1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * mm/mprotect.c
4 *
5 * (C) Copyright 1994 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
7 *
8 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
10 */
11
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/fs.h>
17 #include <linux/highmem.h>
18 #include <linux/security.h>
19 #include <linux/mempolicy.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/migrate.h>
26 #include <linux/perf_event.h>
27 #include <linux/pkeys.h>
28 #include <linux/ksm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mm_inline.h>
31 #include <asm/pgtable.h>
32 #include <asm/cacheflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/tlbflush.h>
35
36 #include "internal.h"
37
change_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t newprot,int dirty_accountable,int prot_numa)38 static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
39 unsigned long addr, unsigned long end, pgprot_t newprot,
40 int dirty_accountable, int prot_numa)
41 {
42 struct mm_struct *mm = vma->vm_mm;
43 pte_t *pte, oldpte;
44 spinlock_t *ptl;
45 unsigned long pages = 0;
46 int target_node = NUMA_NO_NODE;
47
48 /*
49 * Can be called with only the mmap_sem for reading by
50 * prot_numa so we must check the pmd isn't constantly
51 * changing from under us from pmd_none to pmd_trans_huge
52 * and/or the other way around.
53 */
54 if (pmd_trans_unstable(pmd))
55 return 0;
56
57 /*
58 * The pmd points to a regular pte so the pmd can't change
59 * from under us even if the mmap_sem is only hold for
60 * reading.
61 */
62 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
63
64 /* Get target node for single threaded private VMAs */
65 if (prot_numa && !(vma->vm_flags & VM_SHARED) &&
66 atomic_read(&vma->vm_mm->mm_users) == 1)
67 target_node = numa_node_id();
68
69 flush_tlb_batched_pending(vma->vm_mm);
70 arch_enter_lazy_mmu_mode();
71 do {
72 oldpte = *pte;
73 if (pte_present(oldpte)) {
74 pte_t ptent;
75 bool preserve_write = prot_numa && pte_write(oldpte);
76
77 /*
78 * Avoid trapping faults against the zero or KSM
79 * pages. See similar comment in change_huge_pmd.
80 */
81 if (prot_numa) {
82 struct page *page;
83
84 page = vm_normal_page(vma, addr, oldpte);
85 if (!page || PageKsm(page))
86 continue;
87
88 /* Also skip shared copy-on-write pages */
89 if (is_cow_mapping(vma->vm_flags) &&
90 page_mapcount(page) != 1)
91 continue;
92
93 /*
94 * While migration can move some dirty pages,
95 * it cannot move them all from MIGRATE_ASYNC
96 * context.
97 */
98 if (page_is_file_cache(page) && PageDirty(page))
99 continue;
100
101 /* Avoid TLB flush if possible */
102 if (pte_protnone(oldpte))
103 continue;
104
105 /*
106 * Don't mess with PTEs if page is already on the node
107 * a single-threaded process is running on.
108 */
109 if (target_node == page_to_nid(page))
110 continue;
111 }
112
113 ptent = ptep_modify_prot_start(mm, addr, pte);
114 ptent = pte_modify(ptent, newprot);
115 if (preserve_write)
116 ptent = pte_mk_savedwrite(ptent);
117
118 /* Avoid taking write faults for known dirty pages */
119 if (dirty_accountable && pte_dirty(ptent) &&
120 (pte_soft_dirty(ptent) ||
121 !(vma->vm_flags & VM_SOFTDIRTY))) {
122 ptent = pte_mkwrite(ptent);
123 }
124 ptep_modify_prot_commit(mm, addr, pte, ptent);
125 pages++;
126 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
127 swp_entry_t entry = pte_to_swp_entry(oldpte);
128
129 if (is_write_migration_entry(entry)) {
130 pte_t newpte;
131 /*
132 * A protection check is difficult so
133 * just be safe and disable write
134 */
135 make_migration_entry_read(&entry);
136 newpte = swp_entry_to_pte(entry);
137 if (pte_swp_soft_dirty(oldpte))
138 newpte = pte_swp_mksoft_dirty(newpte);
139 set_pte_at(mm, addr, pte, newpte);
140
141 pages++;
142 }
143
144 if (is_write_device_private_entry(entry)) {
145 pte_t newpte;
146
147 /*
148 * We do not preserve soft-dirtiness. See
149 * copy_one_pte() for explanation.
150 */
151 make_device_private_entry_read(&entry);
152 newpte = swp_entry_to_pte(entry);
153 set_pte_at(mm, addr, pte, newpte);
154
155 pages++;
156 }
157 }
158 } while (pte++, addr += PAGE_SIZE, addr != end);
159 arch_leave_lazy_mmu_mode();
160 pte_unmap_unlock(pte - 1, ptl);
161
162 return pages;
163 }
164
165 /*
166 * Used when setting automatic NUMA hinting protection where it is
167 * critical that a numa hinting PMD is not confused with a bad PMD.
168 */
pmd_none_or_clear_bad_unless_trans_huge(pmd_t * pmd)169 static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd)
170 {
171 pmd_t pmdval = pmd_read_atomic(pmd);
172
173 /* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */
174 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
175 barrier();
176 #endif
177
178 if (pmd_none(pmdval))
179 return 1;
180 if (pmd_trans_huge(pmdval))
181 return 0;
182 if (unlikely(pmd_bad(pmdval))) {
183 pmd_clear_bad(pmd);
184 return 1;
185 }
186
187 return 0;
188 }
189
change_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,pgprot_t newprot,int dirty_accountable,int prot_numa)190 static inline unsigned long change_pmd_range(struct vm_area_struct *vma,
191 pud_t *pud, unsigned long addr, unsigned long end,
192 pgprot_t newprot, int dirty_accountable, int prot_numa)
193 {
194 pmd_t *pmd;
195 struct mm_struct *mm = vma->vm_mm;
196 unsigned long next;
197 unsigned long pages = 0;
198 unsigned long nr_huge_updates = 0;
199 unsigned long mni_start = 0;
200
201 pmd = pmd_offset(pud, addr);
202 do {
203 unsigned long this_pages;
204
205 next = pmd_addr_end(addr, end);
206
207 /*
208 * Automatic NUMA balancing walks the tables with mmap_sem
209 * held for read. It's possible a parallel update to occur
210 * between pmd_trans_huge() and a pmd_none_or_clear_bad()
211 * check leading to a false positive and clearing.
212 * Hence, it's necessary to atomically read the PMD value
213 * for all the checks.
214 */
215 if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) &&
216 pmd_none_or_clear_bad_unless_trans_huge(pmd))
217 goto next;
218
219 /* invoke the mmu notifier if the pmd is populated */
220 if (!mni_start) {
221 mni_start = addr;
222 mmu_notifier_invalidate_range_start(mm, mni_start, end);
223 }
224
225 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
226 if (next - addr != HPAGE_PMD_SIZE) {
227 __split_huge_pmd(vma, pmd, addr, false, NULL);
228 } else {
229 int nr_ptes = change_huge_pmd(vma, pmd, addr,
230 newprot, prot_numa);
231
232 if (nr_ptes) {
233 if (nr_ptes == HPAGE_PMD_NR) {
234 pages += HPAGE_PMD_NR;
235 nr_huge_updates++;
236 }
237
238 /* huge pmd was handled */
239 goto next;
240 }
241 }
242 /* fall through, the trans huge pmd just split */
243 }
244 this_pages = change_pte_range(vma, pmd, addr, next, newprot,
245 dirty_accountable, prot_numa);
246 pages += this_pages;
247 next:
248 cond_resched();
249 } while (pmd++, addr = next, addr != end);
250
251 if (mni_start)
252 mmu_notifier_invalidate_range_end(mm, mni_start, end);
253
254 if (nr_huge_updates)
255 count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
256 return pages;
257 }
258
change_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t newprot,int dirty_accountable,int prot_numa)259 static inline unsigned long change_pud_range(struct vm_area_struct *vma,
260 p4d_t *p4d, unsigned long addr, unsigned long end,
261 pgprot_t newprot, int dirty_accountable, int prot_numa)
262 {
263 pud_t *pud;
264 unsigned long next;
265 unsigned long pages = 0;
266
267 pud = pud_offset(p4d, addr);
268 do {
269 next = pud_addr_end(addr, end);
270 if (pud_none_or_clear_bad(pud))
271 continue;
272 pages += change_pmd_range(vma, pud, addr, next, newprot,
273 dirty_accountable, prot_numa);
274 } while (pud++, addr = next, addr != end);
275
276 return pages;
277 }
278
change_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t newprot,int dirty_accountable,int prot_numa)279 static inline unsigned long change_p4d_range(struct vm_area_struct *vma,
280 pgd_t *pgd, unsigned long addr, unsigned long end,
281 pgprot_t newprot, int dirty_accountable, int prot_numa)
282 {
283 p4d_t *p4d;
284 unsigned long next;
285 unsigned long pages = 0;
286
287 p4d = p4d_offset(pgd, addr);
288 do {
289 next = p4d_addr_end(addr, end);
290 if (p4d_none_or_clear_bad(p4d))
291 continue;
292 pages += change_pud_range(vma, p4d, addr, next, newprot,
293 dirty_accountable, prot_numa);
294 } while (p4d++, addr = next, addr != end);
295
296 return pages;
297 }
298
change_protection_range(struct vm_area_struct * vma,unsigned long addr,unsigned long end,pgprot_t newprot,int dirty_accountable,int prot_numa)299 static unsigned long change_protection_range(struct vm_area_struct *vma,
300 unsigned long addr, unsigned long end, pgprot_t newprot,
301 int dirty_accountable, int prot_numa)
302 {
303 struct mm_struct *mm = vma->vm_mm;
304 pgd_t *pgd;
305 unsigned long next;
306 unsigned long start = addr;
307 unsigned long pages = 0;
308
309 BUG_ON(addr >= end);
310 pgd = pgd_offset(mm, addr);
311 flush_cache_range(vma, addr, end);
312 inc_tlb_flush_pending(mm);
313 do {
314 next = pgd_addr_end(addr, end);
315 if (pgd_none_or_clear_bad(pgd))
316 continue;
317 pages += change_p4d_range(vma, pgd, addr, next, newprot,
318 dirty_accountable, prot_numa);
319 } while (pgd++, addr = next, addr != end);
320
321 /* Only flush the TLB if we actually modified any entries: */
322 if (pages)
323 flush_tlb_range(vma, start, end);
324 dec_tlb_flush_pending(mm);
325
326 return pages;
327 }
328
change_protection(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgprot_t newprot,int dirty_accountable,int prot_numa)329 unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
330 unsigned long end, pgprot_t newprot,
331 int dirty_accountable, int prot_numa)
332 {
333 unsigned long pages;
334
335 if (is_vm_hugetlb_page(vma))
336 pages = hugetlb_change_protection(vma, start, end, newprot);
337 else
338 pages = change_protection_range(vma, start, end, newprot, dirty_accountable, prot_numa);
339
340 return pages;
341 }
342
prot_none_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)343 static int prot_none_pte_entry(pte_t *pte, unsigned long addr,
344 unsigned long next, struct mm_walk *walk)
345 {
346 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
347 0 : -EACCES;
348 }
349
prot_none_hugetlb_entry(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long next,struct mm_walk * walk)350 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask,
351 unsigned long addr, unsigned long next,
352 struct mm_walk *walk)
353 {
354 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
355 0 : -EACCES;
356 }
357
prot_none_test(unsigned long addr,unsigned long next,struct mm_walk * walk)358 static int prot_none_test(unsigned long addr, unsigned long next,
359 struct mm_walk *walk)
360 {
361 return 0;
362 }
363
prot_none_walk(struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long newflags)364 static int prot_none_walk(struct vm_area_struct *vma, unsigned long start,
365 unsigned long end, unsigned long newflags)
366 {
367 pgprot_t new_pgprot = vm_get_page_prot(newflags);
368 struct mm_walk prot_none_walk = {
369 .pte_entry = prot_none_pte_entry,
370 .hugetlb_entry = prot_none_hugetlb_entry,
371 .test_walk = prot_none_test,
372 .mm = current->mm,
373 .private = &new_pgprot,
374 };
375
376 return walk_page_range(start, end, &prot_none_walk);
377 }
378
379 int
mprotect_fixup(struct vm_area_struct * vma,struct vm_area_struct ** pprev,unsigned long start,unsigned long end,unsigned long newflags)380 mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev,
381 unsigned long start, unsigned long end, unsigned long newflags)
382 {
383 struct mm_struct *mm = vma->vm_mm;
384 unsigned long oldflags = vma->vm_flags;
385 long nrpages = (end - start) >> PAGE_SHIFT;
386 unsigned long charged = 0;
387 pgoff_t pgoff;
388 int error;
389 int dirty_accountable = 0;
390
391 if (newflags == oldflags) {
392 *pprev = vma;
393 return 0;
394 }
395
396 /*
397 * Do PROT_NONE PFN permission checks here when we can still
398 * bail out without undoing a lot of state. This is a rather
399 * uncommon case, so doesn't need to be very optimized.
400 */
401 if (arch_has_pfn_modify_check() &&
402 (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
403 (newflags & (VM_READ|VM_WRITE|VM_EXEC)) == 0) {
404 error = prot_none_walk(vma, start, end, newflags);
405 if (error)
406 return error;
407 }
408
409 /*
410 * If we make a private mapping writable we increase our commit;
411 * but (without finer accounting) cannot reduce our commit if we
412 * make it unwritable again. hugetlb mapping were accounted for
413 * even if read-only so there is no need to account for them here
414 */
415 if (newflags & VM_WRITE) {
416 /* Check space limits when area turns into data. */
417 if (!may_expand_vm(mm, newflags, nrpages) &&
418 may_expand_vm(mm, oldflags, nrpages))
419 return -ENOMEM;
420 if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
421 VM_SHARED|VM_NORESERVE))) {
422 charged = nrpages;
423 if (security_vm_enough_memory_mm(mm, charged))
424 return -ENOMEM;
425 newflags |= VM_ACCOUNT;
426 }
427 }
428
429 /*
430 * First try to merge with previous and/or next vma.
431 */
432 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
433 *pprev = vma_merge(mm, *pprev, start, end, newflags,
434 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
435 vma->vm_userfaultfd_ctx);
436 if (*pprev) {
437 vma = *pprev;
438 VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY);
439 goto success;
440 }
441
442 *pprev = vma;
443
444 if (start != vma->vm_start) {
445 error = split_vma(mm, vma, start, 1);
446 if (error)
447 goto fail;
448 }
449
450 if (end != vma->vm_end) {
451 error = split_vma(mm, vma, end, 0);
452 if (error)
453 goto fail;
454 }
455
456 success:
457 /*
458 * vm_flags and vm_page_prot are protected by the mmap_sem
459 * held in write mode.
460 */
461 vma->vm_flags = newflags;
462 dirty_accountable = vma_wants_writenotify(vma, vma->vm_page_prot);
463 vma_set_page_prot(vma);
464
465 change_protection(vma, start, end, vma->vm_page_prot,
466 dirty_accountable, 0);
467
468 /*
469 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major
470 * fault on access.
471 */
472 if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED &&
473 (newflags & VM_WRITE)) {
474 populate_vma_page_range(vma, start, end, NULL);
475 }
476
477 vm_stat_account(mm, oldflags, -nrpages);
478 vm_stat_account(mm, newflags, nrpages);
479 perf_event_mmap(vma);
480 return 0;
481
482 fail:
483 vm_unacct_memory(charged);
484 return error;
485 }
486
487 /*
488 * pkey==-1 when doing a legacy mprotect()
489 */
do_mprotect_pkey(unsigned long start,size_t len,unsigned long prot,int pkey)490 static int do_mprotect_pkey(unsigned long start, size_t len,
491 unsigned long prot, int pkey)
492 {
493 unsigned long nstart, end, tmp, reqprot;
494 struct vm_area_struct *vma, *prev;
495 int error = -EINVAL;
496 const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
497 const bool rier = (current->personality & READ_IMPLIES_EXEC) &&
498 (prot & PROT_READ);
499
500 prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
501 if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
502 return -EINVAL;
503
504 if (start & ~PAGE_MASK)
505 return -EINVAL;
506 if (!len)
507 return 0;
508 len = PAGE_ALIGN(len);
509 end = start + len;
510 if (end <= start)
511 return -ENOMEM;
512 if (!arch_validate_prot(prot, start))
513 return -EINVAL;
514
515 reqprot = prot;
516
517 if (down_write_killable(¤t->mm->mmap_sem))
518 return -EINTR;
519
520 /*
521 * If userspace did not allocate the pkey, do not let
522 * them use it here.
523 */
524 error = -EINVAL;
525 if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey))
526 goto out;
527
528 vma = find_vma(current->mm, start);
529 error = -ENOMEM;
530 if (!vma)
531 goto out;
532 prev = vma->vm_prev;
533 if (unlikely(grows & PROT_GROWSDOWN)) {
534 if (vma->vm_start >= end)
535 goto out;
536 start = vma->vm_start;
537 error = -EINVAL;
538 if (!(vma->vm_flags & VM_GROWSDOWN))
539 goto out;
540 } else {
541 if (vma->vm_start > start)
542 goto out;
543 if (unlikely(grows & PROT_GROWSUP)) {
544 end = vma->vm_end;
545 error = -EINVAL;
546 if (!(vma->vm_flags & VM_GROWSUP))
547 goto out;
548 }
549 }
550 if (start > vma->vm_start)
551 prev = vma;
552
553 for (nstart = start ; ; ) {
554 unsigned long mask_off_old_flags;
555 unsigned long newflags;
556 int new_vma_pkey;
557
558 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
559
560 /* Does the application expect PROT_READ to imply PROT_EXEC */
561 if (rier && (vma->vm_flags & VM_MAYEXEC))
562 prot |= PROT_EXEC;
563
564 /*
565 * Each mprotect() call explicitly passes r/w/x permissions.
566 * If a permission is not passed to mprotect(), it must be
567 * cleared from the VMA.
568 */
569 mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC |
570 VM_FLAGS_CLEAR;
571
572 new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey);
573 newflags = calc_vm_prot_bits(prot, new_vma_pkey);
574 newflags |= (vma->vm_flags & ~mask_off_old_flags);
575
576 /* newflags >> 4 shift VM_MAY% in place of VM_% */
577 if ((newflags & ~(newflags >> 4)) & (VM_READ | VM_WRITE | VM_EXEC)) {
578 error = -EACCES;
579 goto out;
580 }
581
582 error = security_file_mprotect(vma, reqprot, prot);
583 if (error)
584 goto out;
585
586 tmp = vma->vm_end;
587 if (tmp > end)
588 tmp = end;
589 error = mprotect_fixup(vma, &prev, nstart, tmp, newflags);
590 if (error)
591 goto out;
592 nstart = tmp;
593
594 if (nstart < prev->vm_end)
595 nstart = prev->vm_end;
596 if (nstart >= end)
597 goto out;
598
599 vma = prev->vm_next;
600 if (!vma || vma->vm_start != nstart) {
601 error = -ENOMEM;
602 goto out;
603 }
604 prot = reqprot;
605 }
606 out:
607 up_write(¤t->mm->mmap_sem);
608 return error;
609 }
610
SYSCALL_DEFINE3(mprotect,unsigned long,start,size_t,len,unsigned long,prot)611 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
612 unsigned long, prot)
613 {
614 return do_mprotect_pkey(start, len, prot, -1);
615 }
616
617 #ifdef CONFIG_ARCH_HAS_PKEYS
618
SYSCALL_DEFINE4(pkey_mprotect,unsigned long,start,size_t,len,unsigned long,prot,int,pkey)619 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len,
620 unsigned long, prot, int, pkey)
621 {
622 return do_mprotect_pkey(start, len, prot, pkey);
623 }
624
SYSCALL_DEFINE2(pkey_alloc,unsigned long,flags,unsigned long,init_val)625 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val)
626 {
627 int pkey;
628 int ret;
629
630 /* No flags supported yet. */
631 if (flags)
632 return -EINVAL;
633 /* check for unsupported init values */
634 if (init_val & ~PKEY_ACCESS_MASK)
635 return -EINVAL;
636
637 down_write(¤t->mm->mmap_sem);
638 pkey = mm_pkey_alloc(current->mm);
639
640 ret = -ENOSPC;
641 if (pkey == -1)
642 goto out;
643
644 ret = arch_set_user_pkey_access(current, pkey, init_val);
645 if (ret) {
646 mm_pkey_free(current->mm, pkey);
647 goto out;
648 }
649 ret = pkey;
650 out:
651 up_write(¤t->mm->mmap_sem);
652 return ret;
653 }
654
SYSCALL_DEFINE1(pkey_free,int,pkey)655 SYSCALL_DEFINE1(pkey_free, int, pkey)
656 {
657 int ret;
658
659 down_write(¤t->mm->mmap_sem);
660 ret = mm_pkey_free(current->mm, pkey);
661 up_write(¤t->mm->mmap_sem);
662
663 /*
664 * We could provie warnings or errors if any VMA still
665 * has the pkey set here.
666 */
667 return ret;
668 }
669
670 #endif /* CONFIG_ARCH_HAS_PKEYS */
671