• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 #define MEM_CGROUP_RECLAIM_RETRIES	5
83 
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86 
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89 
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account		0
95 #endif
96 
97 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)98 static bool do_memsw_account(void)
99 {
100 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102 
103 static const char *const mem_cgroup_lru_names[] = {
104 	"inactive_anon",
105 	"active_anon",
106 	"inactive_file",
107 	"active_file",
108 	"unevictable",
109 };
110 
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET	1024
114 
115 /*
116  * Cgroups above their limits are maintained in a RB-Tree, independent of
117  * their hierarchy representation
118  */
119 
120 struct mem_cgroup_tree_per_node {
121 	struct rb_root rb_root;
122 	struct rb_node *rb_rightmost;
123 	spinlock_t lock;
124 };
125 
126 struct mem_cgroup_tree {
127 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128 };
129 
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131 
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 	struct list_head list;
135 	struct eventfd_ctx *eventfd;
136 };
137 
138 /*
139  * cgroup_event represents events which userspace want to receive.
140  */
141 struct mem_cgroup_event {
142 	/*
143 	 * memcg which the event belongs to.
144 	 */
145 	struct mem_cgroup *memcg;
146 	/*
147 	 * eventfd to signal userspace about the event.
148 	 */
149 	struct eventfd_ctx *eventfd;
150 	/*
151 	 * Each of these stored in a list by the cgroup.
152 	 */
153 	struct list_head list;
154 	/*
155 	 * register_event() callback will be used to add new userspace
156 	 * waiter for changes related to this event.  Use eventfd_signal()
157 	 * on eventfd to send notification to userspace.
158 	 */
159 	int (*register_event)(struct mem_cgroup *memcg,
160 			      struct eventfd_ctx *eventfd, const char *args);
161 	/*
162 	 * unregister_event() callback will be called when userspace closes
163 	 * the eventfd or on cgroup removing.  This callback must be set,
164 	 * if you want provide notification functionality.
165 	 */
166 	void (*unregister_event)(struct mem_cgroup *memcg,
167 				 struct eventfd_ctx *eventfd);
168 	/*
169 	 * All fields below needed to unregister event when
170 	 * userspace closes eventfd.
171 	 */
172 	poll_table pt;
173 	wait_queue_head_t *wqh;
174 	wait_queue_entry_t wait;
175 	struct work_struct remove;
176 };
177 
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180 
181 /* Stuffs for move charges at task migration. */
182 /*
183  * Types of charges to be moved.
184  */
185 #define MOVE_ANON	0x1U
186 #define MOVE_FILE	0x2U
187 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188 
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 	spinlock_t	  lock; /* for from, to */
192 	struct mm_struct  *mm;
193 	struct mem_cgroup *from;
194 	struct mem_cgroup *to;
195 	unsigned long flags;
196 	unsigned long precharge;
197 	unsigned long moved_charge;
198 	unsigned long moved_swap;
199 	struct task_struct *moving_task;	/* a task moving charges */
200 	wait_queue_head_t waitq;		/* a waitq for other context */
201 } mc = {
202 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204 };
205 
206 /*
207  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208  * limit reclaim to prevent infinite loops, if they ever occur.
209  */
210 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212 
213 enum charge_type {
214 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 	MEM_CGROUP_CHARGE_TYPE_ANON,
216 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
217 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 	NR_CHARGE_TYPE,
219 };
220 
221 /* for encoding cft->private value on file */
222 enum res_type {
223 	_MEM,
224 	_MEMSWAP,
225 	_OOM_TYPE,
226 	_KMEM,
227 	_TCP,
228 };
229 
230 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
231 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val)	((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL		(0)
235 
236 /*
237  * Iteration constructs for visiting all cgroups (under a tree).  If
238  * loops are exited prematurely (break), mem_cgroup_iter_break() must
239  * be used for reference counting.
240  */
241 #define for_each_mem_cgroup_tree(iter, root)		\
242 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
243 	     iter != NULL;				\
244 	     iter = mem_cgroup_iter(root, iter, NULL))
245 
246 #define for_each_mem_cgroup(iter)			\
247 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
248 	     iter != NULL;				\
249 	     iter = mem_cgroup_iter(NULL, iter, NULL))
250 
should_force_charge(void)251 static inline bool should_force_charge(void)
252 {
253 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
254 		(current->flags & PF_EXITING);
255 }
256 
257 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)258 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
259 {
260 	if (!memcg)
261 		memcg = root_mem_cgroup;
262 	return &memcg->vmpressure;
263 }
264 
vmpressure_to_css(struct vmpressure * vmpr)265 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
266 {
267 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
268 }
269 
270 #ifdef CONFIG_MEMCG_KMEM
271 /*
272  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
273  * The main reason for not using cgroup id for this:
274  *  this works better in sparse environments, where we have a lot of memcgs,
275  *  but only a few kmem-limited. Or also, if we have, for instance, 200
276  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
277  *  200 entry array for that.
278  *
279  * The current size of the caches array is stored in memcg_nr_cache_ids. It
280  * will double each time we have to increase it.
281  */
282 static DEFINE_IDA(memcg_cache_ida);
283 int memcg_nr_cache_ids;
284 
285 /* Protects memcg_nr_cache_ids */
286 static DECLARE_RWSEM(memcg_cache_ids_sem);
287 
memcg_get_cache_ids(void)288 void memcg_get_cache_ids(void)
289 {
290 	down_read(&memcg_cache_ids_sem);
291 }
292 
memcg_put_cache_ids(void)293 void memcg_put_cache_ids(void)
294 {
295 	up_read(&memcg_cache_ids_sem);
296 }
297 
298 /*
299  * MIN_SIZE is different than 1, because we would like to avoid going through
300  * the alloc/free process all the time. In a small machine, 4 kmem-limited
301  * cgroups is a reasonable guess. In the future, it could be a parameter or
302  * tunable, but that is strictly not necessary.
303  *
304  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
305  * this constant directly from cgroup, but it is understandable that this is
306  * better kept as an internal representation in cgroup.c. In any case, the
307  * cgrp_id space is not getting any smaller, and we don't have to necessarily
308  * increase ours as well if it increases.
309  */
310 #define MEMCG_CACHES_MIN_SIZE 4
311 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
312 
313 /*
314  * A lot of the calls to the cache allocation functions are expected to be
315  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
316  * conditional to this static branch, we'll have to allow modules that does
317  * kmem_cache_alloc and the such to see this symbol as well
318  */
319 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
320 EXPORT_SYMBOL(memcg_kmem_enabled_key);
321 
322 struct workqueue_struct *memcg_kmem_cache_wq;
323 
324 static int memcg_shrinker_map_size;
325 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
326 
memcg_free_shrinker_map_rcu(struct rcu_head * head)327 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
328 {
329 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
330 }
331 
memcg_expand_one_shrinker_map(struct mem_cgroup * memcg,int size,int old_size)332 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
333 					 int size, int old_size)
334 {
335 	struct memcg_shrinker_map *new, *old;
336 	int nid;
337 
338 	lockdep_assert_held(&memcg_shrinker_map_mutex);
339 
340 	for_each_node(nid) {
341 		old = rcu_dereference_protected(
342 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
343 		/* Not yet online memcg */
344 		if (!old)
345 			return 0;
346 
347 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
348 		if (!new)
349 			return -ENOMEM;
350 
351 		/* Set all old bits, clear all new bits */
352 		memset(new->map, (int)0xff, old_size);
353 		memset((void *)new->map + old_size, 0, size - old_size);
354 
355 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
356 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
357 	}
358 
359 	return 0;
360 }
361 
memcg_free_shrinker_maps(struct mem_cgroup * memcg)362 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
363 {
364 	struct mem_cgroup_per_node *pn;
365 	struct memcg_shrinker_map *map;
366 	int nid;
367 
368 	if (mem_cgroup_is_root(memcg))
369 		return;
370 
371 	for_each_node(nid) {
372 		pn = mem_cgroup_nodeinfo(memcg, nid);
373 		map = rcu_dereference_protected(pn->shrinker_map, true);
374 		if (map)
375 			kvfree(map);
376 		rcu_assign_pointer(pn->shrinker_map, NULL);
377 	}
378 }
379 
memcg_alloc_shrinker_maps(struct mem_cgroup * memcg)380 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
381 {
382 	struct memcg_shrinker_map *map;
383 	int nid, size, ret = 0;
384 
385 	if (mem_cgroup_is_root(memcg))
386 		return 0;
387 
388 	mutex_lock(&memcg_shrinker_map_mutex);
389 	size = memcg_shrinker_map_size;
390 	for_each_node(nid) {
391 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
392 		if (!map) {
393 			memcg_free_shrinker_maps(memcg);
394 			ret = -ENOMEM;
395 			break;
396 		}
397 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
398 	}
399 	mutex_unlock(&memcg_shrinker_map_mutex);
400 
401 	return ret;
402 }
403 
memcg_expand_shrinker_maps(int new_id)404 int memcg_expand_shrinker_maps(int new_id)
405 {
406 	int size, old_size, ret = 0;
407 	struct mem_cgroup *memcg;
408 
409 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
410 	old_size = memcg_shrinker_map_size;
411 	if (size <= old_size)
412 		return 0;
413 
414 	mutex_lock(&memcg_shrinker_map_mutex);
415 	if (!root_mem_cgroup)
416 		goto unlock;
417 
418 	for_each_mem_cgroup(memcg) {
419 		if (mem_cgroup_is_root(memcg))
420 			continue;
421 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
422 		if (ret) {
423 			mem_cgroup_iter_break(NULL, memcg);
424 			goto unlock;
425 		}
426 	}
427 unlock:
428 	if (!ret)
429 		memcg_shrinker_map_size = size;
430 	mutex_unlock(&memcg_shrinker_map_mutex);
431 	return ret;
432 }
433 
memcg_set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)434 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
435 {
436 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
437 		struct memcg_shrinker_map *map;
438 
439 		rcu_read_lock();
440 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
441 		/* Pairs with smp mb in shrink_slab() */
442 		smp_mb__before_atomic();
443 		set_bit(shrinker_id, map->map);
444 		rcu_read_unlock();
445 	}
446 }
447 
448 #else /* CONFIG_MEMCG_KMEM */
memcg_alloc_shrinker_maps(struct mem_cgroup * memcg)449 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
450 {
451 	return 0;
452 }
memcg_free_shrinker_maps(struct mem_cgroup * memcg)453 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
454 #endif /* CONFIG_MEMCG_KMEM */
455 
456 /**
457  * mem_cgroup_css_from_page - css of the memcg associated with a page
458  * @page: page of interest
459  *
460  * If memcg is bound to the default hierarchy, css of the memcg associated
461  * with @page is returned.  The returned css remains associated with @page
462  * until it is released.
463  *
464  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
465  * is returned.
466  */
mem_cgroup_css_from_page(struct page * page)467 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
468 {
469 	struct mem_cgroup *memcg;
470 
471 	memcg = page->mem_cgroup;
472 
473 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
474 		memcg = root_mem_cgroup;
475 
476 	return &memcg->css;
477 }
478 
479 /**
480  * page_cgroup_ino - return inode number of the memcg a page is charged to
481  * @page: the page
482  *
483  * Look up the closest online ancestor of the memory cgroup @page is charged to
484  * and return its inode number or 0 if @page is not charged to any cgroup. It
485  * is safe to call this function without holding a reference to @page.
486  *
487  * Note, this function is inherently racy, because there is nothing to prevent
488  * the cgroup inode from getting torn down and potentially reallocated a moment
489  * after page_cgroup_ino() returns, so it only should be used by callers that
490  * do not care (such as procfs interfaces).
491  */
page_cgroup_ino(struct page * page)492 ino_t page_cgroup_ino(struct page *page)
493 {
494 	struct mem_cgroup *memcg;
495 	unsigned long ino = 0;
496 
497 	rcu_read_lock();
498 	memcg = READ_ONCE(page->mem_cgroup);
499 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
500 		memcg = parent_mem_cgroup(memcg);
501 	if (memcg)
502 		ino = cgroup_ino(memcg->css.cgroup);
503 	rcu_read_unlock();
504 	return ino;
505 }
506 
507 static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup * memcg,struct page * page)508 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
509 {
510 	int nid = page_to_nid(page);
511 
512 	return memcg->nodeinfo[nid];
513 }
514 
515 static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)516 soft_limit_tree_node(int nid)
517 {
518 	return soft_limit_tree.rb_tree_per_node[nid];
519 }
520 
521 static struct mem_cgroup_tree_per_node *
soft_limit_tree_from_page(struct page * page)522 soft_limit_tree_from_page(struct page *page)
523 {
524 	int nid = page_to_nid(page);
525 
526 	return soft_limit_tree.rb_tree_per_node[nid];
527 }
528 
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)529 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
530 					 struct mem_cgroup_tree_per_node *mctz,
531 					 unsigned long new_usage_in_excess)
532 {
533 	struct rb_node **p = &mctz->rb_root.rb_node;
534 	struct rb_node *parent = NULL;
535 	struct mem_cgroup_per_node *mz_node;
536 	bool rightmost = true;
537 
538 	if (mz->on_tree)
539 		return;
540 
541 	mz->usage_in_excess = new_usage_in_excess;
542 	if (!mz->usage_in_excess)
543 		return;
544 	while (*p) {
545 		parent = *p;
546 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
547 					tree_node);
548 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
549 			p = &(*p)->rb_left;
550 			rightmost = false;
551 		}
552 
553 		/*
554 		 * We can't avoid mem cgroups that are over their soft
555 		 * limit by the same amount
556 		 */
557 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
558 			p = &(*p)->rb_right;
559 	}
560 
561 	if (rightmost)
562 		mctz->rb_rightmost = &mz->tree_node;
563 
564 	rb_link_node(&mz->tree_node, parent, p);
565 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
566 	mz->on_tree = true;
567 }
568 
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)569 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
570 					 struct mem_cgroup_tree_per_node *mctz)
571 {
572 	if (!mz->on_tree)
573 		return;
574 
575 	if (&mz->tree_node == mctz->rb_rightmost)
576 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
577 
578 	rb_erase(&mz->tree_node, &mctz->rb_root);
579 	mz->on_tree = false;
580 }
581 
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)582 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
583 				       struct mem_cgroup_tree_per_node *mctz)
584 {
585 	unsigned long flags;
586 
587 	spin_lock_irqsave(&mctz->lock, flags);
588 	__mem_cgroup_remove_exceeded(mz, mctz);
589 	spin_unlock_irqrestore(&mctz->lock, flags);
590 }
591 
soft_limit_excess(struct mem_cgroup * memcg)592 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
593 {
594 	unsigned long nr_pages = page_counter_read(&memcg->memory);
595 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
596 	unsigned long excess = 0;
597 
598 	if (nr_pages > soft_limit)
599 		excess = nr_pages - soft_limit;
600 
601 	return excess;
602 }
603 
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)604 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
605 {
606 	unsigned long excess;
607 	struct mem_cgroup_per_node *mz;
608 	struct mem_cgroup_tree_per_node *mctz;
609 
610 	mctz = soft_limit_tree_from_page(page);
611 	if (!mctz)
612 		return;
613 	/*
614 	 * Necessary to update all ancestors when hierarchy is used.
615 	 * because their event counter is not touched.
616 	 */
617 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
618 		mz = mem_cgroup_page_nodeinfo(memcg, page);
619 		excess = soft_limit_excess(memcg);
620 		/*
621 		 * We have to update the tree if mz is on RB-tree or
622 		 * mem is over its softlimit.
623 		 */
624 		if (excess || mz->on_tree) {
625 			unsigned long flags;
626 
627 			spin_lock_irqsave(&mctz->lock, flags);
628 			/* if on-tree, remove it */
629 			if (mz->on_tree)
630 				__mem_cgroup_remove_exceeded(mz, mctz);
631 			/*
632 			 * Insert again. mz->usage_in_excess will be updated.
633 			 * If excess is 0, no tree ops.
634 			 */
635 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
636 			spin_unlock_irqrestore(&mctz->lock, flags);
637 		}
638 	}
639 }
640 
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)641 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
642 {
643 	struct mem_cgroup_tree_per_node *mctz;
644 	struct mem_cgroup_per_node *mz;
645 	int nid;
646 
647 	for_each_node(nid) {
648 		mz = mem_cgroup_nodeinfo(memcg, nid);
649 		mctz = soft_limit_tree_node(nid);
650 		if (mctz)
651 			mem_cgroup_remove_exceeded(mz, mctz);
652 	}
653 }
654 
655 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)656 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
657 {
658 	struct mem_cgroup_per_node *mz;
659 
660 retry:
661 	mz = NULL;
662 	if (!mctz->rb_rightmost)
663 		goto done;		/* Nothing to reclaim from */
664 
665 	mz = rb_entry(mctz->rb_rightmost,
666 		      struct mem_cgroup_per_node, tree_node);
667 	/*
668 	 * Remove the node now but someone else can add it back,
669 	 * we will to add it back at the end of reclaim to its correct
670 	 * position in the tree.
671 	 */
672 	__mem_cgroup_remove_exceeded(mz, mctz);
673 	if (!soft_limit_excess(mz->memcg) ||
674 	    !css_tryget_online(&mz->memcg->css))
675 		goto retry;
676 done:
677 	return mz;
678 }
679 
680 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)681 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
682 {
683 	struct mem_cgroup_per_node *mz;
684 
685 	spin_lock_irq(&mctz->lock);
686 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
687 	spin_unlock_irq(&mctz->lock);
688 	return mz;
689 }
690 
memcg_sum_events(struct mem_cgroup * memcg,int event)691 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
692 				      int event)
693 {
694 	return atomic_long_read(&memcg->events[event]);
695 }
696 
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,bool compound,int nr_pages)697 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 					 struct page *page,
699 					 bool compound, int nr_pages)
700 {
701 	/*
702 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 	 * counted as CACHE even if it's on ANON LRU.
704 	 */
705 	if (PageAnon(page))
706 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
707 	else {
708 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
709 		if (PageSwapBacked(page))
710 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
711 	}
712 
713 	if (compound) {
714 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
715 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
716 	}
717 
718 	/* pagein of a big page is an event. So, ignore page size */
719 	if (nr_pages > 0)
720 		__count_memcg_events(memcg, PGPGIN, 1);
721 	else {
722 		__count_memcg_events(memcg, PGPGOUT, 1);
723 		nr_pages = -nr_pages; /* for event */
724 	}
725 
726 	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
727 }
728 
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask)729 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
730 					   int nid, unsigned int lru_mask)
731 {
732 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
733 	unsigned long nr = 0;
734 	enum lru_list lru;
735 
736 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
737 
738 	for_each_lru(lru) {
739 		if (!(BIT(lru) & lru_mask))
740 			continue;
741 		nr += mem_cgroup_get_lru_size(lruvec, lru);
742 	}
743 	return nr;
744 }
745 
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask)746 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
747 			unsigned int lru_mask)
748 {
749 	unsigned long nr = 0;
750 	int nid;
751 
752 	for_each_node_state(nid, N_MEMORY)
753 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
754 	return nr;
755 }
756 
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)757 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
758 				       enum mem_cgroup_events_target target)
759 {
760 	unsigned long val, next;
761 
762 	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
763 	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
764 	/* from time_after() in jiffies.h */
765 	if ((long)(next - val) < 0) {
766 		switch (target) {
767 		case MEM_CGROUP_TARGET_THRESH:
768 			next = val + THRESHOLDS_EVENTS_TARGET;
769 			break;
770 		case MEM_CGROUP_TARGET_SOFTLIMIT:
771 			next = val + SOFTLIMIT_EVENTS_TARGET;
772 			break;
773 		case MEM_CGROUP_TARGET_NUMAINFO:
774 			next = val + NUMAINFO_EVENTS_TARGET;
775 			break;
776 		default:
777 			break;
778 		}
779 		__this_cpu_write(memcg->stat_cpu->targets[target], next);
780 		return true;
781 	}
782 	return false;
783 }
784 
785 /*
786  * Check events in order.
787  *
788  */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)789 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
790 {
791 	/* threshold event is triggered in finer grain than soft limit */
792 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
793 						MEM_CGROUP_TARGET_THRESH))) {
794 		bool do_softlimit;
795 		bool do_numainfo __maybe_unused;
796 
797 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
798 						MEM_CGROUP_TARGET_SOFTLIMIT);
799 #if MAX_NUMNODES > 1
800 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
801 						MEM_CGROUP_TARGET_NUMAINFO);
802 #endif
803 		mem_cgroup_threshold(memcg);
804 		if (unlikely(do_softlimit))
805 			mem_cgroup_update_tree(memcg, page);
806 #if MAX_NUMNODES > 1
807 		if (unlikely(do_numainfo))
808 			atomic_inc(&memcg->numainfo_events);
809 #endif
810 	}
811 }
812 
mem_cgroup_from_task(struct task_struct * p)813 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
814 {
815 	/*
816 	 * mm_update_next_owner() may clear mm->owner to NULL
817 	 * if it races with swapoff, page migration, etc.
818 	 * So this can be called with p == NULL.
819 	 */
820 	if (unlikely(!p))
821 		return NULL;
822 
823 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
824 }
825 EXPORT_SYMBOL(mem_cgroup_from_task);
826 
827 /**
828  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
829  * @mm: mm from which memcg should be extracted. It can be NULL.
830  *
831  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
832  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
833  * returned.
834  */
get_mem_cgroup_from_mm(struct mm_struct * mm)835 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
836 {
837 	struct mem_cgroup *memcg;
838 
839 	if (mem_cgroup_disabled())
840 		return NULL;
841 
842 	rcu_read_lock();
843 	do {
844 		/*
845 		 * Page cache insertions can happen withou an
846 		 * actual mm context, e.g. during disk probing
847 		 * on boot, loopback IO, acct() writes etc.
848 		 */
849 		if (unlikely(!mm))
850 			memcg = root_mem_cgroup;
851 		else {
852 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
853 			if (unlikely(!memcg))
854 				memcg = root_mem_cgroup;
855 		}
856 	} while (!css_tryget(&memcg->css));
857 	rcu_read_unlock();
858 	return memcg;
859 }
860 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
861 
862 /**
863  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
864  * @page: page from which memcg should be extracted.
865  *
866  * Obtain a reference on page->memcg and returns it if successful. Otherwise
867  * root_mem_cgroup is returned.
868  */
get_mem_cgroup_from_page(struct page * page)869 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
870 {
871 	struct mem_cgroup *memcg = page->mem_cgroup;
872 
873 	if (mem_cgroup_disabled())
874 		return NULL;
875 
876 	rcu_read_lock();
877 	if (!memcg || !css_tryget_online(&memcg->css))
878 		memcg = root_mem_cgroup;
879 	rcu_read_unlock();
880 	return memcg;
881 }
882 EXPORT_SYMBOL(get_mem_cgroup_from_page);
883 
884 /**
885  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
886  */
get_mem_cgroup_from_current(void)887 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
888 {
889 	if (unlikely(current->active_memcg)) {
890 		struct mem_cgroup *memcg = root_mem_cgroup;
891 
892 		rcu_read_lock();
893 		if (css_tryget_online(&current->active_memcg->css))
894 			memcg = current->active_memcg;
895 		rcu_read_unlock();
896 		return memcg;
897 	}
898 	return get_mem_cgroup_from_mm(current->mm);
899 }
900 
901 /**
902  * mem_cgroup_iter - iterate over memory cgroup hierarchy
903  * @root: hierarchy root
904  * @prev: previously returned memcg, NULL on first invocation
905  * @reclaim: cookie for shared reclaim walks, NULL for full walks
906  *
907  * Returns references to children of the hierarchy below @root, or
908  * @root itself, or %NULL after a full round-trip.
909  *
910  * Caller must pass the return value in @prev on subsequent
911  * invocations for reference counting, or use mem_cgroup_iter_break()
912  * to cancel a hierarchy walk before the round-trip is complete.
913  *
914  * Reclaimers can specify a node and a priority level in @reclaim to
915  * divide up the memcgs in the hierarchy among all concurrent
916  * reclaimers operating on the same node and priority.
917  */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)918 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
919 				   struct mem_cgroup *prev,
920 				   struct mem_cgroup_reclaim_cookie *reclaim)
921 {
922 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
923 	struct cgroup_subsys_state *css = NULL;
924 	struct mem_cgroup *memcg = NULL;
925 	struct mem_cgroup *pos = NULL;
926 
927 	if (mem_cgroup_disabled())
928 		return NULL;
929 
930 	if (!root)
931 		root = root_mem_cgroup;
932 
933 	if (prev && !reclaim)
934 		pos = prev;
935 
936 	if (!root->use_hierarchy && root != root_mem_cgroup) {
937 		if (prev)
938 			goto out;
939 		return root;
940 	}
941 
942 	rcu_read_lock();
943 
944 	if (reclaim) {
945 		struct mem_cgroup_per_node *mz;
946 
947 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
948 		iter = &mz->iter[reclaim->priority];
949 
950 		if (prev && reclaim->generation != iter->generation)
951 			goto out_unlock;
952 
953 		while (1) {
954 			pos = READ_ONCE(iter->position);
955 			if (!pos || css_tryget(&pos->css))
956 				break;
957 			/*
958 			 * css reference reached zero, so iter->position will
959 			 * be cleared by ->css_released. However, we should not
960 			 * rely on this happening soon, because ->css_released
961 			 * is called from a work queue, and by busy-waiting we
962 			 * might block it. So we clear iter->position right
963 			 * away.
964 			 */
965 			(void)cmpxchg(&iter->position, pos, NULL);
966 		}
967 	}
968 
969 	if (pos)
970 		css = &pos->css;
971 
972 	for (;;) {
973 		css = css_next_descendant_pre(css, &root->css);
974 		if (!css) {
975 			/*
976 			 * Reclaimers share the hierarchy walk, and a
977 			 * new one might jump in right at the end of
978 			 * the hierarchy - make sure they see at least
979 			 * one group and restart from the beginning.
980 			 */
981 			if (!prev)
982 				continue;
983 			break;
984 		}
985 
986 		/*
987 		 * Verify the css and acquire a reference.  The root
988 		 * is provided by the caller, so we know it's alive
989 		 * and kicking, and don't take an extra reference.
990 		 */
991 		memcg = mem_cgroup_from_css(css);
992 
993 		if (css == &root->css)
994 			break;
995 
996 		if (css_tryget(css))
997 			break;
998 
999 		memcg = NULL;
1000 	}
1001 
1002 	if (reclaim) {
1003 		/*
1004 		 * The position could have already been updated by a competing
1005 		 * thread, so check that the value hasn't changed since we read
1006 		 * it to avoid reclaiming from the same cgroup twice.
1007 		 */
1008 		(void)cmpxchg(&iter->position, pos, memcg);
1009 
1010 		if (pos)
1011 			css_put(&pos->css);
1012 
1013 		if (!memcg)
1014 			iter->generation++;
1015 		else if (!prev)
1016 			reclaim->generation = iter->generation;
1017 	}
1018 
1019 out_unlock:
1020 	rcu_read_unlock();
1021 out:
1022 	if (prev && prev != root)
1023 		css_put(&prev->css);
1024 
1025 	return memcg;
1026 }
1027 
1028 /**
1029  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1030  * @root: hierarchy root
1031  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1032  */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1033 void mem_cgroup_iter_break(struct mem_cgroup *root,
1034 			   struct mem_cgroup *prev)
1035 {
1036 	if (!root)
1037 		root = root_mem_cgroup;
1038 	if (prev && prev != root)
1039 		css_put(&prev->css);
1040 }
1041 
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1042 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1043 					struct mem_cgroup *dead_memcg)
1044 {
1045 	struct mem_cgroup_reclaim_iter *iter;
1046 	struct mem_cgroup_per_node *mz;
1047 	int nid;
1048 	int i;
1049 
1050 	for_each_node(nid) {
1051 		mz = mem_cgroup_nodeinfo(from, nid);
1052 		for (i = 0; i <= DEF_PRIORITY; i++) {
1053 			iter = &mz->iter[i];
1054 			cmpxchg(&iter->position,
1055 				dead_memcg, NULL);
1056 		}
1057 	}
1058 }
1059 
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1060 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1061 {
1062 	struct mem_cgroup *memcg = dead_memcg;
1063 	struct mem_cgroup *last;
1064 
1065 	do {
1066 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1067 		last = memcg;
1068 	} while ((memcg = parent_mem_cgroup(memcg)));
1069 
1070 	/*
1071 	 * When cgruop1 non-hierarchy mode is used,
1072 	 * parent_mem_cgroup() does not walk all the way up to the
1073 	 * cgroup root (root_mem_cgroup). So we have to handle
1074 	 * dead_memcg from cgroup root separately.
1075 	 */
1076 	if (last != root_mem_cgroup)
1077 		__invalidate_reclaim_iterators(root_mem_cgroup,
1078 						dead_memcg);
1079 }
1080 
1081 /**
1082  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1083  * @memcg: hierarchy root
1084  * @fn: function to call for each task
1085  * @arg: argument passed to @fn
1086  *
1087  * This function iterates over tasks attached to @memcg or to any of its
1088  * descendants and calls @fn for each task. If @fn returns a non-zero
1089  * value, the function breaks the iteration loop and returns the value.
1090  * Otherwise, it will iterate over all tasks and return 0.
1091  *
1092  * This function must not be called for the root memory cgroup.
1093  */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1094 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1095 			  int (*fn)(struct task_struct *, void *), void *arg)
1096 {
1097 	struct mem_cgroup *iter;
1098 	int ret = 0;
1099 
1100 	BUG_ON(memcg == root_mem_cgroup);
1101 
1102 	for_each_mem_cgroup_tree(iter, memcg) {
1103 		struct css_task_iter it;
1104 		struct task_struct *task;
1105 
1106 		css_task_iter_start(&iter->css, 0, &it);
1107 		while (!ret && (task = css_task_iter_next(&it)))
1108 			ret = fn(task, arg);
1109 		css_task_iter_end(&it);
1110 		if (ret) {
1111 			mem_cgroup_iter_break(memcg, iter);
1112 			break;
1113 		}
1114 	}
1115 	return ret;
1116 }
1117 
1118 /**
1119  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1120  * @page: the page
1121  * @pgdat: pgdat of the page
1122  *
1123  * This function is only safe when following the LRU page isolation
1124  * and putback protocol: the LRU lock must be held, and the page must
1125  * either be PageLRU() or the caller must have isolated/allocated it.
1126  */
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)1127 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1128 {
1129 	struct mem_cgroup_per_node *mz;
1130 	struct mem_cgroup *memcg;
1131 	struct lruvec *lruvec;
1132 
1133 	if (mem_cgroup_disabled()) {
1134 		lruvec = &pgdat->lruvec;
1135 		goto out;
1136 	}
1137 
1138 	memcg = page->mem_cgroup;
1139 	/*
1140 	 * Swapcache readahead pages are added to the LRU - and
1141 	 * possibly migrated - before they are charged.
1142 	 */
1143 	if (!memcg)
1144 		memcg = root_mem_cgroup;
1145 
1146 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1147 	lruvec = &mz->lruvec;
1148 out:
1149 	/*
1150 	 * Since a node can be onlined after the mem_cgroup was created,
1151 	 * we have to be prepared to initialize lruvec->zone here;
1152 	 * and if offlined then reonlined, we need to reinitialize it.
1153 	 */
1154 	if (unlikely(lruvec->pgdat != pgdat))
1155 		lruvec->pgdat = pgdat;
1156 	return lruvec;
1157 }
1158 
1159 /**
1160  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1161  * @lruvec: mem_cgroup per zone lru vector
1162  * @lru: index of lru list the page is sitting on
1163  * @zid: zone id of the accounted pages
1164  * @nr_pages: positive when adding or negative when removing
1165  *
1166  * This function must be called under lru_lock, just before a page is added
1167  * to or just after a page is removed from an lru list (that ordering being
1168  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1169  */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1170 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1171 				int zid, int nr_pages)
1172 {
1173 	struct mem_cgroup_per_node *mz;
1174 	unsigned long *lru_size;
1175 	long size;
1176 
1177 	if (mem_cgroup_disabled())
1178 		return;
1179 
1180 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1181 	lru_size = &mz->lru_zone_size[zid][lru];
1182 
1183 	if (nr_pages < 0)
1184 		*lru_size += nr_pages;
1185 
1186 	size = *lru_size;
1187 	if (WARN_ONCE(size < 0,
1188 		"%s(%p, %d, %d): lru_size %ld\n",
1189 		__func__, lruvec, lru, nr_pages, size)) {
1190 		VM_BUG_ON(1);
1191 		*lru_size = 0;
1192 	}
1193 
1194 	if (nr_pages > 0)
1195 		*lru_size += nr_pages;
1196 }
1197 
task_in_mem_cgroup(struct task_struct * task,struct mem_cgroup * memcg)1198 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1199 {
1200 	struct mem_cgroup *task_memcg;
1201 	struct task_struct *p;
1202 	bool ret;
1203 
1204 	p = find_lock_task_mm(task);
1205 	if (p) {
1206 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1207 		task_unlock(p);
1208 	} else {
1209 		/*
1210 		 * All threads may have already detached their mm's, but the oom
1211 		 * killer still needs to detect if they have already been oom
1212 		 * killed to prevent needlessly killing additional tasks.
1213 		 */
1214 		rcu_read_lock();
1215 		task_memcg = mem_cgroup_from_task(task);
1216 		css_get(&task_memcg->css);
1217 		rcu_read_unlock();
1218 	}
1219 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1220 	css_put(&task_memcg->css);
1221 	return ret;
1222 }
1223 
1224 /**
1225  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1226  * @memcg: the memory cgroup
1227  *
1228  * Returns the maximum amount of memory @mem can be charged with, in
1229  * pages.
1230  */
mem_cgroup_margin(struct mem_cgroup * memcg)1231 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1232 {
1233 	unsigned long margin = 0;
1234 	unsigned long count;
1235 	unsigned long limit;
1236 
1237 	count = page_counter_read(&memcg->memory);
1238 	limit = READ_ONCE(memcg->memory.max);
1239 	if (count < limit)
1240 		margin = limit - count;
1241 
1242 	if (do_memsw_account()) {
1243 		count = page_counter_read(&memcg->memsw);
1244 		limit = READ_ONCE(memcg->memsw.max);
1245 		if (count <= limit)
1246 			margin = min(margin, limit - count);
1247 		else
1248 			margin = 0;
1249 	}
1250 
1251 	return margin;
1252 }
1253 
1254 /*
1255  * A routine for checking "mem" is under move_account() or not.
1256  *
1257  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1258  * moving cgroups. This is for waiting at high-memory pressure
1259  * caused by "move".
1260  */
mem_cgroup_under_move(struct mem_cgroup * memcg)1261 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1262 {
1263 	struct mem_cgroup *from;
1264 	struct mem_cgroup *to;
1265 	bool ret = false;
1266 	/*
1267 	 * Unlike task_move routines, we access mc.to, mc.from not under
1268 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1269 	 */
1270 	spin_lock(&mc.lock);
1271 	from = mc.from;
1272 	to = mc.to;
1273 	if (!from)
1274 		goto unlock;
1275 
1276 	ret = mem_cgroup_is_descendant(from, memcg) ||
1277 		mem_cgroup_is_descendant(to, memcg);
1278 unlock:
1279 	spin_unlock(&mc.lock);
1280 	return ret;
1281 }
1282 
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1283 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1284 {
1285 	if (mc.moving_task && current != mc.moving_task) {
1286 		if (mem_cgroup_under_move(memcg)) {
1287 			DEFINE_WAIT(wait);
1288 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1289 			/* moving charge context might have finished. */
1290 			if (mc.moving_task)
1291 				schedule();
1292 			finish_wait(&mc.waitq, &wait);
1293 			return true;
1294 		}
1295 	}
1296 	return false;
1297 }
1298 
1299 static const unsigned int memcg1_stats[] = {
1300 	MEMCG_CACHE,
1301 	MEMCG_RSS,
1302 	MEMCG_RSS_HUGE,
1303 	NR_SHMEM,
1304 	NR_FILE_MAPPED,
1305 	NR_FILE_DIRTY,
1306 	NR_WRITEBACK,
1307 	MEMCG_SWAP,
1308 };
1309 
1310 static const char *const memcg1_stat_names[] = {
1311 	"cache",
1312 	"rss",
1313 	"rss_huge",
1314 	"shmem",
1315 	"mapped_file",
1316 	"dirty",
1317 	"writeback",
1318 	"swap",
1319 };
1320 
1321 #define K(x) ((x) << (PAGE_SHIFT-10))
1322 /**
1323  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1324  * @memcg: The memory cgroup that went over limit
1325  * @p: Task that is going to be killed
1326  *
1327  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1328  * enabled
1329  */
mem_cgroup_print_oom_info(struct mem_cgroup * memcg,struct task_struct * p)1330 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1331 {
1332 	struct mem_cgroup *iter;
1333 	unsigned int i;
1334 
1335 	rcu_read_lock();
1336 
1337 	if (p) {
1338 		pr_info("Task in ");
1339 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1340 		pr_cont(" killed as a result of limit of ");
1341 	} else {
1342 		pr_info("Memory limit reached of cgroup ");
1343 	}
1344 
1345 	pr_cont_cgroup_path(memcg->css.cgroup);
1346 	pr_cont("\n");
1347 
1348 	rcu_read_unlock();
1349 
1350 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1351 		K((u64)page_counter_read(&memcg->memory)),
1352 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1353 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1354 		K((u64)page_counter_read(&memcg->memsw)),
1355 		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1356 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1357 		K((u64)page_counter_read(&memcg->kmem)),
1358 		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1359 
1360 	for_each_mem_cgroup_tree(iter, memcg) {
1361 		pr_info("Memory cgroup stats for ");
1362 		pr_cont_cgroup_path(iter->css.cgroup);
1363 		pr_cont(":");
1364 
1365 		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1366 			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1367 				continue;
1368 			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1369 				K(memcg_page_state(iter, memcg1_stats[i])));
1370 		}
1371 
1372 		for (i = 0; i < NR_LRU_LISTS; i++)
1373 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1374 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1375 
1376 		pr_cont("\n");
1377 	}
1378 }
1379 
1380 /*
1381  * Return the memory (and swap, if configured) limit for a memcg.
1382  */
mem_cgroup_get_max(struct mem_cgroup * memcg)1383 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1384 {
1385 	unsigned long max;
1386 
1387 	max = memcg->memory.max;
1388 	if (mem_cgroup_swappiness(memcg)) {
1389 		unsigned long memsw_max;
1390 		unsigned long swap_max;
1391 
1392 		memsw_max = memcg->memsw.max;
1393 		swap_max = memcg->swap.max;
1394 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1395 		max = min(max + swap_max, memsw_max);
1396 	}
1397 	return max;
1398 }
1399 
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1400 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1401 				     int order)
1402 {
1403 	struct oom_control oc = {
1404 		.zonelist = NULL,
1405 		.nodemask = NULL,
1406 		.memcg = memcg,
1407 		.gfp_mask = gfp_mask,
1408 		.order = order,
1409 	};
1410 	bool ret;
1411 
1412 	if (mutex_lock_killable(&oom_lock))
1413 		return true;
1414 	/*
1415 	 * A few threads which were not waiting at mutex_lock_killable() can
1416 	 * fail to bail out. Therefore, check again after holding oom_lock.
1417 	 */
1418 	ret = should_force_charge() || out_of_memory(&oc);
1419 	mutex_unlock(&oom_lock);
1420 	return ret;
1421 }
1422 
1423 #if MAX_NUMNODES > 1
1424 
1425 /**
1426  * test_mem_cgroup_node_reclaimable
1427  * @memcg: the target memcg
1428  * @nid: the node ID to be checked.
1429  * @noswap : specify true here if the user wants flle only information.
1430  *
1431  * This function returns whether the specified memcg contains any
1432  * reclaimable pages on a node. Returns true if there are any reclaimable
1433  * pages in the node.
1434  */
test_mem_cgroup_node_reclaimable(struct mem_cgroup * memcg,int nid,bool noswap)1435 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1436 		int nid, bool noswap)
1437 {
1438 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1439 		return true;
1440 	if (noswap || !total_swap_pages)
1441 		return false;
1442 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1443 		return true;
1444 	return false;
1445 
1446 }
1447 
1448 /*
1449  * Always updating the nodemask is not very good - even if we have an empty
1450  * list or the wrong list here, we can start from some node and traverse all
1451  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1452  *
1453  */
mem_cgroup_may_update_nodemask(struct mem_cgroup * memcg)1454 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1455 {
1456 	int nid;
1457 	/*
1458 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1459 	 * pagein/pageout changes since the last update.
1460 	 */
1461 	if (!atomic_read(&memcg->numainfo_events))
1462 		return;
1463 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1464 		return;
1465 
1466 	/* make a nodemask where this memcg uses memory from */
1467 	memcg->scan_nodes = node_states[N_MEMORY];
1468 
1469 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1470 
1471 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1472 			node_clear(nid, memcg->scan_nodes);
1473 	}
1474 
1475 	atomic_set(&memcg->numainfo_events, 0);
1476 	atomic_set(&memcg->numainfo_updating, 0);
1477 }
1478 
1479 /*
1480  * Selecting a node where we start reclaim from. Because what we need is just
1481  * reducing usage counter, start from anywhere is O,K. Considering
1482  * memory reclaim from current node, there are pros. and cons.
1483  *
1484  * Freeing memory from current node means freeing memory from a node which
1485  * we'll use or we've used. So, it may make LRU bad. And if several threads
1486  * hit limits, it will see a contention on a node. But freeing from remote
1487  * node means more costs for memory reclaim because of memory latency.
1488  *
1489  * Now, we use round-robin. Better algorithm is welcomed.
1490  */
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1491 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1492 {
1493 	int node;
1494 
1495 	mem_cgroup_may_update_nodemask(memcg);
1496 	node = memcg->last_scanned_node;
1497 
1498 	node = next_node_in(node, memcg->scan_nodes);
1499 	/*
1500 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1501 	 * last time it really checked all the LRUs due to rate limiting.
1502 	 * Fallback to the current node in that case for simplicity.
1503 	 */
1504 	if (unlikely(node == MAX_NUMNODES))
1505 		node = numa_node_id();
1506 
1507 	memcg->last_scanned_node = node;
1508 	return node;
1509 }
1510 #else
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1511 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1512 {
1513 	return 0;
1514 }
1515 #endif
1516 
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1517 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1518 				   pg_data_t *pgdat,
1519 				   gfp_t gfp_mask,
1520 				   unsigned long *total_scanned)
1521 {
1522 	struct mem_cgroup *victim = NULL;
1523 	int total = 0;
1524 	int loop = 0;
1525 	unsigned long excess;
1526 	unsigned long nr_scanned;
1527 	struct mem_cgroup_reclaim_cookie reclaim = {
1528 		.pgdat = pgdat,
1529 		.priority = 0,
1530 	};
1531 
1532 	excess = soft_limit_excess(root_memcg);
1533 
1534 	while (1) {
1535 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1536 		if (!victim) {
1537 			loop++;
1538 			if (loop >= 2) {
1539 				/*
1540 				 * If we have not been able to reclaim
1541 				 * anything, it might because there are
1542 				 * no reclaimable pages under this hierarchy
1543 				 */
1544 				if (!total)
1545 					break;
1546 				/*
1547 				 * We want to do more targeted reclaim.
1548 				 * excess >> 2 is not to excessive so as to
1549 				 * reclaim too much, nor too less that we keep
1550 				 * coming back to reclaim from this cgroup
1551 				 */
1552 				if (total >= (excess >> 2) ||
1553 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1554 					break;
1555 			}
1556 			continue;
1557 		}
1558 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1559 					pgdat, &nr_scanned);
1560 		*total_scanned += nr_scanned;
1561 		if (!soft_limit_excess(root_memcg))
1562 			break;
1563 	}
1564 	mem_cgroup_iter_break(root_memcg, victim);
1565 	return total;
1566 }
1567 
1568 #ifdef CONFIG_LOCKDEP
1569 static struct lockdep_map memcg_oom_lock_dep_map = {
1570 	.name = "memcg_oom_lock",
1571 };
1572 #endif
1573 
1574 static DEFINE_SPINLOCK(memcg_oom_lock);
1575 
1576 /*
1577  * Check OOM-Killer is already running under our hierarchy.
1578  * If someone is running, return false.
1579  */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1580 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1581 {
1582 	struct mem_cgroup *iter, *failed = NULL;
1583 
1584 	spin_lock(&memcg_oom_lock);
1585 
1586 	for_each_mem_cgroup_tree(iter, memcg) {
1587 		if (iter->oom_lock) {
1588 			/*
1589 			 * this subtree of our hierarchy is already locked
1590 			 * so we cannot give a lock.
1591 			 */
1592 			failed = iter;
1593 			mem_cgroup_iter_break(memcg, iter);
1594 			break;
1595 		} else
1596 			iter->oom_lock = true;
1597 	}
1598 
1599 	if (failed) {
1600 		/*
1601 		 * OK, we failed to lock the whole subtree so we have
1602 		 * to clean up what we set up to the failing subtree
1603 		 */
1604 		for_each_mem_cgroup_tree(iter, memcg) {
1605 			if (iter == failed) {
1606 				mem_cgroup_iter_break(memcg, iter);
1607 				break;
1608 			}
1609 			iter->oom_lock = false;
1610 		}
1611 	} else
1612 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1613 
1614 	spin_unlock(&memcg_oom_lock);
1615 
1616 	return !failed;
1617 }
1618 
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1619 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1620 {
1621 	struct mem_cgroup *iter;
1622 
1623 	spin_lock(&memcg_oom_lock);
1624 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1625 	for_each_mem_cgroup_tree(iter, memcg)
1626 		iter->oom_lock = false;
1627 	spin_unlock(&memcg_oom_lock);
1628 }
1629 
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1630 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1631 {
1632 	struct mem_cgroup *iter;
1633 
1634 	spin_lock(&memcg_oom_lock);
1635 	for_each_mem_cgroup_tree(iter, memcg)
1636 		iter->under_oom++;
1637 	spin_unlock(&memcg_oom_lock);
1638 }
1639 
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1640 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1641 {
1642 	struct mem_cgroup *iter;
1643 
1644 	/*
1645 	 * When a new child is created while the hierarchy is under oom,
1646 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1647 	 */
1648 	spin_lock(&memcg_oom_lock);
1649 	for_each_mem_cgroup_tree(iter, memcg)
1650 		if (iter->under_oom > 0)
1651 			iter->under_oom--;
1652 	spin_unlock(&memcg_oom_lock);
1653 }
1654 
1655 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1656 
1657 struct oom_wait_info {
1658 	struct mem_cgroup *memcg;
1659 	wait_queue_entry_t	wait;
1660 };
1661 
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1662 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1663 	unsigned mode, int sync, void *arg)
1664 {
1665 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1666 	struct mem_cgroup *oom_wait_memcg;
1667 	struct oom_wait_info *oom_wait_info;
1668 
1669 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1670 	oom_wait_memcg = oom_wait_info->memcg;
1671 
1672 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1673 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1674 		return 0;
1675 	return autoremove_wake_function(wait, mode, sync, arg);
1676 }
1677 
memcg_oom_recover(struct mem_cgroup * memcg)1678 static void memcg_oom_recover(struct mem_cgroup *memcg)
1679 {
1680 	/*
1681 	 * For the following lockless ->under_oom test, the only required
1682 	 * guarantee is that it must see the state asserted by an OOM when
1683 	 * this function is called as a result of userland actions
1684 	 * triggered by the notification of the OOM.  This is trivially
1685 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1686 	 * triggering notification.
1687 	 */
1688 	if (memcg && memcg->under_oom)
1689 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1690 }
1691 
1692 enum oom_status {
1693 	OOM_SUCCESS,
1694 	OOM_FAILED,
1695 	OOM_ASYNC,
1696 	OOM_SKIPPED
1697 };
1698 
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1699 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1700 {
1701 	enum oom_status ret;
1702 	bool locked;
1703 
1704 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1705 		return OOM_SKIPPED;
1706 
1707 	/*
1708 	 * We are in the middle of the charge context here, so we
1709 	 * don't want to block when potentially sitting on a callstack
1710 	 * that holds all kinds of filesystem and mm locks.
1711 	 *
1712 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1713 	 * handling until the charge can succeed; remember the context and put
1714 	 * the task to sleep at the end of the page fault when all locks are
1715 	 * released.
1716 	 *
1717 	 * On the other hand, in-kernel OOM killer allows for an async victim
1718 	 * memory reclaim (oom_reaper) and that means that we are not solely
1719 	 * relying on the oom victim to make a forward progress and we can
1720 	 * invoke the oom killer here.
1721 	 *
1722 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1723 	 * victim and then we have to bail out from the charge path.
1724 	 */
1725 	if (memcg->oom_kill_disable) {
1726 		if (!current->in_user_fault)
1727 			return OOM_SKIPPED;
1728 		css_get(&memcg->css);
1729 		current->memcg_in_oom = memcg;
1730 		current->memcg_oom_gfp_mask = mask;
1731 		current->memcg_oom_order = order;
1732 
1733 		return OOM_ASYNC;
1734 	}
1735 
1736 	mem_cgroup_mark_under_oom(memcg);
1737 
1738 	locked = mem_cgroup_oom_trylock(memcg);
1739 
1740 	if (locked)
1741 		mem_cgroup_oom_notify(memcg);
1742 
1743 	mem_cgroup_unmark_under_oom(memcg);
1744 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1745 		ret = OOM_SUCCESS;
1746 	else
1747 		ret = OOM_FAILED;
1748 
1749 	if (locked)
1750 		mem_cgroup_oom_unlock(memcg);
1751 
1752 	return ret;
1753 }
1754 
1755 /**
1756  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1757  * @handle: actually kill/wait or just clean up the OOM state
1758  *
1759  * This has to be called at the end of a page fault if the memcg OOM
1760  * handler was enabled.
1761  *
1762  * Memcg supports userspace OOM handling where failed allocations must
1763  * sleep on a waitqueue until the userspace task resolves the
1764  * situation.  Sleeping directly in the charge context with all kinds
1765  * of locks held is not a good idea, instead we remember an OOM state
1766  * in the task and mem_cgroup_oom_synchronize() has to be called at
1767  * the end of the page fault to complete the OOM handling.
1768  *
1769  * Returns %true if an ongoing memcg OOM situation was detected and
1770  * completed, %false otherwise.
1771  */
mem_cgroup_oom_synchronize(bool handle)1772 bool mem_cgroup_oom_synchronize(bool handle)
1773 {
1774 	struct mem_cgroup *memcg = current->memcg_in_oom;
1775 	struct oom_wait_info owait;
1776 	bool locked;
1777 
1778 	/* OOM is global, do not handle */
1779 	if (!memcg)
1780 		return false;
1781 
1782 	if (!handle)
1783 		goto cleanup;
1784 
1785 	owait.memcg = memcg;
1786 	owait.wait.flags = 0;
1787 	owait.wait.func = memcg_oom_wake_function;
1788 	owait.wait.private = current;
1789 	INIT_LIST_HEAD(&owait.wait.entry);
1790 
1791 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1792 	mem_cgroup_mark_under_oom(memcg);
1793 
1794 	locked = mem_cgroup_oom_trylock(memcg);
1795 
1796 	if (locked)
1797 		mem_cgroup_oom_notify(memcg);
1798 
1799 	if (locked && !memcg->oom_kill_disable) {
1800 		mem_cgroup_unmark_under_oom(memcg);
1801 		finish_wait(&memcg_oom_waitq, &owait.wait);
1802 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1803 					 current->memcg_oom_order);
1804 	} else {
1805 		schedule();
1806 		mem_cgroup_unmark_under_oom(memcg);
1807 		finish_wait(&memcg_oom_waitq, &owait.wait);
1808 	}
1809 
1810 	if (locked) {
1811 		mem_cgroup_oom_unlock(memcg);
1812 		/*
1813 		 * There is no guarantee that an OOM-lock contender
1814 		 * sees the wakeups triggered by the OOM kill
1815 		 * uncharges.  Wake any sleepers explicitely.
1816 		 */
1817 		memcg_oom_recover(memcg);
1818 	}
1819 cleanup:
1820 	current->memcg_in_oom = NULL;
1821 	css_put(&memcg->css);
1822 	return true;
1823 }
1824 
1825 /**
1826  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1827  * @victim: task to be killed by the OOM killer
1828  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1829  *
1830  * Returns a pointer to a memory cgroup, which has to be cleaned up
1831  * by killing all belonging OOM-killable tasks.
1832  *
1833  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1834  */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1835 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1836 					    struct mem_cgroup *oom_domain)
1837 {
1838 	struct mem_cgroup *oom_group = NULL;
1839 	struct mem_cgroup *memcg;
1840 
1841 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1842 		return NULL;
1843 
1844 	if (!oom_domain)
1845 		oom_domain = root_mem_cgroup;
1846 
1847 	rcu_read_lock();
1848 
1849 	memcg = mem_cgroup_from_task(victim);
1850 	if (memcg == root_mem_cgroup)
1851 		goto out;
1852 
1853 	/*
1854 	 * Traverse the memory cgroup hierarchy from the victim task's
1855 	 * cgroup up to the OOMing cgroup (or root) to find the
1856 	 * highest-level memory cgroup with oom.group set.
1857 	 */
1858 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1859 		if (memcg->oom_group)
1860 			oom_group = memcg;
1861 
1862 		if (memcg == oom_domain)
1863 			break;
1864 	}
1865 
1866 	if (oom_group)
1867 		css_get(&oom_group->css);
1868 out:
1869 	rcu_read_unlock();
1870 
1871 	return oom_group;
1872 }
1873 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1874 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1875 {
1876 	pr_info("Tasks in ");
1877 	pr_cont_cgroup_path(memcg->css.cgroup);
1878 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1879 }
1880 
1881 /**
1882  * lock_page_memcg - lock a page->mem_cgroup binding
1883  * @page: the page
1884  *
1885  * This function protects unlocked LRU pages from being moved to
1886  * another cgroup.
1887  *
1888  * It ensures lifetime of the returned memcg. Caller is responsible
1889  * for the lifetime of the page; __unlock_page_memcg() is available
1890  * when @page might get freed inside the locked section.
1891  */
lock_page_memcg(struct page * page)1892 struct mem_cgroup *lock_page_memcg(struct page *page)
1893 {
1894 	struct mem_cgroup *memcg;
1895 	unsigned long flags;
1896 
1897 	/*
1898 	 * The RCU lock is held throughout the transaction.  The fast
1899 	 * path can get away without acquiring the memcg->move_lock
1900 	 * because page moving starts with an RCU grace period.
1901 	 *
1902 	 * The RCU lock also protects the memcg from being freed when
1903 	 * the page state that is going to change is the only thing
1904 	 * preventing the page itself from being freed. E.g. writeback
1905 	 * doesn't hold a page reference and relies on PG_writeback to
1906 	 * keep off truncation, migration and so forth.
1907          */
1908 	rcu_read_lock();
1909 
1910 	if (mem_cgroup_disabled())
1911 		return NULL;
1912 again:
1913 	memcg = page->mem_cgroup;
1914 	if (unlikely(!memcg))
1915 		return NULL;
1916 
1917 	if (atomic_read(&memcg->moving_account) <= 0)
1918 		return memcg;
1919 
1920 	spin_lock_irqsave(&memcg->move_lock, flags);
1921 	if (memcg != page->mem_cgroup) {
1922 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1923 		goto again;
1924 	}
1925 
1926 	/*
1927 	 * When charge migration first begins, we can have locked and
1928 	 * unlocked page stat updates happening concurrently.  Track
1929 	 * the task who has the lock for unlock_page_memcg().
1930 	 */
1931 	memcg->move_lock_task = current;
1932 	memcg->move_lock_flags = flags;
1933 
1934 	return memcg;
1935 }
1936 EXPORT_SYMBOL(lock_page_memcg);
1937 
1938 /**
1939  * __unlock_page_memcg - unlock and unpin a memcg
1940  * @memcg: the memcg
1941  *
1942  * Unlock and unpin a memcg returned by lock_page_memcg().
1943  */
__unlock_page_memcg(struct mem_cgroup * memcg)1944 void __unlock_page_memcg(struct mem_cgroup *memcg)
1945 {
1946 	if (memcg && memcg->move_lock_task == current) {
1947 		unsigned long flags = memcg->move_lock_flags;
1948 
1949 		memcg->move_lock_task = NULL;
1950 		memcg->move_lock_flags = 0;
1951 
1952 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1953 	}
1954 
1955 	rcu_read_unlock();
1956 }
1957 
1958 /**
1959  * unlock_page_memcg - unlock a page->mem_cgroup binding
1960  * @page: the page
1961  */
unlock_page_memcg(struct page * page)1962 void unlock_page_memcg(struct page *page)
1963 {
1964 	__unlock_page_memcg(page->mem_cgroup);
1965 }
1966 EXPORT_SYMBOL(unlock_page_memcg);
1967 
1968 struct memcg_stock_pcp {
1969 	struct mem_cgroup *cached; /* this never be root cgroup */
1970 	unsigned int nr_pages;
1971 	struct work_struct work;
1972 	unsigned long flags;
1973 #define FLUSHING_CACHED_CHARGE	0
1974 };
1975 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1976 static DEFINE_MUTEX(percpu_charge_mutex);
1977 
1978 /**
1979  * consume_stock: Try to consume stocked charge on this cpu.
1980  * @memcg: memcg to consume from.
1981  * @nr_pages: how many pages to charge.
1982  *
1983  * The charges will only happen if @memcg matches the current cpu's memcg
1984  * stock, and at least @nr_pages are available in that stock.  Failure to
1985  * service an allocation will refill the stock.
1986  *
1987  * returns true if successful, false otherwise.
1988  */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1989 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1990 {
1991 	struct memcg_stock_pcp *stock;
1992 	unsigned long flags;
1993 	bool ret = false;
1994 
1995 	if (nr_pages > MEMCG_CHARGE_BATCH)
1996 		return ret;
1997 
1998 	local_irq_save(flags);
1999 
2000 	stock = this_cpu_ptr(&memcg_stock);
2001 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2002 		stock->nr_pages -= nr_pages;
2003 		ret = true;
2004 	}
2005 
2006 	local_irq_restore(flags);
2007 
2008 	return ret;
2009 }
2010 
2011 /*
2012  * Returns stocks cached in percpu and reset cached information.
2013  */
drain_stock(struct memcg_stock_pcp * stock)2014 static void drain_stock(struct memcg_stock_pcp *stock)
2015 {
2016 	struct mem_cgroup *old = stock->cached;
2017 
2018 	if (stock->nr_pages) {
2019 		page_counter_uncharge(&old->memory, stock->nr_pages);
2020 		if (do_memsw_account())
2021 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2022 		css_put_many(&old->css, stock->nr_pages);
2023 		stock->nr_pages = 0;
2024 	}
2025 	stock->cached = NULL;
2026 }
2027 
drain_local_stock(struct work_struct * dummy)2028 static void drain_local_stock(struct work_struct *dummy)
2029 {
2030 	struct memcg_stock_pcp *stock;
2031 	unsigned long flags;
2032 
2033 	/*
2034 	 * The only protection from memory hotplug vs. drain_stock races is
2035 	 * that we always operate on local CPU stock here with IRQ disabled
2036 	 */
2037 	local_irq_save(flags);
2038 
2039 	stock = this_cpu_ptr(&memcg_stock);
2040 	drain_stock(stock);
2041 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2042 
2043 	local_irq_restore(flags);
2044 }
2045 
2046 /*
2047  * Cache charges(val) to local per_cpu area.
2048  * This will be consumed by consume_stock() function, later.
2049  */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2050 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2051 {
2052 	struct memcg_stock_pcp *stock;
2053 	unsigned long flags;
2054 
2055 	local_irq_save(flags);
2056 
2057 	stock = this_cpu_ptr(&memcg_stock);
2058 	if (stock->cached != memcg) { /* reset if necessary */
2059 		drain_stock(stock);
2060 		stock->cached = memcg;
2061 	}
2062 	stock->nr_pages += nr_pages;
2063 
2064 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2065 		drain_stock(stock);
2066 
2067 	local_irq_restore(flags);
2068 }
2069 
2070 /*
2071  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2072  * of the hierarchy under it.
2073  */
drain_all_stock(struct mem_cgroup * root_memcg)2074 static void drain_all_stock(struct mem_cgroup *root_memcg)
2075 {
2076 	int cpu, curcpu;
2077 
2078 	/* If someone's already draining, avoid adding running more workers. */
2079 	if (!mutex_trylock(&percpu_charge_mutex))
2080 		return;
2081 	/*
2082 	 * Notify other cpus that system-wide "drain" is running
2083 	 * We do not care about races with the cpu hotplug because cpu down
2084 	 * as well as workers from this path always operate on the local
2085 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2086 	 */
2087 	curcpu = get_cpu();
2088 	for_each_online_cpu(cpu) {
2089 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2090 		struct mem_cgroup *memcg;
2091 
2092 		memcg = stock->cached;
2093 		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2094 			continue;
2095 		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2096 			css_put(&memcg->css);
2097 			continue;
2098 		}
2099 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2100 			if (cpu == curcpu)
2101 				drain_local_stock(&stock->work);
2102 			else
2103 				schedule_work_on(cpu, &stock->work);
2104 		}
2105 		css_put(&memcg->css);
2106 	}
2107 	put_cpu();
2108 	mutex_unlock(&percpu_charge_mutex);
2109 }
2110 
memcg_hotplug_cpu_dead(unsigned int cpu)2111 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2112 {
2113 	struct memcg_stock_pcp *stock;
2114 	struct mem_cgroup *memcg;
2115 
2116 	stock = &per_cpu(memcg_stock, cpu);
2117 	drain_stock(stock);
2118 
2119 	for_each_mem_cgroup(memcg) {
2120 		int i;
2121 
2122 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2123 			int nid;
2124 			long x;
2125 
2126 			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2127 			if (x)
2128 				atomic_long_add(x, &memcg->stat[i]);
2129 
2130 			if (i >= NR_VM_NODE_STAT_ITEMS)
2131 				continue;
2132 
2133 			for_each_node(nid) {
2134 				struct mem_cgroup_per_node *pn;
2135 
2136 				pn = mem_cgroup_nodeinfo(memcg, nid);
2137 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2138 				if (x)
2139 					atomic_long_add(x, &pn->lruvec_stat[i]);
2140 			}
2141 		}
2142 
2143 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2144 			long x;
2145 
2146 			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2147 			if (x)
2148 				atomic_long_add(x, &memcg->events[i]);
2149 		}
2150 	}
2151 
2152 	return 0;
2153 }
2154 
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2155 static void reclaim_high(struct mem_cgroup *memcg,
2156 			 unsigned int nr_pages,
2157 			 gfp_t gfp_mask)
2158 {
2159 	do {
2160 		if (page_counter_read(&memcg->memory) <= memcg->high)
2161 			continue;
2162 		memcg_memory_event(memcg, MEMCG_HIGH);
2163 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2164 	} while ((memcg = parent_mem_cgroup(memcg)));
2165 }
2166 
high_work_func(struct work_struct * work)2167 static void high_work_func(struct work_struct *work)
2168 {
2169 	struct mem_cgroup *memcg;
2170 
2171 	memcg = container_of(work, struct mem_cgroup, high_work);
2172 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2173 }
2174 
2175 /*
2176  * Scheduled by try_charge() to be executed from the userland return path
2177  * and reclaims memory over the high limit.
2178  */
mem_cgroup_handle_over_high(void)2179 void mem_cgroup_handle_over_high(void)
2180 {
2181 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2182 	struct mem_cgroup *memcg;
2183 
2184 	if (likely(!nr_pages))
2185 		return;
2186 
2187 	memcg = get_mem_cgroup_from_mm(current->mm);
2188 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2189 	css_put(&memcg->css);
2190 	current->memcg_nr_pages_over_high = 0;
2191 }
2192 
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2193 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2194 		      unsigned int nr_pages)
2195 {
2196 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2197 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2198 	struct mem_cgroup *mem_over_limit;
2199 	struct page_counter *counter;
2200 	unsigned long nr_reclaimed;
2201 	bool may_swap = true;
2202 	bool drained = false;
2203 	bool oomed = false;
2204 	enum oom_status oom_status;
2205 
2206 	if (mem_cgroup_is_root(memcg))
2207 		return 0;
2208 retry:
2209 	if (consume_stock(memcg, nr_pages))
2210 		return 0;
2211 
2212 	if (!do_memsw_account() ||
2213 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2214 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2215 			goto done_restock;
2216 		if (do_memsw_account())
2217 			page_counter_uncharge(&memcg->memsw, batch);
2218 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2219 	} else {
2220 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2221 		may_swap = false;
2222 	}
2223 
2224 	if (batch > nr_pages) {
2225 		batch = nr_pages;
2226 		goto retry;
2227 	}
2228 
2229 	/*
2230 	 * Memcg doesn't have a dedicated reserve for atomic
2231 	 * allocations. But like the global atomic pool, we need to
2232 	 * put the burden of reclaim on regular allocation requests
2233 	 * and let these go through as privileged allocations.
2234 	 */
2235 	if (gfp_mask & __GFP_ATOMIC)
2236 		goto force;
2237 
2238 	/*
2239 	 * Unlike in global OOM situations, memcg is not in a physical
2240 	 * memory shortage.  Allow dying and OOM-killed tasks to
2241 	 * bypass the last charges so that they can exit quickly and
2242 	 * free their memory.
2243 	 */
2244 	if (unlikely(should_force_charge()))
2245 		goto force;
2246 
2247 	/*
2248 	 * Prevent unbounded recursion when reclaim operations need to
2249 	 * allocate memory. This might exceed the limits temporarily,
2250 	 * but we prefer facilitating memory reclaim and getting back
2251 	 * under the limit over triggering OOM kills in these cases.
2252 	 */
2253 	if (unlikely(current->flags & PF_MEMALLOC))
2254 		goto force;
2255 
2256 	if (unlikely(task_in_memcg_oom(current)))
2257 		goto nomem;
2258 
2259 	if (!gfpflags_allow_blocking(gfp_mask))
2260 		goto nomem;
2261 
2262 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2263 
2264 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2265 						    gfp_mask, may_swap);
2266 
2267 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2268 		goto retry;
2269 
2270 	if (!drained) {
2271 		drain_all_stock(mem_over_limit);
2272 		drained = true;
2273 		goto retry;
2274 	}
2275 
2276 	if (gfp_mask & __GFP_NORETRY)
2277 		goto nomem;
2278 	/*
2279 	 * Even though the limit is exceeded at this point, reclaim
2280 	 * may have been able to free some pages.  Retry the charge
2281 	 * before killing the task.
2282 	 *
2283 	 * Only for regular pages, though: huge pages are rather
2284 	 * unlikely to succeed so close to the limit, and we fall back
2285 	 * to regular pages anyway in case of failure.
2286 	 */
2287 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2288 		goto retry;
2289 	/*
2290 	 * At task move, charge accounts can be doubly counted. So, it's
2291 	 * better to wait until the end of task_move if something is going on.
2292 	 */
2293 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2294 		goto retry;
2295 
2296 	if (nr_retries--)
2297 		goto retry;
2298 
2299 	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2300 		goto nomem;
2301 
2302 	if (gfp_mask & __GFP_NOFAIL)
2303 		goto force;
2304 
2305 	if (fatal_signal_pending(current))
2306 		goto force;
2307 
2308 	memcg_memory_event(mem_over_limit, MEMCG_OOM);
2309 
2310 	/*
2311 	 * keep retrying as long as the memcg oom killer is able to make
2312 	 * a forward progress or bypass the charge if the oom killer
2313 	 * couldn't make any progress.
2314 	 */
2315 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2316 		       get_order(nr_pages * PAGE_SIZE));
2317 	switch (oom_status) {
2318 	case OOM_SUCCESS:
2319 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2320 		oomed = true;
2321 		goto retry;
2322 	case OOM_FAILED:
2323 		goto force;
2324 	default:
2325 		goto nomem;
2326 	}
2327 nomem:
2328 	if (!(gfp_mask & __GFP_NOFAIL))
2329 		return -ENOMEM;
2330 force:
2331 	/*
2332 	 * The allocation either can't fail or will lead to more memory
2333 	 * being freed very soon.  Allow memory usage go over the limit
2334 	 * temporarily by force charging it.
2335 	 */
2336 	page_counter_charge(&memcg->memory, nr_pages);
2337 	if (do_memsw_account())
2338 		page_counter_charge(&memcg->memsw, nr_pages);
2339 	css_get_many(&memcg->css, nr_pages);
2340 
2341 	return 0;
2342 
2343 done_restock:
2344 	css_get_many(&memcg->css, batch);
2345 	if (batch > nr_pages)
2346 		refill_stock(memcg, batch - nr_pages);
2347 
2348 	/*
2349 	 * If the hierarchy is above the normal consumption range, schedule
2350 	 * reclaim on returning to userland.  We can perform reclaim here
2351 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2352 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2353 	 * not recorded as it most likely matches current's and won't
2354 	 * change in the meantime.  As high limit is checked again before
2355 	 * reclaim, the cost of mismatch is negligible.
2356 	 */
2357 	do {
2358 		if (page_counter_read(&memcg->memory) > memcg->high) {
2359 			/* Don't bother a random interrupted task */
2360 			if (in_interrupt()) {
2361 				schedule_work(&memcg->high_work);
2362 				break;
2363 			}
2364 			current->memcg_nr_pages_over_high += batch;
2365 			set_notify_resume(current);
2366 			break;
2367 		}
2368 	} while ((memcg = parent_mem_cgroup(memcg)));
2369 
2370 	return 0;
2371 }
2372 
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2373 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2374 {
2375 	if (mem_cgroup_is_root(memcg))
2376 		return;
2377 
2378 	page_counter_uncharge(&memcg->memory, nr_pages);
2379 	if (do_memsw_account())
2380 		page_counter_uncharge(&memcg->memsw, nr_pages);
2381 
2382 	css_put_many(&memcg->css, nr_pages);
2383 }
2384 
lock_page_lru(struct page * page,int * isolated)2385 static void lock_page_lru(struct page *page, int *isolated)
2386 {
2387 	struct zone *zone = page_zone(page);
2388 
2389 	spin_lock_irq(zone_lru_lock(zone));
2390 	if (PageLRU(page)) {
2391 		struct lruvec *lruvec;
2392 
2393 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2394 		ClearPageLRU(page);
2395 		del_page_from_lru_list(page, lruvec, page_lru(page));
2396 		*isolated = 1;
2397 	} else
2398 		*isolated = 0;
2399 }
2400 
unlock_page_lru(struct page * page,int isolated)2401 static void unlock_page_lru(struct page *page, int isolated)
2402 {
2403 	struct zone *zone = page_zone(page);
2404 
2405 	if (isolated) {
2406 		struct lruvec *lruvec;
2407 
2408 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2409 		VM_BUG_ON_PAGE(PageLRU(page), page);
2410 		SetPageLRU(page);
2411 		add_page_to_lru_list(page, lruvec, page_lru(page));
2412 	}
2413 	spin_unlock_irq(zone_lru_lock(zone));
2414 }
2415 
commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)2416 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2417 			  bool lrucare)
2418 {
2419 	int isolated;
2420 
2421 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2422 
2423 	/*
2424 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2425 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2426 	 */
2427 	if (lrucare)
2428 		lock_page_lru(page, &isolated);
2429 
2430 	/*
2431 	 * Nobody should be changing or seriously looking at
2432 	 * page->mem_cgroup at this point:
2433 	 *
2434 	 * - the page is uncharged
2435 	 *
2436 	 * - the page is off-LRU
2437 	 *
2438 	 * - an anonymous fault has exclusive page access, except for
2439 	 *   a locked page table
2440 	 *
2441 	 * - a page cache insertion, a swapin fault, or a migration
2442 	 *   have the page locked
2443 	 */
2444 	page->mem_cgroup = memcg;
2445 
2446 	if (lrucare)
2447 		unlock_page_lru(page, isolated);
2448 }
2449 
2450 #ifdef CONFIG_MEMCG_KMEM
memcg_alloc_cache_id(void)2451 static int memcg_alloc_cache_id(void)
2452 {
2453 	int id, size;
2454 	int err;
2455 
2456 	id = ida_simple_get(&memcg_cache_ida,
2457 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2458 	if (id < 0)
2459 		return id;
2460 
2461 	if (id < memcg_nr_cache_ids)
2462 		return id;
2463 
2464 	/*
2465 	 * There's no space for the new id in memcg_caches arrays,
2466 	 * so we have to grow them.
2467 	 */
2468 	down_write(&memcg_cache_ids_sem);
2469 
2470 	size = 2 * (id + 1);
2471 	if (size < MEMCG_CACHES_MIN_SIZE)
2472 		size = MEMCG_CACHES_MIN_SIZE;
2473 	else if (size > MEMCG_CACHES_MAX_SIZE)
2474 		size = MEMCG_CACHES_MAX_SIZE;
2475 
2476 	err = memcg_update_all_caches(size);
2477 	if (!err)
2478 		err = memcg_update_all_list_lrus(size);
2479 	if (!err)
2480 		memcg_nr_cache_ids = size;
2481 
2482 	up_write(&memcg_cache_ids_sem);
2483 
2484 	if (err) {
2485 		ida_simple_remove(&memcg_cache_ida, id);
2486 		return err;
2487 	}
2488 	return id;
2489 }
2490 
memcg_free_cache_id(int id)2491 static void memcg_free_cache_id(int id)
2492 {
2493 	ida_simple_remove(&memcg_cache_ida, id);
2494 }
2495 
2496 struct memcg_kmem_cache_create_work {
2497 	struct mem_cgroup *memcg;
2498 	struct kmem_cache *cachep;
2499 	struct work_struct work;
2500 };
2501 
memcg_kmem_cache_create_func(struct work_struct * w)2502 static void memcg_kmem_cache_create_func(struct work_struct *w)
2503 {
2504 	struct memcg_kmem_cache_create_work *cw =
2505 		container_of(w, struct memcg_kmem_cache_create_work, work);
2506 	struct mem_cgroup *memcg = cw->memcg;
2507 	struct kmem_cache *cachep = cw->cachep;
2508 
2509 	memcg_create_kmem_cache(memcg, cachep);
2510 
2511 	css_put(&memcg->css);
2512 	kfree(cw);
2513 }
2514 
2515 /*
2516  * Enqueue the creation of a per-memcg kmem_cache.
2517  */
__memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2518 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2519 					       struct kmem_cache *cachep)
2520 {
2521 	struct memcg_kmem_cache_create_work *cw;
2522 
2523 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2524 	if (!cw)
2525 		return;
2526 
2527 	css_get(&memcg->css);
2528 
2529 	cw->memcg = memcg;
2530 	cw->cachep = cachep;
2531 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2532 
2533 	queue_work(memcg_kmem_cache_wq, &cw->work);
2534 }
2535 
memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2536 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2537 					     struct kmem_cache *cachep)
2538 {
2539 	/*
2540 	 * We need to stop accounting when we kmalloc, because if the
2541 	 * corresponding kmalloc cache is not yet created, the first allocation
2542 	 * in __memcg_schedule_kmem_cache_create will recurse.
2543 	 *
2544 	 * However, it is better to enclose the whole function. Depending on
2545 	 * the debugging options enabled, INIT_WORK(), for instance, can
2546 	 * trigger an allocation. This too, will make us recurse. Because at
2547 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2548 	 * the safest choice is to do it like this, wrapping the whole function.
2549 	 */
2550 	current->memcg_kmem_skip_account = 1;
2551 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2552 	current->memcg_kmem_skip_account = 0;
2553 }
2554 
memcg_kmem_bypass(void)2555 static inline bool memcg_kmem_bypass(void)
2556 {
2557 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2558 		return true;
2559 	return false;
2560 }
2561 
2562 /**
2563  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2564  * @cachep: the original global kmem cache
2565  *
2566  * Return the kmem_cache we're supposed to use for a slab allocation.
2567  * We try to use the current memcg's version of the cache.
2568  *
2569  * If the cache does not exist yet, if we are the first user of it, we
2570  * create it asynchronously in a workqueue and let the current allocation
2571  * go through with the original cache.
2572  *
2573  * This function takes a reference to the cache it returns to assure it
2574  * won't get destroyed while we are working with it. Once the caller is
2575  * done with it, memcg_kmem_put_cache() must be called to release the
2576  * reference.
2577  */
memcg_kmem_get_cache(struct kmem_cache * cachep)2578 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2579 {
2580 	struct mem_cgroup *memcg;
2581 	struct kmem_cache *memcg_cachep;
2582 	int kmemcg_id;
2583 
2584 	VM_BUG_ON(!is_root_cache(cachep));
2585 
2586 	if (memcg_kmem_bypass())
2587 		return cachep;
2588 
2589 	if (current->memcg_kmem_skip_account)
2590 		return cachep;
2591 
2592 	memcg = get_mem_cgroup_from_current();
2593 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2594 	if (kmemcg_id < 0)
2595 		goto out;
2596 
2597 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2598 	if (likely(memcg_cachep))
2599 		return memcg_cachep;
2600 
2601 	/*
2602 	 * If we are in a safe context (can wait, and not in interrupt
2603 	 * context), we could be be predictable and return right away.
2604 	 * This would guarantee that the allocation being performed
2605 	 * already belongs in the new cache.
2606 	 *
2607 	 * However, there are some clashes that can arrive from locking.
2608 	 * For instance, because we acquire the slab_mutex while doing
2609 	 * memcg_create_kmem_cache, this means no further allocation
2610 	 * could happen with the slab_mutex held. So it's better to
2611 	 * defer everything.
2612 	 */
2613 	memcg_schedule_kmem_cache_create(memcg, cachep);
2614 out:
2615 	css_put(&memcg->css);
2616 	return cachep;
2617 }
2618 
2619 /**
2620  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2621  * @cachep: the cache returned by memcg_kmem_get_cache
2622  */
memcg_kmem_put_cache(struct kmem_cache * cachep)2623 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2624 {
2625 	if (!is_root_cache(cachep))
2626 		css_put(&cachep->memcg_params.memcg->css);
2627 }
2628 
2629 /**
2630  * memcg_kmem_charge_memcg: charge a kmem page
2631  * @page: page to charge
2632  * @gfp: reclaim mode
2633  * @order: allocation order
2634  * @memcg: memory cgroup to charge
2635  *
2636  * Returns 0 on success, an error code on failure.
2637  */
memcg_kmem_charge_memcg(struct page * page,gfp_t gfp,int order,struct mem_cgroup * memcg)2638 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2639 			    struct mem_cgroup *memcg)
2640 {
2641 	unsigned int nr_pages = 1 << order;
2642 	struct page_counter *counter;
2643 	int ret;
2644 
2645 	ret = try_charge(memcg, gfp, nr_pages);
2646 	if (ret)
2647 		return ret;
2648 
2649 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2650 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2651 
2652 		/*
2653 		 * Enforce __GFP_NOFAIL allocation because callers are not
2654 		 * prepared to see failures and likely do not have any failure
2655 		 * handling code.
2656 		 */
2657 		if (gfp & __GFP_NOFAIL) {
2658 			page_counter_charge(&memcg->kmem, nr_pages);
2659 			return 0;
2660 		}
2661 		cancel_charge(memcg, nr_pages);
2662 		return -ENOMEM;
2663 	}
2664 
2665 	page->mem_cgroup = memcg;
2666 
2667 	return 0;
2668 }
2669 
2670 /**
2671  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2672  * @page: page to charge
2673  * @gfp: reclaim mode
2674  * @order: allocation order
2675  *
2676  * Returns 0 on success, an error code on failure.
2677  */
memcg_kmem_charge(struct page * page,gfp_t gfp,int order)2678 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2679 {
2680 	struct mem_cgroup *memcg;
2681 	int ret = 0;
2682 
2683 	if (mem_cgroup_disabled() || memcg_kmem_bypass())
2684 		return 0;
2685 
2686 	memcg = get_mem_cgroup_from_current();
2687 	if (!mem_cgroup_is_root(memcg)) {
2688 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2689 		if (!ret)
2690 			__SetPageKmemcg(page);
2691 	}
2692 	css_put(&memcg->css);
2693 	return ret;
2694 }
2695 /**
2696  * memcg_kmem_uncharge: uncharge a kmem page
2697  * @page: page to uncharge
2698  * @order: allocation order
2699  */
memcg_kmem_uncharge(struct page * page,int order)2700 void memcg_kmem_uncharge(struct page *page, int order)
2701 {
2702 	struct mem_cgroup *memcg = page->mem_cgroup;
2703 	unsigned int nr_pages = 1 << order;
2704 
2705 	if (!memcg)
2706 		return;
2707 
2708 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2709 
2710 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2711 		page_counter_uncharge(&memcg->kmem, nr_pages);
2712 
2713 	page_counter_uncharge(&memcg->memory, nr_pages);
2714 	if (do_memsw_account())
2715 		page_counter_uncharge(&memcg->memsw, nr_pages);
2716 
2717 	page->mem_cgroup = NULL;
2718 
2719 	/* slab pages do not have PageKmemcg flag set */
2720 	if (PageKmemcg(page))
2721 		__ClearPageKmemcg(page);
2722 
2723 	css_put_many(&memcg->css, nr_pages);
2724 }
2725 #endif /* CONFIG_MEMCG_KMEM */
2726 
2727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2728 
2729 /*
2730  * Because tail pages are not marked as "used", set it. We're under
2731  * zone_lru_lock and migration entries setup in all page mappings.
2732  */
mem_cgroup_split_huge_fixup(struct page * head)2733 void mem_cgroup_split_huge_fixup(struct page *head)
2734 {
2735 	int i;
2736 
2737 	if (mem_cgroup_disabled())
2738 		return;
2739 
2740 	for (i = 1; i < HPAGE_PMD_NR; i++)
2741 		head[i].mem_cgroup = head->mem_cgroup;
2742 
2743 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2744 }
2745 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2746 
2747 #ifdef CONFIG_MEMCG_SWAP
2748 /**
2749  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2750  * @entry: swap entry to be moved
2751  * @from:  mem_cgroup which the entry is moved from
2752  * @to:  mem_cgroup which the entry is moved to
2753  *
2754  * It succeeds only when the swap_cgroup's record for this entry is the same
2755  * as the mem_cgroup's id of @from.
2756  *
2757  * Returns 0 on success, -EINVAL on failure.
2758  *
2759  * The caller must have charged to @to, IOW, called page_counter_charge() about
2760  * both res and memsw, and called css_get().
2761  */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)2762 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2763 				struct mem_cgroup *from, struct mem_cgroup *to)
2764 {
2765 	unsigned short old_id, new_id;
2766 
2767 	old_id = mem_cgroup_id(from);
2768 	new_id = mem_cgroup_id(to);
2769 
2770 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2771 		mod_memcg_state(from, MEMCG_SWAP, -1);
2772 		mod_memcg_state(to, MEMCG_SWAP, 1);
2773 		return 0;
2774 	}
2775 	return -EINVAL;
2776 }
2777 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)2778 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2779 				struct mem_cgroup *from, struct mem_cgroup *to)
2780 {
2781 	return -EINVAL;
2782 }
2783 #endif
2784 
2785 static DEFINE_MUTEX(memcg_max_mutex);
2786 
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)2787 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2788 				 unsigned long max, bool memsw)
2789 {
2790 	bool enlarge = false;
2791 	bool drained = false;
2792 	int ret;
2793 	bool limits_invariant;
2794 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2795 
2796 	do {
2797 		if (signal_pending(current)) {
2798 			ret = -EINTR;
2799 			break;
2800 		}
2801 
2802 		mutex_lock(&memcg_max_mutex);
2803 		/*
2804 		 * Make sure that the new limit (memsw or memory limit) doesn't
2805 		 * break our basic invariant rule memory.max <= memsw.max.
2806 		 */
2807 		limits_invariant = memsw ? max >= memcg->memory.max :
2808 					   max <= memcg->memsw.max;
2809 		if (!limits_invariant) {
2810 			mutex_unlock(&memcg_max_mutex);
2811 			ret = -EINVAL;
2812 			break;
2813 		}
2814 		if (max > counter->max)
2815 			enlarge = true;
2816 		ret = page_counter_set_max(counter, max);
2817 		mutex_unlock(&memcg_max_mutex);
2818 
2819 		if (!ret)
2820 			break;
2821 
2822 		if (!drained) {
2823 			drain_all_stock(memcg);
2824 			drained = true;
2825 			continue;
2826 		}
2827 
2828 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
2829 					GFP_KERNEL, !memsw)) {
2830 			ret = -EBUSY;
2831 			break;
2832 		}
2833 	} while (true);
2834 
2835 	if (!ret && enlarge)
2836 		memcg_oom_recover(memcg);
2837 
2838 	return ret;
2839 }
2840 
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)2841 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2842 					    gfp_t gfp_mask,
2843 					    unsigned long *total_scanned)
2844 {
2845 	unsigned long nr_reclaimed = 0;
2846 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2847 	unsigned long reclaimed;
2848 	int loop = 0;
2849 	struct mem_cgroup_tree_per_node *mctz;
2850 	unsigned long excess;
2851 	unsigned long nr_scanned;
2852 
2853 	if (order > 0)
2854 		return 0;
2855 
2856 	mctz = soft_limit_tree_node(pgdat->node_id);
2857 
2858 	/*
2859 	 * Do not even bother to check the largest node if the root
2860 	 * is empty. Do it lockless to prevent lock bouncing. Races
2861 	 * are acceptable as soft limit is best effort anyway.
2862 	 */
2863 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2864 		return 0;
2865 
2866 	/*
2867 	 * This loop can run a while, specially if mem_cgroup's continuously
2868 	 * keep exceeding their soft limit and putting the system under
2869 	 * pressure
2870 	 */
2871 	do {
2872 		if (next_mz)
2873 			mz = next_mz;
2874 		else
2875 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2876 		if (!mz)
2877 			break;
2878 
2879 		nr_scanned = 0;
2880 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2881 						    gfp_mask, &nr_scanned);
2882 		nr_reclaimed += reclaimed;
2883 		*total_scanned += nr_scanned;
2884 		spin_lock_irq(&mctz->lock);
2885 		__mem_cgroup_remove_exceeded(mz, mctz);
2886 
2887 		/*
2888 		 * If we failed to reclaim anything from this memory cgroup
2889 		 * it is time to move on to the next cgroup
2890 		 */
2891 		next_mz = NULL;
2892 		if (!reclaimed)
2893 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2894 
2895 		excess = soft_limit_excess(mz->memcg);
2896 		/*
2897 		 * One school of thought says that we should not add
2898 		 * back the node to the tree if reclaim returns 0.
2899 		 * But our reclaim could return 0, simply because due
2900 		 * to priority we are exposing a smaller subset of
2901 		 * memory to reclaim from. Consider this as a longer
2902 		 * term TODO.
2903 		 */
2904 		/* If excess == 0, no tree ops */
2905 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2906 		spin_unlock_irq(&mctz->lock);
2907 		css_put(&mz->memcg->css);
2908 		loop++;
2909 		/*
2910 		 * Could not reclaim anything and there are no more
2911 		 * mem cgroups to try or we seem to be looping without
2912 		 * reclaiming anything.
2913 		 */
2914 		if (!nr_reclaimed &&
2915 			(next_mz == NULL ||
2916 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2917 			break;
2918 	} while (!nr_reclaimed);
2919 	if (next_mz)
2920 		css_put(&next_mz->memcg->css);
2921 	return nr_reclaimed;
2922 }
2923 
2924 /*
2925  * Test whether @memcg has children, dead or alive.  Note that this
2926  * function doesn't care whether @memcg has use_hierarchy enabled and
2927  * returns %true if there are child csses according to the cgroup
2928  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2929  */
memcg_has_children(struct mem_cgroup * memcg)2930 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2931 {
2932 	bool ret;
2933 
2934 	rcu_read_lock();
2935 	ret = css_next_child(NULL, &memcg->css);
2936 	rcu_read_unlock();
2937 	return ret;
2938 }
2939 
2940 /*
2941  * Reclaims as many pages from the given memcg as possible.
2942  *
2943  * Caller is responsible for holding css reference for memcg.
2944  */
mem_cgroup_force_empty(struct mem_cgroup * memcg)2945 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2946 {
2947 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2948 
2949 	/* we call try-to-free pages for make this cgroup empty */
2950 	lru_add_drain_all();
2951 
2952 	drain_all_stock(memcg);
2953 
2954 	/* try to free all pages in this cgroup */
2955 	while (nr_retries && page_counter_read(&memcg->memory)) {
2956 		int progress;
2957 
2958 		if (signal_pending(current))
2959 			return -EINTR;
2960 
2961 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2962 							GFP_KERNEL, true);
2963 		if (!progress) {
2964 			nr_retries--;
2965 			/* maybe some writeback is necessary */
2966 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2967 		}
2968 
2969 	}
2970 
2971 	return 0;
2972 }
2973 
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2974 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2975 					    char *buf, size_t nbytes,
2976 					    loff_t off)
2977 {
2978 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2979 
2980 	if (mem_cgroup_is_root(memcg))
2981 		return -EINVAL;
2982 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2983 }
2984 
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)2985 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2986 				     struct cftype *cft)
2987 {
2988 	return mem_cgroup_from_css(css)->use_hierarchy;
2989 }
2990 
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2991 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2992 				      struct cftype *cft, u64 val)
2993 {
2994 	int retval = 0;
2995 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2996 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2997 
2998 	if (memcg->use_hierarchy == val)
2999 		return 0;
3000 
3001 	/*
3002 	 * If parent's use_hierarchy is set, we can't make any modifications
3003 	 * in the child subtrees. If it is unset, then the change can
3004 	 * occur, provided the current cgroup has no children.
3005 	 *
3006 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3007 	 * set if there are no children.
3008 	 */
3009 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3010 				(val == 1 || val == 0)) {
3011 		if (!memcg_has_children(memcg))
3012 			memcg->use_hierarchy = val;
3013 		else
3014 			retval = -EBUSY;
3015 	} else
3016 		retval = -EINVAL;
3017 
3018 	return retval;
3019 }
3020 
3021 struct accumulated_stats {
3022 	unsigned long stat[MEMCG_NR_STAT];
3023 	unsigned long events[NR_VM_EVENT_ITEMS];
3024 	unsigned long lru_pages[NR_LRU_LISTS];
3025 	const unsigned int *stats_array;
3026 	const unsigned int *events_array;
3027 	int stats_size;
3028 	int events_size;
3029 };
3030 
accumulate_memcg_tree(struct mem_cgroup * memcg,struct accumulated_stats * acc)3031 static void accumulate_memcg_tree(struct mem_cgroup *memcg,
3032 				  struct accumulated_stats *acc)
3033 {
3034 	struct mem_cgroup *mi;
3035 	int i;
3036 
3037 	for_each_mem_cgroup_tree(mi, memcg) {
3038 		for (i = 0; i < acc->stats_size; i++)
3039 			acc->stat[i] += memcg_page_state(mi,
3040 				acc->stats_array ? acc->stats_array[i] : i);
3041 
3042 		for (i = 0; i < acc->events_size; i++)
3043 			acc->events[i] += memcg_sum_events(mi,
3044 				acc->events_array ? acc->events_array[i] : i);
3045 
3046 		for (i = 0; i < NR_LRU_LISTS; i++)
3047 			acc->lru_pages[i] +=
3048 				mem_cgroup_nr_lru_pages(mi, BIT(i));
3049 	}
3050 }
3051 
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3052 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3053 {
3054 	unsigned long val = 0;
3055 
3056 	if (mem_cgroup_is_root(memcg)) {
3057 		struct mem_cgroup *iter;
3058 
3059 		for_each_mem_cgroup_tree(iter, memcg) {
3060 			val += memcg_page_state(iter, MEMCG_CACHE);
3061 			val += memcg_page_state(iter, MEMCG_RSS);
3062 			if (swap)
3063 				val += memcg_page_state(iter, MEMCG_SWAP);
3064 		}
3065 	} else {
3066 		if (!swap)
3067 			val = page_counter_read(&memcg->memory);
3068 		else
3069 			val = page_counter_read(&memcg->memsw);
3070 	}
3071 	return val;
3072 }
3073 
3074 enum {
3075 	RES_USAGE,
3076 	RES_LIMIT,
3077 	RES_MAX_USAGE,
3078 	RES_FAILCNT,
3079 	RES_SOFT_LIMIT,
3080 };
3081 
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3082 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3083 			       struct cftype *cft)
3084 {
3085 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3086 	struct page_counter *counter;
3087 
3088 	switch (MEMFILE_TYPE(cft->private)) {
3089 	case _MEM:
3090 		counter = &memcg->memory;
3091 		break;
3092 	case _MEMSWAP:
3093 		counter = &memcg->memsw;
3094 		break;
3095 	case _KMEM:
3096 		counter = &memcg->kmem;
3097 		break;
3098 	case _TCP:
3099 		counter = &memcg->tcpmem;
3100 		break;
3101 	default:
3102 		BUG();
3103 	}
3104 
3105 	switch (MEMFILE_ATTR(cft->private)) {
3106 	case RES_USAGE:
3107 		if (counter == &memcg->memory)
3108 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3109 		if (counter == &memcg->memsw)
3110 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3111 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3112 	case RES_LIMIT:
3113 		return (u64)counter->max * PAGE_SIZE;
3114 	case RES_MAX_USAGE:
3115 		return (u64)counter->watermark * PAGE_SIZE;
3116 	case RES_FAILCNT:
3117 		return counter->failcnt;
3118 	case RES_SOFT_LIMIT:
3119 		return (u64)memcg->soft_limit * PAGE_SIZE;
3120 	default:
3121 		BUG();
3122 	}
3123 }
3124 
3125 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3126 static int memcg_online_kmem(struct mem_cgroup *memcg)
3127 {
3128 	int memcg_id;
3129 
3130 	if (cgroup_memory_nokmem)
3131 		return 0;
3132 
3133 	BUG_ON(memcg->kmemcg_id >= 0);
3134 	BUG_ON(memcg->kmem_state);
3135 
3136 	memcg_id = memcg_alloc_cache_id();
3137 	if (memcg_id < 0)
3138 		return memcg_id;
3139 
3140 	static_branch_inc(&memcg_kmem_enabled_key);
3141 	/*
3142 	 * A memory cgroup is considered kmem-online as soon as it gets
3143 	 * kmemcg_id. Setting the id after enabling static branching will
3144 	 * guarantee no one starts accounting before all call sites are
3145 	 * patched.
3146 	 */
3147 	memcg->kmemcg_id = memcg_id;
3148 	memcg->kmem_state = KMEM_ONLINE;
3149 	INIT_LIST_HEAD(&memcg->kmem_caches);
3150 
3151 	return 0;
3152 }
3153 
memcg_offline_kmem(struct mem_cgroup * memcg)3154 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3155 {
3156 	struct cgroup_subsys_state *css;
3157 	struct mem_cgroup *parent, *child;
3158 	int kmemcg_id;
3159 
3160 	if (memcg->kmem_state != KMEM_ONLINE)
3161 		return;
3162 	/*
3163 	 * Clear the online state before clearing memcg_caches array
3164 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3165 	 * guarantees that no cache will be created for this cgroup
3166 	 * after we are done (see memcg_create_kmem_cache()).
3167 	 */
3168 	memcg->kmem_state = KMEM_ALLOCATED;
3169 
3170 	memcg_deactivate_kmem_caches(memcg);
3171 
3172 	kmemcg_id = memcg->kmemcg_id;
3173 	BUG_ON(kmemcg_id < 0);
3174 
3175 	parent = parent_mem_cgroup(memcg);
3176 	if (!parent)
3177 		parent = root_mem_cgroup;
3178 
3179 	/*
3180 	 * Change kmemcg_id of this cgroup and all its descendants to the
3181 	 * parent's id, and then move all entries from this cgroup's list_lrus
3182 	 * to ones of the parent. After we have finished, all list_lrus
3183 	 * corresponding to this cgroup are guaranteed to remain empty. The
3184 	 * ordering is imposed by list_lru_node->lock taken by
3185 	 * memcg_drain_all_list_lrus().
3186 	 */
3187 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3188 	css_for_each_descendant_pre(css, &memcg->css) {
3189 		child = mem_cgroup_from_css(css);
3190 		BUG_ON(child->kmemcg_id != kmemcg_id);
3191 		child->kmemcg_id = parent->kmemcg_id;
3192 		if (!memcg->use_hierarchy)
3193 			break;
3194 	}
3195 	rcu_read_unlock();
3196 
3197 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3198 
3199 	memcg_free_cache_id(kmemcg_id);
3200 }
3201 
memcg_free_kmem(struct mem_cgroup * memcg)3202 static void memcg_free_kmem(struct mem_cgroup *memcg)
3203 {
3204 	/* css_alloc() failed, offlining didn't happen */
3205 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3206 		memcg_offline_kmem(memcg);
3207 
3208 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3209 		memcg_destroy_kmem_caches(memcg);
3210 		static_branch_dec(&memcg_kmem_enabled_key);
3211 		WARN_ON(page_counter_read(&memcg->kmem));
3212 	}
3213 }
3214 #else
memcg_online_kmem(struct mem_cgroup * memcg)3215 static int memcg_online_kmem(struct mem_cgroup *memcg)
3216 {
3217 	return 0;
3218 }
memcg_offline_kmem(struct mem_cgroup * memcg)3219 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3220 {
3221 }
memcg_free_kmem(struct mem_cgroup * memcg)3222 static void memcg_free_kmem(struct mem_cgroup *memcg)
3223 {
3224 }
3225 #endif /* CONFIG_MEMCG_KMEM */
3226 
memcg_update_kmem_max(struct mem_cgroup * memcg,unsigned long max)3227 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3228 				 unsigned long max)
3229 {
3230 	int ret;
3231 
3232 	mutex_lock(&memcg_max_mutex);
3233 	ret = page_counter_set_max(&memcg->kmem, max);
3234 	mutex_unlock(&memcg_max_mutex);
3235 	return ret;
3236 }
3237 
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3238 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3239 {
3240 	int ret;
3241 
3242 	mutex_lock(&memcg_max_mutex);
3243 
3244 	ret = page_counter_set_max(&memcg->tcpmem, max);
3245 	if (ret)
3246 		goto out;
3247 
3248 	if (!memcg->tcpmem_active) {
3249 		/*
3250 		 * The active flag needs to be written after the static_key
3251 		 * update. This is what guarantees that the socket activation
3252 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3253 		 * for details, and note that we don't mark any socket as
3254 		 * belonging to this memcg until that flag is up.
3255 		 *
3256 		 * We need to do this, because static_keys will span multiple
3257 		 * sites, but we can't control their order. If we mark a socket
3258 		 * as accounted, but the accounting functions are not patched in
3259 		 * yet, we'll lose accounting.
3260 		 *
3261 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3262 		 * because when this value change, the code to process it is not
3263 		 * patched in yet.
3264 		 */
3265 		static_branch_inc(&memcg_sockets_enabled_key);
3266 		memcg->tcpmem_active = true;
3267 	}
3268 out:
3269 	mutex_unlock(&memcg_max_mutex);
3270 	return ret;
3271 }
3272 
3273 /*
3274  * The user of this function is...
3275  * RES_LIMIT.
3276  */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3277 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3278 				char *buf, size_t nbytes, loff_t off)
3279 {
3280 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3281 	unsigned long nr_pages;
3282 	int ret;
3283 
3284 	buf = strstrip(buf);
3285 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3286 	if (ret)
3287 		return ret;
3288 
3289 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3290 	case RES_LIMIT:
3291 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3292 			ret = -EINVAL;
3293 			break;
3294 		}
3295 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3296 		case _MEM:
3297 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3298 			break;
3299 		case _MEMSWAP:
3300 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3301 			break;
3302 		case _KMEM:
3303 			ret = memcg_update_kmem_max(memcg, nr_pages);
3304 			break;
3305 		case _TCP:
3306 			ret = memcg_update_tcp_max(memcg, nr_pages);
3307 			break;
3308 		}
3309 		break;
3310 	case RES_SOFT_LIMIT:
3311 		memcg->soft_limit = nr_pages;
3312 		ret = 0;
3313 		break;
3314 	}
3315 	return ret ?: nbytes;
3316 }
3317 
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3318 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3319 				size_t nbytes, loff_t off)
3320 {
3321 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3322 	struct page_counter *counter;
3323 
3324 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3325 	case _MEM:
3326 		counter = &memcg->memory;
3327 		break;
3328 	case _MEMSWAP:
3329 		counter = &memcg->memsw;
3330 		break;
3331 	case _KMEM:
3332 		counter = &memcg->kmem;
3333 		break;
3334 	case _TCP:
3335 		counter = &memcg->tcpmem;
3336 		break;
3337 	default:
3338 		BUG();
3339 	}
3340 
3341 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3342 	case RES_MAX_USAGE:
3343 		page_counter_reset_watermark(counter);
3344 		break;
3345 	case RES_FAILCNT:
3346 		counter->failcnt = 0;
3347 		break;
3348 	default:
3349 		BUG();
3350 	}
3351 
3352 	return nbytes;
3353 }
3354 
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3355 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3356 					struct cftype *cft)
3357 {
3358 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3359 }
3360 
3361 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3362 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3363 					struct cftype *cft, u64 val)
3364 {
3365 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3366 
3367 	if (val & ~MOVE_MASK)
3368 		return -EINVAL;
3369 
3370 	/*
3371 	 * No kind of locking is needed in here, because ->can_attach() will
3372 	 * check this value once in the beginning of the process, and then carry
3373 	 * on with stale data. This means that changes to this value will only
3374 	 * affect task migrations starting after the change.
3375 	 */
3376 	memcg->move_charge_at_immigrate = val;
3377 	return 0;
3378 }
3379 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3380 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3381 					struct cftype *cft, u64 val)
3382 {
3383 	return -ENOSYS;
3384 }
3385 #endif
3386 
3387 #ifdef CONFIG_NUMA
memcg_numa_stat_show(struct seq_file * m,void * v)3388 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3389 {
3390 	struct numa_stat {
3391 		const char *name;
3392 		unsigned int lru_mask;
3393 	};
3394 
3395 	static const struct numa_stat stats[] = {
3396 		{ "total", LRU_ALL },
3397 		{ "file", LRU_ALL_FILE },
3398 		{ "anon", LRU_ALL_ANON },
3399 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3400 	};
3401 	const struct numa_stat *stat;
3402 	int nid;
3403 	unsigned long nr;
3404 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3405 
3406 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3407 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3408 		seq_printf(m, "%s=%lu", stat->name, nr);
3409 		for_each_node_state(nid, N_MEMORY) {
3410 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3411 							  stat->lru_mask);
3412 			seq_printf(m, " N%d=%lu", nid, nr);
3413 		}
3414 		seq_putc(m, '\n');
3415 	}
3416 
3417 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3418 		struct mem_cgroup *iter;
3419 
3420 		nr = 0;
3421 		for_each_mem_cgroup_tree(iter, memcg)
3422 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3423 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3424 		for_each_node_state(nid, N_MEMORY) {
3425 			nr = 0;
3426 			for_each_mem_cgroup_tree(iter, memcg)
3427 				nr += mem_cgroup_node_nr_lru_pages(
3428 					iter, nid, stat->lru_mask);
3429 			seq_printf(m, " N%d=%lu", nid, nr);
3430 		}
3431 		seq_putc(m, '\n');
3432 	}
3433 
3434 	return 0;
3435 }
3436 #endif /* CONFIG_NUMA */
3437 
3438 /* Universal VM events cgroup1 shows, original sort order */
3439 static const unsigned int memcg1_events[] = {
3440 	PGPGIN,
3441 	PGPGOUT,
3442 	PGFAULT,
3443 	PGMAJFAULT,
3444 };
3445 
3446 static const char *const memcg1_event_names[] = {
3447 	"pgpgin",
3448 	"pgpgout",
3449 	"pgfault",
3450 	"pgmajfault",
3451 };
3452 
memcg_stat_show(struct seq_file * m,void * v)3453 static int memcg_stat_show(struct seq_file *m, void *v)
3454 {
3455 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3456 	unsigned long memory, memsw;
3457 	struct mem_cgroup *mi;
3458 	unsigned int i;
3459 	struct accumulated_stats acc;
3460 
3461 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3462 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3463 
3464 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3465 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3466 			continue;
3467 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3468 			   memcg_page_state(memcg, memcg1_stats[i]) *
3469 			   PAGE_SIZE);
3470 	}
3471 
3472 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3473 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3474 			   memcg_sum_events(memcg, memcg1_events[i]));
3475 
3476 	for (i = 0; i < NR_LRU_LISTS; i++)
3477 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3478 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3479 
3480 	/* Hierarchical information */
3481 	memory = memsw = PAGE_COUNTER_MAX;
3482 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3483 		memory = min(memory, mi->memory.max);
3484 		memsw = min(memsw, mi->memsw.max);
3485 	}
3486 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3487 		   (u64)memory * PAGE_SIZE);
3488 	if (do_memsw_account())
3489 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3490 			   (u64)memsw * PAGE_SIZE);
3491 
3492 	memset(&acc, 0, sizeof(acc));
3493 	acc.stats_size = ARRAY_SIZE(memcg1_stats);
3494 	acc.stats_array = memcg1_stats;
3495 	acc.events_size = ARRAY_SIZE(memcg1_events);
3496 	acc.events_array = memcg1_events;
3497 	accumulate_memcg_tree(memcg, &acc);
3498 
3499 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3500 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3501 			continue;
3502 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3503 			   (u64)acc.stat[i] * PAGE_SIZE);
3504 	}
3505 
3506 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3507 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3508 			   (u64)acc.events[i]);
3509 
3510 	for (i = 0; i < NR_LRU_LISTS; i++)
3511 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3512 			   (u64)acc.lru_pages[i] * PAGE_SIZE);
3513 
3514 #ifdef CONFIG_DEBUG_VM
3515 	{
3516 		pg_data_t *pgdat;
3517 		struct mem_cgroup_per_node *mz;
3518 		struct zone_reclaim_stat *rstat;
3519 		unsigned long recent_rotated[2] = {0, 0};
3520 		unsigned long recent_scanned[2] = {0, 0};
3521 
3522 		for_each_online_pgdat(pgdat) {
3523 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3524 			rstat = &mz->lruvec.reclaim_stat;
3525 
3526 			recent_rotated[0] += rstat->recent_rotated[0];
3527 			recent_rotated[1] += rstat->recent_rotated[1];
3528 			recent_scanned[0] += rstat->recent_scanned[0];
3529 			recent_scanned[1] += rstat->recent_scanned[1];
3530 		}
3531 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3532 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3533 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3534 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3535 	}
3536 #endif
3537 
3538 	return 0;
3539 }
3540 
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)3541 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3542 				      struct cftype *cft)
3543 {
3544 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3545 
3546 	return mem_cgroup_swappiness(memcg);
3547 }
3548 
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3549 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3550 				       struct cftype *cft, u64 val)
3551 {
3552 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3553 
3554 	if (val > 100)
3555 		return -EINVAL;
3556 
3557 	if (css->parent)
3558 		memcg->swappiness = val;
3559 	else
3560 		vm_swappiness = val;
3561 
3562 	return 0;
3563 }
3564 
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)3565 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3566 {
3567 	struct mem_cgroup_threshold_ary *t;
3568 	unsigned long usage;
3569 	int i;
3570 
3571 	rcu_read_lock();
3572 	if (!swap)
3573 		t = rcu_dereference(memcg->thresholds.primary);
3574 	else
3575 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3576 
3577 	if (!t)
3578 		goto unlock;
3579 
3580 	usage = mem_cgroup_usage(memcg, swap);
3581 
3582 	/*
3583 	 * current_threshold points to threshold just below or equal to usage.
3584 	 * If it's not true, a threshold was crossed after last
3585 	 * call of __mem_cgroup_threshold().
3586 	 */
3587 	i = t->current_threshold;
3588 
3589 	/*
3590 	 * Iterate backward over array of thresholds starting from
3591 	 * current_threshold and check if a threshold is crossed.
3592 	 * If none of thresholds below usage is crossed, we read
3593 	 * only one element of the array here.
3594 	 */
3595 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3596 		eventfd_signal(t->entries[i].eventfd, 1);
3597 
3598 	/* i = current_threshold + 1 */
3599 	i++;
3600 
3601 	/*
3602 	 * Iterate forward over array of thresholds starting from
3603 	 * current_threshold+1 and check if a threshold is crossed.
3604 	 * If none of thresholds above usage is crossed, we read
3605 	 * only one element of the array here.
3606 	 */
3607 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3608 		eventfd_signal(t->entries[i].eventfd, 1);
3609 
3610 	/* Update current_threshold */
3611 	t->current_threshold = i - 1;
3612 unlock:
3613 	rcu_read_unlock();
3614 }
3615 
mem_cgroup_threshold(struct mem_cgroup * memcg)3616 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3617 {
3618 	while (memcg) {
3619 		__mem_cgroup_threshold(memcg, false);
3620 		if (do_memsw_account())
3621 			__mem_cgroup_threshold(memcg, true);
3622 
3623 		memcg = parent_mem_cgroup(memcg);
3624 	}
3625 }
3626 
compare_thresholds(const void * a,const void * b)3627 static int compare_thresholds(const void *a, const void *b)
3628 {
3629 	const struct mem_cgroup_threshold *_a = a;
3630 	const struct mem_cgroup_threshold *_b = b;
3631 
3632 	if (_a->threshold > _b->threshold)
3633 		return 1;
3634 
3635 	if (_a->threshold < _b->threshold)
3636 		return -1;
3637 
3638 	return 0;
3639 }
3640 
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)3641 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3642 {
3643 	struct mem_cgroup_eventfd_list *ev;
3644 
3645 	spin_lock(&memcg_oom_lock);
3646 
3647 	list_for_each_entry(ev, &memcg->oom_notify, list)
3648 		eventfd_signal(ev->eventfd, 1);
3649 
3650 	spin_unlock(&memcg_oom_lock);
3651 	return 0;
3652 }
3653 
mem_cgroup_oom_notify(struct mem_cgroup * memcg)3654 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3655 {
3656 	struct mem_cgroup *iter;
3657 
3658 	for_each_mem_cgroup_tree(iter, memcg)
3659 		mem_cgroup_oom_notify_cb(iter);
3660 }
3661 
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)3662 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3663 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3664 {
3665 	struct mem_cgroup_thresholds *thresholds;
3666 	struct mem_cgroup_threshold_ary *new;
3667 	unsigned long threshold;
3668 	unsigned long usage;
3669 	int i, size, ret;
3670 
3671 	ret = page_counter_memparse(args, "-1", &threshold);
3672 	if (ret)
3673 		return ret;
3674 
3675 	mutex_lock(&memcg->thresholds_lock);
3676 
3677 	if (type == _MEM) {
3678 		thresholds = &memcg->thresholds;
3679 		usage = mem_cgroup_usage(memcg, false);
3680 	} else if (type == _MEMSWAP) {
3681 		thresholds = &memcg->memsw_thresholds;
3682 		usage = mem_cgroup_usage(memcg, true);
3683 	} else
3684 		BUG();
3685 
3686 	/* Check if a threshold crossed before adding a new one */
3687 	if (thresholds->primary)
3688 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3689 
3690 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3691 
3692 	/* Allocate memory for new array of thresholds */
3693 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3694 			GFP_KERNEL);
3695 	if (!new) {
3696 		ret = -ENOMEM;
3697 		goto unlock;
3698 	}
3699 	new->size = size;
3700 
3701 	/* Copy thresholds (if any) to new array */
3702 	if (thresholds->primary) {
3703 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3704 				sizeof(struct mem_cgroup_threshold));
3705 	}
3706 
3707 	/* Add new threshold */
3708 	new->entries[size - 1].eventfd = eventfd;
3709 	new->entries[size - 1].threshold = threshold;
3710 
3711 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3712 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3713 			compare_thresholds, NULL);
3714 
3715 	/* Find current threshold */
3716 	new->current_threshold = -1;
3717 	for (i = 0; i < size; i++) {
3718 		if (new->entries[i].threshold <= usage) {
3719 			/*
3720 			 * new->current_threshold will not be used until
3721 			 * rcu_assign_pointer(), so it's safe to increment
3722 			 * it here.
3723 			 */
3724 			++new->current_threshold;
3725 		} else
3726 			break;
3727 	}
3728 
3729 	/* Free old spare buffer and save old primary buffer as spare */
3730 	kfree(thresholds->spare);
3731 	thresholds->spare = thresholds->primary;
3732 
3733 	rcu_assign_pointer(thresholds->primary, new);
3734 
3735 	/* To be sure that nobody uses thresholds */
3736 	synchronize_rcu();
3737 
3738 unlock:
3739 	mutex_unlock(&memcg->thresholds_lock);
3740 
3741 	return ret;
3742 }
3743 
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3744 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3745 	struct eventfd_ctx *eventfd, const char *args)
3746 {
3747 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3748 }
3749 
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3750 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3751 	struct eventfd_ctx *eventfd, const char *args)
3752 {
3753 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3754 }
3755 
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)3756 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3757 	struct eventfd_ctx *eventfd, enum res_type type)
3758 {
3759 	struct mem_cgroup_thresholds *thresholds;
3760 	struct mem_cgroup_threshold_ary *new;
3761 	unsigned long usage;
3762 	int i, j, size, entries;
3763 
3764 	mutex_lock(&memcg->thresholds_lock);
3765 
3766 	if (type == _MEM) {
3767 		thresholds = &memcg->thresholds;
3768 		usage = mem_cgroup_usage(memcg, false);
3769 	} else if (type == _MEMSWAP) {
3770 		thresholds = &memcg->memsw_thresholds;
3771 		usage = mem_cgroup_usage(memcg, true);
3772 	} else
3773 		BUG();
3774 
3775 	if (!thresholds->primary)
3776 		goto unlock;
3777 
3778 	/* Check if a threshold crossed before removing */
3779 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3780 
3781 	/* Calculate new number of threshold */
3782 	size = entries = 0;
3783 	for (i = 0; i < thresholds->primary->size; i++) {
3784 		if (thresholds->primary->entries[i].eventfd != eventfd)
3785 			size++;
3786 		else
3787 			entries++;
3788 	}
3789 
3790 	new = thresholds->spare;
3791 
3792 	/* If no items related to eventfd have been cleared, nothing to do */
3793 	if (!entries)
3794 		goto unlock;
3795 
3796 	/* Set thresholds array to NULL if we don't have thresholds */
3797 	if (!size) {
3798 		kfree(new);
3799 		new = NULL;
3800 		goto swap_buffers;
3801 	}
3802 
3803 	new->size = size;
3804 
3805 	/* Copy thresholds and find current threshold */
3806 	new->current_threshold = -1;
3807 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3808 		if (thresholds->primary->entries[i].eventfd == eventfd)
3809 			continue;
3810 
3811 		new->entries[j] = thresholds->primary->entries[i];
3812 		if (new->entries[j].threshold <= usage) {
3813 			/*
3814 			 * new->current_threshold will not be used
3815 			 * until rcu_assign_pointer(), so it's safe to increment
3816 			 * it here.
3817 			 */
3818 			++new->current_threshold;
3819 		}
3820 		j++;
3821 	}
3822 
3823 swap_buffers:
3824 	/* Swap primary and spare array */
3825 	thresholds->spare = thresholds->primary;
3826 
3827 	rcu_assign_pointer(thresholds->primary, new);
3828 
3829 	/* To be sure that nobody uses thresholds */
3830 	synchronize_rcu();
3831 
3832 	/* If all events are unregistered, free the spare array */
3833 	if (!new) {
3834 		kfree(thresholds->spare);
3835 		thresholds->spare = NULL;
3836 	}
3837 unlock:
3838 	mutex_unlock(&memcg->thresholds_lock);
3839 }
3840 
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3841 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3842 	struct eventfd_ctx *eventfd)
3843 {
3844 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3845 }
3846 
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3847 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3848 	struct eventfd_ctx *eventfd)
3849 {
3850 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3851 }
3852 
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3853 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3854 	struct eventfd_ctx *eventfd, const char *args)
3855 {
3856 	struct mem_cgroup_eventfd_list *event;
3857 
3858 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3859 	if (!event)
3860 		return -ENOMEM;
3861 
3862 	spin_lock(&memcg_oom_lock);
3863 
3864 	event->eventfd = eventfd;
3865 	list_add(&event->list, &memcg->oom_notify);
3866 
3867 	/* already in OOM ? */
3868 	if (memcg->under_oom)
3869 		eventfd_signal(eventfd, 1);
3870 	spin_unlock(&memcg_oom_lock);
3871 
3872 	return 0;
3873 }
3874 
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3875 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3876 	struct eventfd_ctx *eventfd)
3877 {
3878 	struct mem_cgroup_eventfd_list *ev, *tmp;
3879 
3880 	spin_lock(&memcg_oom_lock);
3881 
3882 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3883 		if (ev->eventfd == eventfd) {
3884 			list_del(&ev->list);
3885 			kfree(ev);
3886 		}
3887 	}
3888 
3889 	spin_unlock(&memcg_oom_lock);
3890 }
3891 
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)3892 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3893 {
3894 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3895 
3896 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3897 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3898 	seq_printf(sf, "oom_kill %lu\n",
3899 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3900 	return 0;
3901 }
3902 
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3903 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3904 	struct cftype *cft, u64 val)
3905 {
3906 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3907 
3908 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3909 	if (!css->parent || !((val == 0) || (val == 1)))
3910 		return -EINVAL;
3911 
3912 	memcg->oom_kill_disable = val;
3913 	if (!val)
3914 		memcg_oom_recover(memcg);
3915 
3916 	return 0;
3917 }
3918 
3919 #ifdef CONFIG_CGROUP_WRITEBACK
3920 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3921 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3922 {
3923 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3924 }
3925 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3926 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3927 {
3928 	wb_domain_exit(&memcg->cgwb_domain);
3929 }
3930 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3931 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3932 {
3933 	wb_domain_size_changed(&memcg->cgwb_domain);
3934 }
3935 
mem_cgroup_wb_domain(struct bdi_writeback * wb)3936 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3937 {
3938 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3939 
3940 	if (!memcg->css.parent)
3941 		return NULL;
3942 
3943 	return &memcg->cgwb_domain;
3944 }
3945 
3946 /*
3947  * idx can be of type enum memcg_stat_item or node_stat_item.
3948  * Keep in sync with memcg_exact_page().
3949  */
memcg_exact_page_state(struct mem_cgroup * memcg,int idx)3950 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
3951 {
3952 	long x = atomic_long_read(&memcg->stat[idx]);
3953 	int cpu;
3954 
3955 	for_each_online_cpu(cpu)
3956 		x += per_cpu_ptr(memcg->stat_cpu, cpu)->count[idx];
3957 	if (x < 0)
3958 		x = 0;
3959 	return x;
3960 }
3961 
3962 /**
3963  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3964  * @wb: bdi_writeback in question
3965  * @pfilepages: out parameter for number of file pages
3966  * @pheadroom: out parameter for number of allocatable pages according to memcg
3967  * @pdirty: out parameter for number of dirty pages
3968  * @pwriteback: out parameter for number of pages under writeback
3969  *
3970  * Determine the numbers of file, headroom, dirty, and writeback pages in
3971  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3972  * is a bit more involved.
3973  *
3974  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3975  * headroom is calculated as the lowest headroom of itself and the
3976  * ancestors.  Note that this doesn't consider the actual amount of
3977  * available memory in the system.  The caller should further cap
3978  * *@pheadroom accordingly.
3979  */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3980 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3981 			 unsigned long *pheadroom, unsigned long *pdirty,
3982 			 unsigned long *pwriteback)
3983 {
3984 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3985 	struct mem_cgroup *parent;
3986 
3987 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
3988 
3989 	/* this should eventually include NR_UNSTABLE_NFS */
3990 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
3991 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3992 						     (1 << LRU_ACTIVE_FILE));
3993 	*pheadroom = PAGE_COUNTER_MAX;
3994 
3995 	while ((parent = parent_mem_cgroup(memcg))) {
3996 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3997 		unsigned long used = page_counter_read(&memcg->memory);
3998 
3999 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4000 		memcg = parent;
4001 	}
4002 }
4003 
4004 #else	/* CONFIG_CGROUP_WRITEBACK */
4005 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4006 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4007 {
4008 	return 0;
4009 }
4010 
memcg_wb_domain_exit(struct mem_cgroup * memcg)4011 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4012 {
4013 }
4014 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4015 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4016 {
4017 }
4018 
4019 #endif	/* CONFIG_CGROUP_WRITEBACK */
4020 
4021 /*
4022  * DO NOT USE IN NEW FILES.
4023  *
4024  * "cgroup.event_control" implementation.
4025  *
4026  * This is way over-engineered.  It tries to support fully configurable
4027  * events for each user.  Such level of flexibility is completely
4028  * unnecessary especially in the light of the planned unified hierarchy.
4029  *
4030  * Please deprecate this and replace with something simpler if at all
4031  * possible.
4032  */
4033 
4034 /*
4035  * Unregister event and free resources.
4036  *
4037  * Gets called from workqueue.
4038  */
memcg_event_remove(struct work_struct * work)4039 static void memcg_event_remove(struct work_struct *work)
4040 {
4041 	struct mem_cgroup_event *event =
4042 		container_of(work, struct mem_cgroup_event, remove);
4043 	struct mem_cgroup *memcg = event->memcg;
4044 
4045 	remove_wait_queue(event->wqh, &event->wait);
4046 
4047 	event->unregister_event(memcg, event->eventfd);
4048 
4049 	/* Notify userspace the event is going away. */
4050 	eventfd_signal(event->eventfd, 1);
4051 
4052 	eventfd_ctx_put(event->eventfd);
4053 	kfree(event);
4054 	css_put(&memcg->css);
4055 }
4056 
4057 /*
4058  * Gets called on EPOLLHUP on eventfd when user closes it.
4059  *
4060  * Called with wqh->lock held and interrupts disabled.
4061  */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4062 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4063 			    int sync, void *key)
4064 {
4065 	struct mem_cgroup_event *event =
4066 		container_of(wait, struct mem_cgroup_event, wait);
4067 	struct mem_cgroup *memcg = event->memcg;
4068 	__poll_t flags = key_to_poll(key);
4069 
4070 	if (flags & EPOLLHUP) {
4071 		/*
4072 		 * If the event has been detached at cgroup removal, we
4073 		 * can simply return knowing the other side will cleanup
4074 		 * for us.
4075 		 *
4076 		 * We can't race against event freeing since the other
4077 		 * side will require wqh->lock via remove_wait_queue(),
4078 		 * which we hold.
4079 		 */
4080 		spin_lock(&memcg->event_list_lock);
4081 		if (!list_empty(&event->list)) {
4082 			list_del_init(&event->list);
4083 			/*
4084 			 * We are in atomic context, but cgroup_event_remove()
4085 			 * may sleep, so we have to call it in workqueue.
4086 			 */
4087 			schedule_work(&event->remove);
4088 		}
4089 		spin_unlock(&memcg->event_list_lock);
4090 	}
4091 
4092 	return 0;
4093 }
4094 
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4095 static void memcg_event_ptable_queue_proc(struct file *file,
4096 		wait_queue_head_t *wqh, poll_table *pt)
4097 {
4098 	struct mem_cgroup_event *event =
4099 		container_of(pt, struct mem_cgroup_event, pt);
4100 
4101 	event->wqh = wqh;
4102 	add_wait_queue(wqh, &event->wait);
4103 }
4104 
4105 /*
4106  * DO NOT USE IN NEW FILES.
4107  *
4108  * Parse input and register new cgroup event handler.
4109  *
4110  * Input must be in format '<event_fd> <control_fd> <args>'.
4111  * Interpretation of args is defined by control file implementation.
4112  */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4113 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4114 					 char *buf, size_t nbytes, loff_t off)
4115 {
4116 	struct cgroup_subsys_state *css = of_css(of);
4117 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4118 	struct mem_cgroup_event *event;
4119 	struct cgroup_subsys_state *cfile_css;
4120 	unsigned int efd, cfd;
4121 	struct fd efile;
4122 	struct fd cfile;
4123 	const char *name;
4124 	char *endp;
4125 	int ret;
4126 
4127 	buf = strstrip(buf);
4128 
4129 	efd = simple_strtoul(buf, &endp, 10);
4130 	if (*endp != ' ')
4131 		return -EINVAL;
4132 	buf = endp + 1;
4133 
4134 	cfd = simple_strtoul(buf, &endp, 10);
4135 	if ((*endp != ' ') && (*endp != '\0'))
4136 		return -EINVAL;
4137 	buf = endp + 1;
4138 
4139 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4140 	if (!event)
4141 		return -ENOMEM;
4142 
4143 	event->memcg = memcg;
4144 	INIT_LIST_HEAD(&event->list);
4145 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4146 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4147 	INIT_WORK(&event->remove, memcg_event_remove);
4148 
4149 	efile = fdget(efd);
4150 	if (!efile.file) {
4151 		ret = -EBADF;
4152 		goto out_kfree;
4153 	}
4154 
4155 	event->eventfd = eventfd_ctx_fileget(efile.file);
4156 	if (IS_ERR(event->eventfd)) {
4157 		ret = PTR_ERR(event->eventfd);
4158 		goto out_put_efile;
4159 	}
4160 
4161 	cfile = fdget(cfd);
4162 	if (!cfile.file) {
4163 		ret = -EBADF;
4164 		goto out_put_eventfd;
4165 	}
4166 
4167 	/* the process need read permission on control file */
4168 	/* AV: shouldn't we check that it's been opened for read instead? */
4169 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4170 	if (ret < 0)
4171 		goto out_put_cfile;
4172 
4173 	/*
4174 	 * Determine the event callbacks and set them in @event.  This used
4175 	 * to be done via struct cftype but cgroup core no longer knows
4176 	 * about these events.  The following is crude but the whole thing
4177 	 * is for compatibility anyway.
4178 	 *
4179 	 * DO NOT ADD NEW FILES.
4180 	 */
4181 	name = cfile.file->f_path.dentry->d_name.name;
4182 
4183 	if (!strcmp(name, "memory.usage_in_bytes")) {
4184 		event->register_event = mem_cgroup_usage_register_event;
4185 		event->unregister_event = mem_cgroup_usage_unregister_event;
4186 	} else if (!strcmp(name, "memory.oom_control")) {
4187 		event->register_event = mem_cgroup_oom_register_event;
4188 		event->unregister_event = mem_cgroup_oom_unregister_event;
4189 	} else if (!strcmp(name, "memory.pressure_level")) {
4190 		event->register_event = vmpressure_register_event;
4191 		event->unregister_event = vmpressure_unregister_event;
4192 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4193 		event->register_event = memsw_cgroup_usage_register_event;
4194 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4195 	} else {
4196 		ret = -EINVAL;
4197 		goto out_put_cfile;
4198 	}
4199 
4200 	/*
4201 	 * Verify @cfile should belong to @css.  Also, remaining events are
4202 	 * automatically removed on cgroup destruction but the removal is
4203 	 * asynchronous, so take an extra ref on @css.
4204 	 */
4205 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4206 					       &memory_cgrp_subsys);
4207 	ret = -EINVAL;
4208 	if (IS_ERR(cfile_css))
4209 		goto out_put_cfile;
4210 	if (cfile_css != css) {
4211 		css_put(cfile_css);
4212 		goto out_put_cfile;
4213 	}
4214 
4215 	ret = event->register_event(memcg, event->eventfd, buf);
4216 	if (ret)
4217 		goto out_put_css;
4218 
4219 	vfs_poll(efile.file, &event->pt);
4220 
4221 	spin_lock(&memcg->event_list_lock);
4222 	list_add(&event->list, &memcg->event_list);
4223 	spin_unlock(&memcg->event_list_lock);
4224 
4225 	fdput(cfile);
4226 	fdput(efile);
4227 
4228 	return nbytes;
4229 
4230 out_put_css:
4231 	css_put(css);
4232 out_put_cfile:
4233 	fdput(cfile);
4234 out_put_eventfd:
4235 	eventfd_ctx_put(event->eventfd);
4236 out_put_efile:
4237 	fdput(efile);
4238 out_kfree:
4239 	kfree(event);
4240 
4241 	return ret;
4242 }
4243 
4244 static struct cftype mem_cgroup_legacy_files[] = {
4245 	{
4246 		.name = "usage_in_bytes",
4247 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4248 		.read_u64 = mem_cgroup_read_u64,
4249 	},
4250 	{
4251 		.name = "max_usage_in_bytes",
4252 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4253 		.write = mem_cgroup_reset,
4254 		.read_u64 = mem_cgroup_read_u64,
4255 	},
4256 	{
4257 		.name = "limit_in_bytes",
4258 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4259 		.write = mem_cgroup_write,
4260 		.read_u64 = mem_cgroup_read_u64,
4261 	},
4262 	{
4263 		.name = "soft_limit_in_bytes",
4264 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4265 		.write = mem_cgroup_write,
4266 		.read_u64 = mem_cgroup_read_u64,
4267 	},
4268 	{
4269 		.name = "failcnt",
4270 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4271 		.write = mem_cgroup_reset,
4272 		.read_u64 = mem_cgroup_read_u64,
4273 	},
4274 	{
4275 		.name = "stat",
4276 		.seq_show = memcg_stat_show,
4277 	},
4278 	{
4279 		.name = "force_empty",
4280 		.write = mem_cgroup_force_empty_write,
4281 	},
4282 	{
4283 		.name = "use_hierarchy",
4284 		.write_u64 = mem_cgroup_hierarchy_write,
4285 		.read_u64 = mem_cgroup_hierarchy_read,
4286 	},
4287 	{
4288 		.name = "cgroup.event_control",		/* XXX: for compat */
4289 		.write = memcg_write_event_control,
4290 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4291 	},
4292 	{
4293 		.name = "swappiness",
4294 		.read_u64 = mem_cgroup_swappiness_read,
4295 		.write_u64 = mem_cgroup_swappiness_write,
4296 	},
4297 	{
4298 		.name = "move_charge_at_immigrate",
4299 		.read_u64 = mem_cgroup_move_charge_read,
4300 		.write_u64 = mem_cgroup_move_charge_write,
4301 	},
4302 	{
4303 		.name = "oom_control",
4304 		.seq_show = mem_cgroup_oom_control_read,
4305 		.write_u64 = mem_cgroup_oom_control_write,
4306 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4307 	},
4308 	{
4309 		.name = "pressure_level",
4310 	},
4311 #ifdef CONFIG_NUMA
4312 	{
4313 		.name = "numa_stat",
4314 		.seq_show = memcg_numa_stat_show,
4315 	},
4316 #endif
4317 	{
4318 		.name = "kmem.limit_in_bytes",
4319 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4320 		.write = mem_cgroup_write,
4321 		.read_u64 = mem_cgroup_read_u64,
4322 	},
4323 	{
4324 		.name = "kmem.usage_in_bytes",
4325 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4326 		.read_u64 = mem_cgroup_read_u64,
4327 	},
4328 	{
4329 		.name = "kmem.failcnt",
4330 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4331 		.write = mem_cgroup_reset,
4332 		.read_u64 = mem_cgroup_read_u64,
4333 	},
4334 	{
4335 		.name = "kmem.max_usage_in_bytes",
4336 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4337 		.write = mem_cgroup_reset,
4338 		.read_u64 = mem_cgroup_read_u64,
4339 	},
4340 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4341 	{
4342 		.name = "kmem.slabinfo",
4343 		.seq_start = memcg_slab_start,
4344 		.seq_next = memcg_slab_next,
4345 		.seq_stop = memcg_slab_stop,
4346 		.seq_show = memcg_slab_show,
4347 	},
4348 #endif
4349 	{
4350 		.name = "kmem.tcp.limit_in_bytes",
4351 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4352 		.write = mem_cgroup_write,
4353 		.read_u64 = mem_cgroup_read_u64,
4354 	},
4355 	{
4356 		.name = "kmem.tcp.usage_in_bytes",
4357 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4358 		.read_u64 = mem_cgroup_read_u64,
4359 	},
4360 	{
4361 		.name = "kmem.tcp.failcnt",
4362 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4363 		.write = mem_cgroup_reset,
4364 		.read_u64 = mem_cgroup_read_u64,
4365 	},
4366 	{
4367 		.name = "kmem.tcp.max_usage_in_bytes",
4368 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4369 		.write = mem_cgroup_reset,
4370 		.read_u64 = mem_cgroup_read_u64,
4371 	},
4372 	{ },	/* terminate */
4373 };
4374 
4375 /*
4376  * Private memory cgroup IDR
4377  *
4378  * Swap-out records and page cache shadow entries need to store memcg
4379  * references in constrained space, so we maintain an ID space that is
4380  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4381  * memory-controlled cgroups to 64k.
4382  *
4383  * However, there usually are many references to the oflline CSS after
4384  * the cgroup has been destroyed, such as page cache or reclaimable
4385  * slab objects, that don't need to hang on to the ID. We want to keep
4386  * those dead CSS from occupying IDs, or we might quickly exhaust the
4387  * relatively small ID space and prevent the creation of new cgroups
4388  * even when there are much fewer than 64k cgroups - possibly none.
4389  *
4390  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4391  * be freed and recycled when it's no longer needed, which is usually
4392  * when the CSS is offlined.
4393  *
4394  * The only exception to that are records of swapped out tmpfs/shmem
4395  * pages that need to be attributed to live ancestors on swapin. But
4396  * those references are manageable from userspace.
4397  */
4398 
4399 static DEFINE_IDR(mem_cgroup_idr);
4400 
mem_cgroup_id_remove(struct mem_cgroup * memcg)4401 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4402 {
4403 	if (memcg->id.id > 0) {
4404 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4405 		memcg->id.id = 0;
4406 	}
4407 }
4408 
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)4409 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4410 {
4411 	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4412 	atomic_add(n, &memcg->id.ref);
4413 }
4414 
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)4415 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4416 {
4417 	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4418 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4419 		mem_cgroup_id_remove(memcg);
4420 
4421 		/* Memcg ID pins CSS */
4422 		css_put(&memcg->css);
4423 	}
4424 }
4425 
mem_cgroup_id_get(struct mem_cgroup * memcg)4426 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4427 {
4428 	mem_cgroup_id_get_many(memcg, 1);
4429 }
4430 
mem_cgroup_id_put(struct mem_cgroup * memcg)4431 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4432 {
4433 	mem_cgroup_id_put_many(memcg, 1);
4434 }
4435 
4436 /**
4437  * mem_cgroup_from_id - look up a memcg from a memcg id
4438  * @id: the memcg id to look up
4439  *
4440  * Caller must hold rcu_read_lock().
4441  */
mem_cgroup_from_id(unsigned short id)4442 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4443 {
4444 	WARN_ON_ONCE(!rcu_read_lock_held());
4445 	return idr_find(&mem_cgroup_idr, id);
4446 }
4447 
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)4448 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4449 {
4450 	struct mem_cgroup_per_node *pn;
4451 	int tmp = node;
4452 	/*
4453 	 * This routine is called against possible nodes.
4454 	 * But it's BUG to call kmalloc() against offline node.
4455 	 *
4456 	 * TODO: this routine can waste much memory for nodes which will
4457 	 *       never be onlined. It's better to use memory hotplug callback
4458 	 *       function.
4459 	 */
4460 	if (!node_state(node, N_NORMAL_MEMORY))
4461 		tmp = -1;
4462 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4463 	if (!pn)
4464 		return 1;
4465 
4466 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4467 	if (!pn->lruvec_stat_cpu) {
4468 		kfree(pn);
4469 		return 1;
4470 	}
4471 
4472 	lruvec_init(&pn->lruvec);
4473 	pn->usage_in_excess = 0;
4474 	pn->on_tree = false;
4475 	pn->memcg = memcg;
4476 
4477 	memcg->nodeinfo[node] = pn;
4478 	return 0;
4479 }
4480 
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)4481 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4482 {
4483 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4484 
4485 	if (!pn)
4486 		return;
4487 
4488 	free_percpu(pn->lruvec_stat_cpu);
4489 	kfree(pn);
4490 }
4491 
__mem_cgroup_free(struct mem_cgroup * memcg)4492 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4493 {
4494 	int node;
4495 
4496 	for_each_node(node)
4497 		free_mem_cgroup_per_node_info(memcg, node);
4498 	free_percpu(memcg->stat_cpu);
4499 	kfree(memcg);
4500 }
4501 
mem_cgroup_free(struct mem_cgroup * memcg)4502 static void mem_cgroup_free(struct mem_cgroup *memcg)
4503 {
4504 	memcg_wb_domain_exit(memcg);
4505 	__mem_cgroup_free(memcg);
4506 }
4507 
mem_cgroup_alloc(void)4508 static struct mem_cgroup *mem_cgroup_alloc(void)
4509 {
4510 	struct mem_cgroup *memcg;
4511 	size_t size;
4512 	int node;
4513 
4514 	size = sizeof(struct mem_cgroup);
4515 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4516 
4517 	memcg = kzalloc(size, GFP_KERNEL);
4518 	if (!memcg)
4519 		return NULL;
4520 
4521 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4522 				 1, MEM_CGROUP_ID_MAX,
4523 				 GFP_KERNEL);
4524 	if (memcg->id.id < 0)
4525 		goto fail;
4526 
4527 	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4528 	if (!memcg->stat_cpu)
4529 		goto fail;
4530 
4531 	for_each_node(node)
4532 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4533 			goto fail;
4534 
4535 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4536 		goto fail;
4537 
4538 	INIT_WORK(&memcg->high_work, high_work_func);
4539 	memcg->last_scanned_node = MAX_NUMNODES;
4540 	INIT_LIST_HEAD(&memcg->oom_notify);
4541 	mutex_init(&memcg->thresholds_lock);
4542 	spin_lock_init(&memcg->move_lock);
4543 	vmpressure_init(&memcg->vmpressure);
4544 	INIT_LIST_HEAD(&memcg->event_list);
4545 	spin_lock_init(&memcg->event_list_lock);
4546 	memcg->socket_pressure = jiffies;
4547 #ifdef CONFIG_MEMCG_KMEM
4548 	memcg->kmemcg_id = -1;
4549 #endif
4550 #ifdef CONFIG_CGROUP_WRITEBACK
4551 	INIT_LIST_HEAD(&memcg->cgwb_list);
4552 #endif
4553 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4554 	return memcg;
4555 fail:
4556 	mem_cgroup_id_remove(memcg);
4557 	__mem_cgroup_free(memcg);
4558 	return NULL;
4559 }
4560 
4561 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)4562 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4563 {
4564 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4565 	struct mem_cgroup *memcg;
4566 	long error = -ENOMEM;
4567 
4568 	memcg = mem_cgroup_alloc();
4569 	if (!memcg)
4570 		return ERR_PTR(error);
4571 
4572 	memcg->high = PAGE_COUNTER_MAX;
4573 	memcg->soft_limit = PAGE_COUNTER_MAX;
4574 	if (parent) {
4575 		memcg->swappiness = mem_cgroup_swappiness(parent);
4576 		memcg->oom_kill_disable = parent->oom_kill_disable;
4577 	}
4578 	if (parent && parent->use_hierarchy) {
4579 		memcg->use_hierarchy = true;
4580 		page_counter_init(&memcg->memory, &parent->memory);
4581 		page_counter_init(&memcg->swap, &parent->swap);
4582 		page_counter_init(&memcg->memsw, &parent->memsw);
4583 		page_counter_init(&memcg->kmem, &parent->kmem);
4584 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4585 	} else {
4586 		page_counter_init(&memcg->memory, NULL);
4587 		page_counter_init(&memcg->swap, NULL);
4588 		page_counter_init(&memcg->memsw, NULL);
4589 		page_counter_init(&memcg->kmem, NULL);
4590 		page_counter_init(&memcg->tcpmem, NULL);
4591 		/*
4592 		 * Deeper hierachy with use_hierarchy == false doesn't make
4593 		 * much sense so let cgroup subsystem know about this
4594 		 * unfortunate state in our controller.
4595 		 */
4596 		if (parent != root_mem_cgroup)
4597 			memory_cgrp_subsys.broken_hierarchy = true;
4598 	}
4599 
4600 	/* The following stuff does not apply to the root */
4601 	if (!parent) {
4602 		root_mem_cgroup = memcg;
4603 		return &memcg->css;
4604 	}
4605 
4606 	error = memcg_online_kmem(memcg);
4607 	if (error)
4608 		goto fail;
4609 
4610 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4611 		static_branch_inc(&memcg_sockets_enabled_key);
4612 
4613 	return &memcg->css;
4614 fail:
4615 	mem_cgroup_id_remove(memcg);
4616 	mem_cgroup_free(memcg);
4617 	return ERR_PTR(-ENOMEM);
4618 }
4619 
mem_cgroup_css_online(struct cgroup_subsys_state * css)4620 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4621 {
4622 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4623 
4624 	/*
4625 	 * A memcg must be visible for memcg_expand_shrinker_maps()
4626 	 * by the time the maps are allocated. So, we allocate maps
4627 	 * here, when for_each_mem_cgroup() can't skip it.
4628 	 */
4629 	if (memcg_alloc_shrinker_maps(memcg)) {
4630 		mem_cgroup_id_remove(memcg);
4631 		return -ENOMEM;
4632 	}
4633 
4634 	/* Online state pins memcg ID, memcg ID pins CSS */
4635 	atomic_set(&memcg->id.ref, 1);
4636 	css_get(css);
4637 	return 0;
4638 }
4639 
mem_cgroup_css_offline(struct cgroup_subsys_state * css)4640 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4641 {
4642 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4643 	struct mem_cgroup_event *event, *tmp;
4644 
4645 	/*
4646 	 * Unregister events and notify userspace.
4647 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4648 	 * directory to avoid race between userspace and kernelspace.
4649 	 */
4650 	spin_lock(&memcg->event_list_lock);
4651 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4652 		list_del_init(&event->list);
4653 		schedule_work(&event->remove);
4654 	}
4655 	spin_unlock(&memcg->event_list_lock);
4656 
4657 	page_counter_set_min(&memcg->memory, 0);
4658 	page_counter_set_low(&memcg->memory, 0);
4659 
4660 	memcg_offline_kmem(memcg);
4661 	wb_memcg_offline(memcg);
4662 
4663 	mem_cgroup_id_put(memcg);
4664 }
4665 
mem_cgroup_css_released(struct cgroup_subsys_state * css)4666 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4667 {
4668 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4669 
4670 	invalidate_reclaim_iterators(memcg);
4671 }
4672 
mem_cgroup_css_free(struct cgroup_subsys_state * css)4673 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4674 {
4675 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4676 
4677 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4678 		static_branch_dec(&memcg_sockets_enabled_key);
4679 
4680 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4681 		static_branch_dec(&memcg_sockets_enabled_key);
4682 
4683 	vmpressure_cleanup(&memcg->vmpressure);
4684 	cancel_work_sync(&memcg->high_work);
4685 	mem_cgroup_remove_from_trees(memcg);
4686 	memcg_free_shrinker_maps(memcg);
4687 	memcg_free_kmem(memcg);
4688 	mem_cgroup_free(memcg);
4689 }
4690 
4691 /**
4692  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4693  * @css: the target css
4694  *
4695  * Reset the states of the mem_cgroup associated with @css.  This is
4696  * invoked when the userland requests disabling on the default hierarchy
4697  * but the memcg is pinned through dependency.  The memcg should stop
4698  * applying policies and should revert to the vanilla state as it may be
4699  * made visible again.
4700  *
4701  * The current implementation only resets the essential configurations.
4702  * This needs to be expanded to cover all the visible parts.
4703  */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)4704 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4705 {
4706 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4707 
4708 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4709 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4710 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4711 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4712 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4713 	page_counter_set_min(&memcg->memory, 0);
4714 	page_counter_set_low(&memcg->memory, 0);
4715 	memcg->high = PAGE_COUNTER_MAX;
4716 	memcg->soft_limit = PAGE_COUNTER_MAX;
4717 	memcg_wb_domain_size_changed(memcg);
4718 }
4719 
4720 #ifdef CONFIG_MMU
4721 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)4722 static int mem_cgroup_do_precharge(unsigned long count)
4723 {
4724 	int ret;
4725 
4726 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4727 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4728 	if (!ret) {
4729 		mc.precharge += count;
4730 		return ret;
4731 	}
4732 
4733 	/* Try charges one by one with reclaim, but do not retry */
4734 	while (count--) {
4735 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4736 		if (ret)
4737 			return ret;
4738 		mc.precharge++;
4739 		cond_resched();
4740 	}
4741 	return 0;
4742 }
4743 
4744 union mc_target {
4745 	struct page	*page;
4746 	swp_entry_t	ent;
4747 };
4748 
4749 enum mc_target_type {
4750 	MC_TARGET_NONE = 0,
4751 	MC_TARGET_PAGE,
4752 	MC_TARGET_SWAP,
4753 	MC_TARGET_DEVICE,
4754 };
4755 
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)4756 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4757 						unsigned long addr, pte_t ptent)
4758 {
4759 	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4760 
4761 	if (!page || !page_mapped(page))
4762 		return NULL;
4763 	if (PageAnon(page)) {
4764 		if (!(mc.flags & MOVE_ANON))
4765 			return NULL;
4766 	} else {
4767 		if (!(mc.flags & MOVE_FILE))
4768 			return NULL;
4769 	}
4770 	if (!get_page_unless_zero(page))
4771 		return NULL;
4772 
4773 	return page;
4774 }
4775 
4776 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)4777 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4778 			pte_t ptent, swp_entry_t *entry)
4779 {
4780 	struct page *page = NULL;
4781 	swp_entry_t ent = pte_to_swp_entry(ptent);
4782 
4783 	if (!(mc.flags & MOVE_ANON))
4784 		return NULL;
4785 
4786 	/*
4787 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4788 	 * a device and because they are not accessible by CPU they are store
4789 	 * as special swap entry in the CPU page table.
4790 	 */
4791 	if (is_device_private_entry(ent)) {
4792 		page = device_private_entry_to_page(ent);
4793 		/*
4794 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4795 		 * a refcount of 1 when free (unlike normal page)
4796 		 */
4797 		if (!page_ref_add_unless(page, 1, 1))
4798 			return NULL;
4799 		return page;
4800 	}
4801 
4802 	if (non_swap_entry(ent))
4803 		return NULL;
4804 
4805 	/*
4806 	 * Because lookup_swap_cache() updates some statistics counter,
4807 	 * we call find_get_page() with swapper_space directly.
4808 	 */
4809 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4810 	if (do_memsw_account())
4811 		entry->val = ent.val;
4812 
4813 	return page;
4814 }
4815 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)4816 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4817 			pte_t ptent, swp_entry_t *entry)
4818 {
4819 	return NULL;
4820 }
4821 #endif
4822 
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4823 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4824 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4825 {
4826 	struct page *page = NULL;
4827 	struct address_space *mapping;
4828 	pgoff_t pgoff;
4829 
4830 	if (!vma->vm_file) /* anonymous vma */
4831 		return NULL;
4832 	if (!(mc.flags & MOVE_FILE))
4833 		return NULL;
4834 
4835 	mapping = vma->vm_file->f_mapping;
4836 	pgoff = linear_page_index(vma, addr);
4837 
4838 	/* page is moved even if it's not RSS of this task(page-faulted). */
4839 #ifdef CONFIG_SWAP
4840 	/* shmem/tmpfs may report page out on swap: account for that too. */
4841 	if (shmem_mapping(mapping)) {
4842 		page = find_get_entry(mapping, pgoff);
4843 		if (radix_tree_exceptional_entry(page)) {
4844 			swp_entry_t swp = radix_to_swp_entry(page);
4845 			if (do_memsw_account())
4846 				*entry = swp;
4847 			page = find_get_page(swap_address_space(swp),
4848 					     swp_offset(swp));
4849 		}
4850 	} else
4851 		page = find_get_page(mapping, pgoff);
4852 #else
4853 	page = find_get_page(mapping, pgoff);
4854 #endif
4855 	return page;
4856 }
4857 
4858 /**
4859  * mem_cgroup_move_account - move account of the page
4860  * @page: the page
4861  * @compound: charge the page as compound or small page
4862  * @from: mem_cgroup which the page is moved from.
4863  * @to:	mem_cgroup which the page is moved to. @from != @to.
4864  *
4865  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4866  *
4867  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4868  * from old cgroup.
4869  */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)4870 static int mem_cgroup_move_account(struct page *page,
4871 				   bool compound,
4872 				   struct mem_cgroup *from,
4873 				   struct mem_cgroup *to)
4874 {
4875 	unsigned long flags;
4876 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4877 	int ret;
4878 	bool anon;
4879 
4880 	VM_BUG_ON(from == to);
4881 	VM_BUG_ON_PAGE(PageLRU(page), page);
4882 	VM_BUG_ON(compound && !PageTransHuge(page));
4883 
4884 	/*
4885 	 * Prevent mem_cgroup_migrate() from looking at
4886 	 * page->mem_cgroup of its source page while we change it.
4887 	 */
4888 	ret = -EBUSY;
4889 	if (!trylock_page(page))
4890 		goto out;
4891 
4892 	ret = -EINVAL;
4893 	if (page->mem_cgroup != from)
4894 		goto out_unlock;
4895 
4896 	anon = PageAnon(page);
4897 
4898 	spin_lock_irqsave(&from->move_lock, flags);
4899 
4900 	if (!anon && page_mapped(page)) {
4901 		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4902 		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4903 	}
4904 
4905 	/*
4906 	 * move_lock grabbed above and caller set from->moving_account, so
4907 	 * mod_memcg_page_state will serialize updates to PageDirty.
4908 	 * So mapping should be stable for dirty pages.
4909 	 */
4910 	if (!anon && PageDirty(page)) {
4911 		struct address_space *mapping = page_mapping(page);
4912 
4913 		if (mapping_cap_account_dirty(mapping)) {
4914 			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4915 			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4916 		}
4917 	}
4918 
4919 	if (PageWriteback(page)) {
4920 		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4921 		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4922 	}
4923 
4924 	/*
4925 	 * It is safe to change page->mem_cgroup here because the page
4926 	 * is referenced, charged, and isolated - we can't race with
4927 	 * uncharging, charging, migration, or LRU putback.
4928 	 */
4929 
4930 	/* caller should have done css_get */
4931 	page->mem_cgroup = to;
4932 	spin_unlock_irqrestore(&from->move_lock, flags);
4933 
4934 	ret = 0;
4935 
4936 	local_irq_disable();
4937 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4938 	memcg_check_events(to, page);
4939 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4940 	memcg_check_events(from, page);
4941 	local_irq_enable();
4942 out_unlock:
4943 	unlock_page(page);
4944 out:
4945 	return ret;
4946 }
4947 
4948 /**
4949  * get_mctgt_type - get target type of moving charge
4950  * @vma: the vma the pte to be checked belongs
4951  * @addr: the address corresponding to the pte to be checked
4952  * @ptent: the pte to be checked
4953  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4954  *
4955  * Returns
4956  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4957  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4958  *     move charge. if @target is not NULL, the page is stored in target->page
4959  *     with extra refcnt got(Callers should handle it).
4960  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4961  *     target for charge migration. if @target is not NULL, the entry is stored
4962  *     in target->ent.
4963  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
4964  *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4965  *     For now we such page is charge like a regular page would be as for all
4966  *     intent and purposes it is just special memory taking the place of a
4967  *     regular page.
4968  *
4969  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4970  *
4971  * Called with pte lock held.
4972  */
4973 
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)4974 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4975 		unsigned long addr, pte_t ptent, union mc_target *target)
4976 {
4977 	struct page *page = NULL;
4978 	enum mc_target_type ret = MC_TARGET_NONE;
4979 	swp_entry_t ent = { .val = 0 };
4980 
4981 	if (pte_present(ptent))
4982 		page = mc_handle_present_pte(vma, addr, ptent);
4983 	else if (is_swap_pte(ptent))
4984 		page = mc_handle_swap_pte(vma, ptent, &ent);
4985 	else if (pte_none(ptent))
4986 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4987 
4988 	if (!page && !ent.val)
4989 		return ret;
4990 	if (page) {
4991 		/*
4992 		 * Do only loose check w/o serialization.
4993 		 * mem_cgroup_move_account() checks the page is valid or
4994 		 * not under LRU exclusion.
4995 		 */
4996 		if (page->mem_cgroup == mc.from) {
4997 			ret = MC_TARGET_PAGE;
4998 			if (is_device_private_page(page) ||
4999 			    is_device_public_page(page))
5000 				ret = MC_TARGET_DEVICE;
5001 			if (target)
5002 				target->page = page;
5003 		}
5004 		if (!ret || !target)
5005 			put_page(page);
5006 	}
5007 	/*
5008 	 * There is a swap entry and a page doesn't exist or isn't charged.
5009 	 * But we cannot move a tail-page in a THP.
5010 	 */
5011 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5012 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5013 		ret = MC_TARGET_SWAP;
5014 		if (target)
5015 			target->ent = ent;
5016 	}
5017 	return ret;
5018 }
5019 
5020 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5021 /*
5022  * We don't consider PMD mapped swapping or file mapped pages because THP does
5023  * not support them for now.
5024  * Caller should make sure that pmd_trans_huge(pmd) is true.
5025  */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5026 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5027 		unsigned long addr, pmd_t pmd, union mc_target *target)
5028 {
5029 	struct page *page = NULL;
5030 	enum mc_target_type ret = MC_TARGET_NONE;
5031 
5032 	if (unlikely(is_swap_pmd(pmd))) {
5033 		VM_BUG_ON(thp_migration_supported() &&
5034 				  !is_pmd_migration_entry(pmd));
5035 		return ret;
5036 	}
5037 	page = pmd_page(pmd);
5038 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5039 	if (!(mc.flags & MOVE_ANON))
5040 		return ret;
5041 	if (page->mem_cgroup == mc.from) {
5042 		ret = MC_TARGET_PAGE;
5043 		if (target) {
5044 			get_page(page);
5045 			target->page = page;
5046 		}
5047 	}
5048 	return ret;
5049 }
5050 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5051 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5052 		unsigned long addr, pmd_t pmd, union mc_target *target)
5053 {
5054 	return MC_TARGET_NONE;
5055 }
5056 #endif
5057 
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5058 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5059 					unsigned long addr, unsigned long end,
5060 					struct mm_walk *walk)
5061 {
5062 	struct vm_area_struct *vma = walk->vma;
5063 	pte_t *pte;
5064 	spinlock_t *ptl;
5065 
5066 	ptl = pmd_trans_huge_lock(pmd, vma);
5067 	if (ptl) {
5068 		/*
5069 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5070 		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
5071 		 * MEMORY_DEVICE_PRIVATE but this might change.
5072 		 */
5073 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5074 			mc.precharge += HPAGE_PMD_NR;
5075 		spin_unlock(ptl);
5076 		return 0;
5077 	}
5078 
5079 	if (pmd_trans_unstable(pmd))
5080 		return 0;
5081 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5082 	for (; addr != end; pte++, addr += PAGE_SIZE)
5083 		if (get_mctgt_type(vma, addr, *pte, NULL))
5084 			mc.precharge++;	/* increment precharge temporarily */
5085 	pte_unmap_unlock(pte - 1, ptl);
5086 	cond_resched();
5087 
5088 	return 0;
5089 }
5090 
mem_cgroup_count_precharge(struct mm_struct * mm)5091 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5092 {
5093 	unsigned long precharge;
5094 
5095 	struct mm_walk mem_cgroup_count_precharge_walk = {
5096 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
5097 		.mm = mm,
5098 	};
5099 	down_read(&mm->mmap_sem);
5100 	walk_page_range(0, mm->highest_vm_end,
5101 			&mem_cgroup_count_precharge_walk);
5102 	up_read(&mm->mmap_sem);
5103 
5104 	precharge = mc.precharge;
5105 	mc.precharge = 0;
5106 
5107 	return precharge;
5108 }
5109 
mem_cgroup_precharge_mc(struct mm_struct * mm)5110 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5111 {
5112 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5113 
5114 	VM_BUG_ON(mc.moving_task);
5115 	mc.moving_task = current;
5116 	return mem_cgroup_do_precharge(precharge);
5117 }
5118 
5119 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)5120 static void __mem_cgroup_clear_mc(void)
5121 {
5122 	struct mem_cgroup *from = mc.from;
5123 	struct mem_cgroup *to = mc.to;
5124 
5125 	/* we must uncharge all the leftover precharges from mc.to */
5126 	if (mc.precharge) {
5127 		cancel_charge(mc.to, mc.precharge);
5128 		mc.precharge = 0;
5129 	}
5130 	/*
5131 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5132 	 * we must uncharge here.
5133 	 */
5134 	if (mc.moved_charge) {
5135 		cancel_charge(mc.from, mc.moved_charge);
5136 		mc.moved_charge = 0;
5137 	}
5138 	/* we must fixup refcnts and charges */
5139 	if (mc.moved_swap) {
5140 		/* uncharge swap account from the old cgroup */
5141 		if (!mem_cgroup_is_root(mc.from))
5142 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5143 
5144 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5145 
5146 		/*
5147 		 * we charged both to->memory and to->memsw, so we
5148 		 * should uncharge to->memory.
5149 		 */
5150 		if (!mem_cgroup_is_root(mc.to))
5151 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5152 
5153 		css_put_many(&mc.to->css, mc.moved_swap);
5154 
5155 		mc.moved_swap = 0;
5156 	}
5157 	memcg_oom_recover(from);
5158 	memcg_oom_recover(to);
5159 	wake_up_all(&mc.waitq);
5160 }
5161 
mem_cgroup_clear_mc(void)5162 static void mem_cgroup_clear_mc(void)
5163 {
5164 	struct mm_struct *mm = mc.mm;
5165 
5166 	/*
5167 	 * we must clear moving_task before waking up waiters at the end of
5168 	 * task migration.
5169 	 */
5170 	mc.moving_task = NULL;
5171 	__mem_cgroup_clear_mc();
5172 	spin_lock(&mc.lock);
5173 	mc.from = NULL;
5174 	mc.to = NULL;
5175 	mc.mm = NULL;
5176 	spin_unlock(&mc.lock);
5177 
5178 	mmput(mm);
5179 }
5180 
mem_cgroup_can_attach(struct cgroup_taskset * tset)5181 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5182 {
5183 	struct cgroup_subsys_state *css;
5184 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5185 	struct mem_cgroup *from;
5186 	struct task_struct *leader, *p;
5187 	struct mm_struct *mm;
5188 	unsigned long move_flags;
5189 	int ret = 0;
5190 
5191 	/* charge immigration isn't supported on the default hierarchy */
5192 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5193 		return 0;
5194 
5195 	/*
5196 	 * Multi-process migrations only happen on the default hierarchy
5197 	 * where charge immigration is not used.  Perform charge
5198 	 * immigration if @tset contains a leader and whine if there are
5199 	 * multiple.
5200 	 */
5201 	p = NULL;
5202 	cgroup_taskset_for_each_leader(leader, css, tset) {
5203 		WARN_ON_ONCE(p);
5204 		p = leader;
5205 		memcg = mem_cgroup_from_css(css);
5206 	}
5207 	if (!p)
5208 		return 0;
5209 
5210 	/*
5211 	 * We are now commited to this value whatever it is. Changes in this
5212 	 * tunable will only affect upcoming migrations, not the current one.
5213 	 * So we need to save it, and keep it going.
5214 	 */
5215 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5216 	if (!move_flags)
5217 		return 0;
5218 
5219 	from = mem_cgroup_from_task(p);
5220 
5221 	VM_BUG_ON(from == memcg);
5222 
5223 	mm = get_task_mm(p);
5224 	if (!mm)
5225 		return 0;
5226 	/* We move charges only when we move a owner of the mm */
5227 	if (mm->owner == p) {
5228 		VM_BUG_ON(mc.from);
5229 		VM_BUG_ON(mc.to);
5230 		VM_BUG_ON(mc.precharge);
5231 		VM_BUG_ON(mc.moved_charge);
5232 		VM_BUG_ON(mc.moved_swap);
5233 
5234 		spin_lock(&mc.lock);
5235 		mc.mm = mm;
5236 		mc.from = from;
5237 		mc.to = memcg;
5238 		mc.flags = move_flags;
5239 		spin_unlock(&mc.lock);
5240 		/* We set mc.moving_task later */
5241 
5242 		ret = mem_cgroup_precharge_mc(mm);
5243 		if (ret)
5244 			mem_cgroup_clear_mc();
5245 	} else {
5246 		mmput(mm);
5247 	}
5248 	return ret;
5249 }
5250 
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)5251 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5252 {
5253 	if (mc.to)
5254 		mem_cgroup_clear_mc();
5255 }
5256 
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5257 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5258 				unsigned long addr, unsigned long end,
5259 				struct mm_walk *walk)
5260 {
5261 	int ret = 0;
5262 	struct vm_area_struct *vma = walk->vma;
5263 	pte_t *pte;
5264 	spinlock_t *ptl;
5265 	enum mc_target_type target_type;
5266 	union mc_target target;
5267 	struct page *page;
5268 
5269 	ptl = pmd_trans_huge_lock(pmd, vma);
5270 	if (ptl) {
5271 		if (mc.precharge < HPAGE_PMD_NR) {
5272 			spin_unlock(ptl);
5273 			return 0;
5274 		}
5275 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5276 		if (target_type == MC_TARGET_PAGE) {
5277 			page = target.page;
5278 			if (!isolate_lru_page(page)) {
5279 				if (!mem_cgroup_move_account(page, true,
5280 							     mc.from, mc.to)) {
5281 					mc.precharge -= HPAGE_PMD_NR;
5282 					mc.moved_charge += HPAGE_PMD_NR;
5283 				}
5284 				putback_lru_page(page);
5285 			}
5286 			put_page(page);
5287 		} else if (target_type == MC_TARGET_DEVICE) {
5288 			page = target.page;
5289 			if (!mem_cgroup_move_account(page, true,
5290 						     mc.from, mc.to)) {
5291 				mc.precharge -= HPAGE_PMD_NR;
5292 				mc.moved_charge += HPAGE_PMD_NR;
5293 			}
5294 			put_page(page);
5295 		}
5296 		spin_unlock(ptl);
5297 		return 0;
5298 	}
5299 
5300 	if (pmd_trans_unstable(pmd))
5301 		return 0;
5302 retry:
5303 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5304 	for (; addr != end; addr += PAGE_SIZE) {
5305 		pte_t ptent = *(pte++);
5306 		bool device = false;
5307 		swp_entry_t ent;
5308 
5309 		if (!mc.precharge)
5310 			break;
5311 
5312 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5313 		case MC_TARGET_DEVICE:
5314 			device = true;
5315 			/* fall through */
5316 		case MC_TARGET_PAGE:
5317 			page = target.page;
5318 			/*
5319 			 * We can have a part of the split pmd here. Moving it
5320 			 * can be done but it would be too convoluted so simply
5321 			 * ignore such a partial THP and keep it in original
5322 			 * memcg. There should be somebody mapping the head.
5323 			 */
5324 			if (PageTransCompound(page))
5325 				goto put;
5326 			if (!device && isolate_lru_page(page))
5327 				goto put;
5328 			if (!mem_cgroup_move_account(page, false,
5329 						mc.from, mc.to)) {
5330 				mc.precharge--;
5331 				/* we uncharge from mc.from later. */
5332 				mc.moved_charge++;
5333 			}
5334 			if (!device)
5335 				putback_lru_page(page);
5336 put:			/* get_mctgt_type() gets the page */
5337 			put_page(page);
5338 			break;
5339 		case MC_TARGET_SWAP:
5340 			ent = target.ent;
5341 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5342 				mc.precharge--;
5343 				mem_cgroup_id_get_many(mc.to, 1);
5344 				/* we fixup other refcnts and charges later. */
5345 				mc.moved_swap++;
5346 			}
5347 			break;
5348 		default:
5349 			break;
5350 		}
5351 	}
5352 	pte_unmap_unlock(pte - 1, ptl);
5353 	cond_resched();
5354 
5355 	if (addr != end) {
5356 		/*
5357 		 * We have consumed all precharges we got in can_attach().
5358 		 * We try charge one by one, but don't do any additional
5359 		 * charges to mc.to if we have failed in charge once in attach()
5360 		 * phase.
5361 		 */
5362 		ret = mem_cgroup_do_precharge(1);
5363 		if (!ret)
5364 			goto retry;
5365 	}
5366 
5367 	return ret;
5368 }
5369 
mem_cgroup_move_charge(void)5370 static void mem_cgroup_move_charge(void)
5371 {
5372 	struct mm_walk mem_cgroup_move_charge_walk = {
5373 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5374 		.mm = mc.mm,
5375 	};
5376 
5377 	lru_add_drain_all();
5378 	/*
5379 	 * Signal lock_page_memcg() to take the memcg's move_lock
5380 	 * while we're moving its pages to another memcg. Then wait
5381 	 * for already started RCU-only updates to finish.
5382 	 */
5383 	atomic_inc(&mc.from->moving_account);
5384 	synchronize_rcu();
5385 retry:
5386 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5387 		/*
5388 		 * Someone who are holding the mmap_sem might be waiting in
5389 		 * waitq. So we cancel all extra charges, wake up all waiters,
5390 		 * and retry. Because we cancel precharges, we might not be able
5391 		 * to move enough charges, but moving charge is a best-effort
5392 		 * feature anyway, so it wouldn't be a big problem.
5393 		 */
5394 		__mem_cgroup_clear_mc();
5395 		cond_resched();
5396 		goto retry;
5397 	}
5398 	/*
5399 	 * When we have consumed all precharges and failed in doing
5400 	 * additional charge, the page walk just aborts.
5401 	 */
5402 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5403 
5404 	up_read(&mc.mm->mmap_sem);
5405 	atomic_dec(&mc.from->moving_account);
5406 }
5407 
mem_cgroup_move_task(void)5408 static void mem_cgroup_move_task(void)
5409 {
5410 	if (mc.to) {
5411 		mem_cgroup_move_charge();
5412 		mem_cgroup_clear_mc();
5413 	}
5414 }
5415 #else	/* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)5416 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5417 {
5418 	return 0;
5419 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)5420 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5421 {
5422 }
mem_cgroup_move_task(void)5423 static void mem_cgroup_move_task(void)
5424 {
5425 }
5426 #endif
5427 
5428 /*
5429  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5430  * to verify whether we're attached to the default hierarchy on each mount
5431  * attempt.
5432  */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)5433 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5434 {
5435 	/*
5436 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5437 	 * guarantees that @root doesn't have any children, so turning it
5438 	 * on for the root memcg is enough.
5439 	 */
5440 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5441 		root_mem_cgroup->use_hierarchy = true;
5442 	else
5443 		root_mem_cgroup->use_hierarchy = false;
5444 }
5445 
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5446 static u64 memory_current_read(struct cgroup_subsys_state *css,
5447 			       struct cftype *cft)
5448 {
5449 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5450 
5451 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5452 }
5453 
memory_min_show(struct seq_file * m,void * v)5454 static int memory_min_show(struct seq_file *m, void *v)
5455 {
5456 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5457 	unsigned long min = READ_ONCE(memcg->memory.min);
5458 
5459 	if (min == PAGE_COUNTER_MAX)
5460 		seq_puts(m, "max\n");
5461 	else
5462 		seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5463 
5464 	return 0;
5465 }
5466 
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5467 static ssize_t memory_min_write(struct kernfs_open_file *of,
5468 				char *buf, size_t nbytes, loff_t off)
5469 {
5470 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5471 	unsigned long min;
5472 	int err;
5473 
5474 	buf = strstrip(buf);
5475 	err = page_counter_memparse(buf, "max", &min);
5476 	if (err)
5477 		return err;
5478 
5479 	page_counter_set_min(&memcg->memory, min);
5480 
5481 	return nbytes;
5482 }
5483 
memory_low_show(struct seq_file * m,void * v)5484 static int memory_low_show(struct seq_file *m, void *v)
5485 {
5486 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5487 	unsigned long low = READ_ONCE(memcg->memory.low);
5488 
5489 	if (low == PAGE_COUNTER_MAX)
5490 		seq_puts(m, "max\n");
5491 	else
5492 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5493 
5494 	return 0;
5495 }
5496 
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5497 static ssize_t memory_low_write(struct kernfs_open_file *of,
5498 				char *buf, size_t nbytes, loff_t off)
5499 {
5500 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5501 	unsigned long low;
5502 	int err;
5503 
5504 	buf = strstrip(buf);
5505 	err = page_counter_memparse(buf, "max", &low);
5506 	if (err)
5507 		return err;
5508 
5509 	page_counter_set_low(&memcg->memory, low);
5510 
5511 	return nbytes;
5512 }
5513 
memory_high_show(struct seq_file * m,void * v)5514 static int memory_high_show(struct seq_file *m, void *v)
5515 {
5516 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5517 	unsigned long high = READ_ONCE(memcg->high);
5518 
5519 	if (high == PAGE_COUNTER_MAX)
5520 		seq_puts(m, "max\n");
5521 	else
5522 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5523 
5524 	return 0;
5525 }
5526 
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5527 static ssize_t memory_high_write(struct kernfs_open_file *of,
5528 				 char *buf, size_t nbytes, loff_t off)
5529 {
5530 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5531 	unsigned long nr_pages;
5532 	unsigned long high;
5533 	int err;
5534 
5535 	buf = strstrip(buf);
5536 	err = page_counter_memparse(buf, "max", &high);
5537 	if (err)
5538 		return err;
5539 
5540 	memcg->high = high;
5541 
5542 	nr_pages = page_counter_read(&memcg->memory);
5543 	if (nr_pages > high)
5544 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5545 					     GFP_KERNEL, true);
5546 
5547 	memcg_wb_domain_size_changed(memcg);
5548 	return nbytes;
5549 }
5550 
memory_max_show(struct seq_file * m,void * v)5551 static int memory_max_show(struct seq_file *m, void *v)
5552 {
5553 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5554 	unsigned long max = READ_ONCE(memcg->memory.max);
5555 
5556 	if (max == PAGE_COUNTER_MAX)
5557 		seq_puts(m, "max\n");
5558 	else
5559 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5560 
5561 	return 0;
5562 }
5563 
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5564 static ssize_t memory_max_write(struct kernfs_open_file *of,
5565 				char *buf, size_t nbytes, loff_t off)
5566 {
5567 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5568 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5569 	bool drained = false;
5570 	unsigned long max;
5571 	int err;
5572 
5573 	buf = strstrip(buf);
5574 	err = page_counter_memparse(buf, "max", &max);
5575 	if (err)
5576 		return err;
5577 
5578 	xchg(&memcg->memory.max, max);
5579 
5580 	for (;;) {
5581 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5582 
5583 		if (nr_pages <= max)
5584 			break;
5585 
5586 		if (signal_pending(current)) {
5587 			err = -EINTR;
5588 			break;
5589 		}
5590 
5591 		if (!drained) {
5592 			drain_all_stock(memcg);
5593 			drained = true;
5594 			continue;
5595 		}
5596 
5597 		if (nr_reclaims) {
5598 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5599 							  GFP_KERNEL, true))
5600 				nr_reclaims--;
5601 			continue;
5602 		}
5603 
5604 		memcg_memory_event(memcg, MEMCG_OOM);
5605 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5606 			break;
5607 	}
5608 
5609 	memcg_wb_domain_size_changed(memcg);
5610 	return nbytes;
5611 }
5612 
memory_events_show(struct seq_file * m,void * v)5613 static int memory_events_show(struct seq_file *m, void *v)
5614 {
5615 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5616 
5617 	seq_printf(m, "low %lu\n",
5618 		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5619 	seq_printf(m, "high %lu\n",
5620 		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5621 	seq_printf(m, "max %lu\n",
5622 		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5623 	seq_printf(m, "oom %lu\n",
5624 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5625 	seq_printf(m, "oom_kill %lu\n",
5626 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5627 
5628 	return 0;
5629 }
5630 
memory_stat_show(struct seq_file * m,void * v)5631 static int memory_stat_show(struct seq_file *m, void *v)
5632 {
5633 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5634 	struct accumulated_stats acc;
5635 	int i;
5636 
5637 	/*
5638 	 * Provide statistics on the state of the memory subsystem as
5639 	 * well as cumulative event counters that show past behavior.
5640 	 *
5641 	 * This list is ordered following a combination of these gradients:
5642 	 * 1) generic big picture -> specifics and details
5643 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5644 	 *
5645 	 * Current memory state:
5646 	 */
5647 
5648 	memset(&acc, 0, sizeof(acc));
5649 	acc.stats_size = MEMCG_NR_STAT;
5650 	acc.events_size = NR_VM_EVENT_ITEMS;
5651 	accumulate_memcg_tree(memcg, &acc);
5652 
5653 	seq_printf(m, "anon %llu\n",
5654 		   (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5655 	seq_printf(m, "file %llu\n",
5656 		   (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5657 	seq_printf(m, "kernel_stack %llu\n",
5658 		   (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5659 	seq_printf(m, "slab %llu\n",
5660 		   (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5661 			 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5662 	seq_printf(m, "sock %llu\n",
5663 		   (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5664 
5665 	seq_printf(m, "shmem %llu\n",
5666 		   (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5667 	seq_printf(m, "file_mapped %llu\n",
5668 		   (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5669 	seq_printf(m, "file_dirty %llu\n",
5670 		   (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5671 	seq_printf(m, "file_writeback %llu\n",
5672 		   (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5673 
5674 	for (i = 0; i < NR_LRU_LISTS; i++)
5675 		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5676 			   (u64)acc.lru_pages[i] * PAGE_SIZE);
5677 
5678 	seq_printf(m, "slab_reclaimable %llu\n",
5679 		   (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5680 	seq_printf(m, "slab_unreclaimable %llu\n",
5681 		   (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5682 
5683 	/* Accumulated memory events */
5684 
5685 	seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5686 	seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5687 
5688 	seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5689 	seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5690 		   acc.events[PGSCAN_DIRECT]);
5691 	seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5692 		   acc.events[PGSTEAL_DIRECT]);
5693 	seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5694 	seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5695 	seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5696 	seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5697 
5698 	seq_printf(m, "workingset_refault %lu\n",
5699 		   acc.stat[WORKINGSET_REFAULT]);
5700 	seq_printf(m, "workingset_activate %lu\n",
5701 		   acc.stat[WORKINGSET_ACTIVATE]);
5702 	seq_printf(m, "workingset_nodereclaim %lu\n",
5703 		   acc.stat[WORKINGSET_NODERECLAIM]);
5704 
5705 	return 0;
5706 }
5707 
memory_oom_group_show(struct seq_file * m,void * v)5708 static int memory_oom_group_show(struct seq_file *m, void *v)
5709 {
5710 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5711 
5712 	seq_printf(m, "%d\n", memcg->oom_group);
5713 
5714 	return 0;
5715 }
5716 
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5717 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5718 				      char *buf, size_t nbytes, loff_t off)
5719 {
5720 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5721 	int ret, oom_group;
5722 
5723 	buf = strstrip(buf);
5724 	if (!buf)
5725 		return -EINVAL;
5726 
5727 	ret = kstrtoint(buf, 0, &oom_group);
5728 	if (ret)
5729 		return ret;
5730 
5731 	if (oom_group != 0 && oom_group != 1)
5732 		return -EINVAL;
5733 
5734 	memcg->oom_group = oom_group;
5735 
5736 	return nbytes;
5737 }
5738 
5739 static struct cftype memory_files[] = {
5740 	{
5741 		.name = "current",
5742 		.flags = CFTYPE_NOT_ON_ROOT,
5743 		.read_u64 = memory_current_read,
5744 	},
5745 	{
5746 		.name = "min",
5747 		.flags = CFTYPE_NOT_ON_ROOT,
5748 		.seq_show = memory_min_show,
5749 		.write = memory_min_write,
5750 	},
5751 	{
5752 		.name = "low",
5753 		.flags = CFTYPE_NOT_ON_ROOT,
5754 		.seq_show = memory_low_show,
5755 		.write = memory_low_write,
5756 	},
5757 	{
5758 		.name = "high",
5759 		.flags = CFTYPE_NOT_ON_ROOT,
5760 		.seq_show = memory_high_show,
5761 		.write = memory_high_write,
5762 	},
5763 	{
5764 		.name = "max",
5765 		.flags = CFTYPE_NOT_ON_ROOT,
5766 		.seq_show = memory_max_show,
5767 		.write = memory_max_write,
5768 	},
5769 	{
5770 		.name = "events",
5771 		.flags = CFTYPE_NOT_ON_ROOT,
5772 		.file_offset = offsetof(struct mem_cgroup, events_file),
5773 		.seq_show = memory_events_show,
5774 	},
5775 	{
5776 		.name = "stat",
5777 		.flags = CFTYPE_NOT_ON_ROOT,
5778 		.seq_show = memory_stat_show,
5779 	},
5780 	{
5781 		.name = "oom.group",
5782 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5783 		.seq_show = memory_oom_group_show,
5784 		.write = memory_oom_group_write,
5785 	},
5786 	{ }	/* terminate */
5787 };
5788 
5789 struct cgroup_subsys memory_cgrp_subsys = {
5790 	.css_alloc = mem_cgroup_css_alloc,
5791 	.css_online = mem_cgroup_css_online,
5792 	.css_offline = mem_cgroup_css_offline,
5793 	.css_released = mem_cgroup_css_released,
5794 	.css_free = mem_cgroup_css_free,
5795 	.css_reset = mem_cgroup_css_reset,
5796 	.can_attach = mem_cgroup_can_attach,
5797 	.cancel_attach = mem_cgroup_cancel_attach,
5798 	.post_attach = mem_cgroup_move_task,
5799 	.bind = mem_cgroup_bind,
5800 	.dfl_cftypes = memory_files,
5801 	.legacy_cftypes = mem_cgroup_legacy_files,
5802 	.early_init = 0,
5803 };
5804 
5805 /**
5806  * mem_cgroup_protected - check if memory consumption is in the normal range
5807  * @root: the top ancestor of the sub-tree being checked
5808  * @memcg: the memory cgroup to check
5809  *
5810  * WARNING: This function is not stateless! It can only be used as part
5811  *          of a top-down tree iteration, not for isolated queries.
5812  *
5813  * Returns one of the following:
5814  *   MEMCG_PROT_NONE: cgroup memory is not protected
5815  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
5816  *     an unprotected supply of reclaimable memory from other cgroups.
5817  *   MEMCG_PROT_MIN: cgroup memory is protected
5818  *
5819  * @root is exclusive; it is never protected when looked at directly
5820  *
5821  * To provide a proper hierarchical behavior, effective memory.min/low values
5822  * are used. Below is the description of how effective memory.low is calculated.
5823  * Effective memory.min values is calculated in the same way.
5824  *
5825  * Effective memory.low is always equal or less than the original memory.low.
5826  * If there is no memory.low overcommittment (which is always true for
5827  * top-level memory cgroups), these two values are equal.
5828  * Otherwise, it's a part of parent's effective memory.low,
5829  * calculated as a cgroup's memory.low usage divided by sum of sibling's
5830  * memory.low usages, where memory.low usage is the size of actually
5831  * protected memory.
5832  *
5833  *                                             low_usage
5834  * elow = min( memory.low, parent->elow * ------------------ ),
5835  *                                        siblings_low_usage
5836  *
5837  *             | memory.current, if memory.current < memory.low
5838  * low_usage = |
5839 	       | 0, otherwise.
5840  *
5841  *
5842  * Such definition of the effective memory.low provides the expected
5843  * hierarchical behavior: parent's memory.low value is limiting
5844  * children, unprotected memory is reclaimed first and cgroups,
5845  * which are not using their guarantee do not affect actual memory
5846  * distribution.
5847  *
5848  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5849  *
5850  *     A      A/memory.low = 2G, A/memory.current = 6G
5851  *    //\\
5852  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
5853  *            C/memory.low = 1G  C/memory.current = 2G
5854  *            D/memory.low = 0   D/memory.current = 2G
5855  *            E/memory.low = 10G E/memory.current = 0
5856  *
5857  * and the memory pressure is applied, the following memory distribution
5858  * is expected (approximately):
5859  *
5860  *     A/memory.current = 2G
5861  *
5862  *     B/memory.current = 1.3G
5863  *     C/memory.current = 0.6G
5864  *     D/memory.current = 0
5865  *     E/memory.current = 0
5866  *
5867  * These calculations require constant tracking of the actual low usages
5868  * (see propagate_protected_usage()), as well as recursive calculation of
5869  * effective memory.low values. But as we do call mem_cgroup_protected()
5870  * path for each memory cgroup top-down from the reclaim,
5871  * it's possible to optimize this part, and save calculated elow
5872  * for next usage. This part is intentionally racy, but it's ok,
5873  * as memory.low is a best-effort mechanism.
5874  */
mem_cgroup_protected(struct mem_cgroup * root,struct mem_cgroup * memcg)5875 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5876 						struct mem_cgroup *memcg)
5877 {
5878 	struct mem_cgroup *parent;
5879 	unsigned long emin, parent_emin;
5880 	unsigned long elow, parent_elow;
5881 	unsigned long usage;
5882 
5883 	if (mem_cgroup_disabled())
5884 		return MEMCG_PROT_NONE;
5885 
5886 	if (!root)
5887 		root = root_mem_cgroup;
5888 	if (memcg == root)
5889 		return MEMCG_PROT_NONE;
5890 
5891 	usage = page_counter_read(&memcg->memory);
5892 	if (!usage)
5893 		return MEMCG_PROT_NONE;
5894 
5895 	emin = memcg->memory.min;
5896 	elow = memcg->memory.low;
5897 
5898 	parent = parent_mem_cgroup(memcg);
5899 	/* No parent means a non-hierarchical mode on v1 memcg */
5900 	if (!parent)
5901 		return MEMCG_PROT_NONE;
5902 
5903 	if (parent == root)
5904 		goto exit;
5905 
5906 	parent_emin = READ_ONCE(parent->memory.emin);
5907 	emin = min(emin, parent_emin);
5908 	if (emin && parent_emin) {
5909 		unsigned long min_usage, siblings_min_usage;
5910 
5911 		min_usage = min(usage, memcg->memory.min);
5912 		siblings_min_usage = atomic_long_read(
5913 			&parent->memory.children_min_usage);
5914 
5915 		if (min_usage && siblings_min_usage)
5916 			emin = min(emin, parent_emin * min_usage /
5917 				   siblings_min_usage);
5918 	}
5919 
5920 	parent_elow = READ_ONCE(parent->memory.elow);
5921 	elow = min(elow, parent_elow);
5922 	if (elow && parent_elow) {
5923 		unsigned long low_usage, siblings_low_usage;
5924 
5925 		low_usage = min(usage, memcg->memory.low);
5926 		siblings_low_usage = atomic_long_read(
5927 			&parent->memory.children_low_usage);
5928 
5929 		if (low_usage && siblings_low_usage)
5930 			elow = min(elow, parent_elow * low_usage /
5931 				   siblings_low_usage);
5932 	}
5933 
5934 exit:
5935 	memcg->memory.emin = emin;
5936 	memcg->memory.elow = elow;
5937 
5938 	if (usage <= emin)
5939 		return MEMCG_PROT_MIN;
5940 	else if (usage <= elow)
5941 		return MEMCG_PROT_LOW;
5942 	else
5943 		return MEMCG_PROT_NONE;
5944 }
5945 
5946 /**
5947  * mem_cgroup_try_charge - try charging a page
5948  * @page: page to charge
5949  * @mm: mm context of the victim
5950  * @gfp_mask: reclaim mode
5951  * @memcgp: charged memcg return
5952  * @compound: charge the page as compound or small page
5953  *
5954  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5955  * pages according to @gfp_mask if necessary.
5956  *
5957  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5958  * Otherwise, an error code is returned.
5959  *
5960  * After page->mapping has been set up, the caller must finalize the
5961  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5962  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5963  */
mem_cgroup_try_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp,bool compound)5964 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5965 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5966 			  bool compound)
5967 {
5968 	struct mem_cgroup *memcg = NULL;
5969 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5970 	int ret = 0;
5971 
5972 	if (mem_cgroup_disabled())
5973 		goto out;
5974 
5975 	if (PageSwapCache(page)) {
5976 		/*
5977 		 * Every swap fault against a single page tries to charge the
5978 		 * page, bail as early as possible.  shmem_unuse() encounters
5979 		 * already charged pages, too.  The USED bit is protected by
5980 		 * the page lock, which serializes swap cache removal, which
5981 		 * in turn serializes uncharging.
5982 		 */
5983 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5984 		if (compound_head(page)->mem_cgroup)
5985 			goto out;
5986 
5987 		if (do_swap_account) {
5988 			swp_entry_t ent = { .val = page_private(page), };
5989 			unsigned short id = lookup_swap_cgroup_id(ent);
5990 
5991 			rcu_read_lock();
5992 			memcg = mem_cgroup_from_id(id);
5993 			if (memcg && !css_tryget_online(&memcg->css))
5994 				memcg = NULL;
5995 			rcu_read_unlock();
5996 		}
5997 	}
5998 
5999 	if (!memcg)
6000 		memcg = get_mem_cgroup_from_mm(mm);
6001 
6002 	ret = try_charge(memcg, gfp_mask, nr_pages);
6003 
6004 	css_put(&memcg->css);
6005 out:
6006 	*memcgp = memcg;
6007 	return ret;
6008 }
6009 
mem_cgroup_try_charge_delay(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp,bool compound)6010 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6011 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6012 			  bool compound)
6013 {
6014 	struct mem_cgroup *memcg;
6015 	int ret;
6016 
6017 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6018 	memcg = *memcgp;
6019 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6020 	return ret;
6021 }
6022 
6023 /**
6024  * mem_cgroup_commit_charge - commit a page charge
6025  * @page: page to charge
6026  * @memcg: memcg to charge the page to
6027  * @lrucare: page might be on LRU already
6028  * @compound: charge the page as compound or small page
6029  *
6030  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6031  * after page->mapping has been set up.  This must happen atomically
6032  * as part of the page instantiation, i.e. under the page table lock
6033  * for anonymous pages, under the page lock for page and swap cache.
6034  *
6035  * In addition, the page must not be on the LRU during the commit, to
6036  * prevent racing with task migration.  If it might be, use @lrucare.
6037  *
6038  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6039  */
mem_cgroup_commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare,bool compound)6040 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6041 			      bool lrucare, bool compound)
6042 {
6043 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6044 
6045 	VM_BUG_ON_PAGE(!page->mapping, page);
6046 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6047 
6048 	if (mem_cgroup_disabled())
6049 		return;
6050 	/*
6051 	 * Swap faults will attempt to charge the same page multiple
6052 	 * times.  But reuse_swap_page() might have removed the page
6053 	 * from swapcache already, so we can't check PageSwapCache().
6054 	 */
6055 	if (!memcg)
6056 		return;
6057 
6058 	commit_charge(page, memcg, lrucare);
6059 
6060 	local_irq_disable();
6061 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6062 	memcg_check_events(memcg, page);
6063 	local_irq_enable();
6064 
6065 	if (do_memsw_account() && PageSwapCache(page)) {
6066 		swp_entry_t entry = { .val = page_private(page) };
6067 		/*
6068 		 * The swap entry might not get freed for a long time,
6069 		 * let's not wait for it.  The page already received a
6070 		 * memory+swap charge, drop the swap entry duplicate.
6071 		 */
6072 		mem_cgroup_uncharge_swap(entry, nr_pages);
6073 	}
6074 }
6075 
6076 /**
6077  * mem_cgroup_cancel_charge - cancel a page charge
6078  * @page: page to charge
6079  * @memcg: memcg to charge the page to
6080  * @compound: charge the page as compound or small page
6081  *
6082  * Cancel a charge transaction started by mem_cgroup_try_charge().
6083  */
mem_cgroup_cancel_charge(struct page * page,struct mem_cgroup * memcg,bool compound)6084 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6085 		bool compound)
6086 {
6087 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6088 
6089 	if (mem_cgroup_disabled())
6090 		return;
6091 	/*
6092 	 * Swap faults will attempt to charge the same page multiple
6093 	 * times.  But reuse_swap_page() might have removed the page
6094 	 * from swapcache already, so we can't check PageSwapCache().
6095 	 */
6096 	if (!memcg)
6097 		return;
6098 
6099 	cancel_charge(memcg, nr_pages);
6100 }
6101 
6102 struct uncharge_gather {
6103 	struct mem_cgroup *memcg;
6104 	unsigned long pgpgout;
6105 	unsigned long nr_anon;
6106 	unsigned long nr_file;
6107 	unsigned long nr_kmem;
6108 	unsigned long nr_huge;
6109 	unsigned long nr_shmem;
6110 	struct page *dummy_page;
6111 };
6112 
uncharge_gather_clear(struct uncharge_gather * ug)6113 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6114 {
6115 	memset(ug, 0, sizeof(*ug));
6116 }
6117 
uncharge_batch(const struct uncharge_gather * ug)6118 static void uncharge_batch(const struct uncharge_gather *ug)
6119 {
6120 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6121 	unsigned long flags;
6122 
6123 	if (!mem_cgroup_is_root(ug->memcg)) {
6124 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6125 		if (do_memsw_account())
6126 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6127 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6128 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6129 		memcg_oom_recover(ug->memcg);
6130 	}
6131 
6132 	local_irq_save(flags);
6133 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6134 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6135 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6136 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6137 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6138 	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6139 	memcg_check_events(ug->memcg, ug->dummy_page);
6140 	local_irq_restore(flags);
6141 
6142 	if (!mem_cgroup_is_root(ug->memcg))
6143 		css_put_many(&ug->memcg->css, nr_pages);
6144 }
6145 
uncharge_page(struct page * page,struct uncharge_gather * ug)6146 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6147 {
6148 	VM_BUG_ON_PAGE(PageLRU(page), page);
6149 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6150 			!PageHWPoison(page) , page);
6151 
6152 	if (!page->mem_cgroup)
6153 		return;
6154 
6155 	/*
6156 	 * Nobody should be changing or seriously looking at
6157 	 * page->mem_cgroup at this point, we have fully
6158 	 * exclusive access to the page.
6159 	 */
6160 
6161 	if (ug->memcg != page->mem_cgroup) {
6162 		if (ug->memcg) {
6163 			uncharge_batch(ug);
6164 			uncharge_gather_clear(ug);
6165 		}
6166 		ug->memcg = page->mem_cgroup;
6167 	}
6168 
6169 	if (!PageKmemcg(page)) {
6170 		unsigned int nr_pages = 1;
6171 
6172 		if (PageTransHuge(page)) {
6173 			nr_pages <<= compound_order(page);
6174 			ug->nr_huge += nr_pages;
6175 		}
6176 		if (PageAnon(page))
6177 			ug->nr_anon += nr_pages;
6178 		else {
6179 			ug->nr_file += nr_pages;
6180 			if (PageSwapBacked(page))
6181 				ug->nr_shmem += nr_pages;
6182 		}
6183 		ug->pgpgout++;
6184 	} else {
6185 		ug->nr_kmem += 1 << compound_order(page);
6186 		__ClearPageKmemcg(page);
6187 	}
6188 
6189 	ug->dummy_page = page;
6190 	page->mem_cgroup = NULL;
6191 }
6192 
uncharge_list(struct list_head * page_list)6193 static void uncharge_list(struct list_head *page_list)
6194 {
6195 	struct uncharge_gather ug;
6196 	struct list_head *next;
6197 
6198 	uncharge_gather_clear(&ug);
6199 
6200 	/*
6201 	 * Note that the list can be a single page->lru; hence the
6202 	 * do-while loop instead of a simple list_for_each_entry().
6203 	 */
6204 	next = page_list->next;
6205 	do {
6206 		struct page *page;
6207 
6208 		page = list_entry(next, struct page, lru);
6209 		next = page->lru.next;
6210 
6211 		uncharge_page(page, &ug);
6212 	} while (next != page_list);
6213 
6214 	if (ug.memcg)
6215 		uncharge_batch(&ug);
6216 }
6217 
6218 /**
6219  * mem_cgroup_uncharge - uncharge a page
6220  * @page: page to uncharge
6221  *
6222  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6223  * mem_cgroup_commit_charge().
6224  */
mem_cgroup_uncharge(struct page * page)6225 void mem_cgroup_uncharge(struct page *page)
6226 {
6227 	struct uncharge_gather ug;
6228 
6229 	if (mem_cgroup_disabled())
6230 		return;
6231 
6232 	/* Don't touch page->lru of any random page, pre-check: */
6233 	if (!page->mem_cgroup)
6234 		return;
6235 
6236 	uncharge_gather_clear(&ug);
6237 	uncharge_page(page, &ug);
6238 	uncharge_batch(&ug);
6239 }
6240 
6241 /**
6242  * mem_cgroup_uncharge_list - uncharge a list of page
6243  * @page_list: list of pages to uncharge
6244  *
6245  * Uncharge a list of pages previously charged with
6246  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6247  */
mem_cgroup_uncharge_list(struct list_head * page_list)6248 void mem_cgroup_uncharge_list(struct list_head *page_list)
6249 {
6250 	if (mem_cgroup_disabled())
6251 		return;
6252 
6253 	if (!list_empty(page_list))
6254 		uncharge_list(page_list);
6255 }
6256 
6257 /**
6258  * mem_cgroup_migrate - charge a page's replacement
6259  * @oldpage: currently circulating page
6260  * @newpage: replacement page
6261  *
6262  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6263  * be uncharged upon free.
6264  *
6265  * Both pages must be locked, @newpage->mapping must be set up.
6266  */
mem_cgroup_migrate(struct page * oldpage,struct page * newpage)6267 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6268 {
6269 	struct mem_cgroup *memcg;
6270 	unsigned int nr_pages;
6271 	bool compound;
6272 	unsigned long flags;
6273 
6274 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6275 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6276 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6277 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6278 		       newpage);
6279 
6280 	if (mem_cgroup_disabled())
6281 		return;
6282 
6283 	/* Page cache replacement: new page already charged? */
6284 	if (newpage->mem_cgroup)
6285 		return;
6286 
6287 	/* Swapcache readahead pages can get replaced before being charged */
6288 	memcg = oldpage->mem_cgroup;
6289 	if (!memcg)
6290 		return;
6291 
6292 	/* Force-charge the new page. The old one will be freed soon */
6293 	compound = PageTransHuge(newpage);
6294 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6295 
6296 	page_counter_charge(&memcg->memory, nr_pages);
6297 	if (do_memsw_account())
6298 		page_counter_charge(&memcg->memsw, nr_pages);
6299 	css_get_many(&memcg->css, nr_pages);
6300 
6301 	commit_charge(newpage, memcg, false);
6302 
6303 	local_irq_save(flags);
6304 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6305 	memcg_check_events(memcg, newpage);
6306 	local_irq_restore(flags);
6307 }
6308 
6309 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6310 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6311 
mem_cgroup_sk_alloc(struct sock * sk)6312 void mem_cgroup_sk_alloc(struct sock *sk)
6313 {
6314 	struct mem_cgroup *memcg;
6315 
6316 	if (!mem_cgroup_sockets_enabled)
6317 		return;
6318 
6319 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6320 	if (in_interrupt())
6321 		return;
6322 
6323 	rcu_read_lock();
6324 	memcg = mem_cgroup_from_task(current);
6325 	if (memcg == root_mem_cgroup)
6326 		goto out;
6327 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6328 		goto out;
6329 	if (css_tryget_online(&memcg->css))
6330 		sk->sk_memcg = memcg;
6331 out:
6332 	rcu_read_unlock();
6333 }
6334 
mem_cgroup_sk_free(struct sock * sk)6335 void mem_cgroup_sk_free(struct sock *sk)
6336 {
6337 	if (sk->sk_memcg)
6338 		css_put(&sk->sk_memcg->css);
6339 }
6340 
6341 /**
6342  * mem_cgroup_charge_skmem - charge socket memory
6343  * @memcg: memcg to charge
6344  * @nr_pages: number of pages to charge
6345  *
6346  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6347  * @memcg's configured limit, %false if the charge had to be forced.
6348  */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)6349 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6350 {
6351 	gfp_t gfp_mask = GFP_KERNEL;
6352 
6353 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6354 		struct page_counter *fail;
6355 
6356 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6357 			memcg->tcpmem_pressure = 0;
6358 			return true;
6359 		}
6360 		page_counter_charge(&memcg->tcpmem, nr_pages);
6361 		memcg->tcpmem_pressure = 1;
6362 		return false;
6363 	}
6364 
6365 	/* Don't block in the packet receive path */
6366 	if (in_softirq())
6367 		gfp_mask = GFP_NOWAIT;
6368 
6369 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6370 
6371 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6372 		return true;
6373 
6374 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6375 	return false;
6376 }
6377 
6378 /**
6379  * mem_cgroup_uncharge_skmem - uncharge socket memory
6380  * @memcg: memcg to uncharge
6381  * @nr_pages: number of pages to uncharge
6382  */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)6383 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6384 {
6385 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6386 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6387 		return;
6388 	}
6389 
6390 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6391 
6392 	refill_stock(memcg, nr_pages);
6393 }
6394 
cgroup_memory(char * s)6395 static int __init cgroup_memory(char *s)
6396 {
6397 	char *token;
6398 
6399 	while ((token = strsep(&s, ",")) != NULL) {
6400 		if (!*token)
6401 			continue;
6402 		if (!strcmp(token, "nosocket"))
6403 			cgroup_memory_nosocket = true;
6404 		if (!strcmp(token, "nokmem"))
6405 			cgroup_memory_nokmem = true;
6406 	}
6407 	return 0;
6408 }
6409 __setup("cgroup.memory=", cgroup_memory);
6410 
6411 /*
6412  * subsys_initcall() for memory controller.
6413  *
6414  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6415  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6416  * basically everything that doesn't depend on a specific mem_cgroup structure
6417  * should be initialized from here.
6418  */
mem_cgroup_init(void)6419 static int __init mem_cgroup_init(void)
6420 {
6421 	int cpu, node;
6422 
6423 #ifdef CONFIG_MEMCG_KMEM
6424 	/*
6425 	 * Kmem cache creation is mostly done with the slab_mutex held,
6426 	 * so use a workqueue with limited concurrency to avoid stalling
6427 	 * all worker threads in case lots of cgroups are created and
6428 	 * destroyed simultaneously.
6429 	 */
6430 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6431 	BUG_ON(!memcg_kmem_cache_wq);
6432 #endif
6433 
6434 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6435 				  memcg_hotplug_cpu_dead);
6436 
6437 	for_each_possible_cpu(cpu)
6438 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6439 			  drain_local_stock);
6440 
6441 	for_each_node(node) {
6442 		struct mem_cgroup_tree_per_node *rtpn;
6443 
6444 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6445 				    node_online(node) ? node : NUMA_NO_NODE);
6446 
6447 		rtpn->rb_root = RB_ROOT;
6448 		rtpn->rb_rightmost = NULL;
6449 		spin_lock_init(&rtpn->lock);
6450 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6451 	}
6452 
6453 	return 0;
6454 }
6455 subsys_initcall(mem_cgroup_init);
6456 
6457 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)6458 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6459 {
6460 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
6461 		/*
6462 		 * The root cgroup cannot be destroyed, so it's refcount must
6463 		 * always be >= 1.
6464 		 */
6465 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6466 			VM_BUG_ON(1);
6467 			break;
6468 		}
6469 		memcg = parent_mem_cgroup(memcg);
6470 		if (!memcg)
6471 			memcg = root_mem_cgroup;
6472 	}
6473 	return memcg;
6474 }
6475 
6476 /**
6477  * mem_cgroup_swapout - transfer a memsw charge to swap
6478  * @page: page whose memsw charge to transfer
6479  * @entry: swap entry to move the charge to
6480  *
6481  * Transfer the memsw charge of @page to @entry.
6482  */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)6483 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6484 {
6485 	struct mem_cgroup *memcg, *swap_memcg;
6486 	unsigned int nr_entries;
6487 	unsigned short oldid;
6488 
6489 	VM_BUG_ON_PAGE(PageLRU(page), page);
6490 	VM_BUG_ON_PAGE(page_count(page), page);
6491 
6492 	if (!do_memsw_account())
6493 		return;
6494 
6495 	memcg = page->mem_cgroup;
6496 
6497 	/* Readahead page, never charged */
6498 	if (!memcg)
6499 		return;
6500 
6501 	/*
6502 	 * In case the memcg owning these pages has been offlined and doesn't
6503 	 * have an ID allocated to it anymore, charge the closest online
6504 	 * ancestor for the swap instead and transfer the memory+swap charge.
6505 	 */
6506 	swap_memcg = mem_cgroup_id_get_online(memcg);
6507 	nr_entries = hpage_nr_pages(page);
6508 	/* Get references for the tail pages, too */
6509 	if (nr_entries > 1)
6510 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6511 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6512 				   nr_entries);
6513 	VM_BUG_ON_PAGE(oldid, page);
6514 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6515 
6516 	page->mem_cgroup = NULL;
6517 
6518 	if (!mem_cgroup_is_root(memcg))
6519 		page_counter_uncharge(&memcg->memory, nr_entries);
6520 
6521 	if (memcg != swap_memcg) {
6522 		if (!mem_cgroup_is_root(swap_memcg))
6523 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6524 		page_counter_uncharge(&memcg->memsw, nr_entries);
6525 	}
6526 
6527 	/*
6528 	 * Interrupts should be disabled here because the caller holds the
6529 	 * i_pages lock which is taken with interrupts-off. It is
6530 	 * important here to have the interrupts disabled because it is the
6531 	 * only synchronisation we have for updating the per-CPU variables.
6532 	 */
6533 	VM_BUG_ON(!irqs_disabled());
6534 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6535 				     -nr_entries);
6536 	memcg_check_events(memcg, page);
6537 
6538 	if (!mem_cgroup_is_root(memcg))
6539 		css_put_many(&memcg->css, nr_entries);
6540 }
6541 
6542 /**
6543  * mem_cgroup_try_charge_swap - try charging swap space for a page
6544  * @page: page being added to swap
6545  * @entry: swap entry to charge
6546  *
6547  * Try to charge @page's memcg for the swap space at @entry.
6548  *
6549  * Returns 0 on success, -ENOMEM on failure.
6550  */
mem_cgroup_try_charge_swap(struct page * page,swp_entry_t entry)6551 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6552 {
6553 	unsigned int nr_pages = hpage_nr_pages(page);
6554 	struct page_counter *counter;
6555 	struct mem_cgroup *memcg;
6556 	unsigned short oldid;
6557 
6558 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6559 		return 0;
6560 
6561 	memcg = page->mem_cgroup;
6562 
6563 	/* Readahead page, never charged */
6564 	if (!memcg)
6565 		return 0;
6566 
6567 	if (!entry.val) {
6568 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6569 		return 0;
6570 	}
6571 
6572 	memcg = mem_cgroup_id_get_online(memcg);
6573 
6574 	if (!mem_cgroup_is_root(memcg) &&
6575 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6576 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6577 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6578 		mem_cgroup_id_put(memcg);
6579 		return -ENOMEM;
6580 	}
6581 
6582 	/* Get references for the tail pages, too */
6583 	if (nr_pages > 1)
6584 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6585 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6586 	VM_BUG_ON_PAGE(oldid, page);
6587 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6588 
6589 	return 0;
6590 }
6591 
6592 /**
6593  * mem_cgroup_uncharge_swap - uncharge swap space
6594  * @entry: swap entry to uncharge
6595  * @nr_pages: the amount of swap space to uncharge
6596  */
mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)6597 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6598 {
6599 	struct mem_cgroup *memcg;
6600 	unsigned short id;
6601 
6602 	if (!do_swap_account)
6603 		return;
6604 
6605 	id = swap_cgroup_record(entry, 0, nr_pages);
6606 	rcu_read_lock();
6607 	memcg = mem_cgroup_from_id(id);
6608 	if (memcg) {
6609 		if (!mem_cgroup_is_root(memcg)) {
6610 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6611 				page_counter_uncharge(&memcg->swap, nr_pages);
6612 			else
6613 				page_counter_uncharge(&memcg->memsw, nr_pages);
6614 		}
6615 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6616 		mem_cgroup_id_put_many(memcg, nr_pages);
6617 	}
6618 	rcu_read_unlock();
6619 }
6620 
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)6621 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6622 {
6623 	long nr_swap_pages = get_nr_swap_pages();
6624 
6625 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6626 		return nr_swap_pages;
6627 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6628 		nr_swap_pages = min_t(long, nr_swap_pages,
6629 				      READ_ONCE(memcg->swap.max) -
6630 				      page_counter_read(&memcg->swap));
6631 	return nr_swap_pages;
6632 }
6633 
mem_cgroup_swap_full(struct page * page)6634 bool mem_cgroup_swap_full(struct page *page)
6635 {
6636 	struct mem_cgroup *memcg;
6637 
6638 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6639 
6640 	if (vm_swap_full())
6641 		return true;
6642 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6643 		return false;
6644 
6645 	memcg = page->mem_cgroup;
6646 	if (!memcg)
6647 		return false;
6648 
6649 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6650 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6651 			return true;
6652 
6653 	return false;
6654 }
6655 
6656 /* for remember boot option*/
6657 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6658 static int really_do_swap_account __initdata = 1;
6659 #else
6660 static int really_do_swap_account __initdata;
6661 #endif
6662 
enable_swap_account(char * s)6663 static int __init enable_swap_account(char *s)
6664 {
6665 	if (!strcmp(s, "1"))
6666 		really_do_swap_account = 1;
6667 	else if (!strcmp(s, "0"))
6668 		really_do_swap_account = 0;
6669 	return 1;
6670 }
6671 __setup("swapaccount=", enable_swap_account);
6672 
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6673 static u64 swap_current_read(struct cgroup_subsys_state *css,
6674 			     struct cftype *cft)
6675 {
6676 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6677 
6678 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6679 }
6680 
swap_max_show(struct seq_file * m,void * v)6681 static int swap_max_show(struct seq_file *m, void *v)
6682 {
6683 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6684 	unsigned long max = READ_ONCE(memcg->swap.max);
6685 
6686 	if (max == PAGE_COUNTER_MAX)
6687 		seq_puts(m, "max\n");
6688 	else
6689 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6690 
6691 	return 0;
6692 }
6693 
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6694 static ssize_t swap_max_write(struct kernfs_open_file *of,
6695 			      char *buf, size_t nbytes, loff_t off)
6696 {
6697 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6698 	unsigned long max;
6699 	int err;
6700 
6701 	buf = strstrip(buf);
6702 	err = page_counter_memparse(buf, "max", &max);
6703 	if (err)
6704 		return err;
6705 
6706 	xchg(&memcg->swap.max, max);
6707 
6708 	return nbytes;
6709 }
6710 
swap_events_show(struct seq_file * m,void * v)6711 static int swap_events_show(struct seq_file *m, void *v)
6712 {
6713 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6714 
6715 	seq_printf(m, "max %lu\n",
6716 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6717 	seq_printf(m, "fail %lu\n",
6718 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6719 
6720 	return 0;
6721 }
6722 
6723 static struct cftype swap_files[] = {
6724 	{
6725 		.name = "swap.current",
6726 		.flags = CFTYPE_NOT_ON_ROOT,
6727 		.read_u64 = swap_current_read,
6728 	},
6729 	{
6730 		.name = "swap.max",
6731 		.flags = CFTYPE_NOT_ON_ROOT,
6732 		.seq_show = swap_max_show,
6733 		.write = swap_max_write,
6734 	},
6735 	{
6736 		.name = "swap.events",
6737 		.flags = CFTYPE_NOT_ON_ROOT,
6738 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
6739 		.seq_show = swap_events_show,
6740 	},
6741 	{ }	/* terminate */
6742 };
6743 
6744 static struct cftype memsw_cgroup_files[] = {
6745 	{
6746 		.name = "memsw.usage_in_bytes",
6747 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6748 		.read_u64 = mem_cgroup_read_u64,
6749 	},
6750 	{
6751 		.name = "memsw.max_usage_in_bytes",
6752 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6753 		.write = mem_cgroup_reset,
6754 		.read_u64 = mem_cgroup_read_u64,
6755 	},
6756 	{
6757 		.name = "memsw.limit_in_bytes",
6758 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6759 		.write = mem_cgroup_write,
6760 		.read_u64 = mem_cgroup_read_u64,
6761 	},
6762 	{
6763 		.name = "memsw.failcnt",
6764 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6765 		.write = mem_cgroup_reset,
6766 		.read_u64 = mem_cgroup_read_u64,
6767 	},
6768 	{ },	/* terminate */
6769 };
6770 
mem_cgroup_swap_init(void)6771 static int __init mem_cgroup_swap_init(void)
6772 {
6773 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6774 		do_swap_account = 1;
6775 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6776 					       swap_files));
6777 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6778 						  memsw_cgroup_files));
6779 	}
6780 	return 0;
6781 }
6782 subsys_initcall(mem_cgroup_swap_init);
6783 
6784 #endif /* CONFIG_MEMCG_SWAP */
6785