• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54 
55 #include "internal.h"
56 
57 #ifndef arch_mmap_check
58 #define arch_mmap_check(addr, len, flags)	(0)
59 #endif
60 
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71 
72 static bool ignore_rlimit_data;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
74 
75 static void unmap_region(struct mm_struct *mm,
76 		struct vm_area_struct *vma, struct vm_area_struct *prev,
77 		unsigned long start, unsigned long end);
78 
79 /* description of effects of mapping type and prot in current implementation.
80  * this is due to the limited x86 page protection hardware.  The expected
81  * behavior is in parens:
82  *
83  * map_type	prot
84  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
85  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
86  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
87  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
88  *
89  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
90  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
91  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
92  */
93 pgprot_t protection_map[16] __ro_after_init = {
94 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
95 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
96 };
97 
98 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)99 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
100 {
101 	return prot;
102 }
103 #endif
104 
vm_get_page_prot(unsigned long vm_flags)105 pgprot_t vm_get_page_prot(unsigned long vm_flags)
106 {
107 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
108 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
109 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
110 
111 	return arch_filter_pgprot(ret);
112 }
113 EXPORT_SYMBOL(vm_get_page_prot);
114 
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)115 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
116 {
117 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
118 }
119 
120 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)121 void vma_set_page_prot(struct vm_area_struct *vma)
122 {
123 	unsigned long vm_flags = vma->vm_flags;
124 	pgprot_t vm_page_prot;
125 
126 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
127 	if (vma_wants_writenotify(vma, vm_page_prot)) {
128 		vm_flags &= ~VM_SHARED;
129 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
130 	}
131 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
132 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
133 }
134 
135 /*
136  * Requires inode->i_mapping->i_mmap_rwsem
137  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)138 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
139 		struct file *file, struct address_space *mapping)
140 {
141 	if (vma->vm_flags & VM_DENYWRITE)
142 		atomic_inc(&file_inode(file)->i_writecount);
143 	if (vma->vm_flags & VM_SHARED)
144 		mapping_unmap_writable(mapping);
145 
146 	flush_dcache_mmap_lock(mapping);
147 	vma_interval_tree_remove(vma, &mapping->i_mmap);
148 	flush_dcache_mmap_unlock(mapping);
149 }
150 
151 /*
152  * Unlink a file-based vm structure from its interval tree, to hide
153  * vma from rmap and vmtruncate before freeing its page tables.
154  */
unlink_file_vma(struct vm_area_struct * vma)155 void unlink_file_vma(struct vm_area_struct *vma)
156 {
157 	struct file *file = vma->vm_file;
158 
159 	if (file) {
160 		struct address_space *mapping = file->f_mapping;
161 		i_mmap_lock_write(mapping);
162 		__remove_shared_vm_struct(vma, file, mapping);
163 		i_mmap_unlock_write(mapping);
164 	}
165 }
166 
167 /*
168  * Close a vm structure and free it, returning the next.
169  */
remove_vma(struct vm_area_struct * vma)170 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
171 {
172 	struct vm_area_struct *next = vma->vm_next;
173 
174 	might_sleep();
175 	if (vma->vm_ops && vma->vm_ops->close)
176 		vma->vm_ops->close(vma);
177 	if (vma->vm_file)
178 		fput(vma->vm_file);
179 	mpol_put(vma_policy(vma));
180 	vm_area_free(vma);
181 	return next;
182 }
183 
184 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
185 		struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)186 SYSCALL_DEFINE1(brk, unsigned long, brk)
187 {
188 	unsigned long retval;
189 	unsigned long newbrk, oldbrk;
190 	struct mm_struct *mm = current->mm;
191 	struct vm_area_struct *next;
192 	unsigned long min_brk;
193 	bool populate;
194 	LIST_HEAD(uf);
195 
196 	if (down_write_killable(&mm->mmap_sem))
197 		return -EINTR;
198 
199 #ifdef CONFIG_COMPAT_BRK
200 	/*
201 	 * CONFIG_COMPAT_BRK can still be overridden by setting
202 	 * randomize_va_space to 2, which will still cause mm->start_brk
203 	 * to be arbitrarily shifted
204 	 */
205 	if (current->brk_randomized)
206 		min_brk = mm->start_brk;
207 	else
208 		min_brk = mm->end_data;
209 #else
210 	min_brk = mm->start_brk;
211 #endif
212 	if (brk < min_brk)
213 		goto out;
214 
215 	/*
216 	 * Check against rlimit here. If this check is done later after the test
217 	 * of oldbrk with newbrk then it can escape the test and let the data
218 	 * segment grow beyond its set limit the in case where the limit is
219 	 * not page aligned -Ram Gupta
220 	 */
221 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
222 			      mm->end_data, mm->start_data))
223 		goto out;
224 
225 	newbrk = PAGE_ALIGN(brk);
226 	oldbrk = PAGE_ALIGN(mm->brk);
227 	if (oldbrk == newbrk)
228 		goto set_brk;
229 
230 	/* Always allow shrinking brk. */
231 	if (brk <= mm->brk) {
232 		if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
233 			goto set_brk;
234 		goto out;
235 	}
236 
237 	/* Check against existing mmap mappings. */
238 	next = find_vma(mm, oldbrk);
239 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
240 		goto out;
241 
242 	/* Ok, looks good - let it rip. */
243 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
244 		goto out;
245 
246 set_brk:
247 	mm->brk = brk;
248 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
249 	up_write(&mm->mmap_sem);
250 	userfaultfd_unmap_complete(mm, &uf);
251 	if (populate)
252 		mm_populate(oldbrk, newbrk - oldbrk);
253 	return brk;
254 
255 out:
256 	retval = mm->brk;
257 	up_write(&mm->mmap_sem);
258 	return retval;
259 }
260 
vma_compute_subtree_gap(struct vm_area_struct * vma)261 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
262 {
263 	unsigned long max, prev_end, subtree_gap;
264 
265 	/*
266 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
267 	 * allow two stack_guard_gaps between them here, and when choosing
268 	 * an unmapped area; whereas when expanding we only require one.
269 	 * That's a little inconsistent, but keeps the code here simpler.
270 	 */
271 	max = vm_start_gap(vma);
272 	if (vma->vm_prev) {
273 		prev_end = vm_end_gap(vma->vm_prev);
274 		if (max > prev_end)
275 			max -= prev_end;
276 		else
277 			max = 0;
278 	}
279 	if (vma->vm_rb.rb_left) {
280 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
281 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
282 		if (subtree_gap > max)
283 			max = subtree_gap;
284 	}
285 	if (vma->vm_rb.rb_right) {
286 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
287 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
288 		if (subtree_gap > max)
289 			max = subtree_gap;
290 	}
291 	return max;
292 }
293 
294 #ifdef CONFIG_DEBUG_VM_RB
browse_rb(struct mm_struct * mm)295 static int browse_rb(struct mm_struct *mm)
296 {
297 	struct rb_root *root = &mm->mm_rb;
298 	int i = 0, j, bug = 0;
299 	struct rb_node *nd, *pn = NULL;
300 	unsigned long prev = 0, pend = 0;
301 
302 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
303 		struct vm_area_struct *vma;
304 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
305 		if (vma->vm_start < prev) {
306 			pr_emerg("vm_start %lx < prev %lx\n",
307 				  vma->vm_start, prev);
308 			bug = 1;
309 		}
310 		if (vma->vm_start < pend) {
311 			pr_emerg("vm_start %lx < pend %lx\n",
312 				  vma->vm_start, pend);
313 			bug = 1;
314 		}
315 		if (vma->vm_start > vma->vm_end) {
316 			pr_emerg("vm_start %lx > vm_end %lx\n",
317 				  vma->vm_start, vma->vm_end);
318 			bug = 1;
319 		}
320 		spin_lock(&mm->page_table_lock);
321 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
322 			pr_emerg("free gap %lx, correct %lx\n",
323 			       vma->rb_subtree_gap,
324 			       vma_compute_subtree_gap(vma));
325 			bug = 1;
326 		}
327 		spin_unlock(&mm->page_table_lock);
328 		i++;
329 		pn = nd;
330 		prev = vma->vm_start;
331 		pend = vma->vm_end;
332 	}
333 	j = 0;
334 	for (nd = pn; nd; nd = rb_prev(nd))
335 		j++;
336 	if (i != j) {
337 		pr_emerg("backwards %d, forwards %d\n", j, i);
338 		bug = 1;
339 	}
340 	return bug ? -1 : i;
341 }
342 
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)343 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
344 {
345 	struct rb_node *nd;
346 
347 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
348 		struct vm_area_struct *vma;
349 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
350 		VM_BUG_ON_VMA(vma != ignore &&
351 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
352 			vma);
353 	}
354 }
355 
validate_mm(struct mm_struct * mm)356 static void validate_mm(struct mm_struct *mm)
357 {
358 	int bug = 0;
359 	int i = 0;
360 	unsigned long highest_address = 0;
361 	struct vm_area_struct *vma = mm->mmap;
362 
363 	while (vma) {
364 		struct anon_vma *anon_vma = vma->anon_vma;
365 		struct anon_vma_chain *avc;
366 
367 		if (anon_vma) {
368 			anon_vma_lock_read(anon_vma);
369 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
370 				anon_vma_interval_tree_verify(avc);
371 			anon_vma_unlock_read(anon_vma);
372 		}
373 
374 		highest_address = vm_end_gap(vma);
375 		vma = vma->vm_next;
376 		i++;
377 	}
378 	if (i != mm->map_count) {
379 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
380 		bug = 1;
381 	}
382 	if (highest_address != mm->highest_vm_end) {
383 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
384 			  mm->highest_vm_end, highest_address);
385 		bug = 1;
386 	}
387 	i = browse_rb(mm);
388 	if (i != mm->map_count) {
389 		if (i != -1)
390 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
391 		bug = 1;
392 	}
393 	VM_BUG_ON_MM(bug, mm);
394 }
395 #else
396 #define validate_mm_rb(root, ignore) do { } while (0)
397 #define validate_mm(mm) do { } while (0)
398 #endif
399 
RB_DECLARE_CALLBACKS(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_subtree_gap)400 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
401 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
402 
403 /*
404  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
405  * vma->vm_prev->vm_end values changed, without modifying the vma's position
406  * in the rbtree.
407  */
408 static void vma_gap_update(struct vm_area_struct *vma)
409 {
410 	/*
411 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
412 	 * function that does exacltly what we want.
413 	 */
414 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
415 }
416 
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)417 static inline void vma_rb_insert(struct vm_area_struct *vma,
418 				 struct rb_root *root)
419 {
420 	/* All rb_subtree_gap values must be consistent prior to insertion */
421 	validate_mm_rb(root, NULL);
422 
423 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
424 }
425 
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)426 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
427 {
428 	/*
429 	 * Note rb_erase_augmented is a fairly large inline function,
430 	 * so make sure we instantiate it only once with our desired
431 	 * augmented rbtree callbacks.
432 	 */
433 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
434 }
435 
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)436 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
437 						struct rb_root *root,
438 						struct vm_area_struct *ignore)
439 {
440 	/*
441 	 * All rb_subtree_gap values must be consistent prior to erase,
442 	 * with the possible exception of the "next" vma being erased if
443 	 * next->vm_start was reduced.
444 	 */
445 	validate_mm_rb(root, ignore);
446 
447 	__vma_rb_erase(vma, root);
448 }
449 
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)450 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
451 					 struct rb_root *root)
452 {
453 	/*
454 	 * All rb_subtree_gap values must be consistent prior to erase,
455 	 * with the possible exception of the vma being erased.
456 	 */
457 	validate_mm_rb(root, vma);
458 
459 	__vma_rb_erase(vma, root);
460 }
461 
462 /*
463  * vma has some anon_vma assigned, and is already inserted on that
464  * anon_vma's interval trees.
465  *
466  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
467  * vma must be removed from the anon_vma's interval trees using
468  * anon_vma_interval_tree_pre_update_vma().
469  *
470  * After the update, the vma will be reinserted using
471  * anon_vma_interval_tree_post_update_vma().
472  *
473  * The entire update must be protected by exclusive mmap_sem and by
474  * the root anon_vma's mutex.
475  */
476 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)477 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
478 {
479 	struct anon_vma_chain *avc;
480 
481 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
482 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
483 }
484 
485 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)486 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
487 {
488 	struct anon_vma_chain *avc;
489 
490 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
491 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
492 }
493 
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)494 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
495 		unsigned long end, struct vm_area_struct **pprev,
496 		struct rb_node ***rb_link, struct rb_node **rb_parent)
497 {
498 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
499 
500 	__rb_link = &mm->mm_rb.rb_node;
501 	rb_prev = __rb_parent = NULL;
502 
503 	while (*__rb_link) {
504 		struct vm_area_struct *vma_tmp;
505 
506 		__rb_parent = *__rb_link;
507 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
508 
509 		if (vma_tmp->vm_end > addr) {
510 			/* Fail if an existing vma overlaps the area */
511 			if (vma_tmp->vm_start < end)
512 				return -ENOMEM;
513 			__rb_link = &__rb_parent->rb_left;
514 		} else {
515 			rb_prev = __rb_parent;
516 			__rb_link = &__rb_parent->rb_right;
517 		}
518 	}
519 
520 	*pprev = NULL;
521 	if (rb_prev)
522 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
523 	*rb_link = __rb_link;
524 	*rb_parent = __rb_parent;
525 	return 0;
526 }
527 
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)528 static unsigned long count_vma_pages_range(struct mm_struct *mm,
529 		unsigned long addr, unsigned long end)
530 {
531 	unsigned long nr_pages = 0;
532 	struct vm_area_struct *vma;
533 
534 	/* Find first overlaping mapping */
535 	vma = find_vma_intersection(mm, addr, end);
536 	if (!vma)
537 		return 0;
538 
539 	nr_pages = (min(end, vma->vm_end) -
540 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
541 
542 	/* Iterate over the rest of the overlaps */
543 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
544 		unsigned long overlap_len;
545 
546 		if (vma->vm_start > end)
547 			break;
548 
549 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
550 		nr_pages += overlap_len >> PAGE_SHIFT;
551 	}
552 
553 	return nr_pages;
554 }
555 
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)556 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
557 		struct rb_node **rb_link, struct rb_node *rb_parent)
558 {
559 	/* Update tracking information for the gap following the new vma. */
560 	if (vma->vm_next)
561 		vma_gap_update(vma->vm_next);
562 	else
563 		mm->highest_vm_end = vm_end_gap(vma);
564 
565 	/*
566 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
567 	 * correct insertion point for that vma. As a result, we could not
568 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
569 	 * So, we first insert the vma with a zero rb_subtree_gap value
570 	 * (to be consistent with what we did on the way down), and then
571 	 * immediately update the gap to the correct value. Finally we
572 	 * rebalance the rbtree after all augmented values have been set.
573 	 */
574 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
575 	vma->rb_subtree_gap = 0;
576 	vma_gap_update(vma);
577 	vma_rb_insert(vma, &mm->mm_rb);
578 }
579 
__vma_link_file(struct vm_area_struct * vma)580 static void __vma_link_file(struct vm_area_struct *vma)
581 {
582 	struct file *file;
583 
584 	file = vma->vm_file;
585 	if (file) {
586 		struct address_space *mapping = file->f_mapping;
587 
588 		if (vma->vm_flags & VM_DENYWRITE)
589 			atomic_dec(&file_inode(file)->i_writecount);
590 		if (vma->vm_flags & VM_SHARED)
591 			atomic_inc(&mapping->i_mmap_writable);
592 
593 		flush_dcache_mmap_lock(mapping);
594 		vma_interval_tree_insert(vma, &mapping->i_mmap);
595 		flush_dcache_mmap_unlock(mapping);
596 	}
597 }
598 
599 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)600 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
601 	struct vm_area_struct *prev, struct rb_node **rb_link,
602 	struct rb_node *rb_parent)
603 {
604 	__vma_link_list(mm, vma, prev, rb_parent);
605 	__vma_link_rb(mm, vma, rb_link, rb_parent);
606 }
607 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)608 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
609 			struct vm_area_struct *prev, struct rb_node **rb_link,
610 			struct rb_node *rb_parent)
611 {
612 	struct address_space *mapping = NULL;
613 
614 	if (vma->vm_file) {
615 		mapping = vma->vm_file->f_mapping;
616 		i_mmap_lock_write(mapping);
617 	}
618 
619 	__vma_link(mm, vma, prev, rb_link, rb_parent);
620 	__vma_link_file(vma);
621 
622 	if (mapping)
623 		i_mmap_unlock_write(mapping);
624 
625 	mm->map_count++;
626 	validate_mm(mm);
627 }
628 
629 /*
630  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
631  * mm's list and rbtree.  It has already been inserted into the interval tree.
632  */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)633 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
634 {
635 	struct vm_area_struct *prev;
636 	struct rb_node **rb_link, *rb_parent;
637 
638 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
639 			   &prev, &rb_link, &rb_parent))
640 		BUG();
641 	__vma_link(mm, vma, prev, rb_link, rb_parent);
642 	mm->map_count++;
643 }
644 
__vma_unlink_common(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,bool has_prev,struct vm_area_struct * ignore)645 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
646 						struct vm_area_struct *vma,
647 						struct vm_area_struct *prev,
648 						bool has_prev,
649 						struct vm_area_struct *ignore)
650 {
651 	struct vm_area_struct *next;
652 
653 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
654 	next = vma->vm_next;
655 	if (has_prev)
656 		prev->vm_next = next;
657 	else {
658 		prev = vma->vm_prev;
659 		if (prev)
660 			prev->vm_next = next;
661 		else
662 			mm->mmap = next;
663 	}
664 	if (next)
665 		next->vm_prev = prev;
666 
667 	/* Kill the cache */
668 	vmacache_invalidate(mm);
669 }
670 
__vma_unlink_prev(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)671 static inline void __vma_unlink_prev(struct mm_struct *mm,
672 				     struct vm_area_struct *vma,
673 				     struct vm_area_struct *prev)
674 {
675 	__vma_unlink_common(mm, vma, prev, true, vma);
676 }
677 
678 /*
679  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
680  * is already present in an i_mmap tree without adjusting the tree.
681  * The following helper function should be used when such adjustments
682  * are necessary.  The "insert" vma (if any) is to be inserted
683  * before we drop the necessary locks.
684  */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)685 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
686 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
687 	struct vm_area_struct *expand)
688 {
689 	struct mm_struct *mm = vma->vm_mm;
690 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
691 	struct address_space *mapping = NULL;
692 	struct rb_root_cached *root = NULL;
693 	struct anon_vma *anon_vma = NULL;
694 	struct file *file = vma->vm_file;
695 	bool start_changed = false, end_changed = false;
696 	long adjust_next = 0;
697 	int remove_next = 0;
698 
699 	if (next && !insert) {
700 		struct vm_area_struct *exporter = NULL, *importer = NULL;
701 
702 		if (end >= next->vm_end) {
703 			/*
704 			 * vma expands, overlapping all the next, and
705 			 * perhaps the one after too (mprotect case 6).
706 			 * The only other cases that gets here are
707 			 * case 1, case 7 and case 8.
708 			 */
709 			if (next == expand) {
710 				/*
711 				 * The only case where we don't expand "vma"
712 				 * and we expand "next" instead is case 8.
713 				 */
714 				VM_WARN_ON(end != next->vm_end);
715 				/*
716 				 * remove_next == 3 means we're
717 				 * removing "vma" and that to do so we
718 				 * swapped "vma" and "next".
719 				 */
720 				remove_next = 3;
721 				VM_WARN_ON(file != next->vm_file);
722 				swap(vma, next);
723 			} else {
724 				VM_WARN_ON(expand != vma);
725 				/*
726 				 * case 1, 6, 7, remove_next == 2 is case 6,
727 				 * remove_next == 1 is case 1 or 7.
728 				 */
729 				remove_next = 1 + (end > next->vm_end);
730 				VM_WARN_ON(remove_next == 2 &&
731 					   end != next->vm_next->vm_end);
732 				VM_WARN_ON(remove_next == 1 &&
733 					   end != next->vm_end);
734 				/* trim end to next, for case 6 first pass */
735 				end = next->vm_end;
736 			}
737 
738 			exporter = next;
739 			importer = vma;
740 
741 			/*
742 			 * If next doesn't have anon_vma, import from vma after
743 			 * next, if the vma overlaps with it.
744 			 */
745 			if (remove_next == 2 && !next->anon_vma)
746 				exporter = next->vm_next;
747 
748 		} else if (end > next->vm_start) {
749 			/*
750 			 * vma expands, overlapping part of the next:
751 			 * mprotect case 5 shifting the boundary up.
752 			 */
753 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
754 			exporter = next;
755 			importer = vma;
756 			VM_WARN_ON(expand != importer);
757 		} else if (end < vma->vm_end) {
758 			/*
759 			 * vma shrinks, and !insert tells it's not
760 			 * split_vma inserting another: so it must be
761 			 * mprotect case 4 shifting the boundary down.
762 			 */
763 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
764 			exporter = vma;
765 			importer = next;
766 			VM_WARN_ON(expand != importer);
767 		}
768 
769 		/*
770 		 * Easily overlooked: when mprotect shifts the boundary,
771 		 * make sure the expanding vma has anon_vma set if the
772 		 * shrinking vma had, to cover any anon pages imported.
773 		 */
774 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
775 			int error;
776 
777 			importer->anon_vma = exporter->anon_vma;
778 			error = anon_vma_clone(importer, exporter);
779 			if (error)
780 				return error;
781 		}
782 	}
783 again:
784 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
785 
786 	if (file) {
787 		mapping = file->f_mapping;
788 		root = &mapping->i_mmap;
789 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
790 
791 		if (adjust_next)
792 			uprobe_munmap(next, next->vm_start, next->vm_end);
793 
794 		i_mmap_lock_write(mapping);
795 		if (insert) {
796 			/*
797 			 * Put into interval tree now, so instantiated pages
798 			 * are visible to arm/parisc __flush_dcache_page
799 			 * throughout; but we cannot insert into address
800 			 * space until vma start or end is updated.
801 			 */
802 			__vma_link_file(insert);
803 		}
804 	}
805 
806 	anon_vma = vma->anon_vma;
807 	if (!anon_vma && adjust_next)
808 		anon_vma = next->anon_vma;
809 	if (anon_vma) {
810 		VM_WARN_ON(adjust_next && next->anon_vma &&
811 			   anon_vma != next->anon_vma);
812 		anon_vma_lock_write(anon_vma);
813 		anon_vma_interval_tree_pre_update_vma(vma);
814 		if (adjust_next)
815 			anon_vma_interval_tree_pre_update_vma(next);
816 	}
817 
818 	if (root) {
819 		flush_dcache_mmap_lock(mapping);
820 		vma_interval_tree_remove(vma, root);
821 		if (adjust_next)
822 			vma_interval_tree_remove(next, root);
823 	}
824 
825 	if (start != vma->vm_start) {
826 		vma->vm_start = start;
827 		start_changed = true;
828 	}
829 	if (end != vma->vm_end) {
830 		vma->vm_end = end;
831 		end_changed = true;
832 	}
833 	vma->vm_pgoff = pgoff;
834 	if (adjust_next) {
835 		next->vm_start += adjust_next << PAGE_SHIFT;
836 		next->vm_pgoff += adjust_next;
837 	}
838 
839 	if (root) {
840 		if (adjust_next)
841 			vma_interval_tree_insert(next, root);
842 		vma_interval_tree_insert(vma, root);
843 		flush_dcache_mmap_unlock(mapping);
844 	}
845 
846 	if (remove_next) {
847 		/*
848 		 * vma_merge has merged next into vma, and needs
849 		 * us to remove next before dropping the locks.
850 		 */
851 		if (remove_next != 3)
852 			__vma_unlink_prev(mm, next, vma);
853 		else
854 			/*
855 			 * vma is not before next if they've been
856 			 * swapped.
857 			 *
858 			 * pre-swap() next->vm_start was reduced so
859 			 * tell validate_mm_rb to ignore pre-swap()
860 			 * "next" (which is stored in post-swap()
861 			 * "vma").
862 			 */
863 			__vma_unlink_common(mm, next, NULL, false, vma);
864 		if (file)
865 			__remove_shared_vm_struct(next, file, mapping);
866 	} else if (insert) {
867 		/*
868 		 * split_vma has split insert from vma, and needs
869 		 * us to insert it before dropping the locks
870 		 * (it may either follow vma or precede it).
871 		 */
872 		__insert_vm_struct(mm, insert);
873 	} else {
874 		if (start_changed)
875 			vma_gap_update(vma);
876 		if (end_changed) {
877 			if (!next)
878 				mm->highest_vm_end = vm_end_gap(vma);
879 			else if (!adjust_next)
880 				vma_gap_update(next);
881 		}
882 	}
883 
884 	if (anon_vma) {
885 		anon_vma_interval_tree_post_update_vma(vma);
886 		if (adjust_next)
887 			anon_vma_interval_tree_post_update_vma(next);
888 		anon_vma_unlock_write(anon_vma);
889 	}
890 	if (mapping)
891 		i_mmap_unlock_write(mapping);
892 
893 	if (root) {
894 		uprobe_mmap(vma);
895 
896 		if (adjust_next)
897 			uprobe_mmap(next);
898 	}
899 
900 	if (remove_next) {
901 		if (file) {
902 			uprobe_munmap(next, next->vm_start, next->vm_end);
903 			fput(file);
904 		}
905 		if (next->anon_vma)
906 			anon_vma_merge(vma, next);
907 		mm->map_count--;
908 		mpol_put(vma_policy(next));
909 		vm_area_free(next);
910 		/*
911 		 * In mprotect's case 6 (see comments on vma_merge),
912 		 * we must remove another next too. It would clutter
913 		 * up the code too much to do both in one go.
914 		 */
915 		if (remove_next != 3) {
916 			/*
917 			 * If "next" was removed and vma->vm_end was
918 			 * expanded (up) over it, in turn
919 			 * "next->vm_prev->vm_end" changed and the
920 			 * "vma->vm_next" gap must be updated.
921 			 */
922 			next = vma->vm_next;
923 		} else {
924 			/*
925 			 * For the scope of the comment "next" and
926 			 * "vma" considered pre-swap(): if "vma" was
927 			 * removed, next->vm_start was expanded (down)
928 			 * over it and the "next" gap must be updated.
929 			 * Because of the swap() the post-swap() "vma"
930 			 * actually points to pre-swap() "next"
931 			 * (post-swap() "next" as opposed is now a
932 			 * dangling pointer).
933 			 */
934 			next = vma;
935 		}
936 		if (remove_next == 2) {
937 			remove_next = 1;
938 			end = next->vm_end;
939 			goto again;
940 		}
941 		else if (next)
942 			vma_gap_update(next);
943 		else {
944 			/*
945 			 * If remove_next == 2 we obviously can't
946 			 * reach this path.
947 			 *
948 			 * If remove_next == 3 we can't reach this
949 			 * path because pre-swap() next is always not
950 			 * NULL. pre-swap() "next" is not being
951 			 * removed and its next->vm_end is not altered
952 			 * (and furthermore "end" already matches
953 			 * next->vm_end in remove_next == 3).
954 			 *
955 			 * We reach this only in the remove_next == 1
956 			 * case if the "next" vma that was removed was
957 			 * the highest vma of the mm. However in such
958 			 * case next->vm_end == "end" and the extended
959 			 * "vma" has vma->vm_end == next->vm_end so
960 			 * mm->highest_vm_end doesn't need any update
961 			 * in remove_next == 1 case.
962 			 */
963 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
964 		}
965 	}
966 	if (insert && file)
967 		uprobe_mmap(insert);
968 
969 	validate_mm(mm);
970 
971 	return 0;
972 }
973 
974 /*
975  * If the vma has a ->close operation then the driver probably needs to release
976  * per-vma resources, so we don't attempt to merge those.
977  */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)978 static inline int is_mergeable_vma(struct vm_area_struct *vma,
979 				struct file *file, unsigned long vm_flags,
980 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
981 {
982 	/*
983 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
984 	 * match the flags but dirty bit -- the caller should mark
985 	 * merged VMA as dirty. If dirty bit won't be excluded from
986 	 * comparison, we increase pressue on the memory system forcing
987 	 * the kernel to generate new VMAs when old one could be
988 	 * extended instead.
989 	 */
990 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
991 		return 0;
992 	if (vma->vm_file != file)
993 		return 0;
994 	if (vma->vm_ops && vma->vm_ops->close)
995 		return 0;
996 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
997 		return 0;
998 	return 1;
999 }
1000 
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1001 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1002 					struct anon_vma *anon_vma2,
1003 					struct vm_area_struct *vma)
1004 {
1005 	/*
1006 	 * The list_is_singular() test is to avoid merging VMA cloned from
1007 	 * parents. This can improve scalability caused by anon_vma lock.
1008 	 */
1009 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1010 		list_is_singular(&vma->anon_vma_chain)))
1011 		return 1;
1012 	return anon_vma1 == anon_vma2;
1013 }
1014 
1015 /*
1016  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1017  * in front of (at a lower virtual address and file offset than) the vma.
1018  *
1019  * We cannot merge two vmas if they have differently assigned (non-NULL)
1020  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1021  *
1022  * We don't check here for the merged mmap wrapping around the end of pagecache
1023  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1024  * wrap, nor mmaps which cover the final page at index -1UL.
1025  */
1026 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1027 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1028 		     struct anon_vma *anon_vma, struct file *file,
1029 		     pgoff_t vm_pgoff,
1030 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1031 {
1032 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1033 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1034 		if (vma->vm_pgoff == vm_pgoff)
1035 			return 1;
1036 	}
1037 	return 0;
1038 }
1039 
1040 /*
1041  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1042  * beyond (at a higher virtual address and file offset than) the vma.
1043  *
1044  * We cannot merge two vmas if they have differently assigned (non-NULL)
1045  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1046  */
1047 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1048 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1049 		    struct anon_vma *anon_vma, struct file *file,
1050 		    pgoff_t vm_pgoff,
1051 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1052 {
1053 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1054 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1055 		pgoff_t vm_pglen;
1056 		vm_pglen = vma_pages(vma);
1057 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1058 			return 1;
1059 	}
1060 	return 0;
1061 }
1062 
1063 /*
1064  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1065  * whether that can be merged with its predecessor or its successor.
1066  * Or both (it neatly fills a hole).
1067  *
1068  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1069  * certain not to be mapped by the time vma_merge is called; but when
1070  * called for mprotect, it is certain to be already mapped (either at
1071  * an offset within prev, or at the start of next), and the flags of
1072  * this area are about to be changed to vm_flags - and the no-change
1073  * case has already been eliminated.
1074  *
1075  * The following mprotect cases have to be considered, where AAAA is
1076  * the area passed down from mprotect_fixup, never extending beyond one
1077  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1078  *
1079  *     AAAA             AAAA                AAAA          AAAA
1080  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1081  *    cannot merge    might become    might become    might become
1082  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1083  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1084  *    mremap move:                                    PPPPXXXXXXXX 8
1085  *        AAAA
1086  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1087  *    might become    case 1 below    case 2 below    case 3 below
1088  *
1089  * It is important for case 8 that the the vma NNNN overlapping the
1090  * region AAAA is never going to extended over XXXX. Instead XXXX must
1091  * be extended in region AAAA and NNNN must be removed. This way in
1092  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1093  * rmap_locks, the properties of the merged vma will be already
1094  * correct for the whole merged range. Some of those properties like
1095  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1096  * be correct for the whole merged range immediately after the
1097  * rmap_locks are released. Otherwise if XXXX would be removed and
1098  * NNNN would be extended over the XXXX range, remove_migration_ptes
1099  * or other rmap walkers (if working on addresses beyond the "end"
1100  * parameter) may establish ptes with the wrong permissions of NNNN
1101  * instead of the right permissions of XXXX.
1102  */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1103 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1104 			struct vm_area_struct *prev, unsigned long addr,
1105 			unsigned long end, unsigned long vm_flags,
1106 			struct anon_vma *anon_vma, struct file *file,
1107 			pgoff_t pgoff, struct mempolicy *policy,
1108 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1109 {
1110 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1111 	struct vm_area_struct *area, *next;
1112 	int err;
1113 
1114 	/*
1115 	 * We later require that vma->vm_flags == vm_flags,
1116 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1117 	 */
1118 	if (vm_flags & VM_SPECIAL)
1119 		return NULL;
1120 
1121 	if (prev)
1122 		next = prev->vm_next;
1123 	else
1124 		next = mm->mmap;
1125 	area = next;
1126 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1127 		next = next->vm_next;
1128 
1129 	/* verify some invariant that must be enforced by the caller */
1130 	VM_WARN_ON(prev && addr <= prev->vm_start);
1131 	VM_WARN_ON(area && end > area->vm_end);
1132 	VM_WARN_ON(addr >= end);
1133 
1134 	/*
1135 	 * Can it merge with the predecessor?
1136 	 */
1137 	if (prev && prev->vm_end == addr &&
1138 			mpol_equal(vma_policy(prev), policy) &&
1139 			can_vma_merge_after(prev, vm_flags,
1140 					    anon_vma, file, pgoff,
1141 					    vm_userfaultfd_ctx)) {
1142 		/*
1143 		 * OK, it can.  Can we now merge in the successor as well?
1144 		 */
1145 		if (next && end == next->vm_start &&
1146 				mpol_equal(policy, vma_policy(next)) &&
1147 				can_vma_merge_before(next, vm_flags,
1148 						     anon_vma, file,
1149 						     pgoff+pglen,
1150 						     vm_userfaultfd_ctx) &&
1151 				is_mergeable_anon_vma(prev->anon_vma,
1152 						      next->anon_vma, NULL)) {
1153 							/* cases 1, 6 */
1154 			err = __vma_adjust(prev, prev->vm_start,
1155 					 next->vm_end, prev->vm_pgoff, NULL,
1156 					 prev);
1157 		} else					/* cases 2, 5, 7 */
1158 			err = __vma_adjust(prev, prev->vm_start,
1159 					 end, prev->vm_pgoff, NULL, prev);
1160 		if (err)
1161 			return NULL;
1162 		khugepaged_enter_vma_merge(prev, vm_flags);
1163 		return prev;
1164 	}
1165 
1166 	/*
1167 	 * Can this new request be merged in front of next?
1168 	 */
1169 	if (next && end == next->vm_start &&
1170 			mpol_equal(policy, vma_policy(next)) &&
1171 			can_vma_merge_before(next, vm_flags,
1172 					     anon_vma, file, pgoff+pglen,
1173 					     vm_userfaultfd_ctx)) {
1174 		if (prev && addr < prev->vm_end)	/* case 4 */
1175 			err = __vma_adjust(prev, prev->vm_start,
1176 					 addr, prev->vm_pgoff, NULL, next);
1177 		else {					/* cases 3, 8 */
1178 			err = __vma_adjust(area, addr, next->vm_end,
1179 					 next->vm_pgoff - pglen, NULL, next);
1180 			/*
1181 			 * In case 3 area is already equal to next and
1182 			 * this is a noop, but in case 8 "area" has
1183 			 * been removed and next was expanded over it.
1184 			 */
1185 			area = next;
1186 		}
1187 		if (err)
1188 			return NULL;
1189 		khugepaged_enter_vma_merge(area, vm_flags);
1190 		return area;
1191 	}
1192 
1193 	return NULL;
1194 }
1195 
1196 /*
1197  * Rough compatbility check to quickly see if it's even worth looking
1198  * at sharing an anon_vma.
1199  *
1200  * They need to have the same vm_file, and the flags can only differ
1201  * in things that mprotect may change.
1202  *
1203  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1204  * we can merge the two vma's. For example, we refuse to merge a vma if
1205  * there is a vm_ops->close() function, because that indicates that the
1206  * driver is doing some kind of reference counting. But that doesn't
1207  * really matter for the anon_vma sharing case.
1208  */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1209 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1210 {
1211 	return a->vm_end == b->vm_start &&
1212 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1213 		a->vm_file == b->vm_file &&
1214 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1215 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1216 }
1217 
1218 /*
1219  * Do some basic sanity checking to see if we can re-use the anon_vma
1220  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1221  * the same as 'old', the other will be the new one that is trying
1222  * to share the anon_vma.
1223  *
1224  * NOTE! This runs with mm_sem held for reading, so it is possible that
1225  * the anon_vma of 'old' is concurrently in the process of being set up
1226  * by another page fault trying to merge _that_. But that's ok: if it
1227  * is being set up, that automatically means that it will be a singleton
1228  * acceptable for merging, so we can do all of this optimistically. But
1229  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1230  *
1231  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1232  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1233  * is to return an anon_vma that is "complex" due to having gone through
1234  * a fork).
1235  *
1236  * We also make sure that the two vma's are compatible (adjacent,
1237  * and with the same memory policies). That's all stable, even with just
1238  * a read lock on the mm_sem.
1239  */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1240 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1241 {
1242 	if (anon_vma_compatible(a, b)) {
1243 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1244 
1245 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1246 			return anon_vma;
1247 	}
1248 	return NULL;
1249 }
1250 
1251 /*
1252  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1253  * neighbouring vmas for a suitable anon_vma, before it goes off
1254  * to allocate a new anon_vma.  It checks because a repetitive
1255  * sequence of mprotects and faults may otherwise lead to distinct
1256  * anon_vmas being allocated, preventing vma merge in subsequent
1257  * mprotect.
1258  */
find_mergeable_anon_vma(struct vm_area_struct * vma)1259 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1260 {
1261 	struct anon_vma *anon_vma;
1262 	struct vm_area_struct *near;
1263 
1264 	near = vma->vm_next;
1265 	if (!near)
1266 		goto try_prev;
1267 
1268 	anon_vma = reusable_anon_vma(near, vma, near);
1269 	if (anon_vma)
1270 		return anon_vma;
1271 try_prev:
1272 	near = vma->vm_prev;
1273 	if (!near)
1274 		goto none;
1275 
1276 	anon_vma = reusable_anon_vma(near, near, vma);
1277 	if (anon_vma)
1278 		return anon_vma;
1279 none:
1280 	/*
1281 	 * There's no absolute need to look only at touching neighbours:
1282 	 * we could search further afield for "compatible" anon_vmas.
1283 	 * But it would probably just be a waste of time searching,
1284 	 * or lead to too many vmas hanging off the same anon_vma.
1285 	 * We're trying to allow mprotect remerging later on,
1286 	 * not trying to minimize memory used for anon_vmas.
1287 	 */
1288 	return NULL;
1289 }
1290 
1291 /*
1292  * If a hint addr is less than mmap_min_addr change hint to be as
1293  * low as possible but still greater than mmap_min_addr
1294  */
round_hint_to_min(unsigned long hint)1295 static inline unsigned long round_hint_to_min(unsigned long hint)
1296 {
1297 	hint &= PAGE_MASK;
1298 	if (((void *)hint != NULL) &&
1299 	    (hint < mmap_min_addr))
1300 		return PAGE_ALIGN(mmap_min_addr);
1301 	return hint;
1302 }
1303 
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1304 static inline int mlock_future_check(struct mm_struct *mm,
1305 				     unsigned long flags,
1306 				     unsigned long len)
1307 {
1308 	unsigned long locked, lock_limit;
1309 
1310 	/*  mlock MCL_FUTURE? */
1311 	if (flags & VM_LOCKED) {
1312 		locked = len >> PAGE_SHIFT;
1313 		locked += mm->locked_vm;
1314 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1315 		lock_limit >>= PAGE_SHIFT;
1316 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1317 			return -EAGAIN;
1318 	}
1319 	return 0;
1320 }
1321 
file_mmap_size_max(struct file * file,struct inode * inode)1322 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1323 {
1324 	if (S_ISREG(inode->i_mode))
1325 		return MAX_LFS_FILESIZE;
1326 
1327 	if (S_ISBLK(inode->i_mode))
1328 		return MAX_LFS_FILESIZE;
1329 
1330 	/* Special "we do even unsigned file positions" case */
1331 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1332 		return 0;
1333 
1334 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1335 	return ULONG_MAX;
1336 }
1337 
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1338 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1339 				unsigned long pgoff, unsigned long len)
1340 {
1341 	u64 maxsize = file_mmap_size_max(file, inode);
1342 
1343 	if (maxsize && len > maxsize)
1344 		return false;
1345 	maxsize -= len;
1346 	if (pgoff > maxsize >> PAGE_SHIFT)
1347 		return false;
1348 	return true;
1349 }
1350 
1351 /*
1352  * The caller must hold down_write(&current->mm->mmap_sem).
1353  */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1354 unsigned long do_mmap(struct file *file, unsigned long addr,
1355 			unsigned long len, unsigned long prot,
1356 			unsigned long flags, vm_flags_t vm_flags,
1357 			unsigned long pgoff, unsigned long *populate,
1358 			struct list_head *uf)
1359 {
1360 	struct mm_struct *mm = current->mm;
1361 	int pkey = 0;
1362 
1363 	*populate = 0;
1364 
1365 	if (!len)
1366 		return -EINVAL;
1367 
1368 	/*
1369 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1370 	 *
1371 	 * (the exception is when the underlying filesystem is noexec
1372 	 *  mounted, in which case we dont add PROT_EXEC.)
1373 	 */
1374 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1375 		if (!(file && path_noexec(&file->f_path)))
1376 			prot |= PROT_EXEC;
1377 
1378 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1379 	if (flags & MAP_FIXED_NOREPLACE)
1380 		flags |= MAP_FIXED;
1381 
1382 	if (!(flags & MAP_FIXED))
1383 		addr = round_hint_to_min(addr);
1384 
1385 	/* Careful about overflows.. */
1386 	len = PAGE_ALIGN(len);
1387 	if (!len)
1388 		return -ENOMEM;
1389 
1390 	/* offset overflow? */
1391 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1392 		return -EOVERFLOW;
1393 
1394 	/* Too many mappings? */
1395 	if (mm->map_count > sysctl_max_map_count)
1396 		return -ENOMEM;
1397 
1398 	/* Obtain the address to map to. we verify (or select) it and ensure
1399 	 * that it represents a valid section of the address space.
1400 	 */
1401 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1402 	if (offset_in_page(addr))
1403 		return addr;
1404 
1405 	if (flags & MAP_FIXED_NOREPLACE) {
1406 		struct vm_area_struct *vma = find_vma(mm, addr);
1407 
1408 		if (vma && vma->vm_start < addr + len)
1409 			return -EEXIST;
1410 	}
1411 
1412 	if (prot == PROT_EXEC) {
1413 		pkey = execute_only_pkey(mm);
1414 		if (pkey < 0)
1415 			pkey = 0;
1416 	}
1417 
1418 	/* Do simple checking here so the lower-level routines won't have
1419 	 * to. we assume access permissions have been handled by the open
1420 	 * of the memory object, so we don't do any here.
1421 	 */
1422 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1423 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1424 
1425 	if (flags & MAP_LOCKED)
1426 		if (!can_do_mlock())
1427 			return -EPERM;
1428 
1429 	if (mlock_future_check(mm, vm_flags, len))
1430 		return -EAGAIN;
1431 
1432 	if (file) {
1433 		struct inode *inode = file_inode(file);
1434 		unsigned long flags_mask;
1435 
1436 		if (!file_mmap_ok(file, inode, pgoff, len))
1437 			return -EOVERFLOW;
1438 
1439 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1440 
1441 		switch (flags & MAP_TYPE) {
1442 		case MAP_SHARED:
1443 			/*
1444 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1445 			 * flags. E.g. MAP_SYNC is dangerous to use with
1446 			 * MAP_SHARED as you don't know which consistency model
1447 			 * you will get. We silently ignore unsupported flags
1448 			 * with MAP_SHARED to preserve backward compatibility.
1449 			 */
1450 			flags &= LEGACY_MAP_MASK;
1451 			/* fall through */
1452 		case MAP_SHARED_VALIDATE:
1453 			if (flags & ~flags_mask)
1454 				return -EOPNOTSUPP;
1455 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1456 				return -EACCES;
1457 
1458 			/*
1459 			 * Make sure we don't allow writing to an append-only
1460 			 * file..
1461 			 */
1462 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1463 				return -EACCES;
1464 
1465 			/*
1466 			 * Make sure there are no mandatory locks on the file.
1467 			 */
1468 			if (locks_verify_locked(file))
1469 				return -EAGAIN;
1470 
1471 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1472 			if (!(file->f_mode & FMODE_WRITE))
1473 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1474 
1475 			/* fall through */
1476 		case MAP_PRIVATE:
1477 			if (!(file->f_mode & FMODE_READ))
1478 				return -EACCES;
1479 			if (path_noexec(&file->f_path)) {
1480 				if (vm_flags & VM_EXEC)
1481 					return -EPERM;
1482 				vm_flags &= ~VM_MAYEXEC;
1483 			}
1484 
1485 			if (!file->f_op->mmap)
1486 				return -ENODEV;
1487 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1488 				return -EINVAL;
1489 			break;
1490 
1491 		default:
1492 			return -EINVAL;
1493 		}
1494 	} else {
1495 		switch (flags & MAP_TYPE) {
1496 		case MAP_SHARED:
1497 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1498 				return -EINVAL;
1499 			/*
1500 			 * Ignore pgoff.
1501 			 */
1502 			pgoff = 0;
1503 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1504 			break;
1505 		case MAP_PRIVATE:
1506 			/*
1507 			 * Set pgoff according to addr for anon_vma.
1508 			 */
1509 			pgoff = addr >> PAGE_SHIFT;
1510 			break;
1511 		default:
1512 			return -EINVAL;
1513 		}
1514 	}
1515 
1516 	/*
1517 	 * Set 'VM_NORESERVE' if we should not account for the
1518 	 * memory use of this mapping.
1519 	 */
1520 	if (flags & MAP_NORESERVE) {
1521 		/* We honor MAP_NORESERVE if allowed to overcommit */
1522 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1523 			vm_flags |= VM_NORESERVE;
1524 
1525 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1526 		if (file && is_file_hugepages(file))
1527 			vm_flags |= VM_NORESERVE;
1528 	}
1529 
1530 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1531 	if (!IS_ERR_VALUE(addr) &&
1532 	    ((vm_flags & VM_LOCKED) ||
1533 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1534 		*populate = len;
1535 	return addr;
1536 }
1537 
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1538 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1539 			      unsigned long prot, unsigned long flags,
1540 			      unsigned long fd, unsigned long pgoff)
1541 {
1542 	struct file *file = NULL;
1543 	unsigned long retval;
1544 
1545 	if (!(flags & MAP_ANONYMOUS)) {
1546 		audit_mmap_fd(fd, flags);
1547 		file = fget(fd);
1548 		if (!file)
1549 			return -EBADF;
1550 		if (is_file_hugepages(file))
1551 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1552 		retval = -EINVAL;
1553 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1554 			goto out_fput;
1555 	} else if (flags & MAP_HUGETLB) {
1556 		struct user_struct *user = NULL;
1557 		struct hstate *hs;
1558 
1559 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1560 		if (!hs)
1561 			return -EINVAL;
1562 
1563 		len = ALIGN(len, huge_page_size(hs));
1564 		/*
1565 		 * VM_NORESERVE is used because the reservations will be
1566 		 * taken when vm_ops->mmap() is called
1567 		 * A dummy user value is used because we are not locking
1568 		 * memory so no accounting is necessary
1569 		 */
1570 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1571 				VM_NORESERVE,
1572 				&user, HUGETLB_ANONHUGE_INODE,
1573 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1574 		if (IS_ERR(file))
1575 			return PTR_ERR(file);
1576 	}
1577 
1578 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1579 
1580 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1581 out_fput:
1582 	if (file)
1583 		fput(file);
1584 	return retval;
1585 }
1586 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1587 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1588 		unsigned long, prot, unsigned long, flags,
1589 		unsigned long, fd, unsigned long, pgoff)
1590 {
1591 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1592 }
1593 
1594 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1595 struct mmap_arg_struct {
1596 	unsigned long addr;
1597 	unsigned long len;
1598 	unsigned long prot;
1599 	unsigned long flags;
1600 	unsigned long fd;
1601 	unsigned long offset;
1602 };
1603 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1604 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1605 {
1606 	struct mmap_arg_struct a;
1607 
1608 	if (copy_from_user(&a, arg, sizeof(a)))
1609 		return -EFAULT;
1610 	if (offset_in_page(a.offset))
1611 		return -EINVAL;
1612 
1613 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1614 			       a.offset >> PAGE_SHIFT);
1615 }
1616 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1617 
1618 /*
1619  * Some shared mappigns will want the pages marked read-only
1620  * to track write events. If so, we'll downgrade vm_page_prot
1621  * to the private version (using protection_map[] without the
1622  * VM_SHARED bit).
1623  */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1624 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1625 {
1626 	vm_flags_t vm_flags = vma->vm_flags;
1627 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1628 
1629 	/* If it was private or non-writable, the write bit is already clear */
1630 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1631 		return 0;
1632 
1633 	/* The backer wishes to know when pages are first written to? */
1634 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1635 		return 1;
1636 
1637 	/* The open routine did something to the protections that pgprot_modify
1638 	 * won't preserve? */
1639 	if (pgprot_val(vm_page_prot) !=
1640 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1641 		return 0;
1642 
1643 	/* Do we need to track softdirty? */
1644 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1645 		return 1;
1646 
1647 	/* Specialty mapping? */
1648 	if (vm_flags & VM_PFNMAP)
1649 		return 0;
1650 
1651 	/* Can the mapping track the dirty pages? */
1652 	return vma->vm_file && vma->vm_file->f_mapping &&
1653 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1654 }
1655 
1656 /*
1657  * We account for memory if it's a private writeable mapping,
1658  * not hugepages and VM_NORESERVE wasn't set.
1659  */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1660 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1661 {
1662 	/*
1663 	 * hugetlb has its own accounting separate from the core VM
1664 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1665 	 */
1666 	if (file && is_file_hugepages(file))
1667 		return 0;
1668 
1669 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1670 }
1671 
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1672 unsigned long mmap_region(struct file *file, unsigned long addr,
1673 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1674 		struct list_head *uf)
1675 {
1676 	struct mm_struct *mm = current->mm;
1677 	struct vm_area_struct *vma, *prev;
1678 	int error;
1679 	struct rb_node **rb_link, *rb_parent;
1680 	unsigned long charged = 0;
1681 
1682 	/* Check against address space limit. */
1683 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1684 		unsigned long nr_pages;
1685 
1686 		/*
1687 		 * MAP_FIXED may remove pages of mappings that intersects with
1688 		 * requested mapping. Account for the pages it would unmap.
1689 		 */
1690 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1691 
1692 		if (!may_expand_vm(mm, vm_flags,
1693 					(len >> PAGE_SHIFT) - nr_pages))
1694 			return -ENOMEM;
1695 	}
1696 
1697 	/* Clear old maps */
1698 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1699 			      &rb_parent)) {
1700 		if (do_munmap(mm, addr, len, uf))
1701 			return -ENOMEM;
1702 	}
1703 
1704 	/*
1705 	 * Private writable mapping: check memory availability
1706 	 */
1707 	if (accountable_mapping(file, vm_flags)) {
1708 		charged = len >> PAGE_SHIFT;
1709 		if (security_vm_enough_memory_mm(mm, charged))
1710 			return -ENOMEM;
1711 		vm_flags |= VM_ACCOUNT;
1712 	}
1713 
1714 	/*
1715 	 * Can we just expand an old mapping?
1716 	 */
1717 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1718 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1719 	if (vma)
1720 		goto out;
1721 
1722 	/*
1723 	 * Determine the object being mapped and call the appropriate
1724 	 * specific mapper. the address has already been validated, but
1725 	 * not unmapped, but the maps are removed from the list.
1726 	 */
1727 	vma = vm_area_alloc(mm);
1728 	if (!vma) {
1729 		error = -ENOMEM;
1730 		goto unacct_error;
1731 	}
1732 
1733 	vma->vm_start = addr;
1734 	vma->vm_end = addr + len;
1735 	vma->vm_flags = vm_flags;
1736 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1737 	vma->vm_pgoff = pgoff;
1738 
1739 	if (file) {
1740 		if (vm_flags & VM_DENYWRITE) {
1741 			error = deny_write_access(file);
1742 			if (error)
1743 				goto free_vma;
1744 		}
1745 		if (vm_flags & VM_SHARED) {
1746 			error = mapping_map_writable(file->f_mapping);
1747 			if (error)
1748 				goto allow_write_and_free_vma;
1749 		}
1750 
1751 		/* ->mmap() can change vma->vm_file, but must guarantee that
1752 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1753 		 * and map writably if VM_SHARED is set. This usually means the
1754 		 * new file must not have been exposed to user-space, yet.
1755 		 */
1756 		vma->vm_file = get_file(file);
1757 		error = call_mmap(file, vma);
1758 		if (error)
1759 			goto unmap_and_free_vma;
1760 
1761 		/* Can addr have changed??
1762 		 *
1763 		 * Answer: Yes, several device drivers can do it in their
1764 		 *         f_op->mmap method. -DaveM
1765 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1766 		 *      be updated for vma_link()
1767 		 */
1768 		WARN_ON_ONCE(addr != vma->vm_start);
1769 
1770 		addr = vma->vm_start;
1771 		vm_flags = vma->vm_flags;
1772 	} else if (vm_flags & VM_SHARED) {
1773 		error = shmem_zero_setup(vma);
1774 		if (error)
1775 			goto free_vma;
1776 	} else {
1777 		vma_set_anonymous(vma);
1778 	}
1779 
1780 	vma_link(mm, vma, prev, rb_link, rb_parent);
1781 	/* Once vma denies write, undo our temporary denial count */
1782 	if (file) {
1783 		if (vm_flags & VM_SHARED)
1784 			mapping_unmap_writable(file->f_mapping);
1785 		if (vm_flags & VM_DENYWRITE)
1786 			allow_write_access(file);
1787 	}
1788 	file = vma->vm_file;
1789 out:
1790 	perf_event_mmap(vma);
1791 
1792 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1793 	if (vm_flags & VM_LOCKED) {
1794 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1795 					is_vm_hugetlb_page(vma) ||
1796 					vma == get_gate_vma(current->mm))
1797 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1798 		else
1799 			mm->locked_vm += (len >> PAGE_SHIFT);
1800 	}
1801 
1802 	if (file)
1803 		uprobe_mmap(vma);
1804 
1805 	/*
1806 	 * New (or expanded) vma always get soft dirty status.
1807 	 * Otherwise user-space soft-dirty page tracker won't
1808 	 * be able to distinguish situation when vma area unmapped,
1809 	 * then new mapped in-place (which must be aimed as
1810 	 * a completely new data area).
1811 	 */
1812 	vma->vm_flags |= VM_SOFTDIRTY;
1813 
1814 	vma_set_page_prot(vma);
1815 
1816 	return addr;
1817 
1818 unmap_and_free_vma:
1819 	vma->vm_file = NULL;
1820 	fput(file);
1821 
1822 	/* Undo any partial mapping done by a device driver. */
1823 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1824 	charged = 0;
1825 	if (vm_flags & VM_SHARED)
1826 		mapping_unmap_writable(file->f_mapping);
1827 allow_write_and_free_vma:
1828 	if (vm_flags & VM_DENYWRITE)
1829 		allow_write_access(file);
1830 free_vma:
1831 	vm_area_free(vma);
1832 unacct_error:
1833 	if (charged)
1834 		vm_unacct_memory(charged);
1835 	return error;
1836 }
1837 
unmapped_area(struct vm_unmapped_area_info * info)1838 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1839 {
1840 	/*
1841 	 * We implement the search by looking for an rbtree node that
1842 	 * immediately follows a suitable gap. That is,
1843 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1844 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1845 	 * - gap_end - gap_start >= length
1846 	 */
1847 
1848 	struct mm_struct *mm = current->mm;
1849 	struct vm_area_struct *vma;
1850 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1851 
1852 	/* Adjust search length to account for worst case alignment overhead */
1853 	length = info->length + info->align_mask;
1854 	if (length < info->length)
1855 		return -ENOMEM;
1856 
1857 	/* Adjust search limits by the desired length */
1858 	if (info->high_limit < length)
1859 		return -ENOMEM;
1860 	high_limit = info->high_limit - length;
1861 
1862 	if (info->low_limit > high_limit)
1863 		return -ENOMEM;
1864 	low_limit = info->low_limit + length;
1865 
1866 	/* Check if rbtree root looks promising */
1867 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1868 		goto check_highest;
1869 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1870 	if (vma->rb_subtree_gap < length)
1871 		goto check_highest;
1872 
1873 	while (true) {
1874 		/* Visit left subtree if it looks promising */
1875 		gap_end = vm_start_gap(vma);
1876 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1877 			struct vm_area_struct *left =
1878 				rb_entry(vma->vm_rb.rb_left,
1879 					 struct vm_area_struct, vm_rb);
1880 			if (left->rb_subtree_gap >= length) {
1881 				vma = left;
1882 				continue;
1883 			}
1884 		}
1885 
1886 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1887 check_current:
1888 		/* Check if current node has a suitable gap */
1889 		if (gap_start > high_limit)
1890 			return -ENOMEM;
1891 		if (gap_end >= low_limit &&
1892 		    gap_end > gap_start && gap_end - gap_start >= length)
1893 			goto found;
1894 
1895 		/* Visit right subtree if it looks promising */
1896 		if (vma->vm_rb.rb_right) {
1897 			struct vm_area_struct *right =
1898 				rb_entry(vma->vm_rb.rb_right,
1899 					 struct vm_area_struct, vm_rb);
1900 			if (right->rb_subtree_gap >= length) {
1901 				vma = right;
1902 				continue;
1903 			}
1904 		}
1905 
1906 		/* Go back up the rbtree to find next candidate node */
1907 		while (true) {
1908 			struct rb_node *prev = &vma->vm_rb;
1909 			if (!rb_parent(prev))
1910 				goto check_highest;
1911 			vma = rb_entry(rb_parent(prev),
1912 				       struct vm_area_struct, vm_rb);
1913 			if (prev == vma->vm_rb.rb_left) {
1914 				gap_start = vm_end_gap(vma->vm_prev);
1915 				gap_end = vm_start_gap(vma);
1916 				goto check_current;
1917 			}
1918 		}
1919 	}
1920 
1921 check_highest:
1922 	/* Check highest gap, which does not precede any rbtree node */
1923 	gap_start = mm->highest_vm_end;
1924 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1925 	if (gap_start > high_limit)
1926 		return -ENOMEM;
1927 
1928 found:
1929 	/* We found a suitable gap. Clip it with the original low_limit. */
1930 	if (gap_start < info->low_limit)
1931 		gap_start = info->low_limit;
1932 
1933 	/* Adjust gap address to the desired alignment */
1934 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1935 
1936 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1937 	VM_BUG_ON(gap_start + info->length > gap_end);
1938 	return gap_start;
1939 }
1940 
unmapped_area_topdown(struct vm_unmapped_area_info * info)1941 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1942 {
1943 	struct mm_struct *mm = current->mm;
1944 	struct vm_area_struct *vma;
1945 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1946 
1947 	/* Adjust search length to account for worst case alignment overhead */
1948 	length = info->length + info->align_mask;
1949 	if (length < info->length)
1950 		return -ENOMEM;
1951 
1952 	/*
1953 	 * Adjust search limits by the desired length.
1954 	 * See implementation comment at top of unmapped_area().
1955 	 */
1956 	gap_end = info->high_limit;
1957 	if (gap_end < length)
1958 		return -ENOMEM;
1959 	high_limit = gap_end - length;
1960 
1961 	if (info->low_limit > high_limit)
1962 		return -ENOMEM;
1963 	low_limit = info->low_limit + length;
1964 
1965 	/* Check highest gap, which does not precede any rbtree node */
1966 	gap_start = mm->highest_vm_end;
1967 	if (gap_start <= high_limit)
1968 		goto found_highest;
1969 
1970 	/* Check if rbtree root looks promising */
1971 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1972 		return -ENOMEM;
1973 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1974 	if (vma->rb_subtree_gap < length)
1975 		return -ENOMEM;
1976 
1977 	while (true) {
1978 		/* Visit right subtree if it looks promising */
1979 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1980 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1981 			struct vm_area_struct *right =
1982 				rb_entry(vma->vm_rb.rb_right,
1983 					 struct vm_area_struct, vm_rb);
1984 			if (right->rb_subtree_gap >= length) {
1985 				vma = right;
1986 				continue;
1987 			}
1988 		}
1989 
1990 check_current:
1991 		/* Check if current node has a suitable gap */
1992 		gap_end = vm_start_gap(vma);
1993 		if (gap_end < low_limit)
1994 			return -ENOMEM;
1995 		if (gap_start <= high_limit &&
1996 		    gap_end > gap_start && gap_end - gap_start >= length)
1997 			goto found;
1998 
1999 		/* Visit left subtree if it looks promising */
2000 		if (vma->vm_rb.rb_left) {
2001 			struct vm_area_struct *left =
2002 				rb_entry(vma->vm_rb.rb_left,
2003 					 struct vm_area_struct, vm_rb);
2004 			if (left->rb_subtree_gap >= length) {
2005 				vma = left;
2006 				continue;
2007 			}
2008 		}
2009 
2010 		/* Go back up the rbtree to find next candidate node */
2011 		while (true) {
2012 			struct rb_node *prev = &vma->vm_rb;
2013 			if (!rb_parent(prev))
2014 				return -ENOMEM;
2015 			vma = rb_entry(rb_parent(prev),
2016 				       struct vm_area_struct, vm_rb);
2017 			if (prev == vma->vm_rb.rb_right) {
2018 				gap_start = vma->vm_prev ?
2019 					vm_end_gap(vma->vm_prev) : 0;
2020 				goto check_current;
2021 			}
2022 		}
2023 	}
2024 
2025 found:
2026 	/* We found a suitable gap. Clip it with the original high_limit. */
2027 	if (gap_end > info->high_limit)
2028 		gap_end = info->high_limit;
2029 
2030 found_highest:
2031 	/* Compute highest gap address at the desired alignment */
2032 	gap_end -= info->length;
2033 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2034 
2035 	VM_BUG_ON(gap_end < info->low_limit);
2036 	VM_BUG_ON(gap_end < gap_start);
2037 	return gap_end;
2038 }
2039 
2040 /* Get an address range which is currently unmapped.
2041  * For shmat() with addr=0.
2042  *
2043  * Ugly calling convention alert:
2044  * Return value with the low bits set means error value,
2045  * ie
2046  *	if (ret & ~PAGE_MASK)
2047  *		error = ret;
2048  *
2049  * This function "knows" that -ENOMEM has the bits set.
2050  */
2051 #ifndef HAVE_ARCH_UNMAPPED_AREA
2052 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2053 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2054 		unsigned long len, unsigned long pgoff, unsigned long flags)
2055 {
2056 	struct mm_struct *mm = current->mm;
2057 	struct vm_area_struct *vma, *prev;
2058 	struct vm_unmapped_area_info info;
2059 
2060 	if (len > TASK_SIZE - mmap_min_addr)
2061 		return -ENOMEM;
2062 
2063 	if (flags & MAP_FIXED)
2064 		return addr;
2065 
2066 	if (addr) {
2067 		addr = PAGE_ALIGN(addr);
2068 		vma = find_vma_prev(mm, addr, &prev);
2069 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2070 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2071 		    (!prev || addr >= vm_end_gap(prev)))
2072 			return addr;
2073 	}
2074 
2075 	info.flags = 0;
2076 	info.length = len;
2077 	info.low_limit = mm->mmap_base;
2078 	info.high_limit = TASK_SIZE;
2079 	info.align_mask = 0;
2080 	info.align_offset = 0;
2081 	return vm_unmapped_area(&info);
2082 }
2083 #endif
2084 
2085 /*
2086  * This mmap-allocator allocates new areas top-down from below the
2087  * stack's low limit (the base):
2088  */
2089 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2090 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,const unsigned long addr0,const unsigned long len,const unsigned long pgoff,const unsigned long flags)2091 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2092 			  const unsigned long len, const unsigned long pgoff,
2093 			  const unsigned long flags)
2094 {
2095 	struct vm_area_struct *vma, *prev;
2096 	struct mm_struct *mm = current->mm;
2097 	unsigned long addr = addr0;
2098 	struct vm_unmapped_area_info info;
2099 
2100 	/* requested length too big for entire address space */
2101 	if (len > TASK_SIZE - mmap_min_addr)
2102 		return -ENOMEM;
2103 
2104 	if (flags & MAP_FIXED)
2105 		return addr;
2106 
2107 	/* requesting a specific address */
2108 	if (addr) {
2109 		addr = PAGE_ALIGN(addr);
2110 		vma = find_vma_prev(mm, addr, &prev);
2111 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2112 				(!vma || addr + len <= vm_start_gap(vma)) &&
2113 				(!prev || addr >= vm_end_gap(prev)))
2114 			return addr;
2115 	}
2116 
2117 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2118 	info.length = len;
2119 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2120 	info.high_limit = mm->mmap_base;
2121 	info.align_mask = 0;
2122 	info.align_offset = 0;
2123 	addr = vm_unmapped_area(&info);
2124 
2125 	/*
2126 	 * A failed mmap() very likely causes application failure,
2127 	 * so fall back to the bottom-up function here. This scenario
2128 	 * can happen with large stack limits and large mmap()
2129 	 * allocations.
2130 	 */
2131 	if (offset_in_page(addr)) {
2132 		VM_BUG_ON(addr != -ENOMEM);
2133 		info.flags = 0;
2134 		info.low_limit = TASK_UNMAPPED_BASE;
2135 		info.high_limit = TASK_SIZE;
2136 		addr = vm_unmapped_area(&info);
2137 	}
2138 
2139 	return addr;
2140 }
2141 #endif
2142 
2143 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2144 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2145 		unsigned long pgoff, unsigned long flags)
2146 {
2147 	unsigned long (*get_area)(struct file *, unsigned long,
2148 				  unsigned long, unsigned long, unsigned long);
2149 
2150 	unsigned long error = arch_mmap_check(addr, len, flags);
2151 	if (error)
2152 		return error;
2153 
2154 	/* Careful about overflows.. */
2155 	if (len > TASK_SIZE)
2156 		return -ENOMEM;
2157 
2158 	get_area = current->mm->get_unmapped_area;
2159 	if (file) {
2160 		if (file->f_op->get_unmapped_area)
2161 			get_area = file->f_op->get_unmapped_area;
2162 	} else if (flags & MAP_SHARED) {
2163 		/*
2164 		 * mmap_region() will call shmem_zero_setup() to create a file,
2165 		 * so use shmem's get_unmapped_area in case it can be huge.
2166 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2167 		 */
2168 		pgoff = 0;
2169 		get_area = shmem_get_unmapped_area;
2170 	}
2171 
2172 	addr = get_area(file, addr, len, pgoff, flags);
2173 	if (IS_ERR_VALUE(addr))
2174 		return addr;
2175 
2176 	if (addr > TASK_SIZE - len)
2177 		return -ENOMEM;
2178 	if (offset_in_page(addr))
2179 		return -EINVAL;
2180 
2181 	error = security_mmap_addr(addr);
2182 	return error ? error : addr;
2183 }
2184 
2185 EXPORT_SYMBOL(get_unmapped_area);
2186 
2187 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2188 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2189 {
2190 	struct rb_node *rb_node;
2191 	struct vm_area_struct *vma;
2192 
2193 	/* Check the cache first. */
2194 	vma = vmacache_find(mm, addr);
2195 	if (likely(vma))
2196 		return vma;
2197 
2198 	rb_node = mm->mm_rb.rb_node;
2199 
2200 	while (rb_node) {
2201 		struct vm_area_struct *tmp;
2202 
2203 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2204 
2205 		if (tmp->vm_end > addr) {
2206 			vma = tmp;
2207 			if (tmp->vm_start <= addr)
2208 				break;
2209 			rb_node = rb_node->rb_left;
2210 		} else
2211 			rb_node = rb_node->rb_right;
2212 	}
2213 
2214 	if (vma)
2215 		vmacache_update(addr, vma);
2216 	return vma;
2217 }
2218 
2219 EXPORT_SYMBOL(find_vma);
2220 
2221 /*
2222  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2223  */
2224 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2225 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2226 			struct vm_area_struct **pprev)
2227 {
2228 	struct vm_area_struct *vma;
2229 
2230 	vma = find_vma(mm, addr);
2231 	if (vma) {
2232 		*pprev = vma->vm_prev;
2233 	} else {
2234 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2235 		*pprev = NULL;
2236 		while (rb_node) {
2237 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2238 			rb_node = rb_node->rb_right;
2239 		}
2240 	}
2241 	return vma;
2242 }
2243 
2244 /*
2245  * Verify that the stack growth is acceptable and
2246  * update accounting. This is shared with both the
2247  * grow-up and grow-down cases.
2248  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2249 static int acct_stack_growth(struct vm_area_struct *vma,
2250 			     unsigned long size, unsigned long grow)
2251 {
2252 	struct mm_struct *mm = vma->vm_mm;
2253 	unsigned long new_start;
2254 
2255 	/* address space limit tests */
2256 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2257 		return -ENOMEM;
2258 
2259 	/* Stack limit test */
2260 	if (size > rlimit(RLIMIT_STACK))
2261 		return -ENOMEM;
2262 
2263 	/* mlock limit tests */
2264 	if (vma->vm_flags & VM_LOCKED) {
2265 		unsigned long locked;
2266 		unsigned long limit;
2267 		locked = mm->locked_vm + grow;
2268 		limit = rlimit(RLIMIT_MEMLOCK);
2269 		limit >>= PAGE_SHIFT;
2270 		if (locked > limit && !capable(CAP_IPC_LOCK))
2271 			return -ENOMEM;
2272 	}
2273 
2274 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2275 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2276 			vma->vm_end - size;
2277 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2278 		return -EFAULT;
2279 
2280 	/*
2281 	 * Overcommit..  This must be the final test, as it will
2282 	 * update security statistics.
2283 	 */
2284 	if (security_vm_enough_memory_mm(mm, grow))
2285 		return -ENOMEM;
2286 
2287 	return 0;
2288 }
2289 
2290 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2291 /*
2292  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2293  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2294  */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2295 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2296 {
2297 	struct mm_struct *mm = vma->vm_mm;
2298 	struct vm_area_struct *next;
2299 	unsigned long gap_addr;
2300 	int error = 0;
2301 
2302 	if (!(vma->vm_flags & VM_GROWSUP))
2303 		return -EFAULT;
2304 
2305 	/* Guard against exceeding limits of the address space. */
2306 	address &= PAGE_MASK;
2307 	if (address >= (TASK_SIZE & PAGE_MASK))
2308 		return -ENOMEM;
2309 	address += PAGE_SIZE;
2310 
2311 	/* Enforce stack_guard_gap */
2312 	gap_addr = address + stack_guard_gap;
2313 
2314 	/* Guard against overflow */
2315 	if (gap_addr < address || gap_addr > TASK_SIZE)
2316 		gap_addr = TASK_SIZE;
2317 
2318 	next = vma->vm_next;
2319 	if (next && next->vm_start < gap_addr &&
2320 			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2321 		if (!(next->vm_flags & VM_GROWSUP))
2322 			return -ENOMEM;
2323 		/* Check that both stack segments have the same anon_vma? */
2324 	}
2325 
2326 	/* We must make sure the anon_vma is allocated. */
2327 	if (unlikely(anon_vma_prepare(vma)))
2328 		return -ENOMEM;
2329 
2330 	/*
2331 	 * vma->vm_start/vm_end cannot change under us because the caller
2332 	 * is required to hold the mmap_sem in read mode.  We need the
2333 	 * anon_vma lock to serialize against concurrent expand_stacks.
2334 	 */
2335 	anon_vma_lock_write(vma->anon_vma);
2336 
2337 	/* Somebody else might have raced and expanded it already */
2338 	if (address > vma->vm_end) {
2339 		unsigned long size, grow;
2340 
2341 		size = address - vma->vm_start;
2342 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2343 
2344 		error = -ENOMEM;
2345 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2346 			error = acct_stack_growth(vma, size, grow);
2347 			if (!error) {
2348 				/*
2349 				 * vma_gap_update() doesn't support concurrent
2350 				 * updates, but we only hold a shared mmap_sem
2351 				 * lock here, so we need to protect against
2352 				 * concurrent vma expansions.
2353 				 * anon_vma_lock_write() doesn't help here, as
2354 				 * we don't guarantee that all growable vmas
2355 				 * in a mm share the same root anon vma.
2356 				 * So, we reuse mm->page_table_lock to guard
2357 				 * against concurrent vma expansions.
2358 				 */
2359 				spin_lock(&mm->page_table_lock);
2360 				if (vma->vm_flags & VM_LOCKED)
2361 					mm->locked_vm += grow;
2362 				vm_stat_account(mm, vma->vm_flags, grow);
2363 				anon_vma_interval_tree_pre_update_vma(vma);
2364 				vma->vm_end = address;
2365 				anon_vma_interval_tree_post_update_vma(vma);
2366 				if (vma->vm_next)
2367 					vma_gap_update(vma->vm_next);
2368 				else
2369 					mm->highest_vm_end = vm_end_gap(vma);
2370 				spin_unlock(&mm->page_table_lock);
2371 
2372 				perf_event_mmap(vma);
2373 			}
2374 		}
2375 	}
2376 	anon_vma_unlock_write(vma->anon_vma);
2377 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2378 	validate_mm(mm);
2379 	return error;
2380 }
2381 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2382 
2383 /*
2384  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2385  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2386 int expand_downwards(struct vm_area_struct *vma,
2387 				   unsigned long address)
2388 {
2389 	struct mm_struct *mm = vma->vm_mm;
2390 	struct vm_area_struct *prev;
2391 	int error = 0;
2392 
2393 	address &= PAGE_MASK;
2394 	if (address < mmap_min_addr)
2395 		return -EPERM;
2396 
2397 	/* Enforce stack_guard_gap */
2398 	prev = vma->vm_prev;
2399 	/* Check that both stack segments have the same anon_vma? */
2400 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2401 			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2402 		if (address - prev->vm_end < stack_guard_gap)
2403 			return -ENOMEM;
2404 	}
2405 
2406 	/* We must make sure the anon_vma is allocated. */
2407 	if (unlikely(anon_vma_prepare(vma)))
2408 		return -ENOMEM;
2409 
2410 	/*
2411 	 * vma->vm_start/vm_end cannot change under us because the caller
2412 	 * is required to hold the mmap_sem in read mode.  We need the
2413 	 * anon_vma lock to serialize against concurrent expand_stacks.
2414 	 */
2415 	anon_vma_lock_write(vma->anon_vma);
2416 
2417 	/* Somebody else might have raced and expanded it already */
2418 	if (address < vma->vm_start) {
2419 		unsigned long size, grow;
2420 
2421 		size = vma->vm_end - address;
2422 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2423 
2424 		error = -ENOMEM;
2425 		if (grow <= vma->vm_pgoff) {
2426 			error = acct_stack_growth(vma, size, grow);
2427 			if (!error) {
2428 				/*
2429 				 * vma_gap_update() doesn't support concurrent
2430 				 * updates, but we only hold a shared mmap_sem
2431 				 * lock here, so we need to protect against
2432 				 * concurrent vma expansions.
2433 				 * anon_vma_lock_write() doesn't help here, as
2434 				 * we don't guarantee that all growable vmas
2435 				 * in a mm share the same root anon vma.
2436 				 * So, we reuse mm->page_table_lock to guard
2437 				 * against concurrent vma expansions.
2438 				 */
2439 				spin_lock(&mm->page_table_lock);
2440 				if (vma->vm_flags & VM_LOCKED)
2441 					mm->locked_vm += grow;
2442 				vm_stat_account(mm, vma->vm_flags, grow);
2443 				anon_vma_interval_tree_pre_update_vma(vma);
2444 				vma->vm_start = address;
2445 				vma->vm_pgoff -= grow;
2446 				anon_vma_interval_tree_post_update_vma(vma);
2447 				vma_gap_update(vma);
2448 				spin_unlock(&mm->page_table_lock);
2449 
2450 				perf_event_mmap(vma);
2451 			}
2452 		}
2453 	}
2454 	anon_vma_unlock_write(vma->anon_vma);
2455 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2456 	validate_mm(mm);
2457 	return error;
2458 }
2459 
2460 /* enforced gap between the expanding stack and other mappings. */
2461 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2462 
cmdline_parse_stack_guard_gap(char * p)2463 static int __init cmdline_parse_stack_guard_gap(char *p)
2464 {
2465 	unsigned long val;
2466 	char *endptr;
2467 
2468 	val = simple_strtoul(p, &endptr, 10);
2469 	if (!*endptr)
2470 		stack_guard_gap = val << PAGE_SHIFT;
2471 
2472 	return 0;
2473 }
2474 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2475 
2476 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2477 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2478 {
2479 	return expand_upwards(vma, address);
2480 }
2481 
2482 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2483 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2484 {
2485 	struct vm_area_struct *vma, *prev;
2486 
2487 	addr &= PAGE_MASK;
2488 	vma = find_vma_prev(mm, addr, &prev);
2489 	if (vma && (vma->vm_start <= addr))
2490 		return vma;
2491 	/* don't alter vm_end if the coredump is running */
2492 	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2493 		return NULL;
2494 	if (prev->vm_flags & VM_LOCKED)
2495 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2496 	return prev;
2497 }
2498 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2499 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2500 {
2501 	return expand_downwards(vma, address);
2502 }
2503 
2504 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2505 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2506 {
2507 	struct vm_area_struct *vma;
2508 	unsigned long start;
2509 
2510 	addr &= PAGE_MASK;
2511 	vma = find_vma(mm, addr);
2512 	if (!vma)
2513 		return NULL;
2514 	if (vma->vm_start <= addr)
2515 		return vma;
2516 	if (!(vma->vm_flags & VM_GROWSDOWN))
2517 		return NULL;
2518 	/* don't alter vm_start if the coredump is running */
2519 	if (!mmget_still_valid(mm))
2520 		return NULL;
2521 	start = vma->vm_start;
2522 	if (expand_stack(vma, addr))
2523 		return NULL;
2524 	if (vma->vm_flags & VM_LOCKED)
2525 		populate_vma_page_range(vma, addr, start, NULL);
2526 	return vma;
2527 }
2528 #endif
2529 
2530 EXPORT_SYMBOL_GPL(find_extend_vma);
2531 
2532 /*
2533  * Ok - we have the memory areas we should free on the vma list,
2534  * so release them, and do the vma updates.
2535  *
2536  * Called with the mm semaphore held.
2537  */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2538 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2539 {
2540 	unsigned long nr_accounted = 0;
2541 
2542 	/* Update high watermark before we lower total_vm */
2543 	update_hiwater_vm(mm);
2544 	do {
2545 		long nrpages = vma_pages(vma);
2546 
2547 		if (vma->vm_flags & VM_ACCOUNT)
2548 			nr_accounted += nrpages;
2549 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2550 		vma = remove_vma(vma);
2551 	} while (vma);
2552 	vm_unacct_memory(nr_accounted);
2553 	validate_mm(mm);
2554 }
2555 
2556 /*
2557  * Get rid of page table information in the indicated region.
2558  *
2559  * Called with the mm semaphore held.
2560  */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2561 static void unmap_region(struct mm_struct *mm,
2562 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2563 		unsigned long start, unsigned long end)
2564 {
2565 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2566 	struct mmu_gather tlb;
2567 
2568 	lru_add_drain();
2569 	tlb_gather_mmu(&tlb, mm, start, end);
2570 	update_hiwater_rss(mm);
2571 	unmap_vmas(&tlb, vma, start, end);
2572 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2573 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2574 	tlb_finish_mmu(&tlb, start, end);
2575 }
2576 
2577 /*
2578  * Create a list of vma's touched by the unmap, removing them from the mm's
2579  * vma list as we go..
2580  */
2581 static void
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2582 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2583 	struct vm_area_struct *prev, unsigned long end)
2584 {
2585 	struct vm_area_struct **insertion_point;
2586 	struct vm_area_struct *tail_vma = NULL;
2587 
2588 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2589 	vma->vm_prev = NULL;
2590 	do {
2591 		vma_rb_erase(vma, &mm->mm_rb);
2592 		mm->map_count--;
2593 		tail_vma = vma;
2594 		vma = vma->vm_next;
2595 	} while (vma && vma->vm_start < end);
2596 	*insertion_point = vma;
2597 	if (vma) {
2598 		vma->vm_prev = prev;
2599 		vma_gap_update(vma);
2600 	} else
2601 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2602 	tail_vma->vm_next = NULL;
2603 
2604 	/* Kill the cache */
2605 	vmacache_invalidate(mm);
2606 }
2607 
2608 /*
2609  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2610  * has already been checked or doesn't make sense to fail.
2611  */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2612 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2613 		unsigned long addr, int new_below)
2614 {
2615 	struct vm_area_struct *new;
2616 	int err;
2617 
2618 	if (vma->vm_ops && vma->vm_ops->split) {
2619 		err = vma->vm_ops->split(vma, addr);
2620 		if (err)
2621 			return err;
2622 	}
2623 
2624 	new = vm_area_dup(vma);
2625 	if (!new)
2626 		return -ENOMEM;
2627 
2628 	if (new_below)
2629 		new->vm_end = addr;
2630 	else {
2631 		new->vm_start = addr;
2632 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2633 	}
2634 
2635 	err = vma_dup_policy(vma, new);
2636 	if (err)
2637 		goto out_free_vma;
2638 
2639 	err = anon_vma_clone(new, vma);
2640 	if (err)
2641 		goto out_free_mpol;
2642 
2643 	if (new->vm_file)
2644 		get_file(new->vm_file);
2645 
2646 	if (new->vm_ops && new->vm_ops->open)
2647 		new->vm_ops->open(new);
2648 
2649 	if (new_below)
2650 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2651 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2652 	else
2653 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2654 
2655 	/* Success. */
2656 	if (!err)
2657 		return 0;
2658 
2659 	/* Clean everything up if vma_adjust failed. */
2660 	if (new->vm_ops && new->vm_ops->close)
2661 		new->vm_ops->close(new);
2662 	if (new->vm_file)
2663 		fput(new->vm_file);
2664 	unlink_anon_vmas(new);
2665  out_free_mpol:
2666 	mpol_put(vma_policy(new));
2667  out_free_vma:
2668 	vm_area_free(new);
2669 	return err;
2670 }
2671 
2672 /*
2673  * Split a vma into two pieces at address 'addr', a new vma is allocated
2674  * either for the first part or the tail.
2675  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2676 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2677 	      unsigned long addr, int new_below)
2678 {
2679 	if (mm->map_count >= sysctl_max_map_count)
2680 		return -ENOMEM;
2681 
2682 	return __split_vma(mm, vma, addr, new_below);
2683 }
2684 
2685 /* Munmap is split into 2 main parts -- this part which finds
2686  * what needs doing, and the areas themselves, which do the
2687  * work.  This now handles partial unmappings.
2688  * Jeremy Fitzhardinge <jeremy@goop.org>
2689  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2690 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2691 	      struct list_head *uf)
2692 {
2693 	unsigned long end;
2694 	struct vm_area_struct *vma, *prev, *last;
2695 
2696 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2697 		return -EINVAL;
2698 
2699 	len = PAGE_ALIGN(len);
2700 	if (len == 0)
2701 		return -EINVAL;
2702 
2703 	/* Find the first overlapping VMA */
2704 	vma = find_vma(mm, start);
2705 	if (!vma)
2706 		return 0;
2707 	prev = vma->vm_prev;
2708 	/* we have  start < vma->vm_end  */
2709 
2710 	/* if it doesn't overlap, we have nothing.. */
2711 	end = start + len;
2712 	if (vma->vm_start >= end)
2713 		return 0;
2714 
2715 	/*
2716 	 * If we need to split any vma, do it now to save pain later.
2717 	 *
2718 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2719 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2720 	 * places tmp vma above, and higher split_vma places tmp vma below.
2721 	 */
2722 	if (start > vma->vm_start) {
2723 		int error;
2724 
2725 		/*
2726 		 * Make sure that map_count on return from munmap() will
2727 		 * not exceed its limit; but let map_count go just above
2728 		 * its limit temporarily, to help free resources as expected.
2729 		 */
2730 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2731 			return -ENOMEM;
2732 
2733 		error = __split_vma(mm, vma, start, 0);
2734 		if (error)
2735 			return error;
2736 		prev = vma;
2737 	}
2738 
2739 	/* Does it split the last one? */
2740 	last = find_vma(mm, end);
2741 	if (last && end > last->vm_start) {
2742 		int error = __split_vma(mm, last, end, 1);
2743 		if (error)
2744 			return error;
2745 	}
2746 	vma = prev ? prev->vm_next : mm->mmap;
2747 
2748 	if (unlikely(uf)) {
2749 		/*
2750 		 * If userfaultfd_unmap_prep returns an error the vmas
2751 		 * will remain splitted, but userland will get a
2752 		 * highly unexpected error anyway. This is no
2753 		 * different than the case where the first of the two
2754 		 * __split_vma fails, but we don't undo the first
2755 		 * split, despite we could. This is unlikely enough
2756 		 * failure that it's not worth optimizing it for.
2757 		 */
2758 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2759 		if (error)
2760 			return error;
2761 	}
2762 
2763 	/*
2764 	 * unlock any mlock()ed ranges before detaching vmas
2765 	 */
2766 	if (mm->locked_vm) {
2767 		struct vm_area_struct *tmp = vma;
2768 		while (tmp && tmp->vm_start < end) {
2769 			if (tmp->vm_flags & VM_LOCKED) {
2770 				mm->locked_vm -= vma_pages(tmp);
2771 				munlock_vma_pages_all(tmp);
2772 			}
2773 			tmp = tmp->vm_next;
2774 		}
2775 	}
2776 
2777 	/*
2778 	 * Remove the vma's, and unmap the actual pages
2779 	 */
2780 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2781 	unmap_region(mm, vma, prev, start, end);
2782 
2783 	arch_unmap(mm, vma, start, end);
2784 
2785 	/* Fix up all other VM information */
2786 	remove_vma_list(mm, vma);
2787 
2788 	return 0;
2789 }
2790 
vm_munmap(unsigned long start,size_t len)2791 int vm_munmap(unsigned long start, size_t len)
2792 {
2793 	int ret;
2794 	struct mm_struct *mm = current->mm;
2795 	LIST_HEAD(uf);
2796 
2797 	if (down_write_killable(&mm->mmap_sem))
2798 		return -EINTR;
2799 
2800 	ret = do_munmap(mm, start, len, &uf);
2801 	up_write(&mm->mmap_sem);
2802 	userfaultfd_unmap_complete(mm, &uf);
2803 	return ret;
2804 }
2805 EXPORT_SYMBOL(vm_munmap);
2806 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2807 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2808 {
2809 	profile_munmap(addr);
2810 	return vm_munmap(addr, len);
2811 }
2812 
2813 
2814 /*
2815  * Emulation of deprecated remap_file_pages() syscall.
2816  */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2817 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2818 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2819 {
2820 
2821 	struct mm_struct *mm = current->mm;
2822 	struct vm_area_struct *vma;
2823 	unsigned long populate = 0;
2824 	unsigned long ret = -EINVAL;
2825 	struct file *file;
2826 
2827 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2828 		     current->comm, current->pid);
2829 
2830 	if (prot)
2831 		return ret;
2832 	start = start & PAGE_MASK;
2833 	size = size & PAGE_MASK;
2834 
2835 	if (start + size <= start)
2836 		return ret;
2837 
2838 	/* Does pgoff wrap? */
2839 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2840 		return ret;
2841 
2842 	if (down_write_killable(&mm->mmap_sem))
2843 		return -EINTR;
2844 
2845 	vma = find_vma(mm, start);
2846 
2847 	if (!vma || !(vma->vm_flags & VM_SHARED))
2848 		goto out;
2849 
2850 	if (start < vma->vm_start)
2851 		goto out;
2852 
2853 	if (start + size > vma->vm_end) {
2854 		struct vm_area_struct *next;
2855 
2856 		for (next = vma->vm_next; next; next = next->vm_next) {
2857 			/* hole between vmas ? */
2858 			if (next->vm_start != next->vm_prev->vm_end)
2859 				goto out;
2860 
2861 			if (next->vm_file != vma->vm_file)
2862 				goto out;
2863 
2864 			if (next->vm_flags != vma->vm_flags)
2865 				goto out;
2866 
2867 			if (start + size <= next->vm_end)
2868 				break;
2869 		}
2870 
2871 		if (!next)
2872 			goto out;
2873 	}
2874 
2875 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2876 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2877 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2878 
2879 	flags &= MAP_NONBLOCK;
2880 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2881 	if (vma->vm_flags & VM_LOCKED) {
2882 		struct vm_area_struct *tmp;
2883 		flags |= MAP_LOCKED;
2884 
2885 		/* drop PG_Mlocked flag for over-mapped range */
2886 		for (tmp = vma; tmp->vm_start >= start + size;
2887 				tmp = tmp->vm_next) {
2888 			/*
2889 			 * Split pmd and munlock page on the border
2890 			 * of the range.
2891 			 */
2892 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2893 
2894 			munlock_vma_pages_range(tmp,
2895 					max(tmp->vm_start, start),
2896 					min(tmp->vm_end, start + size));
2897 		}
2898 	}
2899 
2900 	file = get_file(vma->vm_file);
2901 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2902 			prot, flags, pgoff, &populate, NULL);
2903 	fput(file);
2904 out:
2905 	up_write(&mm->mmap_sem);
2906 	if (populate)
2907 		mm_populate(ret, populate);
2908 	if (!IS_ERR_VALUE(ret))
2909 		ret = 0;
2910 	return ret;
2911 }
2912 
verify_mm_writelocked(struct mm_struct * mm)2913 static inline void verify_mm_writelocked(struct mm_struct *mm)
2914 {
2915 #ifdef CONFIG_DEBUG_VM
2916 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2917 		WARN_ON(1);
2918 		up_read(&mm->mmap_sem);
2919 	}
2920 #endif
2921 }
2922 
2923 /*
2924  *  this is really a simplified "do_mmap".  it only handles
2925  *  anonymous maps.  eventually we may be able to do some
2926  *  brk-specific accounting here.
2927  */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)2928 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2929 {
2930 	struct mm_struct *mm = current->mm;
2931 	struct vm_area_struct *vma, *prev;
2932 	struct rb_node **rb_link, *rb_parent;
2933 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2934 	int error;
2935 
2936 	/* Until we need other flags, refuse anything except VM_EXEC. */
2937 	if ((flags & (~VM_EXEC)) != 0)
2938 		return -EINVAL;
2939 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2940 
2941 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2942 	if (offset_in_page(error))
2943 		return error;
2944 
2945 	error = mlock_future_check(mm, mm->def_flags, len);
2946 	if (error)
2947 		return error;
2948 
2949 	/*
2950 	 * mm->mmap_sem is required to protect against another thread
2951 	 * changing the mappings in case we sleep.
2952 	 */
2953 	verify_mm_writelocked(mm);
2954 
2955 	/*
2956 	 * Clear old maps.  this also does some error checking for us
2957 	 */
2958 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2959 			      &rb_parent)) {
2960 		if (do_munmap(mm, addr, len, uf))
2961 			return -ENOMEM;
2962 	}
2963 
2964 	/* Check against address space limits *after* clearing old maps... */
2965 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2966 		return -ENOMEM;
2967 
2968 	if (mm->map_count > sysctl_max_map_count)
2969 		return -ENOMEM;
2970 
2971 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2972 		return -ENOMEM;
2973 
2974 	/* Can we just expand an old private anonymous mapping? */
2975 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2976 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2977 	if (vma)
2978 		goto out;
2979 
2980 	/*
2981 	 * create a vma struct for an anonymous mapping
2982 	 */
2983 	vma = vm_area_alloc(mm);
2984 	if (!vma) {
2985 		vm_unacct_memory(len >> PAGE_SHIFT);
2986 		return -ENOMEM;
2987 	}
2988 
2989 	vma_set_anonymous(vma);
2990 	vma->vm_start = addr;
2991 	vma->vm_end = addr + len;
2992 	vma->vm_pgoff = pgoff;
2993 	vma->vm_flags = flags;
2994 	vma->vm_page_prot = vm_get_page_prot(flags);
2995 	vma_link(mm, vma, prev, rb_link, rb_parent);
2996 out:
2997 	perf_event_mmap(vma);
2998 	mm->total_vm += len >> PAGE_SHIFT;
2999 	mm->data_vm += len >> PAGE_SHIFT;
3000 	if (flags & VM_LOCKED)
3001 		mm->locked_vm += (len >> PAGE_SHIFT);
3002 	vma->vm_flags |= VM_SOFTDIRTY;
3003 	return 0;
3004 }
3005 
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3006 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3007 {
3008 	struct mm_struct *mm = current->mm;
3009 	unsigned long len;
3010 	int ret;
3011 	bool populate;
3012 	LIST_HEAD(uf);
3013 
3014 	len = PAGE_ALIGN(request);
3015 	if (len < request)
3016 		return -ENOMEM;
3017 	if (!len)
3018 		return 0;
3019 
3020 	if (down_write_killable(&mm->mmap_sem))
3021 		return -EINTR;
3022 
3023 	ret = do_brk_flags(addr, len, flags, &uf);
3024 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3025 	up_write(&mm->mmap_sem);
3026 	userfaultfd_unmap_complete(mm, &uf);
3027 	if (populate && !ret)
3028 		mm_populate(addr, len);
3029 	return ret;
3030 }
3031 EXPORT_SYMBOL(vm_brk_flags);
3032 
vm_brk(unsigned long addr,unsigned long len)3033 int vm_brk(unsigned long addr, unsigned long len)
3034 {
3035 	return vm_brk_flags(addr, len, 0);
3036 }
3037 EXPORT_SYMBOL(vm_brk);
3038 
3039 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3040 void exit_mmap(struct mm_struct *mm)
3041 {
3042 	struct mmu_gather tlb;
3043 	struct vm_area_struct *vma;
3044 	unsigned long nr_accounted = 0;
3045 
3046 	/* mm's last user has gone, and its about to be pulled down */
3047 	mmu_notifier_release(mm);
3048 
3049 	if (unlikely(mm_is_oom_victim(mm))) {
3050 		/*
3051 		 * Manually reap the mm to free as much memory as possible.
3052 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3053 		 * this mm from further consideration.  Taking mm->mmap_sem for
3054 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3055 		 * reaper will not run on this mm again after mmap_sem is
3056 		 * dropped.
3057 		 *
3058 		 * Nothing can be holding mm->mmap_sem here and the above call
3059 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3060 		 * __oom_reap_task_mm() will not block.
3061 		 *
3062 		 * This needs to be done before calling munlock_vma_pages_all(),
3063 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3064 		 * reliably test it.
3065 		 */
3066 		(void)__oom_reap_task_mm(mm);
3067 
3068 		set_bit(MMF_OOM_SKIP, &mm->flags);
3069 		down_write(&mm->mmap_sem);
3070 		up_write(&mm->mmap_sem);
3071 	}
3072 
3073 	if (mm->locked_vm) {
3074 		vma = mm->mmap;
3075 		while (vma) {
3076 			if (vma->vm_flags & VM_LOCKED)
3077 				munlock_vma_pages_all(vma);
3078 			vma = vma->vm_next;
3079 		}
3080 	}
3081 
3082 	arch_exit_mmap(mm);
3083 
3084 	vma = mm->mmap;
3085 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3086 		return;
3087 
3088 	lru_add_drain();
3089 	flush_cache_mm(mm);
3090 	tlb_gather_mmu(&tlb, mm, 0, -1);
3091 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3092 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3093 	unmap_vmas(&tlb, vma, 0, -1);
3094 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3095 	tlb_finish_mmu(&tlb, 0, -1);
3096 
3097 	/*
3098 	 * Walk the list again, actually closing and freeing it,
3099 	 * with preemption enabled, without holding any MM locks.
3100 	 */
3101 	while (vma) {
3102 		if (vma->vm_flags & VM_ACCOUNT)
3103 			nr_accounted += vma_pages(vma);
3104 		vma = remove_vma(vma);
3105 		cond_resched();
3106 	}
3107 	vm_unacct_memory(nr_accounted);
3108 }
3109 
3110 /* Insert vm structure into process list sorted by address
3111  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3112  * then i_mmap_rwsem is taken here.
3113  */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3114 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3115 {
3116 	struct vm_area_struct *prev;
3117 	struct rb_node **rb_link, *rb_parent;
3118 
3119 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3120 			   &prev, &rb_link, &rb_parent))
3121 		return -ENOMEM;
3122 	if ((vma->vm_flags & VM_ACCOUNT) &&
3123 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3124 		return -ENOMEM;
3125 
3126 	/*
3127 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3128 	 * until its first write fault, when page's anon_vma and index
3129 	 * are set.  But now set the vm_pgoff it will almost certainly
3130 	 * end up with (unless mremap moves it elsewhere before that
3131 	 * first wfault), so /proc/pid/maps tells a consistent story.
3132 	 *
3133 	 * By setting it to reflect the virtual start address of the
3134 	 * vma, merges and splits can happen in a seamless way, just
3135 	 * using the existing file pgoff checks and manipulations.
3136 	 * Similarly in do_mmap_pgoff and in do_brk.
3137 	 */
3138 	if (vma_is_anonymous(vma)) {
3139 		BUG_ON(vma->anon_vma);
3140 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3141 	}
3142 
3143 	vma_link(mm, vma, prev, rb_link, rb_parent);
3144 	return 0;
3145 }
3146 
3147 /*
3148  * Copy the vma structure to a new location in the same mm,
3149  * prior to moving page table entries, to effect an mremap move.
3150  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3151 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3152 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3153 	bool *need_rmap_locks)
3154 {
3155 	struct vm_area_struct *vma = *vmap;
3156 	unsigned long vma_start = vma->vm_start;
3157 	struct mm_struct *mm = vma->vm_mm;
3158 	struct vm_area_struct *new_vma, *prev;
3159 	struct rb_node **rb_link, *rb_parent;
3160 	bool faulted_in_anon_vma = true;
3161 
3162 	/*
3163 	 * If anonymous vma has not yet been faulted, update new pgoff
3164 	 * to match new location, to increase its chance of merging.
3165 	 */
3166 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3167 		pgoff = addr >> PAGE_SHIFT;
3168 		faulted_in_anon_vma = false;
3169 	}
3170 
3171 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3172 		return NULL;	/* should never get here */
3173 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3174 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3175 			    vma->vm_userfaultfd_ctx);
3176 	if (new_vma) {
3177 		/*
3178 		 * Source vma may have been merged into new_vma
3179 		 */
3180 		if (unlikely(vma_start >= new_vma->vm_start &&
3181 			     vma_start < new_vma->vm_end)) {
3182 			/*
3183 			 * The only way we can get a vma_merge with
3184 			 * self during an mremap is if the vma hasn't
3185 			 * been faulted in yet and we were allowed to
3186 			 * reset the dst vma->vm_pgoff to the
3187 			 * destination address of the mremap to allow
3188 			 * the merge to happen. mremap must change the
3189 			 * vm_pgoff linearity between src and dst vmas
3190 			 * (in turn preventing a vma_merge) to be
3191 			 * safe. It is only safe to keep the vm_pgoff
3192 			 * linear if there are no pages mapped yet.
3193 			 */
3194 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3195 			*vmap = vma = new_vma;
3196 		}
3197 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3198 	} else {
3199 		new_vma = vm_area_dup(vma);
3200 		if (!new_vma)
3201 			goto out;
3202 		new_vma->vm_start = addr;
3203 		new_vma->vm_end = addr + len;
3204 		new_vma->vm_pgoff = pgoff;
3205 		if (vma_dup_policy(vma, new_vma))
3206 			goto out_free_vma;
3207 		if (anon_vma_clone(new_vma, vma))
3208 			goto out_free_mempol;
3209 		if (new_vma->vm_file)
3210 			get_file(new_vma->vm_file);
3211 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3212 			new_vma->vm_ops->open(new_vma);
3213 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3214 		*need_rmap_locks = false;
3215 	}
3216 	return new_vma;
3217 
3218 out_free_mempol:
3219 	mpol_put(vma_policy(new_vma));
3220 out_free_vma:
3221 	vm_area_free(new_vma);
3222 out:
3223 	return NULL;
3224 }
3225 
3226 /*
3227  * Return true if the calling process may expand its vm space by the passed
3228  * number of pages
3229  */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3230 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3231 {
3232 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3233 		return false;
3234 
3235 	if (is_data_mapping(flags) &&
3236 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3237 		/* Workaround for Valgrind */
3238 		if (rlimit(RLIMIT_DATA) == 0 &&
3239 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3240 			return true;
3241 
3242 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3243 			     current->comm, current->pid,
3244 			     (mm->data_vm + npages) << PAGE_SHIFT,
3245 			     rlimit(RLIMIT_DATA),
3246 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3247 
3248 		if (!ignore_rlimit_data)
3249 			return false;
3250 	}
3251 
3252 	return true;
3253 }
3254 
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3255 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3256 {
3257 	mm->total_vm += npages;
3258 
3259 	if (is_exec_mapping(flags))
3260 		mm->exec_vm += npages;
3261 	else if (is_stack_mapping(flags))
3262 		mm->stack_vm += npages;
3263 	else if (is_data_mapping(flags))
3264 		mm->data_vm += npages;
3265 }
3266 
3267 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3268 
3269 /*
3270  * Having a close hook prevents vma merging regardless of flags.
3271  */
special_mapping_close(struct vm_area_struct * vma)3272 static void special_mapping_close(struct vm_area_struct *vma)
3273 {
3274 }
3275 
special_mapping_name(struct vm_area_struct * vma)3276 static const char *special_mapping_name(struct vm_area_struct *vma)
3277 {
3278 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3279 }
3280 
special_mapping_mremap(struct vm_area_struct * new_vma)3281 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3282 {
3283 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3284 
3285 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3286 		return -EFAULT;
3287 
3288 	if (sm->mremap)
3289 		return sm->mremap(sm, new_vma);
3290 
3291 	return 0;
3292 }
3293 
3294 static const struct vm_operations_struct special_mapping_vmops = {
3295 	.close = special_mapping_close,
3296 	.fault = special_mapping_fault,
3297 	.mremap = special_mapping_mremap,
3298 	.name = special_mapping_name,
3299 };
3300 
3301 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3302 	.close = special_mapping_close,
3303 	.fault = special_mapping_fault,
3304 };
3305 
special_mapping_fault(struct vm_fault * vmf)3306 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3307 {
3308 	struct vm_area_struct *vma = vmf->vma;
3309 	pgoff_t pgoff;
3310 	struct page **pages;
3311 
3312 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3313 		pages = vma->vm_private_data;
3314 	} else {
3315 		struct vm_special_mapping *sm = vma->vm_private_data;
3316 
3317 		if (sm->fault)
3318 			return sm->fault(sm, vmf->vma, vmf);
3319 
3320 		pages = sm->pages;
3321 	}
3322 
3323 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3324 		pgoff--;
3325 
3326 	if (*pages) {
3327 		struct page *page = *pages;
3328 		get_page(page);
3329 		vmf->page = page;
3330 		return 0;
3331 	}
3332 
3333 	return VM_FAULT_SIGBUS;
3334 }
3335 
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3336 static struct vm_area_struct *__install_special_mapping(
3337 	struct mm_struct *mm,
3338 	unsigned long addr, unsigned long len,
3339 	unsigned long vm_flags, void *priv,
3340 	const struct vm_operations_struct *ops)
3341 {
3342 	int ret;
3343 	struct vm_area_struct *vma;
3344 
3345 	vma = vm_area_alloc(mm);
3346 	if (unlikely(vma == NULL))
3347 		return ERR_PTR(-ENOMEM);
3348 
3349 	vma->vm_start = addr;
3350 	vma->vm_end = addr + len;
3351 
3352 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3353 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3354 
3355 	vma->vm_ops = ops;
3356 	vma->vm_private_data = priv;
3357 
3358 	ret = insert_vm_struct(mm, vma);
3359 	if (ret)
3360 		goto out;
3361 
3362 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3363 
3364 	perf_event_mmap(vma);
3365 
3366 	return vma;
3367 
3368 out:
3369 	vm_area_free(vma);
3370 	return ERR_PTR(ret);
3371 }
3372 
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3373 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3374 	const struct vm_special_mapping *sm)
3375 {
3376 	return vma->vm_private_data == sm &&
3377 		(vma->vm_ops == &special_mapping_vmops ||
3378 		 vma->vm_ops == &legacy_special_mapping_vmops);
3379 }
3380 
3381 /*
3382  * Called with mm->mmap_sem held for writing.
3383  * Insert a new vma covering the given region, with the given flags.
3384  * Its pages are supplied by the given array of struct page *.
3385  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3386  * The region past the last page supplied will always produce SIGBUS.
3387  * The array pointer and the pages it points to are assumed to stay alive
3388  * for as long as this mapping might exist.
3389  */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3390 struct vm_area_struct *_install_special_mapping(
3391 	struct mm_struct *mm,
3392 	unsigned long addr, unsigned long len,
3393 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3394 {
3395 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3396 					&special_mapping_vmops);
3397 }
3398 
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3399 int install_special_mapping(struct mm_struct *mm,
3400 			    unsigned long addr, unsigned long len,
3401 			    unsigned long vm_flags, struct page **pages)
3402 {
3403 	struct vm_area_struct *vma = __install_special_mapping(
3404 		mm, addr, len, vm_flags, (void *)pages,
3405 		&legacy_special_mapping_vmops);
3406 
3407 	return PTR_ERR_OR_ZERO(vma);
3408 }
3409 
3410 static DEFINE_MUTEX(mm_all_locks_mutex);
3411 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3412 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3413 {
3414 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3415 		/*
3416 		 * The LSB of head.next can't change from under us
3417 		 * because we hold the mm_all_locks_mutex.
3418 		 */
3419 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3420 		/*
3421 		 * We can safely modify head.next after taking the
3422 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3423 		 * the same anon_vma we won't take it again.
3424 		 *
3425 		 * No need of atomic instructions here, head.next
3426 		 * can't change from under us thanks to the
3427 		 * anon_vma->root->rwsem.
3428 		 */
3429 		if (__test_and_set_bit(0, (unsigned long *)
3430 				       &anon_vma->root->rb_root.rb_root.rb_node))
3431 			BUG();
3432 	}
3433 }
3434 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3435 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3436 {
3437 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3438 		/*
3439 		 * AS_MM_ALL_LOCKS can't change from under us because
3440 		 * we hold the mm_all_locks_mutex.
3441 		 *
3442 		 * Operations on ->flags have to be atomic because
3443 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3444 		 * mm_all_locks_mutex, there may be other cpus
3445 		 * changing other bitflags in parallel to us.
3446 		 */
3447 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3448 			BUG();
3449 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3450 	}
3451 }
3452 
3453 /*
3454  * This operation locks against the VM for all pte/vma/mm related
3455  * operations that could ever happen on a certain mm. This includes
3456  * vmtruncate, try_to_unmap, and all page faults.
3457  *
3458  * The caller must take the mmap_sem in write mode before calling
3459  * mm_take_all_locks(). The caller isn't allowed to release the
3460  * mmap_sem until mm_drop_all_locks() returns.
3461  *
3462  * mmap_sem in write mode is required in order to block all operations
3463  * that could modify pagetables and free pages without need of
3464  * altering the vma layout. It's also needed in write mode to avoid new
3465  * anon_vmas to be associated with existing vmas.
3466  *
3467  * A single task can't take more than one mm_take_all_locks() in a row
3468  * or it would deadlock.
3469  *
3470  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3471  * mapping->flags avoid to take the same lock twice, if more than one
3472  * vma in this mm is backed by the same anon_vma or address_space.
3473  *
3474  * We take locks in following order, accordingly to comment at beginning
3475  * of mm/rmap.c:
3476  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3477  *     hugetlb mapping);
3478  *   - all i_mmap_rwsem locks;
3479  *   - all anon_vma->rwseml
3480  *
3481  * We can take all locks within these types randomly because the VM code
3482  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3483  * mm_all_locks_mutex.
3484  *
3485  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3486  * that may have to take thousand of locks.
3487  *
3488  * mm_take_all_locks() can fail if it's interrupted by signals.
3489  */
mm_take_all_locks(struct mm_struct * mm)3490 int mm_take_all_locks(struct mm_struct *mm)
3491 {
3492 	struct vm_area_struct *vma;
3493 	struct anon_vma_chain *avc;
3494 
3495 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3496 
3497 	mutex_lock(&mm_all_locks_mutex);
3498 
3499 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3500 		if (signal_pending(current))
3501 			goto out_unlock;
3502 		if (vma->vm_file && vma->vm_file->f_mapping &&
3503 				is_vm_hugetlb_page(vma))
3504 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3505 	}
3506 
3507 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3508 		if (signal_pending(current))
3509 			goto out_unlock;
3510 		if (vma->vm_file && vma->vm_file->f_mapping &&
3511 				!is_vm_hugetlb_page(vma))
3512 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3513 	}
3514 
3515 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3516 		if (signal_pending(current))
3517 			goto out_unlock;
3518 		if (vma->anon_vma)
3519 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3520 				vm_lock_anon_vma(mm, avc->anon_vma);
3521 	}
3522 
3523 	return 0;
3524 
3525 out_unlock:
3526 	mm_drop_all_locks(mm);
3527 	return -EINTR;
3528 }
3529 
vm_unlock_anon_vma(struct anon_vma * anon_vma)3530 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3531 {
3532 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3533 		/*
3534 		 * The LSB of head.next can't change to 0 from under
3535 		 * us because we hold the mm_all_locks_mutex.
3536 		 *
3537 		 * We must however clear the bitflag before unlocking
3538 		 * the vma so the users using the anon_vma->rb_root will
3539 		 * never see our bitflag.
3540 		 *
3541 		 * No need of atomic instructions here, head.next
3542 		 * can't change from under us until we release the
3543 		 * anon_vma->root->rwsem.
3544 		 */
3545 		if (!__test_and_clear_bit(0, (unsigned long *)
3546 					  &anon_vma->root->rb_root.rb_root.rb_node))
3547 			BUG();
3548 		anon_vma_unlock_write(anon_vma);
3549 	}
3550 }
3551 
vm_unlock_mapping(struct address_space * mapping)3552 static void vm_unlock_mapping(struct address_space *mapping)
3553 {
3554 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3555 		/*
3556 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3557 		 * because we hold the mm_all_locks_mutex.
3558 		 */
3559 		i_mmap_unlock_write(mapping);
3560 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3561 					&mapping->flags))
3562 			BUG();
3563 	}
3564 }
3565 
3566 /*
3567  * The mmap_sem cannot be released by the caller until
3568  * mm_drop_all_locks() returns.
3569  */
mm_drop_all_locks(struct mm_struct * mm)3570 void mm_drop_all_locks(struct mm_struct *mm)
3571 {
3572 	struct vm_area_struct *vma;
3573 	struct anon_vma_chain *avc;
3574 
3575 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3576 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3577 
3578 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3579 		if (vma->anon_vma)
3580 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3581 				vm_unlock_anon_vma(avc->anon_vma);
3582 		if (vma->vm_file && vma->vm_file->f_mapping)
3583 			vm_unlock_mapping(vma->vm_file->f_mapping);
3584 	}
3585 
3586 	mutex_unlock(&mm_all_locks_mutex);
3587 }
3588 
3589 /*
3590  * initialise the percpu counter for VM
3591  */
mmap_init(void)3592 void __init mmap_init(void)
3593 {
3594 	int ret;
3595 
3596 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3597 	VM_BUG_ON(ret);
3598 }
3599 
3600 /*
3601  * Initialise sysctl_user_reserve_kbytes.
3602  *
3603  * This is intended to prevent a user from starting a single memory hogging
3604  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3605  * mode.
3606  *
3607  * The default value is min(3% of free memory, 128MB)
3608  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3609  */
init_user_reserve(void)3610 static int init_user_reserve(void)
3611 {
3612 	unsigned long free_kbytes;
3613 
3614 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3615 
3616 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3617 	return 0;
3618 }
3619 subsys_initcall(init_user_reserve);
3620 
3621 /*
3622  * Initialise sysctl_admin_reserve_kbytes.
3623  *
3624  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3625  * to log in and kill a memory hogging process.
3626  *
3627  * Systems with more than 256MB will reserve 8MB, enough to recover
3628  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3629  * only reserve 3% of free pages by default.
3630  */
init_admin_reserve(void)3631 static int init_admin_reserve(void)
3632 {
3633 	unsigned long free_kbytes;
3634 
3635 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3636 
3637 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3638 	return 0;
3639 }
3640 subsys_initcall(init_admin_reserve);
3641 
3642 /*
3643  * Reinititalise user and admin reserves if memory is added or removed.
3644  *
3645  * The default user reserve max is 128MB, and the default max for the
3646  * admin reserve is 8MB. These are usually, but not always, enough to
3647  * enable recovery from a memory hogging process using login/sshd, a shell,
3648  * and tools like top. It may make sense to increase or even disable the
3649  * reserve depending on the existence of swap or variations in the recovery
3650  * tools. So, the admin may have changed them.
3651  *
3652  * If memory is added and the reserves have been eliminated or increased above
3653  * the default max, then we'll trust the admin.
3654  *
3655  * If memory is removed and there isn't enough free memory, then we
3656  * need to reset the reserves.
3657  *
3658  * Otherwise keep the reserve set by the admin.
3659  */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3660 static int reserve_mem_notifier(struct notifier_block *nb,
3661 			     unsigned long action, void *data)
3662 {
3663 	unsigned long tmp, free_kbytes;
3664 
3665 	switch (action) {
3666 	case MEM_ONLINE:
3667 		/* Default max is 128MB. Leave alone if modified by operator. */
3668 		tmp = sysctl_user_reserve_kbytes;
3669 		if (0 < tmp && tmp < (1UL << 17))
3670 			init_user_reserve();
3671 
3672 		/* Default max is 8MB.  Leave alone if modified by operator. */
3673 		tmp = sysctl_admin_reserve_kbytes;
3674 		if (0 < tmp && tmp < (1UL << 13))
3675 			init_admin_reserve();
3676 
3677 		break;
3678 	case MEM_OFFLINE:
3679 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3680 
3681 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3682 			init_user_reserve();
3683 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3684 				sysctl_user_reserve_kbytes);
3685 		}
3686 
3687 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3688 			init_admin_reserve();
3689 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3690 				sysctl_admin_reserve_kbytes);
3691 		}
3692 		break;
3693 	default:
3694 		break;
3695 	}
3696 	return NOTIFY_OK;
3697 }
3698 
3699 static struct notifier_block reserve_mem_nb = {
3700 	.notifier_call = reserve_mem_notifier,
3701 };
3702 
init_reserve_notifier(void)3703 static int __meminit init_reserve_notifier(void)
3704 {
3705 	if (register_hotmemory_notifier(&reserve_mem_nb))
3706 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3707 
3708 	return 0;
3709 }
3710 subsys_initcall(init_reserve_notifier);
3711