slots(struct kprobe_insn_cache * c)227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 	struct kprobe_insn_page *kip, *next;
230 
231 	/* Ensure no-one is interrupted on the garbages */
232 	synchronize_sched();
233 
234 	list_for_each_entry_safe(kip, next, &c->pages, list) {
235 		int i;
236 		if (kip->ngarbage == 0)
237 			continue;
238 		kip->ngarbage = 0;	/* we will collect all garbages */
239 		for (i = 0; i < slots_per_page(c); i++) {
240 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 				break;
242 		}
243 	}
244 	c->nr_garbage = 0;
245 	return 0;
246 }
247 
__free_insn_slot(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,int dirty)248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 		      kprobe_opcode_t *slot, int dirty)
250 {
251 	struct kprobe_insn_page *kip;
252 	long idx;
253 
254 	mutex_lock(&c->mutex);
255 	rcu_read_lock();
256 	list_for_each_entry_rcu(kip, &c->pages, list) {
257 		idx = ((long)slot - (long)kip->insns) /
258 			(c->insn_size * sizeof(kprobe_opcode_t));
259 		if (idx >= 0 && idx < slots_per_page(c))
260 			goto out;
261 	}
262 	/* Could not find this slot. */
263 	WARN_ON(1);
264 	kip = NULL;
265 out:
266 	rcu_read_unlock();
267 	/* Mark and sweep: this may sleep */
268 	if (kip) {
269 		/* Check double free */
270 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 		if (dirty) {
272 			kip->slot_used[idx] = SLOT_DIRTY;
273 			kip->ngarbage++;
274 			if (++c->nr_garbage > slots_per_page(c))
275 				collect_garbage_slots(c);
276 		} else {
277 			collect_one_slot(kip, idx);
278 		}
279 	}
280 	mutex_unlock(&c->mutex);
281 }
282 
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
__is_insn_slot_addr(struct kprobe_insn_cache * c,unsigned long addr)288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 	struct kprobe_insn_page *kip;
291 	bool ret = false;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(kip, &c->pages, list) {
295 		if (addr >= (unsigned long)kip->insns &&
296 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 			ret = true;
298 			break;
299 		}
300 	}
301 	rcu_read_unlock();
302 
303 	return ret;
304 }
305 
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 	.alloc = alloc_insn_page,
311 	.free = free_insn_page,
312 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 	/* .insn_size is initialized later */
314 	.nr_garbage = 0,
315 };
316 #endif
317 #endif
318 
319 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 	__this_cpu_write(kprobe_instance, kp);
323 }
324 
reset_kprobe_instance(void)325 static inline void reset_kprobe_instance(void)
326 {
327 	__this_cpu_write(kprobe_instance, NULL);
328 }
329 
330 /*
331  * This routine is called either:
332  * 	- under the kprobe_mutex - during kprobe_[un]register()
333  * 				OR
334  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
get_kprobe(void * addr)336 struct kprobe *get_kprobe(void *addr)
337 {
338 	struct hlist_head *head;
339 	struct kprobe *p;
340 
341 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 	hlist_for_each_entry_rcu(p, head, hlist) {
343 		if (p->addr == addr)
344 			return p;
345 	}
346 
347 	return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350 
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352 
353 /* Return true if the kprobe is an aggregator */
kprobe_aggrprobe(struct kprobe * p)354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 	return p->pre_handler == aggr_pre_handler;
357 }
358 
359 /* Return true(!0) if the kprobe is unused */
kprobe_unused(struct kprobe * p)360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 	       list_empty(&p->list);
364 }
365 
366 /*
367  * Keep all fields in the kprobe consistent
368  */
copy_kprobe(struct kprobe * ap,struct kprobe * p)369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374 
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378 
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
opt_pre_handler(struct kprobe * p,struct pt_regs * regs)383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 	struct kprobe *kp;
386 
387 	list_for_each_entry_rcu(kp, &p->list, list) {
388 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 			set_kprobe_instance(kp);
390 			kp->pre_handler(kp, regs);
391 		}
392 		reset_kprobe_instance();
393 	}
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396 
397 /* Free optimized instructions and optimized_kprobe */
free_aggr_kprobe(struct kprobe * p)398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 	struct optimized_kprobe *op;
401 
402 	op = container_of(p, struct optimized_kprobe, kp);
403 	arch_remove_optimized_kprobe(op);
404 	arch_remove_kprobe(p);
405 	kfree(op);
406 }
407 
408 /* Return true(!0) if the kprobe is ready for optimization. */
kprobe_optready(struct kprobe * p)409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 	struct optimized_kprobe *op;
412 
413 	if (kprobe_aggrprobe(p)) {
414 		op = container_of(p, struct optimized_kprobe, kp);
415 		return arch_prepared_optinsn(&op->optinsn);
416 	}
417 
418 	return 0;
419 }
420 
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
kprobe_disarmed(struct kprobe * p)422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 	struct optimized_kprobe *op;
425 
426 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 	if (!kprobe_aggrprobe(p))
428 		return kprobe_disabled(p);
429 
430 	op = container_of(p, struct optimized_kprobe, kp);
431 
432 	return kprobe_disabled(p) && list_empty(&op->list);
433 }
434 
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
kprobe_queued(struct kprobe * p)436 static int kprobe_queued(struct kprobe *p)
437 {
438 	struct optimized_kprobe *op;
439 
440 	if (kprobe_aggrprobe(p)) {
441 		op = container_of(p, struct optimized_kprobe, kp);
442 		if (!list_empty(&op->list))
443 			return 1;
444 	}
445 	return 0;
446 }
447 
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
get_optimized_kprobe(unsigned long addr)452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 	int i;
455 	struct kprobe *p = NULL;
456 	struct optimized_kprobe *op;
457 
458 	/* Don't check i == 0, since that is a breakpoint case. */
459 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 		p = get_kprobe((void *)(addr - i));
461 
462 	if (p && kprobe_optready(p)) {
463 		op = container_of(p, struct optimized_kprobe, kp);
464 		if (arch_within_optimized_kprobe(op, addr))
465 			return p;
466 	}
467 
468 	return NULL;
469 }
470 
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475 
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479 
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
do_optimize_kprobes(void)484 static void do_optimize_kprobes(void)
485 {
486 	lockdep_assert_held(&text_mutex);
487 	/*
488 	 * The optimization/unoptimization refers online_cpus via
489 	 * stop_machine() and cpu-hotplug modifies online_cpus.
490 	 * And same time, text_mutex will be held in cpu-hotplug and here.
491 	 * This combination can cause a deadlock (cpu-hotplug try to lock
492 	 * text_mutex but stop_machine can not be done because online_cpus
493 	 * has been changed)
494 	 * To avoid this deadlock, caller must have locked cpu hotplug
495 	 * for preventing cpu-hotplug outside of text_mutex locking.
496 	 */
497 	lockdep_assert_cpus_held();
498 
499 	/* Optimization never be done when disarmed */
500 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
501 	    list_empty(&optimizing_list))
502 		return;
503 
504 	arch_optimize_kprobes(&optimizing_list);
505 }
506 
507 /*
508  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
509  * if need) kprobes listed on unoptimizing_list.
510  */
do_unoptimize_kprobes(void)511 static void do_unoptimize_kprobes(void)
512 {
513 	struct optimized_kprobe *op, *tmp;
514 
515 	lockdep_assert_held(&text_mutex);
516 	/* See comment in do_optimize_kprobes() */
517 	lockdep_assert_cpus_held();
518 
519 	/* Unoptimization must be done anytime */
520 	if (list_empty(&unoptimizing_list))
521 		return;
522 
523 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
524 	/* Loop free_list for disarming */
525 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
526 		/* Switching from detour code to origin */
527 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
528 		/* Disarm probes if marked disabled */
529 		if (kprobe_disabled(&op->kp))
530 			arch_disarm_kprobe(&op->kp);
531 		if (kprobe_unused(&op->kp)) {
532 			/*
533 			 * Remove unused probes from hash list. After waiting
534 			 * for synchronization, these probes are reclaimed.
535 			 * (reclaiming is done by do_free_cleaned_kprobes.)
536 			 */
537 			hlist_del_rcu(&op->kp.hlist);
538 		} else
539 			list_del_init(&op->list);
540 	}
541 }
542 
543 /* Reclaim all kprobes on the free_list */
do_free_cleaned_kprobes(void)544 static void do_free_cleaned_kprobes(void)
545 {
546 	struct optimized_kprobe *op, *tmp;
547 
548 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 		list_del_init(&op->list);
550 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
551 			/*
552 			 * This must not happen, but if there is a kprobe
553 			 * still in use, keep it on kprobes hash list.
554 			 */
555 			continue;
556 		}
557 		free_aggr_kprobe(&op->kp);
558 	}
559 }
560 
561 /* Start optimizer after OPTIMIZE_DELAY passed */
kick_kprobe_optimizer(void)562 static void kick_kprobe_optimizer(void)
563 {
564 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
565 }
566 
567 /* Kprobe jump optimizer */
kprobe_optimizer(struct work_struct * work)568 static void kprobe_optimizer(struct work_struct *work)
569 {
570 	mutex_lock(&kprobe_mutex);
571 	cpus_read_lock();
572 	mutex_lock(&text_mutex);
573 	/* Lock modules while optimizing kprobes */
574 	mutex_lock(&module_mutex);
575 
576 	/*
577 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
578 	 * kprobes before waiting for quiesence period.
579 	 */
580 	do_unoptimize_kprobes();
581 
582 	/*
583 	 * Step 2: Wait for quiesence period to ensure all potentially
584 	 * preempted tasks to have normally scheduled. Because optprobe
585 	 * may modify multiple instructions, there is a chance that Nth
586 	 * instruction is preempted. In that case, such tasks can return
587 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
588 	 * Note that on non-preemptive kernel, this is transparently converted
589 	 * to synchronoze_sched() to wait for all interrupts to have completed.
590 	 */
591 	synchronize_rcu_tasks();
592 
593 	/* Step 3: Optimize kprobes after quiesence period */
594 	do_optimize_kprobes();
595 
596 	/* Step 4: Free cleaned kprobes after quiesence period */
597 	do_free_cleaned_kprobes();
598 
599 	mutex_unlock(&module_mutex);
600 	mutex_unlock(&text_mutex);
601 	cpus_read_unlock();
602 
603 	/* Step 5: Kick optimizer again if needed */
604 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
605 		kick_kprobe_optimizer();
606 
607 	mutex_unlock(&kprobe_mutex);
608 }
609 
610 /* Wait for completing optimization and unoptimization */
wait_for_kprobe_optimizer(void)611 void wait_for_kprobe_optimizer(void)
612 {
613 	mutex_lock(&kprobe_mutex);
614 
615 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
616 		mutex_unlock(&kprobe_mutex);
617 
618 		/* this will also make optimizing_work execute immmediately */
619 		flush_delayed_work(&optimizing_work);
620 		/* @optimizing_work might not have been queued yet, relax */
621 		cpu_relax();
622 
623 		mutex_lock(&kprobe_mutex);
624 	}
625 
626 	mutex_unlock(&kprobe_mutex);
627 }
628 
optprobe_queued_unopt(struct optimized_kprobe * op)629 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
630 {
631 	struct optimized_kprobe *_op;
632 
633 	list_for_each_entry(_op, &unoptimizing_list, list) {
634 		if (op == _op)
635 			return true;
636 	}
637 
638 	return false;
639 }
640 
641 /* Optimize kprobe if p is ready to be optimized */
optimize_kprobe(struct kprobe * p)642 static void optimize_kprobe(struct kprobe *p)
643 {
644 	struct optimized_kprobe *op;
645 
646 	/* Check if the kprobe is disabled or not ready for optimization. */
647 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
648 	    (kprobe_disabled(p) || kprobes_all_disarmed))
649 		return;
650 
651 	/* kprobes with post_handler can not be optimized */
652 	if (p->post_handler)
653 		return;
654 
655 	op = container_of(p, struct optimized_kprobe, kp);
656 
657 	/* Check there is no other kprobes at the optimized instructions */
658 	if (arch_check_optimized_kprobe(op) < 0)
659 		return;
660 
661 	/* Check if it is already optimized. */
662 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
663 		if (optprobe_queued_unopt(op)) {
664 			/* This is under unoptimizing. Just dequeue the probe */
665 			list_del_init(&op->list);
666 		}
667 		return;
668 	}
669 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
670 
671 	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
672 	if (WARN_ON_ONCE(!list_empty(&op->list)))
673 		return;
674 
675 	list_add(&op->list, &optimizing_list);
676 	kick_kprobe_optimizer();
677 }
678 
679 /* Short cut to direct unoptimizing */
force_unoptimize_kprobe(struct optimized_kprobe * op)680 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
681 {
682 	lockdep_assert_cpus_held();
683 	arch_unoptimize_kprobe(op);
684 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
685 	if (kprobe_disabled(&op->kp))
686 		arch_disarm_kprobe(&op->kp);
687 }
688 
689 /* Unoptimize a kprobe if p is optimized */
unoptimize_kprobe(struct kprobe * p,bool force)690 static void unoptimize_kprobe(struct kprobe *p, bool force)
691 {
692 	struct optimized_kprobe *op;
693 
694 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
695 		return; /* This is not an optprobe nor optimized */
696 
697 	op = container_of(p, struct optimized_kprobe, kp);
698 	if (!kprobe_optimized(p))
699 		return;
700 
701 	if (!list_empty(&op->list)) {
702 		if (optprobe_queued_unopt(op)) {
703 			/* Queued in unoptimizing queue */
704 			if (force) {
705 				/*
706 				 * Forcibly unoptimize the kprobe here, and queue it
707 				 * in the freeing list for release afterwards.
708 				 */
709 				force_unoptimize_kprobe(op);
710 				list_move(&op->list, &freeing_list);
711 			}
712 		} else {
713 			/* Dequeue from the optimizing queue */
714 			list_del_init(&op->list);
715 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
716 		}
717 		return;
718 	}
719 
720 	/* Optimized kprobe case */
721 	if (force) {
722 		/* Forcibly update the code: this is a special case */
723 		force_unoptimize_kprobe(op);
724 	} else {
725 		list_add(&op->list, &unoptimizing_list);
726 		kick_kprobe_optimizer();
727 	}
728 }
729 
730 /* Cancel unoptimizing for reusing */
reuse_unused_kprobe(struct kprobe * ap)731 static int reuse_unused_kprobe(struct kprobe *ap)
732 {
733 	struct optimized_kprobe *op;
734 
735 	BUG_ON(!kprobe_unused(ap));
736 	/*
737 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
738 	 * there is still a relative jump) and disabled.
739 	 */
740 	op = container_of(ap, struct optimized_kprobe, kp);
741 	WARN_ON_ONCE(list_empty(&op->list));
742 	/* Enable the probe again */
743 	ap->flags &= ~KPROBE_FLAG_DISABLED;
744 	/* Optimize it again (remove from op->list) */
745 	if (!kprobe_optready(ap))
746 		return -EINVAL;
747 
748 	optimize_kprobe(ap);
749 	return 0;
750 }
751 
752 /* Remove optimized instructions */
kill_optimized_kprobe(struct kprobe * p)753 static void kill_optimized_kprobe(struct kprobe *p)
754 {
755 	struct optimized_kprobe *op;
756 
757 	op = container_of(p, struct optimized_kprobe, kp);
758 	if (!list_empty(&op->list))
759 		/* Dequeue from the (un)optimization queue */
760 		list_del_init(&op->list);
761 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
762 
763 	if (kprobe_unused(p)) {
764 		/* Enqueue if it is unused */
765 		list_add(&op->list, &freeing_list);
766 		/*
767 		 * Remove unused probes from the hash list. After waiting
768 		 * for synchronization, this probe is reclaimed.
769 		 * (reclaiming is done by do_free_cleaned_kprobes().)
770 		 */
771 		hlist_del_rcu(&op->kp.hlist);
772 	}
773 
774 	/* Don't touch the code, because it is already freed. */
775 	arch_remove_optimized_kprobe(op);
776 }
777 
778 static inline
__prepare_optimized_kprobe(struct optimized_kprobe * op,struct kprobe * p)779 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
780 {
781 	if (!kprobe_ftrace(p))
782 		arch_prepare_optimized_kprobe(op, p);
783 }
784 
785 /* Try to prepare optimized instructions */
prepare_optimized_kprobe(struct kprobe * p)786 static void prepare_optimized_kprobe(struct kprobe *p)
787 {
788 	struct optimized_kprobe *op;
789 
790 	op = container_of(p, struct optimized_kprobe, kp);
791 	__prepare_optimized_kprobe(op, p);
792 }
793 
794 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
alloc_aggr_kprobe(struct kprobe * p)795 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
796 {
797 	struct optimized_kprobe *op;
798 
799 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
800 	if (!op)
801 		return NULL;
802 
803 	INIT_LIST_HEAD(&op->list);
804 	op->kp.addr = p->addr;
805 	__prepare_optimized_kprobe(op, p);
806 
807 	return &op->kp;
808 }
809 
810 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
811 
812 /*
813  * Prepare an optimized_kprobe and optimize it
814  * NOTE: p must be a normal registered kprobe
815  */
try_to_optimize_kprobe(struct kprobe * p)816 static void try_to_optimize_kprobe(struct kprobe *p)
817 {
818 	struct kprobe *ap;
819 	struct optimized_kprobe *op;
820 
821 	/* Impossible to optimize ftrace-based kprobe */
822 	if (kprobe_ftrace(p))
823 		return;
824 
825 	/* For preparing optimization, jump_label_text_reserved() is called */
826 	cpus_read_lock();
827 	jump_label_lock();
828 	mutex_lock(&text_mutex);
829 
830 	ap = alloc_aggr_kprobe(p);
831 	if (!ap)
832 		goto out;
833 
834 	op = container_of(ap, struct optimized_kprobe, kp);
835 	if (!arch_prepared_optinsn(&op->optinsn)) {
836 		/* If failed to setup optimizing, fallback to kprobe */
837 		arch_remove_optimized_kprobe(op);
838 		kfree(op);
839 		goto out;
840 	}
841 
842 	init_aggr_kprobe(ap, p);
843 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
844 
845 out:
846 	mutex_unlock(&text_mutex);
847 	jump_label_unlock();
848 	cpus_read_unlock();
849 }
850 
851 #ifdef CONFIG_SYSCTL
optimize_all_kprobes(void)852 static void optimize_all_kprobes(void)
853 {
854 	struct hlist_head *head;
855 	struct kprobe *p;
856 	unsigned int i;
857 
858 	mutex_lock(&kprobe_mutex);
859 	/* If optimization is already allowed, just return */
860 	if (kprobes_allow_optimization)
861 		goto out;
862 
863 	cpus_read_lock();
864 	kprobes_allow_optimization = true;
865 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
866 		head = &kprobe_table[i];
867 		hlist_for_each_entry_rcu(p, head, hlist)
868 			if (!kprobe_disabled(p))
869 				optimize_kprobe(p);
870 	}
871 	cpus_read_unlock();
872 	printk(KERN_INFO "Kprobes globally optimized\n");
873 out:
874 	mutex_unlock(&kprobe_mutex);
875 }
876 
unoptimize_all_kprobes(void)877 static void unoptimize_all_kprobes(void)
878 {
879 	struct hlist_head *head;
880 	struct kprobe *p;
881 	unsigned int i;
882 
883 	mutex_lock(&kprobe_mutex);
884 	/* If optimization is already prohibited, just return */
885 	if (!kprobes_allow_optimization) {
886 		mutex_unlock(&kprobe_mutex);
887 		return;
888 	}
889 
890 	cpus_read_lock();
891 	kprobes_allow_optimization = false;
892 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
893 		head = &kprobe_table[i];
894 		hlist_for_each_entry_rcu(p, head, hlist) {
895 			if (!kprobe_disabled(p))
896 				unoptimize_kprobe(p, false);
897 		}
898 	}
899 	cpus_read_unlock();
900 	mutex_unlock(&kprobe_mutex);
901 
902 	/* Wait for unoptimizing completion */
903 	wait_for_kprobe_optimizer();
904 	printk(KERN_INFO "Kprobes globally unoptimized\n");
905 }
906 
907 static DEFINE_MUTEX(kprobe_sysctl_mutex);
908 int sysctl_kprobes_optimization;
proc_kprobes_optimization_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)909 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
910 				      void __user *buffer, size_t *length,
911 				      loff_t *ppos)
912 {
913 	int ret;
914 
915 	mutex_lock(&kprobe_sysctl_mutex);
916 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
917 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
918 
919 	if (sysctl_kprobes_optimization)
920 		optimize_all_kprobes();
921 	else
922 		unoptimize_all_kprobes();
923 	mutex_unlock(&kprobe_sysctl_mutex);
924 
925 	return ret;
926 }
927 #endif /* CONFIG_SYSCTL */
928 
929 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
__arm_kprobe(struct kprobe * p)930 static void __arm_kprobe(struct kprobe *p)
931 {
932 	struct kprobe *_p;
933 
934 	/* Check collision with other optimized kprobes */
935 	_p = get_optimized_kprobe((unsigned long)p->addr);
936 	if (unlikely(_p))
937 		/* Fallback to unoptimized kprobe */
938 		unoptimize_kprobe(_p, true);
939 
940 	arch_arm_kprobe(p);
941 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
942 }
943 
944 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
__disarm_kprobe(struct kprobe * p,bool reopt)945 static void __disarm_kprobe(struct kprobe *p, bool reopt)
946 {
947 	struct kprobe *_p;
948 
949 	/* Try to unoptimize */
950 	unoptimize_kprobe(p, kprobes_all_disarmed);
951 
952 	if (!kprobe_queued(p)) {
953 		arch_disarm_kprobe(p);
954 		/* If another kprobe was blocked, optimize it. */
955 		_p = get_optimized_kprobe((unsigned long)p->addr);
956 		if (unlikely(_p) && reopt)
957 			optimize_kprobe(_p);
958 	}
959 	/* TODO: reoptimize others after unoptimized this probe */
960 }
961 
962 #else /* !CONFIG_OPTPROBES */
963 
964 #define optimize_kprobe(p)			do {} while (0)
965 #define unoptimize_kprobe(p, f)			do {} while (0)
966 #define kill_optimized_kprobe(p)		do {} while (0)
967 #define prepare_optimized_kprobe(p)		do {} while (0)
968 #define try_to_optimize_kprobe(p)		do {} while (0)
969 #define __arm_kprobe(p)				arch_arm_kprobe(p)
970 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
971 #define kprobe_disarmed(p)			kprobe_disabled(p)
972 #define wait_for_kprobe_optimizer()		do {} while (0)
973 
reuse_unused_kprobe(struct kprobe * ap)974 static int reuse_unused_kprobe(struct kprobe *ap)
975 {
976 	/*
977 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
978 	 * released at the same time that the last aggregated kprobe is
979 	 * unregistered.
980 	 * Thus there should be no chance to reuse unused kprobe.
981 	 */
982 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
983 	return -EINVAL;
984 }
985 
free_aggr_kprobe(struct kprobe * p)986 static void free_aggr_kprobe(struct kprobe *p)
987 {
988 	arch_remove_kprobe(p);
989 	kfree(p);
990 }
991 
alloc_aggr_kprobe(struct kprobe * p)992 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
993 {
994 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
995 }
996 #endif /* CONFIG_OPTPROBES */
997 
998 #ifdef CONFIG_KPROBES_ON_FTRACE
999 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1000 	.func = kprobe_ftrace_handler,
1001 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1002 };
1003 static int kprobe_ftrace_enabled;
1004 
1005 /* Must ensure p->addr is really on ftrace */
prepare_kprobe(struct kprobe * p)1006 static int prepare_kprobe(struct kprobe *p)
1007 {
1008 	if (!kprobe_ftrace(p))
1009 		return arch_prepare_kprobe(p);
1010 
1011 	return arch_prepare_kprobe_ftrace(p);
1012 }
1013 
1014 /* Caller must lock kprobe_mutex */
arm_kprobe_ftrace(struct kprobe * p)1015 static int arm_kprobe_ftrace(struct kprobe *p)
1016 {
1017 	int ret = 0;
1018 
1019 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1020 				   (unsigned long)p->addr, 0, 0);
1021 	if (ret) {
1022 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1023 			 p->addr, ret);
1024 		return ret;
1025 	}
1026 
1027 	if (kprobe_ftrace_enabled == 0) {
1028 		ret = register_ftrace_function(&kprobe_ftrace_ops);
1029 		if (ret) {
1030 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1031 			goto err_ftrace;
1032 		}
1033 	}
1034 
1035 	kprobe_ftrace_enabled++;
1036 	return ret;
1037 
1038 err_ftrace:
1039 	/*
1040 	 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1041 	 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1042 	 * empty filter_hash which would undesirably trace all functions.
1043 	 */
1044 	ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1045 	return ret;
1046 }
1047 
1048 /* Caller must lock kprobe_mutex */
disarm_kprobe_ftrace(struct kprobe * p)1049 static int disarm_kprobe_ftrace(struct kprobe *p)
1050 {
1051 	int ret = 0;
1052 
1053 	if (kprobe_ftrace_enabled == 1) {
1054 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1055 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1056 			return ret;
1057 	}
1058 
1059 	kprobe_ftrace_enabled--;
1060 
1061 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1062 			   (unsigned long)p->addr, 1, 0);
1063 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1064 		  p->addr, ret);
1065 	return ret;
1066 }
1067 #else	/* !CONFIG_KPROBES_ON_FTRACE */
prepare_kprobe(struct kprobe * p)1068 static inline int prepare_kprobe(struct kprobe *p)
1069 {
1070 	return arch_prepare_kprobe(p);
1071 }
1072 
arm_kprobe_ftrace(struct kprobe * p)1073 static inline int arm_kprobe_ftrace(struct kprobe *p)
1074 {
1075 	return -ENODEV;
1076 }
1077 
disarm_kprobe_ftrace(struct kprobe * p)1078 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1079 {
1080 	return -ENODEV;
1081 }
1082 #endif
1083 
1084 /* Arm a kprobe with text_mutex */
arm_kprobe(struct kprobe * kp)1085 static int arm_kprobe(struct kprobe *kp)
1086 {
1087 	if (unlikely(kprobe_ftrace(kp)))
1088 		return arm_kprobe_ftrace(kp);
1089 
1090 	cpus_read_lock();
1091 	mutex_lock(&text_mutex);
1092 	__arm_kprobe(kp);
1093 	mutex_unlock(&text_mutex);
1094 	cpus_read_unlock();
1095 
1096 	return 0;
1097 }
1098 
1099 /* Disarm a kprobe with text_mutex */
disarm_kprobe(struct kprobe * kp,bool reopt)1100 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1101 {
1102 	if (unlikely(kprobe_ftrace(kp)))
1103 		return disarm_kprobe_ftrace(kp);
1104 
1105 	cpus_read_lock();
1106 	mutex_lock(&text_mutex);
1107 	__disarm_kprobe(kp, reopt);
1108 	mutex_unlock(&text_mutex);
1109 	cpus_read_unlock();
1110 
1111 	return 0;
1112 }
1113 
1114 /*
1115  * Aggregate handlers for multiple kprobes support - these handlers
1116  * take care of invoking the individual kprobe handlers on p->list
1117  */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)1118 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1119 {
1120 	struct kprobe *kp;
1121 
1122 	list_for_each_entry_rcu(kp, &p->list, list) {
1123 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1124 			set_kprobe_instance(kp);
1125 			if (kp->pre_handler(kp, regs))
1126 				return 1;
1127 		}
1128 		reset_kprobe_instance();
1129 	}
1130 	return 0;
1131 }
1132 NOKPROBE_SYMBOL(aggr_pre_handler);
1133 
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1134 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1135 			      unsigned long flags)
1136 {
1137 	struct kprobe *kp;
1138 
1139 	list_for_each_entry_rcu(kp, &p->list, list) {
1140 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1141 			set_kprobe_instance(kp);
1142 			kp->post_handler(kp, regs, flags);
1143 			reset_kprobe_instance();
1144 		}
1145 	}
1146 }
1147 NOKPROBE_SYMBOL(aggr_post_handler);
1148 
aggr_fault_handler(struct kprobe * p,struct pt_regs * regs,int trapnr)1149 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1150 			      int trapnr)
1151 {
1152 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1153 
1154 	/*
1155 	 * if we faulted "during" the execution of a user specified
1156 	 * probe handler, invoke just that probe's fault handler
1157 	 */
1158 	if (cur && cur->fault_handler) {
1159 		if (cur->fault_handler(cur, regs, trapnr))
1160 			return 1;
1161 	}
1162 	return 0;
1163 }
1164 NOKPROBE_SYMBOL(aggr_fault_handler);
1165 
1166 /* Walks the list and increments nmissed count for multiprobe case */
kprobes_inc_nmissed_count(struct kprobe * p)1167 void kprobes_inc_nmissed_count(struct kprobe *p)
1168 {
1169 	struct kprobe *kp;
1170 	if (!kprobe_aggrprobe(p)) {
1171 		p->nmissed++;
1172 	} else {
1173 		list_for_each_entry_rcu(kp, &p->list, list)
1174 			kp->nmissed++;
1175 	}
1176 	return;
1177 }
1178 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1179 
recycle_rp_inst(struct kretprobe_instance * ri,struct hlist_head * head)1180 void recycle_rp_inst(struct kretprobe_instance *ri,
1181 		     struct hlist_head *head)
1182 {
1183 	struct kretprobe *rp = ri->rp;
1184 
1185 	/* remove rp inst off the rprobe_inst_table */
1186 	hlist_del(&ri->hlist);
1187 	INIT_HLIST_NODE(&ri->hlist);
1188 	if (likely(rp)) {
1189 		raw_spin_lock(&rp->lock);
1190 		hlist_add_head(&ri->hlist, &rp->free_instances);
1191 		raw_spin_unlock(&rp->lock);
1192 	} else
1193 		/* Unregistering */
1194 		hlist_add_head(&ri->hlist, head);
1195 }
1196 NOKPROBE_SYMBOL(recycle_rp_inst);
1197 
kretprobe_hash_lock(struct task_struct * tsk,struct hlist_head ** head,unsigned long * flags)1198 void kretprobe_hash_lock(struct task_struct *tsk,
1199 			 struct hlist_head **head, unsigned long *flags)
1200 __acquires(hlist_lock)
1201 {
1202 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1203 	raw_spinlock_t *hlist_lock;
1204 
1205 	*head = &kretprobe_inst_table[hash];
1206 	hlist_lock = kretprobe_table_lock_ptr(hash);
1207 	raw_spin_lock_irqsave(hlist_lock, *flags);
1208 }
1209 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1210 
kretprobe_table_lock(unsigned long hash,unsigned long * flags)1211 static void kretprobe_table_lock(unsigned long hash,
1212 				 unsigned long *flags)
1213 __acquires(hlist_lock)
1214 {
1215 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1216 	raw_spin_lock_irqsave(hlist_lock, *flags);
1217 }
1218 NOKPROBE_SYMBOL(kretprobe_table_lock);
1219 
kretprobe_hash_unlock(struct task_struct * tsk,unsigned long * flags)1220 void kretprobe_hash_unlock(struct task_struct *tsk,
1221 			   unsigned long *flags)
1222 __releases(hlist_lock)
1223 {
1224 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1225 	raw_spinlock_t *hlist_lock;
1226 
1227 	hlist_lock = kretprobe_table_lock_ptr(hash);
1228 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1229 }
1230 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1231 
kretprobe_table_unlock(unsigned long hash,unsigned long * flags)1232 static void kretprobe_table_unlock(unsigned long hash,
1233 				   unsigned long *flags)
1234 __releases(hlist_lock)
1235 {
1236 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1237 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1238 }
1239 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1240 
1241 struct kprobe kprobe_busy = {
1242 	.addr = (void *) get_kprobe,
1243 };
1244 
kprobe_busy_begin(void)1245 void kprobe_busy_begin(void)
1246 {
1247 	struct kprobe_ctlblk *kcb;
1248 
1249 	preempt_disable();
1250 	__this_cpu_write(current_kprobe, &kprobe_busy);
1251 	kcb = get_kprobe_ctlblk();
1252 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1253 }
1254 
kprobe_busy_end(void)1255 void kprobe_busy_end(void)
1256 {
1257 	__this_cpu_write(current_kprobe, NULL);
1258 	preempt_enable();
1259 }
1260 
1261 /*
1262  * This function is called from finish_task_switch when task tk becomes dead,
1263  * so that we can recycle any function-return probe instances associated
1264  * with this task. These left over instances represent probed functions
1265  * that have been called but will never return.
1266  */
kprobe_flush_task(struct task_struct * tk)1267 void kprobe_flush_task(struct task_struct *tk)
1268 {
1269 	struct kretprobe_instance *ri;
1270 	struct hlist_head *head, empty_rp;
1271 	struct hlist_node *tmp;
1272 	unsigned long hash, flags = 0;
1273 
1274 	if (unlikely(!kprobes_initialized))
1275 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1276 		return;
1277 
1278 	kprobe_busy_begin();
1279 
1280 	INIT_HLIST_HEAD(&empty_rp);
1281 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1282 	head = &kretprobe_inst_table[hash];
1283 	kretprobe_table_lock(hash, &flags);
1284 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1285 		if (ri->task == tk)
1286 			recycle_rp_inst(ri, &empty_rp);
1287 	}
1288 	kretprobe_table_unlock(hash, &flags);
1289 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1290 		hlist_del(&ri->hlist);
1291 		kfree(ri);
1292 	}
1293 
1294 	kprobe_busy_end();
1295 }
1296 NOKPROBE_SYMBOL(kprobe_flush_task);
1297 
free_rp_inst(struct kretprobe * rp)1298 static inline void free_rp_inst(struct kretprobe *rp)
1299 {
1300 	struct kretprobe_instance *ri;
1301 	struct hlist_node *next;
1302 
1303 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1304 		hlist_del(&ri->hlist);
1305 		kfree(ri);
1306 	}
1307 }
1308 
cleanup_rp_inst(struct kretprobe * rp)1309 static void cleanup_rp_inst(struct kretprobe *rp)
1310 {
1311 	unsigned long flags, hash;
1312 	struct kretprobe_instance *ri;
1313 	struct hlist_node *next;
1314 	struct hlist_head *head;
1315 
1316 	/* No race here */
1317 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1318 		kretprobe_table_lock(hash, &flags);
1319 		head = &kretprobe_inst_table[hash];
1320 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1321 			if (ri->rp == rp)
1322 				ri->rp = NULL;
1323 		}
1324 		kretprobe_table_unlock(hash, &flags);
1325 	}
1326 	free_rp_inst(rp);
1327 }
1328 NOKPROBE_SYMBOL(cleanup_rp_inst);
1329 
1330 /* Add the new probe to ap->list */
add_new_kprobe(struct kprobe * ap,struct kprobe * p)1331 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1332 {
1333 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1334 
1335 	if (p->post_handler)
1336 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1337 
1338 	list_add_rcu(&p->list, &ap->list);
1339 	if (p->post_handler && !ap->post_handler)
1340 		ap->post_handler = aggr_post_handler;
1341 
1342 	return 0;
1343 }
1344 
1345 /*
1346  * Fill in the required fields of the "manager kprobe". Replace the
1347  * earlier kprobe in the hlist with the manager kprobe
1348  */
init_aggr_kprobe(struct kprobe * ap,struct kprobe * p)1349 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1350 {
1351 	/* Copy p's insn slot to ap */
1352 	copy_kprobe(p, ap);
1353 	flush_insn_slot(ap);
1354 	ap->addr = p->addr;
1355 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1356 	ap->pre_handler = aggr_pre_handler;
1357 	ap->fault_handler = aggr_fault_handler;
1358 	/* We don't care the kprobe which has gone. */
1359 	if (p->post_handler && !kprobe_gone(p))
1360 		ap->post_handler = aggr_post_handler;
1361 
1362 	INIT_LIST_HEAD(&ap->list);
1363 	INIT_HLIST_NODE(&ap->hlist);
1364 
1365 	list_add_rcu(&p->list, &ap->list);
1366 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1367 }
1368 
1369 /*
1370  * This is the second or subsequent kprobe at the address - handle
1371  * the intricacies
1372  */
register_aggr_kprobe(struct kprobe * orig_p,struct kprobe * p)1373 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1374 {
1375 	int ret = 0;
1376 	struct kprobe *ap = orig_p;
1377 
1378 	cpus_read_lock();
1379 
1380 	/* For preparing optimization, jump_label_text_reserved() is called */
1381 	jump_label_lock();
1382 	mutex_lock(&text_mutex);
1383 
1384 	if (!kprobe_aggrprobe(orig_p)) {
1385 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1386 		ap = alloc_aggr_kprobe(orig_p);
1387 		if (!ap) {
1388 			ret = -ENOMEM;
1389 			goto out;
1390 		}
1391 		init_aggr_kprobe(ap, orig_p);
1392 	} else if (kprobe_unused(ap)) {
1393 		/* This probe is going to die. Rescue it */
1394 		ret = reuse_unused_kprobe(ap);
1395 		if (ret)
1396 			goto out;
1397 	}
1398 
1399 	if (kprobe_gone(ap)) {
1400 		/*
1401 		 * Attempting to insert new probe at the same location that
1402 		 * had a probe in the module vaddr area which already
1403 		 * freed. So, the instruction slot has already been
1404 		 * released. We need a new slot for the new probe.
1405 		 */
1406 		ret = arch_prepare_kprobe(ap);
1407 		if (ret)
1408 			/*
1409 			 * Even if fail to allocate new slot, don't need to
1410 			 * free aggr_probe. It will be used next time, or
1411 			 * freed by unregister_kprobe.
1412 			 */
1413 			goto out;
1414 
1415 		/* Prepare optimized instructions if possible. */
1416 		prepare_optimized_kprobe(ap);
1417 
1418 		/*
1419 		 * Clear gone flag to prevent allocating new slot again, and
1420 		 * set disabled flag because it is not armed yet.
1421 		 */
1422 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1423 			    | KPROBE_FLAG_DISABLED;
1424 	}
1425 
1426 	/* Copy ap's insn slot to p */
1427 	copy_kprobe(ap, p);
1428 	ret = add_new_kprobe(ap, p);
1429 
1430 out:
1431 	mutex_unlock(&text_mutex);
1432 	jump_label_unlock();
1433 	cpus_read_unlock();
1434 
1435 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1436 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1437 		if (!kprobes_all_disarmed) {
1438 			/* Arm the breakpoint again. */
1439 			ret = arm_kprobe(ap);
1440 			if (ret) {
1441 				ap->flags |= KPROBE_FLAG_DISABLED;
1442 				list_del_rcu(&p->list);
1443 				synchronize_sched();
1444 			}
1445 		}
1446 	}
1447 	return ret;
1448 }
1449 
arch_within_kprobe_blacklist(unsigned long addr)1450 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1451 {
1452 	/* The __kprobes marked functions and entry code must not be probed */
1453 	return addr >= (unsigned long)__kprobes_text_start &&
1454 	       addr < (unsigned long)__kprobes_text_end;
1455 }
1456 
within_kprobe_blacklist(unsigned long addr)1457 bool within_kprobe_blacklist(unsigned long addr)
1458 {
1459 	struct kprobe_blacklist_entry *ent;
1460 
1461 	if (arch_within_kprobe_blacklist(addr))
1462 		return true;
1463 	/*
1464 	 * If there exists a kprobe_blacklist, verify and
1465 	 * fail any probe registration in the prohibited area
1466 	 */
1467 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1468 		if (addr >= ent->start_addr && addr < ent->end_addr)
1469 			return true;
1470 	}
1471 
1472 	return false;
1473 }
1474 
1475 /*
1476  * If we have a symbol_name argument, look it up and add the offset field
1477  * to it. This way, we can specify a relative address to a symbol.
1478  * This returns encoded errors if it fails to look up symbol or invalid
1479  * combination of parameters.
1480  */
_kprobe_addr(kprobe_opcode_t * addr,const char * symbol_name,unsigned int offset)1481 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1482 			const char *symbol_name, unsigned int offset)
1483 {
1484 	if ((symbol_name && addr) || (!symbol_name && !addr))
1485 		goto invalid;
1486 
1487 	if (symbol_name) {
1488 		addr = kprobe_lookup_name(symbol_name, offset);
1489 		if (!addr)
1490 			return ERR_PTR(-ENOENT);
1491 	}
1492 
1493 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1494 	if (addr)
1495 		return addr;
1496 
1497 invalid:
1498 	return ERR_PTR(-EINVAL);
1499 }
1500 
kprobe_addr(struct kprobe * p)1501 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1502 {
1503 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1504 }
1505 
1506 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
__get_valid_kprobe(struct kprobe * p)1507 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1508 {
1509 	struct kprobe *ap, *list_p;
1510 
1511 	ap = get_kprobe(p->addr);
1512 	if (unlikely(!ap))
1513 		return NULL;
1514 
1515 	if (p != ap) {
1516 		list_for_each_entry_rcu(list_p, &ap->list, list)
1517 			if (list_p == p)
1518 			/* kprobe p is a valid probe */
1519 				goto valid;
1520 		return NULL;
1521 	}
1522 valid:
1523 	return ap;
1524 }
1525 
1526 /* Return error if the kprobe is being re-registered */
check_kprobe_rereg(struct kprobe * p)1527 static inline int check_kprobe_rereg(struct kprobe *p)
1528 {
1529 	int ret = 0;
1530 
1531 	mutex_lock(&kprobe_mutex);
1532 	if (__get_valid_kprobe(p))
1533 		ret = -EINVAL;
1534 	mutex_unlock(&kprobe_mutex);
1535 
1536 	return ret;
1537 }
1538 
arch_check_ftrace_location(struct kprobe * p)1539 int __weak arch_check_ftrace_location(struct kprobe *p)
1540 {
1541 	unsigned long ftrace_addr;
1542 
1543 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1544 	if (ftrace_addr) {
1545 #ifdef CONFIG_KPROBES_ON_FTRACE
1546 		/* Given address is not on the instruction boundary */
1547 		if ((unsigned long)p->addr != ftrace_addr)
1548 			return -EILSEQ;
1549 		p->flags |= KPROBE_FLAG_FTRACE;
1550 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1551 		return -EINVAL;
1552 #endif
1553 	}
1554 	return 0;
1555 }
1556 
check_kprobe_address_safe(struct kprobe * p,struct module ** probed_mod)1557 static int check_kprobe_address_safe(struct kprobe *p,
1558 				     struct module **probed_mod)
1559 {
1560 	int ret;
1561 
1562 	ret = arch_check_ftrace_location(p);
1563 	if (ret)
1564 		return ret;
1565 	jump_label_lock();
1566 	preempt_disable();
1567 
1568 	/* Ensure it is not in reserved area nor out of text */
1569 	if (!kernel_text_address((unsigned long) p->addr) ||
1570 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1571 	    jump_label_text_reserved(p->addr, p->addr) ||
1572 	    find_bug((unsigned long)p->addr)) {
1573 		ret = -EINVAL;
1574 		goto out;
1575 	}
1576 
1577 	/* Check if are we probing a module */
1578 	*probed_mod = __module_text_address((unsigned long) p->addr);
1579 	if (*probed_mod) {
1580 		/*
1581 		 * We must hold a refcount of the probed module while updating
1582 		 * its code to prohibit unexpected unloading.
1583 		 */
1584 		if (unlikely(!try_module_get(*probed_mod))) {
1585 			ret = -ENOENT;
1586 			goto out;
1587 		}
1588 
1589 		/*
1590 		 * If the module freed .init.text, we couldn't insert
1591 		 * kprobes in there.
1592 		 */
1593 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1594 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1595 			module_put(*probed_mod);
1596 			*probed_mod = NULL;
1597 			ret = -ENOENT;
1598 		}
1599 	}
1600 out:
1601 	preempt_enable();
1602 	jump_label_unlock();
1603 
1604 	return ret;
1605 }
1606 
register_kprobe(struct kprobe * p)1607 int register_kprobe(struct kprobe *p)
1608 {
1609 	int ret;
1610 	struct kprobe *old_p;
1611 	struct module *probed_mod;
1612 	kprobe_opcode_t *addr;
1613 
1614 	/* Adjust probe address from symbol */
1615 	addr = kprobe_addr(p);
1616 	if (IS_ERR(addr))
1617 		return PTR_ERR(addr);
1618 	p->addr = addr;
1619 
1620 	ret = check_kprobe_rereg(p);
1621 	if (ret)
1622 		return ret;
1623 
1624 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1625 	p->flags &= KPROBE_FLAG_DISABLED;
1626 	p->nmissed = 0;
1627 	INIT_LIST_HEAD(&p->list);
1628 
1629 	ret = check_kprobe_address_safe(p, &probed_mod);
1630 	if (ret)
1631 		return ret;
1632 
1633 	mutex_lock(&kprobe_mutex);
1634 
1635 	old_p = get_kprobe(p->addr);
1636 	if (old_p) {
1637 		/* Since this may unoptimize old_p, locking text_mutex. */
1638 		ret = register_aggr_kprobe(old_p, p);
1639 		goto out;
1640 	}
1641 
1642 	cpus_read_lock();
1643 	/* Prevent text modification */
1644 	mutex_lock(&text_mutex);
1645 	ret = prepare_kprobe(p);
1646 	mutex_unlock(&text_mutex);
1647 	cpus_read_unlock();
1648 	if (ret)
1649 		goto out;
1650 
1651 	INIT_HLIST_NODE(&p->hlist);
1652 	hlist_add_head_rcu(&p->hlist,
1653 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1654 
1655 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1656 		ret = arm_kprobe(p);
1657 		if (ret) {
1658 			hlist_del_rcu(&p->hlist);
1659 			synchronize_sched();
1660 			goto out;
1661 		}
1662 	}
1663 
1664 	/* Try to optimize kprobe */
1665 	try_to_optimize_kprobe(p);
1666 out:
1667 	mutex_unlock(&kprobe_mutex);
1668 
1669 	if (probed_mod)
1670 		module_put(probed_mod);
1671 
1672 	return ret;
1673 }
1674 EXPORT_SYMBOL_GPL(register_kprobe);
1675 
1676 /* Check if all probes on the aggrprobe are disabled */
aggr_kprobe_disabled(struct kprobe * ap)1677 static int aggr_kprobe_disabled(struct kprobe *ap)
1678 {
1679 	struct kprobe *kp;
1680 
1681 	list_for_each_entry_rcu(kp, &ap->list, list)
1682 		if (!kprobe_disabled(kp))
1683 			/*
1684 			 * There is an active probe on the list.
1685 			 * We can't disable this ap.
1686 			 */
1687 			return 0;
1688 
1689 	return 1;
1690 }
1691 
1692 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
__disable_kprobe(struct kprobe * p)1693 static struct kprobe *__disable_kprobe(struct kprobe *p)
1694 {
1695 	struct kprobe *orig_p;
1696 	int ret;
1697 
1698 	/* Get an original kprobe for return */
1699 	orig_p = __get_valid_kprobe(p);
1700 	if (unlikely(orig_p == NULL))
1701 		return ERR_PTR(-EINVAL);
1702 
1703 	if (!kprobe_disabled(p)) {
1704 		/* Disable probe if it is a child probe */
1705 		if (p != orig_p)
1706 			p->flags |= KPROBE_FLAG_DISABLED;
1707 
1708 		/* Try to disarm and disable this/parent probe */
1709 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1710 			/*
1711 			 * If kprobes_all_disarmed is set, orig_p
1712 			 * should have already been disarmed, so
1713 			 * skip unneed disarming process.
1714 			 */
1715 			if (!kprobes_all_disarmed) {
1716 				ret = disarm_kprobe(orig_p, true);
1717 				if (ret) {
1718 					p->flags &= ~KPROBE_FLAG_DISABLED;
1719 					return ERR_PTR(ret);
1720 				}
1721 			}
1722 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1723 		}
1724 	}
1725 
1726 	return orig_p;
1727 }
1728 
1729 /*
1730  * Unregister a kprobe without a scheduler synchronization.
1731  */
__unregister_kprobe_top(struct kprobe * p)1732 static int __unregister_kprobe_top(struct kprobe *p)
1733 {
1734 	struct kprobe *ap, *list_p;
1735 
1736 	/* Disable kprobe. This will disarm it if needed. */
1737 	ap = __disable_kprobe(p);
1738 	if (IS_ERR(ap))
1739 		return PTR_ERR(ap);
1740 
1741 	if (ap == p)
1742 		/*
1743 		 * This probe is an independent(and non-optimized) kprobe
1744 		 * (not an aggrprobe). Remove from the hash list.
1745 		 */
1746 		goto disarmed;
1747 
1748 	/* Following process expects this probe is an aggrprobe */
1749 	WARN_ON(!kprobe_aggrprobe(ap));
1750 
1751 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1752 		/*
1753 		 * !disarmed could be happen if the probe is under delayed
1754 		 * unoptimizing.
1755 		 */
1756 		goto disarmed;
1757 	else {
1758 		/* If disabling probe has special handlers, update aggrprobe */
1759 		if (p->post_handler && !kprobe_gone(p)) {
1760 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1761 				if ((list_p != p) && (list_p->post_handler))
1762 					goto noclean;
1763 			}
1764 			ap->post_handler = NULL;
1765 		}
1766 noclean:
1767 		/*
1768 		 * Remove from the aggrprobe: this path will do nothing in
1769 		 * __unregister_kprobe_bottom().
1770 		 */
1771 		list_del_rcu(&p->list);
1772 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1773 			/*
1774 			 * Try to optimize this probe again, because post
1775 			 * handler may have been changed.
1776 			 */
1777 			optimize_kprobe(ap);
1778 	}
1779 	return 0;
1780 
1781 disarmed:
1782 	BUG_ON(!kprobe_disarmed(ap));
1783 	hlist_del_rcu(&ap->hlist);
1784 	return 0;
1785 }
1786 
__unregister_kprobe_bottom(struct kprobe * p)1787 static void __unregister_kprobe_bottom(struct kprobe *p)
1788 {
1789 	struct kprobe *ap;
1790 
1791 	if (list_empty(&p->list))
1792 		/* This is an independent kprobe */
1793 		arch_remove_kprobe(p);
1794 	else if (list_is_singular(&p->list)) {
1795 		/* This is the last child of an aggrprobe */
1796 		ap = list_entry(p->list.next, struct kprobe, list);
1797 		list_del(&p->list);
1798 		free_aggr_kprobe(ap);
1799 	}
1800 	/* Otherwise, do nothing. */
1801 }
1802 
register_kprobes(struct kprobe ** kps,int num)1803 int register_kprobes(struct kprobe **kps, int num)
1804 {
1805 	int i, ret = 0;
1806 
1807 	if (num <= 0)
1808 		return -EINVAL;
1809 	for (i = 0; i < num; i++) {
1810 		ret = register_kprobe(kps[i]);
1811 		if (ret < 0) {
1812 			if (i > 0)
1813 				unregister_kprobes(kps, i);
1814 			break;
1815 		}
1816 	}
1817 	return ret;
1818 }
1819 EXPORT_SYMBOL_GPL(register_kprobes);
1820 
unregister_kprobe(struct kprobe * p)1821 void unregister_kprobe(struct kprobe *p)
1822 {
1823 	unregister_kprobes(&p, 1);
1824 }
1825 EXPORT_SYMBOL_GPL(unregister_kprobe);
1826 
unregister_kprobes(struct kprobe ** kps,int num)1827 void unregister_kprobes(struct kprobe **kps, int num)
1828 {
1829 	int i;
1830 
1831 	if (num <= 0)
1832 		return;
1833 	mutex_lock(&kprobe_mutex);
1834 	for (i = 0; i < num; i++)
1835 		if (__unregister_kprobe_top(kps[i]) < 0)
1836 			kps[i]->addr = NULL;
1837 	mutex_unlock(&kprobe_mutex);
1838 
1839 	synchronize_sched();
1840 	for (i = 0; i < num; i++)
1841 		if (kps[i]->addr)
1842 			__unregister_kprobe_bottom(kps[i]);
1843 }
1844 EXPORT_SYMBOL_GPL(unregister_kprobes);
1845 
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)1846 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1847 					unsigned long val, void *data)
1848 {
1849 	return NOTIFY_DONE;
1850 }
1851 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1852 
1853 static struct notifier_block kprobe_exceptions_nb = {
1854 	.notifier_call = kprobe_exceptions_notify,
1855 	.priority = 0x7fffffff /* we need to be notified first */
1856 };
1857 
arch_deref_entry_point(void * entry)1858 unsigned long __weak arch_deref_entry_point(void *entry)
1859 {
1860 	return (unsigned long)entry;
1861 }
1862 
1863 #ifdef CONFIG_KRETPROBES
1864 /*
1865  * This kprobe pre_handler is registered with every kretprobe. When probe
1866  * hits it will set up the return probe.
1867  */
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)1868 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1869 {
1870 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1871 	unsigned long hash, flags = 0;
1872 	struct kretprobe_instance *ri;
1873 
1874 	/*
1875 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1876 	 * just skip the probe and increase the (inexact) 'nmissed'
1877 	 * statistical counter, so that the user is informed that
1878 	 * something happened:
1879 	 */
1880 	if (unlikely(in_nmi())) {
1881 		rp->nmissed++;
1882 		return 0;
1883 	}
1884 
1885 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1886 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1887 	raw_spin_lock_irqsave(&rp->lock, flags);
1888 	if (!hlist_empty(&rp->free_instances)) {
1889 		ri = hlist_entry(rp->free_instances.first,
1890 				struct kretprobe_instance, hlist);
1891 		hlist_del(&ri->hlist);
1892 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1893 
1894 		ri->rp = rp;
1895 		ri->task = current;
1896 
1897 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1898 			raw_spin_lock_irqsave(&rp->lock, flags);
1899 			hlist_add_head(&ri->hlist, &rp->free_instances);
1900 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1901 			return 0;
1902 		}
1903 
1904 		arch_prepare_kretprobe(ri, regs);
1905 
1906 		/* XXX(hch): why is there no hlist_move_head? */
1907 		INIT_HLIST_NODE(&ri->hlist);
1908 		kretprobe_table_lock(hash, &flags);
1909 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1910 		kretprobe_table_unlock(hash, &flags);
1911 	} else {
1912 		rp->nmissed++;
1913 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1914 	}
1915 	return 0;
1916 }
1917 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1918 
arch_kprobe_on_func_entry(unsigned long offset)1919 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1920 {
1921 	return !offset;
1922 }
1923 
kprobe_on_func_entry(kprobe_opcode_t * addr,const char * sym,unsigned long offset)1924 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1925 {
1926 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1927 
1928 	if (IS_ERR(kp_addr))
1929 		return false;
1930 
1931 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1932 						!arch_kprobe_on_func_entry(offset))
1933 		return false;
1934 
1935 	return true;
1936 }
1937 
register_kretprobe(struct kretprobe * rp)1938 int register_kretprobe(struct kretprobe *rp)
1939 {
1940 	int ret = 0;
1941 	struct kretprobe_instance *inst;
1942 	int i;
1943 	void *addr;
1944 
1945 	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1946 		return -EINVAL;
1947 
1948 	if (kretprobe_blacklist_size) {
1949 		addr = kprobe_addr(&rp->kp);
1950 		if (IS_ERR(addr))
1951 			return PTR_ERR(addr);
1952 
1953 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1954 			if (kretprobe_blacklist[i].addr == addr)
1955 				return -EINVAL;
1956 		}
1957 	}
1958 
1959 	rp->kp.pre_handler = pre_handler_kretprobe;
1960 	rp->kp.post_handler = NULL;
1961 	rp->kp.fault_handler = NULL;
1962 
1963 	/* Pre-allocate memory for max kretprobe instances */
1964 	if (rp->maxactive <= 0) {
1965 #ifdef CONFIG_PREEMPT
1966 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1967 #else
1968 		rp->maxactive = num_possible_cpus();
1969 #endif
1970 	}
1971 	raw_spin_lock_init(&rp->lock);
1972 	INIT_HLIST_HEAD(&rp->free_instances);
1973 	for (i = 0; i < rp->maxactive; i++) {
1974 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1975 			       rp->data_size, GFP_KERNEL);
1976 		if (inst == NULL) {
1977 			free_rp_inst(rp);
1978 			return -ENOMEM;
1979 		}
1980 		INIT_HLIST_NODE(&inst->hlist);
1981 		hlist_add_head(&inst->hlist, &rp->free_instances);
1982 	}
1983 
1984 	rp->nmissed = 0;
1985 	/* Establish function entry probe point */
1986 	ret = register_kprobe(&rp->kp);
1987 	if (ret != 0)
1988 		free_rp_inst(rp);
1989 	return ret;
1990 }
1991 EXPORT_SYMBOL_GPL(register_kretprobe);
1992 
register_kretprobes(struct kretprobe ** rps,int num)1993 int register_kretprobes(struct kretprobe **rps, int num)
1994 {
1995 	int ret = 0, i;
1996 
1997 	if (num <= 0)
1998 		return -EINVAL;
1999 	for (i = 0; i < num; i++) {
2000 		ret = register_kretprobe(rps[i]);
2001 		if (ret < 0) {
2002 			if (i > 0)
2003 				unregister_kretprobes(rps, i);
2004 			break;
2005 		}
2006 	}
2007 	return ret;
2008 }
2009 EXPORT_SYMBOL_GPL(register_kretprobes);
2010 
unregister_kretprobe(struct kretprobe * rp)2011 void unregister_kretprobe(struct kretprobe *rp)
2012 {
2013 	unregister_kretprobes(&rp, 1);
2014 }
2015 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2016 
unregister_kretprobes(struct kretprobe ** rps,int num)2017 void unregister_kretprobes(struct kretprobe **rps, int num)
2018 {
2019 	int i;
2020 
2021 	if (num <= 0)
2022 		return;
2023 	mutex_lock(&kprobe_mutex);
2024 	for (i = 0; i < num; i++)
2025 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2026 			rps[i]->kp.addr = NULL;
2027 	mutex_unlock(&kprobe_mutex);
2028 
2029 	synchronize_sched();
2030 	for (i = 0; i < num; i++) {
2031 		if (rps[i]->kp.addr) {
2032 			__unregister_kprobe_bottom(&rps[i]->kp);
2033 			cleanup_rp_inst(rps[i]);
2034 		}
2035 	}
2036 }
2037 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2038 
2039 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)2040 int register_kretprobe(struct kretprobe *rp)
2041 {
2042 	return -ENOSYS;
2043 }
2044 EXPORT_SYMBOL_GPL(register_kretprobe);
2045 
register_kretprobes(struct kretprobe ** rps,int num)2046 int register_kretprobes(struct kretprobe **rps, int num)
2047 {
2048 	return -ENOSYS;
2049 }
2050 EXPORT_SYMBOL_GPL(register_kretprobes);
2051 
unregister_kretprobe(struct kretprobe * rp)2052 void unregister_kretprobe(struct kretprobe *rp)
2053 {
2054 }
2055 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2056 
unregister_kretprobes(struct kretprobe ** rps,int num)2057 void unregister_kretprobes(struct kretprobe **rps, int num)
2058 {
2059 }
2060 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2061 
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2062 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2063 {
2064 	return 0;
2065 }
2066 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2067 
2068 #endif /* CONFIG_KRETPROBES */
2069 
2070 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)2071 static void kill_kprobe(struct kprobe *p)
2072 {
2073 	struct kprobe *kp;
2074 
2075 	if (WARN_ON_ONCE(kprobe_gone(p)))
2076 		return;
2077 
2078 	p->flags |= KPROBE_FLAG_GONE;
2079 	if (kprobe_aggrprobe(p)) {
2080 		/*
2081 		 * If this is an aggr_kprobe, we have to list all the
2082 		 * chained probes and mark them GONE.
2083 		 */
2084 		list_for_each_entry_rcu(kp, &p->list, list)
2085 			kp->flags |= KPROBE_FLAG_GONE;
2086 		p->post_handler = NULL;
2087 		kill_optimized_kprobe(p);
2088 	}
2089 	/*
2090 	 * Here, we can remove insn_slot safely, because no thread calls
2091 	 * the original probed function (which will be freed soon) any more.
2092 	 */
2093 	arch_remove_kprobe(p);
2094 
2095 	/*
2096 	 * The module is going away. We should disarm the kprobe which
2097 	 * is using ftrace, because ftrace framework is still available at
2098 	 * MODULE_STATE_GOING notification.
2099 	 */
2100 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2101 		disarm_kprobe_ftrace(p);
2102 }
2103 
2104 /* Disable one kprobe */
disable_kprobe(struct kprobe * kp)2105 int disable_kprobe(struct kprobe *kp)
2106 {
2107 	int ret = 0;
2108 	struct kprobe *p;
2109 
2110 	mutex_lock(&kprobe_mutex);
2111 
2112 	/* Disable this kprobe */
2113 	p = __disable_kprobe(kp);
2114 	if (IS_ERR(p))
2115 		ret = PTR_ERR(p);
2116 
2117 	mutex_unlock(&kprobe_mutex);
2118 	return ret;
2119 }
2120 EXPORT_SYMBOL_GPL(disable_kprobe);
2121 
2122 /* Enable one kprobe */
enable_kprobe(struct kprobe * kp)2123 int enable_kprobe(struct kprobe *kp)
2124 {
2125 	int ret = 0;
2126 	struct kprobe *p;
2127 
2128 	mutex_lock(&kprobe_mutex);
2129 
2130 	/* Check whether specified probe is valid. */
2131 	p = __get_valid_kprobe(kp);
2132 	if (unlikely(p == NULL)) {
2133 		ret = -EINVAL;
2134 		goto out;
2135 	}
2136 
2137 	if (kprobe_gone(kp)) {
2138 		/* This kprobe has gone, we couldn't enable it. */
2139 		ret = -EINVAL;
2140 		goto out;
2141 	}
2142 
2143 	if (p != kp)
2144 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2145 
2146 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2147 		p->flags &= ~KPROBE_FLAG_DISABLED;
2148 		ret = arm_kprobe(p);
2149 		if (ret)
2150 			p->flags |= KPROBE_FLAG_DISABLED;
2151 	}
2152 out:
2153 	mutex_unlock(&kprobe_mutex);
2154 	return ret;
2155 }
2156 EXPORT_SYMBOL_GPL(enable_kprobe);
2157 
2158 /* Caller must NOT call this in usual path. This is only for critical case */
dump_kprobe(struct kprobe * kp)2159 void dump_kprobe(struct kprobe *kp)
2160 {
2161 	pr_err("Dumping kprobe:\n");
2162 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2163 	       kp->symbol_name, kp->offset, kp->addr);
2164 }
2165 NOKPROBE_SYMBOL(dump_kprobe);
2166 
kprobe_add_ksym_blacklist(unsigned long entry)2167 int kprobe_add_ksym_blacklist(unsigned long entry)
2168 {
2169 	struct kprobe_blacklist_entry *ent;
2170 	unsigned long offset = 0, size = 0;
2171 
2172 	if (!kernel_text_address(entry) ||
2173 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2174 		return -EINVAL;
2175 
2176 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2177 	if (!ent)
2178 		return -ENOMEM;
2179 	ent->start_addr = entry;
2180 	ent->end_addr = entry + size;
2181 	INIT_LIST_HEAD(&ent->list);
2182 	list_add_tail(&ent->list, &kprobe_blacklist);
2183 
2184 	return (int)size;
2185 }
2186 
2187 /* Add all symbols in given area into kprobe blacklist */
kprobe_add_area_blacklist(unsigned long start,unsigned long end)2188 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2189 {
2190 	unsigned long entry;
2191 	int ret = 0;
2192 
2193 	for (entry = start; entry < end; entry += ret) {
2194 		ret = kprobe_add_ksym_blacklist(entry);
2195 		if (ret < 0)
2196 			return ret;
2197 		if (ret == 0)	/* In case of alias symbol */
2198 			ret = 1;
2199 	}
2200 	return 0;
2201 }
2202 
arch_populate_kprobe_blacklist(void)2203 int __init __weak arch_populate_kprobe_blacklist(void)
2204 {
2205 	return 0;
2206 }
2207 
2208 /*
2209  * Lookup and populate the kprobe_blacklist.
2210  *
2211  * Unlike the kretprobe blacklist, we'll need to determine
2212  * the range of addresses that belong to the said functions,
2213  * since a kprobe need not necessarily be at the beginning
2214  * of a function.
2215  */
populate_kprobe_blacklist(unsigned long * start,unsigned long * end)2216 static int __init populate_kprobe_blacklist(unsigned long *start,
2217 					     unsigned long *end)
2218 {
2219 	unsigned long entry;
2220 	unsigned long *iter;
2221 	int ret;
2222 
2223 	for (iter = start; iter < end; iter++) {
2224 		entry = arch_deref_entry_point((void *)*iter);
2225 		ret = kprobe_add_ksym_blacklist(entry);
2226 		if (ret == -EINVAL)
2227 			continue;
2228 		if (ret < 0)
2229 			return ret;
2230 	}
2231 
2232 	/* Symbols in __kprobes_text are blacklisted */
2233 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2234 					(unsigned long)__kprobes_text_end);
2235 
2236 	return ret ? : arch_populate_kprobe_blacklist();
2237 }
2238 
2239 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)2240 static int kprobes_module_callback(struct notifier_block *nb,
2241 				   unsigned long val, void *data)
2242 {
2243 	struct module *mod = data;
2244 	struct hlist_head *head;
2245 	struct kprobe *p;
2246 	unsigned int i;
2247 	int checkcore = (val == MODULE_STATE_GOING);
2248 
2249 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2250 		return NOTIFY_DONE;
2251 
2252 	/*
2253 	 * When MODULE_STATE_GOING was notified, both of module .text and
2254 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2255 	 * notified, only .init.text section would be freed. We need to
2256 	 * disable kprobes which have been inserted in the sections.
2257 	 */
2258 	mutex_lock(&kprobe_mutex);
2259 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2260 		head = &kprobe_table[i];
2261 		hlist_for_each_entry_rcu(p, head, hlist) {
2262 			if (kprobe_gone(p))
2263 				continue;
2264 
2265 			if (within_module_init((unsigned long)p->addr, mod) ||
2266 			    (checkcore &&
2267 			     within_module_core((unsigned long)p->addr, mod))) {
2268 				/*
2269 				 * The vaddr this probe is installed will soon
2270 				 * be vfreed buy not synced to disk. Hence,
2271 				 * disarming the breakpoint isn't needed.
2272 				 *
2273 				 * Note, this will also move any optimized probes
2274 				 * that are pending to be removed from their
2275 				 * corresponding lists to the freeing_list and
2276 				 * will not be touched by the delayed
2277 				 * kprobe_optimizer work handler.
2278 				 */
2279 				kill_kprobe(p);
2280 			}
2281 		}
2282 	}
2283 	mutex_unlock(&kprobe_mutex);
2284 	return NOTIFY_DONE;
2285 }
2286 
2287 static struct notifier_block kprobe_module_nb = {
2288 	.notifier_call = kprobes_module_callback,
2289 	.priority = 0
2290 };
2291 
2292 /* Markers of _kprobe_blacklist section */
2293 extern unsigned long __start_kprobe_blacklist[];
2294 extern unsigned long __stop_kprobe_blacklist[];
2295 
init_kprobes(void)2296 static int __init init_kprobes(void)
2297 {
2298 	int i, err = 0;
2299 
2300 	/* FIXME allocate the probe table, currently defined statically */
2301 	/* initialize all list heads */
2302 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2303 		INIT_HLIST_HEAD(&kprobe_table[i]);
2304 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2305 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2306 	}
2307 
2308 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2309 					__stop_kprobe_blacklist);
2310 	if (err) {
2311 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2312 		pr_err("Please take care of using kprobes.\n");
2313 	}
2314 
2315 	if (kretprobe_blacklist_size) {
2316 		/* lookup the function address from its name */
2317 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2318 			kretprobe_blacklist[i].addr =
2319 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2320 			if (!kretprobe_blacklist[i].addr)
2321 				printk("kretprobe: lookup failed: %s\n",
2322 				       kretprobe_blacklist[i].name);
2323 		}
2324 	}
2325 
2326 #if defined(CONFIG_OPTPROBES)
2327 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2328 	/* Init kprobe_optinsn_slots */
2329 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2330 #endif
2331 	/* By default, kprobes can be optimized */
2332 	kprobes_allow_optimization = true;
2333 #endif
2334 
2335 	/* By default, kprobes are armed */
2336 	kprobes_all_disarmed = false;
2337 
2338 	err = arch_init_kprobes();
2339 	if (!err)
2340 		err = register_die_notifier(&kprobe_exceptions_nb);
2341 	if (!err)
2342 		err = register_module_notifier(&kprobe_module_nb);
2343 
2344 	kprobes_initialized = (err == 0);
2345 
2346 	if (!err)
2347 		init_test_probes();
2348 	return err;
2349 }
2350 
2351 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname,struct kprobe * pp)2352 static void report_probe(struct seq_file *pi, struct kprobe *p,
2353 		const char *sym, int offset, char *modname, struct kprobe *pp)
2354 {
2355 	char *kprobe_type;
2356 	void *addr = p->addr;
2357 
2358 	if (p->pre_handler == pre_handler_kretprobe)
2359 		kprobe_type = "r";
2360 	else
2361 		kprobe_type = "k";
2362 
2363 	if (!kallsyms_show_value(pi->file->f_cred))
2364 		addr = NULL;
2365 
2366 	if (sym)
2367 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2368 			addr, kprobe_type, sym, offset,
2369 			(modname ? modname : " "));
2370 	else	/* try to use %pS */
2371 		seq_printf(pi, "%px  %s  %pS ",
2372 			addr, kprobe_type, p->addr);
2373 
2374 	if (!pp)
2375 		pp = p;
2376 	seq_printf(pi, "%s%s%s%s\n",
2377 		(kprobe_gone(p) ? "[GONE]" : ""),
2378 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2379 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2380 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2381 }
2382 
kprobe_seq_start(struct seq_file * f,loff_t * pos)2383 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2384 {
2385 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2386 }
2387 
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)2388 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2389 {
2390 	(*pos)++;
2391 	if (*pos >= KPROBE_TABLE_SIZE)
2392 		return NULL;
2393 	return pos;
2394 }
2395 
kprobe_seq_stop(struct seq_file * f,void * v)2396 static void kprobe_seq_stop(struct seq_file *f, void *v)
2397 {
2398 	/* Nothing to do */
2399 }
2400 
show_kprobe_addr(struct seq_file * pi,void * v)2401 static int show_kprobe_addr(struct seq_file *pi, void *v)
2402 {
2403 	struct hlist_head *head;
2404 	struct kprobe *p, *kp;
2405 	const char *sym = NULL;
2406 	unsigned int i = *(loff_t *) v;
2407 	unsigned long offset = 0;
2408 	char *modname, namebuf[KSYM_NAME_LEN];
2409 
2410 	head = &kprobe_table[i];
2411 	preempt_disable();
2412 	hlist_for_each_entry_rcu(p, head, hlist) {
2413 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2414 					&offset, &modname, namebuf);
2415 		if (kprobe_aggrprobe(p)) {
2416 			list_for_each_entry_rcu(kp, &p->list, list)
2417 				report_probe(pi, kp, sym, offset, modname, p);
2418 		} else
2419 			report_probe(pi, p, sym, offset, modname, NULL);
2420 	}
2421 	preempt_enable();
2422 	return 0;
2423 }
2424 
2425 static const struct seq_operations kprobes_seq_ops = {
2426 	.start = kprobe_seq_start,
2427 	.next  = kprobe_seq_next,
2428 	.stop  = kprobe_seq_stop,
2429 	.show  = show_kprobe_addr
2430 };
2431 
kprobes_open(struct inode * inode,struct file * filp)2432 static int kprobes_open(struct inode *inode, struct file *filp)
2433 {
2434 	return seq_open(filp, &kprobes_seq_ops);
2435 }
2436 
2437 static const struct file_operations debugfs_kprobes_operations = {
2438 	.open           = kprobes_open,
2439 	.read           = seq_read,
2440 	.llseek         = seq_lseek,
2441 	.release        = seq_release,
2442 };
2443 
2444 /* kprobes/blacklist -- shows which functions can not be probed */
kprobe_blacklist_seq_start(struct seq_file * m,loff_t * pos)2445 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2446 {
2447 	return seq_list_start(&kprobe_blacklist, *pos);
2448 }
2449 
kprobe_blacklist_seq_next(struct seq_file * m,void * v,loff_t * pos)2450 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2451 {
2452 	return seq_list_next(v, &kprobe_blacklist, pos);
2453 }
2454 
kprobe_blacklist_seq_show(struct seq_file * m,void * v)2455 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2456 {
2457 	struct kprobe_blacklist_entry *ent =
2458 		list_entry(v, struct kprobe_blacklist_entry, list);
2459 
2460 	/*
2461 	 * If /proc/kallsyms is not showing kernel address, we won't
2462 	 * show them here either.
2463 	 */
2464 	if (!kallsyms_show_value(m->file->f_cred))
2465 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2466 			   (void *)ent->start_addr);
2467 	else
2468 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2469 			   (void *)ent->end_addr, (void *)ent->start_addr);
2470 	return 0;
2471 }
2472 
2473 static const struct seq_operations kprobe_blacklist_seq_ops = {
2474 	.start = kprobe_blacklist_seq_start,
2475 	.next  = kprobe_blacklist_seq_next,
2476 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2477 	.show  = kprobe_blacklist_seq_show,
2478 };
2479 
kprobe_blacklist_open(struct inode * inode,struct file * filp)2480 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2481 {
2482 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2483 }
2484 
2485 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2486 	.open           = kprobe_blacklist_open,
2487 	.read           = seq_read,
2488 	.llseek         = seq_lseek,
2489 	.release        = seq_release,
2490 };
2491 
arm_all_kprobes(void)2492 static int arm_all_kprobes(void)
2493 {
2494 	struct hlist_head *head;
2495 	struct kprobe *p;
2496 	unsigned int i, total = 0, errors = 0;
2497 	int err, ret = 0;
2498 
2499 	mutex_lock(&kprobe_mutex);
2500 
2501 	/* If kprobes are armed, just return */
2502 	if (!kprobes_all_disarmed)
2503 		goto already_enabled;
2504 
2505 	/*
2506 	 * optimize_kprobe() called by arm_kprobe() checks
2507 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2508 	 * arm_kprobe.
2509 	 */
2510 	kprobes_all_disarmed = false;
2511 	/* Arming kprobes doesn't optimize kprobe itself */
2512 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2513 		head = &kprobe_table[i];
2514 		/* Arm all kprobes on a best-effort basis */
2515 		hlist_for_each_entry_rcu(p, head, hlist) {
2516 			if (!kprobe_disabled(p)) {
2517 				err = arm_kprobe(p);
2518 				if (err)  {
2519 					errors++;
2520 					ret = err;
2521 				}
2522 				total++;
2523 			}
2524 		}
2525 	}
2526 
2527 	if (errors)
2528 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2529 			errors, total);
2530 	else
2531 		pr_info("Kprobes globally enabled\n");
2532 
2533 already_enabled:
2534 	mutex_unlock(&kprobe_mutex);
2535 	return ret;
2536 }
2537 
disarm_all_kprobes(void)2538 static int disarm_all_kprobes(void)
2539 {
2540 	struct hlist_head *head;
2541 	struct kprobe *p;
2542 	unsigned int i, total = 0, errors = 0;
2543 	int err, ret = 0;
2544 
2545 	mutex_lock(&kprobe_mutex);
2546 
2547 	/* If kprobes are already disarmed, just return */
2548 	if (kprobes_all_disarmed) {
2549 		mutex_unlock(&kprobe_mutex);
2550 		return 0;
2551 	}
2552 
2553 	kprobes_all_disarmed = true;
2554 
2555 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2556 		head = &kprobe_table[i];
2557 		/* Disarm all kprobes on a best-effort basis */
2558 		hlist_for_each_entry_rcu(p, head, hlist) {
2559 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2560 				err = disarm_kprobe(p, false);
2561 				if (err) {
2562 					errors++;
2563 					ret = err;
2564 				}
2565 				total++;
2566 			}
2567 		}
2568 	}
2569 
2570 	if (errors)
2571 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2572 			errors, total);
2573 	else
2574 		pr_info("Kprobes globally disabled\n");
2575 
2576 	mutex_unlock(&kprobe_mutex);
2577 
2578 	/* Wait for disarming all kprobes by optimizer */
2579 	wait_for_kprobe_optimizer();
2580 
2581 	return ret;
2582 }
2583 
2584 /*
2585  * XXX: The debugfs bool file interface doesn't allow for callbacks
2586  * when the bool state is switched. We can reuse that facility when
2587  * available
2588  */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)2589 static ssize_t read_enabled_file_bool(struct file *file,
2590 	       char __user *user_buf, size_t count, loff_t *ppos)
2591 {
2592 	char buf[3];
2593 
2594 	if (!kprobes_all_disarmed)
2595 		buf[0] = '1';
2596 	else
2597 		buf[0] = '0';
2598 	buf[1] = '\n';
2599 	buf[2] = 0x00;
2600 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2601 }
2602 
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)2603 static ssize_t write_enabled_file_bool(struct file *file,
2604 	       const char __user *user_buf, size_t count, loff_t *ppos)
2605 {
2606 	char buf[32];
2607 	size_t buf_size;
2608 	int ret = 0;
2609 
2610 	buf_size = min(count, (sizeof(buf)-1));
2611 	if (copy_from_user(buf, user_buf, buf_size))
2612 		return -EFAULT;
2613 
2614 	buf[buf_size] = '\0';
2615 	switch (buf[0]) {
2616 	case 'y':
2617 	case 'Y':
2618 	case '1':
2619 		ret = arm_all_kprobes();
2620 		break;
2621 	case 'n':
2622 	case 'N':
2623 	case '0':
2624 		ret = disarm_all_kprobes();
2625 		break;
2626 	default:
2627 		return -EINVAL;
2628 	}
2629 
2630 	if (ret)
2631 		return ret;
2632 
2633 	return count;
2634 }
2635 
2636 static const struct file_operations fops_kp = {
2637 	.read =         read_enabled_file_bool,
2638 	.write =        write_enabled_file_bool,
2639 	.llseek =	default_llseek,
2640 };
2641 
debugfs_kprobe_init(void)2642 static int __init debugfs_kprobe_init(void)
2643 {
2644 	struct dentry *dir, *file;
2645 	unsigned int value = 1;
2646 
2647 	dir = debugfs_create_dir("kprobes", NULL);
2648 	if (!dir)
2649 		return -ENOMEM;
2650 
2651 	file = debugfs_create_file("list", 0400, dir, NULL,
2652 				&debugfs_kprobes_operations);
2653 	if (!file)
2654 		goto error;
2655 
2656 	file = debugfs_create_file("enabled", 0600, dir,
2657 					&value, &fops_kp);
2658 	if (!file)
2659 		goto error;
2660 
2661 	file = debugfs_create_file("blacklist", 0400, dir, NULL,
2662 				&debugfs_kprobe_blacklist_ops);
2663 	if (!file)
2664 		goto error;
2665 
2666 	return 0;
2667 
2668 error:
2669 	debugfs_remove(dir);
2670 	return -ENOMEM;
2671 }
2672 
2673 late_initcall(debugfs_kprobe_init);
2674 #endif /* CONFIG_DEBUG_FS */
2675 
2676 module_init(init_kprobes);
2677