• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/shmem_fs.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43 
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 
49 #include <asm/mman.h>
50 
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62 
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem		(truncate_pagecache)
67  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock		(exclusive_swap_page, others)
69  *        ->i_pages lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
77  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page		(access_process_vm)
81  *
82  *  ->i_mutex			(generic_perform_write)
83  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock			(fs/fs-writeback.c)
87  *    ->i_pages lock		(__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock		(vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock		(try_to_unmap_one)
97  *    ->private_lock		(try_to_unmap_one)
98  *    ->i_pages lock		(try_to_unmap_one)
99  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
101  *    ->private_lock		(page_remove_rmap->set_page_dirty)
102  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
108  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113 
page_cache_tree_insert(struct address_space * mapping,struct page * page,void ** shadowp)114 static int page_cache_tree_insert(struct address_space *mapping,
115 				  struct page *page, void **shadowp)
116 {
117 	struct radix_tree_node *node;
118 	void **slot;
119 	int error;
120 
121 	error = __radix_tree_create(&mapping->i_pages, page->index, 0,
122 				    &node, &slot);
123 	if (error)
124 		return error;
125 	if (*slot) {
126 		void *p;
127 
128 		p = radix_tree_deref_slot_protected(slot,
129 						    &mapping->i_pages.xa_lock);
130 		if (!radix_tree_exceptional_entry(p))
131 			return -EEXIST;
132 
133 		mapping->nrexceptional--;
134 		if (shadowp)
135 			*shadowp = p;
136 	}
137 	__radix_tree_replace(&mapping->i_pages, node, slot, page,
138 			     workingset_lookup_update(mapping));
139 	mapping->nrpages++;
140 	return 0;
141 }
142 
page_cache_tree_delete(struct address_space * mapping,struct page * page,void * shadow)143 static void page_cache_tree_delete(struct address_space *mapping,
144 				   struct page *page, void *shadow)
145 {
146 	int i, nr;
147 
148 	/* hugetlb pages are represented by one entry in the radix tree */
149 	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
150 
151 	VM_BUG_ON_PAGE(!PageLocked(page), page);
152 	VM_BUG_ON_PAGE(PageTail(page), page);
153 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
154 
155 	for (i = 0; i < nr; i++) {
156 		struct radix_tree_node *node;
157 		void **slot;
158 
159 		__radix_tree_lookup(&mapping->i_pages, page->index + i,
160 				    &node, &slot);
161 
162 		VM_BUG_ON_PAGE(!node && nr != 1, page);
163 
164 		radix_tree_clear_tags(&mapping->i_pages, node, slot);
165 		__radix_tree_replace(&mapping->i_pages, node, slot, shadow,
166 				workingset_lookup_update(mapping));
167 	}
168 
169 	page->mapping = NULL;
170 	/* Leave page->index set: truncation lookup relies upon it */
171 
172 	if (shadow) {
173 		mapping->nrexceptional += nr;
174 		/*
175 		 * Make sure the nrexceptional update is committed before
176 		 * the nrpages update so that final truncate racing
177 		 * with reclaim does not see both counters 0 at the
178 		 * same time and miss a shadow entry.
179 		 */
180 		smp_wmb();
181 	}
182 	mapping->nrpages -= nr;
183 }
184 
unaccount_page_cache_page(struct address_space * mapping,struct page * page)185 static void unaccount_page_cache_page(struct address_space *mapping,
186 				      struct page *page)
187 {
188 	int nr;
189 
190 	/*
191 	 * if we're uptodate, flush out into the cleancache, otherwise
192 	 * invalidate any existing cleancache entries.  We can't leave
193 	 * stale data around in the cleancache once our page is gone
194 	 */
195 	if (PageUptodate(page) && PageMappedToDisk(page))
196 		cleancache_put_page(page);
197 	else
198 		cleancache_invalidate_page(mapping, page);
199 
200 	VM_BUG_ON_PAGE(PageTail(page), page);
201 	VM_BUG_ON_PAGE(page_mapped(page), page);
202 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
203 		int mapcount;
204 
205 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
206 			 current->comm, page_to_pfn(page));
207 		dump_page(page, "still mapped when deleted");
208 		dump_stack();
209 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
210 
211 		mapcount = page_mapcount(page);
212 		if (mapping_exiting(mapping) &&
213 		    page_count(page) >= mapcount + 2) {
214 			/*
215 			 * All vmas have already been torn down, so it's
216 			 * a good bet that actually the page is unmapped,
217 			 * and we'd prefer not to leak it: if we're wrong,
218 			 * some other bad page check should catch it later.
219 			 */
220 			page_mapcount_reset(page);
221 			page_ref_sub(page, mapcount);
222 		}
223 	}
224 
225 	/* hugetlb pages do not participate in page cache accounting. */
226 	if (PageHuge(page))
227 		return;
228 
229 	nr = hpage_nr_pages(page);
230 
231 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
232 	if (PageSwapBacked(page)) {
233 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
234 		if (PageTransHuge(page))
235 			__dec_node_page_state(page, NR_SHMEM_THPS);
236 	} else {
237 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
238 	}
239 
240 	/*
241 	 * At this point page must be either written or cleaned by
242 	 * truncate.  Dirty page here signals a bug and loss of
243 	 * unwritten data.
244 	 *
245 	 * This fixes dirty accounting after removing the page entirely
246 	 * but leaves PageDirty set: it has no effect for truncated
247 	 * page and anyway will be cleared before returning page into
248 	 * buddy allocator.
249 	 */
250 	if (WARN_ON_ONCE(PageDirty(page)))
251 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
252 }
253 
254 /*
255  * Delete a page from the page cache and free it. Caller has to make
256  * sure the page is locked and that nobody else uses it - or that usage
257  * is safe.  The caller must hold the i_pages lock.
258  */
__delete_from_page_cache(struct page * page,void * shadow)259 void __delete_from_page_cache(struct page *page, void *shadow)
260 {
261 	struct address_space *mapping = page->mapping;
262 
263 	trace_mm_filemap_delete_from_page_cache(page);
264 
265 	unaccount_page_cache_page(mapping, page);
266 	page_cache_tree_delete(mapping, page, shadow);
267 }
268 
page_cache_free_page(struct address_space * mapping,struct page * page)269 static void page_cache_free_page(struct address_space *mapping,
270 				struct page *page)
271 {
272 	void (*freepage)(struct page *);
273 
274 	freepage = mapping->a_ops->freepage;
275 	if (freepage)
276 		freepage(page);
277 
278 	if (PageTransHuge(page) && !PageHuge(page)) {
279 		page_ref_sub(page, HPAGE_PMD_NR);
280 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
281 	} else {
282 		put_page(page);
283 	}
284 }
285 
286 /**
287  * delete_from_page_cache - delete page from page cache
288  * @page: the page which the kernel is trying to remove from page cache
289  *
290  * This must be called only on pages that have been verified to be in the page
291  * cache and locked.  It will never put the page into the free list, the caller
292  * has a reference on the page.
293  */
delete_from_page_cache(struct page * page)294 void delete_from_page_cache(struct page *page)
295 {
296 	struct address_space *mapping = page_mapping(page);
297 	unsigned long flags;
298 
299 	BUG_ON(!PageLocked(page));
300 	xa_lock_irqsave(&mapping->i_pages, flags);
301 	__delete_from_page_cache(page, NULL);
302 	xa_unlock_irqrestore(&mapping->i_pages, flags);
303 
304 	page_cache_free_page(mapping, page);
305 }
306 EXPORT_SYMBOL(delete_from_page_cache);
307 
308 /*
309  * page_cache_tree_delete_batch - delete several pages from page cache
310  * @mapping: the mapping to which pages belong
311  * @pvec: pagevec with pages to delete
312  *
313  * The function walks over mapping->i_pages and removes pages passed in @pvec
314  * from the mapping. The function expects @pvec to be sorted by page index.
315  * It tolerates holes in @pvec (mapping entries at those indices are not
316  * modified). The function expects only THP head pages to be present in the
317  * @pvec and takes care to delete all corresponding tail pages from the
318  * mapping as well.
319  *
320  * The function expects the i_pages lock to be held.
321  */
322 static void
page_cache_tree_delete_batch(struct address_space * mapping,struct pagevec * pvec)323 page_cache_tree_delete_batch(struct address_space *mapping,
324 			     struct pagevec *pvec)
325 {
326 	struct radix_tree_iter iter;
327 	void **slot;
328 	int total_pages = 0;
329 	int i = 0, tail_pages = 0;
330 	struct page *page;
331 	pgoff_t start;
332 
333 	start = pvec->pages[0]->index;
334 	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
335 		if (i >= pagevec_count(pvec) && !tail_pages)
336 			break;
337 		page = radix_tree_deref_slot_protected(slot,
338 						       &mapping->i_pages.xa_lock);
339 		if (radix_tree_exceptional_entry(page))
340 			continue;
341 		if (!tail_pages) {
342 			/*
343 			 * Some page got inserted in our range? Skip it. We
344 			 * have our pages locked so they are protected from
345 			 * being removed.
346 			 */
347 			if (page != pvec->pages[i])
348 				continue;
349 			WARN_ON_ONCE(!PageLocked(page));
350 			if (PageTransHuge(page) && !PageHuge(page))
351 				tail_pages = HPAGE_PMD_NR - 1;
352 			page->mapping = NULL;
353 			/*
354 			 * Leave page->index set: truncation lookup relies
355 			 * upon it
356 			 */
357 			i++;
358 		} else {
359 			tail_pages--;
360 		}
361 		radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
362 		__radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
363 				workingset_lookup_update(mapping));
364 		total_pages++;
365 	}
366 	mapping->nrpages -= total_pages;
367 }
368 
delete_from_page_cache_batch(struct address_space * mapping,struct pagevec * pvec)369 void delete_from_page_cache_batch(struct address_space *mapping,
370 				  struct pagevec *pvec)
371 {
372 	int i;
373 	unsigned long flags;
374 
375 	if (!pagevec_count(pvec))
376 		return;
377 
378 	xa_lock_irqsave(&mapping->i_pages, flags);
379 	for (i = 0; i < pagevec_count(pvec); i++) {
380 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
381 
382 		unaccount_page_cache_page(mapping, pvec->pages[i]);
383 	}
384 	page_cache_tree_delete_batch(mapping, pvec);
385 	xa_unlock_irqrestore(&mapping->i_pages, flags);
386 
387 	for (i = 0; i < pagevec_count(pvec); i++)
388 		page_cache_free_page(mapping, pvec->pages[i]);
389 }
390 
filemap_check_errors(struct address_space * mapping)391 int filemap_check_errors(struct address_space *mapping)
392 {
393 	int ret = 0;
394 	/* Check for outstanding write errors */
395 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
396 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
397 		ret = -ENOSPC;
398 	if (test_bit(AS_EIO, &mapping->flags) &&
399 	    test_and_clear_bit(AS_EIO, &mapping->flags))
400 		ret = -EIO;
401 	return ret;
402 }
403 EXPORT_SYMBOL(filemap_check_errors);
404 
filemap_check_and_keep_errors(struct address_space * mapping)405 static int filemap_check_and_keep_errors(struct address_space *mapping)
406 {
407 	/* Check for outstanding write errors */
408 	if (test_bit(AS_EIO, &mapping->flags))
409 		return -EIO;
410 	if (test_bit(AS_ENOSPC, &mapping->flags))
411 		return -ENOSPC;
412 	return 0;
413 }
414 
415 /**
416  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
417  * @mapping:	address space structure to write
418  * @start:	offset in bytes where the range starts
419  * @end:	offset in bytes where the range ends (inclusive)
420  * @sync_mode:	enable synchronous operation
421  *
422  * Start writeback against all of a mapping's dirty pages that lie
423  * within the byte offsets <start, end> inclusive.
424  *
425  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
426  * opposed to a regular memory cleansing writeback.  The difference between
427  * these two operations is that if a dirty page/buffer is encountered, it must
428  * be waited upon, and not just skipped over.
429  */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)430 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431 				loff_t end, int sync_mode)
432 {
433 	int ret;
434 	struct writeback_control wbc = {
435 		.sync_mode = sync_mode,
436 		.nr_to_write = LONG_MAX,
437 		.range_start = start,
438 		.range_end = end,
439 	};
440 
441 	if (!mapping_cap_writeback_dirty(mapping) ||
442 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
443 		return 0;
444 
445 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
446 	ret = do_writepages(mapping, &wbc);
447 	wbc_detach_inode(&wbc);
448 	return ret;
449 }
450 
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)451 static inline int __filemap_fdatawrite(struct address_space *mapping,
452 	int sync_mode)
453 {
454 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
455 }
456 
filemap_fdatawrite(struct address_space * mapping)457 int filemap_fdatawrite(struct address_space *mapping)
458 {
459 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
460 }
461 EXPORT_SYMBOL(filemap_fdatawrite);
462 
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)463 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
464 				loff_t end)
465 {
466 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
467 }
468 EXPORT_SYMBOL(filemap_fdatawrite_range);
469 
470 /**
471  * filemap_flush - mostly a non-blocking flush
472  * @mapping:	target address_space
473  *
474  * This is a mostly non-blocking flush.  Not suitable for data-integrity
475  * purposes - I/O may not be started against all dirty pages.
476  */
filemap_flush(struct address_space * mapping)477 int filemap_flush(struct address_space *mapping)
478 {
479 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
480 }
481 EXPORT_SYMBOL(filemap_flush);
482 
483 /**
484  * filemap_range_has_page - check if a page exists in range.
485  * @mapping:           address space within which to check
486  * @start_byte:        offset in bytes where the range starts
487  * @end_byte:          offset in bytes where the range ends (inclusive)
488  *
489  * Find at least one page in the range supplied, usually used to check if
490  * direct writing in this range will trigger a writeback.
491  */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)492 bool filemap_range_has_page(struct address_space *mapping,
493 			   loff_t start_byte, loff_t end_byte)
494 {
495 	pgoff_t index = start_byte >> PAGE_SHIFT;
496 	pgoff_t end = end_byte >> PAGE_SHIFT;
497 	struct page *page;
498 
499 	if (end_byte < start_byte)
500 		return false;
501 
502 	if (mapping->nrpages == 0)
503 		return false;
504 
505 	if (!find_get_pages_range(mapping, &index, end, 1, &page))
506 		return false;
507 	put_page(page);
508 	return true;
509 }
510 EXPORT_SYMBOL(filemap_range_has_page);
511 
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)512 static void __filemap_fdatawait_range(struct address_space *mapping,
513 				     loff_t start_byte, loff_t end_byte)
514 {
515 	pgoff_t index = start_byte >> PAGE_SHIFT;
516 	pgoff_t end = end_byte >> PAGE_SHIFT;
517 	struct pagevec pvec;
518 	int nr_pages;
519 
520 	if (end_byte < start_byte)
521 		return;
522 
523 	pagevec_init(&pvec);
524 	while (index <= end) {
525 		unsigned i;
526 
527 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
528 				end, PAGECACHE_TAG_WRITEBACK);
529 		if (!nr_pages)
530 			break;
531 
532 		for (i = 0; i < nr_pages; i++) {
533 			struct page *page = pvec.pages[i];
534 
535 			wait_on_page_writeback(page);
536 			ClearPageError(page);
537 		}
538 		pagevec_release(&pvec);
539 		cond_resched();
540 	}
541 }
542 
543 /**
544  * filemap_fdatawait_range - wait for writeback to complete
545  * @mapping:		address space structure to wait for
546  * @start_byte:		offset in bytes where the range starts
547  * @end_byte:		offset in bytes where the range ends (inclusive)
548  *
549  * Walk the list of under-writeback pages of the given address space
550  * in the given range and wait for all of them.  Check error status of
551  * the address space and return it.
552  *
553  * Since the error status of the address space is cleared by this function,
554  * callers are responsible for checking the return value and handling and/or
555  * reporting the error.
556  */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)557 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
558 			    loff_t end_byte)
559 {
560 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
561 	return filemap_check_errors(mapping);
562 }
563 EXPORT_SYMBOL(filemap_fdatawait_range);
564 
565 /**
566  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
567  * @mapping:		address space structure to wait for
568  * @start_byte:		offset in bytes where the range starts
569  * @end_byte:		offset in bytes where the range ends (inclusive)
570  *
571  * Walk the list of under-writeback pages of the given address space in the
572  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
573  * this function does not clear error status of the address space.
574  *
575  * Use this function if callers don't handle errors themselves.  Expected
576  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
577  * fsfreeze(8)
578  */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)579 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
580 		loff_t start_byte, loff_t end_byte)
581 {
582 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
583 	return filemap_check_and_keep_errors(mapping);
584 }
585 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
586 
587 /**
588  * file_fdatawait_range - wait for writeback to complete
589  * @file:		file pointing to address space structure to wait for
590  * @start_byte:		offset in bytes where the range starts
591  * @end_byte:		offset in bytes where the range ends (inclusive)
592  *
593  * Walk the list of under-writeback pages of the address space that file
594  * refers to, in the given range and wait for all of them.  Check error
595  * status of the address space vs. the file->f_wb_err cursor and return it.
596  *
597  * Since the error status of the file is advanced by this function,
598  * callers are responsible for checking the return value and handling and/or
599  * reporting the error.
600  */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)601 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
602 {
603 	struct address_space *mapping = file->f_mapping;
604 
605 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
606 	return file_check_and_advance_wb_err(file);
607 }
608 EXPORT_SYMBOL(file_fdatawait_range);
609 
610 /**
611  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
612  * @mapping: address space structure to wait for
613  *
614  * Walk the list of under-writeback pages of the given address space
615  * and wait for all of them.  Unlike filemap_fdatawait(), this function
616  * does not clear error status of the address space.
617  *
618  * Use this function if callers don't handle errors themselves.  Expected
619  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
620  * fsfreeze(8)
621  */
filemap_fdatawait_keep_errors(struct address_space * mapping)622 int filemap_fdatawait_keep_errors(struct address_space *mapping)
623 {
624 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
625 	return filemap_check_and_keep_errors(mapping);
626 }
627 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
628 
mapping_needs_writeback(struct address_space * mapping)629 static bool mapping_needs_writeback(struct address_space *mapping)
630 {
631 	return (!dax_mapping(mapping) && mapping->nrpages) ||
632 	    (dax_mapping(mapping) && mapping->nrexceptional);
633 }
634 
filemap_write_and_wait(struct address_space * mapping)635 int filemap_write_and_wait(struct address_space *mapping)
636 {
637 	int err = 0;
638 
639 	if (mapping_needs_writeback(mapping)) {
640 		err = filemap_fdatawrite(mapping);
641 		/*
642 		 * Even if the above returned error, the pages may be
643 		 * written partially (e.g. -ENOSPC), so we wait for it.
644 		 * But the -EIO is special case, it may indicate the worst
645 		 * thing (e.g. bug) happened, so we avoid waiting for it.
646 		 */
647 		if (err != -EIO) {
648 			int err2 = filemap_fdatawait(mapping);
649 			if (!err)
650 				err = err2;
651 		} else {
652 			/* Clear any previously stored errors */
653 			filemap_check_errors(mapping);
654 		}
655 	} else {
656 		err = filemap_check_errors(mapping);
657 	}
658 	return err;
659 }
660 EXPORT_SYMBOL(filemap_write_and_wait);
661 
662 /**
663  * filemap_write_and_wait_range - write out & wait on a file range
664  * @mapping:	the address_space for the pages
665  * @lstart:	offset in bytes where the range starts
666  * @lend:	offset in bytes where the range ends (inclusive)
667  *
668  * Write out and wait upon file offsets lstart->lend, inclusive.
669  *
670  * Note that @lend is inclusive (describes the last byte to be written) so
671  * that this function can be used to write to the very end-of-file (end = -1).
672  */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)673 int filemap_write_and_wait_range(struct address_space *mapping,
674 				 loff_t lstart, loff_t lend)
675 {
676 	int err = 0;
677 
678 	if (mapping_needs_writeback(mapping)) {
679 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
680 						 WB_SYNC_ALL);
681 		/* See comment of filemap_write_and_wait() */
682 		if (err != -EIO) {
683 			int err2 = filemap_fdatawait_range(mapping,
684 						lstart, lend);
685 			if (!err)
686 				err = err2;
687 		} else {
688 			/* Clear any previously stored errors */
689 			filemap_check_errors(mapping);
690 		}
691 	} else {
692 		err = filemap_check_errors(mapping);
693 	}
694 	return err;
695 }
696 EXPORT_SYMBOL(filemap_write_and_wait_range);
697 
__filemap_set_wb_err(struct address_space * mapping,int err)698 void __filemap_set_wb_err(struct address_space *mapping, int err)
699 {
700 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
701 
702 	trace_filemap_set_wb_err(mapping, eseq);
703 }
704 EXPORT_SYMBOL(__filemap_set_wb_err);
705 
706 /**
707  * file_check_and_advance_wb_err - report wb error (if any) that was previously
708  * 				   and advance wb_err to current one
709  * @file: struct file on which the error is being reported
710  *
711  * When userland calls fsync (or something like nfsd does the equivalent), we
712  * want to report any writeback errors that occurred since the last fsync (or
713  * since the file was opened if there haven't been any).
714  *
715  * Grab the wb_err from the mapping. If it matches what we have in the file,
716  * then just quickly return 0. The file is all caught up.
717  *
718  * If it doesn't match, then take the mapping value, set the "seen" flag in
719  * it and try to swap it into place. If it works, or another task beat us
720  * to it with the new value, then update the f_wb_err and return the error
721  * portion. The error at this point must be reported via proper channels
722  * (a'la fsync, or NFS COMMIT operation, etc.).
723  *
724  * While we handle mapping->wb_err with atomic operations, the f_wb_err
725  * value is protected by the f_lock since we must ensure that it reflects
726  * the latest value swapped in for this file descriptor.
727  */
file_check_and_advance_wb_err(struct file * file)728 int file_check_and_advance_wb_err(struct file *file)
729 {
730 	int err = 0;
731 	errseq_t old = READ_ONCE(file->f_wb_err);
732 	struct address_space *mapping = file->f_mapping;
733 
734 	/* Locklessly handle the common case where nothing has changed */
735 	if (errseq_check(&mapping->wb_err, old)) {
736 		/* Something changed, must use slow path */
737 		spin_lock(&file->f_lock);
738 		old = file->f_wb_err;
739 		err = errseq_check_and_advance(&mapping->wb_err,
740 						&file->f_wb_err);
741 		trace_file_check_and_advance_wb_err(file, old);
742 		spin_unlock(&file->f_lock);
743 	}
744 
745 	/*
746 	 * We're mostly using this function as a drop in replacement for
747 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
748 	 * that the legacy code would have had on these flags.
749 	 */
750 	clear_bit(AS_EIO, &mapping->flags);
751 	clear_bit(AS_ENOSPC, &mapping->flags);
752 	return err;
753 }
754 EXPORT_SYMBOL(file_check_and_advance_wb_err);
755 
756 /**
757  * file_write_and_wait_range - write out & wait on a file range
758  * @file:	file pointing to address_space with pages
759  * @lstart:	offset in bytes where the range starts
760  * @lend:	offset in bytes where the range ends (inclusive)
761  *
762  * Write out and wait upon file offsets lstart->lend, inclusive.
763  *
764  * Note that @lend is inclusive (describes the last byte to be written) so
765  * that this function can be used to write to the very end-of-file (end = -1).
766  *
767  * After writing out and waiting on the data, we check and advance the
768  * f_wb_err cursor to the latest value, and return any errors detected there.
769  */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)770 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
771 {
772 	int err = 0, err2;
773 	struct address_space *mapping = file->f_mapping;
774 
775 	if (mapping_needs_writeback(mapping)) {
776 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
777 						 WB_SYNC_ALL);
778 		/* See comment of filemap_write_and_wait() */
779 		if (err != -EIO)
780 			__filemap_fdatawait_range(mapping, lstart, lend);
781 	}
782 	err2 = file_check_and_advance_wb_err(file);
783 	if (!err)
784 		err = err2;
785 	return err;
786 }
787 EXPORT_SYMBOL(file_write_and_wait_range);
788 
789 /**
790  * replace_page_cache_page - replace a pagecache page with a new one
791  * @old:	page to be replaced
792  * @new:	page to replace with
793  * @gfp_mask:	allocation mode
794  *
795  * This function replaces a page in the pagecache with a new one.  On
796  * success it acquires the pagecache reference for the new page and
797  * drops it for the old page.  Both the old and new pages must be
798  * locked.  This function does not add the new page to the LRU, the
799  * caller must do that.
800  *
801  * The remove + add is atomic.  The only way this function can fail is
802  * memory allocation failure.
803  */
replace_page_cache_page(struct page * old,struct page * new,gfp_t gfp_mask)804 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
805 {
806 	int error;
807 
808 	VM_BUG_ON_PAGE(!PageLocked(old), old);
809 	VM_BUG_ON_PAGE(!PageLocked(new), new);
810 	VM_BUG_ON_PAGE(new->mapping, new);
811 
812 	error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
813 	if (!error) {
814 		struct address_space *mapping = old->mapping;
815 		void (*freepage)(struct page *);
816 		unsigned long flags;
817 
818 		pgoff_t offset = old->index;
819 		freepage = mapping->a_ops->freepage;
820 
821 		get_page(new);
822 		new->mapping = mapping;
823 		new->index = offset;
824 
825 		xa_lock_irqsave(&mapping->i_pages, flags);
826 		__delete_from_page_cache(old, NULL);
827 		error = page_cache_tree_insert(mapping, new, NULL);
828 		BUG_ON(error);
829 
830 		/*
831 		 * hugetlb pages do not participate in page cache accounting.
832 		 */
833 		if (!PageHuge(new))
834 			__inc_node_page_state(new, NR_FILE_PAGES);
835 		if (PageSwapBacked(new))
836 			__inc_node_page_state(new, NR_SHMEM);
837 		xa_unlock_irqrestore(&mapping->i_pages, flags);
838 		mem_cgroup_migrate(old, new);
839 		radix_tree_preload_end();
840 		if (freepage)
841 			freepage(old);
842 		put_page(old);
843 	}
844 
845 	return error;
846 }
847 EXPORT_SYMBOL_GPL(replace_page_cache_page);
848 
__add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask,void ** shadowp)849 static int __add_to_page_cache_locked(struct page *page,
850 				      struct address_space *mapping,
851 				      pgoff_t offset, gfp_t gfp_mask,
852 				      void **shadowp)
853 {
854 	int huge = PageHuge(page);
855 	struct mem_cgroup *memcg;
856 	int error;
857 
858 	VM_BUG_ON_PAGE(!PageLocked(page), page);
859 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
860 
861 	if (!huge) {
862 		error = mem_cgroup_try_charge(page, current->mm,
863 					      gfp_mask, &memcg, false);
864 		if (error)
865 			return error;
866 	}
867 
868 	error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
869 	if (error) {
870 		if (!huge)
871 			mem_cgroup_cancel_charge(page, memcg, false);
872 		return error;
873 	}
874 
875 	get_page(page);
876 	page->mapping = mapping;
877 	page->index = offset;
878 
879 	xa_lock_irq(&mapping->i_pages);
880 	error = page_cache_tree_insert(mapping, page, shadowp);
881 	radix_tree_preload_end();
882 	if (unlikely(error))
883 		goto err_insert;
884 
885 	/* hugetlb pages do not participate in page cache accounting. */
886 	if (!huge)
887 		__inc_node_page_state(page, NR_FILE_PAGES);
888 	xa_unlock_irq(&mapping->i_pages);
889 	if (!huge)
890 		mem_cgroup_commit_charge(page, memcg, false, false);
891 	trace_mm_filemap_add_to_page_cache(page);
892 	return 0;
893 err_insert:
894 	page->mapping = NULL;
895 	/* Leave page->index set: truncation relies upon it */
896 	xa_unlock_irq(&mapping->i_pages);
897 	if (!huge)
898 		mem_cgroup_cancel_charge(page, memcg, false);
899 	put_page(page);
900 	return error;
901 }
902 
903 /**
904  * add_to_page_cache_locked - add a locked page to the pagecache
905  * @page:	page to add
906  * @mapping:	the page's address_space
907  * @offset:	page index
908  * @gfp_mask:	page allocation mode
909  *
910  * This function is used to add a page to the pagecache. It must be locked.
911  * This function does not add the page to the LRU.  The caller must do that.
912  */
add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)913 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
914 		pgoff_t offset, gfp_t gfp_mask)
915 {
916 	return __add_to_page_cache_locked(page, mapping, offset,
917 					  gfp_mask, NULL);
918 }
919 EXPORT_SYMBOL(add_to_page_cache_locked);
920 
add_to_page_cache_lru(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)921 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
922 				pgoff_t offset, gfp_t gfp_mask)
923 {
924 	void *shadow = NULL;
925 	int ret;
926 
927 	__SetPageLocked(page);
928 	ret = __add_to_page_cache_locked(page, mapping, offset,
929 					 gfp_mask, &shadow);
930 	if (unlikely(ret))
931 		__ClearPageLocked(page);
932 	else {
933 		/*
934 		 * The page might have been evicted from cache only
935 		 * recently, in which case it should be activated like
936 		 * any other repeatedly accessed page.
937 		 * The exception is pages getting rewritten; evicting other
938 		 * data from the working set, only to cache data that will
939 		 * get overwritten with something else, is a waste of memory.
940 		 */
941 		if (!(gfp_mask & __GFP_WRITE) &&
942 		    shadow && workingset_refault(shadow)) {
943 			SetPageActive(page);
944 			workingset_activation(page);
945 		} else
946 			ClearPageActive(page);
947 		lru_cache_add(page);
948 	}
949 	return ret;
950 }
951 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
952 
953 #ifdef CONFIG_NUMA
__page_cache_alloc(gfp_t gfp)954 struct page *__page_cache_alloc(gfp_t gfp)
955 {
956 	int n;
957 	struct page *page;
958 
959 	if (cpuset_do_page_mem_spread()) {
960 		unsigned int cpuset_mems_cookie;
961 		do {
962 			cpuset_mems_cookie = read_mems_allowed_begin();
963 			n = cpuset_mem_spread_node();
964 			page = __alloc_pages_node(n, gfp, 0);
965 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
966 
967 		return page;
968 	}
969 	return alloc_pages(gfp, 0);
970 }
971 EXPORT_SYMBOL(__page_cache_alloc);
972 #endif
973 
974 /*
975  * In order to wait for pages to become available there must be
976  * waitqueues associated with pages. By using a hash table of
977  * waitqueues where the bucket discipline is to maintain all
978  * waiters on the same queue and wake all when any of the pages
979  * become available, and for the woken contexts to check to be
980  * sure the appropriate page became available, this saves space
981  * at a cost of "thundering herd" phenomena during rare hash
982  * collisions.
983  */
984 #define PAGE_WAIT_TABLE_BITS 8
985 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
986 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
987 
page_waitqueue(struct page * page)988 static wait_queue_head_t *page_waitqueue(struct page *page)
989 {
990 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
991 }
992 
pagecache_init(void)993 void __init pagecache_init(void)
994 {
995 	int i;
996 
997 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
998 		init_waitqueue_head(&page_wait_table[i]);
999 
1000 	page_writeback_init();
1001 }
1002 
1003 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1004 struct wait_page_key {
1005 	struct page *page;
1006 	int bit_nr;
1007 	int page_match;
1008 };
1009 
1010 struct wait_page_queue {
1011 	struct page *page;
1012 	int bit_nr;
1013 	wait_queue_entry_t wait;
1014 };
1015 
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1016 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1017 {
1018 	struct wait_page_key *key = arg;
1019 	struct wait_page_queue *wait_page
1020 		= container_of(wait, struct wait_page_queue, wait);
1021 
1022 	if (wait_page->page != key->page)
1023 	       return 0;
1024 	key->page_match = 1;
1025 
1026 	if (wait_page->bit_nr != key->bit_nr)
1027 		return 0;
1028 
1029 	/* Stop walking if it's locked */
1030 	if (test_bit(key->bit_nr, &key->page->flags))
1031 		return -1;
1032 
1033 	return autoremove_wake_function(wait, mode, sync, key);
1034 }
1035 
wake_up_page_bit(struct page * page,int bit_nr)1036 static void wake_up_page_bit(struct page *page, int bit_nr)
1037 {
1038 	wait_queue_head_t *q = page_waitqueue(page);
1039 	struct wait_page_key key;
1040 	unsigned long flags;
1041 	wait_queue_entry_t bookmark;
1042 
1043 	key.page = page;
1044 	key.bit_nr = bit_nr;
1045 	key.page_match = 0;
1046 
1047 	bookmark.flags = 0;
1048 	bookmark.private = NULL;
1049 	bookmark.func = NULL;
1050 	INIT_LIST_HEAD(&bookmark.entry);
1051 
1052 	spin_lock_irqsave(&q->lock, flags);
1053 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1054 
1055 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1056 		/*
1057 		 * Take a breather from holding the lock,
1058 		 * allow pages that finish wake up asynchronously
1059 		 * to acquire the lock and remove themselves
1060 		 * from wait queue
1061 		 */
1062 		spin_unlock_irqrestore(&q->lock, flags);
1063 		cpu_relax();
1064 		spin_lock_irqsave(&q->lock, flags);
1065 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1066 	}
1067 
1068 	/*
1069 	 * It is possible for other pages to have collided on the waitqueue
1070 	 * hash, so in that case check for a page match. That prevents a long-
1071 	 * term waiter
1072 	 *
1073 	 * It is still possible to miss a case here, when we woke page waiters
1074 	 * and removed them from the waitqueue, but there are still other
1075 	 * page waiters.
1076 	 */
1077 	if (!waitqueue_active(q) || !key.page_match) {
1078 		ClearPageWaiters(page);
1079 		/*
1080 		 * It's possible to miss clearing Waiters here, when we woke
1081 		 * our page waiters, but the hashed waitqueue has waiters for
1082 		 * other pages on it.
1083 		 *
1084 		 * That's okay, it's a rare case. The next waker will clear it.
1085 		 */
1086 	}
1087 	spin_unlock_irqrestore(&q->lock, flags);
1088 }
1089 
wake_up_page(struct page * page,int bit)1090 static void wake_up_page(struct page *page, int bit)
1091 {
1092 	if (!PageWaiters(page))
1093 		return;
1094 	wake_up_page_bit(page, bit);
1095 }
1096 
wait_on_page_bit_common(wait_queue_head_t * q,struct page * page,int bit_nr,int state,bool lock)1097 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1098 		struct page *page, int bit_nr, int state, bool lock)
1099 {
1100 	struct wait_page_queue wait_page;
1101 	wait_queue_entry_t *wait = &wait_page.wait;
1102 	int ret = 0;
1103 
1104 	init_wait(wait);
1105 	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1106 	wait->func = wake_page_function;
1107 	wait_page.page = page;
1108 	wait_page.bit_nr = bit_nr;
1109 
1110 	for (;;) {
1111 		spin_lock_irq(&q->lock);
1112 
1113 		if (likely(list_empty(&wait->entry))) {
1114 			__add_wait_queue_entry_tail(q, wait);
1115 			SetPageWaiters(page);
1116 		}
1117 
1118 		set_current_state(state);
1119 
1120 		spin_unlock_irq(&q->lock);
1121 
1122 		if (likely(test_bit(bit_nr, &page->flags))) {
1123 			io_schedule();
1124 		}
1125 
1126 		if (lock) {
1127 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1128 				break;
1129 		} else {
1130 			if (!test_bit(bit_nr, &page->flags))
1131 				break;
1132 		}
1133 
1134 		if (unlikely(signal_pending_state(state, current))) {
1135 			ret = -EINTR;
1136 			break;
1137 		}
1138 	}
1139 
1140 	finish_wait(q, wait);
1141 
1142 	/*
1143 	 * A signal could leave PageWaiters set. Clearing it here if
1144 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1145 	 * but still fail to catch it in the case of wait hash collision. We
1146 	 * already can fail to clear wait hash collision cases, so don't
1147 	 * bother with signals either.
1148 	 */
1149 
1150 	return ret;
1151 }
1152 
wait_on_page_bit(struct page * page,int bit_nr)1153 void wait_on_page_bit(struct page *page, int bit_nr)
1154 {
1155 	wait_queue_head_t *q = page_waitqueue(page);
1156 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1157 }
1158 EXPORT_SYMBOL(wait_on_page_bit);
1159 
wait_on_page_bit_killable(struct page * page,int bit_nr)1160 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1161 {
1162 	wait_queue_head_t *q = page_waitqueue(page);
1163 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1164 }
1165 EXPORT_SYMBOL(wait_on_page_bit_killable);
1166 
1167 /**
1168  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1169  * @page: Page defining the wait queue of interest
1170  * @waiter: Waiter to add to the queue
1171  *
1172  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1173  */
add_page_wait_queue(struct page * page,wait_queue_entry_t * waiter)1174 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1175 {
1176 	wait_queue_head_t *q = page_waitqueue(page);
1177 	unsigned long flags;
1178 
1179 	spin_lock_irqsave(&q->lock, flags);
1180 	__add_wait_queue_entry_tail(q, waiter);
1181 	SetPageWaiters(page);
1182 	spin_unlock_irqrestore(&q->lock, flags);
1183 }
1184 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1185 
1186 #ifndef clear_bit_unlock_is_negative_byte
1187 
1188 /*
1189  * PG_waiters is the high bit in the same byte as PG_lock.
1190  *
1191  * On x86 (and on many other architectures), we can clear PG_lock and
1192  * test the sign bit at the same time. But if the architecture does
1193  * not support that special operation, we just do this all by hand
1194  * instead.
1195  *
1196  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1197  * being cleared, but a memory barrier should be unneccssary since it is
1198  * in the same byte as PG_locked.
1199  */
clear_bit_unlock_is_negative_byte(long nr,volatile void * mem)1200 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1201 {
1202 	clear_bit_unlock(nr, mem);
1203 	/* smp_mb__after_atomic(); */
1204 	return test_bit(PG_waiters, mem);
1205 }
1206 
1207 #endif
1208 
1209 /**
1210  * unlock_page - unlock a locked page
1211  * @page: the page
1212  *
1213  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1214  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1215  * mechanism between PageLocked pages and PageWriteback pages is shared.
1216  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1217  *
1218  * Note that this depends on PG_waiters being the sign bit in the byte
1219  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1220  * clear the PG_locked bit and test PG_waiters at the same time fairly
1221  * portably (architectures that do LL/SC can test any bit, while x86 can
1222  * test the sign bit).
1223  */
unlock_page(struct page * page)1224 void unlock_page(struct page *page)
1225 {
1226 	BUILD_BUG_ON(PG_waiters != 7);
1227 	page = compound_head(page);
1228 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1229 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1230 		wake_up_page_bit(page, PG_locked);
1231 }
1232 EXPORT_SYMBOL(unlock_page);
1233 
1234 /**
1235  * end_page_writeback - end writeback against a page
1236  * @page: the page
1237  */
end_page_writeback(struct page * page)1238 void end_page_writeback(struct page *page)
1239 {
1240 	/*
1241 	 * TestClearPageReclaim could be used here but it is an atomic
1242 	 * operation and overkill in this particular case. Failing to
1243 	 * shuffle a page marked for immediate reclaim is too mild to
1244 	 * justify taking an atomic operation penalty at the end of
1245 	 * ever page writeback.
1246 	 */
1247 	if (PageReclaim(page)) {
1248 		ClearPageReclaim(page);
1249 		rotate_reclaimable_page(page);
1250 	}
1251 
1252 	if (!test_clear_page_writeback(page))
1253 		BUG();
1254 
1255 	smp_mb__after_atomic();
1256 	wake_up_page(page, PG_writeback);
1257 }
1258 EXPORT_SYMBOL(end_page_writeback);
1259 
1260 /*
1261  * After completing I/O on a page, call this routine to update the page
1262  * flags appropriately
1263  */
page_endio(struct page * page,bool is_write,int err)1264 void page_endio(struct page *page, bool is_write, int err)
1265 {
1266 	if (!is_write) {
1267 		if (!err) {
1268 			SetPageUptodate(page);
1269 		} else {
1270 			ClearPageUptodate(page);
1271 			SetPageError(page);
1272 		}
1273 		unlock_page(page);
1274 	} else {
1275 		if (err) {
1276 			struct address_space *mapping;
1277 
1278 			SetPageError(page);
1279 			mapping = page_mapping(page);
1280 			if (mapping)
1281 				mapping_set_error(mapping, err);
1282 		}
1283 		end_page_writeback(page);
1284 	}
1285 }
1286 EXPORT_SYMBOL_GPL(page_endio);
1287 
1288 /**
1289  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1290  * @__page: the page to lock
1291  */
__lock_page(struct page * __page)1292 void __lock_page(struct page *__page)
1293 {
1294 	struct page *page = compound_head(__page);
1295 	wait_queue_head_t *q = page_waitqueue(page);
1296 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1297 }
1298 EXPORT_SYMBOL(__lock_page);
1299 
__lock_page_killable(struct page * __page)1300 int __lock_page_killable(struct page *__page)
1301 {
1302 	struct page *page = compound_head(__page);
1303 	wait_queue_head_t *q = page_waitqueue(page);
1304 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1305 }
1306 EXPORT_SYMBOL_GPL(__lock_page_killable);
1307 
1308 /*
1309  * Return values:
1310  * 1 - page is locked; mmap_sem is still held.
1311  * 0 - page is not locked.
1312  *     mmap_sem has been released (up_read()), unless flags had both
1313  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1314  *     which case mmap_sem is still held.
1315  *
1316  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1317  * with the page locked and the mmap_sem unperturbed.
1318  */
__lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)1319 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1320 			 unsigned int flags)
1321 {
1322 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1323 		/*
1324 		 * CAUTION! In this case, mmap_sem is not released
1325 		 * even though return 0.
1326 		 */
1327 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1328 			return 0;
1329 
1330 		up_read(&mm->mmap_sem);
1331 		if (flags & FAULT_FLAG_KILLABLE)
1332 			wait_on_page_locked_killable(page);
1333 		else
1334 			wait_on_page_locked(page);
1335 		return 0;
1336 	} else {
1337 		if (flags & FAULT_FLAG_KILLABLE) {
1338 			int ret;
1339 
1340 			ret = __lock_page_killable(page);
1341 			if (ret) {
1342 				up_read(&mm->mmap_sem);
1343 				return 0;
1344 			}
1345 		} else
1346 			__lock_page(page);
1347 		return 1;
1348 	}
1349 }
1350 
1351 /**
1352  * page_cache_next_hole - find the next hole (not-present entry)
1353  * @mapping: mapping
1354  * @index: index
1355  * @max_scan: maximum range to search
1356  *
1357  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1358  * lowest indexed hole.
1359  *
1360  * Returns: the index of the hole if found, otherwise returns an index
1361  * outside of the set specified (in which case 'return - index >=
1362  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1363  * be returned.
1364  *
1365  * page_cache_next_hole may be called under rcu_read_lock. However,
1366  * like radix_tree_gang_lookup, this will not atomically search a
1367  * snapshot of the tree at a single point in time. For example, if a
1368  * hole is created at index 5, then subsequently a hole is created at
1369  * index 10, page_cache_next_hole covering both indexes may return 10
1370  * if called under rcu_read_lock.
1371  */
page_cache_next_hole(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1372 pgoff_t page_cache_next_hole(struct address_space *mapping,
1373 			     pgoff_t index, unsigned long max_scan)
1374 {
1375 	unsigned long i;
1376 
1377 	for (i = 0; i < max_scan; i++) {
1378 		struct page *page;
1379 
1380 		page = radix_tree_lookup(&mapping->i_pages, index);
1381 		if (!page || radix_tree_exceptional_entry(page))
1382 			break;
1383 		index++;
1384 		if (index == 0)
1385 			break;
1386 	}
1387 
1388 	return index;
1389 }
1390 EXPORT_SYMBOL(page_cache_next_hole);
1391 
1392 /**
1393  * page_cache_prev_hole - find the prev hole (not-present entry)
1394  * @mapping: mapping
1395  * @index: index
1396  * @max_scan: maximum range to search
1397  *
1398  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1399  * the first hole.
1400  *
1401  * Returns: the index of the hole if found, otherwise returns an index
1402  * outside of the set specified (in which case 'index - return >=
1403  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1404  * will be returned.
1405  *
1406  * page_cache_prev_hole may be called under rcu_read_lock. However,
1407  * like radix_tree_gang_lookup, this will not atomically search a
1408  * snapshot of the tree at a single point in time. For example, if a
1409  * hole is created at index 10, then subsequently a hole is created at
1410  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1411  * called under rcu_read_lock.
1412  */
page_cache_prev_hole(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1413 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1414 			     pgoff_t index, unsigned long max_scan)
1415 {
1416 	unsigned long i;
1417 
1418 	for (i = 0; i < max_scan; i++) {
1419 		struct page *page;
1420 
1421 		page = radix_tree_lookup(&mapping->i_pages, index);
1422 		if (!page || radix_tree_exceptional_entry(page))
1423 			break;
1424 		index--;
1425 		if (index == ULONG_MAX)
1426 			break;
1427 	}
1428 
1429 	return index;
1430 }
1431 EXPORT_SYMBOL(page_cache_prev_hole);
1432 
1433 /**
1434  * find_get_entry - find and get a page cache entry
1435  * @mapping: the address_space to search
1436  * @offset: the page cache index
1437  *
1438  * Looks up the page cache slot at @mapping & @offset.  If there is a
1439  * page cache page, it is returned with an increased refcount.
1440  *
1441  * If the slot holds a shadow entry of a previously evicted page, or a
1442  * swap entry from shmem/tmpfs, it is returned.
1443  *
1444  * Otherwise, %NULL is returned.
1445  */
find_get_entry(struct address_space * mapping,pgoff_t offset)1446 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1447 {
1448 	void **pagep;
1449 	struct page *head, *page;
1450 
1451 	rcu_read_lock();
1452 repeat:
1453 	page = NULL;
1454 	pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
1455 	if (pagep) {
1456 		page = radix_tree_deref_slot(pagep);
1457 		if (unlikely(!page))
1458 			goto out;
1459 		if (radix_tree_exception(page)) {
1460 			if (radix_tree_deref_retry(page))
1461 				goto repeat;
1462 			/*
1463 			 * A shadow entry of a recently evicted page,
1464 			 * or a swap entry from shmem/tmpfs.  Return
1465 			 * it without attempting to raise page count.
1466 			 */
1467 			goto out;
1468 		}
1469 
1470 		head = compound_head(page);
1471 		if (!page_cache_get_speculative(head))
1472 			goto repeat;
1473 
1474 		/* The page was split under us? */
1475 		if (compound_head(page) != head) {
1476 			put_page(head);
1477 			goto repeat;
1478 		}
1479 
1480 		/*
1481 		 * Has the page moved?
1482 		 * This is part of the lockless pagecache protocol. See
1483 		 * include/linux/pagemap.h for details.
1484 		 */
1485 		if (unlikely(page != *pagep)) {
1486 			put_page(head);
1487 			goto repeat;
1488 		}
1489 	}
1490 out:
1491 	rcu_read_unlock();
1492 
1493 	return page;
1494 }
1495 EXPORT_SYMBOL(find_get_entry);
1496 
1497 /**
1498  * find_lock_entry - locate, pin and lock a page cache entry
1499  * @mapping: the address_space to search
1500  * @offset: the page cache index
1501  *
1502  * Looks up the page cache slot at @mapping & @offset.  If there is a
1503  * page cache page, it is returned locked and with an increased
1504  * refcount.
1505  *
1506  * If the slot holds a shadow entry of a previously evicted page, or a
1507  * swap entry from shmem/tmpfs, it is returned.
1508  *
1509  * Otherwise, %NULL is returned.
1510  *
1511  * find_lock_entry() may sleep.
1512  */
find_lock_entry(struct address_space * mapping,pgoff_t offset)1513 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1514 {
1515 	struct page *page;
1516 
1517 repeat:
1518 	page = find_get_entry(mapping, offset);
1519 	if (page && !radix_tree_exception(page)) {
1520 		lock_page(page);
1521 		/* Has the page been truncated? */
1522 		if (unlikely(page_mapping(page) != mapping)) {
1523 			unlock_page(page);
1524 			put_page(page);
1525 			goto repeat;
1526 		}
1527 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1528 	}
1529 	return page;
1530 }
1531 EXPORT_SYMBOL(find_lock_entry);
1532 
1533 /**
1534  * pagecache_get_page - find and get a page reference
1535  * @mapping: the address_space to search
1536  * @offset: the page index
1537  * @fgp_flags: PCG flags
1538  * @gfp_mask: gfp mask to use for the page cache data page allocation
1539  *
1540  * Looks up the page cache slot at @mapping & @offset.
1541  *
1542  * PCG flags modify how the page is returned.
1543  *
1544  * @fgp_flags can be:
1545  *
1546  * - FGP_ACCESSED: the page will be marked accessed
1547  * - FGP_LOCK: Page is return locked
1548  * - FGP_CREAT: If page is not present then a new page is allocated using
1549  *   @gfp_mask and added to the page cache and the VM's LRU
1550  *   list. The page is returned locked and with an increased
1551  *   refcount. Otherwise, NULL is returned.
1552  *
1553  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1554  * if the GFP flags specified for FGP_CREAT are atomic.
1555  *
1556  * If there is a page cache page, it is returned with an increased refcount.
1557  */
pagecache_get_page(struct address_space * mapping,pgoff_t offset,int fgp_flags,gfp_t gfp_mask)1558 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1559 	int fgp_flags, gfp_t gfp_mask)
1560 {
1561 	struct page *page;
1562 
1563 repeat:
1564 	page = find_get_entry(mapping, offset);
1565 	if (radix_tree_exceptional_entry(page))
1566 		page = NULL;
1567 	if (!page)
1568 		goto no_page;
1569 
1570 	if (fgp_flags & FGP_LOCK) {
1571 		if (fgp_flags & FGP_NOWAIT) {
1572 			if (!trylock_page(page)) {
1573 				put_page(page);
1574 				return NULL;
1575 			}
1576 		} else {
1577 			lock_page(page);
1578 		}
1579 
1580 		/* Has the page been truncated? */
1581 		if (unlikely(page->mapping != mapping)) {
1582 			unlock_page(page);
1583 			put_page(page);
1584 			goto repeat;
1585 		}
1586 		VM_BUG_ON_PAGE(page->index != offset, page);
1587 	}
1588 
1589 	if (page && (fgp_flags & FGP_ACCESSED))
1590 		mark_page_accessed(page);
1591 
1592 no_page:
1593 	if (!page && (fgp_flags & FGP_CREAT)) {
1594 		int err;
1595 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1596 			gfp_mask |= __GFP_WRITE;
1597 		if (fgp_flags & FGP_NOFS)
1598 			gfp_mask &= ~__GFP_FS;
1599 
1600 		page = __page_cache_alloc(gfp_mask);
1601 		if (!page)
1602 			return NULL;
1603 
1604 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1605 			fgp_flags |= FGP_LOCK;
1606 
1607 		/* Init accessed so avoid atomic mark_page_accessed later */
1608 		if (fgp_flags & FGP_ACCESSED)
1609 			__SetPageReferenced(page);
1610 
1611 		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1612 		if (unlikely(err)) {
1613 			put_page(page);
1614 			page = NULL;
1615 			if (err == -EEXIST)
1616 				goto repeat;
1617 		}
1618 	}
1619 
1620 	return page;
1621 }
1622 EXPORT_SYMBOL(pagecache_get_page);
1623 
1624 /**
1625  * find_get_entries - gang pagecache lookup
1626  * @mapping:	The address_space to search
1627  * @start:	The starting page cache index
1628  * @nr_entries:	The maximum number of entries
1629  * @entries:	Where the resulting entries are placed
1630  * @indices:	The cache indices corresponding to the entries in @entries
1631  *
1632  * find_get_entries() will search for and return a group of up to
1633  * @nr_entries entries in the mapping.  The entries are placed at
1634  * @entries.  find_get_entries() takes a reference against any actual
1635  * pages it returns.
1636  *
1637  * The search returns a group of mapping-contiguous page cache entries
1638  * with ascending indexes.  There may be holes in the indices due to
1639  * not-present pages.
1640  *
1641  * Any shadow entries of evicted pages, or swap entries from
1642  * shmem/tmpfs, are included in the returned array.
1643  *
1644  * find_get_entries() returns the number of pages and shadow entries
1645  * which were found.
1646  */
find_get_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices)1647 unsigned find_get_entries(struct address_space *mapping,
1648 			  pgoff_t start, unsigned int nr_entries,
1649 			  struct page **entries, pgoff_t *indices)
1650 {
1651 	void **slot;
1652 	unsigned int ret = 0;
1653 	struct radix_tree_iter iter;
1654 
1655 	if (!nr_entries)
1656 		return 0;
1657 
1658 	rcu_read_lock();
1659 	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1660 		struct page *head, *page;
1661 repeat:
1662 		page = radix_tree_deref_slot(slot);
1663 		if (unlikely(!page))
1664 			continue;
1665 		if (radix_tree_exception(page)) {
1666 			if (radix_tree_deref_retry(page)) {
1667 				slot = radix_tree_iter_retry(&iter);
1668 				continue;
1669 			}
1670 			/*
1671 			 * A shadow entry of a recently evicted page, a swap
1672 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1673 			 * without attempting to raise page count.
1674 			 */
1675 			goto export;
1676 		}
1677 
1678 		head = compound_head(page);
1679 		if (!page_cache_get_speculative(head))
1680 			goto repeat;
1681 
1682 		/* The page was split under us? */
1683 		if (compound_head(page) != head) {
1684 			put_page(head);
1685 			goto repeat;
1686 		}
1687 
1688 		/* Has the page moved? */
1689 		if (unlikely(page != *slot)) {
1690 			put_page(head);
1691 			goto repeat;
1692 		}
1693 export:
1694 		indices[ret] = iter.index;
1695 		entries[ret] = page;
1696 		if (++ret == nr_entries)
1697 			break;
1698 	}
1699 	rcu_read_unlock();
1700 	return ret;
1701 }
1702 
1703 /**
1704  * find_get_pages_range - gang pagecache lookup
1705  * @mapping:	The address_space to search
1706  * @start:	The starting page index
1707  * @end:	The final page index (inclusive)
1708  * @nr_pages:	The maximum number of pages
1709  * @pages:	Where the resulting pages are placed
1710  *
1711  * find_get_pages_range() will search for and return a group of up to @nr_pages
1712  * pages in the mapping starting at index @start and up to index @end
1713  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1714  * a reference against the returned pages.
1715  *
1716  * The search returns a group of mapping-contiguous pages with ascending
1717  * indexes.  There may be holes in the indices due to not-present pages.
1718  * We also update @start to index the next page for the traversal.
1719  *
1720  * find_get_pages_range() returns the number of pages which were found. If this
1721  * number is smaller than @nr_pages, the end of specified range has been
1722  * reached.
1723  */
find_get_pages_range(struct address_space * mapping,pgoff_t * start,pgoff_t end,unsigned int nr_pages,struct page ** pages)1724 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1725 			      pgoff_t end, unsigned int nr_pages,
1726 			      struct page **pages)
1727 {
1728 	struct radix_tree_iter iter;
1729 	void **slot;
1730 	unsigned ret = 0;
1731 
1732 	if (unlikely(!nr_pages))
1733 		return 0;
1734 
1735 	rcu_read_lock();
1736 	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
1737 		struct page *head, *page;
1738 
1739 		if (iter.index > end)
1740 			break;
1741 repeat:
1742 		page = radix_tree_deref_slot(slot);
1743 		if (unlikely(!page))
1744 			continue;
1745 
1746 		if (radix_tree_exception(page)) {
1747 			if (radix_tree_deref_retry(page)) {
1748 				slot = radix_tree_iter_retry(&iter);
1749 				continue;
1750 			}
1751 			/*
1752 			 * A shadow entry of a recently evicted page,
1753 			 * or a swap entry from shmem/tmpfs.  Skip
1754 			 * over it.
1755 			 */
1756 			continue;
1757 		}
1758 
1759 		head = compound_head(page);
1760 		if (!page_cache_get_speculative(head))
1761 			goto repeat;
1762 
1763 		/* The page was split under us? */
1764 		if (compound_head(page) != head) {
1765 			put_page(head);
1766 			goto repeat;
1767 		}
1768 
1769 		/* Has the page moved? */
1770 		if (unlikely(page != *slot)) {
1771 			put_page(head);
1772 			goto repeat;
1773 		}
1774 
1775 		pages[ret] = page;
1776 		if (++ret == nr_pages) {
1777 			*start = pages[ret - 1]->index + 1;
1778 			goto out;
1779 		}
1780 	}
1781 
1782 	/*
1783 	 * We come here when there is no page beyond @end. We take care to not
1784 	 * overflow the index @start as it confuses some of the callers. This
1785 	 * breaks the iteration when there is page at index -1 but that is
1786 	 * already broken anyway.
1787 	 */
1788 	if (end == (pgoff_t)-1)
1789 		*start = (pgoff_t)-1;
1790 	else
1791 		*start = end + 1;
1792 out:
1793 	rcu_read_unlock();
1794 
1795 	return ret;
1796 }
1797 
1798 /**
1799  * find_get_pages_contig - gang contiguous pagecache lookup
1800  * @mapping:	The address_space to search
1801  * @index:	The starting page index
1802  * @nr_pages:	The maximum number of pages
1803  * @pages:	Where the resulting pages are placed
1804  *
1805  * find_get_pages_contig() works exactly like find_get_pages(), except
1806  * that the returned number of pages are guaranteed to be contiguous.
1807  *
1808  * find_get_pages_contig() returns the number of pages which were found.
1809  */
find_get_pages_contig(struct address_space * mapping,pgoff_t index,unsigned int nr_pages,struct page ** pages)1810 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1811 			       unsigned int nr_pages, struct page **pages)
1812 {
1813 	struct radix_tree_iter iter;
1814 	void **slot;
1815 	unsigned int ret = 0;
1816 
1817 	if (unlikely(!nr_pages))
1818 		return 0;
1819 
1820 	rcu_read_lock();
1821 	radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
1822 		struct page *head, *page;
1823 repeat:
1824 		page = radix_tree_deref_slot(slot);
1825 		/* The hole, there no reason to continue */
1826 		if (unlikely(!page))
1827 			break;
1828 
1829 		if (radix_tree_exception(page)) {
1830 			if (radix_tree_deref_retry(page)) {
1831 				slot = radix_tree_iter_retry(&iter);
1832 				continue;
1833 			}
1834 			/*
1835 			 * A shadow entry of a recently evicted page,
1836 			 * or a swap entry from shmem/tmpfs.  Stop
1837 			 * looking for contiguous pages.
1838 			 */
1839 			break;
1840 		}
1841 
1842 		head = compound_head(page);
1843 		if (!page_cache_get_speculative(head))
1844 			goto repeat;
1845 
1846 		/* The page was split under us? */
1847 		if (compound_head(page) != head) {
1848 			put_page(head);
1849 			goto repeat;
1850 		}
1851 
1852 		/* Has the page moved? */
1853 		if (unlikely(page != *slot)) {
1854 			put_page(head);
1855 			goto repeat;
1856 		}
1857 
1858 		/*
1859 		 * must check mapping and index after taking the ref.
1860 		 * otherwise we can get both false positives and false
1861 		 * negatives, which is just confusing to the caller.
1862 		 */
1863 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1864 			put_page(page);
1865 			break;
1866 		}
1867 
1868 		pages[ret] = page;
1869 		if (++ret == nr_pages)
1870 			break;
1871 	}
1872 	rcu_read_unlock();
1873 	return ret;
1874 }
1875 EXPORT_SYMBOL(find_get_pages_contig);
1876 
1877 /**
1878  * find_get_pages_range_tag - find and return pages in given range matching @tag
1879  * @mapping:	the address_space to search
1880  * @index:	the starting page index
1881  * @end:	The final page index (inclusive)
1882  * @tag:	the tag index
1883  * @nr_pages:	the maximum number of pages
1884  * @pages:	where the resulting pages are placed
1885  *
1886  * Like find_get_pages, except we only return pages which are tagged with
1887  * @tag.   We update @index to index the next page for the traversal.
1888  */
find_get_pages_range_tag(struct address_space * mapping,pgoff_t * index,pgoff_t end,int tag,unsigned int nr_pages,struct page ** pages)1889 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1890 			pgoff_t end, int tag, unsigned int nr_pages,
1891 			struct page **pages)
1892 {
1893 	struct radix_tree_iter iter;
1894 	void **slot;
1895 	unsigned ret = 0;
1896 
1897 	if (unlikely(!nr_pages))
1898 		return 0;
1899 
1900 	rcu_read_lock();
1901 	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
1902 		struct page *head, *page;
1903 
1904 		if (iter.index > end)
1905 			break;
1906 repeat:
1907 		page = radix_tree_deref_slot(slot);
1908 		if (unlikely(!page))
1909 			continue;
1910 
1911 		if (radix_tree_exception(page)) {
1912 			if (radix_tree_deref_retry(page)) {
1913 				slot = radix_tree_iter_retry(&iter);
1914 				continue;
1915 			}
1916 			/*
1917 			 * A shadow entry of a recently evicted page.
1918 			 *
1919 			 * Those entries should never be tagged, but
1920 			 * this tree walk is lockless and the tags are
1921 			 * looked up in bulk, one radix tree node at a
1922 			 * time, so there is a sizable window for page
1923 			 * reclaim to evict a page we saw tagged.
1924 			 *
1925 			 * Skip over it.
1926 			 */
1927 			continue;
1928 		}
1929 
1930 		head = compound_head(page);
1931 		if (!page_cache_get_speculative(head))
1932 			goto repeat;
1933 
1934 		/* The page was split under us? */
1935 		if (compound_head(page) != head) {
1936 			put_page(head);
1937 			goto repeat;
1938 		}
1939 
1940 		/* Has the page moved? */
1941 		if (unlikely(page != *slot)) {
1942 			put_page(head);
1943 			goto repeat;
1944 		}
1945 
1946 		pages[ret] = page;
1947 		if (++ret == nr_pages) {
1948 			*index = pages[ret - 1]->index + 1;
1949 			goto out;
1950 		}
1951 	}
1952 
1953 	/*
1954 	 * We come here when we got at @end. We take care to not overflow the
1955 	 * index @index as it confuses some of the callers. This breaks the
1956 	 * iteration when there is page at index -1 but that is already broken
1957 	 * anyway.
1958 	 */
1959 	if (end == (pgoff_t)-1)
1960 		*index = (pgoff_t)-1;
1961 	else
1962 		*index = end + 1;
1963 out:
1964 	rcu_read_unlock();
1965 
1966 	return ret;
1967 }
1968 EXPORT_SYMBOL(find_get_pages_range_tag);
1969 
1970 /**
1971  * find_get_entries_tag - find and return entries that match @tag
1972  * @mapping:	the address_space to search
1973  * @start:	the starting page cache index
1974  * @tag:	the tag index
1975  * @nr_entries:	the maximum number of entries
1976  * @entries:	where the resulting entries are placed
1977  * @indices:	the cache indices corresponding to the entries in @entries
1978  *
1979  * Like find_get_entries, except we only return entries which are tagged with
1980  * @tag.
1981  */
find_get_entries_tag(struct address_space * mapping,pgoff_t start,int tag,unsigned int nr_entries,struct page ** entries,pgoff_t * indices)1982 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1983 			int tag, unsigned int nr_entries,
1984 			struct page **entries, pgoff_t *indices)
1985 {
1986 	void **slot;
1987 	unsigned int ret = 0;
1988 	struct radix_tree_iter iter;
1989 
1990 	if (!nr_entries)
1991 		return 0;
1992 
1993 	rcu_read_lock();
1994 	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
1995 		struct page *head, *page;
1996 repeat:
1997 		page = radix_tree_deref_slot(slot);
1998 		if (unlikely(!page))
1999 			continue;
2000 		if (radix_tree_exception(page)) {
2001 			if (radix_tree_deref_retry(page)) {
2002 				slot = radix_tree_iter_retry(&iter);
2003 				continue;
2004 			}
2005 
2006 			/*
2007 			 * A shadow entry of a recently evicted page, a swap
2008 			 * entry from shmem/tmpfs or a DAX entry.  Return it
2009 			 * without attempting to raise page count.
2010 			 */
2011 			goto export;
2012 		}
2013 
2014 		head = compound_head(page);
2015 		if (!page_cache_get_speculative(head))
2016 			goto repeat;
2017 
2018 		/* The page was split under us? */
2019 		if (compound_head(page) != head) {
2020 			put_page(head);
2021 			goto repeat;
2022 		}
2023 
2024 		/* Has the page moved? */
2025 		if (unlikely(page != *slot)) {
2026 			put_page(head);
2027 			goto repeat;
2028 		}
2029 export:
2030 		indices[ret] = iter.index;
2031 		entries[ret] = page;
2032 		if (++ret == nr_entries)
2033 			break;
2034 	}
2035 	rcu_read_unlock();
2036 	return ret;
2037 }
2038 EXPORT_SYMBOL(find_get_entries_tag);
2039 
2040 /*
2041  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2042  * a _large_ part of the i/o request. Imagine the worst scenario:
2043  *
2044  *      ---R__________________________________________B__________
2045  *         ^ reading here                             ^ bad block(assume 4k)
2046  *
2047  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2048  * => failing the whole request => read(R) => read(R+1) =>
2049  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2050  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2051  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2052  *
2053  * It is going insane. Fix it by quickly scaling down the readahead size.
2054  */
shrink_readahead_size_eio(struct file * filp,struct file_ra_state * ra)2055 static void shrink_readahead_size_eio(struct file *filp,
2056 					struct file_ra_state *ra)
2057 {
2058 	ra->ra_pages /= 4;
2059 }
2060 
2061 /**
2062  * generic_file_buffered_read - generic file read routine
2063  * @iocb:	the iocb to read
2064  * @iter:	data destination
2065  * @written:	already copied
2066  *
2067  * This is a generic file read routine, and uses the
2068  * mapping->a_ops->readpage() function for the actual low-level stuff.
2069  *
2070  * This is really ugly. But the goto's actually try to clarify some
2071  * of the logic when it comes to error handling etc.
2072  */
generic_file_buffered_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t written)2073 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2074 		struct iov_iter *iter, ssize_t written)
2075 {
2076 	struct file *filp = iocb->ki_filp;
2077 	struct address_space *mapping = filp->f_mapping;
2078 	struct inode *inode = mapping->host;
2079 	struct file_ra_state *ra = &filp->f_ra;
2080 	loff_t *ppos = &iocb->ki_pos;
2081 	pgoff_t index;
2082 	pgoff_t last_index;
2083 	pgoff_t prev_index;
2084 	unsigned long offset;      /* offset into pagecache page */
2085 	unsigned int prev_offset;
2086 	int error = 0;
2087 
2088 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2089 		return 0;
2090 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2091 
2092 	index = *ppos >> PAGE_SHIFT;
2093 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2094 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2095 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2096 	offset = *ppos & ~PAGE_MASK;
2097 
2098 	for (;;) {
2099 		struct page *page;
2100 		pgoff_t end_index;
2101 		loff_t isize;
2102 		unsigned long nr, ret;
2103 
2104 		cond_resched();
2105 find_page:
2106 		if (fatal_signal_pending(current)) {
2107 			error = -EINTR;
2108 			goto out;
2109 		}
2110 
2111 		page = find_get_page(mapping, index);
2112 		if (!page) {
2113 			if (iocb->ki_flags & IOCB_NOWAIT)
2114 				goto would_block;
2115 			page_cache_sync_readahead(mapping,
2116 					ra, filp,
2117 					index, last_index - index);
2118 			page = find_get_page(mapping, index);
2119 			if (unlikely(page == NULL))
2120 				goto no_cached_page;
2121 		}
2122 		if (PageReadahead(page)) {
2123 			page_cache_async_readahead(mapping,
2124 					ra, filp, page,
2125 					index, last_index - index);
2126 		}
2127 		if (!PageUptodate(page)) {
2128 			if (iocb->ki_flags & IOCB_NOWAIT) {
2129 				put_page(page);
2130 				goto would_block;
2131 			}
2132 
2133 			/*
2134 			 * See comment in do_read_cache_page on why
2135 			 * wait_on_page_locked is used to avoid unnecessarily
2136 			 * serialisations and why it's safe.
2137 			 */
2138 			error = wait_on_page_locked_killable(page);
2139 			if (unlikely(error))
2140 				goto readpage_error;
2141 			if (PageUptodate(page))
2142 				goto page_ok;
2143 
2144 			if (inode->i_blkbits == PAGE_SHIFT ||
2145 					!mapping->a_ops->is_partially_uptodate)
2146 				goto page_not_up_to_date;
2147 			/* pipes can't handle partially uptodate pages */
2148 			if (unlikely(iter->type & ITER_PIPE))
2149 				goto page_not_up_to_date;
2150 			if (!trylock_page(page))
2151 				goto page_not_up_to_date;
2152 			/* Did it get truncated before we got the lock? */
2153 			if (!page->mapping)
2154 				goto page_not_up_to_date_locked;
2155 			if (!mapping->a_ops->is_partially_uptodate(page,
2156 							offset, iter->count))
2157 				goto page_not_up_to_date_locked;
2158 			unlock_page(page);
2159 		}
2160 page_ok:
2161 		/*
2162 		 * i_size must be checked after we know the page is Uptodate.
2163 		 *
2164 		 * Checking i_size after the check allows us to calculate
2165 		 * the correct value for "nr", which means the zero-filled
2166 		 * part of the page is not copied back to userspace (unless
2167 		 * another truncate extends the file - this is desired though).
2168 		 */
2169 
2170 		isize = i_size_read(inode);
2171 		end_index = (isize - 1) >> PAGE_SHIFT;
2172 		if (unlikely(!isize || index > end_index)) {
2173 			put_page(page);
2174 			goto out;
2175 		}
2176 
2177 		/* nr is the maximum number of bytes to copy from this page */
2178 		nr = PAGE_SIZE;
2179 		if (index == end_index) {
2180 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2181 			if (nr <= offset) {
2182 				put_page(page);
2183 				goto out;
2184 			}
2185 		}
2186 		nr = nr - offset;
2187 
2188 		/* If users can be writing to this page using arbitrary
2189 		 * virtual addresses, take care about potential aliasing
2190 		 * before reading the page on the kernel side.
2191 		 */
2192 		if (mapping_writably_mapped(mapping))
2193 			flush_dcache_page(page);
2194 
2195 		/*
2196 		 * When a sequential read accesses a page several times,
2197 		 * only mark it as accessed the first time.
2198 		 */
2199 		if (prev_index != index || offset != prev_offset)
2200 			mark_page_accessed(page);
2201 		prev_index = index;
2202 
2203 		/*
2204 		 * Ok, we have the page, and it's up-to-date, so
2205 		 * now we can copy it to user space...
2206 		 */
2207 
2208 		ret = copy_page_to_iter(page, offset, nr, iter);
2209 		offset += ret;
2210 		index += offset >> PAGE_SHIFT;
2211 		offset &= ~PAGE_MASK;
2212 		prev_offset = offset;
2213 
2214 		put_page(page);
2215 		written += ret;
2216 		if (!iov_iter_count(iter))
2217 			goto out;
2218 		if (ret < nr) {
2219 			error = -EFAULT;
2220 			goto out;
2221 		}
2222 		continue;
2223 
2224 page_not_up_to_date:
2225 		/* Get exclusive access to the page ... */
2226 		error = lock_page_killable(page);
2227 		if (unlikely(error))
2228 			goto readpage_error;
2229 
2230 page_not_up_to_date_locked:
2231 		/* Did it get truncated before we got the lock? */
2232 		if (!page->mapping) {
2233 			unlock_page(page);
2234 			put_page(page);
2235 			continue;
2236 		}
2237 
2238 		/* Did somebody else fill it already? */
2239 		if (PageUptodate(page)) {
2240 			unlock_page(page);
2241 			goto page_ok;
2242 		}
2243 
2244 readpage:
2245 		/*
2246 		 * A previous I/O error may have been due to temporary
2247 		 * failures, eg. multipath errors.
2248 		 * PG_error will be set again if readpage fails.
2249 		 */
2250 		ClearPageError(page);
2251 		/* Start the actual read. The read will unlock the page. */
2252 		error = mapping->a_ops->readpage(filp, page);
2253 
2254 		if (unlikely(error)) {
2255 			if (error == AOP_TRUNCATED_PAGE) {
2256 				put_page(page);
2257 				error = 0;
2258 				goto find_page;
2259 			}
2260 			goto readpage_error;
2261 		}
2262 
2263 		if (!PageUptodate(page)) {
2264 			error = lock_page_killable(page);
2265 			if (unlikely(error))
2266 				goto readpage_error;
2267 			if (!PageUptodate(page)) {
2268 				if (page->mapping == NULL) {
2269 					/*
2270 					 * invalidate_mapping_pages got it
2271 					 */
2272 					unlock_page(page);
2273 					put_page(page);
2274 					goto find_page;
2275 				}
2276 				unlock_page(page);
2277 				shrink_readahead_size_eio(filp, ra);
2278 				error = -EIO;
2279 				goto readpage_error;
2280 			}
2281 			unlock_page(page);
2282 		}
2283 
2284 		goto page_ok;
2285 
2286 readpage_error:
2287 		/* UHHUH! A synchronous read error occurred. Report it */
2288 		put_page(page);
2289 		goto out;
2290 
2291 no_cached_page:
2292 		/*
2293 		 * Ok, it wasn't cached, so we need to create a new
2294 		 * page..
2295 		 */
2296 		page = page_cache_alloc(mapping);
2297 		if (!page) {
2298 			error = -ENOMEM;
2299 			goto out;
2300 		}
2301 		error = add_to_page_cache_lru(page, mapping, index,
2302 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2303 		if (error) {
2304 			put_page(page);
2305 			if (error == -EEXIST) {
2306 				error = 0;
2307 				goto find_page;
2308 			}
2309 			goto out;
2310 		}
2311 		goto readpage;
2312 	}
2313 
2314 would_block:
2315 	error = -EAGAIN;
2316 out:
2317 	ra->prev_pos = prev_index;
2318 	ra->prev_pos <<= PAGE_SHIFT;
2319 	ra->prev_pos |= prev_offset;
2320 
2321 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2322 	file_accessed(filp);
2323 	return written ? written : error;
2324 }
2325 
2326 /**
2327  * generic_file_read_iter - generic filesystem read routine
2328  * @iocb:	kernel I/O control block
2329  * @iter:	destination for the data read
2330  *
2331  * This is the "read_iter()" routine for all filesystems
2332  * that can use the page cache directly.
2333  */
2334 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2335 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2336 {
2337 	size_t count = iov_iter_count(iter);
2338 	ssize_t retval = 0;
2339 
2340 	if (!count)
2341 		goto out; /* skip atime */
2342 
2343 	if (iocb->ki_flags & IOCB_DIRECT) {
2344 		struct file *file = iocb->ki_filp;
2345 		struct address_space *mapping = file->f_mapping;
2346 		struct inode *inode = mapping->host;
2347 		loff_t size;
2348 
2349 		size = i_size_read(inode);
2350 		if (iocb->ki_flags & IOCB_NOWAIT) {
2351 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2352 						   iocb->ki_pos + count - 1))
2353 				return -EAGAIN;
2354 		} else {
2355 			retval = filemap_write_and_wait_range(mapping,
2356 						iocb->ki_pos,
2357 					        iocb->ki_pos + count - 1);
2358 			if (retval < 0)
2359 				goto out;
2360 		}
2361 
2362 		file_accessed(file);
2363 
2364 		retval = mapping->a_ops->direct_IO(iocb, iter);
2365 		if (retval >= 0) {
2366 			iocb->ki_pos += retval;
2367 			count -= retval;
2368 		}
2369 		iov_iter_revert(iter, count - iov_iter_count(iter));
2370 
2371 		/*
2372 		 * Btrfs can have a short DIO read if we encounter
2373 		 * compressed extents, so if there was an error, or if
2374 		 * we've already read everything we wanted to, or if
2375 		 * there was a short read because we hit EOF, go ahead
2376 		 * and return.  Otherwise fallthrough to buffered io for
2377 		 * the rest of the read.  Buffered reads will not work for
2378 		 * DAX files, so don't bother trying.
2379 		 */
2380 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2381 		    IS_DAX(inode))
2382 			goto out;
2383 	}
2384 
2385 	retval = generic_file_buffered_read(iocb, iter, retval);
2386 out:
2387 	return retval;
2388 }
2389 EXPORT_SYMBOL(generic_file_read_iter);
2390 
2391 #ifdef CONFIG_MMU
2392 /**
2393  * page_cache_read - adds requested page to the page cache if not already there
2394  * @file:	file to read
2395  * @offset:	page index
2396  * @gfp_mask:	memory allocation flags
2397  *
2398  * This adds the requested page to the page cache if it isn't already there,
2399  * and schedules an I/O to read in its contents from disk.
2400  */
page_cache_read(struct file * file,pgoff_t offset,gfp_t gfp_mask)2401 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2402 {
2403 	struct address_space *mapping = file->f_mapping;
2404 	struct page *page;
2405 	int ret;
2406 
2407 	do {
2408 		page = __page_cache_alloc(gfp_mask);
2409 		if (!page)
2410 			return -ENOMEM;
2411 
2412 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2413 		if (ret == 0)
2414 			ret = mapping->a_ops->readpage(file, page);
2415 		else if (ret == -EEXIST)
2416 			ret = 0; /* losing race to add is OK */
2417 
2418 		put_page(page);
2419 
2420 	} while (ret == AOP_TRUNCATED_PAGE);
2421 
2422 	return ret;
2423 }
2424 
2425 #define MMAP_LOTSAMISS  (100)
2426 
2427 /*
2428  * Synchronous readahead happens when we don't even find
2429  * a page in the page cache at all.
2430  */
do_sync_mmap_readahead(struct vm_area_struct * vma,struct file_ra_state * ra,struct file * file,pgoff_t offset)2431 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2432 				   struct file_ra_state *ra,
2433 				   struct file *file,
2434 				   pgoff_t offset)
2435 {
2436 	struct address_space *mapping = file->f_mapping;
2437 
2438 	/* If we don't want any read-ahead, don't bother */
2439 	if (vma->vm_flags & VM_RAND_READ)
2440 		return;
2441 	if (!ra->ra_pages)
2442 		return;
2443 
2444 	if (vma->vm_flags & VM_SEQ_READ) {
2445 		page_cache_sync_readahead(mapping, ra, file, offset,
2446 					  ra->ra_pages);
2447 		return;
2448 	}
2449 
2450 	/* Avoid banging the cache line if not needed */
2451 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2452 		ra->mmap_miss++;
2453 
2454 	/*
2455 	 * Do we miss much more than hit in this file? If so,
2456 	 * stop bothering with read-ahead. It will only hurt.
2457 	 */
2458 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2459 		return;
2460 
2461 	/*
2462 	 * mmap read-around
2463 	 */
2464 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2465 	ra->size = ra->ra_pages;
2466 	ra->async_size = ra->ra_pages / 4;
2467 	ra_submit(ra, mapping, file);
2468 }
2469 
2470 /*
2471  * Asynchronous readahead happens when we find the page and PG_readahead,
2472  * so we want to possibly extend the readahead further..
2473  */
do_async_mmap_readahead(struct vm_area_struct * vma,struct file_ra_state * ra,struct file * file,struct page * page,pgoff_t offset)2474 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2475 				    struct file_ra_state *ra,
2476 				    struct file *file,
2477 				    struct page *page,
2478 				    pgoff_t offset)
2479 {
2480 	struct address_space *mapping = file->f_mapping;
2481 
2482 	/* If we don't want any read-ahead, don't bother */
2483 	if (vma->vm_flags & VM_RAND_READ)
2484 		return;
2485 	if (ra->mmap_miss > 0)
2486 		ra->mmap_miss--;
2487 	if (PageReadahead(page))
2488 		page_cache_async_readahead(mapping, ra, file,
2489 					   page, offset, ra->ra_pages);
2490 }
2491 
2492 /**
2493  * filemap_fault - read in file data for page fault handling
2494  * @vmf:	struct vm_fault containing details of the fault
2495  *
2496  * filemap_fault() is invoked via the vma operations vector for a
2497  * mapped memory region to read in file data during a page fault.
2498  *
2499  * The goto's are kind of ugly, but this streamlines the normal case of having
2500  * it in the page cache, and handles the special cases reasonably without
2501  * having a lot of duplicated code.
2502  *
2503  * vma->vm_mm->mmap_sem must be held on entry.
2504  *
2505  * If our return value has VM_FAULT_RETRY set, it's because
2506  * lock_page_or_retry() returned 0.
2507  * The mmap_sem has usually been released in this case.
2508  * See __lock_page_or_retry() for the exception.
2509  *
2510  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2511  * has not been released.
2512  *
2513  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2514  */
filemap_fault(struct vm_fault * vmf)2515 vm_fault_t filemap_fault(struct vm_fault *vmf)
2516 {
2517 	int error;
2518 	struct file *file = vmf->vma->vm_file;
2519 	struct address_space *mapping = file->f_mapping;
2520 	struct file_ra_state *ra = &file->f_ra;
2521 	struct inode *inode = mapping->host;
2522 	pgoff_t offset = vmf->pgoff;
2523 	pgoff_t max_off;
2524 	struct page *page;
2525 	vm_fault_t ret = 0;
2526 
2527 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2528 	if (unlikely(offset >= max_off))
2529 		return VM_FAULT_SIGBUS;
2530 
2531 	/*
2532 	 * Do we have something in the page cache already?
2533 	 */
2534 	page = find_get_page(mapping, offset);
2535 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2536 		/*
2537 		 * We found the page, so try async readahead before
2538 		 * waiting for the lock.
2539 		 */
2540 		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2541 	} else if (!page) {
2542 		/* No page in the page cache at all */
2543 		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2544 		count_vm_event(PGMAJFAULT);
2545 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2546 		ret = VM_FAULT_MAJOR;
2547 retry_find:
2548 		page = find_get_page(mapping, offset);
2549 		if (!page)
2550 			goto no_cached_page;
2551 	}
2552 
2553 	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2554 		put_page(page);
2555 		return ret | VM_FAULT_RETRY;
2556 	}
2557 
2558 	/* Did it get truncated? */
2559 	if (unlikely(page->mapping != mapping)) {
2560 		unlock_page(page);
2561 		put_page(page);
2562 		goto retry_find;
2563 	}
2564 	VM_BUG_ON_PAGE(page->index != offset, page);
2565 
2566 	/*
2567 	 * We have a locked page in the page cache, now we need to check
2568 	 * that it's up-to-date. If not, it is going to be due to an error.
2569 	 */
2570 	if (unlikely(!PageUptodate(page)))
2571 		goto page_not_uptodate;
2572 
2573 	/*
2574 	 * Found the page and have a reference on it.
2575 	 * We must recheck i_size under page lock.
2576 	 */
2577 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2578 	if (unlikely(offset >= max_off)) {
2579 		unlock_page(page);
2580 		put_page(page);
2581 		return VM_FAULT_SIGBUS;
2582 	}
2583 
2584 	vmf->page = page;
2585 	return ret | VM_FAULT_LOCKED;
2586 
2587 no_cached_page:
2588 	/*
2589 	 * We're only likely to ever get here if MADV_RANDOM is in
2590 	 * effect.
2591 	 */
2592 	error = page_cache_read(file, offset, vmf->gfp_mask);
2593 
2594 	/*
2595 	 * The page we want has now been added to the page cache.
2596 	 * In the unlikely event that someone removed it in the
2597 	 * meantime, we'll just come back here and read it again.
2598 	 */
2599 	if (error >= 0)
2600 		goto retry_find;
2601 
2602 	/*
2603 	 * An error return from page_cache_read can result if the
2604 	 * system is low on memory, or a problem occurs while trying
2605 	 * to schedule I/O.
2606 	 */
2607 	if (error == -ENOMEM)
2608 		return VM_FAULT_OOM;
2609 	return VM_FAULT_SIGBUS;
2610 
2611 page_not_uptodate:
2612 	/*
2613 	 * Umm, take care of errors if the page isn't up-to-date.
2614 	 * Try to re-read it _once_. We do this synchronously,
2615 	 * because there really aren't any performance issues here
2616 	 * and we need to check for errors.
2617 	 */
2618 	ClearPageError(page);
2619 	error = mapping->a_ops->readpage(file, page);
2620 	if (!error) {
2621 		wait_on_page_locked(page);
2622 		if (!PageUptodate(page))
2623 			error = -EIO;
2624 	}
2625 	put_page(page);
2626 
2627 	if (!error || error == AOP_TRUNCATED_PAGE)
2628 		goto retry_find;
2629 
2630 	/* Things didn't work out. Return zero to tell the mm layer so. */
2631 	shrink_readahead_size_eio(file, ra);
2632 	return VM_FAULT_SIGBUS;
2633 }
2634 EXPORT_SYMBOL(filemap_fault);
2635 
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)2636 void filemap_map_pages(struct vm_fault *vmf,
2637 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2638 {
2639 	struct radix_tree_iter iter;
2640 	void **slot;
2641 	struct file *file = vmf->vma->vm_file;
2642 	struct address_space *mapping = file->f_mapping;
2643 	pgoff_t last_pgoff = start_pgoff;
2644 	unsigned long max_idx;
2645 	struct page *head, *page;
2646 
2647 	rcu_read_lock();
2648 	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
2649 		if (iter.index > end_pgoff)
2650 			break;
2651 repeat:
2652 		page = radix_tree_deref_slot(slot);
2653 		if (unlikely(!page))
2654 			goto next;
2655 		if (radix_tree_exception(page)) {
2656 			if (radix_tree_deref_retry(page)) {
2657 				slot = radix_tree_iter_retry(&iter);
2658 				continue;
2659 			}
2660 			goto next;
2661 		}
2662 
2663 		head = compound_head(page);
2664 		if (!page_cache_get_speculative(head))
2665 			goto repeat;
2666 
2667 		/* The page was split under us? */
2668 		if (compound_head(page) != head) {
2669 			put_page(head);
2670 			goto repeat;
2671 		}
2672 
2673 		/* Has the page moved? */
2674 		if (unlikely(page != *slot)) {
2675 			put_page(head);
2676 			goto repeat;
2677 		}
2678 
2679 		if (!PageUptodate(page) ||
2680 				PageReadahead(page) ||
2681 				PageHWPoison(page))
2682 			goto skip;
2683 		if (!trylock_page(page))
2684 			goto skip;
2685 
2686 		if (page->mapping != mapping || !PageUptodate(page))
2687 			goto unlock;
2688 
2689 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2690 		if (page->index >= max_idx)
2691 			goto unlock;
2692 
2693 		if (file->f_ra.mmap_miss > 0)
2694 			file->f_ra.mmap_miss--;
2695 
2696 		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2697 		if (vmf->pte)
2698 			vmf->pte += iter.index - last_pgoff;
2699 		last_pgoff = iter.index;
2700 		if (alloc_set_pte(vmf, NULL, page))
2701 			goto unlock;
2702 		unlock_page(page);
2703 		goto next;
2704 unlock:
2705 		unlock_page(page);
2706 skip:
2707 		put_page(page);
2708 next:
2709 		/* Huge page is mapped? No need to proceed. */
2710 		if (pmd_trans_huge(*vmf->pmd))
2711 			break;
2712 		if (iter.index == end_pgoff)
2713 			break;
2714 	}
2715 	rcu_read_unlock();
2716 }
2717 EXPORT_SYMBOL(filemap_map_pages);
2718 
filemap_page_mkwrite(struct vm_fault * vmf)2719 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2720 {
2721 	struct page *page = vmf->page;
2722 	struct inode *inode = file_inode(vmf->vma->vm_file);
2723 	vm_fault_t ret = VM_FAULT_LOCKED;
2724 
2725 	sb_start_pagefault(inode->i_sb);
2726 	file_update_time(vmf->vma->vm_file);
2727 	lock_page(page);
2728 	if (page->mapping != inode->i_mapping) {
2729 		unlock_page(page);
2730 		ret = VM_FAULT_NOPAGE;
2731 		goto out;
2732 	}
2733 	/*
2734 	 * We mark the page dirty already here so that when freeze is in
2735 	 * progress, we are guaranteed that writeback during freezing will
2736 	 * see the dirty page and writeprotect it again.
2737 	 */
2738 	set_page_dirty(page);
2739 	wait_for_stable_page(page);
2740 out:
2741 	sb_end_pagefault(inode->i_sb);
2742 	return ret;
2743 }
2744 
2745 const struct vm_operations_struct generic_file_vm_ops = {
2746 	.fault		= filemap_fault,
2747 	.map_pages	= filemap_map_pages,
2748 	.page_mkwrite	= filemap_page_mkwrite,
2749 };
2750 
2751 /* This is used for a general mmap of a disk file */
2752 
generic_file_mmap(struct file * file,struct vm_area_struct * vma)2753 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2754 {
2755 	struct address_space *mapping = file->f_mapping;
2756 
2757 	if (!mapping->a_ops->readpage)
2758 		return -ENOEXEC;
2759 	file_accessed(file);
2760 	vma->vm_ops = &generic_file_vm_ops;
2761 	return 0;
2762 }
2763 
2764 /*
2765  * This is for filesystems which do not implement ->writepage.
2766  */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)2767 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2768 {
2769 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2770 		return -EINVAL;
2771 	return generic_file_mmap(file, vma);
2772 }
2773 #else
filemap_page_mkwrite(struct vm_fault * vmf)2774 int filemap_page_mkwrite(struct vm_fault *vmf)
2775 {
2776 	return -ENOSYS;
2777 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)2778 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2779 {
2780 	return -ENOSYS;
2781 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)2782 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2783 {
2784 	return -ENOSYS;
2785 }
2786 #endif /* CONFIG_MMU */
2787 
2788 EXPORT_SYMBOL(filemap_page_mkwrite);
2789 EXPORT_SYMBOL(generic_file_mmap);
2790 EXPORT_SYMBOL(generic_file_readonly_mmap);
2791 
wait_on_page_read(struct page * page)2792 static struct page *wait_on_page_read(struct page *page)
2793 {
2794 	if (!IS_ERR(page)) {
2795 		wait_on_page_locked(page);
2796 		if (!PageUptodate(page)) {
2797 			put_page(page);
2798 			page = ERR_PTR(-EIO);
2799 		}
2800 	}
2801 	return page;
2802 }
2803 
do_read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data,gfp_t gfp)2804 static struct page *do_read_cache_page(struct address_space *mapping,
2805 				pgoff_t index,
2806 				int (*filler)(void *, struct page *),
2807 				void *data,
2808 				gfp_t gfp)
2809 {
2810 	struct page *page;
2811 	int err;
2812 repeat:
2813 	page = find_get_page(mapping, index);
2814 	if (!page) {
2815 		page = __page_cache_alloc(gfp);
2816 		if (!page)
2817 			return ERR_PTR(-ENOMEM);
2818 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2819 		if (unlikely(err)) {
2820 			put_page(page);
2821 			if (err == -EEXIST)
2822 				goto repeat;
2823 			/* Presumably ENOMEM for radix tree node */
2824 			return ERR_PTR(err);
2825 		}
2826 
2827 filler:
2828 		err = filler(data, page);
2829 		if (err < 0) {
2830 			put_page(page);
2831 			return ERR_PTR(err);
2832 		}
2833 
2834 		page = wait_on_page_read(page);
2835 		if (IS_ERR(page))
2836 			return page;
2837 		goto out;
2838 	}
2839 	if (PageUptodate(page))
2840 		goto out;
2841 
2842 	/*
2843 	 * Page is not up to date and may be locked due one of the following
2844 	 * case a: Page is being filled and the page lock is held
2845 	 * case b: Read/write error clearing the page uptodate status
2846 	 * case c: Truncation in progress (page locked)
2847 	 * case d: Reclaim in progress
2848 	 *
2849 	 * Case a, the page will be up to date when the page is unlocked.
2850 	 *    There is no need to serialise on the page lock here as the page
2851 	 *    is pinned so the lock gives no additional protection. Even if the
2852 	 *    the page is truncated, the data is still valid if PageUptodate as
2853 	 *    it's a race vs truncate race.
2854 	 * Case b, the page will not be up to date
2855 	 * Case c, the page may be truncated but in itself, the data may still
2856 	 *    be valid after IO completes as it's a read vs truncate race. The
2857 	 *    operation must restart if the page is not uptodate on unlock but
2858 	 *    otherwise serialising on page lock to stabilise the mapping gives
2859 	 *    no additional guarantees to the caller as the page lock is
2860 	 *    released before return.
2861 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2862 	 *    will be a race with remove_mapping that determines if the mapping
2863 	 *    is valid on unlock but otherwise the data is valid and there is
2864 	 *    no need to serialise with page lock.
2865 	 *
2866 	 * As the page lock gives no additional guarantee, we optimistically
2867 	 * wait on the page to be unlocked and check if it's up to date and
2868 	 * use the page if it is. Otherwise, the page lock is required to
2869 	 * distinguish between the different cases. The motivation is that we
2870 	 * avoid spurious serialisations and wakeups when multiple processes
2871 	 * wait on the same page for IO to complete.
2872 	 */
2873 	wait_on_page_locked(page);
2874 	if (PageUptodate(page))
2875 		goto out;
2876 
2877 	/* Distinguish between all the cases under the safety of the lock */
2878 	lock_page(page);
2879 
2880 	/* Case c or d, restart the operation */
2881 	if (!page->mapping) {
2882 		unlock_page(page);
2883 		put_page(page);
2884 		goto repeat;
2885 	}
2886 
2887 	/* Someone else locked and filled the page in a very small window */
2888 	if (PageUptodate(page)) {
2889 		unlock_page(page);
2890 		goto out;
2891 	}
2892 
2893 	/*
2894 	 * A previous I/O error may have been due to temporary
2895 	 * failures.
2896 	 * Clear page error before actual read, PG_error will be
2897 	 * set again if read page fails.
2898 	 */
2899 	ClearPageError(page);
2900 	goto filler;
2901 
2902 out:
2903 	mark_page_accessed(page);
2904 	return page;
2905 }
2906 
2907 /**
2908  * read_cache_page - read into page cache, fill it if needed
2909  * @mapping:	the page's address_space
2910  * @index:	the page index
2911  * @filler:	function to perform the read
2912  * @data:	first arg to filler(data, page) function, often left as NULL
2913  *
2914  * Read into the page cache. If a page already exists, and PageUptodate() is
2915  * not set, try to fill the page and wait for it to become unlocked.
2916  *
2917  * If the page does not get brought uptodate, return -EIO.
2918  */
read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)2919 struct page *read_cache_page(struct address_space *mapping,
2920 				pgoff_t index,
2921 				int (*filler)(void *, struct page *),
2922 				void *data)
2923 {
2924 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2925 }
2926 EXPORT_SYMBOL(read_cache_page);
2927 
2928 /**
2929  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2930  * @mapping:	the page's address_space
2931  * @index:	the page index
2932  * @gfp:	the page allocator flags to use if allocating
2933  *
2934  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2935  * any new page allocations done using the specified allocation flags.
2936  *
2937  * If the page does not get brought uptodate, return -EIO.
2938  */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)2939 struct page *read_cache_page_gfp(struct address_space *mapping,
2940 				pgoff_t index,
2941 				gfp_t gfp)
2942 {
2943 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2944 
2945 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2946 }
2947 EXPORT_SYMBOL(read_cache_page_gfp);
2948 
2949 /*
2950  * Performs necessary checks before doing a write
2951  *
2952  * Can adjust writing position or amount of bytes to write.
2953  * Returns appropriate error code that caller should return or
2954  * zero in case that write should be allowed.
2955  */
generic_write_checks(struct kiocb * iocb,struct iov_iter * from)2956 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2957 {
2958 	struct file *file = iocb->ki_filp;
2959 	struct inode *inode = file->f_mapping->host;
2960 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2961 	loff_t pos;
2962 
2963 	if (!iov_iter_count(from))
2964 		return 0;
2965 
2966 	/* FIXME: this is for backwards compatibility with 2.4 */
2967 	if (iocb->ki_flags & IOCB_APPEND)
2968 		iocb->ki_pos = i_size_read(inode);
2969 
2970 	pos = iocb->ki_pos;
2971 
2972 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2973 		return -EINVAL;
2974 
2975 	if (limit != RLIM_INFINITY) {
2976 		if (iocb->ki_pos >= limit) {
2977 			send_sig(SIGXFSZ, current, 0);
2978 			return -EFBIG;
2979 		}
2980 		iov_iter_truncate(from, limit - (unsigned long)pos);
2981 	}
2982 
2983 	/*
2984 	 * LFS rule
2985 	 */
2986 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2987 				!(file->f_flags & O_LARGEFILE))) {
2988 		if (pos >= MAX_NON_LFS)
2989 			return -EFBIG;
2990 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2991 	}
2992 
2993 	/*
2994 	 * Are we about to exceed the fs block limit ?
2995 	 *
2996 	 * If we have written data it becomes a short write.  If we have
2997 	 * exceeded without writing data we send a signal and return EFBIG.
2998 	 * Linus frestrict idea will clean these up nicely..
2999 	 */
3000 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
3001 		return -EFBIG;
3002 
3003 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
3004 	return iov_iter_count(from);
3005 }
3006 EXPORT_SYMBOL(generic_write_checks);
3007 
pagecache_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3008 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3009 				loff_t pos, unsigned len, unsigned flags,
3010 				struct page **pagep, void **fsdata)
3011 {
3012 	const struct address_space_operations *aops = mapping->a_ops;
3013 
3014 	return aops->write_begin(file, mapping, pos, len, flags,
3015 							pagep, fsdata);
3016 }
3017 EXPORT_SYMBOL(pagecache_write_begin);
3018 
pagecache_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3019 int pagecache_write_end(struct file *file, struct address_space *mapping,
3020 				loff_t pos, unsigned len, unsigned copied,
3021 				struct page *page, void *fsdata)
3022 {
3023 	const struct address_space_operations *aops = mapping->a_ops;
3024 
3025 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3026 }
3027 EXPORT_SYMBOL(pagecache_write_end);
3028 
3029 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)3030 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3031 {
3032 	struct file	*file = iocb->ki_filp;
3033 	struct address_space *mapping = file->f_mapping;
3034 	struct inode	*inode = mapping->host;
3035 	loff_t		pos = iocb->ki_pos;
3036 	ssize_t		written;
3037 	size_t		write_len;
3038 	pgoff_t		end;
3039 
3040 	write_len = iov_iter_count(from);
3041 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3042 
3043 	if (iocb->ki_flags & IOCB_NOWAIT) {
3044 		/* If there are pages to writeback, return */
3045 		if (filemap_range_has_page(inode->i_mapping, pos,
3046 					   pos + iov_iter_count(from)))
3047 			return -EAGAIN;
3048 	} else {
3049 		written = filemap_write_and_wait_range(mapping, pos,
3050 							pos + write_len - 1);
3051 		if (written)
3052 			goto out;
3053 	}
3054 
3055 	/*
3056 	 * After a write we want buffered reads to be sure to go to disk to get
3057 	 * the new data.  We invalidate clean cached page from the region we're
3058 	 * about to write.  We do this *before* the write so that we can return
3059 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3060 	 */
3061 	written = invalidate_inode_pages2_range(mapping,
3062 					pos >> PAGE_SHIFT, end);
3063 	/*
3064 	 * If a page can not be invalidated, return 0 to fall back
3065 	 * to buffered write.
3066 	 */
3067 	if (written) {
3068 		if (written == -EBUSY)
3069 			return 0;
3070 		goto out;
3071 	}
3072 
3073 	written = mapping->a_ops->direct_IO(iocb, from);
3074 
3075 	/*
3076 	 * Finally, try again to invalidate clean pages which might have been
3077 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3078 	 * if the source of the write was an mmap'ed region of the file
3079 	 * we're writing.  Either one is a pretty crazy thing to do,
3080 	 * so we don't support it 100%.  If this invalidation
3081 	 * fails, tough, the write still worked...
3082 	 *
3083 	 * Most of the time we do not need this since dio_complete() will do
3084 	 * the invalidation for us. However there are some file systems that
3085 	 * do not end up with dio_complete() being called, so let's not break
3086 	 * them by removing it completely
3087 	 */
3088 	if (mapping->nrpages)
3089 		invalidate_inode_pages2_range(mapping,
3090 					pos >> PAGE_SHIFT, end);
3091 
3092 	if (written > 0) {
3093 		pos += written;
3094 		write_len -= written;
3095 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3096 			i_size_write(inode, pos);
3097 			mark_inode_dirty(inode);
3098 		}
3099 		iocb->ki_pos = pos;
3100 	}
3101 	iov_iter_revert(from, write_len - iov_iter_count(from));
3102 out:
3103 	return written;
3104 }
3105 EXPORT_SYMBOL(generic_file_direct_write);
3106 
3107 /*
3108  * Find or create a page at the given pagecache position. Return the locked
3109  * page. This function is specifically for buffered writes.
3110  */
grab_cache_page_write_begin(struct address_space * mapping,pgoff_t index,unsigned flags)3111 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3112 					pgoff_t index, unsigned flags)
3113 {
3114 	struct page *page;
3115 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3116 
3117 	if (flags & AOP_FLAG_NOFS)
3118 		fgp_flags |= FGP_NOFS;
3119 
3120 	page = pagecache_get_page(mapping, index, fgp_flags,
3121 			mapping_gfp_mask(mapping));
3122 	if (page)
3123 		wait_for_stable_page(page);
3124 
3125 	return page;
3126 }
3127 EXPORT_SYMBOL(grab_cache_page_write_begin);
3128 
generic_perform_write(struct file * file,struct iov_iter * i,loff_t pos)3129 ssize_t generic_perform_write(struct file *file,
3130 				struct iov_iter *i, loff_t pos)
3131 {
3132 	struct address_space *mapping = file->f_mapping;
3133 	const struct address_space_operations *a_ops = mapping->a_ops;
3134 	long status = 0;
3135 	ssize_t written = 0;
3136 	unsigned int flags = 0;
3137 
3138 	do {
3139 		struct page *page;
3140 		unsigned long offset;	/* Offset into pagecache page */
3141 		unsigned long bytes;	/* Bytes to write to page */
3142 		size_t copied;		/* Bytes copied from user */
3143 		void *fsdata;
3144 
3145 		offset = (pos & (PAGE_SIZE - 1));
3146 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3147 						iov_iter_count(i));
3148 
3149 again:
3150 		/*
3151 		 * Bring in the user page that we will copy from _first_.
3152 		 * Otherwise there's a nasty deadlock on copying from the
3153 		 * same page as we're writing to, without it being marked
3154 		 * up-to-date.
3155 		 *
3156 		 * Not only is this an optimisation, but it is also required
3157 		 * to check that the address is actually valid, when atomic
3158 		 * usercopies are used, below.
3159 		 */
3160 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3161 			status = -EFAULT;
3162 			break;
3163 		}
3164 
3165 		if (fatal_signal_pending(current)) {
3166 			status = -EINTR;
3167 			break;
3168 		}
3169 
3170 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3171 						&page, &fsdata);
3172 		if (unlikely(status < 0))
3173 			break;
3174 
3175 		if (mapping_writably_mapped(mapping))
3176 			flush_dcache_page(page);
3177 
3178 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3179 		flush_dcache_page(page);
3180 
3181 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3182 						page, fsdata);
3183 		if (unlikely(status < 0))
3184 			break;
3185 		copied = status;
3186 
3187 		cond_resched();
3188 
3189 		iov_iter_advance(i, copied);
3190 		if (unlikely(copied == 0)) {
3191 			/*
3192 			 * If we were unable to copy any data at all, we must
3193 			 * fall back to a single segment length write.
3194 			 *
3195 			 * If we didn't fallback here, we could livelock
3196 			 * because not all segments in the iov can be copied at
3197 			 * once without a pagefault.
3198 			 */
3199 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3200 						iov_iter_single_seg_count(i));
3201 			goto again;
3202 		}
3203 		pos += copied;
3204 		written += copied;
3205 
3206 		balance_dirty_pages_ratelimited(mapping);
3207 	} while (iov_iter_count(i));
3208 
3209 	return written ? written : status;
3210 }
3211 EXPORT_SYMBOL(generic_perform_write);
3212 
3213 /**
3214  * __generic_file_write_iter - write data to a file
3215  * @iocb:	IO state structure (file, offset, etc.)
3216  * @from:	iov_iter with data to write
3217  *
3218  * This function does all the work needed for actually writing data to a
3219  * file. It does all basic checks, removes SUID from the file, updates
3220  * modification times and calls proper subroutines depending on whether we
3221  * do direct IO or a standard buffered write.
3222  *
3223  * It expects i_mutex to be grabbed unless we work on a block device or similar
3224  * object which does not need locking at all.
3225  *
3226  * This function does *not* take care of syncing data in case of O_SYNC write.
3227  * A caller has to handle it. This is mainly due to the fact that we want to
3228  * avoid syncing under i_mutex.
3229  */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3230 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3231 {
3232 	struct file *file = iocb->ki_filp;
3233 	struct address_space * mapping = file->f_mapping;
3234 	struct inode 	*inode = mapping->host;
3235 	ssize_t		written = 0;
3236 	ssize_t		err;
3237 	ssize_t		status;
3238 
3239 	/* We can write back this queue in page reclaim */
3240 	current->backing_dev_info = inode_to_bdi(inode);
3241 	err = file_remove_privs(file);
3242 	if (err)
3243 		goto out;
3244 
3245 	err = file_update_time(file);
3246 	if (err)
3247 		goto out;
3248 
3249 	if (iocb->ki_flags & IOCB_DIRECT) {
3250 		loff_t pos, endbyte;
3251 
3252 		written = generic_file_direct_write(iocb, from);
3253 		/*
3254 		 * If the write stopped short of completing, fall back to
3255 		 * buffered writes.  Some filesystems do this for writes to
3256 		 * holes, for example.  For DAX files, a buffered write will
3257 		 * not succeed (even if it did, DAX does not handle dirty
3258 		 * page-cache pages correctly).
3259 		 */
3260 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3261 			goto out;
3262 
3263 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3264 		/*
3265 		 * If generic_perform_write() returned a synchronous error
3266 		 * then we want to return the number of bytes which were
3267 		 * direct-written, or the error code if that was zero.  Note
3268 		 * that this differs from normal direct-io semantics, which
3269 		 * will return -EFOO even if some bytes were written.
3270 		 */
3271 		if (unlikely(status < 0)) {
3272 			err = status;
3273 			goto out;
3274 		}
3275 		/*
3276 		 * We need to ensure that the page cache pages are written to
3277 		 * disk and invalidated to preserve the expected O_DIRECT
3278 		 * semantics.
3279 		 */
3280 		endbyte = pos + status - 1;
3281 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3282 		if (err == 0) {
3283 			iocb->ki_pos = endbyte + 1;
3284 			written += status;
3285 			invalidate_mapping_pages(mapping,
3286 						 pos >> PAGE_SHIFT,
3287 						 endbyte >> PAGE_SHIFT);
3288 		} else {
3289 			/*
3290 			 * We don't know how much we wrote, so just return
3291 			 * the number of bytes which were direct-written
3292 			 */
3293 		}
3294 	} else {
3295 		written = generic_perform_write(file, from, iocb->ki_pos);
3296 		if (likely(written > 0))
3297 			iocb->ki_pos += written;
3298 	}
3299 out:
3300 	current->backing_dev_info = NULL;
3301 	return written ? written : err;
3302 }
3303 EXPORT_SYMBOL(__generic_file_write_iter);
3304 
3305 /**
3306  * generic_file_write_iter - write data to a file
3307  * @iocb:	IO state structure
3308  * @from:	iov_iter with data to write
3309  *
3310  * This is a wrapper around __generic_file_write_iter() to be used by most
3311  * filesystems. It takes care of syncing the file in case of O_SYNC file
3312  * and acquires i_mutex as needed.
3313  */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3314 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3315 {
3316 	struct file *file = iocb->ki_filp;
3317 	struct inode *inode = file->f_mapping->host;
3318 	ssize_t ret;
3319 
3320 	inode_lock(inode);
3321 	ret = generic_write_checks(iocb, from);
3322 	if (ret > 0)
3323 		ret = __generic_file_write_iter(iocb, from);
3324 	inode_unlock(inode);
3325 
3326 	if (ret > 0)
3327 		ret = generic_write_sync(iocb, ret);
3328 	return ret;
3329 }
3330 EXPORT_SYMBOL(generic_file_write_iter);
3331 
3332 /**
3333  * try_to_release_page() - release old fs-specific metadata on a page
3334  *
3335  * @page: the page which the kernel is trying to free
3336  * @gfp_mask: memory allocation flags (and I/O mode)
3337  *
3338  * The address_space is to try to release any data against the page
3339  * (presumably at page->private).  If the release was successful, return '1'.
3340  * Otherwise return zero.
3341  *
3342  * This may also be called if PG_fscache is set on a page, indicating that the
3343  * page is known to the local caching routines.
3344  *
3345  * The @gfp_mask argument specifies whether I/O may be performed to release
3346  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3347  *
3348  */
try_to_release_page(struct page * page,gfp_t gfp_mask)3349 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3350 {
3351 	struct address_space * const mapping = page->mapping;
3352 
3353 	BUG_ON(!PageLocked(page));
3354 	if (PageWriteback(page))
3355 		return 0;
3356 
3357 	if (mapping && mapping->a_ops->releasepage)
3358 		return mapping->a_ops->releasepage(page, gfp_mask);
3359 	return try_to_free_buffers(page);
3360 }
3361 
3362 EXPORT_SYMBOL(try_to_release_page);
3363