• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/memremap.h>
59 #include <linux/kfifo.h>
60 #include <linux/ratelimit.h>
61 #include <linux/page-isolation.h>
62 #include "internal.h"
63 #include "ras/ras_event.h"
64 
65 int sysctl_memory_failure_early_kill __read_mostly = 0;
66 
67 int sysctl_memory_failure_recovery __read_mostly = 1;
68 
69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
70 
71 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
72 
73 u32 hwpoison_filter_enable = 0;
74 u32 hwpoison_filter_dev_major = ~0U;
75 u32 hwpoison_filter_dev_minor = ~0U;
76 u64 hwpoison_filter_flags_mask;
77 u64 hwpoison_filter_flags_value;
78 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
82 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
83 
hwpoison_filter_dev(struct page * p)84 static int hwpoison_filter_dev(struct page *p)
85 {
86 	struct address_space *mapping;
87 	dev_t dev;
88 
89 	if (hwpoison_filter_dev_major == ~0U &&
90 	    hwpoison_filter_dev_minor == ~0U)
91 		return 0;
92 
93 	/*
94 	 * page_mapping() does not accept slab pages.
95 	 */
96 	if (PageSlab(p))
97 		return -EINVAL;
98 
99 	mapping = page_mapping(p);
100 	if (mapping == NULL || mapping->host == NULL)
101 		return -EINVAL;
102 
103 	dev = mapping->host->i_sb->s_dev;
104 	if (hwpoison_filter_dev_major != ~0U &&
105 	    hwpoison_filter_dev_major != MAJOR(dev))
106 		return -EINVAL;
107 	if (hwpoison_filter_dev_minor != ~0U &&
108 	    hwpoison_filter_dev_minor != MINOR(dev))
109 		return -EINVAL;
110 
111 	return 0;
112 }
113 
hwpoison_filter_flags(struct page * p)114 static int hwpoison_filter_flags(struct page *p)
115 {
116 	if (!hwpoison_filter_flags_mask)
117 		return 0;
118 
119 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
120 				    hwpoison_filter_flags_value)
121 		return 0;
122 	else
123 		return -EINVAL;
124 }
125 
126 /*
127  * This allows stress tests to limit test scope to a collection of tasks
128  * by putting them under some memcg. This prevents killing unrelated/important
129  * processes such as /sbin/init. Note that the target task may share clean
130  * pages with init (eg. libc text), which is harmless. If the target task
131  * share _dirty_ pages with another task B, the test scheme must make sure B
132  * is also included in the memcg. At last, due to race conditions this filter
133  * can only guarantee that the page either belongs to the memcg tasks, or is
134  * a freed page.
135  */
136 #ifdef CONFIG_MEMCG
137 u64 hwpoison_filter_memcg;
138 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)139 static int hwpoison_filter_task(struct page *p)
140 {
141 	if (!hwpoison_filter_memcg)
142 		return 0;
143 
144 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
145 		return -EINVAL;
146 
147 	return 0;
148 }
149 #else
hwpoison_filter_task(struct page * p)150 static int hwpoison_filter_task(struct page *p) { return 0; }
151 #endif
152 
hwpoison_filter(struct page * p)153 int hwpoison_filter(struct page *p)
154 {
155 	if (!hwpoison_filter_enable)
156 		return 0;
157 
158 	if (hwpoison_filter_dev(p))
159 		return -EINVAL;
160 
161 	if (hwpoison_filter_flags(p))
162 		return -EINVAL;
163 
164 	if (hwpoison_filter_task(p))
165 		return -EINVAL;
166 
167 	return 0;
168 }
169 #else
hwpoison_filter(struct page * p)170 int hwpoison_filter(struct page *p)
171 {
172 	return 0;
173 }
174 #endif
175 
176 EXPORT_SYMBOL_GPL(hwpoison_filter);
177 
178 /*
179  * Kill all processes that have a poisoned page mapped and then isolate
180  * the page.
181  *
182  * General strategy:
183  * Find all processes having the page mapped and kill them.
184  * But we keep a page reference around so that the page is not
185  * actually freed yet.
186  * Then stash the page away
187  *
188  * There's no convenient way to get back to mapped processes
189  * from the VMAs. So do a brute-force search over all
190  * running processes.
191  *
192  * Remember that machine checks are not common (or rather
193  * if they are common you have other problems), so this shouldn't
194  * be a performance issue.
195  *
196  * Also there are some races possible while we get from the
197  * error detection to actually handle it.
198  */
199 
200 struct to_kill {
201 	struct list_head nd;
202 	struct task_struct *tsk;
203 	unsigned long addr;
204 	short size_shift;
205 };
206 
207 /*
208  * Send all the processes who have the page mapped a signal.
209  * ``action optional'' if they are not immediately affected by the error
210  * ``action required'' if error happened in current execution context
211  */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)212 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
213 {
214 	struct task_struct *t = tk->tsk;
215 	short addr_lsb = tk->size_shift;
216 	int ret;
217 
218 	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
219 		pfn, t->comm, t->pid);
220 
221 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
222 		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
223 				       addr_lsb, current);
224 	} else {
225 		/*
226 		 * Don't use force here, it's convenient if the signal
227 		 * can be temporarily blocked.
228 		 * This could cause a loop when the user sets SIGBUS
229 		 * to SIG_IGN, but hopefully no one will do that?
230 		 */
231 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
232 				      addr_lsb, t);  /* synchronous? */
233 	}
234 	if (ret < 0)
235 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
236 			t->comm, t->pid, ret);
237 	return ret;
238 }
239 
240 /*
241  * When a unknown page type is encountered drain as many buffers as possible
242  * in the hope to turn the page into a LRU or free page, which we can handle.
243  */
shake_page(struct page * p,int access)244 void shake_page(struct page *p, int access)
245 {
246 	if (PageHuge(p))
247 		return;
248 
249 	if (!PageSlab(p)) {
250 		lru_add_drain_all();
251 		if (PageLRU(p))
252 			return;
253 		drain_all_pages(page_zone(p));
254 		if (PageLRU(p) || is_free_buddy_page(p))
255 			return;
256 	}
257 
258 	/*
259 	 * Only call shrink_node_slabs here (which would also shrink
260 	 * other caches) if access is not potentially fatal.
261 	 */
262 	if (access)
263 		drop_slab_node(page_to_nid(p));
264 }
265 EXPORT_SYMBOL_GPL(shake_page);
266 
dev_pagemap_mapping_shift(struct page * page,struct vm_area_struct * vma)267 static unsigned long dev_pagemap_mapping_shift(struct page *page,
268 		struct vm_area_struct *vma)
269 {
270 	unsigned long address = vma_address(page, vma);
271 	pgd_t *pgd;
272 	p4d_t *p4d;
273 	pud_t *pud;
274 	pmd_t *pmd;
275 	pte_t *pte;
276 
277 	pgd = pgd_offset(vma->vm_mm, address);
278 	if (!pgd_present(*pgd))
279 		return 0;
280 	p4d = p4d_offset(pgd, address);
281 	if (!p4d_present(*p4d))
282 		return 0;
283 	pud = pud_offset(p4d, address);
284 	if (!pud_present(*pud))
285 		return 0;
286 	if (pud_devmap(*pud))
287 		return PUD_SHIFT;
288 	pmd = pmd_offset(pud, address);
289 	if (!pmd_present(*pmd))
290 		return 0;
291 	if (pmd_devmap(*pmd))
292 		return PMD_SHIFT;
293 	pte = pte_offset_map(pmd, address);
294 	if (!pte_present(*pte))
295 		return 0;
296 	if (pte_devmap(*pte))
297 		return PAGE_SHIFT;
298 	return 0;
299 }
300 
301 /*
302  * Failure handling: if we can't find or can't kill a process there's
303  * not much we can do.	We just print a message and ignore otherwise.
304  */
305 
306 /*
307  * Schedule a process for later kill.
308  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
309  * TBD would GFP_NOIO be enough?
310  */
add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,struct to_kill ** tkc)311 static void add_to_kill(struct task_struct *tsk, struct page *p,
312 		       struct vm_area_struct *vma,
313 		       struct list_head *to_kill,
314 		       struct to_kill **tkc)
315 {
316 	struct to_kill *tk;
317 
318 	if (*tkc) {
319 		tk = *tkc;
320 		*tkc = NULL;
321 	} else {
322 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
323 		if (!tk) {
324 			pr_err("Memory failure: Out of memory while machine check handling\n");
325 			return;
326 		}
327 	}
328 	tk->addr = page_address_in_vma(p, vma);
329 	if (is_zone_device_page(p))
330 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
331 	else
332 		tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
333 
334 	/*
335 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
336 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
337 	 * so "tk->size_shift == 0" effectively checks no mapping on
338 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
339 	 * to a process' address space, it's possible not all N VMAs
340 	 * contain mappings for the page, but at least one VMA does.
341 	 * Only deliver SIGBUS with payload derived from the VMA that
342 	 * has a mapping for the page.
343 	 */
344 	if (tk->addr == -EFAULT) {
345 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
346 			page_to_pfn(p), tsk->comm);
347 	} else if (tk->size_shift == 0) {
348 		kfree(tk);
349 		return;
350 	}
351 	get_task_struct(tsk);
352 	tk->tsk = tsk;
353 	list_add_tail(&tk->nd, to_kill);
354 }
355 
356 /*
357  * Kill the processes that have been collected earlier.
358  *
359  * Only do anything when DOIT is set, otherwise just free the list
360  * (this is used for clean pages which do not need killing)
361  * Also when FAIL is set do a force kill because something went
362  * wrong earlier.
363  */
kill_procs(struct list_head * to_kill,int forcekill,bool fail,unsigned long pfn,int flags)364 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
365 		unsigned long pfn, int flags)
366 {
367 	struct to_kill *tk, *next;
368 
369 	list_for_each_entry_safe (tk, next, to_kill, nd) {
370 		if (forcekill) {
371 			/*
372 			 * In case something went wrong with munmapping
373 			 * make sure the process doesn't catch the
374 			 * signal and then access the memory. Just kill it.
375 			 */
376 			if (fail || tk->addr == -EFAULT) {
377 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
378 				       pfn, tk->tsk->comm, tk->tsk->pid);
379 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
380 						 tk->tsk, PIDTYPE_PID);
381 			}
382 
383 			/*
384 			 * In theory the process could have mapped
385 			 * something else on the address in-between. We could
386 			 * check for that, but we need to tell the
387 			 * process anyways.
388 			 */
389 			else if (kill_proc(tk, pfn, flags) < 0)
390 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
391 				       pfn, tk->tsk->comm, tk->tsk->pid);
392 		}
393 		put_task_struct(tk->tsk);
394 		kfree(tk);
395 	}
396 }
397 
398 /*
399  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
400  * on behalf of the thread group. Return task_struct of the (first found)
401  * dedicated thread if found, and return NULL otherwise.
402  *
403  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
404  * have to call rcu_read_lock/unlock() in this function.
405  */
find_early_kill_thread(struct task_struct * tsk)406 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
407 {
408 	struct task_struct *t;
409 
410 	for_each_thread(tsk, t)
411 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
412 			return t;
413 	return NULL;
414 }
415 
416 /*
417  * Determine whether a given process is "early kill" process which expects
418  * to be signaled when some page under the process is hwpoisoned.
419  * Return task_struct of the dedicated thread (main thread unless explicitly
420  * specified) if the process is "early kill," and otherwise returns NULL.
421  */
task_early_kill(struct task_struct * tsk,int force_early)422 static struct task_struct *task_early_kill(struct task_struct *tsk,
423 					   int force_early)
424 {
425 	struct task_struct *t;
426 	if (!tsk->mm)
427 		return NULL;
428 	if (force_early)
429 		return tsk;
430 	t = find_early_kill_thread(tsk);
431 	if (t)
432 		return t;
433 	if (sysctl_memory_failure_early_kill)
434 		return tsk;
435 	return NULL;
436 }
437 
438 /*
439  * Collect processes when the error hit an anonymous page.
440  */
collect_procs_anon(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)441 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
442 			      struct to_kill **tkc, int force_early)
443 {
444 	struct vm_area_struct *vma;
445 	struct task_struct *tsk;
446 	struct anon_vma *av;
447 	pgoff_t pgoff;
448 
449 	av = page_lock_anon_vma_read(page);
450 	if (av == NULL)	/* Not actually mapped anymore */
451 		return;
452 
453 	pgoff = page_to_pgoff(page);
454 	read_lock(&tasklist_lock);
455 	for_each_process (tsk) {
456 		struct anon_vma_chain *vmac;
457 		struct task_struct *t = task_early_kill(tsk, force_early);
458 
459 		if (!t)
460 			continue;
461 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
462 					       pgoff, pgoff) {
463 			vma = vmac->vma;
464 			if (!page_mapped_in_vma(page, vma))
465 				continue;
466 			if (vma->vm_mm == t->mm)
467 				add_to_kill(t, page, vma, to_kill, tkc);
468 		}
469 	}
470 	read_unlock(&tasklist_lock);
471 	page_unlock_anon_vma_read(av);
472 }
473 
474 /*
475  * Collect processes when the error hit a file mapped page.
476  */
collect_procs_file(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)477 static void collect_procs_file(struct page *page, struct list_head *to_kill,
478 			      struct to_kill **tkc, int force_early)
479 {
480 	struct vm_area_struct *vma;
481 	struct task_struct *tsk;
482 	struct address_space *mapping = page->mapping;
483 
484 	i_mmap_lock_read(mapping);
485 	read_lock(&tasklist_lock);
486 	for_each_process(tsk) {
487 		pgoff_t pgoff = page_to_pgoff(page);
488 		struct task_struct *t = task_early_kill(tsk, force_early);
489 
490 		if (!t)
491 			continue;
492 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
493 				      pgoff) {
494 			/*
495 			 * Send early kill signal to tasks where a vma covers
496 			 * the page but the corrupted page is not necessarily
497 			 * mapped it in its pte.
498 			 * Assume applications who requested early kill want
499 			 * to be informed of all such data corruptions.
500 			 */
501 			if (vma->vm_mm == t->mm)
502 				add_to_kill(t, page, vma, to_kill, tkc);
503 		}
504 	}
505 	read_unlock(&tasklist_lock);
506 	i_mmap_unlock_read(mapping);
507 }
508 
509 /*
510  * Collect the processes who have the corrupted page mapped to kill.
511  * This is done in two steps for locking reasons.
512  * First preallocate one tokill structure outside the spin locks,
513  * so that we can kill at least one process reasonably reliable.
514  */
collect_procs(struct page * page,struct list_head * tokill,int force_early)515 static void collect_procs(struct page *page, struct list_head *tokill,
516 				int force_early)
517 {
518 	struct to_kill *tk;
519 
520 	if (!page->mapping)
521 		return;
522 
523 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
524 	if (!tk)
525 		return;
526 	if (PageAnon(page))
527 		collect_procs_anon(page, tokill, &tk, force_early);
528 	else
529 		collect_procs_file(page, tokill, &tk, force_early);
530 	kfree(tk);
531 }
532 
533 static const char *action_name[] = {
534 	[MF_IGNORED] = "Ignored",
535 	[MF_FAILED] = "Failed",
536 	[MF_DELAYED] = "Delayed",
537 	[MF_RECOVERED] = "Recovered",
538 };
539 
540 static const char * const action_page_types[] = {
541 	[MF_MSG_KERNEL]			= "reserved kernel page",
542 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
543 	[MF_MSG_SLAB]			= "kernel slab page",
544 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
545 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
546 	[MF_MSG_HUGE]			= "huge page",
547 	[MF_MSG_FREE_HUGE]		= "free huge page",
548 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
549 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
550 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
551 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
552 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
553 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
554 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
555 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
556 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
557 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
558 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
559 	[MF_MSG_BUDDY]			= "free buddy page",
560 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
561 	[MF_MSG_DAX]			= "dax page",
562 	[MF_MSG_UNKNOWN]		= "unknown page",
563 };
564 
565 /*
566  * XXX: It is possible that a page is isolated from LRU cache,
567  * and then kept in swap cache or failed to remove from page cache.
568  * The page count will stop it from being freed by unpoison.
569  * Stress tests should be aware of this memory leak problem.
570  */
delete_from_lru_cache(struct page * p)571 static int delete_from_lru_cache(struct page *p)
572 {
573 	if (!isolate_lru_page(p)) {
574 		/*
575 		 * Clear sensible page flags, so that the buddy system won't
576 		 * complain when the page is unpoison-and-freed.
577 		 */
578 		ClearPageActive(p);
579 		ClearPageUnevictable(p);
580 
581 		/*
582 		 * Poisoned page might never drop its ref count to 0 so we have
583 		 * to uncharge it manually from its memcg.
584 		 */
585 		mem_cgroup_uncharge(p);
586 
587 		/*
588 		 * drop the page count elevated by isolate_lru_page()
589 		 */
590 		put_page(p);
591 		return 0;
592 	}
593 	return -EIO;
594 }
595 
truncate_error_page(struct page * p,unsigned long pfn,struct address_space * mapping)596 static int truncate_error_page(struct page *p, unsigned long pfn,
597 				struct address_space *mapping)
598 {
599 	int ret = MF_FAILED;
600 
601 	if (mapping->a_ops->error_remove_page) {
602 		int err = mapping->a_ops->error_remove_page(mapping, p);
603 
604 		if (err != 0) {
605 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
606 				pfn, err);
607 		} else if (page_has_private(p) &&
608 			   !try_to_release_page(p, GFP_NOIO)) {
609 			pr_info("Memory failure: %#lx: failed to release buffers\n",
610 				pfn);
611 		} else {
612 			ret = MF_RECOVERED;
613 		}
614 	} else {
615 		/*
616 		 * If the file system doesn't support it just invalidate
617 		 * This fails on dirty or anything with private pages
618 		 */
619 		if (invalidate_inode_page(p))
620 			ret = MF_RECOVERED;
621 		else
622 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
623 				pfn);
624 	}
625 
626 	return ret;
627 }
628 
629 /*
630  * Error hit kernel page.
631  * Do nothing, try to be lucky and not touch this instead. For a few cases we
632  * could be more sophisticated.
633  */
me_kernel(struct page * p,unsigned long pfn)634 static int me_kernel(struct page *p, unsigned long pfn)
635 {
636 	return MF_IGNORED;
637 }
638 
639 /*
640  * Page in unknown state. Do nothing.
641  */
me_unknown(struct page * p,unsigned long pfn)642 static int me_unknown(struct page *p, unsigned long pfn)
643 {
644 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
645 	return MF_FAILED;
646 }
647 
648 /*
649  * Clean (or cleaned) page cache page.
650  */
me_pagecache_clean(struct page * p,unsigned long pfn)651 static int me_pagecache_clean(struct page *p, unsigned long pfn)
652 {
653 	struct address_space *mapping;
654 
655 	delete_from_lru_cache(p);
656 
657 	/*
658 	 * For anonymous pages we're done the only reference left
659 	 * should be the one m_f() holds.
660 	 */
661 	if (PageAnon(p))
662 		return MF_RECOVERED;
663 
664 	/*
665 	 * Now truncate the page in the page cache. This is really
666 	 * more like a "temporary hole punch"
667 	 * Don't do this for block devices when someone else
668 	 * has a reference, because it could be file system metadata
669 	 * and that's not safe to truncate.
670 	 */
671 	mapping = page_mapping(p);
672 	if (!mapping) {
673 		/*
674 		 * Page has been teared down in the meanwhile
675 		 */
676 		return MF_FAILED;
677 	}
678 
679 	/*
680 	 * Truncation is a bit tricky. Enable it per file system for now.
681 	 *
682 	 * Open: to take i_mutex or not for this? Right now we don't.
683 	 */
684 	return truncate_error_page(p, pfn, mapping);
685 }
686 
687 /*
688  * Dirty pagecache page
689  * Issues: when the error hit a hole page the error is not properly
690  * propagated.
691  */
me_pagecache_dirty(struct page * p,unsigned long pfn)692 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
693 {
694 	struct address_space *mapping = page_mapping(p);
695 
696 	SetPageError(p);
697 	/* TBD: print more information about the file. */
698 	if (mapping) {
699 		/*
700 		 * IO error will be reported by write(), fsync(), etc.
701 		 * who check the mapping.
702 		 * This way the application knows that something went
703 		 * wrong with its dirty file data.
704 		 *
705 		 * There's one open issue:
706 		 *
707 		 * The EIO will be only reported on the next IO
708 		 * operation and then cleared through the IO map.
709 		 * Normally Linux has two mechanisms to pass IO error
710 		 * first through the AS_EIO flag in the address space
711 		 * and then through the PageError flag in the page.
712 		 * Since we drop pages on memory failure handling the
713 		 * only mechanism open to use is through AS_AIO.
714 		 *
715 		 * This has the disadvantage that it gets cleared on
716 		 * the first operation that returns an error, while
717 		 * the PageError bit is more sticky and only cleared
718 		 * when the page is reread or dropped.  If an
719 		 * application assumes it will always get error on
720 		 * fsync, but does other operations on the fd before
721 		 * and the page is dropped between then the error
722 		 * will not be properly reported.
723 		 *
724 		 * This can already happen even without hwpoisoned
725 		 * pages: first on metadata IO errors (which only
726 		 * report through AS_EIO) or when the page is dropped
727 		 * at the wrong time.
728 		 *
729 		 * So right now we assume that the application DTRT on
730 		 * the first EIO, but we're not worse than other parts
731 		 * of the kernel.
732 		 */
733 		mapping_set_error(mapping, -EIO);
734 	}
735 
736 	return me_pagecache_clean(p, pfn);
737 }
738 
739 /*
740  * Clean and dirty swap cache.
741  *
742  * Dirty swap cache page is tricky to handle. The page could live both in page
743  * cache and swap cache(ie. page is freshly swapped in). So it could be
744  * referenced concurrently by 2 types of PTEs:
745  * normal PTEs and swap PTEs. We try to handle them consistently by calling
746  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
747  * and then
748  *      - clear dirty bit to prevent IO
749  *      - remove from LRU
750  *      - but keep in the swap cache, so that when we return to it on
751  *        a later page fault, we know the application is accessing
752  *        corrupted data and shall be killed (we installed simple
753  *        interception code in do_swap_page to catch it).
754  *
755  * Clean swap cache pages can be directly isolated. A later page fault will
756  * bring in the known good data from disk.
757  */
me_swapcache_dirty(struct page * p,unsigned long pfn)758 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
759 {
760 	ClearPageDirty(p);
761 	/* Trigger EIO in shmem: */
762 	ClearPageUptodate(p);
763 
764 	if (!delete_from_lru_cache(p))
765 		return MF_DELAYED;
766 	else
767 		return MF_FAILED;
768 }
769 
me_swapcache_clean(struct page * p,unsigned long pfn)770 static int me_swapcache_clean(struct page *p, unsigned long pfn)
771 {
772 	delete_from_swap_cache(p);
773 
774 	if (!delete_from_lru_cache(p))
775 		return MF_RECOVERED;
776 	else
777 		return MF_FAILED;
778 }
779 
780 /*
781  * Huge pages. Needs work.
782  * Issues:
783  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
784  *   To narrow down kill region to one page, we need to break up pmd.
785  */
me_huge_page(struct page * p,unsigned long pfn)786 static int me_huge_page(struct page *p, unsigned long pfn)
787 {
788 	int res = 0;
789 	struct page *hpage = compound_head(p);
790 	struct address_space *mapping;
791 
792 	if (!PageHuge(hpage))
793 		return MF_DELAYED;
794 
795 	mapping = page_mapping(hpage);
796 	if (mapping) {
797 		res = truncate_error_page(hpage, pfn, mapping);
798 	} else {
799 		unlock_page(hpage);
800 		/*
801 		 * migration entry prevents later access on error anonymous
802 		 * hugepage, so we can free and dissolve it into buddy to
803 		 * save healthy subpages.
804 		 */
805 		if (PageAnon(hpage))
806 			put_page(hpage);
807 		dissolve_free_huge_page(p);
808 		res = MF_RECOVERED;
809 		lock_page(hpage);
810 	}
811 
812 	return res;
813 }
814 
815 /*
816  * Various page states we can handle.
817  *
818  * A page state is defined by its current page->flags bits.
819  * The table matches them in order and calls the right handler.
820  *
821  * This is quite tricky because we can access page at any time
822  * in its live cycle, so all accesses have to be extremely careful.
823  *
824  * This is not complete. More states could be added.
825  * For any missing state don't attempt recovery.
826  */
827 
828 #define dirty		(1UL << PG_dirty)
829 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
830 #define unevict		(1UL << PG_unevictable)
831 #define mlock		(1UL << PG_mlocked)
832 #define writeback	(1UL << PG_writeback)
833 #define lru		(1UL << PG_lru)
834 #define head		(1UL << PG_head)
835 #define slab		(1UL << PG_slab)
836 #define reserved	(1UL << PG_reserved)
837 
838 static struct page_state {
839 	unsigned long mask;
840 	unsigned long res;
841 	enum mf_action_page_type type;
842 	int (*action)(struct page *p, unsigned long pfn);
843 } error_states[] = {
844 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
845 	/*
846 	 * free pages are specially detected outside this table:
847 	 * PG_buddy pages only make a small fraction of all free pages.
848 	 */
849 
850 	/*
851 	 * Could in theory check if slab page is free or if we can drop
852 	 * currently unused objects without touching them. But just
853 	 * treat it as standard kernel for now.
854 	 */
855 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
856 
857 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
858 
859 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
860 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
861 
862 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
863 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
864 
865 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
866 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
867 
868 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
869 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
870 
871 	/*
872 	 * Catchall entry: must be at end.
873 	 */
874 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
875 };
876 
877 #undef dirty
878 #undef sc
879 #undef unevict
880 #undef mlock
881 #undef writeback
882 #undef lru
883 #undef head
884 #undef slab
885 #undef reserved
886 
887 /*
888  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
889  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
890  */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)891 static void action_result(unsigned long pfn, enum mf_action_page_type type,
892 			  enum mf_result result)
893 {
894 	trace_memory_failure_event(pfn, type, result);
895 
896 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
897 		pfn, action_page_types[type], action_name[result]);
898 }
899 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)900 static int page_action(struct page_state *ps, struct page *p,
901 			unsigned long pfn)
902 {
903 	int result;
904 	int count;
905 
906 	result = ps->action(p, pfn);
907 
908 	count = page_count(p) - 1;
909 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
910 		count--;
911 	if (count > 0) {
912 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
913 		       pfn, action_page_types[ps->type], count);
914 		result = MF_FAILED;
915 	}
916 	action_result(pfn, ps->type, result);
917 
918 	/* Could do more checks here if page looks ok */
919 	/*
920 	 * Could adjust zone counters here to correct for the missing page.
921 	 */
922 
923 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
924 }
925 
926 /**
927  * get_hwpoison_page() - Get refcount for memory error handling:
928  * @page:	raw error page (hit by memory error)
929  *
930  * Return: return 0 if failed to grab the refcount, otherwise true (some
931  * non-zero value.)
932  */
get_hwpoison_page(struct page * page)933 int get_hwpoison_page(struct page *page)
934 {
935 	struct page *head = compound_head(page);
936 
937 	if (!PageHuge(head) && PageTransHuge(head)) {
938 		/*
939 		 * Non anonymous thp exists only in allocation/free time. We
940 		 * can't handle such a case correctly, so let's give it up.
941 		 * This should be better than triggering BUG_ON when kernel
942 		 * tries to touch the "partially handled" page.
943 		 */
944 		if (!PageAnon(head)) {
945 			pr_err("Memory failure: %#lx: non anonymous thp\n",
946 				page_to_pfn(page));
947 			return 0;
948 		}
949 	}
950 
951 	if (get_page_unless_zero(head)) {
952 		if (head == compound_head(page))
953 			return 1;
954 
955 		pr_info("Memory failure: %#lx cannot catch tail\n",
956 			page_to_pfn(page));
957 		put_page(head);
958 	}
959 
960 	return 0;
961 }
962 EXPORT_SYMBOL_GPL(get_hwpoison_page);
963 
964 /*
965  * Do all that is necessary to remove user space mappings. Unmap
966  * the pages and send SIGBUS to the processes if the data was dirty.
967  */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int flags,struct page ** hpagep)968 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
969 				  int flags, struct page **hpagep)
970 {
971 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
972 	struct address_space *mapping;
973 	LIST_HEAD(tokill);
974 	bool unmap_success;
975 	int kill = 1, forcekill;
976 	struct page *hpage = *hpagep;
977 	bool mlocked = PageMlocked(hpage);
978 
979 	/*
980 	 * Here we are interested only in user-mapped pages, so skip any
981 	 * other types of pages.
982 	 */
983 	if (PageReserved(p) || PageSlab(p))
984 		return true;
985 	if (!(PageLRU(hpage) || PageHuge(p)))
986 		return true;
987 
988 	/*
989 	 * This check implies we don't kill processes if their pages
990 	 * are in the swap cache early. Those are always late kills.
991 	 */
992 	if (!page_mapped(hpage))
993 		return true;
994 
995 	if (PageKsm(p)) {
996 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
997 		return false;
998 	}
999 
1000 	if (PageSwapCache(p)) {
1001 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1002 			pfn);
1003 		ttu |= TTU_IGNORE_HWPOISON;
1004 	}
1005 
1006 	/*
1007 	 * Propagate the dirty bit from PTEs to struct page first, because we
1008 	 * need this to decide if we should kill or just drop the page.
1009 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1010 	 * be called inside page lock (it's recommended but not enforced).
1011 	 */
1012 	mapping = page_mapping(hpage);
1013 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1014 	    mapping_cap_writeback_dirty(mapping)) {
1015 		if (page_mkclean(hpage)) {
1016 			SetPageDirty(hpage);
1017 		} else {
1018 			kill = 0;
1019 			ttu |= TTU_IGNORE_HWPOISON;
1020 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1021 				pfn);
1022 		}
1023 	}
1024 
1025 	/*
1026 	 * First collect all the processes that have the page
1027 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1028 	 * because ttu takes the rmap data structures down.
1029 	 *
1030 	 * Error handling: We ignore errors here because
1031 	 * there's nothing that can be done.
1032 	 */
1033 	if (kill)
1034 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1035 
1036 	unmap_success = try_to_unmap(hpage, ttu);
1037 	if (!unmap_success)
1038 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1039 		       pfn, page_mapcount(hpage));
1040 
1041 	/*
1042 	 * try_to_unmap() might put mlocked page in lru cache, so call
1043 	 * shake_page() again to ensure that it's flushed.
1044 	 */
1045 	if (mlocked)
1046 		shake_page(hpage, 0);
1047 
1048 	/*
1049 	 * Now that the dirty bit has been propagated to the
1050 	 * struct page and all unmaps done we can decide if
1051 	 * killing is needed or not.  Only kill when the page
1052 	 * was dirty or the process is not restartable,
1053 	 * otherwise the tokill list is merely
1054 	 * freed.  When there was a problem unmapping earlier
1055 	 * use a more force-full uncatchable kill to prevent
1056 	 * any accesses to the poisoned memory.
1057 	 */
1058 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1059 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1060 
1061 	return unmap_success;
1062 }
1063 
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1064 static int identify_page_state(unsigned long pfn, struct page *p,
1065 				unsigned long page_flags)
1066 {
1067 	struct page_state *ps;
1068 
1069 	/*
1070 	 * The first check uses the current page flags which may not have any
1071 	 * relevant information. The second check with the saved page flags is
1072 	 * carried out only if the first check can't determine the page status.
1073 	 */
1074 	for (ps = error_states;; ps++)
1075 		if ((p->flags & ps->mask) == ps->res)
1076 			break;
1077 
1078 	page_flags |= (p->flags & (1UL << PG_dirty));
1079 
1080 	if (!ps->mask)
1081 		for (ps = error_states;; ps++)
1082 			if ((page_flags & ps->mask) == ps->res)
1083 				break;
1084 	return page_action(ps, p, pfn);
1085 }
1086 
memory_failure_hugetlb(unsigned long pfn,int flags)1087 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1088 {
1089 	struct page *p = pfn_to_page(pfn);
1090 	struct page *head = compound_head(p);
1091 	int res;
1092 	unsigned long page_flags;
1093 
1094 	if (TestSetPageHWPoison(head)) {
1095 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1096 		       pfn);
1097 		return 0;
1098 	}
1099 
1100 	num_poisoned_pages_inc();
1101 
1102 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1103 		/*
1104 		 * Check "filter hit" and "race with other subpage."
1105 		 */
1106 		lock_page(head);
1107 		if (PageHWPoison(head)) {
1108 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1109 			    || (p != head && TestSetPageHWPoison(head))) {
1110 				num_poisoned_pages_dec();
1111 				unlock_page(head);
1112 				return 0;
1113 			}
1114 		}
1115 		unlock_page(head);
1116 		dissolve_free_huge_page(p);
1117 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1118 		return 0;
1119 	}
1120 
1121 	lock_page(head);
1122 	page_flags = head->flags;
1123 
1124 	if (!PageHWPoison(head)) {
1125 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1126 		num_poisoned_pages_dec();
1127 		unlock_page(head);
1128 		put_hwpoison_page(head);
1129 		return 0;
1130 	}
1131 
1132 	/*
1133 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1134 	 * simply disable it. In order to make it work properly, we need
1135 	 * make sure that:
1136 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1137 	 *    entry properly works, and
1138 	 *  - other mm code walking over page table is aware of pud-aligned
1139 	 *    hwpoison entries.
1140 	 */
1141 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1142 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1143 		res = -EBUSY;
1144 		goto out;
1145 	}
1146 
1147 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1148 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1149 		res = -EBUSY;
1150 		goto out;
1151 	}
1152 
1153 	res = identify_page_state(pfn, p, page_flags);
1154 out:
1155 	unlock_page(head);
1156 	return res;
1157 }
1158 
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)1159 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1160 		struct dev_pagemap *pgmap)
1161 {
1162 	struct page *page = pfn_to_page(pfn);
1163 	const bool unmap_success = true;
1164 	unsigned long size = 0;
1165 	struct to_kill *tk;
1166 	LIST_HEAD(tokill);
1167 	int rc = -EBUSY;
1168 	loff_t start;
1169 
1170 	/*
1171 	 * Prevent the inode from being freed while we are interrogating
1172 	 * the address_space, typically this would be handled by
1173 	 * lock_page(), but dax pages do not use the page lock. This
1174 	 * also prevents changes to the mapping of this pfn until
1175 	 * poison signaling is complete.
1176 	 */
1177 	if (!dax_lock_mapping_entry(page))
1178 		goto out;
1179 
1180 	if (hwpoison_filter(page)) {
1181 		rc = 0;
1182 		goto unlock;
1183 	}
1184 
1185 	switch (pgmap->type) {
1186 	case MEMORY_DEVICE_PRIVATE:
1187 	case MEMORY_DEVICE_PUBLIC:
1188 		/*
1189 		 * TODO: Handle HMM pages which may need coordination
1190 		 * with device-side memory.
1191 		 */
1192 		goto unlock;
1193 	default:
1194 		break;
1195 	}
1196 
1197 	/*
1198 	 * Use this flag as an indication that the dax page has been
1199 	 * remapped UC to prevent speculative consumption of poison.
1200 	 */
1201 	SetPageHWPoison(page);
1202 
1203 	/*
1204 	 * Unlike System-RAM there is no possibility to swap in a
1205 	 * different physical page at a given virtual address, so all
1206 	 * userspace consumption of ZONE_DEVICE memory necessitates
1207 	 * SIGBUS (i.e. MF_MUST_KILL)
1208 	 */
1209 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1210 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1211 
1212 	list_for_each_entry(tk, &tokill, nd)
1213 		if (tk->size_shift)
1214 			size = max(size, 1UL << tk->size_shift);
1215 	if (size) {
1216 		/*
1217 		 * Unmap the largest mapping to avoid breaking up
1218 		 * device-dax mappings which are constant size. The
1219 		 * actual size of the mapping being torn down is
1220 		 * communicated in siginfo, see kill_proc()
1221 		 */
1222 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1223 		unmap_mapping_range(page->mapping, start, start + size, 0);
1224 	}
1225 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1226 	rc = 0;
1227 unlock:
1228 	dax_unlock_mapping_entry(page);
1229 out:
1230 	/* drop pgmap ref acquired in caller */
1231 	put_dev_pagemap(pgmap);
1232 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1233 	return rc;
1234 }
1235 
1236 /**
1237  * memory_failure - Handle memory failure of a page.
1238  * @pfn: Page Number of the corrupted page
1239  * @flags: fine tune action taken
1240  *
1241  * This function is called by the low level machine check code
1242  * of an architecture when it detects hardware memory corruption
1243  * of a page. It tries its best to recover, which includes
1244  * dropping pages, killing processes etc.
1245  *
1246  * The function is primarily of use for corruptions that
1247  * happen outside the current execution context (e.g. when
1248  * detected by a background scrubber)
1249  *
1250  * Must run in process context (e.g. a work queue) with interrupts
1251  * enabled and no spinlocks hold.
1252  */
memory_failure(unsigned long pfn,int flags)1253 int memory_failure(unsigned long pfn, int flags)
1254 {
1255 	struct page *p;
1256 	struct page *hpage;
1257 	struct page *orig_head;
1258 	struct dev_pagemap *pgmap;
1259 	int res;
1260 	unsigned long page_flags;
1261 
1262 	if (!sysctl_memory_failure_recovery)
1263 		panic("Memory failure on page %lx", pfn);
1264 
1265 	p = pfn_to_online_page(pfn);
1266 	if (!p) {
1267 		if (pfn_valid(pfn)) {
1268 			pgmap = get_dev_pagemap(pfn, NULL);
1269 			if (pgmap)
1270 				return memory_failure_dev_pagemap(pfn, flags,
1271 								  pgmap);
1272 		}
1273 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1274 			pfn);
1275 		return -ENXIO;
1276 	}
1277 
1278 	if (PageHuge(p))
1279 		return memory_failure_hugetlb(pfn, flags);
1280 	if (TestSetPageHWPoison(p)) {
1281 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1282 			pfn);
1283 		return 0;
1284 	}
1285 
1286 	orig_head = hpage = compound_head(p);
1287 	num_poisoned_pages_inc();
1288 
1289 	/*
1290 	 * We need/can do nothing about count=0 pages.
1291 	 * 1) it's a free page, and therefore in safe hand:
1292 	 *    prep_new_page() will be the gate keeper.
1293 	 * 2) it's part of a non-compound high order page.
1294 	 *    Implies some kernel user: cannot stop them from
1295 	 *    R/W the page; let's pray that the page has been
1296 	 *    used and will be freed some time later.
1297 	 * In fact it's dangerous to directly bump up page count from 0,
1298 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1299 	 */
1300 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1301 		if (is_free_buddy_page(p)) {
1302 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1303 			return 0;
1304 		} else {
1305 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1306 			return -EBUSY;
1307 		}
1308 	}
1309 
1310 	if (PageTransHuge(hpage)) {
1311 		lock_page(p);
1312 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1313 			unlock_page(p);
1314 			if (!PageAnon(p))
1315 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1316 					pfn);
1317 			else
1318 				pr_err("Memory failure: %#lx: thp split failed\n",
1319 					pfn);
1320 			if (TestClearPageHWPoison(p))
1321 				num_poisoned_pages_dec();
1322 			put_hwpoison_page(p);
1323 			return -EBUSY;
1324 		}
1325 		unlock_page(p);
1326 		VM_BUG_ON_PAGE(!page_count(p), p);
1327 		hpage = compound_head(p);
1328 	}
1329 
1330 	/*
1331 	 * We ignore non-LRU pages for good reasons.
1332 	 * - PG_locked is only well defined for LRU pages and a few others
1333 	 * - to avoid races with __SetPageLocked()
1334 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1335 	 * The check (unnecessarily) ignores LRU pages being isolated and
1336 	 * walked by the page reclaim code, however that's not a big loss.
1337 	 */
1338 	shake_page(p, 0);
1339 	/* shake_page could have turned it free. */
1340 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1341 		if (flags & MF_COUNT_INCREASED)
1342 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1343 		else
1344 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1345 		return 0;
1346 	}
1347 
1348 	lock_page(p);
1349 
1350 	/*
1351 	 * The page could have changed compound pages during the locking.
1352 	 * If this happens just bail out.
1353 	 */
1354 	if (PageCompound(p) && compound_head(p) != orig_head) {
1355 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1356 		res = -EBUSY;
1357 		goto out;
1358 	}
1359 
1360 	/*
1361 	 * We use page flags to determine what action should be taken, but
1362 	 * the flags can be modified by the error containment action.  One
1363 	 * example is an mlocked page, where PG_mlocked is cleared by
1364 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1365 	 * correctly, we save a copy of the page flags at this time.
1366 	 */
1367 	if (PageHuge(p))
1368 		page_flags = hpage->flags;
1369 	else
1370 		page_flags = p->flags;
1371 
1372 	/*
1373 	 * unpoison always clear PG_hwpoison inside page lock
1374 	 */
1375 	if (!PageHWPoison(p)) {
1376 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1377 		num_poisoned_pages_dec();
1378 		unlock_page(p);
1379 		put_hwpoison_page(p);
1380 		return 0;
1381 	}
1382 	if (hwpoison_filter(p)) {
1383 		if (TestClearPageHWPoison(p))
1384 			num_poisoned_pages_dec();
1385 		unlock_page(p);
1386 		put_hwpoison_page(p);
1387 		return 0;
1388 	}
1389 
1390 	if (!PageTransTail(p) && !PageLRU(p))
1391 		goto identify_page_state;
1392 
1393 	/*
1394 	 * It's very difficult to mess with pages currently under IO
1395 	 * and in many cases impossible, so we just avoid it here.
1396 	 */
1397 	wait_on_page_writeback(p);
1398 
1399 	/*
1400 	 * Now take care of user space mappings.
1401 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1402 	 *
1403 	 * When the raw error page is thp tail page, hpage points to the raw
1404 	 * page after thp split.
1405 	 */
1406 	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1407 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1408 		res = -EBUSY;
1409 		goto out;
1410 	}
1411 
1412 	/*
1413 	 * Torn down by someone else?
1414 	 */
1415 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1416 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1417 		res = -EBUSY;
1418 		goto out;
1419 	}
1420 
1421 identify_page_state:
1422 	res = identify_page_state(pfn, p, page_flags);
1423 out:
1424 	unlock_page(p);
1425 	return res;
1426 }
1427 EXPORT_SYMBOL_GPL(memory_failure);
1428 
1429 #define MEMORY_FAILURE_FIFO_ORDER	4
1430 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1431 
1432 struct memory_failure_entry {
1433 	unsigned long pfn;
1434 	int flags;
1435 };
1436 
1437 struct memory_failure_cpu {
1438 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1439 		      MEMORY_FAILURE_FIFO_SIZE);
1440 	spinlock_t lock;
1441 	struct work_struct work;
1442 };
1443 
1444 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1445 
1446 /**
1447  * memory_failure_queue - Schedule handling memory failure of a page.
1448  * @pfn: Page Number of the corrupted page
1449  * @flags: Flags for memory failure handling
1450  *
1451  * This function is called by the low level hardware error handler
1452  * when it detects hardware memory corruption of a page. It schedules
1453  * the recovering of error page, including dropping pages, killing
1454  * processes etc.
1455  *
1456  * The function is primarily of use for corruptions that
1457  * happen outside the current execution context (e.g. when
1458  * detected by a background scrubber)
1459  *
1460  * Can run in IRQ context.
1461  */
memory_failure_queue(unsigned long pfn,int flags)1462 void memory_failure_queue(unsigned long pfn, int flags)
1463 {
1464 	struct memory_failure_cpu *mf_cpu;
1465 	unsigned long proc_flags;
1466 	struct memory_failure_entry entry = {
1467 		.pfn =		pfn,
1468 		.flags =	flags,
1469 	};
1470 
1471 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1472 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1473 	if (kfifo_put(&mf_cpu->fifo, entry))
1474 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1475 	else
1476 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1477 		       pfn);
1478 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1479 	put_cpu_var(memory_failure_cpu);
1480 }
1481 EXPORT_SYMBOL_GPL(memory_failure_queue);
1482 
memory_failure_work_func(struct work_struct * work)1483 static void memory_failure_work_func(struct work_struct *work)
1484 {
1485 	struct memory_failure_cpu *mf_cpu;
1486 	struct memory_failure_entry entry = { 0, };
1487 	unsigned long proc_flags;
1488 	int gotten;
1489 
1490 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1491 	for (;;) {
1492 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1493 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1494 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1495 		if (!gotten)
1496 			break;
1497 		if (entry.flags & MF_SOFT_OFFLINE)
1498 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1499 		else
1500 			memory_failure(entry.pfn, entry.flags);
1501 	}
1502 }
1503 
memory_failure_init(void)1504 static int __init memory_failure_init(void)
1505 {
1506 	struct memory_failure_cpu *mf_cpu;
1507 	int cpu;
1508 
1509 	for_each_possible_cpu(cpu) {
1510 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1511 		spin_lock_init(&mf_cpu->lock);
1512 		INIT_KFIFO(mf_cpu->fifo);
1513 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1514 	}
1515 
1516 	return 0;
1517 }
1518 core_initcall(memory_failure_init);
1519 
1520 #define unpoison_pr_info(fmt, pfn, rs)			\
1521 ({							\
1522 	if (__ratelimit(rs))				\
1523 		pr_info(fmt, pfn);			\
1524 })
1525 
1526 /**
1527  * unpoison_memory - Unpoison a previously poisoned page
1528  * @pfn: Page number of the to be unpoisoned page
1529  *
1530  * Software-unpoison a page that has been poisoned by
1531  * memory_failure() earlier.
1532  *
1533  * This is only done on the software-level, so it only works
1534  * for linux injected failures, not real hardware failures
1535  *
1536  * Returns 0 for success, otherwise -errno.
1537  */
unpoison_memory(unsigned long pfn)1538 int unpoison_memory(unsigned long pfn)
1539 {
1540 	struct page *page;
1541 	struct page *p;
1542 	int freeit = 0;
1543 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1544 					DEFAULT_RATELIMIT_BURST);
1545 
1546 	if (!pfn_valid(pfn))
1547 		return -ENXIO;
1548 
1549 	p = pfn_to_page(pfn);
1550 	page = compound_head(p);
1551 
1552 	if (!PageHWPoison(p)) {
1553 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1554 				 pfn, &unpoison_rs);
1555 		return 0;
1556 	}
1557 
1558 	if (page_count(page) > 1) {
1559 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1560 				 pfn, &unpoison_rs);
1561 		return 0;
1562 	}
1563 
1564 	if (page_mapped(page)) {
1565 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1566 				 pfn, &unpoison_rs);
1567 		return 0;
1568 	}
1569 
1570 	if (page_mapping(page)) {
1571 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1572 				 pfn, &unpoison_rs);
1573 		return 0;
1574 	}
1575 
1576 	/*
1577 	 * unpoison_memory() can encounter thp only when the thp is being
1578 	 * worked by memory_failure() and the page lock is not held yet.
1579 	 * In such case, we yield to memory_failure() and make unpoison fail.
1580 	 */
1581 	if (!PageHuge(page) && PageTransHuge(page)) {
1582 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1583 				 pfn, &unpoison_rs);
1584 		return 0;
1585 	}
1586 
1587 	if (!get_hwpoison_page(p)) {
1588 		if (TestClearPageHWPoison(p))
1589 			num_poisoned_pages_dec();
1590 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1591 				 pfn, &unpoison_rs);
1592 		return 0;
1593 	}
1594 
1595 	lock_page(page);
1596 	/*
1597 	 * This test is racy because PG_hwpoison is set outside of page lock.
1598 	 * That's acceptable because that won't trigger kernel panic. Instead,
1599 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1600 	 * the free buddy page pool.
1601 	 */
1602 	if (TestClearPageHWPoison(page)) {
1603 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1604 				 pfn, &unpoison_rs);
1605 		num_poisoned_pages_dec();
1606 		freeit = 1;
1607 	}
1608 	unlock_page(page);
1609 
1610 	put_hwpoison_page(page);
1611 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1612 		put_hwpoison_page(page);
1613 
1614 	return 0;
1615 }
1616 EXPORT_SYMBOL(unpoison_memory);
1617 
new_page(struct page * p,unsigned long private)1618 static struct page *new_page(struct page *p, unsigned long private)
1619 {
1620 	int nid = page_to_nid(p);
1621 
1622 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1623 }
1624 
1625 /*
1626  * Safely get reference count of an arbitrary page.
1627  * Returns 0 for a free page, -EIO for a zero refcount page
1628  * that is not free, and 1 for any other page type.
1629  * For 1 the page is returned with increased page count, otherwise not.
1630  */
__get_any_page(struct page * p,unsigned long pfn,int flags)1631 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1632 {
1633 	int ret;
1634 
1635 	if (flags & MF_COUNT_INCREASED)
1636 		return 1;
1637 
1638 	/*
1639 	 * When the target page is a free hugepage, just remove it
1640 	 * from free hugepage list.
1641 	 */
1642 	if (!get_hwpoison_page(p)) {
1643 		if (PageHuge(p)) {
1644 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1645 			ret = 0;
1646 		} else if (is_free_buddy_page(p)) {
1647 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1648 			ret = 0;
1649 		} else {
1650 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1651 				__func__, pfn, p->flags);
1652 			ret = -EIO;
1653 		}
1654 	} else {
1655 		/* Not a free page */
1656 		ret = 1;
1657 	}
1658 	return ret;
1659 }
1660 
get_any_page(struct page * page,unsigned long pfn,int flags)1661 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1662 {
1663 	int ret = __get_any_page(page, pfn, flags);
1664 
1665 	if (ret == 1 && !PageHuge(page) &&
1666 	    !PageLRU(page) && !__PageMovable(page)) {
1667 		/*
1668 		 * Try to free it.
1669 		 */
1670 		put_hwpoison_page(page);
1671 		shake_page(page, 1);
1672 
1673 		/*
1674 		 * Did it turn free?
1675 		 */
1676 		ret = __get_any_page(page, pfn, 0);
1677 		if (ret == 1 && !PageLRU(page)) {
1678 			/* Drop page reference which is from __get_any_page() */
1679 			put_hwpoison_page(page);
1680 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1681 				pfn, page->flags, &page->flags);
1682 			return -EIO;
1683 		}
1684 	}
1685 	return ret;
1686 }
1687 
soft_offline_huge_page(struct page * page,int flags)1688 static int soft_offline_huge_page(struct page *page, int flags)
1689 {
1690 	int ret;
1691 	unsigned long pfn = page_to_pfn(page);
1692 	struct page *hpage = compound_head(page);
1693 	LIST_HEAD(pagelist);
1694 
1695 	/*
1696 	 * This double-check of PageHWPoison is to avoid the race with
1697 	 * memory_failure(). See also comment in __soft_offline_page().
1698 	 */
1699 	lock_page(hpage);
1700 	if (PageHWPoison(hpage)) {
1701 		unlock_page(hpage);
1702 		put_hwpoison_page(hpage);
1703 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1704 		return -EBUSY;
1705 	}
1706 	unlock_page(hpage);
1707 
1708 	ret = isolate_huge_page(hpage, &pagelist);
1709 	/*
1710 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1711 	 * so need to drop one here.
1712 	 */
1713 	put_hwpoison_page(hpage);
1714 	if (!ret) {
1715 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1716 		return -EBUSY;
1717 	}
1718 
1719 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1720 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1721 	if (ret) {
1722 		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1723 			pfn, ret, page->flags, &page->flags);
1724 		if (!list_empty(&pagelist))
1725 			putback_movable_pages(&pagelist);
1726 		if (ret > 0)
1727 			ret = -EIO;
1728 	} else {
1729 		/*
1730 		 * We set PG_hwpoison only when the migration source hugepage
1731 		 * was successfully dissolved, because otherwise hwpoisoned
1732 		 * hugepage remains on free hugepage list, then userspace will
1733 		 * find it as SIGBUS by allocation failure. That's not expected
1734 		 * in soft-offlining.
1735 		 */
1736 		ret = dissolve_free_huge_page(page);
1737 		if (!ret) {
1738 			if (set_hwpoison_free_buddy_page(page))
1739 				num_poisoned_pages_inc();
1740 			else
1741 				ret = -EBUSY;
1742 		}
1743 	}
1744 	return ret;
1745 }
1746 
__soft_offline_page(struct page * page,int flags)1747 static int __soft_offline_page(struct page *page, int flags)
1748 {
1749 	int ret;
1750 	unsigned long pfn = page_to_pfn(page);
1751 
1752 	/*
1753 	 * Check PageHWPoison again inside page lock because PageHWPoison
1754 	 * is set by memory_failure() outside page lock. Note that
1755 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1756 	 * so there's no race between soft_offline_page() and memory_failure().
1757 	 */
1758 	lock_page(page);
1759 	wait_on_page_writeback(page);
1760 	if (PageHWPoison(page)) {
1761 		unlock_page(page);
1762 		put_hwpoison_page(page);
1763 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1764 		return -EBUSY;
1765 	}
1766 	/*
1767 	 * Try to invalidate first. This should work for
1768 	 * non dirty unmapped page cache pages.
1769 	 */
1770 	ret = invalidate_inode_page(page);
1771 	unlock_page(page);
1772 	/*
1773 	 * RED-PEN would be better to keep it isolated here, but we
1774 	 * would need to fix isolation locking first.
1775 	 */
1776 	if (ret == 1) {
1777 		put_hwpoison_page(page);
1778 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1779 		SetPageHWPoison(page);
1780 		num_poisoned_pages_inc();
1781 		return 0;
1782 	}
1783 
1784 	/*
1785 	 * Simple invalidation didn't work.
1786 	 * Try to migrate to a new page instead. migrate.c
1787 	 * handles a large number of cases for us.
1788 	 */
1789 	if (PageLRU(page))
1790 		ret = isolate_lru_page(page);
1791 	else
1792 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1793 	/*
1794 	 * Drop page reference which is came from get_any_page()
1795 	 * successful isolate_lru_page() already took another one.
1796 	 */
1797 	put_hwpoison_page(page);
1798 	if (!ret) {
1799 		LIST_HEAD(pagelist);
1800 		/*
1801 		 * After isolated lru page, the PageLRU will be cleared,
1802 		 * so use !__PageMovable instead for LRU page's mapping
1803 		 * cannot have PAGE_MAPPING_MOVABLE.
1804 		 */
1805 		if (!__PageMovable(page))
1806 			inc_node_page_state(page, NR_ISOLATED_ANON +
1807 						page_is_file_cache(page));
1808 		list_add(&page->lru, &pagelist);
1809 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1810 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1811 		if (ret) {
1812 			if (!list_empty(&pagelist))
1813 				putback_movable_pages(&pagelist);
1814 
1815 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1816 				pfn, ret, page->flags, &page->flags);
1817 			if (ret > 0)
1818 				ret = -EIO;
1819 		}
1820 	} else {
1821 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1822 			pfn, ret, page_count(page), page->flags, &page->flags);
1823 	}
1824 	return ret;
1825 }
1826 
soft_offline_in_use_page(struct page * page,int flags)1827 static int soft_offline_in_use_page(struct page *page, int flags)
1828 {
1829 	int ret;
1830 	int mt;
1831 	struct page *hpage = compound_head(page);
1832 
1833 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1834 		lock_page(page);
1835 		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1836 			unlock_page(page);
1837 			if (!PageAnon(page))
1838 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1839 			else
1840 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1841 			put_hwpoison_page(page);
1842 			return -EBUSY;
1843 		}
1844 		unlock_page(page);
1845 	}
1846 
1847 	/*
1848 	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1849 	 * to free list immediately (not via pcplist) when released after
1850 	 * successful page migration. Otherwise we can't guarantee that the
1851 	 * page is really free after put_page() returns, so
1852 	 * set_hwpoison_free_buddy_page() highly likely fails.
1853 	 */
1854 	mt = get_pageblock_migratetype(page);
1855 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1856 	if (PageHuge(page))
1857 		ret = soft_offline_huge_page(page, flags);
1858 	else
1859 		ret = __soft_offline_page(page, flags);
1860 	set_pageblock_migratetype(page, mt);
1861 	return ret;
1862 }
1863 
soft_offline_free_page(struct page * page)1864 static int soft_offline_free_page(struct page *page)
1865 {
1866 	int rc = dissolve_free_huge_page(page);
1867 
1868 	if (!rc) {
1869 		if (set_hwpoison_free_buddy_page(page))
1870 			num_poisoned_pages_inc();
1871 		else
1872 			rc = -EBUSY;
1873 	}
1874 	return rc;
1875 }
1876 
1877 /**
1878  * soft_offline_page - Soft offline a page.
1879  * @page: page to offline
1880  * @flags: flags. Same as memory_failure().
1881  *
1882  * Returns 0 on success, otherwise negated errno.
1883  *
1884  * Soft offline a page, by migration or invalidation,
1885  * without killing anything. This is for the case when
1886  * a page is not corrupted yet (so it's still valid to access),
1887  * but has had a number of corrected errors and is better taken
1888  * out.
1889  *
1890  * The actual policy on when to do that is maintained by
1891  * user space.
1892  *
1893  * This should never impact any application or cause data loss,
1894  * however it might take some time.
1895  *
1896  * This is not a 100% solution for all memory, but tries to be
1897  * ``good enough'' for the majority of memory.
1898  */
soft_offline_page(struct page * page,int flags)1899 int soft_offline_page(struct page *page, int flags)
1900 {
1901 	int ret;
1902 	unsigned long pfn = page_to_pfn(page);
1903 
1904 	if (is_zone_device_page(page)) {
1905 		pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
1906 				pfn);
1907 		if (flags & MF_COUNT_INCREASED)
1908 			put_page(page);
1909 		return -EIO;
1910 	}
1911 
1912 	if (PageHWPoison(page)) {
1913 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1914 		if (flags & MF_COUNT_INCREASED)
1915 			put_hwpoison_page(page);
1916 		return -EBUSY;
1917 	}
1918 
1919 	get_online_mems();
1920 	ret = get_any_page(page, pfn, flags);
1921 	put_online_mems();
1922 
1923 	if (ret > 0)
1924 		ret = soft_offline_in_use_page(page, flags);
1925 	else if (ret == 0)
1926 		ret = soft_offline_free_page(page);
1927 
1928 	return ret;
1929 }
1930