• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/sched/task.h>
28 #include <linux/swap.h>
29 #include <linux/timex.h>
30 #include <linux/jiffies.h>
31 #include <linux/cpuset.h>
32 #include <linux/export.h>
33 #include <linux/notifier.h>
34 #include <linux/memcontrol.h>
35 #include <linux/mempolicy.h>
36 #include <linux/security.h>
37 #include <linux/ptrace.h>
38 #include <linux/freezer.h>
39 #include <linux/ftrace.h>
40 #include <linux/ratelimit.h>
41 #include <linux/kthread.h>
42 #include <linux/init.h>
43 #include <linux/mmu_notifier.h>
44 
45 #include <asm/tlb.h>
46 #include "internal.h"
47 #include "slab.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/oom.h>
51 
52 int sysctl_panic_on_oom;
53 int sysctl_oom_kill_allocating_task;
54 int sysctl_oom_dump_tasks = 1;
55 
56 /*
57  * Serializes oom killer invocations (out_of_memory()) from all contexts to
58  * prevent from over eager oom killing (e.g. when the oom killer is invoked
59  * from different domains).
60  *
61  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
62  * and mark_oom_victim
63  */
64 DEFINE_MUTEX(oom_lock);
65 /* Serializes oom_score_adj and oom_score_adj_min updates */
66 DEFINE_MUTEX(oom_adj_mutex);
67 
68 #ifdef CONFIG_NUMA
69 /**
70  * has_intersects_mems_allowed() - check task eligiblity for kill
71  * @start: task struct of which task to consider
72  * @mask: nodemask passed to page allocator for mempolicy ooms
73  *
74  * Task eligibility is determined by whether or not a candidate task, @tsk,
75  * shares the same mempolicy nodes as current if it is bound by such a policy
76  * and whether or not it has the same set of allowed cpuset nodes.
77  */
has_intersects_mems_allowed(struct task_struct * start,const nodemask_t * mask)78 static bool has_intersects_mems_allowed(struct task_struct *start,
79 					const nodemask_t *mask)
80 {
81 	struct task_struct *tsk;
82 	bool ret = false;
83 
84 	rcu_read_lock();
85 	for_each_thread(start, tsk) {
86 		if (mask) {
87 			/*
88 			 * If this is a mempolicy constrained oom, tsk's
89 			 * cpuset is irrelevant.  Only return true if its
90 			 * mempolicy intersects current, otherwise it may be
91 			 * needlessly killed.
92 			 */
93 			ret = mempolicy_nodemask_intersects(tsk, mask);
94 		} else {
95 			/*
96 			 * This is not a mempolicy constrained oom, so only
97 			 * check the mems of tsk's cpuset.
98 			 */
99 			ret = cpuset_mems_allowed_intersects(current, tsk);
100 		}
101 		if (ret)
102 			break;
103 	}
104 	rcu_read_unlock();
105 
106 	return ret;
107 }
108 #else
has_intersects_mems_allowed(struct task_struct * tsk,const nodemask_t * mask)109 static bool has_intersects_mems_allowed(struct task_struct *tsk,
110 					const nodemask_t *mask)
111 {
112 	return true;
113 }
114 #endif /* CONFIG_NUMA */
115 
116 /*
117  * The process p may have detached its own ->mm while exiting or through
118  * use_mm(), but one or more of its subthreads may still have a valid
119  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
120  * task_lock() held.
121  */
find_lock_task_mm(struct task_struct * p)122 struct task_struct *find_lock_task_mm(struct task_struct *p)
123 {
124 	struct task_struct *t;
125 
126 	rcu_read_lock();
127 
128 	for_each_thread(p, t) {
129 		task_lock(t);
130 		if (likely(t->mm))
131 			goto found;
132 		task_unlock(t);
133 	}
134 	t = NULL;
135 found:
136 	rcu_read_unlock();
137 
138 	return t;
139 }
140 
141 /*
142  * order == -1 means the oom kill is required by sysrq, otherwise only
143  * for display purposes.
144  */
is_sysrq_oom(struct oom_control * oc)145 static inline bool is_sysrq_oom(struct oom_control *oc)
146 {
147 	return oc->order == -1;
148 }
149 
is_memcg_oom(struct oom_control * oc)150 static inline bool is_memcg_oom(struct oom_control *oc)
151 {
152 	return oc->memcg != NULL;
153 }
154 
155 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p,struct mem_cgroup * memcg,const nodemask_t * nodemask)156 static bool oom_unkillable_task(struct task_struct *p,
157 		struct mem_cgroup *memcg, const nodemask_t *nodemask)
158 {
159 	if (is_global_init(p))
160 		return true;
161 	if (p->flags & PF_KTHREAD)
162 		return true;
163 
164 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
165 	if (memcg && !task_in_mem_cgroup(p, memcg))
166 		return true;
167 
168 	/* p may not have freeable memory in nodemask */
169 	if (!has_intersects_mems_allowed(p, nodemask))
170 		return true;
171 
172 	return false;
173 }
174 
175 /*
176  * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
177  * than all user memory (LRU pages)
178  */
is_dump_unreclaim_slabs(void)179 static bool is_dump_unreclaim_slabs(void)
180 {
181 	unsigned long nr_lru;
182 
183 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
184 		 global_node_page_state(NR_INACTIVE_ANON) +
185 		 global_node_page_state(NR_ACTIVE_FILE) +
186 		 global_node_page_state(NR_INACTIVE_FILE) +
187 		 global_node_page_state(NR_ISOLATED_ANON) +
188 		 global_node_page_state(NR_ISOLATED_FILE) +
189 		 global_node_page_state(NR_UNEVICTABLE);
190 
191 	return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
192 }
193 
194 /**
195  * oom_badness - heuristic function to determine which candidate task to kill
196  * @p: task struct of which task we should calculate
197  * @totalpages: total present RAM allowed for page allocation
198  * @memcg: task's memory controller, if constrained
199  * @nodemask: nodemask passed to page allocator for mempolicy ooms
200  *
201  * The heuristic for determining which task to kill is made to be as simple and
202  * predictable as possible.  The goal is to return the highest value for the
203  * task consuming the most memory to avoid subsequent oom failures.
204  */
oom_badness(struct task_struct * p,struct mem_cgroup * memcg,const nodemask_t * nodemask,unsigned long totalpages)205 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
206 			  const nodemask_t *nodemask, unsigned long totalpages)
207 {
208 	long points;
209 	long adj;
210 
211 	if (oom_unkillable_task(p, memcg, nodemask))
212 		return 0;
213 
214 	p = find_lock_task_mm(p);
215 	if (!p)
216 		return 0;
217 
218 	/*
219 	 * Do not even consider tasks which are explicitly marked oom
220 	 * unkillable or have been already oom reaped or the are in
221 	 * the middle of vfork
222 	 */
223 	adj = (long)p->signal->oom_score_adj;
224 	if (adj == OOM_SCORE_ADJ_MIN ||
225 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
226 			in_vfork(p)) {
227 		task_unlock(p);
228 		return 0;
229 	}
230 
231 	/*
232 	 * The baseline for the badness score is the proportion of RAM that each
233 	 * task's rss, pagetable and swap space use.
234 	 */
235 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
236 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
237 	task_unlock(p);
238 
239 	/* Normalize to oom_score_adj units */
240 	adj *= totalpages / 1000;
241 	points += adj;
242 
243 	/*
244 	 * Never return 0 for an eligible task regardless of the root bonus and
245 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
246 	 */
247 	return points > 0 ? points : 1;
248 }
249 
250 enum oom_constraint {
251 	CONSTRAINT_NONE,
252 	CONSTRAINT_CPUSET,
253 	CONSTRAINT_MEMORY_POLICY,
254 	CONSTRAINT_MEMCG,
255 };
256 
257 /*
258  * Determine the type of allocation constraint.
259  */
constrained_alloc(struct oom_control * oc)260 static enum oom_constraint constrained_alloc(struct oom_control *oc)
261 {
262 	struct zone *zone;
263 	struct zoneref *z;
264 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
265 	bool cpuset_limited = false;
266 	int nid;
267 
268 	if (is_memcg_oom(oc)) {
269 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
270 		return CONSTRAINT_MEMCG;
271 	}
272 
273 	/* Default to all available memory */
274 	oc->totalpages = totalram_pages + total_swap_pages;
275 
276 	if (!IS_ENABLED(CONFIG_NUMA))
277 		return CONSTRAINT_NONE;
278 
279 	if (!oc->zonelist)
280 		return CONSTRAINT_NONE;
281 	/*
282 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
283 	 * to kill current.We have to random task kill in this case.
284 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
285 	 */
286 	if (oc->gfp_mask & __GFP_THISNODE)
287 		return CONSTRAINT_NONE;
288 
289 	/*
290 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
291 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
292 	 * is enforced in get_page_from_freelist().
293 	 */
294 	if (oc->nodemask &&
295 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
296 		oc->totalpages = total_swap_pages;
297 		for_each_node_mask(nid, *oc->nodemask)
298 			oc->totalpages += node_spanned_pages(nid);
299 		return CONSTRAINT_MEMORY_POLICY;
300 	}
301 
302 	/* Check this allocation failure is caused by cpuset's wall function */
303 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
304 			high_zoneidx, oc->nodemask)
305 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
306 			cpuset_limited = true;
307 
308 	if (cpuset_limited) {
309 		oc->totalpages = total_swap_pages;
310 		for_each_node_mask(nid, cpuset_current_mems_allowed)
311 			oc->totalpages += node_spanned_pages(nid);
312 		return CONSTRAINT_CPUSET;
313 	}
314 	return CONSTRAINT_NONE;
315 }
316 
oom_evaluate_task(struct task_struct * task,void * arg)317 static int oom_evaluate_task(struct task_struct *task, void *arg)
318 {
319 	struct oom_control *oc = arg;
320 	unsigned long points;
321 
322 	if (oom_unkillable_task(task, NULL, oc->nodemask))
323 		goto next;
324 
325 	/*
326 	 * This task already has access to memory reserves and is being killed.
327 	 * Don't allow any other task to have access to the reserves unless
328 	 * the task has MMF_OOM_SKIP because chances that it would release
329 	 * any memory is quite low.
330 	 */
331 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
332 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
333 			goto next;
334 		goto abort;
335 	}
336 
337 	/*
338 	 * If task is allocating a lot of memory and has been marked to be
339 	 * killed first if it triggers an oom, then select it.
340 	 */
341 	if (oom_task_origin(task)) {
342 		points = ULONG_MAX;
343 		goto select;
344 	}
345 
346 	points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
347 	if (!points || points < oc->chosen_points)
348 		goto next;
349 
350 	/* Prefer thread group leaders for display purposes */
351 	if (points == oc->chosen_points && thread_group_leader(oc->chosen))
352 		goto next;
353 select:
354 	if (oc->chosen)
355 		put_task_struct(oc->chosen);
356 	get_task_struct(task);
357 	oc->chosen = task;
358 	oc->chosen_points = points;
359 next:
360 	return 0;
361 abort:
362 	if (oc->chosen)
363 		put_task_struct(oc->chosen);
364 	oc->chosen = (void *)-1UL;
365 	return 1;
366 }
367 
368 /*
369  * Simple selection loop. We choose the process with the highest number of
370  * 'points'. In case scan was aborted, oc->chosen is set to -1.
371  */
select_bad_process(struct oom_control * oc)372 static void select_bad_process(struct oom_control *oc)
373 {
374 	if (is_memcg_oom(oc))
375 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
376 	else {
377 		struct task_struct *p;
378 
379 		rcu_read_lock();
380 		for_each_process(p)
381 			if (oom_evaluate_task(p, oc))
382 				break;
383 		rcu_read_unlock();
384 	}
385 
386 	oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
387 }
388 
389 /**
390  * dump_tasks - dump current memory state of all system tasks
391  * @memcg: current's memory controller, if constrained
392  * @nodemask: nodemask passed to page allocator for mempolicy ooms
393  *
394  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
395  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
396  * are not shown.
397  * State information includes task's pid, uid, tgid, vm size, rss,
398  * pgtables_bytes, swapents, oom_score_adj value, and name.
399  */
dump_tasks(struct mem_cgroup * memcg,const nodemask_t * nodemask)400 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
401 {
402 	struct task_struct *p;
403 	struct task_struct *task;
404 
405 	pr_info("Tasks state (memory values in pages):\n");
406 	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
407 	rcu_read_lock();
408 	for_each_process(p) {
409 		if (oom_unkillable_task(p, memcg, nodemask))
410 			continue;
411 
412 		task = find_lock_task_mm(p);
413 		if (!task) {
414 			/*
415 			 * This is a kthread or all of p's threads have already
416 			 * detached their mm's.  There's no need to report
417 			 * them; they can't be oom killed anyway.
418 			 */
419 			continue;
420 		}
421 
422 		pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
423 			task->pid, from_kuid(&init_user_ns, task_uid(task)),
424 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
425 			mm_pgtables_bytes(task->mm),
426 			get_mm_counter(task->mm, MM_SWAPENTS),
427 			task->signal->oom_score_adj, task->comm);
428 		task_unlock(task);
429 	}
430 	rcu_read_unlock();
431 }
432 
dump_header(struct oom_control * oc,struct task_struct * p)433 static void dump_header(struct oom_control *oc, struct task_struct *p)
434 {
435 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
436 		current->comm, oc->gfp_mask, &oc->gfp_mask,
437 		nodemask_pr_args(oc->nodemask), oc->order,
438 			current->signal->oom_score_adj);
439 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
440 		pr_warn("COMPACTION is disabled!!!\n");
441 
442 	cpuset_print_current_mems_allowed();
443 	dump_stack();
444 	if (is_memcg_oom(oc))
445 		mem_cgroup_print_oom_info(oc->memcg, p);
446 	else {
447 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
448 		if (is_dump_unreclaim_slabs())
449 			dump_unreclaimable_slab();
450 	}
451 	if (sysctl_oom_dump_tasks)
452 		dump_tasks(oc->memcg, oc->nodemask);
453 }
454 
455 /*
456  * Number of OOM victims in flight
457  */
458 static atomic_t oom_victims = ATOMIC_INIT(0);
459 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
460 
461 static bool oom_killer_disabled __read_mostly;
462 
463 #define K(x) ((x) << (PAGE_SHIFT-10))
464 
465 /*
466  * task->mm can be NULL if the task is the exited group leader.  So to
467  * determine whether the task is using a particular mm, we examine all the
468  * task's threads: if one of those is using this mm then this task was also
469  * using it.
470  */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)471 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
472 {
473 	struct task_struct *t;
474 
475 	for_each_thread(p, t) {
476 		struct mm_struct *t_mm = READ_ONCE(t->mm);
477 		if (t_mm)
478 			return t_mm == mm;
479 	}
480 	return false;
481 }
482 
483 #ifdef CONFIG_MMU
484 /*
485  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
486  * victim (if that is possible) to help the OOM killer to move on.
487  */
488 static struct task_struct *oom_reaper_th;
489 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
490 static struct task_struct *oom_reaper_list;
491 static DEFINE_SPINLOCK(oom_reaper_lock);
492 
__oom_reap_task_mm(struct mm_struct * mm)493 bool __oom_reap_task_mm(struct mm_struct *mm)
494 {
495 	struct vm_area_struct *vma;
496 	bool ret = true;
497 
498 	/*
499 	 * Tell all users of get_user/copy_from_user etc... that the content
500 	 * is no longer stable. No barriers really needed because unmapping
501 	 * should imply barriers already and the reader would hit a page fault
502 	 * if it stumbled over a reaped memory.
503 	 */
504 	set_bit(MMF_UNSTABLE, &mm->flags);
505 
506 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
507 		if (!can_madv_dontneed_vma(vma))
508 			continue;
509 
510 		/*
511 		 * Only anonymous pages have a good chance to be dropped
512 		 * without additional steps which we cannot afford as we
513 		 * are OOM already.
514 		 *
515 		 * We do not even care about fs backed pages because all
516 		 * which are reclaimable have already been reclaimed and
517 		 * we do not want to block exit_mmap by keeping mm ref
518 		 * count elevated without a good reason.
519 		 */
520 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
521 			const unsigned long start = vma->vm_start;
522 			const unsigned long end = vma->vm_end;
523 			struct mmu_gather tlb;
524 
525 			tlb_gather_mmu(&tlb, mm, start, end);
526 			if (mmu_notifier_invalidate_range_start_nonblock(mm, start, end)) {
527 				tlb_finish_mmu(&tlb, start, end);
528 				ret = false;
529 				continue;
530 			}
531 			unmap_page_range(&tlb, vma, start, end, NULL);
532 			mmu_notifier_invalidate_range_end(mm, start, end);
533 			tlb_finish_mmu(&tlb, start, end);
534 		}
535 	}
536 
537 	return ret;
538 }
539 
540 /*
541  * Reaps the address space of the give task.
542  *
543  * Returns true on success and false if none or part of the address space
544  * has been reclaimed and the caller should retry later.
545  */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)546 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
547 {
548 	bool ret = true;
549 
550 	if (!down_read_trylock(&mm->mmap_sem)) {
551 		trace_skip_task_reaping(tsk->pid);
552 		return false;
553 	}
554 
555 	/*
556 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
557 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
558 	 * under mmap_sem for reading because it serializes against the
559 	 * down_write();up_write() cycle in exit_mmap().
560 	 */
561 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
562 		trace_skip_task_reaping(tsk->pid);
563 		goto out_unlock;
564 	}
565 
566 	trace_start_task_reaping(tsk->pid);
567 
568 	/* failed to reap part of the address space. Try again later */
569 	ret = __oom_reap_task_mm(mm);
570 	if (!ret)
571 		goto out_finish;
572 
573 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
574 			task_pid_nr(tsk), tsk->comm,
575 			K(get_mm_counter(mm, MM_ANONPAGES)),
576 			K(get_mm_counter(mm, MM_FILEPAGES)),
577 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
578 out_finish:
579 	trace_finish_task_reaping(tsk->pid);
580 out_unlock:
581 	up_read(&mm->mmap_sem);
582 
583 	return ret;
584 }
585 
586 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)587 static void oom_reap_task(struct task_struct *tsk)
588 {
589 	int attempts = 0;
590 	struct mm_struct *mm = tsk->signal->oom_mm;
591 
592 	/* Retry the down_read_trylock(mmap_sem) a few times */
593 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
594 		schedule_timeout_idle(HZ/10);
595 
596 	if (attempts <= MAX_OOM_REAP_RETRIES ||
597 	    test_bit(MMF_OOM_SKIP, &mm->flags))
598 		goto done;
599 
600 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
601 		task_pid_nr(tsk), tsk->comm);
602 	debug_show_all_locks();
603 
604 done:
605 	tsk->oom_reaper_list = NULL;
606 
607 	/*
608 	 * Hide this mm from OOM killer because it has been either reaped or
609 	 * somebody can't call up_write(mmap_sem).
610 	 */
611 	set_bit(MMF_OOM_SKIP, &mm->flags);
612 
613 	/* Drop a reference taken by wake_oom_reaper */
614 	put_task_struct(tsk);
615 }
616 
oom_reaper(void * unused)617 static int oom_reaper(void *unused)
618 {
619 	while (true) {
620 		struct task_struct *tsk = NULL;
621 
622 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
623 		spin_lock(&oom_reaper_lock);
624 		if (oom_reaper_list != NULL) {
625 			tsk = oom_reaper_list;
626 			oom_reaper_list = tsk->oom_reaper_list;
627 		}
628 		spin_unlock(&oom_reaper_lock);
629 
630 		if (tsk)
631 			oom_reap_task(tsk);
632 	}
633 
634 	return 0;
635 }
636 
wake_oom_reaper(struct task_struct * tsk)637 static void wake_oom_reaper(struct task_struct *tsk)
638 {
639 	/* mm is already queued? */
640 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
641 		return;
642 
643 	get_task_struct(tsk);
644 
645 	spin_lock(&oom_reaper_lock);
646 	tsk->oom_reaper_list = oom_reaper_list;
647 	oom_reaper_list = tsk;
648 	spin_unlock(&oom_reaper_lock);
649 	trace_wake_reaper(tsk->pid);
650 	wake_up(&oom_reaper_wait);
651 }
652 
oom_init(void)653 static int __init oom_init(void)
654 {
655 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
656 	return 0;
657 }
subsys_initcall(oom_init)658 subsys_initcall(oom_init)
659 #else
660 static inline void wake_oom_reaper(struct task_struct *tsk)
661 {
662 }
663 #endif /* CONFIG_MMU */
664 
665 /**
666  * mark_oom_victim - mark the given task as OOM victim
667  * @tsk: task to mark
668  *
669  * Has to be called with oom_lock held and never after
670  * oom has been disabled already.
671  *
672  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
673  * under task_lock or operate on the current).
674  */
675 static void mark_oom_victim(struct task_struct *tsk)
676 {
677 	struct mm_struct *mm = tsk->mm;
678 
679 	WARN_ON(oom_killer_disabled);
680 	/* OOM killer might race with memcg OOM */
681 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
682 		return;
683 
684 	/* oom_mm is bound to the signal struct life time. */
685 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
686 		mmgrab(tsk->signal->oom_mm);
687 		set_bit(MMF_OOM_VICTIM, &mm->flags);
688 	}
689 
690 	/*
691 	 * Make sure that the task is woken up from uninterruptible sleep
692 	 * if it is frozen because OOM killer wouldn't be able to free
693 	 * any memory and livelock. freezing_slow_path will tell the freezer
694 	 * that TIF_MEMDIE tasks should be ignored.
695 	 */
696 	__thaw_task(tsk);
697 	atomic_inc(&oom_victims);
698 	trace_mark_victim(tsk->pid);
699 }
700 
701 /**
702  * exit_oom_victim - note the exit of an OOM victim
703  */
exit_oom_victim(void)704 void exit_oom_victim(void)
705 {
706 	clear_thread_flag(TIF_MEMDIE);
707 
708 	if (!atomic_dec_return(&oom_victims))
709 		wake_up_all(&oom_victims_wait);
710 }
711 
712 /**
713  * oom_killer_enable - enable OOM killer
714  */
oom_killer_enable(void)715 void oom_killer_enable(void)
716 {
717 	oom_killer_disabled = false;
718 	pr_info("OOM killer enabled.\n");
719 }
720 
721 /**
722  * oom_killer_disable - disable OOM killer
723  * @timeout: maximum timeout to wait for oom victims in jiffies
724  *
725  * Forces all page allocations to fail rather than trigger OOM killer.
726  * Will block and wait until all OOM victims are killed or the given
727  * timeout expires.
728  *
729  * The function cannot be called when there are runnable user tasks because
730  * the userspace would see unexpected allocation failures as a result. Any
731  * new usage of this function should be consulted with MM people.
732  *
733  * Returns true if successful and false if the OOM killer cannot be
734  * disabled.
735  */
oom_killer_disable(signed long timeout)736 bool oom_killer_disable(signed long timeout)
737 {
738 	signed long ret;
739 
740 	/*
741 	 * Make sure to not race with an ongoing OOM killer. Check that the
742 	 * current is not killed (possibly due to sharing the victim's memory).
743 	 */
744 	if (mutex_lock_killable(&oom_lock))
745 		return false;
746 	oom_killer_disabled = true;
747 	mutex_unlock(&oom_lock);
748 
749 	ret = wait_event_interruptible_timeout(oom_victims_wait,
750 			!atomic_read(&oom_victims), timeout);
751 	if (ret <= 0) {
752 		oom_killer_enable();
753 		return false;
754 	}
755 	pr_info("OOM killer disabled.\n");
756 
757 	return true;
758 }
759 
__task_will_free_mem(struct task_struct * task)760 static inline bool __task_will_free_mem(struct task_struct *task)
761 {
762 	struct signal_struct *sig = task->signal;
763 
764 	/*
765 	 * A coredumping process may sleep for an extended period in exit_mm(),
766 	 * so the oom killer cannot assume that the process will promptly exit
767 	 * and release memory.
768 	 */
769 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
770 		return false;
771 
772 	if (sig->flags & SIGNAL_GROUP_EXIT)
773 		return true;
774 
775 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
776 		return true;
777 
778 	return false;
779 }
780 
781 /*
782  * Checks whether the given task is dying or exiting and likely to
783  * release its address space. This means that all threads and processes
784  * sharing the same mm have to be killed or exiting.
785  * Caller has to make sure that task->mm is stable (hold task_lock or
786  * it operates on the current).
787  */
task_will_free_mem(struct task_struct * task)788 static bool task_will_free_mem(struct task_struct *task)
789 {
790 	struct mm_struct *mm = task->mm;
791 	struct task_struct *p;
792 	bool ret = true;
793 
794 	/*
795 	 * Skip tasks without mm because it might have passed its exit_mm and
796 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
797 	 * on that for now. We can consider find_lock_task_mm in future.
798 	 */
799 	if (!mm)
800 		return false;
801 
802 	if (!__task_will_free_mem(task))
803 		return false;
804 
805 	/*
806 	 * This task has already been drained by the oom reaper so there are
807 	 * only small chances it will free some more
808 	 */
809 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
810 		return false;
811 
812 	if (atomic_read(&mm->mm_users) <= 1)
813 		return true;
814 
815 	/*
816 	 * Make sure that all tasks which share the mm with the given tasks
817 	 * are dying as well to make sure that a) nobody pins its mm and
818 	 * b) the task is also reapable by the oom reaper.
819 	 */
820 	rcu_read_lock();
821 	for_each_process(p) {
822 		if (!process_shares_mm(p, mm))
823 			continue;
824 		if (same_thread_group(task, p))
825 			continue;
826 		ret = __task_will_free_mem(p);
827 		if (!ret)
828 			break;
829 	}
830 	rcu_read_unlock();
831 
832 	return ret;
833 }
834 
__oom_kill_process(struct task_struct * victim)835 static void __oom_kill_process(struct task_struct *victim)
836 {
837 	struct task_struct *p;
838 	struct mm_struct *mm;
839 	bool can_oom_reap = true;
840 
841 	p = find_lock_task_mm(victim);
842 	if (!p) {
843 		put_task_struct(victim);
844 		return;
845 	} else if (victim != p) {
846 		get_task_struct(p);
847 		put_task_struct(victim);
848 		victim = p;
849 	}
850 
851 	/* Get a reference to safely compare mm after task_unlock(victim) */
852 	mm = victim->mm;
853 	mmgrab(mm);
854 
855 	/* Raise event before sending signal: task reaper must see this */
856 	count_vm_event(OOM_KILL);
857 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
858 
859 	/*
860 	 * We should send SIGKILL before granting access to memory reserves
861 	 * in order to prevent the OOM victim from depleting the memory
862 	 * reserves from the user space under its control.
863 	 */
864 	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, PIDTYPE_TGID);
865 	mark_oom_victim(victim);
866 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
867 		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
868 		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
869 		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
870 		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
871 	task_unlock(victim);
872 
873 	/*
874 	 * Kill all user processes sharing victim->mm in other thread groups, if
875 	 * any.  They don't get access to memory reserves, though, to avoid
876 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
877 	 * oom killed thread cannot exit because it requires the semaphore and
878 	 * its contended by another thread trying to allocate memory itself.
879 	 * That thread will now get access to memory reserves since it has a
880 	 * pending fatal signal.
881 	 */
882 	rcu_read_lock();
883 	for_each_process(p) {
884 		if (!process_shares_mm(p, mm))
885 			continue;
886 		if (same_thread_group(p, victim))
887 			continue;
888 		if (is_global_init(p)) {
889 			can_oom_reap = false;
890 			set_bit(MMF_OOM_SKIP, &mm->flags);
891 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
892 					task_pid_nr(victim), victim->comm,
893 					task_pid_nr(p), p->comm);
894 			continue;
895 		}
896 		/*
897 		 * No use_mm() user needs to read from the userspace so we are
898 		 * ok to reap it.
899 		 */
900 		if (unlikely(p->flags & PF_KTHREAD))
901 			continue;
902 		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, PIDTYPE_TGID);
903 	}
904 	rcu_read_unlock();
905 
906 	if (can_oom_reap)
907 		wake_oom_reaper(victim);
908 
909 	mmdrop(mm);
910 	put_task_struct(victim);
911 }
912 #undef K
913 
914 /*
915  * Kill provided task unless it's secured by setting
916  * oom_score_adj to OOM_SCORE_ADJ_MIN.
917  */
oom_kill_memcg_member(struct task_struct * task,void * unused)918 static int oom_kill_memcg_member(struct task_struct *task, void *unused)
919 {
920 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
921 	    !is_global_init(task)) {
922 		get_task_struct(task);
923 		__oom_kill_process(task);
924 	}
925 	return 0;
926 }
927 
oom_kill_process(struct oom_control * oc,const char * message)928 static void oom_kill_process(struct oom_control *oc, const char *message)
929 {
930 	struct task_struct *p = oc->chosen;
931 	unsigned int points = oc->chosen_points;
932 	struct task_struct *victim = p;
933 	struct task_struct *child;
934 	struct task_struct *t;
935 	struct mem_cgroup *oom_group;
936 	unsigned int victim_points = 0;
937 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
938 					      DEFAULT_RATELIMIT_BURST);
939 
940 	/*
941 	 * If the task is already exiting, don't alarm the sysadmin or kill
942 	 * its children or threads, just give it access to memory reserves
943 	 * so it can die quickly
944 	 */
945 	task_lock(p);
946 	if (task_will_free_mem(p)) {
947 		mark_oom_victim(p);
948 		wake_oom_reaper(p);
949 		task_unlock(p);
950 		put_task_struct(p);
951 		return;
952 	}
953 	task_unlock(p);
954 
955 	if (__ratelimit(&oom_rs))
956 		dump_header(oc, p);
957 
958 	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
959 		message, task_pid_nr(p), p->comm, points);
960 
961 	/*
962 	 * If any of p's children has a different mm and is eligible for kill,
963 	 * the one with the highest oom_badness() score is sacrificed for its
964 	 * parent.  This attempts to lose the minimal amount of work done while
965 	 * still freeing memory.
966 	 */
967 	read_lock(&tasklist_lock);
968 
969 	/*
970 	 * The task 'p' might have already exited before reaching here. The
971 	 * put_task_struct() will free task_struct 'p' while the loop still try
972 	 * to access the field of 'p', so, get an extra reference.
973 	 */
974 	get_task_struct(p);
975 	for_each_thread(p, t) {
976 		list_for_each_entry(child, &t->children, sibling) {
977 			unsigned int child_points;
978 
979 			if (process_shares_mm(child, p->mm))
980 				continue;
981 			/*
982 			 * oom_badness() returns 0 if the thread is unkillable
983 			 */
984 			child_points = oom_badness(child,
985 				oc->memcg, oc->nodemask, oc->totalpages);
986 			if (child_points > victim_points) {
987 				put_task_struct(victim);
988 				victim = child;
989 				victim_points = child_points;
990 				get_task_struct(victim);
991 			}
992 		}
993 	}
994 	put_task_struct(p);
995 	read_unlock(&tasklist_lock);
996 
997 	/*
998 	 * Do we need to kill the entire memory cgroup?
999 	 * Or even one of the ancestor memory cgroups?
1000 	 * Check this out before killing the victim task.
1001 	 */
1002 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1003 
1004 	__oom_kill_process(victim);
1005 
1006 	/*
1007 	 * If necessary, kill all tasks in the selected memory cgroup.
1008 	 */
1009 	if (oom_group) {
1010 		mem_cgroup_print_oom_group(oom_group);
1011 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, NULL);
1012 		mem_cgroup_put(oom_group);
1013 	}
1014 }
1015 
1016 /*
1017  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1018  */
check_panic_on_oom(struct oom_control * oc,enum oom_constraint constraint)1019 static void check_panic_on_oom(struct oom_control *oc,
1020 			       enum oom_constraint constraint)
1021 {
1022 	if (likely(!sysctl_panic_on_oom))
1023 		return;
1024 	if (sysctl_panic_on_oom != 2) {
1025 		/*
1026 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1027 		 * does not panic for cpuset, mempolicy, or memcg allocation
1028 		 * failures.
1029 		 */
1030 		if (constraint != CONSTRAINT_NONE)
1031 			return;
1032 	}
1033 	/* Do not panic for oom kills triggered by sysrq */
1034 	if (is_sysrq_oom(oc))
1035 		return;
1036 	dump_header(oc, NULL);
1037 	panic("Out of memory: %s panic_on_oom is enabled\n",
1038 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1039 }
1040 
1041 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1042 
register_oom_notifier(struct notifier_block * nb)1043 int register_oom_notifier(struct notifier_block *nb)
1044 {
1045 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1046 }
1047 EXPORT_SYMBOL_GPL(register_oom_notifier);
1048 
unregister_oom_notifier(struct notifier_block * nb)1049 int unregister_oom_notifier(struct notifier_block *nb)
1050 {
1051 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1052 }
1053 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1054 
1055 /**
1056  * out_of_memory - kill the "best" process when we run out of memory
1057  * @oc: pointer to struct oom_control
1058  *
1059  * If we run out of memory, we have the choice between either
1060  * killing a random task (bad), letting the system crash (worse)
1061  * OR try to be smart about which process to kill. Note that we
1062  * don't have to be perfect here, we just have to be good.
1063  */
out_of_memory(struct oom_control * oc)1064 bool out_of_memory(struct oom_control *oc)
1065 {
1066 	unsigned long freed = 0;
1067 	enum oom_constraint constraint = CONSTRAINT_NONE;
1068 
1069 	if (oom_killer_disabled)
1070 		return false;
1071 
1072 	if (!is_memcg_oom(oc)) {
1073 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1074 		if (freed > 0)
1075 			/* Got some memory back in the last second. */
1076 			return true;
1077 	}
1078 
1079 	/*
1080 	 * If current has a pending SIGKILL or is exiting, then automatically
1081 	 * select it.  The goal is to allow it to allocate so that it may
1082 	 * quickly exit and free its memory.
1083 	 */
1084 	if (task_will_free_mem(current)) {
1085 		mark_oom_victim(current);
1086 		wake_oom_reaper(current);
1087 		return true;
1088 	}
1089 
1090 	/*
1091 	 * The OOM killer does not compensate for IO-less reclaim.
1092 	 * pagefault_out_of_memory lost its gfp context so we have to
1093 	 * make sure exclude 0 mask - all other users should have at least
1094 	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1095 	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1096 	 */
1097 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1098 		return true;
1099 
1100 	/*
1101 	 * Check if there were limitations on the allocation (only relevant for
1102 	 * NUMA and memcg) that may require different handling.
1103 	 */
1104 	constraint = constrained_alloc(oc);
1105 	if (constraint != CONSTRAINT_MEMORY_POLICY)
1106 		oc->nodemask = NULL;
1107 	check_panic_on_oom(oc, constraint);
1108 
1109 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1110 	    current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1111 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1112 		get_task_struct(current);
1113 		oc->chosen = current;
1114 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1115 		return true;
1116 	}
1117 
1118 	select_bad_process(oc);
1119 	/* Found nothing?!?! */
1120 	if (!oc->chosen) {
1121 		dump_header(oc, NULL);
1122 		pr_warn("Out of memory and no killable processes...\n");
1123 		/*
1124 		 * If we got here due to an actual allocation at the
1125 		 * system level, we cannot survive this and will enter
1126 		 * an endless loop in the allocator. Bail out now.
1127 		 */
1128 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1129 			panic("System is deadlocked on memory\n");
1130 	}
1131 	if (oc->chosen && oc->chosen != (void *)-1UL)
1132 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1133 				 "Memory cgroup out of memory");
1134 	return !!oc->chosen;
1135 }
1136 
1137 /*
1138  * The pagefault handler calls here because it is out of memory, so kill a
1139  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1140  * killing is already in progress so do nothing.
1141  */
pagefault_out_of_memory(void)1142 void pagefault_out_of_memory(void)
1143 {
1144 	struct oom_control oc = {
1145 		.zonelist = NULL,
1146 		.nodemask = NULL,
1147 		.memcg = NULL,
1148 		.gfp_mask = 0,
1149 		.order = 0,
1150 	};
1151 
1152 	if (mem_cgroup_oom_synchronize(true))
1153 		return;
1154 
1155 	if (!mutex_trylock(&oom_lock))
1156 		return;
1157 	out_of_memory(&oc);
1158 	mutex_unlock(&oom_lock);
1159 }
1160