1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/shmem_fs.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63 /*
64 * Lock ordering:
65 *
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->i_pages lock
70 *
71 * ->i_mutex
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
73 *
74 * ->mmap_sem
75 * ->i_mmap_rwsem
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 *
85 * bdi->wb.list_lock
86 * sb_lock (fs/fs-writeback.c)
87 * ->i_pages lock (__sync_single_inode)
88 *
89 * ->i_mmap_rwsem
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 *
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->i_pages lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->i_pages lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
110 * ->i_mmap_rwsem
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 */
113
page_cache_tree_insert(struct address_space * mapping,struct page * page,void ** shadowp)114 static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116 {
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->i_pages, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot,
129 &mapping->i_pages.xa_lock);
130 if (!radix_tree_exceptional_entry(p))
131 return -EEXIST;
132
133 mapping->nrexceptional--;
134 if (shadowp)
135 *shadowp = p;
136 }
137 __radix_tree_replace(&mapping->i_pages, node, slot, page,
138 workingset_lookup_update(mapping));
139 mapping->nrpages++;
140 return 0;
141 }
142
page_cache_tree_delete(struct address_space * mapping,struct page * page,void * shadow)143 static void page_cache_tree_delete(struct address_space *mapping,
144 struct page *page, void *shadow)
145 {
146 int i, nr;
147
148 /* hugetlb pages are represented by one entry in the radix tree */
149 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
150
151 VM_BUG_ON_PAGE(!PageLocked(page), page);
152 VM_BUG_ON_PAGE(PageTail(page), page);
153 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
154
155 for (i = 0; i < nr; i++) {
156 struct radix_tree_node *node;
157 void **slot;
158
159 __radix_tree_lookup(&mapping->i_pages, page->index + i,
160 &node, &slot);
161
162 VM_BUG_ON_PAGE(!node && nr != 1, page);
163
164 radix_tree_clear_tags(&mapping->i_pages, node, slot);
165 __radix_tree_replace(&mapping->i_pages, node, slot, shadow,
166 workingset_lookup_update(mapping));
167 }
168
169 page->mapping = NULL;
170 /* Leave page->index set: truncation lookup relies upon it */
171
172 if (shadow) {
173 mapping->nrexceptional += nr;
174 /*
175 * Make sure the nrexceptional update is committed before
176 * the nrpages update so that final truncate racing
177 * with reclaim does not see both counters 0 at the
178 * same time and miss a shadow entry.
179 */
180 smp_wmb();
181 }
182 mapping->nrpages -= nr;
183 }
184
unaccount_page_cache_page(struct address_space * mapping,struct page * page)185 static void unaccount_page_cache_page(struct address_space *mapping,
186 struct page *page)
187 {
188 int nr;
189
190 /*
191 * if we're uptodate, flush out into the cleancache, otherwise
192 * invalidate any existing cleancache entries. We can't leave
193 * stale data around in the cleancache once our page is gone
194 */
195 if (PageUptodate(page) && PageMappedToDisk(page))
196 cleancache_put_page(page);
197 else
198 cleancache_invalidate_page(mapping, page);
199
200 VM_BUG_ON_PAGE(PageTail(page), page);
201 VM_BUG_ON_PAGE(page_mapped(page), page);
202 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
203 int mapcount;
204
205 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
206 current->comm, page_to_pfn(page));
207 dump_page(page, "still mapped when deleted");
208 dump_stack();
209 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
210
211 mapcount = page_mapcount(page);
212 if (mapping_exiting(mapping) &&
213 page_count(page) >= mapcount + 2) {
214 /*
215 * All vmas have already been torn down, so it's
216 * a good bet that actually the page is unmapped,
217 * and we'd prefer not to leak it: if we're wrong,
218 * some other bad page check should catch it later.
219 */
220 page_mapcount_reset(page);
221 page_ref_sub(page, mapcount);
222 }
223 }
224
225 /* hugetlb pages do not participate in page cache accounting. */
226 if (PageHuge(page))
227 return;
228
229 nr = hpage_nr_pages(page);
230
231 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
232 if (PageSwapBacked(page)) {
233 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
234 if (PageTransHuge(page))
235 __dec_node_page_state(page, NR_SHMEM_THPS);
236 } else {
237 VM_BUG_ON_PAGE(PageTransHuge(page), page);
238 }
239
240 /*
241 * At this point page must be either written or cleaned by
242 * truncate. Dirty page here signals a bug and loss of
243 * unwritten data.
244 *
245 * This fixes dirty accounting after removing the page entirely
246 * but leaves PageDirty set: it has no effect for truncated
247 * page and anyway will be cleared before returning page into
248 * buddy allocator.
249 */
250 if (WARN_ON_ONCE(PageDirty(page)))
251 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
252 }
253
254 /*
255 * Delete a page from the page cache and free it. Caller has to make
256 * sure the page is locked and that nobody else uses it - or that usage
257 * is safe. The caller must hold the i_pages lock.
258 */
__delete_from_page_cache(struct page * page,void * shadow)259 void __delete_from_page_cache(struct page *page, void *shadow)
260 {
261 struct address_space *mapping = page->mapping;
262
263 trace_mm_filemap_delete_from_page_cache(page);
264
265 unaccount_page_cache_page(mapping, page);
266 page_cache_tree_delete(mapping, page, shadow);
267 }
268
page_cache_free_page(struct address_space * mapping,struct page * page)269 static void page_cache_free_page(struct address_space *mapping,
270 struct page *page)
271 {
272 void (*freepage)(struct page *);
273
274 freepage = mapping->a_ops->freepage;
275 if (freepage)
276 freepage(page);
277
278 if (PageTransHuge(page) && !PageHuge(page)) {
279 page_ref_sub(page, HPAGE_PMD_NR);
280 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
281 } else {
282 put_page(page);
283 }
284 }
285
286 /**
287 * delete_from_page_cache - delete page from page cache
288 * @page: the page which the kernel is trying to remove from page cache
289 *
290 * This must be called only on pages that have been verified to be in the page
291 * cache and locked. It will never put the page into the free list, the caller
292 * has a reference on the page.
293 */
delete_from_page_cache(struct page * page)294 void delete_from_page_cache(struct page *page)
295 {
296 struct address_space *mapping = page_mapping(page);
297 unsigned long flags;
298
299 BUG_ON(!PageLocked(page));
300 xa_lock_irqsave(&mapping->i_pages, flags);
301 __delete_from_page_cache(page, NULL);
302 xa_unlock_irqrestore(&mapping->i_pages, flags);
303
304 page_cache_free_page(mapping, page);
305 }
306 EXPORT_SYMBOL(delete_from_page_cache);
307
308 /*
309 * page_cache_tree_delete_batch - delete several pages from page cache
310 * @mapping: the mapping to which pages belong
311 * @pvec: pagevec with pages to delete
312 *
313 * The function walks over mapping->i_pages and removes pages passed in @pvec
314 * from the mapping. The function expects @pvec to be sorted by page index.
315 * It tolerates holes in @pvec (mapping entries at those indices are not
316 * modified). The function expects only THP head pages to be present in the
317 * @pvec and takes care to delete all corresponding tail pages from the
318 * mapping as well.
319 *
320 * The function expects the i_pages lock to be held.
321 */
322 static void
page_cache_tree_delete_batch(struct address_space * mapping,struct pagevec * pvec)323 page_cache_tree_delete_batch(struct address_space *mapping,
324 struct pagevec *pvec)
325 {
326 struct radix_tree_iter iter;
327 void **slot;
328 int total_pages = 0;
329 int i = 0, tail_pages = 0;
330 struct page *page;
331 pgoff_t start;
332
333 start = pvec->pages[0]->index;
334 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
335 if (i >= pagevec_count(pvec) && !tail_pages)
336 break;
337 page = radix_tree_deref_slot_protected(slot,
338 &mapping->i_pages.xa_lock);
339 if (radix_tree_exceptional_entry(page))
340 continue;
341 if (!tail_pages) {
342 /*
343 * Some page got inserted in our range? Skip it. We
344 * have our pages locked so they are protected from
345 * being removed.
346 */
347 if (page != pvec->pages[i])
348 continue;
349 WARN_ON_ONCE(!PageLocked(page));
350 if (PageTransHuge(page) && !PageHuge(page))
351 tail_pages = HPAGE_PMD_NR - 1;
352 page->mapping = NULL;
353 /*
354 * Leave page->index set: truncation lookup relies
355 * upon it
356 */
357 i++;
358 } else {
359 tail_pages--;
360 }
361 radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
362 __radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
363 workingset_lookup_update(mapping));
364 total_pages++;
365 }
366 mapping->nrpages -= total_pages;
367 }
368
delete_from_page_cache_batch(struct address_space * mapping,struct pagevec * pvec)369 void delete_from_page_cache_batch(struct address_space *mapping,
370 struct pagevec *pvec)
371 {
372 int i;
373 unsigned long flags;
374
375 if (!pagevec_count(pvec))
376 return;
377
378 xa_lock_irqsave(&mapping->i_pages, flags);
379 for (i = 0; i < pagevec_count(pvec); i++) {
380 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
381
382 unaccount_page_cache_page(mapping, pvec->pages[i]);
383 }
384 page_cache_tree_delete_batch(mapping, pvec);
385 xa_unlock_irqrestore(&mapping->i_pages, flags);
386
387 for (i = 0; i < pagevec_count(pvec); i++)
388 page_cache_free_page(mapping, pvec->pages[i]);
389 }
390
filemap_check_errors(struct address_space * mapping)391 int filemap_check_errors(struct address_space *mapping)
392 {
393 int ret = 0;
394 /* Check for outstanding write errors */
395 if (test_bit(AS_ENOSPC, &mapping->flags) &&
396 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
397 ret = -ENOSPC;
398 if (test_bit(AS_EIO, &mapping->flags) &&
399 test_and_clear_bit(AS_EIO, &mapping->flags))
400 ret = -EIO;
401 return ret;
402 }
403 EXPORT_SYMBOL(filemap_check_errors);
404
filemap_check_and_keep_errors(struct address_space * mapping)405 static int filemap_check_and_keep_errors(struct address_space *mapping)
406 {
407 /* Check for outstanding write errors */
408 if (test_bit(AS_EIO, &mapping->flags))
409 return -EIO;
410 if (test_bit(AS_ENOSPC, &mapping->flags))
411 return -ENOSPC;
412 return 0;
413 }
414
415 /**
416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
417 * @mapping: address space structure to write
418 * @start: offset in bytes where the range starts
419 * @end: offset in bytes where the range ends (inclusive)
420 * @sync_mode: enable synchronous operation
421 *
422 * Start writeback against all of a mapping's dirty pages that lie
423 * within the byte offsets <start, end> inclusive.
424 *
425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
426 * opposed to a regular memory cleansing writeback. The difference between
427 * these two operations is that if a dirty page/buffer is encountered, it must
428 * be waited upon, and not just skipped over.
429 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)430 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431 loff_t end, int sync_mode)
432 {
433 int ret;
434 struct writeback_control wbc = {
435 .sync_mode = sync_mode,
436 .nr_to_write = LONG_MAX,
437 .range_start = start,
438 .range_end = end,
439 };
440
441 if (!mapping_cap_writeback_dirty(mapping) ||
442 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
443 return 0;
444
445 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
446 ret = do_writepages(mapping, &wbc);
447 wbc_detach_inode(&wbc);
448 return ret;
449 }
450
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)451 static inline int __filemap_fdatawrite(struct address_space *mapping,
452 int sync_mode)
453 {
454 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
455 }
456
filemap_fdatawrite(struct address_space * mapping)457 int filemap_fdatawrite(struct address_space *mapping)
458 {
459 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
460 }
461 EXPORT_SYMBOL(filemap_fdatawrite);
462
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)463 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
464 loff_t end)
465 {
466 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
467 }
468 EXPORT_SYMBOL(filemap_fdatawrite_range);
469
470 /**
471 * filemap_flush - mostly a non-blocking flush
472 * @mapping: target address_space
473 *
474 * This is a mostly non-blocking flush. Not suitable for data-integrity
475 * purposes - I/O may not be started against all dirty pages.
476 */
filemap_flush(struct address_space * mapping)477 int filemap_flush(struct address_space *mapping)
478 {
479 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
480 }
481 EXPORT_SYMBOL(filemap_flush);
482
483 /**
484 * filemap_range_has_page - check if a page exists in range.
485 * @mapping: address space within which to check
486 * @start_byte: offset in bytes where the range starts
487 * @end_byte: offset in bytes where the range ends (inclusive)
488 *
489 * Find at least one page in the range supplied, usually used to check if
490 * direct writing in this range will trigger a writeback.
491 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)492 bool filemap_range_has_page(struct address_space *mapping,
493 loff_t start_byte, loff_t end_byte)
494 {
495 pgoff_t index = start_byte >> PAGE_SHIFT;
496 pgoff_t end = end_byte >> PAGE_SHIFT;
497 struct page *page;
498
499 if (end_byte < start_byte)
500 return false;
501
502 if (mapping->nrpages == 0)
503 return false;
504
505 if (!find_get_pages_range(mapping, &index, end, 1, &page))
506 return false;
507 put_page(page);
508 return true;
509 }
510 EXPORT_SYMBOL(filemap_range_has_page);
511
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)512 static void __filemap_fdatawait_range(struct address_space *mapping,
513 loff_t start_byte, loff_t end_byte)
514 {
515 pgoff_t index = start_byte >> PAGE_SHIFT;
516 pgoff_t end = end_byte >> PAGE_SHIFT;
517 struct pagevec pvec;
518 int nr_pages;
519
520 if (end_byte < start_byte)
521 return;
522
523 pagevec_init(&pvec);
524 while (index <= end) {
525 unsigned i;
526
527 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
528 end, PAGECACHE_TAG_WRITEBACK);
529 if (!nr_pages)
530 break;
531
532 for (i = 0; i < nr_pages; i++) {
533 struct page *page = pvec.pages[i];
534
535 wait_on_page_writeback(page);
536 ClearPageError(page);
537 }
538 pagevec_release(&pvec);
539 cond_resched();
540 }
541 }
542
543 /**
544 * filemap_fdatawait_range - wait for writeback to complete
545 * @mapping: address space structure to wait for
546 * @start_byte: offset in bytes where the range starts
547 * @end_byte: offset in bytes where the range ends (inclusive)
548 *
549 * Walk the list of under-writeback pages of the given address space
550 * in the given range and wait for all of them. Check error status of
551 * the address space and return it.
552 *
553 * Since the error status of the address space is cleared by this function,
554 * callers are responsible for checking the return value and handling and/or
555 * reporting the error.
556 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)557 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
558 loff_t end_byte)
559 {
560 __filemap_fdatawait_range(mapping, start_byte, end_byte);
561 return filemap_check_errors(mapping);
562 }
563 EXPORT_SYMBOL(filemap_fdatawait_range);
564
565 /**
566 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
567 * @mapping: address space structure to wait for
568 * @start_byte: offset in bytes where the range starts
569 * @end_byte: offset in bytes where the range ends (inclusive)
570 *
571 * Walk the list of under-writeback pages of the given address space in the
572 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
573 * this function does not clear error status of the address space.
574 *
575 * Use this function if callers don't handle errors themselves. Expected
576 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
577 * fsfreeze(8)
578 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)579 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
580 loff_t start_byte, loff_t end_byte)
581 {
582 __filemap_fdatawait_range(mapping, start_byte, end_byte);
583 return filemap_check_and_keep_errors(mapping);
584 }
585 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
586
587 /**
588 * file_fdatawait_range - wait for writeback to complete
589 * @file: file pointing to address space structure to wait for
590 * @start_byte: offset in bytes where the range starts
591 * @end_byte: offset in bytes where the range ends (inclusive)
592 *
593 * Walk the list of under-writeback pages of the address space that file
594 * refers to, in the given range and wait for all of them. Check error
595 * status of the address space vs. the file->f_wb_err cursor and return it.
596 *
597 * Since the error status of the file is advanced by this function,
598 * callers are responsible for checking the return value and handling and/or
599 * reporting the error.
600 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)601 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
602 {
603 struct address_space *mapping = file->f_mapping;
604
605 __filemap_fdatawait_range(mapping, start_byte, end_byte);
606 return file_check_and_advance_wb_err(file);
607 }
608 EXPORT_SYMBOL(file_fdatawait_range);
609
610 /**
611 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
612 * @mapping: address space structure to wait for
613 *
614 * Walk the list of under-writeback pages of the given address space
615 * and wait for all of them. Unlike filemap_fdatawait(), this function
616 * does not clear error status of the address space.
617 *
618 * Use this function if callers don't handle errors themselves. Expected
619 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
620 * fsfreeze(8)
621 */
filemap_fdatawait_keep_errors(struct address_space * mapping)622 int filemap_fdatawait_keep_errors(struct address_space *mapping)
623 {
624 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
625 return filemap_check_and_keep_errors(mapping);
626 }
627 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
628
mapping_needs_writeback(struct address_space * mapping)629 static bool mapping_needs_writeback(struct address_space *mapping)
630 {
631 return (!dax_mapping(mapping) && mapping->nrpages) ||
632 (dax_mapping(mapping) && mapping->nrexceptional);
633 }
634
filemap_write_and_wait(struct address_space * mapping)635 int filemap_write_and_wait(struct address_space *mapping)
636 {
637 int err = 0;
638
639 if (mapping_needs_writeback(mapping)) {
640 err = filemap_fdatawrite(mapping);
641 /*
642 * Even if the above returned error, the pages may be
643 * written partially (e.g. -ENOSPC), so we wait for it.
644 * But the -EIO is special case, it may indicate the worst
645 * thing (e.g. bug) happened, so we avoid waiting for it.
646 */
647 if (err != -EIO) {
648 int err2 = filemap_fdatawait(mapping);
649 if (!err)
650 err = err2;
651 } else {
652 /* Clear any previously stored errors */
653 filemap_check_errors(mapping);
654 }
655 } else {
656 err = filemap_check_errors(mapping);
657 }
658 return err;
659 }
660 EXPORT_SYMBOL(filemap_write_and_wait);
661
662 /**
663 * filemap_write_and_wait_range - write out & wait on a file range
664 * @mapping: the address_space for the pages
665 * @lstart: offset in bytes where the range starts
666 * @lend: offset in bytes where the range ends (inclusive)
667 *
668 * Write out and wait upon file offsets lstart->lend, inclusive.
669 *
670 * Note that @lend is inclusive (describes the last byte to be written) so
671 * that this function can be used to write to the very end-of-file (end = -1).
672 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)673 int filemap_write_and_wait_range(struct address_space *mapping,
674 loff_t lstart, loff_t lend)
675 {
676 int err = 0;
677
678 if (mapping_needs_writeback(mapping)) {
679 err = __filemap_fdatawrite_range(mapping, lstart, lend,
680 WB_SYNC_ALL);
681 /* See comment of filemap_write_and_wait() */
682 if (err != -EIO) {
683 int err2 = filemap_fdatawait_range(mapping,
684 lstart, lend);
685 if (!err)
686 err = err2;
687 } else {
688 /* Clear any previously stored errors */
689 filemap_check_errors(mapping);
690 }
691 } else {
692 err = filemap_check_errors(mapping);
693 }
694 return err;
695 }
696 EXPORT_SYMBOL(filemap_write_and_wait_range);
697
__filemap_set_wb_err(struct address_space * mapping,int err)698 void __filemap_set_wb_err(struct address_space *mapping, int err)
699 {
700 errseq_t eseq = errseq_set(&mapping->wb_err, err);
701
702 trace_filemap_set_wb_err(mapping, eseq);
703 }
704 EXPORT_SYMBOL(__filemap_set_wb_err);
705
706 /**
707 * file_check_and_advance_wb_err - report wb error (if any) that was previously
708 * and advance wb_err to current one
709 * @file: struct file on which the error is being reported
710 *
711 * When userland calls fsync (or something like nfsd does the equivalent), we
712 * want to report any writeback errors that occurred since the last fsync (or
713 * since the file was opened if there haven't been any).
714 *
715 * Grab the wb_err from the mapping. If it matches what we have in the file,
716 * then just quickly return 0. The file is all caught up.
717 *
718 * If it doesn't match, then take the mapping value, set the "seen" flag in
719 * it and try to swap it into place. If it works, or another task beat us
720 * to it with the new value, then update the f_wb_err and return the error
721 * portion. The error at this point must be reported via proper channels
722 * (a'la fsync, or NFS COMMIT operation, etc.).
723 *
724 * While we handle mapping->wb_err with atomic operations, the f_wb_err
725 * value is protected by the f_lock since we must ensure that it reflects
726 * the latest value swapped in for this file descriptor.
727 */
file_check_and_advance_wb_err(struct file * file)728 int file_check_and_advance_wb_err(struct file *file)
729 {
730 int err = 0;
731 errseq_t old = READ_ONCE(file->f_wb_err);
732 struct address_space *mapping = file->f_mapping;
733
734 /* Locklessly handle the common case where nothing has changed */
735 if (errseq_check(&mapping->wb_err, old)) {
736 /* Something changed, must use slow path */
737 spin_lock(&file->f_lock);
738 old = file->f_wb_err;
739 err = errseq_check_and_advance(&mapping->wb_err,
740 &file->f_wb_err);
741 trace_file_check_and_advance_wb_err(file, old);
742 spin_unlock(&file->f_lock);
743 }
744
745 /*
746 * We're mostly using this function as a drop in replacement for
747 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
748 * that the legacy code would have had on these flags.
749 */
750 clear_bit(AS_EIO, &mapping->flags);
751 clear_bit(AS_ENOSPC, &mapping->flags);
752 return err;
753 }
754 EXPORT_SYMBOL(file_check_and_advance_wb_err);
755
756 /**
757 * file_write_and_wait_range - write out & wait on a file range
758 * @file: file pointing to address_space with pages
759 * @lstart: offset in bytes where the range starts
760 * @lend: offset in bytes where the range ends (inclusive)
761 *
762 * Write out and wait upon file offsets lstart->lend, inclusive.
763 *
764 * Note that @lend is inclusive (describes the last byte to be written) so
765 * that this function can be used to write to the very end-of-file (end = -1).
766 *
767 * After writing out and waiting on the data, we check and advance the
768 * f_wb_err cursor to the latest value, and return any errors detected there.
769 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)770 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
771 {
772 int err = 0, err2;
773 struct address_space *mapping = file->f_mapping;
774
775 if (mapping_needs_writeback(mapping)) {
776 err = __filemap_fdatawrite_range(mapping, lstart, lend,
777 WB_SYNC_ALL);
778 /* See comment of filemap_write_and_wait() */
779 if (err != -EIO)
780 __filemap_fdatawait_range(mapping, lstart, lend);
781 }
782 err2 = file_check_and_advance_wb_err(file);
783 if (!err)
784 err = err2;
785 return err;
786 }
787 EXPORT_SYMBOL(file_write_and_wait_range);
788
789 /**
790 * replace_page_cache_page - replace a pagecache page with a new one
791 * @old: page to be replaced
792 * @new: page to replace with
793 * @gfp_mask: allocation mode
794 *
795 * This function replaces a page in the pagecache with a new one. On
796 * success it acquires the pagecache reference for the new page and
797 * drops it for the old page. Both the old and new pages must be
798 * locked. This function does not add the new page to the LRU, the
799 * caller must do that.
800 *
801 * The remove + add is atomic. The only way this function can fail is
802 * memory allocation failure.
803 */
replace_page_cache_page(struct page * old,struct page * new,gfp_t gfp_mask)804 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
805 {
806 int error;
807
808 VM_BUG_ON_PAGE(!PageLocked(old), old);
809 VM_BUG_ON_PAGE(!PageLocked(new), new);
810 VM_BUG_ON_PAGE(new->mapping, new);
811
812 error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
813 if (!error) {
814 struct address_space *mapping = old->mapping;
815 void (*freepage)(struct page *);
816 unsigned long flags;
817
818 pgoff_t offset = old->index;
819 freepage = mapping->a_ops->freepage;
820
821 get_page(new);
822 new->mapping = mapping;
823 new->index = offset;
824
825 xa_lock_irqsave(&mapping->i_pages, flags);
826 __delete_from_page_cache(old, NULL);
827 error = page_cache_tree_insert(mapping, new, NULL);
828 BUG_ON(error);
829
830 /*
831 * hugetlb pages do not participate in page cache accounting.
832 */
833 if (!PageHuge(new))
834 __inc_node_page_state(new, NR_FILE_PAGES);
835 if (PageSwapBacked(new))
836 __inc_node_page_state(new, NR_SHMEM);
837 xa_unlock_irqrestore(&mapping->i_pages, flags);
838 mem_cgroup_migrate(old, new);
839 radix_tree_preload_end();
840 if (freepage)
841 freepage(old);
842 put_page(old);
843 }
844
845 return error;
846 }
847 EXPORT_SYMBOL_GPL(replace_page_cache_page);
848
__add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask,void ** shadowp)849 static int __add_to_page_cache_locked(struct page *page,
850 struct address_space *mapping,
851 pgoff_t offset, gfp_t gfp_mask,
852 void **shadowp)
853 {
854 int huge = PageHuge(page);
855 struct mem_cgroup *memcg;
856 int error;
857
858 VM_BUG_ON_PAGE(!PageLocked(page), page);
859 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
860
861 if (!huge) {
862 error = mem_cgroup_try_charge(page, current->mm,
863 gfp_mask, &memcg, false);
864 if (error)
865 return error;
866 }
867
868 error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
869 if (error) {
870 if (!huge)
871 mem_cgroup_cancel_charge(page, memcg, false);
872 return error;
873 }
874
875 get_page(page);
876 page->mapping = mapping;
877 page->index = offset;
878
879 xa_lock_irq(&mapping->i_pages);
880 error = page_cache_tree_insert(mapping, page, shadowp);
881 radix_tree_preload_end();
882 if (unlikely(error))
883 goto err_insert;
884
885 /* hugetlb pages do not participate in page cache accounting. */
886 if (!huge)
887 __inc_node_page_state(page, NR_FILE_PAGES);
888 xa_unlock_irq(&mapping->i_pages);
889 if (!huge)
890 mem_cgroup_commit_charge(page, memcg, false, false);
891 trace_mm_filemap_add_to_page_cache(page);
892 return 0;
893 err_insert:
894 page->mapping = NULL;
895 /* Leave page->index set: truncation relies upon it */
896 xa_unlock_irq(&mapping->i_pages);
897 if (!huge)
898 mem_cgroup_cancel_charge(page, memcg, false);
899 put_page(page);
900 return error;
901 }
902
903 /**
904 * add_to_page_cache_locked - add a locked page to the pagecache
905 * @page: page to add
906 * @mapping: the page's address_space
907 * @offset: page index
908 * @gfp_mask: page allocation mode
909 *
910 * This function is used to add a page to the pagecache. It must be locked.
911 * This function does not add the page to the LRU. The caller must do that.
912 */
add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)913 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
914 pgoff_t offset, gfp_t gfp_mask)
915 {
916 return __add_to_page_cache_locked(page, mapping, offset,
917 gfp_mask, NULL);
918 }
919 EXPORT_SYMBOL(add_to_page_cache_locked);
920
add_to_page_cache_lru(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)921 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
922 pgoff_t offset, gfp_t gfp_mask)
923 {
924 void *shadow = NULL;
925 int ret;
926
927 __SetPageLocked(page);
928 ret = __add_to_page_cache_locked(page, mapping, offset,
929 gfp_mask, &shadow);
930 if (unlikely(ret))
931 __ClearPageLocked(page);
932 else {
933 /*
934 * The page might have been evicted from cache only
935 * recently, in which case it should be activated like
936 * any other repeatedly accessed page.
937 * The exception is pages getting rewritten; evicting other
938 * data from the working set, only to cache data that will
939 * get overwritten with something else, is a waste of memory.
940 */
941 if (!(gfp_mask & __GFP_WRITE) &&
942 shadow && workingset_refault(shadow)) {
943 SetPageActive(page);
944 workingset_activation(page);
945 } else
946 ClearPageActive(page);
947 lru_cache_add(page);
948 }
949 return ret;
950 }
951 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
952
953 #ifdef CONFIG_NUMA
__page_cache_alloc(gfp_t gfp)954 struct page *__page_cache_alloc(gfp_t gfp)
955 {
956 int n;
957 struct page *page;
958
959 if (cpuset_do_page_mem_spread()) {
960 unsigned int cpuset_mems_cookie;
961 do {
962 cpuset_mems_cookie = read_mems_allowed_begin();
963 n = cpuset_mem_spread_node();
964 page = __alloc_pages_node(n, gfp, 0);
965 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
966
967 return page;
968 }
969 return alloc_pages(gfp, 0);
970 }
971 EXPORT_SYMBOL(__page_cache_alloc);
972 #endif
973
974 /*
975 * In order to wait for pages to become available there must be
976 * waitqueues associated with pages. By using a hash table of
977 * waitqueues where the bucket discipline is to maintain all
978 * waiters on the same queue and wake all when any of the pages
979 * become available, and for the woken contexts to check to be
980 * sure the appropriate page became available, this saves space
981 * at a cost of "thundering herd" phenomena during rare hash
982 * collisions.
983 */
984 #define PAGE_WAIT_TABLE_BITS 8
985 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
986 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
987
page_waitqueue(struct page * page)988 static wait_queue_head_t *page_waitqueue(struct page *page)
989 {
990 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
991 }
992
pagecache_init(void)993 void __init pagecache_init(void)
994 {
995 int i;
996
997 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
998 init_waitqueue_head(&page_wait_table[i]);
999
1000 page_writeback_init();
1001 }
1002
1003 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1004 struct wait_page_key {
1005 struct page *page;
1006 int bit_nr;
1007 int page_match;
1008 };
1009
1010 struct wait_page_queue {
1011 struct page *page;
1012 int bit_nr;
1013 wait_queue_entry_t wait;
1014 };
1015
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1016 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1017 {
1018 struct wait_page_key *key = arg;
1019 struct wait_page_queue *wait_page
1020 = container_of(wait, struct wait_page_queue, wait);
1021
1022 if (wait_page->page != key->page)
1023 return 0;
1024 key->page_match = 1;
1025
1026 if (wait_page->bit_nr != key->bit_nr)
1027 return 0;
1028
1029 /* Stop walking if it's locked */
1030 if (test_bit(key->bit_nr, &key->page->flags))
1031 return -1;
1032
1033 return autoremove_wake_function(wait, mode, sync, key);
1034 }
1035
wake_up_page_bit(struct page * page,int bit_nr)1036 static void wake_up_page_bit(struct page *page, int bit_nr)
1037 {
1038 wait_queue_head_t *q = page_waitqueue(page);
1039 struct wait_page_key key;
1040 unsigned long flags;
1041 wait_queue_entry_t bookmark;
1042
1043 key.page = page;
1044 key.bit_nr = bit_nr;
1045 key.page_match = 0;
1046
1047 bookmark.flags = 0;
1048 bookmark.private = NULL;
1049 bookmark.func = NULL;
1050 INIT_LIST_HEAD(&bookmark.entry);
1051
1052 spin_lock_irqsave(&q->lock, flags);
1053 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1054
1055 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1056 /*
1057 * Take a breather from holding the lock,
1058 * allow pages that finish wake up asynchronously
1059 * to acquire the lock and remove themselves
1060 * from wait queue
1061 */
1062 spin_unlock_irqrestore(&q->lock, flags);
1063 cpu_relax();
1064 spin_lock_irqsave(&q->lock, flags);
1065 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1066 }
1067
1068 /*
1069 * It is possible for other pages to have collided on the waitqueue
1070 * hash, so in that case check for a page match. That prevents a long-
1071 * term waiter
1072 *
1073 * It is still possible to miss a case here, when we woke page waiters
1074 * and removed them from the waitqueue, but there are still other
1075 * page waiters.
1076 */
1077 if (!waitqueue_active(q) || !key.page_match) {
1078 ClearPageWaiters(page);
1079 /*
1080 * It's possible to miss clearing Waiters here, when we woke
1081 * our page waiters, but the hashed waitqueue has waiters for
1082 * other pages on it.
1083 *
1084 * That's okay, it's a rare case. The next waker will clear it.
1085 */
1086 }
1087 spin_unlock_irqrestore(&q->lock, flags);
1088 }
1089
wake_up_page(struct page * page,int bit)1090 static void wake_up_page(struct page *page, int bit)
1091 {
1092 if (!PageWaiters(page))
1093 return;
1094 wake_up_page_bit(page, bit);
1095 }
1096
wait_on_page_bit_common(wait_queue_head_t * q,struct page * page,int bit_nr,int state,bool lock)1097 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1098 struct page *page, int bit_nr, int state, bool lock)
1099 {
1100 struct wait_page_queue wait_page;
1101 wait_queue_entry_t *wait = &wait_page.wait;
1102 int ret = 0;
1103
1104 init_wait(wait);
1105 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1106 wait->func = wake_page_function;
1107 wait_page.page = page;
1108 wait_page.bit_nr = bit_nr;
1109
1110 for (;;) {
1111 spin_lock_irq(&q->lock);
1112
1113 if (likely(list_empty(&wait->entry))) {
1114 __add_wait_queue_entry_tail(q, wait);
1115 SetPageWaiters(page);
1116 }
1117
1118 set_current_state(state);
1119
1120 spin_unlock_irq(&q->lock);
1121
1122 if (likely(test_bit(bit_nr, &page->flags))) {
1123 io_schedule();
1124 }
1125
1126 if (lock) {
1127 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1128 break;
1129 } else {
1130 if (!test_bit(bit_nr, &page->flags))
1131 break;
1132 }
1133
1134 if (unlikely(signal_pending_state(state, current))) {
1135 ret = -EINTR;
1136 break;
1137 }
1138 }
1139
1140 finish_wait(q, wait);
1141
1142 /*
1143 * A signal could leave PageWaiters set. Clearing it here if
1144 * !waitqueue_active would be possible (by open-coding finish_wait),
1145 * but still fail to catch it in the case of wait hash collision. We
1146 * already can fail to clear wait hash collision cases, so don't
1147 * bother with signals either.
1148 */
1149
1150 return ret;
1151 }
1152
wait_on_page_bit(struct page * page,int bit_nr)1153 void wait_on_page_bit(struct page *page, int bit_nr)
1154 {
1155 wait_queue_head_t *q = page_waitqueue(page);
1156 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1157 }
1158 EXPORT_SYMBOL(wait_on_page_bit);
1159
wait_on_page_bit_killable(struct page * page,int bit_nr)1160 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1161 {
1162 wait_queue_head_t *q = page_waitqueue(page);
1163 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1164 }
1165 EXPORT_SYMBOL(wait_on_page_bit_killable);
1166
1167 /**
1168 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1169 * @page: Page defining the wait queue of interest
1170 * @waiter: Waiter to add to the queue
1171 *
1172 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1173 */
add_page_wait_queue(struct page * page,wait_queue_entry_t * waiter)1174 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1175 {
1176 wait_queue_head_t *q = page_waitqueue(page);
1177 unsigned long flags;
1178
1179 spin_lock_irqsave(&q->lock, flags);
1180 __add_wait_queue_entry_tail(q, waiter);
1181 SetPageWaiters(page);
1182 spin_unlock_irqrestore(&q->lock, flags);
1183 }
1184 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1185
1186 #ifndef clear_bit_unlock_is_negative_byte
1187
1188 /*
1189 * PG_waiters is the high bit in the same byte as PG_lock.
1190 *
1191 * On x86 (and on many other architectures), we can clear PG_lock and
1192 * test the sign bit at the same time. But if the architecture does
1193 * not support that special operation, we just do this all by hand
1194 * instead.
1195 *
1196 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1197 * being cleared, but a memory barrier should be unneccssary since it is
1198 * in the same byte as PG_locked.
1199 */
clear_bit_unlock_is_negative_byte(long nr,volatile void * mem)1200 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1201 {
1202 clear_bit_unlock(nr, mem);
1203 /* smp_mb__after_atomic(); */
1204 return test_bit(PG_waiters, mem);
1205 }
1206
1207 #endif
1208
1209 /**
1210 * unlock_page - unlock a locked page
1211 * @page: the page
1212 *
1213 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1214 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1215 * mechanism between PageLocked pages and PageWriteback pages is shared.
1216 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1217 *
1218 * Note that this depends on PG_waiters being the sign bit in the byte
1219 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1220 * clear the PG_locked bit and test PG_waiters at the same time fairly
1221 * portably (architectures that do LL/SC can test any bit, while x86 can
1222 * test the sign bit).
1223 */
unlock_page(struct page * page)1224 void unlock_page(struct page *page)
1225 {
1226 BUILD_BUG_ON(PG_waiters != 7);
1227 page = compound_head(page);
1228 VM_BUG_ON_PAGE(!PageLocked(page), page);
1229 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1230 wake_up_page_bit(page, PG_locked);
1231 }
1232 EXPORT_SYMBOL(unlock_page);
1233
1234 /**
1235 * end_page_writeback - end writeback against a page
1236 * @page: the page
1237 */
end_page_writeback(struct page * page)1238 void end_page_writeback(struct page *page)
1239 {
1240 /*
1241 * TestClearPageReclaim could be used here but it is an atomic
1242 * operation and overkill in this particular case. Failing to
1243 * shuffle a page marked for immediate reclaim is too mild to
1244 * justify taking an atomic operation penalty at the end of
1245 * ever page writeback.
1246 */
1247 if (PageReclaim(page)) {
1248 ClearPageReclaim(page);
1249 rotate_reclaimable_page(page);
1250 }
1251
1252 if (!test_clear_page_writeback(page))
1253 BUG();
1254
1255 smp_mb__after_atomic();
1256 wake_up_page(page, PG_writeback);
1257 }
1258 EXPORT_SYMBOL(end_page_writeback);
1259
1260 /*
1261 * After completing I/O on a page, call this routine to update the page
1262 * flags appropriately
1263 */
page_endio(struct page * page,bool is_write,int err)1264 void page_endio(struct page *page, bool is_write, int err)
1265 {
1266 if (!is_write) {
1267 if (!err) {
1268 SetPageUptodate(page);
1269 } else {
1270 ClearPageUptodate(page);
1271 SetPageError(page);
1272 }
1273 unlock_page(page);
1274 } else {
1275 if (err) {
1276 struct address_space *mapping;
1277
1278 SetPageError(page);
1279 mapping = page_mapping(page);
1280 if (mapping)
1281 mapping_set_error(mapping, err);
1282 }
1283 end_page_writeback(page);
1284 }
1285 }
1286 EXPORT_SYMBOL_GPL(page_endio);
1287
1288 /**
1289 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1290 * @__page: the page to lock
1291 */
__lock_page(struct page * __page)1292 void __lock_page(struct page *__page)
1293 {
1294 struct page *page = compound_head(__page);
1295 wait_queue_head_t *q = page_waitqueue(page);
1296 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1297 }
1298 EXPORT_SYMBOL(__lock_page);
1299
__lock_page_killable(struct page * __page)1300 int __lock_page_killable(struct page *__page)
1301 {
1302 struct page *page = compound_head(__page);
1303 wait_queue_head_t *q = page_waitqueue(page);
1304 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1305 }
1306 EXPORT_SYMBOL_GPL(__lock_page_killable);
1307
1308 /*
1309 * Return values:
1310 * 1 - page is locked; mmap_sem is still held.
1311 * 0 - page is not locked.
1312 * mmap_sem has been released (up_read()), unless flags had both
1313 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1314 * which case mmap_sem is still held.
1315 *
1316 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1317 * with the page locked and the mmap_sem unperturbed.
1318 */
__lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)1319 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1320 unsigned int flags)
1321 {
1322 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1323 /*
1324 * CAUTION! In this case, mmap_sem is not released
1325 * even though return 0.
1326 */
1327 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1328 return 0;
1329
1330 up_read(&mm->mmap_sem);
1331 if (flags & FAULT_FLAG_KILLABLE)
1332 wait_on_page_locked_killable(page);
1333 else
1334 wait_on_page_locked(page);
1335 return 0;
1336 } else {
1337 if (flags & FAULT_FLAG_KILLABLE) {
1338 int ret;
1339
1340 ret = __lock_page_killable(page);
1341 if (ret) {
1342 up_read(&mm->mmap_sem);
1343 return 0;
1344 }
1345 } else
1346 __lock_page(page);
1347 return 1;
1348 }
1349 }
1350
1351 /**
1352 * page_cache_next_hole - find the next hole (not-present entry)
1353 * @mapping: mapping
1354 * @index: index
1355 * @max_scan: maximum range to search
1356 *
1357 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1358 * lowest indexed hole.
1359 *
1360 * Returns: the index of the hole if found, otherwise returns an index
1361 * outside of the set specified (in which case 'return - index >=
1362 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1363 * be returned.
1364 *
1365 * page_cache_next_hole may be called under rcu_read_lock. However,
1366 * like radix_tree_gang_lookup, this will not atomically search a
1367 * snapshot of the tree at a single point in time. For example, if a
1368 * hole is created at index 5, then subsequently a hole is created at
1369 * index 10, page_cache_next_hole covering both indexes may return 10
1370 * if called under rcu_read_lock.
1371 */
page_cache_next_hole(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1372 pgoff_t page_cache_next_hole(struct address_space *mapping,
1373 pgoff_t index, unsigned long max_scan)
1374 {
1375 unsigned long i;
1376
1377 for (i = 0; i < max_scan; i++) {
1378 struct page *page;
1379
1380 page = radix_tree_lookup(&mapping->i_pages, index);
1381 if (!page || radix_tree_exceptional_entry(page))
1382 break;
1383 index++;
1384 if (index == 0)
1385 break;
1386 }
1387
1388 return index;
1389 }
1390 EXPORT_SYMBOL(page_cache_next_hole);
1391
1392 /**
1393 * page_cache_prev_hole - find the prev hole (not-present entry)
1394 * @mapping: mapping
1395 * @index: index
1396 * @max_scan: maximum range to search
1397 *
1398 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1399 * the first hole.
1400 *
1401 * Returns: the index of the hole if found, otherwise returns an index
1402 * outside of the set specified (in which case 'index - return >=
1403 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1404 * will be returned.
1405 *
1406 * page_cache_prev_hole may be called under rcu_read_lock. However,
1407 * like radix_tree_gang_lookup, this will not atomically search a
1408 * snapshot of the tree at a single point in time. For example, if a
1409 * hole is created at index 10, then subsequently a hole is created at
1410 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1411 * called under rcu_read_lock.
1412 */
page_cache_prev_hole(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1413 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1414 pgoff_t index, unsigned long max_scan)
1415 {
1416 unsigned long i;
1417
1418 for (i = 0; i < max_scan; i++) {
1419 struct page *page;
1420
1421 page = radix_tree_lookup(&mapping->i_pages, index);
1422 if (!page || radix_tree_exceptional_entry(page))
1423 break;
1424 index--;
1425 if (index == ULONG_MAX)
1426 break;
1427 }
1428
1429 return index;
1430 }
1431 EXPORT_SYMBOL(page_cache_prev_hole);
1432
1433 /**
1434 * find_get_entry - find and get a page cache entry
1435 * @mapping: the address_space to search
1436 * @offset: the page cache index
1437 *
1438 * Looks up the page cache slot at @mapping & @offset. If there is a
1439 * page cache page, it is returned with an increased refcount.
1440 *
1441 * If the slot holds a shadow entry of a previously evicted page, or a
1442 * swap entry from shmem/tmpfs, it is returned.
1443 *
1444 * Otherwise, %NULL is returned.
1445 */
find_get_entry(struct address_space * mapping,pgoff_t offset)1446 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1447 {
1448 void **pagep;
1449 struct page *head, *page;
1450
1451 rcu_read_lock();
1452 repeat:
1453 page = NULL;
1454 pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
1455 if (pagep) {
1456 page = radix_tree_deref_slot(pagep);
1457 if (unlikely(!page))
1458 goto out;
1459 if (radix_tree_exception(page)) {
1460 if (radix_tree_deref_retry(page))
1461 goto repeat;
1462 /*
1463 * A shadow entry of a recently evicted page,
1464 * or a swap entry from shmem/tmpfs. Return
1465 * it without attempting to raise page count.
1466 */
1467 goto out;
1468 }
1469
1470 head = compound_head(page);
1471 if (!page_cache_get_speculative(head))
1472 goto repeat;
1473
1474 /* The page was split under us? */
1475 if (compound_head(page) != head) {
1476 put_page(head);
1477 goto repeat;
1478 }
1479
1480 /*
1481 * Has the page moved?
1482 * This is part of the lockless pagecache protocol. See
1483 * include/linux/pagemap.h for details.
1484 */
1485 if (unlikely(page != *pagep)) {
1486 put_page(head);
1487 goto repeat;
1488 }
1489 }
1490 out:
1491 rcu_read_unlock();
1492
1493 return page;
1494 }
1495 EXPORT_SYMBOL(find_get_entry);
1496
1497 /**
1498 * find_lock_entry - locate, pin and lock a page cache entry
1499 * @mapping: the address_space to search
1500 * @offset: the page cache index
1501 *
1502 * Looks up the page cache slot at @mapping & @offset. If there is a
1503 * page cache page, it is returned locked and with an increased
1504 * refcount.
1505 *
1506 * If the slot holds a shadow entry of a previously evicted page, or a
1507 * swap entry from shmem/tmpfs, it is returned.
1508 *
1509 * Otherwise, %NULL is returned.
1510 *
1511 * find_lock_entry() may sleep.
1512 */
find_lock_entry(struct address_space * mapping,pgoff_t offset)1513 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1514 {
1515 struct page *page;
1516
1517 repeat:
1518 page = find_get_entry(mapping, offset);
1519 if (page && !radix_tree_exception(page)) {
1520 lock_page(page);
1521 /* Has the page been truncated? */
1522 if (unlikely(page_mapping(page) != mapping)) {
1523 unlock_page(page);
1524 put_page(page);
1525 goto repeat;
1526 }
1527 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1528 }
1529 return page;
1530 }
1531 EXPORT_SYMBOL(find_lock_entry);
1532
1533 /**
1534 * pagecache_get_page - find and get a page reference
1535 * @mapping: the address_space to search
1536 * @offset: the page index
1537 * @fgp_flags: PCG flags
1538 * @gfp_mask: gfp mask to use for the page cache data page allocation
1539 *
1540 * Looks up the page cache slot at @mapping & @offset.
1541 *
1542 * PCG flags modify how the page is returned.
1543 *
1544 * @fgp_flags can be:
1545 *
1546 * - FGP_ACCESSED: the page will be marked accessed
1547 * - FGP_LOCK: Page is return locked
1548 * - FGP_CREAT: If page is not present then a new page is allocated using
1549 * @gfp_mask and added to the page cache and the VM's LRU
1550 * list. The page is returned locked and with an increased
1551 * refcount. Otherwise, NULL is returned.
1552 *
1553 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1554 * if the GFP flags specified for FGP_CREAT are atomic.
1555 *
1556 * If there is a page cache page, it is returned with an increased refcount.
1557 */
pagecache_get_page(struct address_space * mapping,pgoff_t offset,int fgp_flags,gfp_t gfp_mask)1558 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1559 int fgp_flags, gfp_t gfp_mask)
1560 {
1561 struct page *page;
1562
1563 repeat:
1564 page = find_get_entry(mapping, offset);
1565 if (radix_tree_exceptional_entry(page))
1566 page = NULL;
1567 if (!page)
1568 goto no_page;
1569
1570 if (fgp_flags & FGP_LOCK) {
1571 if (fgp_flags & FGP_NOWAIT) {
1572 if (!trylock_page(page)) {
1573 put_page(page);
1574 return NULL;
1575 }
1576 } else {
1577 lock_page(page);
1578 }
1579
1580 /* Has the page been truncated? */
1581 if (unlikely(page->mapping != mapping)) {
1582 unlock_page(page);
1583 put_page(page);
1584 goto repeat;
1585 }
1586 VM_BUG_ON_PAGE(page->index != offset, page);
1587 }
1588
1589 if (page && (fgp_flags & FGP_ACCESSED))
1590 mark_page_accessed(page);
1591
1592 no_page:
1593 if (!page && (fgp_flags & FGP_CREAT)) {
1594 int err;
1595 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1596 gfp_mask |= __GFP_WRITE;
1597 if (fgp_flags & FGP_NOFS)
1598 gfp_mask &= ~__GFP_FS;
1599
1600 page = __page_cache_alloc(gfp_mask);
1601 if (!page)
1602 return NULL;
1603
1604 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1605 fgp_flags |= FGP_LOCK;
1606
1607 /* Init accessed so avoid atomic mark_page_accessed later */
1608 if (fgp_flags & FGP_ACCESSED)
1609 __SetPageReferenced(page);
1610
1611 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1612 if (unlikely(err)) {
1613 put_page(page);
1614 page = NULL;
1615 if (err == -EEXIST)
1616 goto repeat;
1617 }
1618 }
1619
1620 return page;
1621 }
1622 EXPORT_SYMBOL(pagecache_get_page);
1623
1624 /**
1625 * find_get_entries - gang pagecache lookup
1626 * @mapping: The address_space to search
1627 * @start: The starting page cache index
1628 * @nr_entries: The maximum number of entries
1629 * @entries: Where the resulting entries are placed
1630 * @indices: The cache indices corresponding to the entries in @entries
1631 *
1632 * find_get_entries() will search for and return a group of up to
1633 * @nr_entries entries in the mapping. The entries are placed at
1634 * @entries. find_get_entries() takes a reference against any actual
1635 * pages it returns.
1636 *
1637 * The search returns a group of mapping-contiguous page cache entries
1638 * with ascending indexes. There may be holes in the indices due to
1639 * not-present pages.
1640 *
1641 * Any shadow entries of evicted pages, or swap entries from
1642 * shmem/tmpfs, are included in the returned array.
1643 *
1644 * find_get_entries() returns the number of pages and shadow entries
1645 * which were found.
1646 */
find_get_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices)1647 unsigned find_get_entries(struct address_space *mapping,
1648 pgoff_t start, unsigned int nr_entries,
1649 struct page **entries, pgoff_t *indices)
1650 {
1651 void **slot;
1652 unsigned int ret = 0;
1653 struct radix_tree_iter iter;
1654
1655 if (!nr_entries)
1656 return 0;
1657
1658 rcu_read_lock();
1659 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1660 struct page *head, *page;
1661 repeat:
1662 page = radix_tree_deref_slot(slot);
1663 if (unlikely(!page))
1664 continue;
1665 if (radix_tree_exception(page)) {
1666 if (radix_tree_deref_retry(page)) {
1667 slot = radix_tree_iter_retry(&iter);
1668 continue;
1669 }
1670 /*
1671 * A shadow entry of a recently evicted page, a swap
1672 * entry from shmem/tmpfs or a DAX entry. Return it
1673 * without attempting to raise page count.
1674 */
1675 goto export;
1676 }
1677
1678 head = compound_head(page);
1679 if (!page_cache_get_speculative(head))
1680 goto repeat;
1681
1682 /* The page was split under us? */
1683 if (compound_head(page) != head) {
1684 put_page(head);
1685 goto repeat;
1686 }
1687
1688 /* Has the page moved? */
1689 if (unlikely(page != *slot)) {
1690 put_page(head);
1691 goto repeat;
1692 }
1693 export:
1694 indices[ret] = iter.index;
1695 entries[ret] = page;
1696 if (++ret == nr_entries)
1697 break;
1698 }
1699 rcu_read_unlock();
1700 return ret;
1701 }
1702
1703 /**
1704 * find_get_pages_range - gang pagecache lookup
1705 * @mapping: The address_space to search
1706 * @start: The starting page index
1707 * @end: The final page index (inclusive)
1708 * @nr_pages: The maximum number of pages
1709 * @pages: Where the resulting pages are placed
1710 *
1711 * find_get_pages_range() will search for and return a group of up to @nr_pages
1712 * pages in the mapping starting at index @start and up to index @end
1713 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1714 * a reference against the returned pages.
1715 *
1716 * The search returns a group of mapping-contiguous pages with ascending
1717 * indexes. There may be holes in the indices due to not-present pages.
1718 * We also update @start to index the next page for the traversal.
1719 *
1720 * find_get_pages_range() returns the number of pages which were found. If this
1721 * number is smaller than @nr_pages, the end of specified range has been
1722 * reached.
1723 */
find_get_pages_range(struct address_space * mapping,pgoff_t * start,pgoff_t end,unsigned int nr_pages,struct page ** pages)1724 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1725 pgoff_t end, unsigned int nr_pages,
1726 struct page **pages)
1727 {
1728 struct radix_tree_iter iter;
1729 void **slot;
1730 unsigned ret = 0;
1731
1732 if (unlikely(!nr_pages))
1733 return 0;
1734
1735 rcu_read_lock();
1736 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
1737 struct page *head, *page;
1738
1739 if (iter.index > end)
1740 break;
1741 repeat:
1742 page = radix_tree_deref_slot(slot);
1743 if (unlikely(!page))
1744 continue;
1745
1746 if (radix_tree_exception(page)) {
1747 if (radix_tree_deref_retry(page)) {
1748 slot = radix_tree_iter_retry(&iter);
1749 continue;
1750 }
1751 /*
1752 * A shadow entry of a recently evicted page,
1753 * or a swap entry from shmem/tmpfs. Skip
1754 * over it.
1755 */
1756 continue;
1757 }
1758
1759 head = compound_head(page);
1760 if (!page_cache_get_speculative(head))
1761 goto repeat;
1762
1763 /* The page was split under us? */
1764 if (compound_head(page) != head) {
1765 put_page(head);
1766 goto repeat;
1767 }
1768
1769 /* Has the page moved? */
1770 if (unlikely(page != *slot)) {
1771 put_page(head);
1772 goto repeat;
1773 }
1774
1775 pages[ret] = page;
1776 if (++ret == nr_pages) {
1777 *start = pages[ret - 1]->index + 1;
1778 goto out;
1779 }
1780 }
1781
1782 /*
1783 * We come here when there is no page beyond @end. We take care to not
1784 * overflow the index @start as it confuses some of the callers. This
1785 * breaks the iteration when there is page at index -1 but that is
1786 * already broken anyway.
1787 */
1788 if (end == (pgoff_t)-1)
1789 *start = (pgoff_t)-1;
1790 else
1791 *start = end + 1;
1792 out:
1793 rcu_read_unlock();
1794
1795 return ret;
1796 }
1797
1798 /**
1799 * find_get_pages_contig - gang contiguous pagecache lookup
1800 * @mapping: The address_space to search
1801 * @index: The starting page index
1802 * @nr_pages: The maximum number of pages
1803 * @pages: Where the resulting pages are placed
1804 *
1805 * find_get_pages_contig() works exactly like find_get_pages(), except
1806 * that the returned number of pages are guaranteed to be contiguous.
1807 *
1808 * find_get_pages_contig() returns the number of pages which were found.
1809 */
find_get_pages_contig(struct address_space * mapping,pgoff_t index,unsigned int nr_pages,struct page ** pages)1810 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1811 unsigned int nr_pages, struct page **pages)
1812 {
1813 struct radix_tree_iter iter;
1814 void **slot;
1815 unsigned int ret = 0;
1816
1817 if (unlikely(!nr_pages))
1818 return 0;
1819
1820 rcu_read_lock();
1821 radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
1822 struct page *head, *page;
1823 repeat:
1824 page = radix_tree_deref_slot(slot);
1825 /* The hole, there no reason to continue */
1826 if (unlikely(!page))
1827 break;
1828
1829 if (radix_tree_exception(page)) {
1830 if (radix_tree_deref_retry(page)) {
1831 slot = radix_tree_iter_retry(&iter);
1832 continue;
1833 }
1834 /*
1835 * A shadow entry of a recently evicted page,
1836 * or a swap entry from shmem/tmpfs. Stop
1837 * looking for contiguous pages.
1838 */
1839 break;
1840 }
1841
1842 head = compound_head(page);
1843 if (!page_cache_get_speculative(head))
1844 goto repeat;
1845
1846 /* The page was split under us? */
1847 if (compound_head(page) != head) {
1848 put_page(head);
1849 goto repeat;
1850 }
1851
1852 /* Has the page moved? */
1853 if (unlikely(page != *slot)) {
1854 put_page(head);
1855 goto repeat;
1856 }
1857
1858 /*
1859 * must check mapping and index after taking the ref.
1860 * otherwise we can get both false positives and false
1861 * negatives, which is just confusing to the caller.
1862 */
1863 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1864 put_page(page);
1865 break;
1866 }
1867
1868 pages[ret] = page;
1869 if (++ret == nr_pages)
1870 break;
1871 }
1872 rcu_read_unlock();
1873 return ret;
1874 }
1875 EXPORT_SYMBOL(find_get_pages_contig);
1876
1877 /**
1878 * find_get_pages_range_tag - find and return pages in given range matching @tag
1879 * @mapping: the address_space to search
1880 * @index: the starting page index
1881 * @end: The final page index (inclusive)
1882 * @tag: the tag index
1883 * @nr_pages: the maximum number of pages
1884 * @pages: where the resulting pages are placed
1885 *
1886 * Like find_get_pages, except we only return pages which are tagged with
1887 * @tag. We update @index to index the next page for the traversal.
1888 */
find_get_pages_range_tag(struct address_space * mapping,pgoff_t * index,pgoff_t end,int tag,unsigned int nr_pages,struct page ** pages)1889 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1890 pgoff_t end, int tag, unsigned int nr_pages,
1891 struct page **pages)
1892 {
1893 struct radix_tree_iter iter;
1894 void **slot;
1895 unsigned ret = 0;
1896
1897 if (unlikely(!nr_pages))
1898 return 0;
1899
1900 rcu_read_lock();
1901 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
1902 struct page *head, *page;
1903
1904 if (iter.index > end)
1905 break;
1906 repeat:
1907 page = radix_tree_deref_slot(slot);
1908 if (unlikely(!page))
1909 continue;
1910
1911 if (radix_tree_exception(page)) {
1912 if (radix_tree_deref_retry(page)) {
1913 slot = radix_tree_iter_retry(&iter);
1914 continue;
1915 }
1916 /*
1917 * A shadow entry of a recently evicted page.
1918 *
1919 * Those entries should never be tagged, but
1920 * this tree walk is lockless and the tags are
1921 * looked up in bulk, one radix tree node at a
1922 * time, so there is a sizable window for page
1923 * reclaim to evict a page we saw tagged.
1924 *
1925 * Skip over it.
1926 */
1927 continue;
1928 }
1929
1930 head = compound_head(page);
1931 if (!page_cache_get_speculative(head))
1932 goto repeat;
1933
1934 /* The page was split under us? */
1935 if (compound_head(page) != head) {
1936 put_page(head);
1937 goto repeat;
1938 }
1939
1940 /* Has the page moved? */
1941 if (unlikely(page != *slot)) {
1942 put_page(head);
1943 goto repeat;
1944 }
1945
1946 pages[ret] = page;
1947 if (++ret == nr_pages) {
1948 *index = pages[ret - 1]->index + 1;
1949 goto out;
1950 }
1951 }
1952
1953 /*
1954 * We come here when we got at @end. We take care to not overflow the
1955 * index @index as it confuses some of the callers. This breaks the
1956 * iteration when there is page at index -1 but that is already broken
1957 * anyway.
1958 */
1959 if (end == (pgoff_t)-1)
1960 *index = (pgoff_t)-1;
1961 else
1962 *index = end + 1;
1963 out:
1964 rcu_read_unlock();
1965
1966 return ret;
1967 }
1968 EXPORT_SYMBOL(find_get_pages_range_tag);
1969
1970 /**
1971 * find_get_entries_tag - find and return entries that match @tag
1972 * @mapping: the address_space to search
1973 * @start: the starting page cache index
1974 * @tag: the tag index
1975 * @nr_entries: the maximum number of entries
1976 * @entries: where the resulting entries are placed
1977 * @indices: the cache indices corresponding to the entries in @entries
1978 *
1979 * Like find_get_entries, except we only return entries which are tagged with
1980 * @tag.
1981 */
find_get_entries_tag(struct address_space * mapping,pgoff_t start,int tag,unsigned int nr_entries,struct page ** entries,pgoff_t * indices)1982 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1983 int tag, unsigned int nr_entries,
1984 struct page **entries, pgoff_t *indices)
1985 {
1986 void **slot;
1987 unsigned int ret = 0;
1988 struct radix_tree_iter iter;
1989
1990 if (!nr_entries)
1991 return 0;
1992
1993 rcu_read_lock();
1994 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
1995 struct page *head, *page;
1996 repeat:
1997 page = radix_tree_deref_slot(slot);
1998 if (unlikely(!page))
1999 continue;
2000 if (radix_tree_exception(page)) {
2001 if (radix_tree_deref_retry(page)) {
2002 slot = radix_tree_iter_retry(&iter);
2003 continue;
2004 }
2005
2006 /*
2007 * A shadow entry of a recently evicted page, a swap
2008 * entry from shmem/tmpfs or a DAX entry. Return it
2009 * without attempting to raise page count.
2010 */
2011 goto export;
2012 }
2013
2014 head = compound_head(page);
2015 if (!page_cache_get_speculative(head))
2016 goto repeat;
2017
2018 /* The page was split under us? */
2019 if (compound_head(page) != head) {
2020 put_page(head);
2021 goto repeat;
2022 }
2023
2024 /* Has the page moved? */
2025 if (unlikely(page != *slot)) {
2026 put_page(head);
2027 goto repeat;
2028 }
2029 export:
2030 indices[ret] = iter.index;
2031 entries[ret] = page;
2032 if (++ret == nr_entries)
2033 break;
2034 }
2035 rcu_read_unlock();
2036 return ret;
2037 }
2038 EXPORT_SYMBOL(find_get_entries_tag);
2039
2040 /*
2041 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2042 * a _large_ part of the i/o request. Imagine the worst scenario:
2043 *
2044 * ---R__________________________________________B__________
2045 * ^ reading here ^ bad block(assume 4k)
2046 *
2047 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2048 * => failing the whole request => read(R) => read(R+1) =>
2049 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2050 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2051 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2052 *
2053 * It is going insane. Fix it by quickly scaling down the readahead size.
2054 */
shrink_readahead_size_eio(struct file * filp,struct file_ra_state * ra)2055 static void shrink_readahead_size_eio(struct file *filp,
2056 struct file_ra_state *ra)
2057 {
2058 ra->ra_pages /= 4;
2059 }
2060
2061 /**
2062 * generic_file_buffered_read - generic file read routine
2063 * @iocb: the iocb to read
2064 * @iter: data destination
2065 * @written: already copied
2066 *
2067 * This is a generic file read routine, and uses the
2068 * mapping->a_ops->readpage() function for the actual low-level stuff.
2069 *
2070 * This is really ugly. But the goto's actually try to clarify some
2071 * of the logic when it comes to error handling etc.
2072 */
generic_file_buffered_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t written)2073 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2074 struct iov_iter *iter, ssize_t written)
2075 {
2076 struct file *filp = iocb->ki_filp;
2077 struct address_space *mapping = filp->f_mapping;
2078 struct inode *inode = mapping->host;
2079 struct file_ra_state *ra = &filp->f_ra;
2080 loff_t *ppos = &iocb->ki_pos;
2081 pgoff_t index;
2082 pgoff_t last_index;
2083 pgoff_t prev_index;
2084 unsigned long offset; /* offset into pagecache page */
2085 unsigned int prev_offset;
2086 int error = 0;
2087
2088 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2089 return 0;
2090 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2091
2092 index = *ppos >> PAGE_SHIFT;
2093 prev_index = ra->prev_pos >> PAGE_SHIFT;
2094 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2095 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2096 offset = *ppos & ~PAGE_MASK;
2097
2098 for (;;) {
2099 struct page *page;
2100 pgoff_t end_index;
2101 loff_t isize;
2102 unsigned long nr, ret;
2103
2104 cond_resched();
2105 find_page:
2106 if (fatal_signal_pending(current)) {
2107 error = -EINTR;
2108 goto out;
2109 }
2110
2111 page = find_get_page(mapping, index);
2112 if (!page) {
2113 if (iocb->ki_flags & IOCB_NOWAIT)
2114 goto would_block;
2115 page_cache_sync_readahead(mapping,
2116 ra, filp,
2117 index, last_index - index);
2118 page = find_get_page(mapping, index);
2119 if (unlikely(page == NULL))
2120 goto no_cached_page;
2121 }
2122 if (PageReadahead(page)) {
2123 page_cache_async_readahead(mapping,
2124 ra, filp, page,
2125 index, last_index - index);
2126 }
2127 if (!PageUptodate(page)) {
2128 if (iocb->ki_flags & IOCB_NOWAIT) {
2129 put_page(page);
2130 goto would_block;
2131 }
2132
2133 /*
2134 * See comment in do_read_cache_page on why
2135 * wait_on_page_locked is used to avoid unnecessarily
2136 * serialisations and why it's safe.
2137 */
2138 error = wait_on_page_locked_killable(page);
2139 if (unlikely(error))
2140 goto readpage_error;
2141 if (PageUptodate(page))
2142 goto page_ok;
2143
2144 if (inode->i_blkbits == PAGE_SHIFT ||
2145 !mapping->a_ops->is_partially_uptodate)
2146 goto page_not_up_to_date;
2147 /* pipes can't handle partially uptodate pages */
2148 if (unlikely(iter->type & ITER_PIPE))
2149 goto page_not_up_to_date;
2150 if (!trylock_page(page))
2151 goto page_not_up_to_date;
2152 /* Did it get truncated before we got the lock? */
2153 if (!page->mapping)
2154 goto page_not_up_to_date_locked;
2155 if (!mapping->a_ops->is_partially_uptodate(page,
2156 offset, iter->count))
2157 goto page_not_up_to_date_locked;
2158 unlock_page(page);
2159 }
2160 page_ok:
2161 /*
2162 * i_size must be checked after we know the page is Uptodate.
2163 *
2164 * Checking i_size after the check allows us to calculate
2165 * the correct value for "nr", which means the zero-filled
2166 * part of the page is not copied back to userspace (unless
2167 * another truncate extends the file - this is desired though).
2168 */
2169
2170 isize = i_size_read(inode);
2171 end_index = (isize - 1) >> PAGE_SHIFT;
2172 if (unlikely(!isize || index > end_index)) {
2173 put_page(page);
2174 goto out;
2175 }
2176
2177 /* nr is the maximum number of bytes to copy from this page */
2178 nr = PAGE_SIZE;
2179 if (index == end_index) {
2180 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2181 if (nr <= offset) {
2182 put_page(page);
2183 goto out;
2184 }
2185 }
2186 nr = nr - offset;
2187
2188 /* If users can be writing to this page using arbitrary
2189 * virtual addresses, take care about potential aliasing
2190 * before reading the page on the kernel side.
2191 */
2192 if (mapping_writably_mapped(mapping))
2193 flush_dcache_page(page);
2194
2195 /*
2196 * When a sequential read accesses a page several times,
2197 * only mark it as accessed the first time.
2198 */
2199 if (prev_index != index || offset != prev_offset)
2200 mark_page_accessed(page);
2201 prev_index = index;
2202
2203 /*
2204 * Ok, we have the page, and it's up-to-date, so
2205 * now we can copy it to user space...
2206 */
2207
2208 ret = copy_page_to_iter(page, offset, nr, iter);
2209 offset += ret;
2210 index += offset >> PAGE_SHIFT;
2211 offset &= ~PAGE_MASK;
2212 prev_offset = offset;
2213
2214 put_page(page);
2215 written += ret;
2216 if (!iov_iter_count(iter))
2217 goto out;
2218 if (ret < nr) {
2219 error = -EFAULT;
2220 goto out;
2221 }
2222 continue;
2223
2224 page_not_up_to_date:
2225 /* Get exclusive access to the page ... */
2226 error = lock_page_killable(page);
2227 if (unlikely(error))
2228 goto readpage_error;
2229
2230 page_not_up_to_date_locked:
2231 /* Did it get truncated before we got the lock? */
2232 if (!page->mapping) {
2233 unlock_page(page);
2234 put_page(page);
2235 continue;
2236 }
2237
2238 /* Did somebody else fill it already? */
2239 if (PageUptodate(page)) {
2240 unlock_page(page);
2241 goto page_ok;
2242 }
2243
2244 readpage:
2245 /*
2246 * A previous I/O error may have been due to temporary
2247 * failures, eg. multipath errors.
2248 * PG_error will be set again if readpage fails.
2249 */
2250 ClearPageError(page);
2251 /* Start the actual read. The read will unlock the page. */
2252 error = mapping->a_ops->readpage(filp, page);
2253
2254 if (unlikely(error)) {
2255 if (error == AOP_TRUNCATED_PAGE) {
2256 put_page(page);
2257 error = 0;
2258 goto find_page;
2259 }
2260 goto readpage_error;
2261 }
2262
2263 if (!PageUptodate(page)) {
2264 error = lock_page_killable(page);
2265 if (unlikely(error))
2266 goto readpage_error;
2267 if (!PageUptodate(page)) {
2268 if (page->mapping == NULL) {
2269 /*
2270 * invalidate_mapping_pages got it
2271 */
2272 unlock_page(page);
2273 put_page(page);
2274 goto find_page;
2275 }
2276 unlock_page(page);
2277 shrink_readahead_size_eio(filp, ra);
2278 error = -EIO;
2279 goto readpage_error;
2280 }
2281 unlock_page(page);
2282 }
2283
2284 goto page_ok;
2285
2286 readpage_error:
2287 /* UHHUH! A synchronous read error occurred. Report it */
2288 put_page(page);
2289 goto out;
2290
2291 no_cached_page:
2292 /*
2293 * Ok, it wasn't cached, so we need to create a new
2294 * page..
2295 */
2296 page = page_cache_alloc(mapping);
2297 if (!page) {
2298 error = -ENOMEM;
2299 goto out;
2300 }
2301 error = add_to_page_cache_lru(page, mapping, index,
2302 mapping_gfp_constraint(mapping, GFP_KERNEL));
2303 if (error) {
2304 put_page(page);
2305 if (error == -EEXIST) {
2306 error = 0;
2307 goto find_page;
2308 }
2309 goto out;
2310 }
2311 goto readpage;
2312 }
2313
2314 would_block:
2315 error = -EAGAIN;
2316 out:
2317 ra->prev_pos = prev_index;
2318 ra->prev_pos <<= PAGE_SHIFT;
2319 ra->prev_pos |= prev_offset;
2320
2321 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2322 file_accessed(filp);
2323 return written ? written : error;
2324 }
2325
2326 /**
2327 * generic_file_read_iter - generic filesystem read routine
2328 * @iocb: kernel I/O control block
2329 * @iter: destination for the data read
2330 *
2331 * This is the "read_iter()" routine for all filesystems
2332 * that can use the page cache directly.
2333 */
2334 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2335 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2336 {
2337 size_t count = iov_iter_count(iter);
2338 ssize_t retval = 0;
2339
2340 if (!count)
2341 goto out; /* skip atime */
2342
2343 if (iocb->ki_flags & IOCB_DIRECT) {
2344 struct file *file = iocb->ki_filp;
2345 struct address_space *mapping = file->f_mapping;
2346 struct inode *inode = mapping->host;
2347 loff_t size;
2348
2349 size = i_size_read(inode);
2350 if (iocb->ki_flags & IOCB_NOWAIT) {
2351 if (filemap_range_has_page(mapping, iocb->ki_pos,
2352 iocb->ki_pos + count - 1))
2353 return -EAGAIN;
2354 } else {
2355 retval = filemap_write_and_wait_range(mapping,
2356 iocb->ki_pos,
2357 iocb->ki_pos + count - 1);
2358 if (retval < 0)
2359 goto out;
2360 }
2361
2362 file_accessed(file);
2363
2364 retval = mapping->a_ops->direct_IO(iocb, iter);
2365 if (retval >= 0) {
2366 iocb->ki_pos += retval;
2367 count -= retval;
2368 }
2369 iov_iter_revert(iter, count - iov_iter_count(iter));
2370
2371 /*
2372 * Btrfs can have a short DIO read if we encounter
2373 * compressed extents, so if there was an error, or if
2374 * we've already read everything we wanted to, or if
2375 * there was a short read because we hit EOF, go ahead
2376 * and return. Otherwise fallthrough to buffered io for
2377 * the rest of the read. Buffered reads will not work for
2378 * DAX files, so don't bother trying.
2379 */
2380 if (retval < 0 || !count || iocb->ki_pos >= size ||
2381 IS_DAX(inode))
2382 goto out;
2383 }
2384
2385 retval = generic_file_buffered_read(iocb, iter, retval);
2386 out:
2387 return retval;
2388 }
2389 EXPORT_SYMBOL(generic_file_read_iter);
2390
2391 #ifdef CONFIG_MMU
2392 /**
2393 * page_cache_read - adds requested page to the page cache if not already there
2394 * @file: file to read
2395 * @offset: page index
2396 * @gfp_mask: memory allocation flags
2397 *
2398 * This adds the requested page to the page cache if it isn't already there,
2399 * and schedules an I/O to read in its contents from disk.
2400 */
page_cache_read(struct file * file,pgoff_t offset,gfp_t gfp_mask)2401 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2402 {
2403 struct address_space *mapping = file->f_mapping;
2404 struct page *page;
2405 int ret;
2406
2407 do {
2408 page = __page_cache_alloc(gfp_mask);
2409 if (!page)
2410 return -ENOMEM;
2411
2412 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2413 if (ret == 0)
2414 ret = mapping->a_ops->readpage(file, page);
2415 else if (ret == -EEXIST)
2416 ret = 0; /* losing race to add is OK */
2417
2418 put_page(page);
2419
2420 } while (ret == AOP_TRUNCATED_PAGE);
2421
2422 return ret;
2423 }
2424
2425 #define MMAP_LOTSAMISS (100)
2426
2427 /*
2428 * Synchronous readahead happens when we don't even find
2429 * a page in the page cache at all.
2430 */
do_sync_mmap_readahead(struct vm_area_struct * vma,struct file_ra_state * ra,struct file * file,pgoff_t offset)2431 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2432 struct file_ra_state *ra,
2433 struct file *file,
2434 pgoff_t offset)
2435 {
2436 struct address_space *mapping = file->f_mapping;
2437
2438 /* If we don't want any read-ahead, don't bother */
2439 if (vma->vm_flags & VM_RAND_READ)
2440 return;
2441 if (!ra->ra_pages)
2442 return;
2443
2444 if (vma->vm_flags & VM_SEQ_READ) {
2445 page_cache_sync_readahead(mapping, ra, file, offset,
2446 ra->ra_pages);
2447 return;
2448 }
2449
2450 /* Avoid banging the cache line if not needed */
2451 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2452 ra->mmap_miss++;
2453
2454 /*
2455 * Do we miss much more than hit in this file? If so,
2456 * stop bothering with read-ahead. It will only hurt.
2457 */
2458 if (ra->mmap_miss > MMAP_LOTSAMISS)
2459 return;
2460
2461 /*
2462 * mmap read-around
2463 */
2464 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2465 ra->size = ra->ra_pages;
2466 ra->async_size = ra->ra_pages / 4;
2467 ra_submit(ra, mapping, file);
2468 }
2469
2470 /*
2471 * Asynchronous readahead happens when we find the page and PG_readahead,
2472 * so we want to possibly extend the readahead further..
2473 */
do_async_mmap_readahead(struct vm_area_struct * vma,struct file_ra_state * ra,struct file * file,struct page * page,pgoff_t offset)2474 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2475 struct file_ra_state *ra,
2476 struct file *file,
2477 struct page *page,
2478 pgoff_t offset)
2479 {
2480 struct address_space *mapping = file->f_mapping;
2481
2482 /* If we don't want any read-ahead, don't bother */
2483 if (vma->vm_flags & VM_RAND_READ)
2484 return;
2485 if (ra->mmap_miss > 0)
2486 ra->mmap_miss--;
2487 if (PageReadahead(page))
2488 page_cache_async_readahead(mapping, ra, file,
2489 page, offset, ra->ra_pages);
2490 }
2491
2492 /**
2493 * filemap_fault - read in file data for page fault handling
2494 * @vmf: struct vm_fault containing details of the fault
2495 *
2496 * filemap_fault() is invoked via the vma operations vector for a
2497 * mapped memory region to read in file data during a page fault.
2498 *
2499 * The goto's are kind of ugly, but this streamlines the normal case of having
2500 * it in the page cache, and handles the special cases reasonably without
2501 * having a lot of duplicated code.
2502 *
2503 * vma->vm_mm->mmap_sem must be held on entry.
2504 *
2505 * If our return value has VM_FAULT_RETRY set, it's because
2506 * lock_page_or_retry() returned 0.
2507 * The mmap_sem has usually been released in this case.
2508 * See __lock_page_or_retry() for the exception.
2509 *
2510 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2511 * has not been released.
2512 *
2513 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2514 */
filemap_fault(struct vm_fault * vmf)2515 vm_fault_t filemap_fault(struct vm_fault *vmf)
2516 {
2517 int error;
2518 struct file *file = vmf->vma->vm_file;
2519 struct address_space *mapping = file->f_mapping;
2520 struct file_ra_state *ra = &file->f_ra;
2521 struct inode *inode = mapping->host;
2522 pgoff_t offset = vmf->pgoff;
2523 pgoff_t max_off;
2524 struct page *page;
2525 vm_fault_t ret = 0;
2526
2527 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2528 if (unlikely(offset >= max_off))
2529 return VM_FAULT_SIGBUS;
2530
2531 /*
2532 * Do we have something in the page cache already?
2533 */
2534 page = find_get_page(mapping, offset);
2535 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2536 /*
2537 * We found the page, so try async readahead before
2538 * waiting for the lock.
2539 */
2540 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2541 } else if (!page) {
2542 /* No page in the page cache at all */
2543 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2544 count_vm_event(PGMAJFAULT);
2545 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2546 ret = VM_FAULT_MAJOR;
2547 retry_find:
2548 page = find_get_page(mapping, offset);
2549 if (!page)
2550 goto no_cached_page;
2551 }
2552
2553 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2554 put_page(page);
2555 return ret | VM_FAULT_RETRY;
2556 }
2557
2558 /* Did it get truncated? */
2559 if (unlikely(page->mapping != mapping)) {
2560 unlock_page(page);
2561 put_page(page);
2562 goto retry_find;
2563 }
2564 VM_BUG_ON_PAGE(page->index != offset, page);
2565
2566 /*
2567 * We have a locked page in the page cache, now we need to check
2568 * that it's up-to-date. If not, it is going to be due to an error.
2569 */
2570 if (unlikely(!PageUptodate(page)))
2571 goto page_not_uptodate;
2572
2573 /*
2574 * Found the page and have a reference on it.
2575 * We must recheck i_size under page lock.
2576 */
2577 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2578 if (unlikely(offset >= max_off)) {
2579 unlock_page(page);
2580 put_page(page);
2581 return VM_FAULT_SIGBUS;
2582 }
2583
2584 vmf->page = page;
2585 return ret | VM_FAULT_LOCKED;
2586
2587 no_cached_page:
2588 /*
2589 * We're only likely to ever get here if MADV_RANDOM is in
2590 * effect.
2591 */
2592 error = page_cache_read(file, offset, vmf->gfp_mask);
2593
2594 /*
2595 * The page we want has now been added to the page cache.
2596 * In the unlikely event that someone removed it in the
2597 * meantime, we'll just come back here and read it again.
2598 */
2599 if (error >= 0)
2600 goto retry_find;
2601
2602 /*
2603 * An error return from page_cache_read can result if the
2604 * system is low on memory, or a problem occurs while trying
2605 * to schedule I/O.
2606 */
2607 if (error == -ENOMEM)
2608 return VM_FAULT_OOM;
2609 return VM_FAULT_SIGBUS;
2610
2611 page_not_uptodate:
2612 /*
2613 * Umm, take care of errors if the page isn't up-to-date.
2614 * Try to re-read it _once_. We do this synchronously,
2615 * because there really aren't any performance issues here
2616 * and we need to check for errors.
2617 */
2618 ClearPageError(page);
2619 error = mapping->a_ops->readpage(file, page);
2620 if (!error) {
2621 wait_on_page_locked(page);
2622 if (!PageUptodate(page))
2623 error = -EIO;
2624 }
2625 put_page(page);
2626
2627 if (!error || error == AOP_TRUNCATED_PAGE)
2628 goto retry_find;
2629
2630 /* Things didn't work out. Return zero to tell the mm layer so. */
2631 shrink_readahead_size_eio(file, ra);
2632 return VM_FAULT_SIGBUS;
2633 }
2634 EXPORT_SYMBOL(filemap_fault);
2635
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)2636 void filemap_map_pages(struct vm_fault *vmf,
2637 pgoff_t start_pgoff, pgoff_t end_pgoff)
2638 {
2639 struct radix_tree_iter iter;
2640 void **slot;
2641 struct file *file = vmf->vma->vm_file;
2642 struct address_space *mapping = file->f_mapping;
2643 pgoff_t last_pgoff = start_pgoff;
2644 unsigned long max_idx;
2645 struct page *head, *page;
2646
2647 rcu_read_lock();
2648 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
2649 if (iter.index > end_pgoff)
2650 break;
2651 repeat:
2652 page = radix_tree_deref_slot(slot);
2653 if (unlikely(!page))
2654 goto next;
2655 if (radix_tree_exception(page)) {
2656 if (radix_tree_deref_retry(page)) {
2657 slot = radix_tree_iter_retry(&iter);
2658 continue;
2659 }
2660 goto next;
2661 }
2662
2663 head = compound_head(page);
2664 if (!page_cache_get_speculative(head))
2665 goto repeat;
2666
2667 /* The page was split under us? */
2668 if (compound_head(page) != head) {
2669 put_page(head);
2670 goto repeat;
2671 }
2672
2673 /* Has the page moved? */
2674 if (unlikely(page != *slot)) {
2675 put_page(head);
2676 goto repeat;
2677 }
2678
2679 if (!PageUptodate(page) ||
2680 PageReadahead(page) ||
2681 PageHWPoison(page))
2682 goto skip;
2683 if (!trylock_page(page))
2684 goto skip;
2685
2686 if (page->mapping != mapping || !PageUptodate(page))
2687 goto unlock;
2688
2689 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2690 if (page->index >= max_idx)
2691 goto unlock;
2692
2693 if (file->f_ra.mmap_miss > 0)
2694 file->f_ra.mmap_miss--;
2695
2696 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2697 if (vmf->pte)
2698 vmf->pte += iter.index - last_pgoff;
2699 last_pgoff = iter.index;
2700 if (alloc_set_pte(vmf, NULL, page))
2701 goto unlock;
2702 unlock_page(page);
2703 goto next;
2704 unlock:
2705 unlock_page(page);
2706 skip:
2707 put_page(page);
2708 next:
2709 /* Huge page is mapped? No need to proceed. */
2710 if (pmd_trans_huge(*vmf->pmd))
2711 break;
2712 if (iter.index == end_pgoff)
2713 break;
2714 }
2715 rcu_read_unlock();
2716 }
2717 EXPORT_SYMBOL(filemap_map_pages);
2718
filemap_page_mkwrite(struct vm_fault * vmf)2719 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2720 {
2721 struct page *page = vmf->page;
2722 struct inode *inode = file_inode(vmf->vma->vm_file);
2723 vm_fault_t ret = VM_FAULT_LOCKED;
2724
2725 sb_start_pagefault(inode->i_sb);
2726 file_update_time(vmf->vma->vm_file);
2727 lock_page(page);
2728 if (page->mapping != inode->i_mapping) {
2729 unlock_page(page);
2730 ret = VM_FAULT_NOPAGE;
2731 goto out;
2732 }
2733 /*
2734 * We mark the page dirty already here so that when freeze is in
2735 * progress, we are guaranteed that writeback during freezing will
2736 * see the dirty page and writeprotect it again.
2737 */
2738 set_page_dirty(page);
2739 wait_for_stable_page(page);
2740 out:
2741 sb_end_pagefault(inode->i_sb);
2742 return ret;
2743 }
2744
2745 const struct vm_operations_struct generic_file_vm_ops = {
2746 .fault = filemap_fault,
2747 .map_pages = filemap_map_pages,
2748 .page_mkwrite = filemap_page_mkwrite,
2749 };
2750
2751 /* This is used for a general mmap of a disk file */
2752
generic_file_mmap(struct file * file,struct vm_area_struct * vma)2753 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2754 {
2755 struct address_space *mapping = file->f_mapping;
2756
2757 if (!mapping->a_ops->readpage)
2758 return -ENOEXEC;
2759 file_accessed(file);
2760 vma->vm_ops = &generic_file_vm_ops;
2761 return 0;
2762 }
2763
2764 /*
2765 * This is for filesystems which do not implement ->writepage.
2766 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)2767 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2768 {
2769 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2770 return -EINVAL;
2771 return generic_file_mmap(file, vma);
2772 }
2773 #else
filemap_page_mkwrite(struct vm_fault * vmf)2774 int filemap_page_mkwrite(struct vm_fault *vmf)
2775 {
2776 return -ENOSYS;
2777 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)2778 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2779 {
2780 return -ENOSYS;
2781 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)2782 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2783 {
2784 return -ENOSYS;
2785 }
2786 #endif /* CONFIG_MMU */
2787
2788 EXPORT_SYMBOL(filemap_page_mkwrite);
2789 EXPORT_SYMBOL(generic_file_mmap);
2790 EXPORT_SYMBOL(generic_file_readonly_mmap);
2791
wait_on_page_read(struct page * page)2792 static struct page *wait_on_page_read(struct page *page)
2793 {
2794 if (!IS_ERR(page)) {
2795 wait_on_page_locked(page);
2796 if (!PageUptodate(page)) {
2797 put_page(page);
2798 page = ERR_PTR(-EIO);
2799 }
2800 }
2801 return page;
2802 }
2803
do_read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data,gfp_t gfp)2804 static struct page *do_read_cache_page(struct address_space *mapping,
2805 pgoff_t index,
2806 int (*filler)(void *, struct page *),
2807 void *data,
2808 gfp_t gfp)
2809 {
2810 struct page *page;
2811 int err;
2812 repeat:
2813 page = find_get_page(mapping, index);
2814 if (!page) {
2815 page = __page_cache_alloc(gfp);
2816 if (!page)
2817 return ERR_PTR(-ENOMEM);
2818 err = add_to_page_cache_lru(page, mapping, index, gfp);
2819 if (unlikely(err)) {
2820 put_page(page);
2821 if (err == -EEXIST)
2822 goto repeat;
2823 /* Presumably ENOMEM for radix tree node */
2824 return ERR_PTR(err);
2825 }
2826
2827 filler:
2828 err = filler(data, page);
2829 if (err < 0) {
2830 put_page(page);
2831 return ERR_PTR(err);
2832 }
2833
2834 page = wait_on_page_read(page);
2835 if (IS_ERR(page))
2836 return page;
2837 goto out;
2838 }
2839 if (PageUptodate(page))
2840 goto out;
2841
2842 /*
2843 * Page is not up to date and may be locked due one of the following
2844 * case a: Page is being filled and the page lock is held
2845 * case b: Read/write error clearing the page uptodate status
2846 * case c: Truncation in progress (page locked)
2847 * case d: Reclaim in progress
2848 *
2849 * Case a, the page will be up to date when the page is unlocked.
2850 * There is no need to serialise on the page lock here as the page
2851 * is pinned so the lock gives no additional protection. Even if the
2852 * the page is truncated, the data is still valid if PageUptodate as
2853 * it's a race vs truncate race.
2854 * Case b, the page will not be up to date
2855 * Case c, the page may be truncated but in itself, the data may still
2856 * be valid after IO completes as it's a read vs truncate race. The
2857 * operation must restart if the page is not uptodate on unlock but
2858 * otherwise serialising on page lock to stabilise the mapping gives
2859 * no additional guarantees to the caller as the page lock is
2860 * released before return.
2861 * Case d, similar to truncation. If reclaim holds the page lock, it
2862 * will be a race with remove_mapping that determines if the mapping
2863 * is valid on unlock but otherwise the data is valid and there is
2864 * no need to serialise with page lock.
2865 *
2866 * As the page lock gives no additional guarantee, we optimistically
2867 * wait on the page to be unlocked and check if it's up to date and
2868 * use the page if it is. Otherwise, the page lock is required to
2869 * distinguish between the different cases. The motivation is that we
2870 * avoid spurious serialisations and wakeups when multiple processes
2871 * wait on the same page for IO to complete.
2872 */
2873 wait_on_page_locked(page);
2874 if (PageUptodate(page))
2875 goto out;
2876
2877 /* Distinguish between all the cases under the safety of the lock */
2878 lock_page(page);
2879
2880 /* Case c or d, restart the operation */
2881 if (!page->mapping) {
2882 unlock_page(page);
2883 put_page(page);
2884 goto repeat;
2885 }
2886
2887 /* Someone else locked and filled the page in a very small window */
2888 if (PageUptodate(page)) {
2889 unlock_page(page);
2890 goto out;
2891 }
2892
2893 /*
2894 * A previous I/O error may have been due to temporary
2895 * failures.
2896 * Clear page error before actual read, PG_error will be
2897 * set again if read page fails.
2898 */
2899 ClearPageError(page);
2900 goto filler;
2901
2902 out:
2903 mark_page_accessed(page);
2904 return page;
2905 }
2906
2907 /**
2908 * read_cache_page - read into page cache, fill it if needed
2909 * @mapping: the page's address_space
2910 * @index: the page index
2911 * @filler: function to perform the read
2912 * @data: first arg to filler(data, page) function, often left as NULL
2913 *
2914 * Read into the page cache. If a page already exists, and PageUptodate() is
2915 * not set, try to fill the page and wait for it to become unlocked.
2916 *
2917 * If the page does not get brought uptodate, return -EIO.
2918 */
read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)2919 struct page *read_cache_page(struct address_space *mapping,
2920 pgoff_t index,
2921 int (*filler)(void *, struct page *),
2922 void *data)
2923 {
2924 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2925 }
2926 EXPORT_SYMBOL(read_cache_page);
2927
2928 /**
2929 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2930 * @mapping: the page's address_space
2931 * @index: the page index
2932 * @gfp: the page allocator flags to use if allocating
2933 *
2934 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2935 * any new page allocations done using the specified allocation flags.
2936 *
2937 * If the page does not get brought uptodate, return -EIO.
2938 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)2939 struct page *read_cache_page_gfp(struct address_space *mapping,
2940 pgoff_t index,
2941 gfp_t gfp)
2942 {
2943 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2944
2945 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2946 }
2947 EXPORT_SYMBOL(read_cache_page_gfp);
2948
2949 /*
2950 * Performs necessary checks before doing a write
2951 *
2952 * Can adjust writing position or amount of bytes to write.
2953 * Returns appropriate error code that caller should return or
2954 * zero in case that write should be allowed.
2955 */
generic_write_checks(struct kiocb * iocb,struct iov_iter * from)2956 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2957 {
2958 struct file *file = iocb->ki_filp;
2959 struct inode *inode = file->f_mapping->host;
2960 unsigned long limit = rlimit(RLIMIT_FSIZE);
2961 loff_t pos;
2962
2963 if (!iov_iter_count(from))
2964 return 0;
2965
2966 /* FIXME: this is for backwards compatibility with 2.4 */
2967 if (iocb->ki_flags & IOCB_APPEND)
2968 iocb->ki_pos = i_size_read(inode);
2969
2970 pos = iocb->ki_pos;
2971
2972 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2973 return -EINVAL;
2974
2975 if (limit != RLIM_INFINITY) {
2976 if (iocb->ki_pos >= limit) {
2977 send_sig(SIGXFSZ, current, 0);
2978 return -EFBIG;
2979 }
2980 iov_iter_truncate(from, limit - (unsigned long)pos);
2981 }
2982
2983 /*
2984 * LFS rule
2985 */
2986 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2987 !(file->f_flags & O_LARGEFILE))) {
2988 if (pos >= MAX_NON_LFS)
2989 return -EFBIG;
2990 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2991 }
2992
2993 /*
2994 * Are we about to exceed the fs block limit ?
2995 *
2996 * If we have written data it becomes a short write. If we have
2997 * exceeded without writing data we send a signal and return EFBIG.
2998 * Linus frestrict idea will clean these up nicely..
2999 */
3000 if (unlikely(pos >= inode->i_sb->s_maxbytes))
3001 return -EFBIG;
3002
3003 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
3004 return iov_iter_count(from);
3005 }
3006 EXPORT_SYMBOL(generic_write_checks);
3007
pagecache_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3008 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3009 loff_t pos, unsigned len, unsigned flags,
3010 struct page **pagep, void **fsdata)
3011 {
3012 const struct address_space_operations *aops = mapping->a_ops;
3013
3014 return aops->write_begin(file, mapping, pos, len, flags,
3015 pagep, fsdata);
3016 }
3017 EXPORT_SYMBOL(pagecache_write_begin);
3018
pagecache_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3019 int pagecache_write_end(struct file *file, struct address_space *mapping,
3020 loff_t pos, unsigned len, unsigned copied,
3021 struct page *page, void *fsdata)
3022 {
3023 const struct address_space_operations *aops = mapping->a_ops;
3024
3025 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3026 }
3027 EXPORT_SYMBOL(pagecache_write_end);
3028
3029 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)3030 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3031 {
3032 struct file *file = iocb->ki_filp;
3033 struct address_space *mapping = file->f_mapping;
3034 struct inode *inode = mapping->host;
3035 loff_t pos = iocb->ki_pos;
3036 ssize_t written;
3037 size_t write_len;
3038 pgoff_t end;
3039
3040 write_len = iov_iter_count(from);
3041 end = (pos + write_len - 1) >> PAGE_SHIFT;
3042
3043 if (iocb->ki_flags & IOCB_NOWAIT) {
3044 /* If there are pages to writeback, return */
3045 if (filemap_range_has_page(inode->i_mapping, pos,
3046 pos + iov_iter_count(from)))
3047 return -EAGAIN;
3048 } else {
3049 written = filemap_write_and_wait_range(mapping, pos,
3050 pos + write_len - 1);
3051 if (written)
3052 goto out;
3053 }
3054
3055 /*
3056 * After a write we want buffered reads to be sure to go to disk to get
3057 * the new data. We invalidate clean cached page from the region we're
3058 * about to write. We do this *before* the write so that we can return
3059 * without clobbering -EIOCBQUEUED from ->direct_IO().
3060 */
3061 written = invalidate_inode_pages2_range(mapping,
3062 pos >> PAGE_SHIFT, end);
3063 /*
3064 * If a page can not be invalidated, return 0 to fall back
3065 * to buffered write.
3066 */
3067 if (written) {
3068 if (written == -EBUSY)
3069 return 0;
3070 goto out;
3071 }
3072
3073 written = mapping->a_ops->direct_IO(iocb, from);
3074
3075 /*
3076 * Finally, try again to invalidate clean pages which might have been
3077 * cached by non-direct readahead, or faulted in by get_user_pages()
3078 * if the source of the write was an mmap'ed region of the file
3079 * we're writing. Either one is a pretty crazy thing to do,
3080 * so we don't support it 100%. If this invalidation
3081 * fails, tough, the write still worked...
3082 *
3083 * Most of the time we do not need this since dio_complete() will do
3084 * the invalidation for us. However there are some file systems that
3085 * do not end up with dio_complete() being called, so let's not break
3086 * them by removing it completely
3087 */
3088 if (mapping->nrpages)
3089 invalidate_inode_pages2_range(mapping,
3090 pos >> PAGE_SHIFT, end);
3091
3092 if (written > 0) {
3093 pos += written;
3094 write_len -= written;
3095 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3096 i_size_write(inode, pos);
3097 mark_inode_dirty(inode);
3098 }
3099 iocb->ki_pos = pos;
3100 }
3101 iov_iter_revert(from, write_len - iov_iter_count(from));
3102 out:
3103 return written;
3104 }
3105 EXPORT_SYMBOL(generic_file_direct_write);
3106
3107 /*
3108 * Find or create a page at the given pagecache position. Return the locked
3109 * page. This function is specifically for buffered writes.
3110 */
grab_cache_page_write_begin(struct address_space * mapping,pgoff_t index,unsigned flags)3111 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3112 pgoff_t index, unsigned flags)
3113 {
3114 struct page *page;
3115 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3116
3117 if (flags & AOP_FLAG_NOFS)
3118 fgp_flags |= FGP_NOFS;
3119
3120 page = pagecache_get_page(mapping, index, fgp_flags,
3121 mapping_gfp_mask(mapping));
3122 if (page)
3123 wait_for_stable_page(page);
3124
3125 return page;
3126 }
3127 EXPORT_SYMBOL(grab_cache_page_write_begin);
3128
generic_perform_write(struct file * file,struct iov_iter * i,loff_t pos)3129 ssize_t generic_perform_write(struct file *file,
3130 struct iov_iter *i, loff_t pos)
3131 {
3132 struct address_space *mapping = file->f_mapping;
3133 const struct address_space_operations *a_ops = mapping->a_ops;
3134 long status = 0;
3135 ssize_t written = 0;
3136 unsigned int flags = 0;
3137
3138 do {
3139 struct page *page;
3140 unsigned long offset; /* Offset into pagecache page */
3141 unsigned long bytes; /* Bytes to write to page */
3142 size_t copied; /* Bytes copied from user */
3143 void *fsdata;
3144
3145 offset = (pos & (PAGE_SIZE - 1));
3146 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3147 iov_iter_count(i));
3148
3149 again:
3150 /*
3151 * Bring in the user page that we will copy from _first_.
3152 * Otherwise there's a nasty deadlock on copying from the
3153 * same page as we're writing to, without it being marked
3154 * up-to-date.
3155 *
3156 * Not only is this an optimisation, but it is also required
3157 * to check that the address is actually valid, when atomic
3158 * usercopies are used, below.
3159 */
3160 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3161 status = -EFAULT;
3162 break;
3163 }
3164
3165 if (fatal_signal_pending(current)) {
3166 status = -EINTR;
3167 break;
3168 }
3169
3170 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3171 &page, &fsdata);
3172 if (unlikely(status < 0))
3173 break;
3174
3175 if (mapping_writably_mapped(mapping))
3176 flush_dcache_page(page);
3177
3178 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3179 flush_dcache_page(page);
3180
3181 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3182 page, fsdata);
3183 if (unlikely(status < 0))
3184 break;
3185 copied = status;
3186
3187 cond_resched();
3188
3189 iov_iter_advance(i, copied);
3190 if (unlikely(copied == 0)) {
3191 /*
3192 * If we were unable to copy any data at all, we must
3193 * fall back to a single segment length write.
3194 *
3195 * If we didn't fallback here, we could livelock
3196 * because not all segments in the iov can be copied at
3197 * once without a pagefault.
3198 */
3199 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3200 iov_iter_single_seg_count(i));
3201 goto again;
3202 }
3203 pos += copied;
3204 written += copied;
3205
3206 balance_dirty_pages_ratelimited(mapping);
3207 } while (iov_iter_count(i));
3208
3209 return written ? written : status;
3210 }
3211 EXPORT_SYMBOL(generic_perform_write);
3212
3213 /**
3214 * __generic_file_write_iter - write data to a file
3215 * @iocb: IO state structure (file, offset, etc.)
3216 * @from: iov_iter with data to write
3217 *
3218 * This function does all the work needed for actually writing data to a
3219 * file. It does all basic checks, removes SUID from the file, updates
3220 * modification times and calls proper subroutines depending on whether we
3221 * do direct IO or a standard buffered write.
3222 *
3223 * It expects i_mutex to be grabbed unless we work on a block device or similar
3224 * object which does not need locking at all.
3225 *
3226 * This function does *not* take care of syncing data in case of O_SYNC write.
3227 * A caller has to handle it. This is mainly due to the fact that we want to
3228 * avoid syncing under i_mutex.
3229 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3230 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3231 {
3232 struct file *file = iocb->ki_filp;
3233 struct address_space * mapping = file->f_mapping;
3234 struct inode *inode = mapping->host;
3235 ssize_t written = 0;
3236 ssize_t err;
3237 ssize_t status;
3238
3239 /* We can write back this queue in page reclaim */
3240 current->backing_dev_info = inode_to_bdi(inode);
3241 err = file_remove_privs(file);
3242 if (err)
3243 goto out;
3244
3245 err = file_update_time(file);
3246 if (err)
3247 goto out;
3248
3249 if (iocb->ki_flags & IOCB_DIRECT) {
3250 loff_t pos, endbyte;
3251
3252 written = generic_file_direct_write(iocb, from);
3253 /*
3254 * If the write stopped short of completing, fall back to
3255 * buffered writes. Some filesystems do this for writes to
3256 * holes, for example. For DAX files, a buffered write will
3257 * not succeed (even if it did, DAX does not handle dirty
3258 * page-cache pages correctly).
3259 */
3260 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3261 goto out;
3262
3263 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3264 /*
3265 * If generic_perform_write() returned a synchronous error
3266 * then we want to return the number of bytes which were
3267 * direct-written, or the error code if that was zero. Note
3268 * that this differs from normal direct-io semantics, which
3269 * will return -EFOO even if some bytes were written.
3270 */
3271 if (unlikely(status < 0)) {
3272 err = status;
3273 goto out;
3274 }
3275 /*
3276 * We need to ensure that the page cache pages are written to
3277 * disk and invalidated to preserve the expected O_DIRECT
3278 * semantics.
3279 */
3280 endbyte = pos + status - 1;
3281 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3282 if (err == 0) {
3283 iocb->ki_pos = endbyte + 1;
3284 written += status;
3285 invalidate_mapping_pages(mapping,
3286 pos >> PAGE_SHIFT,
3287 endbyte >> PAGE_SHIFT);
3288 } else {
3289 /*
3290 * We don't know how much we wrote, so just return
3291 * the number of bytes which were direct-written
3292 */
3293 }
3294 } else {
3295 written = generic_perform_write(file, from, iocb->ki_pos);
3296 if (likely(written > 0))
3297 iocb->ki_pos += written;
3298 }
3299 out:
3300 current->backing_dev_info = NULL;
3301 return written ? written : err;
3302 }
3303 EXPORT_SYMBOL(__generic_file_write_iter);
3304
3305 /**
3306 * generic_file_write_iter - write data to a file
3307 * @iocb: IO state structure
3308 * @from: iov_iter with data to write
3309 *
3310 * This is a wrapper around __generic_file_write_iter() to be used by most
3311 * filesystems. It takes care of syncing the file in case of O_SYNC file
3312 * and acquires i_mutex as needed.
3313 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3314 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3315 {
3316 struct file *file = iocb->ki_filp;
3317 struct inode *inode = file->f_mapping->host;
3318 ssize_t ret;
3319
3320 inode_lock(inode);
3321 ret = generic_write_checks(iocb, from);
3322 if (ret > 0)
3323 ret = __generic_file_write_iter(iocb, from);
3324 inode_unlock(inode);
3325
3326 if (ret > 0)
3327 ret = generic_write_sync(iocb, ret);
3328 return ret;
3329 }
3330 EXPORT_SYMBOL(generic_file_write_iter);
3331
3332 /**
3333 * try_to_release_page() - release old fs-specific metadata on a page
3334 *
3335 * @page: the page which the kernel is trying to free
3336 * @gfp_mask: memory allocation flags (and I/O mode)
3337 *
3338 * The address_space is to try to release any data against the page
3339 * (presumably at page->private). If the release was successful, return '1'.
3340 * Otherwise return zero.
3341 *
3342 * This may also be called if PG_fscache is set on a page, indicating that the
3343 * page is known to the local caching routines.
3344 *
3345 * The @gfp_mask argument specifies whether I/O may be performed to release
3346 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3347 *
3348 */
try_to_release_page(struct page * page,gfp_t gfp_mask)3349 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3350 {
3351 struct address_space * const mapping = page->mapping;
3352
3353 BUG_ON(!PageLocked(page));
3354 if (PageWriteback(page))
3355 return 0;
3356
3357 if (mapping && mapping->a_ops->releasepage)
3358 return mapping->a_ops->releasepage(page, gfp_mask);
3359 return try_to_free_buffers(page);
3360 }
3361
3362 EXPORT_SYMBOL(try_to_release_page);
3363