• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95,
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uio.h>
26 #include <linux/sched/task.h>
27 #include <asm/pgtable.h>
28 
get_swap_bio(gfp_t gfp_flags,struct page * page,bio_end_io_t end_io)29 static struct bio *get_swap_bio(gfp_t gfp_flags,
30 				struct page *page, bio_end_io_t end_io)
31 {
32 	int i, nr = hpage_nr_pages(page);
33 	struct bio *bio;
34 
35 	bio = bio_alloc(gfp_flags, nr);
36 	if (bio) {
37 		struct block_device *bdev;
38 
39 		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
40 		bio_set_dev(bio, bdev);
41 		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
42 		bio->bi_end_io = end_io;
43 
44 		for (i = 0; i < nr; i++)
45 			bio_add_page(bio, page + i, PAGE_SIZE, 0);
46 		VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr);
47 	}
48 	return bio;
49 }
50 
end_swap_bio_write(struct bio * bio)51 void end_swap_bio_write(struct bio *bio)
52 {
53 	struct page *page = bio_first_page_all(bio);
54 
55 	if (bio->bi_status) {
56 		SetPageError(page);
57 		/*
58 		 * We failed to write the page out to swap-space.
59 		 * Re-dirty the page in order to avoid it being reclaimed.
60 		 * Also print a dire warning that things will go BAD (tm)
61 		 * very quickly.
62 		 *
63 		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
64 		 */
65 		set_page_dirty(page);
66 		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
67 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
68 			 (unsigned long long)bio->bi_iter.bi_sector);
69 		ClearPageReclaim(page);
70 	}
71 	end_page_writeback(page);
72 	bio_put(bio);
73 }
74 
swap_slot_free_notify(struct page * page)75 static void swap_slot_free_notify(struct page *page)
76 {
77 	struct swap_info_struct *sis;
78 	struct gendisk *disk;
79 	swp_entry_t entry;
80 
81 	/*
82 	 * There is no guarantee that the page is in swap cache - the software
83 	 * suspend code (at least) uses end_swap_bio_read() against a non-
84 	 * swapcache page.  So we must check PG_swapcache before proceeding with
85 	 * this optimization.
86 	 */
87 	if (unlikely(!PageSwapCache(page)))
88 		return;
89 
90 	sis = page_swap_info(page);
91 	if (!(sis->flags & SWP_BLKDEV))
92 		return;
93 
94 	/*
95 	 * The swap subsystem performs lazy swap slot freeing,
96 	 * expecting that the page will be swapped out again.
97 	 * So we can avoid an unnecessary write if the page
98 	 * isn't redirtied.
99 	 * This is good for real swap storage because we can
100 	 * reduce unnecessary I/O and enhance wear-leveling
101 	 * if an SSD is used as the as swap device.
102 	 * But if in-memory swap device (eg zram) is used,
103 	 * this causes a duplicated copy between uncompressed
104 	 * data in VM-owned memory and compressed data in
105 	 * zram-owned memory.  So let's free zram-owned memory
106 	 * and make the VM-owned decompressed page *dirty*,
107 	 * so the page should be swapped out somewhere again if
108 	 * we again wish to reclaim it.
109 	 */
110 	disk = sis->bdev->bd_disk;
111 	entry.val = page_private(page);
112 	if (disk->fops->swap_slot_free_notify &&
113 			__swap_count(sis, entry) == 1) {
114 		unsigned long offset;
115 
116 		offset = swp_offset(entry);
117 
118 		SetPageDirty(page);
119 		disk->fops->swap_slot_free_notify(sis->bdev,
120 				offset);
121 	}
122 }
123 
end_swap_bio_read(struct bio * bio)124 static void end_swap_bio_read(struct bio *bio)
125 {
126 	struct page *page = bio_first_page_all(bio);
127 	struct task_struct *waiter = bio->bi_private;
128 
129 	if (bio->bi_status) {
130 		SetPageError(page);
131 		ClearPageUptodate(page);
132 		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
133 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
134 			 (unsigned long long)bio->bi_iter.bi_sector);
135 		goto out;
136 	}
137 
138 	SetPageUptodate(page);
139 	swap_slot_free_notify(page);
140 out:
141 	unlock_page(page);
142 	WRITE_ONCE(bio->bi_private, NULL);
143 	bio_put(bio);
144 	wake_up_process(waiter);
145 	put_task_struct(waiter);
146 }
147 
generic_swapfile_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)148 int generic_swapfile_activate(struct swap_info_struct *sis,
149 				struct file *swap_file,
150 				sector_t *span)
151 {
152 	struct address_space *mapping = swap_file->f_mapping;
153 	struct inode *inode = mapping->host;
154 	unsigned blocks_per_page;
155 	unsigned long page_no;
156 	unsigned blkbits;
157 	sector_t probe_block;
158 	sector_t last_block;
159 	sector_t lowest_block = -1;
160 	sector_t highest_block = 0;
161 	int nr_extents = 0;
162 	int ret;
163 
164 	blkbits = inode->i_blkbits;
165 	blocks_per_page = PAGE_SIZE >> blkbits;
166 
167 	/*
168 	 * Map all the blocks into the extent list.  This code doesn't try
169 	 * to be very smart.
170 	 */
171 	probe_block = 0;
172 	page_no = 0;
173 	last_block = i_size_read(inode) >> blkbits;
174 	while ((probe_block + blocks_per_page) <= last_block &&
175 			page_no < sis->max) {
176 		unsigned block_in_page;
177 		sector_t first_block;
178 
179 		cond_resched();
180 
181 		first_block = bmap(inode, probe_block);
182 		if (first_block == 0)
183 			goto bad_bmap;
184 
185 		/*
186 		 * It must be PAGE_SIZE aligned on-disk
187 		 */
188 		if (first_block & (blocks_per_page - 1)) {
189 			probe_block++;
190 			goto reprobe;
191 		}
192 
193 		for (block_in_page = 1; block_in_page < blocks_per_page;
194 					block_in_page++) {
195 			sector_t block;
196 
197 			block = bmap(inode, probe_block + block_in_page);
198 			if (block == 0)
199 				goto bad_bmap;
200 			if (block != first_block + block_in_page) {
201 				/* Discontiguity */
202 				probe_block++;
203 				goto reprobe;
204 			}
205 		}
206 
207 		first_block >>= (PAGE_SHIFT - blkbits);
208 		if (page_no) {	/* exclude the header page */
209 			if (first_block < lowest_block)
210 				lowest_block = first_block;
211 			if (first_block > highest_block)
212 				highest_block = first_block;
213 		}
214 
215 		/*
216 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
217 		 */
218 		ret = add_swap_extent(sis, page_no, 1, first_block);
219 		if (ret < 0)
220 			goto out;
221 		nr_extents += ret;
222 		page_no++;
223 		probe_block += blocks_per_page;
224 reprobe:
225 		continue;
226 	}
227 	ret = nr_extents;
228 	*span = 1 + highest_block - lowest_block;
229 	if (page_no == 0)
230 		page_no = 1;	/* force Empty message */
231 	sis->max = page_no;
232 	sis->pages = page_no - 1;
233 	sis->highest_bit = page_no - 1;
234 out:
235 	return ret;
236 bad_bmap:
237 	pr_err("swapon: swapfile has holes\n");
238 	ret = -EINVAL;
239 	goto out;
240 }
241 
242 /*
243  * We may have stale swap cache pages in memory: notice
244  * them here and get rid of the unnecessary final write.
245  */
swap_writepage(struct page * page,struct writeback_control * wbc)246 int swap_writepage(struct page *page, struct writeback_control *wbc)
247 {
248 	int ret = 0;
249 
250 	if (try_to_free_swap(page)) {
251 		unlock_page(page);
252 		goto out;
253 	}
254 	if (frontswap_store(page) == 0) {
255 		set_page_writeback(page);
256 		unlock_page(page);
257 		end_page_writeback(page);
258 		goto out;
259 	}
260 	ret = __swap_writepage(page, wbc, end_swap_bio_write);
261 out:
262 	return ret;
263 }
264 
swap_page_sector(struct page * page)265 static sector_t swap_page_sector(struct page *page)
266 {
267 	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
268 }
269 
count_swpout_vm_event(struct page * page)270 static inline void count_swpout_vm_event(struct page *page)
271 {
272 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
273 	if (unlikely(PageTransHuge(page)))
274 		count_vm_event(THP_SWPOUT);
275 #endif
276 	count_vm_events(PSWPOUT, hpage_nr_pages(page));
277 }
278 
__swap_writepage(struct page * page,struct writeback_control * wbc,bio_end_io_t end_write_func)279 int __swap_writepage(struct page *page, struct writeback_control *wbc,
280 		bio_end_io_t end_write_func)
281 {
282 	struct bio *bio;
283 	int ret;
284 	struct swap_info_struct *sis = page_swap_info(page);
285 
286 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
287 	if (sis->flags & SWP_FILE) {
288 		struct kiocb kiocb;
289 		struct file *swap_file = sis->swap_file;
290 		struct address_space *mapping = swap_file->f_mapping;
291 		struct bio_vec bv = {
292 			.bv_page = page,
293 			.bv_len  = PAGE_SIZE,
294 			.bv_offset = 0
295 		};
296 		struct iov_iter from;
297 
298 		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
299 		init_sync_kiocb(&kiocb, swap_file);
300 		kiocb.ki_pos = page_file_offset(page);
301 
302 		set_page_writeback(page);
303 		unlock_page(page);
304 		ret = mapping->a_ops->direct_IO(&kiocb, &from);
305 		if (ret == PAGE_SIZE) {
306 			count_vm_event(PSWPOUT);
307 			ret = 0;
308 		} else {
309 			/*
310 			 * In the case of swap-over-nfs, this can be a
311 			 * temporary failure if the system has limited
312 			 * memory for allocating transmit buffers.
313 			 * Mark the page dirty and avoid
314 			 * rotate_reclaimable_page but rate-limit the
315 			 * messages but do not flag PageError like
316 			 * the normal direct-to-bio case as it could
317 			 * be temporary.
318 			 */
319 			set_page_dirty(page);
320 			ClearPageReclaim(page);
321 			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
322 					   page_file_offset(page));
323 		}
324 		end_page_writeback(page);
325 		return ret;
326 	}
327 
328 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
329 	if (!ret) {
330 		count_swpout_vm_event(page);
331 		return 0;
332 	}
333 
334 	ret = 0;
335 	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
336 	if (bio == NULL) {
337 		set_page_dirty(page);
338 		unlock_page(page);
339 		ret = -ENOMEM;
340 		goto out;
341 	}
342 	bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
343 	bio_associate_blkcg_from_page(bio, page);
344 	count_swpout_vm_event(page);
345 	set_page_writeback(page);
346 	unlock_page(page);
347 	submit_bio(bio);
348 out:
349 	return ret;
350 }
351 
swap_readpage(struct page * page,bool synchronous)352 int swap_readpage(struct page *page, bool synchronous)
353 {
354 	struct bio *bio;
355 	int ret = 0;
356 	struct swap_info_struct *sis = page_swap_info(page);
357 	blk_qc_t qc;
358 	struct gendisk *disk;
359 
360 	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
361 	VM_BUG_ON_PAGE(!PageLocked(page), page);
362 	VM_BUG_ON_PAGE(PageUptodate(page), page);
363 	if (frontswap_load(page) == 0) {
364 		SetPageUptodate(page);
365 		unlock_page(page);
366 		goto out;
367 	}
368 
369 	if (sis->flags & SWP_FILE) {
370 		struct file *swap_file = sis->swap_file;
371 		struct address_space *mapping = swap_file->f_mapping;
372 
373 		ret = mapping->a_ops->readpage(swap_file, page);
374 		if (!ret)
375 			count_vm_event(PSWPIN);
376 		return ret;
377 	}
378 
379 	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
380 	if (!ret) {
381 		if (trylock_page(page)) {
382 			swap_slot_free_notify(page);
383 			unlock_page(page);
384 		}
385 
386 		count_vm_event(PSWPIN);
387 		return 0;
388 	}
389 
390 	ret = 0;
391 	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
392 	if (bio == NULL) {
393 		unlock_page(page);
394 		ret = -ENOMEM;
395 		goto out;
396 	}
397 	disk = bio->bi_disk;
398 	/*
399 	 * Keep this task valid during swap readpage because the oom killer may
400 	 * attempt to access it in the page fault retry time check.
401 	 */
402 	get_task_struct(current);
403 	bio->bi_private = current;
404 	bio_set_op_attrs(bio, REQ_OP_READ, 0);
405 	count_vm_event(PSWPIN);
406 	bio_get(bio);
407 	qc = submit_bio(bio);
408 	while (synchronous) {
409 		set_current_state(TASK_UNINTERRUPTIBLE);
410 		if (!READ_ONCE(bio->bi_private))
411 			break;
412 
413 		if (!blk_poll(disk->queue, qc))
414 			break;
415 	}
416 	__set_current_state(TASK_RUNNING);
417 	bio_put(bio);
418 
419 out:
420 	return ret;
421 }
422 
swap_set_page_dirty(struct page * page)423 int swap_set_page_dirty(struct page *page)
424 {
425 	struct swap_info_struct *sis = page_swap_info(page);
426 
427 	if (sis->flags & SWP_FILE) {
428 		struct address_space *mapping = sis->swap_file->f_mapping;
429 
430 		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
431 		return mapping->a_ops->set_page_dirty(page);
432 	} else {
433 		return __set_page_dirty_no_writeback(page);
434 	}
435 }
436