1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54
55 #include "internal.h"
56
57 #ifndef arch_mmap_check
58 #define arch_mmap_check(addr, len, flags) (0)
59 #endif
60
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71
72 static bool ignore_rlimit_data;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
74
75 static void unmap_region(struct mm_struct *mm,
76 struct vm_area_struct *vma, struct vm_area_struct *prev,
77 unsigned long start, unsigned long end);
78
79 /* description of effects of mapping type and prot in current implementation.
80 * this is due to the limited x86 page protection hardware. The expected
81 * behavior is in parens:
82 *
83 * map_type prot
84 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
85 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
86 * w: (no) no w: (no) no w: (yes) yes w: (no) no
87 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
88 *
89 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (copy) copy w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 */
93 pgprot_t protection_map[16] __ro_after_init = {
94 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
95 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
96 };
97
98 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)99 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
100 {
101 return prot;
102 }
103 #endif
104
vm_get_page_prot(unsigned long vm_flags)105 pgprot_t vm_get_page_prot(unsigned long vm_flags)
106 {
107 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
108 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
109 pgprot_val(arch_vm_get_page_prot(vm_flags)));
110
111 return arch_filter_pgprot(ret);
112 }
113 EXPORT_SYMBOL(vm_get_page_prot);
114
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)115 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
116 {
117 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
118 }
119
120 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)121 void vma_set_page_prot(struct vm_area_struct *vma)
122 {
123 unsigned long vm_flags = vma->vm_flags;
124 pgprot_t vm_page_prot;
125
126 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
127 if (vma_wants_writenotify(vma, vm_page_prot)) {
128 vm_flags &= ~VM_SHARED;
129 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
130 }
131 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
132 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
133 }
134
135 /*
136 * Requires inode->i_mapping->i_mmap_rwsem
137 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)138 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
139 struct file *file, struct address_space *mapping)
140 {
141 if (vma->vm_flags & VM_DENYWRITE)
142 atomic_inc(&file_inode(file)->i_writecount);
143 if (vma->vm_flags & VM_SHARED)
144 mapping_unmap_writable(mapping);
145
146 flush_dcache_mmap_lock(mapping);
147 vma_interval_tree_remove(vma, &mapping->i_mmap);
148 flush_dcache_mmap_unlock(mapping);
149 }
150
151 /*
152 * Unlink a file-based vm structure from its interval tree, to hide
153 * vma from rmap and vmtruncate before freeing its page tables.
154 */
unlink_file_vma(struct vm_area_struct * vma)155 void unlink_file_vma(struct vm_area_struct *vma)
156 {
157 struct file *file = vma->vm_file;
158
159 if (file) {
160 struct address_space *mapping = file->f_mapping;
161 i_mmap_lock_write(mapping);
162 __remove_shared_vm_struct(vma, file, mapping);
163 i_mmap_unlock_write(mapping);
164 }
165 }
166
167 /*
168 * Close a vm structure and free it, returning the next.
169 */
remove_vma(struct vm_area_struct * vma)170 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
171 {
172 struct vm_area_struct *next = vma->vm_next;
173
174 might_sleep();
175 if (vma->vm_ops && vma->vm_ops->close)
176 vma->vm_ops->close(vma);
177 if (vma->vm_file)
178 fput(vma->vm_file);
179 mpol_put(vma_policy(vma));
180 vm_area_free(vma);
181 return next;
182 }
183
184 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
185 struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)186 SYSCALL_DEFINE1(brk, unsigned long, brk)
187 {
188 unsigned long retval;
189 unsigned long newbrk, oldbrk;
190 struct mm_struct *mm = current->mm;
191 struct vm_area_struct *next;
192 unsigned long min_brk;
193 bool populate;
194 LIST_HEAD(uf);
195
196 if (down_write_killable(&mm->mmap_sem))
197 return -EINTR;
198
199 #ifdef CONFIG_COMPAT_BRK
200 /*
201 * CONFIG_COMPAT_BRK can still be overridden by setting
202 * randomize_va_space to 2, which will still cause mm->start_brk
203 * to be arbitrarily shifted
204 */
205 if (current->brk_randomized)
206 min_brk = mm->start_brk;
207 else
208 min_brk = mm->end_data;
209 #else
210 min_brk = mm->start_brk;
211 #endif
212 if (brk < min_brk)
213 goto out;
214
215 /*
216 * Check against rlimit here. If this check is done later after the test
217 * of oldbrk with newbrk then it can escape the test and let the data
218 * segment grow beyond its set limit the in case where the limit is
219 * not page aligned -Ram Gupta
220 */
221 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
222 mm->end_data, mm->start_data))
223 goto out;
224
225 newbrk = PAGE_ALIGN(brk);
226 oldbrk = PAGE_ALIGN(mm->brk);
227 if (oldbrk == newbrk)
228 goto set_brk;
229
230 /* Always allow shrinking brk. */
231 if (brk <= mm->brk) {
232 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
233 goto set_brk;
234 goto out;
235 }
236
237 /* Check against existing mmap mappings. */
238 next = find_vma(mm, oldbrk);
239 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
240 goto out;
241
242 /* Ok, looks good - let it rip. */
243 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
244 goto out;
245
246 set_brk:
247 mm->brk = brk;
248 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
249 up_write(&mm->mmap_sem);
250 userfaultfd_unmap_complete(mm, &uf);
251 if (populate)
252 mm_populate(oldbrk, newbrk - oldbrk);
253 return brk;
254
255 out:
256 retval = mm->brk;
257 up_write(&mm->mmap_sem);
258 return retval;
259 }
260
vma_compute_subtree_gap(struct vm_area_struct * vma)261 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
262 {
263 unsigned long max, prev_end, subtree_gap;
264
265 /*
266 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
267 * allow two stack_guard_gaps between them here, and when choosing
268 * an unmapped area; whereas when expanding we only require one.
269 * That's a little inconsistent, but keeps the code here simpler.
270 */
271 max = vm_start_gap(vma);
272 if (vma->vm_prev) {
273 prev_end = vm_end_gap(vma->vm_prev);
274 if (max > prev_end)
275 max -= prev_end;
276 else
277 max = 0;
278 }
279 if (vma->vm_rb.rb_left) {
280 subtree_gap = rb_entry(vma->vm_rb.rb_left,
281 struct vm_area_struct, vm_rb)->rb_subtree_gap;
282 if (subtree_gap > max)
283 max = subtree_gap;
284 }
285 if (vma->vm_rb.rb_right) {
286 subtree_gap = rb_entry(vma->vm_rb.rb_right,
287 struct vm_area_struct, vm_rb)->rb_subtree_gap;
288 if (subtree_gap > max)
289 max = subtree_gap;
290 }
291 return max;
292 }
293
294 #ifdef CONFIG_DEBUG_VM_RB
browse_rb(struct mm_struct * mm)295 static int browse_rb(struct mm_struct *mm)
296 {
297 struct rb_root *root = &mm->mm_rb;
298 int i = 0, j, bug = 0;
299 struct rb_node *nd, *pn = NULL;
300 unsigned long prev = 0, pend = 0;
301
302 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
303 struct vm_area_struct *vma;
304 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
305 if (vma->vm_start < prev) {
306 pr_emerg("vm_start %lx < prev %lx\n",
307 vma->vm_start, prev);
308 bug = 1;
309 }
310 if (vma->vm_start < pend) {
311 pr_emerg("vm_start %lx < pend %lx\n",
312 vma->vm_start, pend);
313 bug = 1;
314 }
315 if (vma->vm_start > vma->vm_end) {
316 pr_emerg("vm_start %lx > vm_end %lx\n",
317 vma->vm_start, vma->vm_end);
318 bug = 1;
319 }
320 spin_lock(&mm->page_table_lock);
321 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
322 pr_emerg("free gap %lx, correct %lx\n",
323 vma->rb_subtree_gap,
324 vma_compute_subtree_gap(vma));
325 bug = 1;
326 }
327 spin_unlock(&mm->page_table_lock);
328 i++;
329 pn = nd;
330 prev = vma->vm_start;
331 pend = vma->vm_end;
332 }
333 j = 0;
334 for (nd = pn; nd; nd = rb_prev(nd))
335 j++;
336 if (i != j) {
337 pr_emerg("backwards %d, forwards %d\n", j, i);
338 bug = 1;
339 }
340 return bug ? -1 : i;
341 }
342
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)343 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
344 {
345 struct rb_node *nd;
346
347 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
348 struct vm_area_struct *vma;
349 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
350 VM_BUG_ON_VMA(vma != ignore &&
351 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
352 vma);
353 }
354 }
355
validate_mm(struct mm_struct * mm)356 static void validate_mm(struct mm_struct *mm)
357 {
358 int bug = 0;
359 int i = 0;
360 unsigned long highest_address = 0;
361 struct vm_area_struct *vma = mm->mmap;
362
363 while (vma) {
364 struct anon_vma *anon_vma = vma->anon_vma;
365 struct anon_vma_chain *avc;
366
367 if (anon_vma) {
368 anon_vma_lock_read(anon_vma);
369 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
370 anon_vma_interval_tree_verify(avc);
371 anon_vma_unlock_read(anon_vma);
372 }
373
374 highest_address = vm_end_gap(vma);
375 vma = vma->vm_next;
376 i++;
377 }
378 if (i != mm->map_count) {
379 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
380 bug = 1;
381 }
382 if (highest_address != mm->highest_vm_end) {
383 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
384 mm->highest_vm_end, highest_address);
385 bug = 1;
386 }
387 i = browse_rb(mm);
388 if (i != mm->map_count) {
389 if (i != -1)
390 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
391 bug = 1;
392 }
393 VM_BUG_ON_MM(bug, mm);
394 }
395 #else
396 #define validate_mm_rb(root, ignore) do { } while (0)
397 #define validate_mm(mm) do { } while (0)
398 #endif
399
RB_DECLARE_CALLBACKS(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_subtree_gap)400 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
401 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
402
403 /*
404 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
405 * vma->vm_prev->vm_end values changed, without modifying the vma's position
406 * in the rbtree.
407 */
408 static void vma_gap_update(struct vm_area_struct *vma)
409 {
410 /*
411 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
412 * function that does exacltly what we want.
413 */
414 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
415 }
416
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)417 static inline void vma_rb_insert(struct vm_area_struct *vma,
418 struct rb_root *root)
419 {
420 /* All rb_subtree_gap values must be consistent prior to insertion */
421 validate_mm_rb(root, NULL);
422
423 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
424 }
425
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)426 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
427 {
428 /*
429 * Note rb_erase_augmented is a fairly large inline function,
430 * so make sure we instantiate it only once with our desired
431 * augmented rbtree callbacks.
432 */
433 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
434 }
435
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)436 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
437 struct rb_root *root,
438 struct vm_area_struct *ignore)
439 {
440 /*
441 * All rb_subtree_gap values must be consistent prior to erase,
442 * with the possible exception of the "next" vma being erased if
443 * next->vm_start was reduced.
444 */
445 validate_mm_rb(root, ignore);
446
447 __vma_rb_erase(vma, root);
448 }
449
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)450 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
451 struct rb_root *root)
452 {
453 /*
454 * All rb_subtree_gap values must be consistent prior to erase,
455 * with the possible exception of the vma being erased.
456 */
457 validate_mm_rb(root, vma);
458
459 __vma_rb_erase(vma, root);
460 }
461
462 /*
463 * vma has some anon_vma assigned, and is already inserted on that
464 * anon_vma's interval trees.
465 *
466 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
467 * vma must be removed from the anon_vma's interval trees using
468 * anon_vma_interval_tree_pre_update_vma().
469 *
470 * After the update, the vma will be reinserted using
471 * anon_vma_interval_tree_post_update_vma().
472 *
473 * The entire update must be protected by exclusive mmap_sem and by
474 * the root anon_vma's mutex.
475 */
476 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)477 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
478 {
479 struct anon_vma_chain *avc;
480
481 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
482 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
483 }
484
485 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)486 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
487 {
488 struct anon_vma_chain *avc;
489
490 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
491 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
492 }
493
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)494 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
495 unsigned long end, struct vm_area_struct **pprev,
496 struct rb_node ***rb_link, struct rb_node **rb_parent)
497 {
498 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
499
500 __rb_link = &mm->mm_rb.rb_node;
501 rb_prev = __rb_parent = NULL;
502
503 while (*__rb_link) {
504 struct vm_area_struct *vma_tmp;
505
506 __rb_parent = *__rb_link;
507 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
508
509 if (vma_tmp->vm_end > addr) {
510 /* Fail if an existing vma overlaps the area */
511 if (vma_tmp->vm_start < end)
512 return -ENOMEM;
513 __rb_link = &__rb_parent->rb_left;
514 } else {
515 rb_prev = __rb_parent;
516 __rb_link = &__rb_parent->rb_right;
517 }
518 }
519
520 *pprev = NULL;
521 if (rb_prev)
522 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
523 *rb_link = __rb_link;
524 *rb_parent = __rb_parent;
525 return 0;
526 }
527
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)528 static unsigned long count_vma_pages_range(struct mm_struct *mm,
529 unsigned long addr, unsigned long end)
530 {
531 unsigned long nr_pages = 0;
532 struct vm_area_struct *vma;
533
534 /* Find first overlaping mapping */
535 vma = find_vma_intersection(mm, addr, end);
536 if (!vma)
537 return 0;
538
539 nr_pages = (min(end, vma->vm_end) -
540 max(addr, vma->vm_start)) >> PAGE_SHIFT;
541
542 /* Iterate over the rest of the overlaps */
543 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
544 unsigned long overlap_len;
545
546 if (vma->vm_start > end)
547 break;
548
549 overlap_len = min(end, vma->vm_end) - vma->vm_start;
550 nr_pages += overlap_len >> PAGE_SHIFT;
551 }
552
553 return nr_pages;
554 }
555
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)556 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
557 struct rb_node **rb_link, struct rb_node *rb_parent)
558 {
559 /* Update tracking information for the gap following the new vma. */
560 if (vma->vm_next)
561 vma_gap_update(vma->vm_next);
562 else
563 mm->highest_vm_end = vm_end_gap(vma);
564
565 /*
566 * vma->vm_prev wasn't known when we followed the rbtree to find the
567 * correct insertion point for that vma. As a result, we could not
568 * update the vma vm_rb parents rb_subtree_gap values on the way down.
569 * So, we first insert the vma with a zero rb_subtree_gap value
570 * (to be consistent with what we did on the way down), and then
571 * immediately update the gap to the correct value. Finally we
572 * rebalance the rbtree after all augmented values have been set.
573 */
574 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
575 vma->rb_subtree_gap = 0;
576 vma_gap_update(vma);
577 vma_rb_insert(vma, &mm->mm_rb);
578 }
579
__vma_link_file(struct vm_area_struct * vma)580 static void __vma_link_file(struct vm_area_struct *vma)
581 {
582 struct file *file;
583
584 file = vma->vm_file;
585 if (file) {
586 struct address_space *mapping = file->f_mapping;
587
588 if (vma->vm_flags & VM_DENYWRITE)
589 atomic_dec(&file_inode(file)->i_writecount);
590 if (vma->vm_flags & VM_SHARED)
591 atomic_inc(&mapping->i_mmap_writable);
592
593 flush_dcache_mmap_lock(mapping);
594 vma_interval_tree_insert(vma, &mapping->i_mmap);
595 flush_dcache_mmap_unlock(mapping);
596 }
597 }
598
599 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)600 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
601 struct vm_area_struct *prev, struct rb_node **rb_link,
602 struct rb_node *rb_parent)
603 {
604 __vma_link_list(mm, vma, prev, rb_parent);
605 __vma_link_rb(mm, vma, rb_link, rb_parent);
606 }
607
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)608 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
609 struct vm_area_struct *prev, struct rb_node **rb_link,
610 struct rb_node *rb_parent)
611 {
612 struct address_space *mapping = NULL;
613
614 if (vma->vm_file) {
615 mapping = vma->vm_file->f_mapping;
616 i_mmap_lock_write(mapping);
617 }
618
619 __vma_link(mm, vma, prev, rb_link, rb_parent);
620 __vma_link_file(vma);
621
622 if (mapping)
623 i_mmap_unlock_write(mapping);
624
625 mm->map_count++;
626 validate_mm(mm);
627 }
628
629 /*
630 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
631 * mm's list and rbtree. It has already been inserted into the interval tree.
632 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)633 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
634 {
635 struct vm_area_struct *prev;
636 struct rb_node **rb_link, *rb_parent;
637
638 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
639 &prev, &rb_link, &rb_parent))
640 BUG();
641 __vma_link(mm, vma, prev, rb_link, rb_parent);
642 mm->map_count++;
643 }
644
__vma_unlink_common(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,bool has_prev,struct vm_area_struct * ignore)645 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
646 struct vm_area_struct *vma,
647 struct vm_area_struct *prev,
648 bool has_prev,
649 struct vm_area_struct *ignore)
650 {
651 struct vm_area_struct *next;
652
653 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
654 next = vma->vm_next;
655 if (has_prev)
656 prev->vm_next = next;
657 else {
658 prev = vma->vm_prev;
659 if (prev)
660 prev->vm_next = next;
661 else
662 mm->mmap = next;
663 }
664 if (next)
665 next->vm_prev = prev;
666
667 /* Kill the cache */
668 vmacache_invalidate(mm);
669 }
670
__vma_unlink_prev(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)671 static inline void __vma_unlink_prev(struct mm_struct *mm,
672 struct vm_area_struct *vma,
673 struct vm_area_struct *prev)
674 {
675 __vma_unlink_common(mm, vma, prev, true, vma);
676 }
677
678 /*
679 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
680 * is already present in an i_mmap tree without adjusting the tree.
681 * The following helper function should be used when such adjustments
682 * are necessary. The "insert" vma (if any) is to be inserted
683 * before we drop the necessary locks.
684 */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)685 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
686 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
687 struct vm_area_struct *expand)
688 {
689 struct mm_struct *mm = vma->vm_mm;
690 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
691 struct address_space *mapping = NULL;
692 struct rb_root_cached *root = NULL;
693 struct anon_vma *anon_vma = NULL;
694 struct file *file = vma->vm_file;
695 bool start_changed = false, end_changed = false;
696 long adjust_next = 0;
697 int remove_next = 0;
698
699 if (next && !insert) {
700 struct vm_area_struct *exporter = NULL, *importer = NULL;
701
702 if (end >= next->vm_end) {
703 /*
704 * vma expands, overlapping all the next, and
705 * perhaps the one after too (mprotect case 6).
706 * The only other cases that gets here are
707 * case 1, case 7 and case 8.
708 */
709 if (next == expand) {
710 /*
711 * The only case where we don't expand "vma"
712 * and we expand "next" instead is case 8.
713 */
714 VM_WARN_ON(end != next->vm_end);
715 /*
716 * remove_next == 3 means we're
717 * removing "vma" and that to do so we
718 * swapped "vma" and "next".
719 */
720 remove_next = 3;
721 VM_WARN_ON(file != next->vm_file);
722 swap(vma, next);
723 } else {
724 VM_WARN_ON(expand != vma);
725 /*
726 * case 1, 6, 7, remove_next == 2 is case 6,
727 * remove_next == 1 is case 1 or 7.
728 */
729 remove_next = 1 + (end > next->vm_end);
730 VM_WARN_ON(remove_next == 2 &&
731 end != next->vm_next->vm_end);
732 VM_WARN_ON(remove_next == 1 &&
733 end != next->vm_end);
734 /* trim end to next, for case 6 first pass */
735 end = next->vm_end;
736 }
737
738 exporter = next;
739 importer = vma;
740
741 /*
742 * If next doesn't have anon_vma, import from vma after
743 * next, if the vma overlaps with it.
744 */
745 if (remove_next == 2 && !next->anon_vma)
746 exporter = next->vm_next;
747
748 } else if (end > next->vm_start) {
749 /*
750 * vma expands, overlapping part of the next:
751 * mprotect case 5 shifting the boundary up.
752 */
753 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
754 exporter = next;
755 importer = vma;
756 VM_WARN_ON(expand != importer);
757 } else if (end < vma->vm_end) {
758 /*
759 * vma shrinks, and !insert tells it's not
760 * split_vma inserting another: so it must be
761 * mprotect case 4 shifting the boundary down.
762 */
763 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
764 exporter = vma;
765 importer = next;
766 VM_WARN_ON(expand != importer);
767 }
768
769 /*
770 * Easily overlooked: when mprotect shifts the boundary,
771 * make sure the expanding vma has anon_vma set if the
772 * shrinking vma had, to cover any anon pages imported.
773 */
774 if (exporter && exporter->anon_vma && !importer->anon_vma) {
775 int error;
776
777 importer->anon_vma = exporter->anon_vma;
778 error = anon_vma_clone(importer, exporter);
779 if (error)
780 return error;
781 }
782 }
783 again:
784 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
785
786 if (file) {
787 mapping = file->f_mapping;
788 root = &mapping->i_mmap;
789 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
790
791 if (adjust_next)
792 uprobe_munmap(next, next->vm_start, next->vm_end);
793
794 i_mmap_lock_write(mapping);
795 if (insert) {
796 /*
797 * Put into interval tree now, so instantiated pages
798 * are visible to arm/parisc __flush_dcache_page
799 * throughout; but we cannot insert into address
800 * space until vma start or end is updated.
801 */
802 __vma_link_file(insert);
803 }
804 }
805
806 anon_vma = vma->anon_vma;
807 if (!anon_vma && adjust_next)
808 anon_vma = next->anon_vma;
809 if (anon_vma) {
810 VM_WARN_ON(adjust_next && next->anon_vma &&
811 anon_vma != next->anon_vma);
812 anon_vma_lock_write(anon_vma);
813 anon_vma_interval_tree_pre_update_vma(vma);
814 if (adjust_next)
815 anon_vma_interval_tree_pre_update_vma(next);
816 }
817
818 if (root) {
819 flush_dcache_mmap_lock(mapping);
820 vma_interval_tree_remove(vma, root);
821 if (adjust_next)
822 vma_interval_tree_remove(next, root);
823 }
824
825 if (start != vma->vm_start) {
826 vma->vm_start = start;
827 start_changed = true;
828 }
829 if (end != vma->vm_end) {
830 vma->vm_end = end;
831 end_changed = true;
832 }
833 vma->vm_pgoff = pgoff;
834 if (adjust_next) {
835 next->vm_start += adjust_next << PAGE_SHIFT;
836 next->vm_pgoff += adjust_next;
837 }
838
839 if (root) {
840 if (adjust_next)
841 vma_interval_tree_insert(next, root);
842 vma_interval_tree_insert(vma, root);
843 flush_dcache_mmap_unlock(mapping);
844 }
845
846 if (remove_next) {
847 /*
848 * vma_merge has merged next into vma, and needs
849 * us to remove next before dropping the locks.
850 */
851 if (remove_next != 3)
852 __vma_unlink_prev(mm, next, vma);
853 else
854 /*
855 * vma is not before next if they've been
856 * swapped.
857 *
858 * pre-swap() next->vm_start was reduced so
859 * tell validate_mm_rb to ignore pre-swap()
860 * "next" (which is stored in post-swap()
861 * "vma").
862 */
863 __vma_unlink_common(mm, next, NULL, false, vma);
864 if (file)
865 __remove_shared_vm_struct(next, file, mapping);
866 } else if (insert) {
867 /*
868 * split_vma has split insert from vma, and needs
869 * us to insert it before dropping the locks
870 * (it may either follow vma or precede it).
871 */
872 __insert_vm_struct(mm, insert);
873 } else {
874 if (start_changed)
875 vma_gap_update(vma);
876 if (end_changed) {
877 if (!next)
878 mm->highest_vm_end = vm_end_gap(vma);
879 else if (!adjust_next)
880 vma_gap_update(next);
881 }
882 }
883
884 if (anon_vma) {
885 anon_vma_interval_tree_post_update_vma(vma);
886 if (adjust_next)
887 anon_vma_interval_tree_post_update_vma(next);
888 anon_vma_unlock_write(anon_vma);
889 }
890 if (mapping)
891 i_mmap_unlock_write(mapping);
892
893 if (root) {
894 uprobe_mmap(vma);
895
896 if (adjust_next)
897 uprobe_mmap(next);
898 }
899
900 if (remove_next) {
901 if (file) {
902 uprobe_munmap(next, next->vm_start, next->vm_end);
903 fput(file);
904 }
905 if (next->anon_vma)
906 anon_vma_merge(vma, next);
907 mm->map_count--;
908 mpol_put(vma_policy(next));
909 vm_area_free(next);
910 /*
911 * In mprotect's case 6 (see comments on vma_merge),
912 * we must remove another next too. It would clutter
913 * up the code too much to do both in one go.
914 */
915 if (remove_next != 3) {
916 /*
917 * If "next" was removed and vma->vm_end was
918 * expanded (up) over it, in turn
919 * "next->vm_prev->vm_end" changed and the
920 * "vma->vm_next" gap must be updated.
921 */
922 next = vma->vm_next;
923 } else {
924 /*
925 * For the scope of the comment "next" and
926 * "vma" considered pre-swap(): if "vma" was
927 * removed, next->vm_start was expanded (down)
928 * over it and the "next" gap must be updated.
929 * Because of the swap() the post-swap() "vma"
930 * actually points to pre-swap() "next"
931 * (post-swap() "next" as opposed is now a
932 * dangling pointer).
933 */
934 next = vma;
935 }
936 if (remove_next == 2) {
937 remove_next = 1;
938 end = next->vm_end;
939 goto again;
940 }
941 else if (next)
942 vma_gap_update(next);
943 else {
944 /*
945 * If remove_next == 2 we obviously can't
946 * reach this path.
947 *
948 * If remove_next == 3 we can't reach this
949 * path because pre-swap() next is always not
950 * NULL. pre-swap() "next" is not being
951 * removed and its next->vm_end is not altered
952 * (and furthermore "end" already matches
953 * next->vm_end in remove_next == 3).
954 *
955 * We reach this only in the remove_next == 1
956 * case if the "next" vma that was removed was
957 * the highest vma of the mm. However in such
958 * case next->vm_end == "end" and the extended
959 * "vma" has vma->vm_end == next->vm_end so
960 * mm->highest_vm_end doesn't need any update
961 * in remove_next == 1 case.
962 */
963 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
964 }
965 }
966 if (insert && file)
967 uprobe_mmap(insert);
968
969 validate_mm(mm);
970
971 return 0;
972 }
973
974 /*
975 * If the vma has a ->close operation then the driver probably needs to release
976 * per-vma resources, so we don't attempt to merge those.
977 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)978 static inline int is_mergeable_vma(struct vm_area_struct *vma,
979 struct file *file, unsigned long vm_flags,
980 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
981 {
982 /*
983 * VM_SOFTDIRTY should not prevent from VMA merging, if we
984 * match the flags but dirty bit -- the caller should mark
985 * merged VMA as dirty. If dirty bit won't be excluded from
986 * comparison, we increase pressue on the memory system forcing
987 * the kernel to generate new VMAs when old one could be
988 * extended instead.
989 */
990 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
991 return 0;
992 if (vma->vm_file != file)
993 return 0;
994 if (vma->vm_ops && vma->vm_ops->close)
995 return 0;
996 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
997 return 0;
998 return 1;
999 }
1000
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1001 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1002 struct anon_vma *anon_vma2,
1003 struct vm_area_struct *vma)
1004 {
1005 /*
1006 * The list_is_singular() test is to avoid merging VMA cloned from
1007 * parents. This can improve scalability caused by anon_vma lock.
1008 */
1009 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1010 list_is_singular(&vma->anon_vma_chain)))
1011 return 1;
1012 return anon_vma1 == anon_vma2;
1013 }
1014
1015 /*
1016 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1017 * in front of (at a lower virtual address and file offset than) the vma.
1018 *
1019 * We cannot merge two vmas if they have differently assigned (non-NULL)
1020 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1021 *
1022 * We don't check here for the merged mmap wrapping around the end of pagecache
1023 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1024 * wrap, nor mmaps which cover the final page at index -1UL.
1025 */
1026 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1027 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1028 struct anon_vma *anon_vma, struct file *file,
1029 pgoff_t vm_pgoff,
1030 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1031 {
1032 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1033 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1034 if (vma->vm_pgoff == vm_pgoff)
1035 return 1;
1036 }
1037 return 0;
1038 }
1039
1040 /*
1041 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1042 * beyond (at a higher virtual address and file offset than) the vma.
1043 *
1044 * We cannot merge two vmas if they have differently assigned (non-NULL)
1045 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1046 */
1047 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1048 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1049 struct anon_vma *anon_vma, struct file *file,
1050 pgoff_t vm_pgoff,
1051 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1052 {
1053 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1054 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1055 pgoff_t vm_pglen;
1056 vm_pglen = vma_pages(vma);
1057 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1058 return 1;
1059 }
1060 return 0;
1061 }
1062
1063 /*
1064 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1065 * whether that can be merged with its predecessor or its successor.
1066 * Or both (it neatly fills a hole).
1067 *
1068 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1069 * certain not to be mapped by the time vma_merge is called; but when
1070 * called for mprotect, it is certain to be already mapped (either at
1071 * an offset within prev, or at the start of next), and the flags of
1072 * this area are about to be changed to vm_flags - and the no-change
1073 * case has already been eliminated.
1074 *
1075 * The following mprotect cases have to be considered, where AAAA is
1076 * the area passed down from mprotect_fixup, never extending beyond one
1077 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1078 *
1079 * AAAA AAAA AAAA AAAA
1080 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1081 * cannot merge might become might become might become
1082 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1083 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1084 * mremap move: PPPPXXXXXXXX 8
1085 * AAAA
1086 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1087 * might become case 1 below case 2 below case 3 below
1088 *
1089 * It is important for case 8 that the the vma NNNN overlapping the
1090 * region AAAA is never going to extended over XXXX. Instead XXXX must
1091 * be extended in region AAAA and NNNN must be removed. This way in
1092 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1093 * rmap_locks, the properties of the merged vma will be already
1094 * correct for the whole merged range. Some of those properties like
1095 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1096 * be correct for the whole merged range immediately after the
1097 * rmap_locks are released. Otherwise if XXXX would be removed and
1098 * NNNN would be extended over the XXXX range, remove_migration_ptes
1099 * or other rmap walkers (if working on addresses beyond the "end"
1100 * parameter) may establish ptes with the wrong permissions of NNNN
1101 * instead of the right permissions of XXXX.
1102 */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1103 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1104 struct vm_area_struct *prev, unsigned long addr,
1105 unsigned long end, unsigned long vm_flags,
1106 struct anon_vma *anon_vma, struct file *file,
1107 pgoff_t pgoff, struct mempolicy *policy,
1108 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1109 {
1110 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1111 struct vm_area_struct *area, *next;
1112 int err;
1113
1114 /*
1115 * We later require that vma->vm_flags == vm_flags,
1116 * so this tests vma->vm_flags & VM_SPECIAL, too.
1117 */
1118 if (vm_flags & VM_SPECIAL)
1119 return NULL;
1120
1121 if (prev)
1122 next = prev->vm_next;
1123 else
1124 next = mm->mmap;
1125 area = next;
1126 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1127 next = next->vm_next;
1128
1129 /* verify some invariant that must be enforced by the caller */
1130 VM_WARN_ON(prev && addr <= prev->vm_start);
1131 VM_WARN_ON(area && end > area->vm_end);
1132 VM_WARN_ON(addr >= end);
1133
1134 /*
1135 * Can it merge with the predecessor?
1136 */
1137 if (prev && prev->vm_end == addr &&
1138 mpol_equal(vma_policy(prev), policy) &&
1139 can_vma_merge_after(prev, vm_flags,
1140 anon_vma, file, pgoff,
1141 vm_userfaultfd_ctx)) {
1142 /*
1143 * OK, it can. Can we now merge in the successor as well?
1144 */
1145 if (next && end == next->vm_start &&
1146 mpol_equal(policy, vma_policy(next)) &&
1147 can_vma_merge_before(next, vm_flags,
1148 anon_vma, file,
1149 pgoff+pglen,
1150 vm_userfaultfd_ctx) &&
1151 is_mergeable_anon_vma(prev->anon_vma,
1152 next->anon_vma, NULL)) {
1153 /* cases 1, 6 */
1154 err = __vma_adjust(prev, prev->vm_start,
1155 next->vm_end, prev->vm_pgoff, NULL,
1156 prev);
1157 } else /* cases 2, 5, 7 */
1158 err = __vma_adjust(prev, prev->vm_start,
1159 end, prev->vm_pgoff, NULL, prev);
1160 if (err)
1161 return NULL;
1162 khugepaged_enter_vma_merge(prev, vm_flags);
1163 return prev;
1164 }
1165
1166 /*
1167 * Can this new request be merged in front of next?
1168 */
1169 if (next && end == next->vm_start &&
1170 mpol_equal(policy, vma_policy(next)) &&
1171 can_vma_merge_before(next, vm_flags,
1172 anon_vma, file, pgoff+pglen,
1173 vm_userfaultfd_ctx)) {
1174 if (prev && addr < prev->vm_end) /* case 4 */
1175 err = __vma_adjust(prev, prev->vm_start,
1176 addr, prev->vm_pgoff, NULL, next);
1177 else { /* cases 3, 8 */
1178 err = __vma_adjust(area, addr, next->vm_end,
1179 next->vm_pgoff - pglen, NULL, next);
1180 /*
1181 * In case 3 area is already equal to next and
1182 * this is a noop, but in case 8 "area" has
1183 * been removed and next was expanded over it.
1184 */
1185 area = next;
1186 }
1187 if (err)
1188 return NULL;
1189 khugepaged_enter_vma_merge(area, vm_flags);
1190 return area;
1191 }
1192
1193 return NULL;
1194 }
1195
1196 /*
1197 * Rough compatbility check to quickly see if it's even worth looking
1198 * at sharing an anon_vma.
1199 *
1200 * They need to have the same vm_file, and the flags can only differ
1201 * in things that mprotect may change.
1202 *
1203 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1204 * we can merge the two vma's. For example, we refuse to merge a vma if
1205 * there is a vm_ops->close() function, because that indicates that the
1206 * driver is doing some kind of reference counting. But that doesn't
1207 * really matter for the anon_vma sharing case.
1208 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1209 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1210 {
1211 return a->vm_end == b->vm_start &&
1212 mpol_equal(vma_policy(a), vma_policy(b)) &&
1213 a->vm_file == b->vm_file &&
1214 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1215 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1216 }
1217
1218 /*
1219 * Do some basic sanity checking to see if we can re-use the anon_vma
1220 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1221 * the same as 'old', the other will be the new one that is trying
1222 * to share the anon_vma.
1223 *
1224 * NOTE! This runs with mm_sem held for reading, so it is possible that
1225 * the anon_vma of 'old' is concurrently in the process of being set up
1226 * by another page fault trying to merge _that_. But that's ok: if it
1227 * is being set up, that automatically means that it will be a singleton
1228 * acceptable for merging, so we can do all of this optimistically. But
1229 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1230 *
1231 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1232 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1233 * is to return an anon_vma that is "complex" due to having gone through
1234 * a fork).
1235 *
1236 * We also make sure that the two vma's are compatible (adjacent,
1237 * and with the same memory policies). That's all stable, even with just
1238 * a read lock on the mm_sem.
1239 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1240 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1241 {
1242 if (anon_vma_compatible(a, b)) {
1243 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1244
1245 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1246 return anon_vma;
1247 }
1248 return NULL;
1249 }
1250
1251 /*
1252 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1253 * neighbouring vmas for a suitable anon_vma, before it goes off
1254 * to allocate a new anon_vma. It checks because a repetitive
1255 * sequence of mprotects and faults may otherwise lead to distinct
1256 * anon_vmas being allocated, preventing vma merge in subsequent
1257 * mprotect.
1258 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1259 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1260 {
1261 struct anon_vma *anon_vma;
1262 struct vm_area_struct *near;
1263
1264 near = vma->vm_next;
1265 if (!near)
1266 goto try_prev;
1267
1268 anon_vma = reusable_anon_vma(near, vma, near);
1269 if (anon_vma)
1270 return anon_vma;
1271 try_prev:
1272 near = vma->vm_prev;
1273 if (!near)
1274 goto none;
1275
1276 anon_vma = reusable_anon_vma(near, near, vma);
1277 if (anon_vma)
1278 return anon_vma;
1279 none:
1280 /*
1281 * There's no absolute need to look only at touching neighbours:
1282 * we could search further afield for "compatible" anon_vmas.
1283 * But it would probably just be a waste of time searching,
1284 * or lead to too many vmas hanging off the same anon_vma.
1285 * We're trying to allow mprotect remerging later on,
1286 * not trying to minimize memory used for anon_vmas.
1287 */
1288 return NULL;
1289 }
1290
1291 /*
1292 * If a hint addr is less than mmap_min_addr change hint to be as
1293 * low as possible but still greater than mmap_min_addr
1294 */
round_hint_to_min(unsigned long hint)1295 static inline unsigned long round_hint_to_min(unsigned long hint)
1296 {
1297 hint &= PAGE_MASK;
1298 if (((void *)hint != NULL) &&
1299 (hint < mmap_min_addr))
1300 return PAGE_ALIGN(mmap_min_addr);
1301 return hint;
1302 }
1303
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1304 static inline int mlock_future_check(struct mm_struct *mm,
1305 unsigned long flags,
1306 unsigned long len)
1307 {
1308 unsigned long locked, lock_limit;
1309
1310 /* mlock MCL_FUTURE? */
1311 if (flags & VM_LOCKED) {
1312 locked = len >> PAGE_SHIFT;
1313 locked += mm->locked_vm;
1314 lock_limit = rlimit(RLIMIT_MEMLOCK);
1315 lock_limit >>= PAGE_SHIFT;
1316 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1317 return -EAGAIN;
1318 }
1319 return 0;
1320 }
1321
file_mmap_size_max(struct file * file,struct inode * inode)1322 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1323 {
1324 if (S_ISREG(inode->i_mode))
1325 return MAX_LFS_FILESIZE;
1326
1327 if (S_ISBLK(inode->i_mode))
1328 return MAX_LFS_FILESIZE;
1329
1330 /* Special "we do even unsigned file positions" case */
1331 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1332 return 0;
1333
1334 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1335 return ULONG_MAX;
1336 }
1337
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1338 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1339 unsigned long pgoff, unsigned long len)
1340 {
1341 u64 maxsize = file_mmap_size_max(file, inode);
1342
1343 if (maxsize && len > maxsize)
1344 return false;
1345 maxsize -= len;
1346 if (pgoff > maxsize >> PAGE_SHIFT)
1347 return false;
1348 return true;
1349 }
1350
1351 /*
1352 * The caller must hold down_write(¤t->mm->mmap_sem).
1353 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1354 unsigned long do_mmap(struct file *file, unsigned long addr,
1355 unsigned long len, unsigned long prot,
1356 unsigned long flags, vm_flags_t vm_flags,
1357 unsigned long pgoff, unsigned long *populate,
1358 struct list_head *uf)
1359 {
1360 struct mm_struct *mm = current->mm;
1361 int pkey = 0;
1362
1363 *populate = 0;
1364
1365 if (!len)
1366 return -EINVAL;
1367
1368 /*
1369 * Does the application expect PROT_READ to imply PROT_EXEC?
1370 *
1371 * (the exception is when the underlying filesystem is noexec
1372 * mounted, in which case we dont add PROT_EXEC.)
1373 */
1374 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1375 if (!(file && path_noexec(&file->f_path)))
1376 prot |= PROT_EXEC;
1377
1378 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1379 if (flags & MAP_FIXED_NOREPLACE)
1380 flags |= MAP_FIXED;
1381
1382 if (!(flags & MAP_FIXED))
1383 addr = round_hint_to_min(addr);
1384
1385 /* Careful about overflows.. */
1386 len = PAGE_ALIGN(len);
1387 if (!len)
1388 return -ENOMEM;
1389
1390 /* offset overflow? */
1391 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1392 return -EOVERFLOW;
1393
1394 /* Too many mappings? */
1395 if (mm->map_count > sysctl_max_map_count)
1396 return -ENOMEM;
1397
1398 /* Obtain the address to map to. we verify (or select) it and ensure
1399 * that it represents a valid section of the address space.
1400 */
1401 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1402 if (offset_in_page(addr))
1403 return addr;
1404
1405 if (flags & MAP_FIXED_NOREPLACE) {
1406 struct vm_area_struct *vma = find_vma(mm, addr);
1407
1408 if (vma && vma->vm_start < addr + len)
1409 return -EEXIST;
1410 }
1411
1412 if (prot == PROT_EXEC) {
1413 pkey = execute_only_pkey(mm);
1414 if (pkey < 0)
1415 pkey = 0;
1416 }
1417
1418 /* Do simple checking here so the lower-level routines won't have
1419 * to. we assume access permissions have been handled by the open
1420 * of the memory object, so we don't do any here.
1421 */
1422 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1423 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1424
1425 if (flags & MAP_LOCKED)
1426 if (!can_do_mlock())
1427 return -EPERM;
1428
1429 if (mlock_future_check(mm, vm_flags, len))
1430 return -EAGAIN;
1431
1432 if (file) {
1433 struct inode *inode = file_inode(file);
1434 unsigned long flags_mask;
1435
1436 if (!file_mmap_ok(file, inode, pgoff, len))
1437 return -EOVERFLOW;
1438
1439 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1440
1441 switch (flags & MAP_TYPE) {
1442 case MAP_SHARED:
1443 /*
1444 * Force use of MAP_SHARED_VALIDATE with non-legacy
1445 * flags. E.g. MAP_SYNC is dangerous to use with
1446 * MAP_SHARED as you don't know which consistency model
1447 * you will get. We silently ignore unsupported flags
1448 * with MAP_SHARED to preserve backward compatibility.
1449 */
1450 flags &= LEGACY_MAP_MASK;
1451 /* fall through */
1452 case MAP_SHARED_VALIDATE:
1453 if (flags & ~flags_mask)
1454 return -EOPNOTSUPP;
1455 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1456 return -EACCES;
1457
1458 /*
1459 * Make sure we don't allow writing to an append-only
1460 * file..
1461 */
1462 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1463 return -EACCES;
1464
1465 /*
1466 * Make sure there are no mandatory locks on the file.
1467 */
1468 if (locks_verify_locked(file))
1469 return -EAGAIN;
1470
1471 vm_flags |= VM_SHARED | VM_MAYSHARE;
1472 if (!(file->f_mode & FMODE_WRITE))
1473 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1474
1475 /* fall through */
1476 case MAP_PRIVATE:
1477 if (!(file->f_mode & FMODE_READ))
1478 return -EACCES;
1479 if (path_noexec(&file->f_path)) {
1480 if (vm_flags & VM_EXEC)
1481 return -EPERM;
1482 vm_flags &= ~VM_MAYEXEC;
1483 }
1484
1485 if (!file->f_op->mmap)
1486 return -ENODEV;
1487 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1488 return -EINVAL;
1489 break;
1490
1491 default:
1492 return -EINVAL;
1493 }
1494 } else {
1495 switch (flags & MAP_TYPE) {
1496 case MAP_SHARED:
1497 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1498 return -EINVAL;
1499 /*
1500 * Ignore pgoff.
1501 */
1502 pgoff = 0;
1503 vm_flags |= VM_SHARED | VM_MAYSHARE;
1504 break;
1505 case MAP_PRIVATE:
1506 /*
1507 * Set pgoff according to addr for anon_vma.
1508 */
1509 pgoff = addr >> PAGE_SHIFT;
1510 break;
1511 default:
1512 return -EINVAL;
1513 }
1514 }
1515
1516 /*
1517 * Set 'VM_NORESERVE' if we should not account for the
1518 * memory use of this mapping.
1519 */
1520 if (flags & MAP_NORESERVE) {
1521 /* We honor MAP_NORESERVE if allowed to overcommit */
1522 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1523 vm_flags |= VM_NORESERVE;
1524
1525 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1526 if (file && is_file_hugepages(file))
1527 vm_flags |= VM_NORESERVE;
1528 }
1529
1530 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1531 if (!IS_ERR_VALUE(addr) &&
1532 ((vm_flags & VM_LOCKED) ||
1533 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1534 *populate = len;
1535 return addr;
1536 }
1537
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1538 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1539 unsigned long prot, unsigned long flags,
1540 unsigned long fd, unsigned long pgoff)
1541 {
1542 struct file *file = NULL;
1543 unsigned long retval;
1544
1545 if (!(flags & MAP_ANONYMOUS)) {
1546 audit_mmap_fd(fd, flags);
1547 file = fget(fd);
1548 if (!file)
1549 return -EBADF;
1550 if (is_file_hugepages(file))
1551 len = ALIGN(len, huge_page_size(hstate_file(file)));
1552 retval = -EINVAL;
1553 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1554 goto out_fput;
1555 } else if (flags & MAP_HUGETLB) {
1556 struct user_struct *user = NULL;
1557 struct hstate *hs;
1558
1559 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1560 if (!hs)
1561 return -EINVAL;
1562
1563 len = ALIGN(len, huge_page_size(hs));
1564 /*
1565 * VM_NORESERVE is used because the reservations will be
1566 * taken when vm_ops->mmap() is called
1567 * A dummy user value is used because we are not locking
1568 * memory so no accounting is necessary
1569 */
1570 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1571 VM_NORESERVE,
1572 &user, HUGETLB_ANONHUGE_INODE,
1573 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1574 if (IS_ERR(file))
1575 return PTR_ERR(file);
1576 }
1577
1578 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1579
1580 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1581 out_fput:
1582 if (file)
1583 fput(file);
1584 return retval;
1585 }
1586
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1587 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1588 unsigned long, prot, unsigned long, flags,
1589 unsigned long, fd, unsigned long, pgoff)
1590 {
1591 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1592 }
1593
1594 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1595 struct mmap_arg_struct {
1596 unsigned long addr;
1597 unsigned long len;
1598 unsigned long prot;
1599 unsigned long flags;
1600 unsigned long fd;
1601 unsigned long offset;
1602 };
1603
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1604 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1605 {
1606 struct mmap_arg_struct a;
1607
1608 if (copy_from_user(&a, arg, sizeof(a)))
1609 return -EFAULT;
1610 if (offset_in_page(a.offset))
1611 return -EINVAL;
1612
1613 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1614 a.offset >> PAGE_SHIFT);
1615 }
1616 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1617
1618 /*
1619 * Some shared mappigns will want the pages marked read-only
1620 * to track write events. If so, we'll downgrade vm_page_prot
1621 * to the private version (using protection_map[] without the
1622 * VM_SHARED bit).
1623 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1624 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1625 {
1626 vm_flags_t vm_flags = vma->vm_flags;
1627 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1628
1629 /* If it was private or non-writable, the write bit is already clear */
1630 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1631 return 0;
1632
1633 /* The backer wishes to know when pages are first written to? */
1634 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1635 return 1;
1636
1637 /* The open routine did something to the protections that pgprot_modify
1638 * won't preserve? */
1639 if (pgprot_val(vm_page_prot) !=
1640 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1641 return 0;
1642
1643 /* Do we need to track softdirty? */
1644 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1645 return 1;
1646
1647 /* Specialty mapping? */
1648 if (vm_flags & VM_PFNMAP)
1649 return 0;
1650
1651 /* Can the mapping track the dirty pages? */
1652 return vma->vm_file && vma->vm_file->f_mapping &&
1653 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1654 }
1655
1656 /*
1657 * We account for memory if it's a private writeable mapping,
1658 * not hugepages and VM_NORESERVE wasn't set.
1659 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1660 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1661 {
1662 /*
1663 * hugetlb has its own accounting separate from the core VM
1664 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1665 */
1666 if (file && is_file_hugepages(file))
1667 return 0;
1668
1669 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1670 }
1671
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1672 unsigned long mmap_region(struct file *file, unsigned long addr,
1673 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1674 struct list_head *uf)
1675 {
1676 struct mm_struct *mm = current->mm;
1677 struct vm_area_struct *vma, *prev;
1678 int error;
1679 struct rb_node **rb_link, *rb_parent;
1680 unsigned long charged = 0;
1681
1682 /* Check against address space limit. */
1683 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1684 unsigned long nr_pages;
1685
1686 /*
1687 * MAP_FIXED may remove pages of mappings that intersects with
1688 * requested mapping. Account for the pages it would unmap.
1689 */
1690 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1691
1692 if (!may_expand_vm(mm, vm_flags,
1693 (len >> PAGE_SHIFT) - nr_pages))
1694 return -ENOMEM;
1695 }
1696
1697 /* Clear old maps */
1698 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1699 &rb_parent)) {
1700 if (do_munmap(mm, addr, len, uf))
1701 return -ENOMEM;
1702 }
1703
1704 /*
1705 * Private writable mapping: check memory availability
1706 */
1707 if (accountable_mapping(file, vm_flags)) {
1708 charged = len >> PAGE_SHIFT;
1709 if (security_vm_enough_memory_mm(mm, charged))
1710 return -ENOMEM;
1711 vm_flags |= VM_ACCOUNT;
1712 }
1713
1714 /*
1715 * Can we just expand an old mapping?
1716 */
1717 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1718 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1719 if (vma)
1720 goto out;
1721
1722 /*
1723 * Determine the object being mapped and call the appropriate
1724 * specific mapper. the address has already been validated, but
1725 * not unmapped, but the maps are removed from the list.
1726 */
1727 vma = vm_area_alloc(mm);
1728 if (!vma) {
1729 error = -ENOMEM;
1730 goto unacct_error;
1731 }
1732
1733 vma->vm_start = addr;
1734 vma->vm_end = addr + len;
1735 vma->vm_flags = vm_flags;
1736 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1737 vma->vm_pgoff = pgoff;
1738
1739 if (file) {
1740 if (vm_flags & VM_DENYWRITE) {
1741 error = deny_write_access(file);
1742 if (error)
1743 goto free_vma;
1744 }
1745 if (vm_flags & VM_SHARED) {
1746 error = mapping_map_writable(file->f_mapping);
1747 if (error)
1748 goto allow_write_and_free_vma;
1749 }
1750
1751 /* ->mmap() can change vma->vm_file, but must guarantee that
1752 * vma_link() below can deny write-access if VM_DENYWRITE is set
1753 * and map writably if VM_SHARED is set. This usually means the
1754 * new file must not have been exposed to user-space, yet.
1755 */
1756 vma->vm_file = get_file(file);
1757 error = call_mmap(file, vma);
1758 if (error)
1759 goto unmap_and_free_vma;
1760
1761 /* Can addr have changed??
1762 *
1763 * Answer: Yes, several device drivers can do it in their
1764 * f_op->mmap method. -DaveM
1765 * Bug: If addr is changed, prev, rb_link, rb_parent should
1766 * be updated for vma_link()
1767 */
1768 WARN_ON_ONCE(addr != vma->vm_start);
1769
1770 addr = vma->vm_start;
1771 vm_flags = vma->vm_flags;
1772 } else if (vm_flags & VM_SHARED) {
1773 error = shmem_zero_setup(vma);
1774 if (error)
1775 goto free_vma;
1776 } else {
1777 vma_set_anonymous(vma);
1778 }
1779
1780 vma_link(mm, vma, prev, rb_link, rb_parent);
1781 /* Once vma denies write, undo our temporary denial count */
1782 if (file) {
1783 if (vm_flags & VM_SHARED)
1784 mapping_unmap_writable(file->f_mapping);
1785 if (vm_flags & VM_DENYWRITE)
1786 allow_write_access(file);
1787 }
1788 file = vma->vm_file;
1789 out:
1790 perf_event_mmap(vma);
1791
1792 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1793 if (vm_flags & VM_LOCKED) {
1794 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1795 is_vm_hugetlb_page(vma) ||
1796 vma == get_gate_vma(current->mm))
1797 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1798 else
1799 mm->locked_vm += (len >> PAGE_SHIFT);
1800 }
1801
1802 if (file)
1803 uprobe_mmap(vma);
1804
1805 /*
1806 * New (or expanded) vma always get soft dirty status.
1807 * Otherwise user-space soft-dirty page tracker won't
1808 * be able to distinguish situation when vma area unmapped,
1809 * then new mapped in-place (which must be aimed as
1810 * a completely new data area).
1811 */
1812 vma->vm_flags |= VM_SOFTDIRTY;
1813
1814 vma_set_page_prot(vma);
1815
1816 return addr;
1817
1818 unmap_and_free_vma:
1819 vma->vm_file = NULL;
1820 fput(file);
1821
1822 /* Undo any partial mapping done by a device driver. */
1823 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1824 charged = 0;
1825 if (vm_flags & VM_SHARED)
1826 mapping_unmap_writable(file->f_mapping);
1827 allow_write_and_free_vma:
1828 if (vm_flags & VM_DENYWRITE)
1829 allow_write_access(file);
1830 free_vma:
1831 vm_area_free(vma);
1832 unacct_error:
1833 if (charged)
1834 vm_unacct_memory(charged);
1835 return error;
1836 }
1837
unmapped_area(struct vm_unmapped_area_info * info)1838 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1839 {
1840 /*
1841 * We implement the search by looking for an rbtree node that
1842 * immediately follows a suitable gap. That is,
1843 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1844 * - gap_end = vma->vm_start >= info->low_limit + length;
1845 * - gap_end - gap_start >= length
1846 */
1847
1848 struct mm_struct *mm = current->mm;
1849 struct vm_area_struct *vma;
1850 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1851
1852 /* Adjust search length to account for worst case alignment overhead */
1853 length = info->length + info->align_mask;
1854 if (length < info->length)
1855 return -ENOMEM;
1856
1857 /* Adjust search limits by the desired length */
1858 if (info->high_limit < length)
1859 return -ENOMEM;
1860 high_limit = info->high_limit - length;
1861
1862 if (info->low_limit > high_limit)
1863 return -ENOMEM;
1864 low_limit = info->low_limit + length;
1865
1866 /* Check if rbtree root looks promising */
1867 if (RB_EMPTY_ROOT(&mm->mm_rb))
1868 goto check_highest;
1869 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1870 if (vma->rb_subtree_gap < length)
1871 goto check_highest;
1872
1873 while (true) {
1874 /* Visit left subtree if it looks promising */
1875 gap_end = vm_start_gap(vma);
1876 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1877 struct vm_area_struct *left =
1878 rb_entry(vma->vm_rb.rb_left,
1879 struct vm_area_struct, vm_rb);
1880 if (left->rb_subtree_gap >= length) {
1881 vma = left;
1882 continue;
1883 }
1884 }
1885
1886 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1887 check_current:
1888 /* Check if current node has a suitable gap */
1889 if (gap_start > high_limit)
1890 return -ENOMEM;
1891 if (gap_end >= low_limit &&
1892 gap_end > gap_start && gap_end - gap_start >= length)
1893 goto found;
1894
1895 /* Visit right subtree if it looks promising */
1896 if (vma->vm_rb.rb_right) {
1897 struct vm_area_struct *right =
1898 rb_entry(vma->vm_rb.rb_right,
1899 struct vm_area_struct, vm_rb);
1900 if (right->rb_subtree_gap >= length) {
1901 vma = right;
1902 continue;
1903 }
1904 }
1905
1906 /* Go back up the rbtree to find next candidate node */
1907 while (true) {
1908 struct rb_node *prev = &vma->vm_rb;
1909 if (!rb_parent(prev))
1910 goto check_highest;
1911 vma = rb_entry(rb_parent(prev),
1912 struct vm_area_struct, vm_rb);
1913 if (prev == vma->vm_rb.rb_left) {
1914 gap_start = vm_end_gap(vma->vm_prev);
1915 gap_end = vm_start_gap(vma);
1916 goto check_current;
1917 }
1918 }
1919 }
1920
1921 check_highest:
1922 /* Check highest gap, which does not precede any rbtree node */
1923 gap_start = mm->highest_vm_end;
1924 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1925 if (gap_start > high_limit)
1926 return -ENOMEM;
1927
1928 found:
1929 /* We found a suitable gap. Clip it with the original low_limit. */
1930 if (gap_start < info->low_limit)
1931 gap_start = info->low_limit;
1932
1933 /* Adjust gap address to the desired alignment */
1934 gap_start += (info->align_offset - gap_start) & info->align_mask;
1935
1936 VM_BUG_ON(gap_start + info->length > info->high_limit);
1937 VM_BUG_ON(gap_start + info->length > gap_end);
1938 return gap_start;
1939 }
1940
unmapped_area_topdown(struct vm_unmapped_area_info * info)1941 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1942 {
1943 struct mm_struct *mm = current->mm;
1944 struct vm_area_struct *vma;
1945 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1946
1947 /* Adjust search length to account for worst case alignment overhead */
1948 length = info->length + info->align_mask;
1949 if (length < info->length)
1950 return -ENOMEM;
1951
1952 /*
1953 * Adjust search limits by the desired length.
1954 * See implementation comment at top of unmapped_area().
1955 */
1956 gap_end = info->high_limit;
1957 if (gap_end < length)
1958 return -ENOMEM;
1959 high_limit = gap_end - length;
1960
1961 if (info->low_limit > high_limit)
1962 return -ENOMEM;
1963 low_limit = info->low_limit + length;
1964
1965 /* Check highest gap, which does not precede any rbtree node */
1966 gap_start = mm->highest_vm_end;
1967 if (gap_start <= high_limit)
1968 goto found_highest;
1969
1970 /* Check if rbtree root looks promising */
1971 if (RB_EMPTY_ROOT(&mm->mm_rb))
1972 return -ENOMEM;
1973 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1974 if (vma->rb_subtree_gap < length)
1975 return -ENOMEM;
1976
1977 while (true) {
1978 /* Visit right subtree if it looks promising */
1979 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1980 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1981 struct vm_area_struct *right =
1982 rb_entry(vma->vm_rb.rb_right,
1983 struct vm_area_struct, vm_rb);
1984 if (right->rb_subtree_gap >= length) {
1985 vma = right;
1986 continue;
1987 }
1988 }
1989
1990 check_current:
1991 /* Check if current node has a suitable gap */
1992 gap_end = vm_start_gap(vma);
1993 if (gap_end < low_limit)
1994 return -ENOMEM;
1995 if (gap_start <= high_limit &&
1996 gap_end > gap_start && gap_end - gap_start >= length)
1997 goto found;
1998
1999 /* Visit left subtree if it looks promising */
2000 if (vma->vm_rb.rb_left) {
2001 struct vm_area_struct *left =
2002 rb_entry(vma->vm_rb.rb_left,
2003 struct vm_area_struct, vm_rb);
2004 if (left->rb_subtree_gap >= length) {
2005 vma = left;
2006 continue;
2007 }
2008 }
2009
2010 /* Go back up the rbtree to find next candidate node */
2011 while (true) {
2012 struct rb_node *prev = &vma->vm_rb;
2013 if (!rb_parent(prev))
2014 return -ENOMEM;
2015 vma = rb_entry(rb_parent(prev),
2016 struct vm_area_struct, vm_rb);
2017 if (prev == vma->vm_rb.rb_right) {
2018 gap_start = vma->vm_prev ?
2019 vm_end_gap(vma->vm_prev) : 0;
2020 goto check_current;
2021 }
2022 }
2023 }
2024
2025 found:
2026 /* We found a suitable gap. Clip it with the original high_limit. */
2027 if (gap_end > info->high_limit)
2028 gap_end = info->high_limit;
2029
2030 found_highest:
2031 /* Compute highest gap address at the desired alignment */
2032 gap_end -= info->length;
2033 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2034
2035 VM_BUG_ON(gap_end < info->low_limit);
2036 VM_BUG_ON(gap_end < gap_start);
2037 return gap_end;
2038 }
2039
2040 /* Get an address range which is currently unmapped.
2041 * For shmat() with addr=0.
2042 *
2043 * Ugly calling convention alert:
2044 * Return value with the low bits set means error value,
2045 * ie
2046 * if (ret & ~PAGE_MASK)
2047 * error = ret;
2048 *
2049 * This function "knows" that -ENOMEM has the bits set.
2050 */
2051 #ifndef HAVE_ARCH_UNMAPPED_AREA
2052 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2053 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2054 unsigned long len, unsigned long pgoff, unsigned long flags)
2055 {
2056 struct mm_struct *mm = current->mm;
2057 struct vm_area_struct *vma, *prev;
2058 struct vm_unmapped_area_info info;
2059
2060 if (len > TASK_SIZE - mmap_min_addr)
2061 return -ENOMEM;
2062
2063 if (flags & MAP_FIXED)
2064 return addr;
2065
2066 if (addr) {
2067 addr = PAGE_ALIGN(addr);
2068 vma = find_vma_prev(mm, addr, &prev);
2069 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2070 (!vma || addr + len <= vm_start_gap(vma)) &&
2071 (!prev || addr >= vm_end_gap(prev)))
2072 return addr;
2073 }
2074
2075 info.flags = 0;
2076 info.length = len;
2077 info.low_limit = mm->mmap_base;
2078 info.high_limit = TASK_SIZE;
2079 info.align_mask = 0;
2080 info.align_offset = 0;
2081 return vm_unmapped_area(&info);
2082 }
2083 #endif
2084
2085 /*
2086 * This mmap-allocator allocates new areas top-down from below the
2087 * stack's low limit (the base):
2088 */
2089 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2090 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,const unsigned long addr0,const unsigned long len,const unsigned long pgoff,const unsigned long flags)2091 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2092 const unsigned long len, const unsigned long pgoff,
2093 const unsigned long flags)
2094 {
2095 struct vm_area_struct *vma, *prev;
2096 struct mm_struct *mm = current->mm;
2097 unsigned long addr = addr0;
2098 struct vm_unmapped_area_info info;
2099
2100 /* requested length too big for entire address space */
2101 if (len > TASK_SIZE - mmap_min_addr)
2102 return -ENOMEM;
2103
2104 if (flags & MAP_FIXED)
2105 return addr;
2106
2107 /* requesting a specific address */
2108 if (addr) {
2109 addr = PAGE_ALIGN(addr);
2110 vma = find_vma_prev(mm, addr, &prev);
2111 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2112 (!vma || addr + len <= vm_start_gap(vma)) &&
2113 (!prev || addr >= vm_end_gap(prev)))
2114 return addr;
2115 }
2116
2117 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2118 info.length = len;
2119 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2120 info.high_limit = mm->mmap_base;
2121 info.align_mask = 0;
2122 info.align_offset = 0;
2123 addr = vm_unmapped_area(&info);
2124
2125 /*
2126 * A failed mmap() very likely causes application failure,
2127 * so fall back to the bottom-up function here. This scenario
2128 * can happen with large stack limits and large mmap()
2129 * allocations.
2130 */
2131 if (offset_in_page(addr)) {
2132 VM_BUG_ON(addr != -ENOMEM);
2133 info.flags = 0;
2134 info.low_limit = TASK_UNMAPPED_BASE;
2135 info.high_limit = TASK_SIZE;
2136 addr = vm_unmapped_area(&info);
2137 }
2138
2139 return addr;
2140 }
2141 #endif
2142
2143 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2144 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2145 unsigned long pgoff, unsigned long flags)
2146 {
2147 unsigned long (*get_area)(struct file *, unsigned long,
2148 unsigned long, unsigned long, unsigned long);
2149
2150 unsigned long error = arch_mmap_check(addr, len, flags);
2151 if (error)
2152 return error;
2153
2154 /* Careful about overflows.. */
2155 if (len > TASK_SIZE)
2156 return -ENOMEM;
2157
2158 get_area = current->mm->get_unmapped_area;
2159 if (file) {
2160 if (file->f_op->get_unmapped_area)
2161 get_area = file->f_op->get_unmapped_area;
2162 } else if (flags & MAP_SHARED) {
2163 /*
2164 * mmap_region() will call shmem_zero_setup() to create a file,
2165 * so use shmem's get_unmapped_area in case it can be huge.
2166 * do_mmap_pgoff() will clear pgoff, so match alignment.
2167 */
2168 pgoff = 0;
2169 get_area = shmem_get_unmapped_area;
2170 }
2171
2172 addr = get_area(file, addr, len, pgoff, flags);
2173 if (IS_ERR_VALUE(addr))
2174 return addr;
2175
2176 if (addr > TASK_SIZE - len)
2177 return -ENOMEM;
2178 if (offset_in_page(addr))
2179 return -EINVAL;
2180
2181 error = security_mmap_addr(addr);
2182 return error ? error : addr;
2183 }
2184
2185 EXPORT_SYMBOL(get_unmapped_area);
2186
2187 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2188 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2189 {
2190 struct rb_node *rb_node;
2191 struct vm_area_struct *vma;
2192
2193 /* Check the cache first. */
2194 vma = vmacache_find(mm, addr);
2195 if (likely(vma))
2196 return vma;
2197
2198 rb_node = mm->mm_rb.rb_node;
2199
2200 while (rb_node) {
2201 struct vm_area_struct *tmp;
2202
2203 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2204
2205 if (tmp->vm_end > addr) {
2206 vma = tmp;
2207 if (tmp->vm_start <= addr)
2208 break;
2209 rb_node = rb_node->rb_left;
2210 } else
2211 rb_node = rb_node->rb_right;
2212 }
2213
2214 if (vma)
2215 vmacache_update(addr, vma);
2216 return vma;
2217 }
2218
2219 EXPORT_SYMBOL(find_vma);
2220
2221 /*
2222 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2223 */
2224 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2225 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2226 struct vm_area_struct **pprev)
2227 {
2228 struct vm_area_struct *vma;
2229
2230 vma = find_vma(mm, addr);
2231 if (vma) {
2232 *pprev = vma->vm_prev;
2233 } else {
2234 struct rb_node *rb_node = mm->mm_rb.rb_node;
2235 *pprev = NULL;
2236 while (rb_node) {
2237 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2238 rb_node = rb_node->rb_right;
2239 }
2240 }
2241 return vma;
2242 }
2243
2244 /*
2245 * Verify that the stack growth is acceptable and
2246 * update accounting. This is shared with both the
2247 * grow-up and grow-down cases.
2248 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2249 static int acct_stack_growth(struct vm_area_struct *vma,
2250 unsigned long size, unsigned long grow)
2251 {
2252 struct mm_struct *mm = vma->vm_mm;
2253 unsigned long new_start;
2254
2255 /* address space limit tests */
2256 if (!may_expand_vm(mm, vma->vm_flags, grow))
2257 return -ENOMEM;
2258
2259 /* Stack limit test */
2260 if (size > rlimit(RLIMIT_STACK))
2261 return -ENOMEM;
2262
2263 /* mlock limit tests */
2264 if (vma->vm_flags & VM_LOCKED) {
2265 unsigned long locked;
2266 unsigned long limit;
2267 locked = mm->locked_vm + grow;
2268 limit = rlimit(RLIMIT_MEMLOCK);
2269 limit >>= PAGE_SHIFT;
2270 if (locked > limit && !capable(CAP_IPC_LOCK))
2271 return -ENOMEM;
2272 }
2273
2274 /* Check to ensure the stack will not grow into a hugetlb-only region */
2275 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2276 vma->vm_end - size;
2277 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2278 return -EFAULT;
2279
2280 /*
2281 * Overcommit.. This must be the final test, as it will
2282 * update security statistics.
2283 */
2284 if (security_vm_enough_memory_mm(mm, grow))
2285 return -ENOMEM;
2286
2287 return 0;
2288 }
2289
2290 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2291 /*
2292 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2293 * vma is the last one with address > vma->vm_end. Have to extend vma.
2294 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2295 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2296 {
2297 struct mm_struct *mm = vma->vm_mm;
2298 struct vm_area_struct *next;
2299 unsigned long gap_addr;
2300 int error = 0;
2301
2302 if (!(vma->vm_flags & VM_GROWSUP))
2303 return -EFAULT;
2304
2305 /* Guard against exceeding limits of the address space. */
2306 address &= PAGE_MASK;
2307 if (address >= (TASK_SIZE & PAGE_MASK))
2308 return -ENOMEM;
2309 address += PAGE_SIZE;
2310
2311 /* Enforce stack_guard_gap */
2312 gap_addr = address + stack_guard_gap;
2313
2314 /* Guard against overflow */
2315 if (gap_addr < address || gap_addr > TASK_SIZE)
2316 gap_addr = TASK_SIZE;
2317
2318 next = vma->vm_next;
2319 if (next && next->vm_start < gap_addr &&
2320 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2321 if (!(next->vm_flags & VM_GROWSUP))
2322 return -ENOMEM;
2323 /* Check that both stack segments have the same anon_vma? */
2324 }
2325
2326 /* We must make sure the anon_vma is allocated. */
2327 if (unlikely(anon_vma_prepare(vma)))
2328 return -ENOMEM;
2329
2330 /*
2331 * vma->vm_start/vm_end cannot change under us because the caller
2332 * is required to hold the mmap_sem in read mode. We need the
2333 * anon_vma lock to serialize against concurrent expand_stacks.
2334 */
2335 anon_vma_lock_write(vma->anon_vma);
2336
2337 /* Somebody else might have raced and expanded it already */
2338 if (address > vma->vm_end) {
2339 unsigned long size, grow;
2340
2341 size = address - vma->vm_start;
2342 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2343
2344 error = -ENOMEM;
2345 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2346 error = acct_stack_growth(vma, size, grow);
2347 if (!error) {
2348 /*
2349 * vma_gap_update() doesn't support concurrent
2350 * updates, but we only hold a shared mmap_sem
2351 * lock here, so we need to protect against
2352 * concurrent vma expansions.
2353 * anon_vma_lock_write() doesn't help here, as
2354 * we don't guarantee that all growable vmas
2355 * in a mm share the same root anon vma.
2356 * So, we reuse mm->page_table_lock to guard
2357 * against concurrent vma expansions.
2358 */
2359 spin_lock(&mm->page_table_lock);
2360 if (vma->vm_flags & VM_LOCKED)
2361 mm->locked_vm += grow;
2362 vm_stat_account(mm, vma->vm_flags, grow);
2363 anon_vma_interval_tree_pre_update_vma(vma);
2364 vma->vm_end = address;
2365 anon_vma_interval_tree_post_update_vma(vma);
2366 if (vma->vm_next)
2367 vma_gap_update(vma->vm_next);
2368 else
2369 mm->highest_vm_end = vm_end_gap(vma);
2370 spin_unlock(&mm->page_table_lock);
2371
2372 perf_event_mmap(vma);
2373 }
2374 }
2375 }
2376 anon_vma_unlock_write(vma->anon_vma);
2377 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2378 validate_mm(mm);
2379 return error;
2380 }
2381 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2382
2383 /*
2384 * vma is the first one with address < vma->vm_start. Have to extend vma.
2385 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2386 int expand_downwards(struct vm_area_struct *vma,
2387 unsigned long address)
2388 {
2389 struct mm_struct *mm = vma->vm_mm;
2390 struct vm_area_struct *prev;
2391 int error = 0;
2392
2393 address &= PAGE_MASK;
2394 if (address < mmap_min_addr)
2395 return -EPERM;
2396
2397 /* Enforce stack_guard_gap */
2398 prev = vma->vm_prev;
2399 /* Check that both stack segments have the same anon_vma? */
2400 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2401 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2402 if (address - prev->vm_end < stack_guard_gap)
2403 return -ENOMEM;
2404 }
2405
2406 /* We must make sure the anon_vma is allocated. */
2407 if (unlikely(anon_vma_prepare(vma)))
2408 return -ENOMEM;
2409
2410 /*
2411 * vma->vm_start/vm_end cannot change under us because the caller
2412 * is required to hold the mmap_sem in read mode. We need the
2413 * anon_vma lock to serialize against concurrent expand_stacks.
2414 */
2415 anon_vma_lock_write(vma->anon_vma);
2416
2417 /* Somebody else might have raced and expanded it already */
2418 if (address < vma->vm_start) {
2419 unsigned long size, grow;
2420
2421 size = vma->vm_end - address;
2422 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2423
2424 error = -ENOMEM;
2425 if (grow <= vma->vm_pgoff) {
2426 error = acct_stack_growth(vma, size, grow);
2427 if (!error) {
2428 /*
2429 * vma_gap_update() doesn't support concurrent
2430 * updates, but we only hold a shared mmap_sem
2431 * lock here, so we need to protect against
2432 * concurrent vma expansions.
2433 * anon_vma_lock_write() doesn't help here, as
2434 * we don't guarantee that all growable vmas
2435 * in a mm share the same root anon vma.
2436 * So, we reuse mm->page_table_lock to guard
2437 * against concurrent vma expansions.
2438 */
2439 spin_lock(&mm->page_table_lock);
2440 if (vma->vm_flags & VM_LOCKED)
2441 mm->locked_vm += grow;
2442 vm_stat_account(mm, vma->vm_flags, grow);
2443 anon_vma_interval_tree_pre_update_vma(vma);
2444 vma->vm_start = address;
2445 vma->vm_pgoff -= grow;
2446 anon_vma_interval_tree_post_update_vma(vma);
2447 vma_gap_update(vma);
2448 spin_unlock(&mm->page_table_lock);
2449
2450 perf_event_mmap(vma);
2451 }
2452 }
2453 }
2454 anon_vma_unlock_write(vma->anon_vma);
2455 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2456 validate_mm(mm);
2457 return error;
2458 }
2459
2460 /* enforced gap between the expanding stack and other mappings. */
2461 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2462
cmdline_parse_stack_guard_gap(char * p)2463 static int __init cmdline_parse_stack_guard_gap(char *p)
2464 {
2465 unsigned long val;
2466 char *endptr;
2467
2468 val = simple_strtoul(p, &endptr, 10);
2469 if (!*endptr)
2470 stack_guard_gap = val << PAGE_SHIFT;
2471
2472 return 0;
2473 }
2474 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2475
2476 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2477 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2478 {
2479 return expand_upwards(vma, address);
2480 }
2481
2482 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2483 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2484 {
2485 struct vm_area_struct *vma, *prev;
2486
2487 addr &= PAGE_MASK;
2488 vma = find_vma_prev(mm, addr, &prev);
2489 if (vma && (vma->vm_start <= addr))
2490 return vma;
2491 /* don't alter vm_end if the coredump is running */
2492 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2493 return NULL;
2494 if (prev->vm_flags & VM_LOCKED)
2495 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2496 return prev;
2497 }
2498 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2499 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2500 {
2501 return expand_downwards(vma, address);
2502 }
2503
2504 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2505 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2506 {
2507 struct vm_area_struct *vma;
2508 unsigned long start;
2509
2510 addr &= PAGE_MASK;
2511 vma = find_vma(mm, addr);
2512 if (!vma)
2513 return NULL;
2514 if (vma->vm_start <= addr)
2515 return vma;
2516 if (!(vma->vm_flags & VM_GROWSDOWN))
2517 return NULL;
2518 /* don't alter vm_start if the coredump is running */
2519 if (!mmget_still_valid(mm))
2520 return NULL;
2521 start = vma->vm_start;
2522 if (expand_stack(vma, addr))
2523 return NULL;
2524 if (vma->vm_flags & VM_LOCKED)
2525 populate_vma_page_range(vma, addr, start, NULL);
2526 return vma;
2527 }
2528 #endif
2529
2530 EXPORT_SYMBOL_GPL(find_extend_vma);
2531
2532 /*
2533 * Ok - we have the memory areas we should free on the vma list,
2534 * so release them, and do the vma updates.
2535 *
2536 * Called with the mm semaphore held.
2537 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2538 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2539 {
2540 unsigned long nr_accounted = 0;
2541
2542 /* Update high watermark before we lower total_vm */
2543 update_hiwater_vm(mm);
2544 do {
2545 long nrpages = vma_pages(vma);
2546
2547 if (vma->vm_flags & VM_ACCOUNT)
2548 nr_accounted += nrpages;
2549 vm_stat_account(mm, vma->vm_flags, -nrpages);
2550 vma = remove_vma(vma);
2551 } while (vma);
2552 vm_unacct_memory(nr_accounted);
2553 validate_mm(mm);
2554 }
2555
2556 /*
2557 * Get rid of page table information in the indicated region.
2558 *
2559 * Called with the mm semaphore held.
2560 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2561 static void unmap_region(struct mm_struct *mm,
2562 struct vm_area_struct *vma, struct vm_area_struct *prev,
2563 unsigned long start, unsigned long end)
2564 {
2565 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2566 struct mmu_gather tlb;
2567
2568 lru_add_drain();
2569 tlb_gather_mmu(&tlb, mm, start, end);
2570 update_hiwater_rss(mm);
2571 unmap_vmas(&tlb, vma, start, end);
2572 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2573 next ? next->vm_start : USER_PGTABLES_CEILING);
2574 tlb_finish_mmu(&tlb, start, end);
2575 }
2576
2577 /*
2578 * Create a list of vma's touched by the unmap, removing them from the mm's
2579 * vma list as we go..
2580 */
2581 static void
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2582 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2583 struct vm_area_struct *prev, unsigned long end)
2584 {
2585 struct vm_area_struct **insertion_point;
2586 struct vm_area_struct *tail_vma = NULL;
2587
2588 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2589 vma->vm_prev = NULL;
2590 do {
2591 vma_rb_erase(vma, &mm->mm_rb);
2592 mm->map_count--;
2593 tail_vma = vma;
2594 vma = vma->vm_next;
2595 } while (vma && vma->vm_start < end);
2596 *insertion_point = vma;
2597 if (vma) {
2598 vma->vm_prev = prev;
2599 vma_gap_update(vma);
2600 } else
2601 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2602 tail_vma->vm_next = NULL;
2603
2604 /* Kill the cache */
2605 vmacache_invalidate(mm);
2606 }
2607
2608 /*
2609 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2610 * has already been checked or doesn't make sense to fail.
2611 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2612 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2613 unsigned long addr, int new_below)
2614 {
2615 struct vm_area_struct *new;
2616 int err;
2617
2618 if (vma->vm_ops && vma->vm_ops->split) {
2619 err = vma->vm_ops->split(vma, addr);
2620 if (err)
2621 return err;
2622 }
2623
2624 new = vm_area_dup(vma);
2625 if (!new)
2626 return -ENOMEM;
2627
2628 if (new_below)
2629 new->vm_end = addr;
2630 else {
2631 new->vm_start = addr;
2632 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2633 }
2634
2635 err = vma_dup_policy(vma, new);
2636 if (err)
2637 goto out_free_vma;
2638
2639 err = anon_vma_clone(new, vma);
2640 if (err)
2641 goto out_free_mpol;
2642
2643 if (new->vm_file)
2644 get_file(new->vm_file);
2645
2646 if (new->vm_ops && new->vm_ops->open)
2647 new->vm_ops->open(new);
2648
2649 if (new_below)
2650 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2651 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2652 else
2653 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2654
2655 /* Success. */
2656 if (!err)
2657 return 0;
2658
2659 /* Clean everything up if vma_adjust failed. */
2660 if (new->vm_ops && new->vm_ops->close)
2661 new->vm_ops->close(new);
2662 if (new->vm_file)
2663 fput(new->vm_file);
2664 unlink_anon_vmas(new);
2665 out_free_mpol:
2666 mpol_put(vma_policy(new));
2667 out_free_vma:
2668 vm_area_free(new);
2669 return err;
2670 }
2671
2672 /*
2673 * Split a vma into two pieces at address 'addr', a new vma is allocated
2674 * either for the first part or the tail.
2675 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2676 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2677 unsigned long addr, int new_below)
2678 {
2679 if (mm->map_count >= sysctl_max_map_count)
2680 return -ENOMEM;
2681
2682 return __split_vma(mm, vma, addr, new_below);
2683 }
2684
2685 /* Munmap is split into 2 main parts -- this part which finds
2686 * what needs doing, and the areas themselves, which do the
2687 * work. This now handles partial unmappings.
2688 * Jeremy Fitzhardinge <jeremy@goop.org>
2689 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2690 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2691 struct list_head *uf)
2692 {
2693 unsigned long end;
2694 struct vm_area_struct *vma, *prev, *last;
2695
2696 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2697 return -EINVAL;
2698
2699 len = PAGE_ALIGN(len);
2700 if (len == 0)
2701 return -EINVAL;
2702
2703 /* Find the first overlapping VMA */
2704 vma = find_vma(mm, start);
2705 if (!vma)
2706 return 0;
2707 prev = vma->vm_prev;
2708 /* we have start < vma->vm_end */
2709
2710 /* if it doesn't overlap, we have nothing.. */
2711 end = start + len;
2712 if (vma->vm_start >= end)
2713 return 0;
2714
2715 /*
2716 * If we need to split any vma, do it now to save pain later.
2717 *
2718 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2719 * unmapped vm_area_struct will remain in use: so lower split_vma
2720 * places tmp vma above, and higher split_vma places tmp vma below.
2721 */
2722 if (start > vma->vm_start) {
2723 int error;
2724
2725 /*
2726 * Make sure that map_count on return from munmap() will
2727 * not exceed its limit; but let map_count go just above
2728 * its limit temporarily, to help free resources as expected.
2729 */
2730 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2731 return -ENOMEM;
2732
2733 error = __split_vma(mm, vma, start, 0);
2734 if (error)
2735 return error;
2736 prev = vma;
2737 }
2738
2739 /* Does it split the last one? */
2740 last = find_vma(mm, end);
2741 if (last && end > last->vm_start) {
2742 int error = __split_vma(mm, last, end, 1);
2743 if (error)
2744 return error;
2745 }
2746 vma = prev ? prev->vm_next : mm->mmap;
2747
2748 if (unlikely(uf)) {
2749 /*
2750 * If userfaultfd_unmap_prep returns an error the vmas
2751 * will remain splitted, but userland will get a
2752 * highly unexpected error anyway. This is no
2753 * different than the case where the first of the two
2754 * __split_vma fails, but we don't undo the first
2755 * split, despite we could. This is unlikely enough
2756 * failure that it's not worth optimizing it for.
2757 */
2758 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2759 if (error)
2760 return error;
2761 }
2762
2763 /*
2764 * unlock any mlock()ed ranges before detaching vmas
2765 */
2766 if (mm->locked_vm) {
2767 struct vm_area_struct *tmp = vma;
2768 while (tmp && tmp->vm_start < end) {
2769 if (tmp->vm_flags & VM_LOCKED) {
2770 mm->locked_vm -= vma_pages(tmp);
2771 munlock_vma_pages_all(tmp);
2772 }
2773 tmp = tmp->vm_next;
2774 }
2775 }
2776
2777 /*
2778 * Remove the vma's, and unmap the actual pages
2779 */
2780 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2781 unmap_region(mm, vma, prev, start, end);
2782
2783 arch_unmap(mm, vma, start, end);
2784
2785 /* Fix up all other VM information */
2786 remove_vma_list(mm, vma);
2787
2788 return 0;
2789 }
2790
vm_munmap(unsigned long start,size_t len)2791 int vm_munmap(unsigned long start, size_t len)
2792 {
2793 int ret;
2794 struct mm_struct *mm = current->mm;
2795 LIST_HEAD(uf);
2796
2797 if (down_write_killable(&mm->mmap_sem))
2798 return -EINTR;
2799
2800 ret = do_munmap(mm, start, len, &uf);
2801 up_write(&mm->mmap_sem);
2802 userfaultfd_unmap_complete(mm, &uf);
2803 return ret;
2804 }
2805 EXPORT_SYMBOL(vm_munmap);
2806
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2807 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2808 {
2809 profile_munmap(addr);
2810 return vm_munmap(addr, len);
2811 }
2812
2813
2814 /*
2815 * Emulation of deprecated remap_file_pages() syscall.
2816 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2817 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2818 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2819 {
2820
2821 struct mm_struct *mm = current->mm;
2822 struct vm_area_struct *vma;
2823 unsigned long populate = 0;
2824 unsigned long ret = -EINVAL;
2825 struct file *file;
2826
2827 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2828 current->comm, current->pid);
2829
2830 if (prot)
2831 return ret;
2832 start = start & PAGE_MASK;
2833 size = size & PAGE_MASK;
2834
2835 if (start + size <= start)
2836 return ret;
2837
2838 /* Does pgoff wrap? */
2839 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2840 return ret;
2841
2842 if (down_write_killable(&mm->mmap_sem))
2843 return -EINTR;
2844
2845 vma = find_vma(mm, start);
2846
2847 if (!vma || !(vma->vm_flags & VM_SHARED))
2848 goto out;
2849
2850 if (start < vma->vm_start)
2851 goto out;
2852
2853 if (start + size > vma->vm_end) {
2854 struct vm_area_struct *next;
2855
2856 for (next = vma->vm_next; next; next = next->vm_next) {
2857 /* hole between vmas ? */
2858 if (next->vm_start != next->vm_prev->vm_end)
2859 goto out;
2860
2861 if (next->vm_file != vma->vm_file)
2862 goto out;
2863
2864 if (next->vm_flags != vma->vm_flags)
2865 goto out;
2866
2867 if (start + size <= next->vm_end)
2868 break;
2869 }
2870
2871 if (!next)
2872 goto out;
2873 }
2874
2875 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2876 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2877 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2878
2879 flags &= MAP_NONBLOCK;
2880 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2881 if (vma->vm_flags & VM_LOCKED) {
2882 struct vm_area_struct *tmp;
2883 flags |= MAP_LOCKED;
2884
2885 /* drop PG_Mlocked flag for over-mapped range */
2886 for (tmp = vma; tmp->vm_start >= start + size;
2887 tmp = tmp->vm_next) {
2888 /*
2889 * Split pmd and munlock page on the border
2890 * of the range.
2891 */
2892 vma_adjust_trans_huge(tmp, start, start + size, 0);
2893
2894 munlock_vma_pages_range(tmp,
2895 max(tmp->vm_start, start),
2896 min(tmp->vm_end, start + size));
2897 }
2898 }
2899
2900 file = get_file(vma->vm_file);
2901 ret = do_mmap_pgoff(vma->vm_file, start, size,
2902 prot, flags, pgoff, &populate, NULL);
2903 fput(file);
2904 out:
2905 up_write(&mm->mmap_sem);
2906 if (populate)
2907 mm_populate(ret, populate);
2908 if (!IS_ERR_VALUE(ret))
2909 ret = 0;
2910 return ret;
2911 }
2912
verify_mm_writelocked(struct mm_struct * mm)2913 static inline void verify_mm_writelocked(struct mm_struct *mm)
2914 {
2915 #ifdef CONFIG_DEBUG_VM
2916 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2917 WARN_ON(1);
2918 up_read(&mm->mmap_sem);
2919 }
2920 #endif
2921 }
2922
2923 /*
2924 * this is really a simplified "do_mmap". it only handles
2925 * anonymous maps. eventually we may be able to do some
2926 * brk-specific accounting here.
2927 */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)2928 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2929 {
2930 struct mm_struct *mm = current->mm;
2931 struct vm_area_struct *vma, *prev;
2932 struct rb_node **rb_link, *rb_parent;
2933 pgoff_t pgoff = addr >> PAGE_SHIFT;
2934 int error;
2935
2936 /* Until we need other flags, refuse anything except VM_EXEC. */
2937 if ((flags & (~VM_EXEC)) != 0)
2938 return -EINVAL;
2939 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2940
2941 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2942 if (offset_in_page(error))
2943 return error;
2944
2945 error = mlock_future_check(mm, mm->def_flags, len);
2946 if (error)
2947 return error;
2948
2949 /*
2950 * mm->mmap_sem is required to protect against another thread
2951 * changing the mappings in case we sleep.
2952 */
2953 verify_mm_writelocked(mm);
2954
2955 /*
2956 * Clear old maps. this also does some error checking for us
2957 */
2958 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2959 &rb_parent)) {
2960 if (do_munmap(mm, addr, len, uf))
2961 return -ENOMEM;
2962 }
2963
2964 /* Check against address space limits *after* clearing old maps... */
2965 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2966 return -ENOMEM;
2967
2968 if (mm->map_count > sysctl_max_map_count)
2969 return -ENOMEM;
2970
2971 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2972 return -ENOMEM;
2973
2974 /* Can we just expand an old private anonymous mapping? */
2975 vma = vma_merge(mm, prev, addr, addr + len, flags,
2976 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2977 if (vma)
2978 goto out;
2979
2980 /*
2981 * create a vma struct for an anonymous mapping
2982 */
2983 vma = vm_area_alloc(mm);
2984 if (!vma) {
2985 vm_unacct_memory(len >> PAGE_SHIFT);
2986 return -ENOMEM;
2987 }
2988
2989 vma_set_anonymous(vma);
2990 vma->vm_start = addr;
2991 vma->vm_end = addr + len;
2992 vma->vm_pgoff = pgoff;
2993 vma->vm_flags = flags;
2994 vma->vm_page_prot = vm_get_page_prot(flags);
2995 vma_link(mm, vma, prev, rb_link, rb_parent);
2996 out:
2997 perf_event_mmap(vma);
2998 mm->total_vm += len >> PAGE_SHIFT;
2999 mm->data_vm += len >> PAGE_SHIFT;
3000 if (flags & VM_LOCKED)
3001 mm->locked_vm += (len >> PAGE_SHIFT);
3002 vma->vm_flags |= VM_SOFTDIRTY;
3003 return 0;
3004 }
3005
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3006 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3007 {
3008 struct mm_struct *mm = current->mm;
3009 unsigned long len;
3010 int ret;
3011 bool populate;
3012 LIST_HEAD(uf);
3013
3014 len = PAGE_ALIGN(request);
3015 if (len < request)
3016 return -ENOMEM;
3017 if (!len)
3018 return 0;
3019
3020 if (down_write_killable(&mm->mmap_sem))
3021 return -EINTR;
3022
3023 ret = do_brk_flags(addr, len, flags, &uf);
3024 populate = ((mm->def_flags & VM_LOCKED) != 0);
3025 up_write(&mm->mmap_sem);
3026 userfaultfd_unmap_complete(mm, &uf);
3027 if (populate && !ret)
3028 mm_populate(addr, len);
3029 return ret;
3030 }
3031 EXPORT_SYMBOL(vm_brk_flags);
3032
vm_brk(unsigned long addr,unsigned long len)3033 int vm_brk(unsigned long addr, unsigned long len)
3034 {
3035 return vm_brk_flags(addr, len, 0);
3036 }
3037 EXPORT_SYMBOL(vm_brk);
3038
3039 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3040 void exit_mmap(struct mm_struct *mm)
3041 {
3042 struct mmu_gather tlb;
3043 struct vm_area_struct *vma;
3044 unsigned long nr_accounted = 0;
3045
3046 /* mm's last user has gone, and its about to be pulled down */
3047 mmu_notifier_release(mm);
3048
3049 if (unlikely(mm_is_oom_victim(mm))) {
3050 /*
3051 * Manually reap the mm to free as much memory as possible.
3052 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3053 * this mm from further consideration. Taking mm->mmap_sem for
3054 * write after setting MMF_OOM_SKIP will guarantee that the oom
3055 * reaper will not run on this mm again after mmap_sem is
3056 * dropped.
3057 *
3058 * Nothing can be holding mm->mmap_sem here and the above call
3059 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3060 * __oom_reap_task_mm() will not block.
3061 *
3062 * This needs to be done before calling munlock_vma_pages_all(),
3063 * which clears VM_LOCKED, otherwise the oom reaper cannot
3064 * reliably test it.
3065 */
3066 (void)__oom_reap_task_mm(mm);
3067
3068 set_bit(MMF_OOM_SKIP, &mm->flags);
3069 down_write(&mm->mmap_sem);
3070 up_write(&mm->mmap_sem);
3071 }
3072
3073 if (mm->locked_vm) {
3074 vma = mm->mmap;
3075 while (vma) {
3076 if (vma->vm_flags & VM_LOCKED)
3077 munlock_vma_pages_all(vma);
3078 vma = vma->vm_next;
3079 }
3080 }
3081
3082 arch_exit_mmap(mm);
3083
3084 vma = mm->mmap;
3085 if (!vma) /* Can happen if dup_mmap() received an OOM */
3086 return;
3087
3088 lru_add_drain();
3089 flush_cache_mm(mm);
3090 tlb_gather_mmu(&tlb, mm, 0, -1);
3091 /* update_hiwater_rss(mm) here? but nobody should be looking */
3092 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3093 unmap_vmas(&tlb, vma, 0, -1);
3094 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3095 tlb_finish_mmu(&tlb, 0, -1);
3096
3097 /*
3098 * Walk the list again, actually closing and freeing it,
3099 * with preemption enabled, without holding any MM locks.
3100 */
3101 while (vma) {
3102 if (vma->vm_flags & VM_ACCOUNT)
3103 nr_accounted += vma_pages(vma);
3104 vma = remove_vma(vma);
3105 cond_resched();
3106 }
3107 vm_unacct_memory(nr_accounted);
3108 }
3109
3110 /* Insert vm structure into process list sorted by address
3111 * and into the inode's i_mmap tree. If vm_file is non-NULL
3112 * then i_mmap_rwsem is taken here.
3113 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3114 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3115 {
3116 struct vm_area_struct *prev;
3117 struct rb_node **rb_link, *rb_parent;
3118
3119 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3120 &prev, &rb_link, &rb_parent))
3121 return -ENOMEM;
3122 if ((vma->vm_flags & VM_ACCOUNT) &&
3123 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3124 return -ENOMEM;
3125
3126 /*
3127 * The vm_pgoff of a purely anonymous vma should be irrelevant
3128 * until its first write fault, when page's anon_vma and index
3129 * are set. But now set the vm_pgoff it will almost certainly
3130 * end up with (unless mremap moves it elsewhere before that
3131 * first wfault), so /proc/pid/maps tells a consistent story.
3132 *
3133 * By setting it to reflect the virtual start address of the
3134 * vma, merges and splits can happen in a seamless way, just
3135 * using the existing file pgoff checks and manipulations.
3136 * Similarly in do_mmap_pgoff and in do_brk.
3137 */
3138 if (vma_is_anonymous(vma)) {
3139 BUG_ON(vma->anon_vma);
3140 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3141 }
3142
3143 vma_link(mm, vma, prev, rb_link, rb_parent);
3144 return 0;
3145 }
3146
3147 /*
3148 * Copy the vma structure to a new location in the same mm,
3149 * prior to moving page table entries, to effect an mremap move.
3150 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3151 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3152 unsigned long addr, unsigned long len, pgoff_t pgoff,
3153 bool *need_rmap_locks)
3154 {
3155 struct vm_area_struct *vma = *vmap;
3156 unsigned long vma_start = vma->vm_start;
3157 struct mm_struct *mm = vma->vm_mm;
3158 struct vm_area_struct *new_vma, *prev;
3159 struct rb_node **rb_link, *rb_parent;
3160 bool faulted_in_anon_vma = true;
3161
3162 /*
3163 * If anonymous vma has not yet been faulted, update new pgoff
3164 * to match new location, to increase its chance of merging.
3165 */
3166 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3167 pgoff = addr >> PAGE_SHIFT;
3168 faulted_in_anon_vma = false;
3169 }
3170
3171 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3172 return NULL; /* should never get here */
3173 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3174 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3175 vma->vm_userfaultfd_ctx);
3176 if (new_vma) {
3177 /*
3178 * Source vma may have been merged into new_vma
3179 */
3180 if (unlikely(vma_start >= new_vma->vm_start &&
3181 vma_start < new_vma->vm_end)) {
3182 /*
3183 * The only way we can get a vma_merge with
3184 * self during an mremap is if the vma hasn't
3185 * been faulted in yet and we were allowed to
3186 * reset the dst vma->vm_pgoff to the
3187 * destination address of the mremap to allow
3188 * the merge to happen. mremap must change the
3189 * vm_pgoff linearity between src and dst vmas
3190 * (in turn preventing a vma_merge) to be
3191 * safe. It is only safe to keep the vm_pgoff
3192 * linear if there are no pages mapped yet.
3193 */
3194 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3195 *vmap = vma = new_vma;
3196 }
3197 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3198 } else {
3199 new_vma = vm_area_dup(vma);
3200 if (!new_vma)
3201 goto out;
3202 new_vma->vm_start = addr;
3203 new_vma->vm_end = addr + len;
3204 new_vma->vm_pgoff = pgoff;
3205 if (vma_dup_policy(vma, new_vma))
3206 goto out_free_vma;
3207 if (anon_vma_clone(new_vma, vma))
3208 goto out_free_mempol;
3209 if (new_vma->vm_file)
3210 get_file(new_vma->vm_file);
3211 if (new_vma->vm_ops && new_vma->vm_ops->open)
3212 new_vma->vm_ops->open(new_vma);
3213 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3214 *need_rmap_locks = false;
3215 }
3216 return new_vma;
3217
3218 out_free_mempol:
3219 mpol_put(vma_policy(new_vma));
3220 out_free_vma:
3221 vm_area_free(new_vma);
3222 out:
3223 return NULL;
3224 }
3225
3226 /*
3227 * Return true if the calling process may expand its vm space by the passed
3228 * number of pages
3229 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3230 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3231 {
3232 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3233 return false;
3234
3235 if (is_data_mapping(flags) &&
3236 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3237 /* Workaround for Valgrind */
3238 if (rlimit(RLIMIT_DATA) == 0 &&
3239 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3240 return true;
3241
3242 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3243 current->comm, current->pid,
3244 (mm->data_vm + npages) << PAGE_SHIFT,
3245 rlimit(RLIMIT_DATA),
3246 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3247
3248 if (!ignore_rlimit_data)
3249 return false;
3250 }
3251
3252 return true;
3253 }
3254
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3255 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3256 {
3257 mm->total_vm += npages;
3258
3259 if (is_exec_mapping(flags))
3260 mm->exec_vm += npages;
3261 else if (is_stack_mapping(flags))
3262 mm->stack_vm += npages;
3263 else if (is_data_mapping(flags))
3264 mm->data_vm += npages;
3265 }
3266
3267 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3268
3269 /*
3270 * Having a close hook prevents vma merging regardless of flags.
3271 */
special_mapping_close(struct vm_area_struct * vma)3272 static void special_mapping_close(struct vm_area_struct *vma)
3273 {
3274 }
3275
special_mapping_name(struct vm_area_struct * vma)3276 static const char *special_mapping_name(struct vm_area_struct *vma)
3277 {
3278 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3279 }
3280
special_mapping_mremap(struct vm_area_struct * new_vma)3281 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3282 {
3283 struct vm_special_mapping *sm = new_vma->vm_private_data;
3284
3285 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3286 return -EFAULT;
3287
3288 if (sm->mremap)
3289 return sm->mremap(sm, new_vma);
3290
3291 return 0;
3292 }
3293
3294 static const struct vm_operations_struct special_mapping_vmops = {
3295 .close = special_mapping_close,
3296 .fault = special_mapping_fault,
3297 .mremap = special_mapping_mremap,
3298 .name = special_mapping_name,
3299 };
3300
3301 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3302 .close = special_mapping_close,
3303 .fault = special_mapping_fault,
3304 };
3305
special_mapping_fault(struct vm_fault * vmf)3306 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3307 {
3308 struct vm_area_struct *vma = vmf->vma;
3309 pgoff_t pgoff;
3310 struct page **pages;
3311
3312 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3313 pages = vma->vm_private_data;
3314 } else {
3315 struct vm_special_mapping *sm = vma->vm_private_data;
3316
3317 if (sm->fault)
3318 return sm->fault(sm, vmf->vma, vmf);
3319
3320 pages = sm->pages;
3321 }
3322
3323 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3324 pgoff--;
3325
3326 if (*pages) {
3327 struct page *page = *pages;
3328 get_page(page);
3329 vmf->page = page;
3330 return 0;
3331 }
3332
3333 return VM_FAULT_SIGBUS;
3334 }
3335
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3336 static struct vm_area_struct *__install_special_mapping(
3337 struct mm_struct *mm,
3338 unsigned long addr, unsigned long len,
3339 unsigned long vm_flags, void *priv,
3340 const struct vm_operations_struct *ops)
3341 {
3342 int ret;
3343 struct vm_area_struct *vma;
3344
3345 vma = vm_area_alloc(mm);
3346 if (unlikely(vma == NULL))
3347 return ERR_PTR(-ENOMEM);
3348
3349 vma->vm_start = addr;
3350 vma->vm_end = addr + len;
3351
3352 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3353 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3354
3355 vma->vm_ops = ops;
3356 vma->vm_private_data = priv;
3357
3358 ret = insert_vm_struct(mm, vma);
3359 if (ret)
3360 goto out;
3361
3362 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3363
3364 perf_event_mmap(vma);
3365
3366 return vma;
3367
3368 out:
3369 vm_area_free(vma);
3370 return ERR_PTR(ret);
3371 }
3372
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3373 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3374 const struct vm_special_mapping *sm)
3375 {
3376 return vma->vm_private_data == sm &&
3377 (vma->vm_ops == &special_mapping_vmops ||
3378 vma->vm_ops == &legacy_special_mapping_vmops);
3379 }
3380
3381 /*
3382 * Called with mm->mmap_sem held for writing.
3383 * Insert a new vma covering the given region, with the given flags.
3384 * Its pages are supplied by the given array of struct page *.
3385 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3386 * The region past the last page supplied will always produce SIGBUS.
3387 * The array pointer and the pages it points to are assumed to stay alive
3388 * for as long as this mapping might exist.
3389 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3390 struct vm_area_struct *_install_special_mapping(
3391 struct mm_struct *mm,
3392 unsigned long addr, unsigned long len,
3393 unsigned long vm_flags, const struct vm_special_mapping *spec)
3394 {
3395 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3396 &special_mapping_vmops);
3397 }
3398
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3399 int install_special_mapping(struct mm_struct *mm,
3400 unsigned long addr, unsigned long len,
3401 unsigned long vm_flags, struct page **pages)
3402 {
3403 struct vm_area_struct *vma = __install_special_mapping(
3404 mm, addr, len, vm_flags, (void *)pages,
3405 &legacy_special_mapping_vmops);
3406
3407 return PTR_ERR_OR_ZERO(vma);
3408 }
3409
3410 static DEFINE_MUTEX(mm_all_locks_mutex);
3411
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3412 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3413 {
3414 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3415 /*
3416 * The LSB of head.next can't change from under us
3417 * because we hold the mm_all_locks_mutex.
3418 */
3419 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3420 /*
3421 * We can safely modify head.next after taking the
3422 * anon_vma->root->rwsem. If some other vma in this mm shares
3423 * the same anon_vma we won't take it again.
3424 *
3425 * No need of atomic instructions here, head.next
3426 * can't change from under us thanks to the
3427 * anon_vma->root->rwsem.
3428 */
3429 if (__test_and_set_bit(0, (unsigned long *)
3430 &anon_vma->root->rb_root.rb_root.rb_node))
3431 BUG();
3432 }
3433 }
3434
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3435 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3436 {
3437 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3438 /*
3439 * AS_MM_ALL_LOCKS can't change from under us because
3440 * we hold the mm_all_locks_mutex.
3441 *
3442 * Operations on ->flags have to be atomic because
3443 * even if AS_MM_ALL_LOCKS is stable thanks to the
3444 * mm_all_locks_mutex, there may be other cpus
3445 * changing other bitflags in parallel to us.
3446 */
3447 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3448 BUG();
3449 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3450 }
3451 }
3452
3453 /*
3454 * This operation locks against the VM for all pte/vma/mm related
3455 * operations that could ever happen on a certain mm. This includes
3456 * vmtruncate, try_to_unmap, and all page faults.
3457 *
3458 * The caller must take the mmap_sem in write mode before calling
3459 * mm_take_all_locks(). The caller isn't allowed to release the
3460 * mmap_sem until mm_drop_all_locks() returns.
3461 *
3462 * mmap_sem in write mode is required in order to block all operations
3463 * that could modify pagetables and free pages without need of
3464 * altering the vma layout. It's also needed in write mode to avoid new
3465 * anon_vmas to be associated with existing vmas.
3466 *
3467 * A single task can't take more than one mm_take_all_locks() in a row
3468 * or it would deadlock.
3469 *
3470 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3471 * mapping->flags avoid to take the same lock twice, if more than one
3472 * vma in this mm is backed by the same anon_vma or address_space.
3473 *
3474 * We take locks in following order, accordingly to comment at beginning
3475 * of mm/rmap.c:
3476 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3477 * hugetlb mapping);
3478 * - all i_mmap_rwsem locks;
3479 * - all anon_vma->rwseml
3480 *
3481 * We can take all locks within these types randomly because the VM code
3482 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3483 * mm_all_locks_mutex.
3484 *
3485 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3486 * that may have to take thousand of locks.
3487 *
3488 * mm_take_all_locks() can fail if it's interrupted by signals.
3489 */
mm_take_all_locks(struct mm_struct * mm)3490 int mm_take_all_locks(struct mm_struct *mm)
3491 {
3492 struct vm_area_struct *vma;
3493 struct anon_vma_chain *avc;
3494
3495 BUG_ON(down_read_trylock(&mm->mmap_sem));
3496
3497 mutex_lock(&mm_all_locks_mutex);
3498
3499 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3500 if (signal_pending(current))
3501 goto out_unlock;
3502 if (vma->vm_file && vma->vm_file->f_mapping &&
3503 is_vm_hugetlb_page(vma))
3504 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3505 }
3506
3507 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3508 if (signal_pending(current))
3509 goto out_unlock;
3510 if (vma->vm_file && vma->vm_file->f_mapping &&
3511 !is_vm_hugetlb_page(vma))
3512 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3513 }
3514
3515 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3516 if (signal_pending(current))
3517 goto out_unlock;
3518 if (vma->anon_vma)
3519 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3520 vm_lock_anon_vma(mm, avc->anon_vma);
3521 }
3522
3523 return 0;
3524
3525 out_unlock:
3526 mm_drop_all_locks(mm);
3527 return -EINTR;
3528 }
3529
vm_unlock_anon_vma(struct anon_vma * anon_vma)3530 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3531 {
3532 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3533 /*
3534 * The LSB of head.next can't change to 0 from under
3535 * us because we hold the mm_all_locks_mutex.
3536 *
3537 * We must however clear the bitflag before unlocking
3538 * the vma so the users using the anon_vma->rb_root will
3539 * never see our bitflag.
3540 *
3541 * No need of atomic instructions here, head.next
3542 * can't change from under us until we release the
3543 * anon_vma->root->rwsem.
3544 */
3545 if (!__test_and_clear_bit(0, (unsigned long *)
3546 &anon_vma->root->rb_root.rb_root.rb_node))
3547 BUG();
3548 anon_vma_unlock_write(anon_vma);
3549 }
3550 }
3551
vm_unlock_mapping(struct address_space * mapping)3552 static void vm_unlock_mapping(struct address_space *mapping)
3553 {
3554 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3555 /*
3556 * AS_MM_ALL_LOCKS can't change to 0 from under us
3557 * because we hold the mm_all_locks_mutex.
3558 */
3559 i_mmap_unlock_write(mapping);
3560 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3561 &mapping->flags))
3562 BUG();
3563 }
3564 }
3565
3566 /*
3567 * The mmap_sem cannot be released by the caller until
3568 * mm_drop_all_locks() returns.
3569 */
mm_drop_all_locks(struct mm_struct * mm)3570 void mm_drop_all_locks(struct mm_struct *mm)
3571 {
3572 struct vm_area_struct *vma;
3573 struct anon_vma_chain *avc;
3574
3575 BUG_ON(down_read_trylock(&mm->mmap_sem));
3576 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3577
3578 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3579 if (vma->anon_vma)
3580 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3581 vm_unlock_anon_vma(avc->anon_vma);
3582 if (vma->vm_file && vma->vm_file->f_mapping)
3583 vm_unlock_mapping(vma->vm_file->f_mapping);
3584 }
3585
3586 mutex_unlock(&mm_all_locks_mutex);
3587 }
3588
3589 /*
3590 * initialise the percpu counter for VM
3591 */
mmap_init(void)3592 void __init mmap_init(void)
3593 {
3594 int ret;
3595
3596 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3597 VM_BUG_ON(ret);
3598 }
3599
3600 /*
3601 * Initialise sysctl_user_reserve_kbytes.
3602 *
3603 * This is intended to prevent a user from starting a single memory hogging
3604 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3605 * mode.
3606 *
3607 * The default value is min(3% of free memory, 128MB)
3608 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3609 */
init_user_reserve(void)3610 static int init_user_reserve(void)
3611 {
3612 unsigned long free_kbytes;
3613
3614 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3615
3616 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3617 return 0;
3618 }
3619 subsys_initcall(init_user_reserve);
3620
3621 /*
3622 * Initialise sysctl_admin_reserve_kbytes.
3623 *
3624 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3625 * to log in and kill a memory hogging process.
3626 *
3627 * Systems with more than 256MB will reserve 8MB, enough to recover
3628 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3629 * only reserve 3% of free pages by default.
3630 */
init_admin_reserve(void)3631 static int init_admin_reserve(void)
3632 {
3633 unsigned long free_kbytes;
3634
3635 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3636
3637 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3638 return 0;
3639 }
3640 subsys_initcall(init_admin_reserve);
3641
3642 /*
3643 * Reinititalise user and admin reserves if memory is added or removed.
3644 *
3645 * The default user reserve max is 128MB, and the default max for the
3646 * admin reserve is 8MB. These are usually, but not always, enough to
3647 * enable recovery from a memory hogging process using login/sshd, a shell,
3648 * and tools like top. It may make sense to increase or even disable the
3649 * reserve depending on the existence of swap or variations in the recovery
3650 * tools. So, the admin may have changed them.
3651 *
3652 * If memory is added and the reserves have been eliminated or increased above
3653 * the default max, then we'll trust the admin.
3654 *
3655 * If memory is removed and there isn't enough free memory, then we
3656 * need to reset the reserves.
3657 *
3658 * Otherwise keep the reserve set by the admin.
3659 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3660 static int reserve_mem_notifier(struct notifier_block *nb,
3661 unsigned long action, void *data)
3662 {
3663 unsigned long tmp, free_kbytes;
3664
3665 switch (action) {
3666 case MEM_ONLINE:
3667 /* Default max is 128MB. Leave alone if modified by operator. */
3668 tmp = sysctl_user_reserve_kbytes;
3669 if (0 < tmp && tmp < (1UL << 17))
3670 init_user_reserve();
3671
3672 /* Default max is 8MB. Leave alone if modified by operator. */
3673 tmp = sysctl_admin_reserve_kbytes;
3674 if (0 < tmp && tmp < (1UL << 13))
3675 init_admin_reserve();
3676
3677 break;
3678 case MEM_OFFLINE:
3679 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3680
3681 if (sysctl_user_reserve_kbytes > free_kbytes) {
3682 init_user_reserve();
3683 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3684 sysctl_user_reserve_kbytes);
3685 }
3686
3687 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3688 init_admin_reserve();
3689 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3690 sysctl_admin_reserve_kbytes);
3691 }
3692 break;
3693 default:
3694 break;
3695 }
3696 return NOTIFY_OK;
3697 }
3698
3699 static struct notifier_block reserve_mem_nb = {
3700 .notifier_call = reserve_mem_notifier,
3701 };
3702
init_reserve_notifier(void)3703 static int __meminit init_reserve_notifier(void)
3704 {
3705 if (register_hotmemory_notifier(&reserve_mem_nb))
3706 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3707
3708 return 0;
3709 }
3710 subsys_initcall(init_reserve_notifier);
3711