• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * Copyright (C) 2017		Facebook Inc.
8  * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com>
9  *
10  * This file is released under the GPLv2 license.
11  *
12  * The percpu allocator handles both static and dynamic areas.  Percpu
13  * areas are allocated in chunks which are divided into units.  There is
14  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
15  * based on NUMA properties of the machine.
16  *
17  *  c0                           c1                         c2
18  *  -------------------          -------------------        ------------
19  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
20  *  -------------------  ......  -------------------  ....  ------------
21  *
22  * Allocation is done by offsets into a unit's address space.  Ie., an
23  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
25  * and even sparse.  Access is handled by configuring percpu base
26  * registers according to the cpu to unit mappings and offsetting the
27  * base address using pcpu_unit_size.
28  *
29  * There is special consideration for the first chunk which must handle
30  * the static percpu variables in the kernel image as allocation services
31  * are not online yet.  In short, the first chunk is structured like so:
32  *
33  *                  <Static | [Reserved] | Dynamic>
34  *
35  * The static data is copied from the original section managed by the
36  * linker.  The reserved section, if non-zero, primarily manages static
37  * percpu variables from kernel modules.  Finally, the dynamic section
38  * takes care of normal allocations.
39  *
40  * The allocator organizes chunks into lists according to free size and
41  * tries to allocate from the fullest chunk first.  Each chunk is managed
42  * by a bitmap with metadata blocks.  The allocation map is updated on
43  * every allocation and free to reflect the current state while the boundary
44  * map is only updated on allocation.  Each metadata block contains
45  * information to help mitigate the need to iterate over large portions
46  * of the bitmap.  The reverse mapping from page to chunk is stored in
47  * the page's index.  Lastly, units are lazily backed and grow in unison.
48  *
49  * There is a unique conversion that goes on here between bytes and bits.
50  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
51  * tracks the number of pages it is responsible for in nr_pages.  Helper
52  * functions are used to convert from between the bytes, bits, and blocks.
53  * All hints are managed in bits unless explicitly stated.
54  *
55  * To use this allocator, arch code should do the following:
56  *
57  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58  *   regular address to percpu pointer and back if they need to be
59  *   different from the default
60  *
61  * - use pcpu_setup_first_chunk() during percpu area initialization to
62  *   setup the first chunk containing the kernel static percpu area
63  */
64 
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 
67 #include <linux/bitmap.h>
68 #include <linux/bootmem.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
73 #include <linux/mm.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83 #include <linux/sched.h>
84 
85 #include <asm/cacheflush.h>
86 #include <asm/sections.h>
87 #include <asm/tlbflush.h>
88 #include <asm/io.h>
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/percpu.h>
92 
93 #include "percpu-internal.h"
94 
95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96 #define PCPU_SLOT_BASE_SHIFT		5
97 
98 #define PCPU_EMPTY_POP_PAGES_LOW	2
99 #define PCPU_EMPTY_POP_PAGES_HIGH	4
100 
101 #ifdef CONFIG_SMP
102 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
103 #ifndef __addr_to_pcpu_ptr
104 #define __addr_to_pcpu_ptr(addr)					\
105 	(void __percpu *)((unsigned long)(addr) -			\
106 			  (unsigned long)pcpu_base_addr	+		\
107 			  (unsigned long)__per_cpu_start)
108 #endif
109 #ifndef __pcpu_ptr_to_addr
110 #define __pcpu_ptr_to_addr(ptr)						\
111 	(void __force *)((unsigned long)(ptr) +				\
112 			 (unsigned long)pcpu_base_addr -		\
113 			 (unsigned long)__per_cpu_start)
114 #endif
115 #else	/* CONFIG_SMP */
116 /* on UP, it's always identity mapped */
117 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
118 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
119 #endif	/* CONFIG_SMP */
120 
121 static int pcpu_unit_pages __ro_after_init;
122 static int pcpu_unit_size __ro_after_init;
123 static int pcpu_nr_units __ro_after_init;
124 static int pcpu_atom_size __ro_after_init;
125 int pcpu_nr_slots __ro_after_init;
126 static size_t pcpu_chunk_struct_size __ro_after_init;
127 
128 /* cpus with the lowest and highest unit addresses */
129 static unsigned int pcpu_low_unit_cpu __ro_after_init;
130 static unsigned int pcpu_high_unit_cpu __ro_after_init;
131 
132 /* the address of the first chunk which starts with the kernel static area */
133 void *pcpu_base_addr __ro_after_init;
134 EXPORT_SYMBOL_GPL(pcpu_base_addr);
135 
136 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
137 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
138 
139 /* group information, used for vm allocation */
140 static int pcpu_nr_groups __ro_after_init;
141 static const unsigned long *pcpu_group_offsets __ro_after_init;
142 static const size_t *pcpu_group_sizes __ro_after_init;
143 
144 /*
145  * The first chunk which always exists.  Note that unlike other
146  * chunks, this one can be allocated and mapped in several different
147  * ways and thus often doesn't live in the vmalloc area.
148  */
149 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
150 
151 /*
152  * Optional reserved chunk.  This chunk reserves part of the first
153  * chunk and serves it for reserved allocations.  When the reserved
154  * region doesn't exist, the following variable is NULL.
155  */
156 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
157 
158 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
159 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
160 
161 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
162 
163 /* chunks which need their map areas extended, protected by pcpu_lock */
164 static LIST_HEAD(pcpu_map_extend_chunks);
165 
166 /*
167  * The number of empty populated pages, protected by pcpu_lock.  The
168  * reserved chunk doesn't contribute to the count.
169  */
170 int pcpu_nr_empty_pop_pages;
171 
172 /*
173  * The number of populated pages in use by the allocator, protected by
174  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
175  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
176  * and increments/decrements this count by 1).
177  */
178 static unsigned long pcpu_nr_populated;
179 
180 /*
181  * Balance work is used to populate or destroy chunks asynchronously.  We
182  * try to keep the number of populated free pages between
183  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
184  * empty chunk.
185  */
186 static void pcpu_balance_workfn(struct work_struct *work);
187 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
188 static bool pcpu_async_enabled __read_mostly;
189 static bool pcpu_atomic_alloc_failed;
190 
pcpu_schedule_balance_work(void)191 static void pcpu_schedule_balance_work(void)
192 {
193 	if (pcpu_async_enabled)
194 		schedule_work(&pcpu_balance_work);
195 }
196 
197 /**
198  * pcpu_addr_in_chunk - check if the address is served from this chunk
199  * @chunk: chunk of interest
200  * @addr: percpu address
201  *
202  * RETURNS:
203  * True if the address is served from this chunk.
204  */
pcpu_addr_in_chunk(struct pcpu_chunk * chunk,void * addr)205 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
206 {
207 	void *start_addr, *end_addr;
208 
209 	if (!chunk)
210 		return false;
211 
212 	start_addr = chunk->base_addr + chunk->start_offset;
213 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
214 		   chunk->end_offset;
215 
216 	return addr >= start_addr && addr < end_addr;
217 }
218 
__pcpu_size_to_slot(int size)219 static int __pcpu_size_to_slot(int size)
220 {
221 	int highbit = fls(size);	/* size is in bytes */
222 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
223 }
224 
pcpu_size_to_slot(int size)225 static int pcpu_size_to_slot(int size)
226 {
227 	if (size == pcpu_unit_size)
228 		return pcpu_nr_slots - 1;
229 	return __pcpu_size_to_slot(size);
230 }
231 
pcpu_chunk_slot(const struct pcpu_chunk * chunk)232 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
233 {
234 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
235 		return 0;
236 
237 	return pcpu_size_to_slot(chunk->free_bytes);
238 }
239 
240 /* set the pointer to a chunk in a page struct */
pcpu_set_page_chunk(struct page * page,struct pcpu_chunk * pcpu)241 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
242 {
243 	page->index = (unsigned long)pcpu;
244 }
245 
246 /* obtain pointer to a chunk from a page struct */
pcpu_get_page_chunk(struct page * page)247 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
248 {
249 	return (struct pcpu_chunk *)page->index;
250 }
251 
pcpu_page_idx(unsigned int cpu,int page_idx)252 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
253 {
254 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
255 }
256 
pcpu_unit_page_offset(unsigned int cpu,int page_idx)257 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
258 {
259 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
260 }
261 
pcpu_chunk_addr(struct pcpu_chunk * chunk,unsigned int cpu,int page_idx)262 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
263 				     unsigned int cpu, int page_idx)
264 {
265 	return (unsigned long)chunk->base_addr +
266 	       pcpu_unit_page_offset(cpu, page_idx);
267 }
268 
pcpu_next_unpop(unsigned long * bitmap,int * rs,int * re,int end)269 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
270 {
271 	*rs = find_next_zero_bit(bitmap, end, *rs);
272 	*re = find_next_bit(bitmap, end, *rs + 1);
273 }
274 
pcpu_next_pop(unsigned long * bitmap,int * rs,int * re,int end)275 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
276 {
277 	*rs = find_next_bit(bitmap, end, *rs);
278 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
279 }
280 
281 /*
282  * Bitmap region iterators.  Iterates over the bitmap between
283  * [@start, @end) in @chunk.  @rs and @re should be integer variables
284  * and will be set to start and end index of the current free region.
285  */
286 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)		     \
287 	for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
288 	     (rs) < (re);						     \
289 	     (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
290 
291 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end)		     \
292 	for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
293 	     (rs) < (re);						     \
294 	     (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
295 
296 /*
297  * The following are helper functions to help access bitmaps and convert
298  * between bitmap offsets to address offsets.
299  */
pcpu_index_alloc_map(struct pcpu_chunk * chunk,int index)300 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
301 {
302 	return chunk->alloc_map +
303 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
304 }
305 
pcpu_off_to_block_index(int off)306 static unsigned long pcpu_off_to_block_index(int off)
307 {
308 	return off / PCPU_BITMAP_BLOCK_BITS;
309 }
310 
pcpu_off_to_block_off(int off)311 static unsigned long pcpu_off_to_block_off(int off)
312 {
313 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
314 }
315 
pcpu_block_off_to_off(int index,int off)316 static unsigned long pcpu_block_off_to_off(int index, int off)
317 {
318 	return index * PCPU_BITMAP_BLOCK_BITS + off;
319 }
320 
321 /**
322  * pcpu_next_md_free_region - finds the next hint free area
323  * @chunk: chunk of interest
324  * @bit_off: chunk offset
325  * @bits: size of free area
326  *
327  * Helper function for pcpu_for_each_md_free_region.  It checks
328  * block->contig_hint and performs aggregation across blocks to find the
329  * next hint.  It modifies bit_off and bits in-place to be consumed in the
330  * loop.
331  */
pcpu_next_md_free_region(struct pcpu_chunk * chunk,int * bit_off,int * bits)332 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
333 				     int *bits)
334 {
335 	int i = pcpu_off_to_block_index(*bit_off);
336 	int block_off = pcpu_off_to_block_off(*bit_off);
337 	struct pcpu_block_md *block;
338 
339 	*bits = 0;
340 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
341 	     block++, i++) {
342 		/* handles contig area across blocks */
343 		if (*bits) {
344 			*bits += block->left_free;
345 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
346 				continue;
347 			return;
348 		}
349 
350 		/*
351 		 * This checks three things.  First is there a contig_hint to
352 		 * check.  Second, have we checked this hint before by
353 		 * comparing the block_off.  Third, is this the same as the
354 		 * right contig hint.  In the last case, it spills over into
355 		 * the next block and should be handled by the contig area
356 		 * across blocks code.
357 		 */
358 		*bits = block->contig_hint;
359 		if (*bits && block->contig_hint_start >= block_off &&
360 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
361 			*bit_off = pcpu_block_off_to_off(i,
362 					block->contig_hint_start);
363 			return;
364 		}
365 		/* reset to satisfy the second predicate above */
366 		block_off = 0;
367 
368 		*bits = block->right_free;
369 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
370 	}
371 }
372 
373 /**
374  * pcpu_next_fit_region - finds fit areas for a given allocation request
375  * @chunk: chunk of interest
376  * @alloc_bits: size of allocation
377  * @align: alignment of area (max PAGE_SIZE)
378  * @bit_off: chunk offset
379  * @bits: size of free area
380  *
381  * Finds the next free region that is viable for use with a given size and
382  * alignment.  This only returns if there is a valid area to be used for this
383  * allocation.  block->first_free is returned if the allocation request fits
384  * within the block to see if the request can be fulfilled prior to the contig
385  * hint.
386  */
pcpu_next_fit_region(struct pcpu_chunk * chunk,int alloc_bits,int align,int * bit_off,int * bits)387 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
388 				 int align, int *bit_off, int *bits)
389 {
390 	int i = pcpu_off_to_block_index(*bit_off);
391 	int block_off = pcpu_off_to_block_off(*bit_off);
392 	struct pcpu_block_md *block;
393 
394 	*bits = 0;
395 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
396 	     block++, i++) {
397 		/* handles contig area across blocks */
398 		if (*bits) {
399 			*bits += block->left_free;
400 			if (*bits >= alloc_bits)
401 				return;
402 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
403 				continue;
404 		}
405 
406 		/* check block->contig_hint */
407 		*bits = ALIGN(block->contig_hint_start, align) -
408 			block->contig_hint_start;
409 		/*
410 		 * This uses the block offset to determine if this has been
411 		 * checked in the prior iteration.
412 		 */
413 		if (block->contig_hint &&
414 		    block->contig_hint_start >= block_off &&
415 		    block->contig_hint >= *bits + alloc_bits) {
416 			*bits += alloc_bits + block->contig_hint_start -
417 				 block->first_free;
418 			*bit_off = pcpu_block_off_to_off(i, block->first_free);
419 			return;
420 		}
421 		/* reset to satisfy the second predicate above */
422 		block_off = 0;
423 
424 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
425 				 align);
426 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
427 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
428 		if (*bits >= alloc_bits)
429 			return;
430 	}
431 
432 	/* no valid offsets were found - fail condition */
433 	*bit_off = pcpu_chunk_map_bits(chunk);
434 }
435 
436 /*
437  * Metadata free area iterators.  These perform aggregation of free areas
438  * based on the metadata blocks and return the offset @bit_off and size in
439  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
440  * a fit is found for the allocation request.
441  */
442 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
443 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
444 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
445 	     (bit_off) += (bits) + 1,					\
446 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
447 
448 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
449 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
450 				  &(bits));				      \
451 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
452 	     (bit_off) += (bits),					      \
453 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
454 				  &(bits)))
455 
456 /**
457  * pcpu_mem_zalloc - allocate memory
458  * @size: bytes to allocate
459  * @gfp: allocation flags
460  *
461  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
462  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
463  * This is to facilitate passing through whitelisted flags.  The
464  * returned memory is always zeroed.
465  *
466  * RETURNS:
467  * Pointer to the allocated area on success, NULL on failure.
468  */
pcpu_mem_zalloc(size_t size,gfp_t gfp)469 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
470 {
471 	if (WARN_ON_ONCE(!slab_is_available()))
472 		return NULL;
473 
474 	if (size <= PAGE_SIZE)
475 		return kzalloc(size, gfp);
476 	else
477 		return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
478 }
479 
480 /**
481  * pcpu_mem_free - free memory
482  * @ptr: memory to free
483  *
484  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
485  */
pcpu_mem_free(void * ptr)486 static void pcpu_mem_free(void *ptr)
487 {
488 	kvfree(ptr);
489 }
490 
491 /**
492  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
493  * @chunk: chunk of interest
494  * @oslot: the previous slot it was on
495  *
496  * This function is called after an allocation or free changed @chunk.
497  * New slot according to the changed state is determined and @chunk is
498  * moved to the slot.  Note that the reserved chunk is never put on
499  * chunk slots.
500  *
501  * CONTEXT:
502  * pcpu_lock.
503  */
pcpu_chunk_relocate(struct pcpu_chunk * chunk,int oslot)504 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
505 {
506 	int nslot = pcpu_chunk_slot(chunk);
507 
508 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
509 		if (oslot < nslot)
510 			list_move(&chunk->list, &pcpu_slot[nslot]);
511 		else
512 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
513 	}
514 }
515 
516 /**
517  * pcpu_cnt_pop_pages- counts populated backing pages in range
518  * @chunk: chunk of interest
519  * @bit_off: start offset
520  * @bits: size of area to check
521  *
522  * Calculates the number of populated pages in the region
523  * [page_start, page_end).  This keeps track of how many empty populated
524  * pages are available and decide if async work should be scheduled.
525  *
526  * RETURNS:
527  * The nr of populated pages.
528  */
pcpu_cnt_pop_pages(struct pcpu_chunk * chunk,int bit_off,int bits)529 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
530 				     int bits)
531 {
532 	int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
533 	int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
534 
535 	if (page_start >= page_end)
536 		return 0;
537 
538 	/*
539 	 * bitmap_weight counts the number of bits set in a bitmap up to
540 	 * the specified number of bits.  This is counting the populated
541 	 * pages up to page_end and then subtracting the populated pages
542 	 * up to page_start to count the populated pages in
543 	 * [page_start, page_end).
544 	 */
545 	return bitmap_weight(chunk->populated, page_end) -
546 	       bitmap_weight(chunk->populated, page_start);
547 }
548 
549 /**
550  * pcpu_chunk_update - updates the chunk metadata given a free area
551  * @chunk: chunk of interest
552  * @bit_off: chunk offset
553  * @bits: size of free area
554  *
555  * This updates the chunk's contig hint and starting offset given a free area.
556  * Choose the best starting offset if the contig hint is equal.
557  */
pcpu_chunk_update(struct pcpu_chunk * chunk,int bit_off,int bits)558 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
559 {
560 	if (bits > chunk->contig_bits) {
561 		chunk->contig_bits_start = bit_off;
562 		chunk->contig_bits = bits;
563 	} else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
564 		   (!bit_off ||
565 		    __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
566 		/* use the start with the best alignment */
567 		chunk->contig_bits_start = bit_off;
568 	}
569 }
570 
571 /**
572  * pcpu_chunk_refresh_hint - updates metadata about a chunk
573  * @chunk: chunk of interest
574  *
575  * Iterates over the metadata blocks to find the largest contig area.
576  * It also counts the populated pages and uses the delta to update the
577  * global count.
578  *
579  * Updates:
580  *      chunk->contig_bits
581  *      chunk->contig_bits_start
582  *      nr_empty_pop_pages (chunk and global)
583  */
pcpu_chunk_refresh_hint(struct pcpu_chunk * chunk)584 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
585 {
586 	int bit_off, bits, nr_empty_pop_pages;
587 
588 	/* clear metadata */
589 	chunk->contig_bits = 0;
590 
591 	bit_off = chunk->first_bit;
592 	bits = nr_empty_pop_pages = 0;
593 	pcpu_for_each_md_free_region(chunk, bit_off, bits) {
594 		pcpu_chunk_update(chunk, bit_off, bits);
595 
596 		nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
597 	}
598 
599 	/*
600 	 * Keep track of nr_empty_pop_pages.
601 	 *
602 	 * The chunk maintains the previous number of free pages it held,
603 	 * so the delta is used to update the global counter.  The reserved
604 	 * chunk is not part of the free page count as they are populated
605 	 * at init and are special to serving reserved allocations.
606 	 */
607 	if (chunk != pcpu_reserved_chunk)
608 		pcpu_nr_empty_pop_pages +=
609 			(nr_empty_pop_pages - chunk->nr_empty_pop_pages);
610 
611 	chunk->nr_empty_pop_pages = nr_empty_pop_pages;
612 }
613 
614 /**
615  * pcpu_block_update - updates a block given a free area
616  * @block: block of interest
617  * @start: start offset in block
618  * @end: end offset in block
619  *
620  * Updates a block given a known free area.  The region [start, end) is
621  * expected to be the entirety of the free area within a block.  Chooses
622  * the best starting offset if the contig hints are equal.
623  */
pcpu_block_update(struct pcpu_block_md * block,int start,int end)624 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
625 {
626 	int contig = end - start;
627 
628 	block->first_free = min(block->first_free, start);
629 	if (start == 0)
630 		block->left_free = contig;
631 
632 	if (end == PCPU_BITMAP_BLOCK_BITS)
633 		block->right_free = contig;
634 
635 	if (contig > block->contig_hint) {
636 		block->contig_hint_start = start;
637 		block->contig_hint = contig;
638 	} else if (block->contig_hint_start && contig == block->contig_hint &&
639 		   (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
640 		/* use the start with the best alignment */
641 		block->contig_hint_start = start;
642 	}
643 }
644 
645 /**
646  * pcpu_block_refresh_hint
647  * @chunk: chunk of interest
648  * @index: index of the metadata block
649  *
650  * Scans over the block beginning at first_free and updates the block
651  * metadata accordingly.
652  */
pcpu_block_refresh_hint(struct pcpu_chunk * chunk,int index)653 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
654 {
655 	struct pcpu_block_md *block = chunk->md_blocks + index;
656 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
657 	int rs, re;	/* region start, region end */
658 
659 	/* clear hints */
660 	block->contig_hint = 0;
661 	block->left_free = block->right_free = 0;
662 
663 	/* iterate over free areas and update the contig hints */
664 	pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
665 				   PCPU_BITMAP_BLOCK_BITS) {
666 		pcpu_block_update(block, rs, re);
667 	}
668 }
669 
670 /**
671  * pcpu_block_update_hint_alloc - update hint on allocation path
672  * @chunk: chunk of interest
673  * @bit_off: chunk offset
674  * @bits: size of request
675  *
676  * Updates metadata for the allocation path.  The metadata only has to be
677  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
678  * scans are required if the block's contig hint is broken.
679  */
pcpu_block_update_hint_alloc(struct pcpu_chunk * chunk,int bit_off,int bits)680 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
681 					 int bits)
682 {
683 	struct pcpu_block_md *s_block, *e_block, *block;
684 	int s_index, e_index;	/* block indexes of the freed allocation */
685 	int s_off, e_off;	/* block offsets of the freed allocation */
686 
687 	/*
688 	 * Calculate per block offsets.
689 	 * The calculation uses an inclusive range, but the resulting offsets
690 	 * are [start, end).  e_index always points to the last block in the
691 	 * range.
692 	 */
693 	s_index = pcpu_off_to_block_index(bit_off);
694 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
695 	s_off = pcpu_off_to_block_off(bit_off);
696 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
697 
698 	s_block = chunk->md_blocks + s_index;
699 	e_block = chunk->md_blocks + e_index;
700 
701 	/*
702 	 * Update s_block.
703 	 * block->first_free must be updated if the allocation takes its place.
704 	 * If the allocation breaks the contig_hint, a scan is required to
705 	 * restore this hint.
706 	 */
707 	if (s_off == s_block->first_free)
708 		s_block->first_free = find_next_zero_bit(
709 					pcpu_index_alloc_map(chunk, s_index),
710 					PCPU_BITMAP_BLOCK_BITS,
711 					s_off + bits);
712 
713 	if (s_off >= s_block->contig_hint_start &&
714 	    s_off < s_block->contig_hint_start + s_block->contig_hint) {
715 		/* block contig hint is broken - scan to fix it */
716 		pcpu_block_refresh_hint(chunk, s_index);
717 	} else {
718 		/* update left and right contig manually */
719 		s_block->left_free = min(s_block->left_free, s_off);
720 		if (s_index == e_index)
721 			s_block->right_free = min_t(int, s_block->right_free,
722 					PCPU_BITMAP_BLOCK_BITS - e_off);
723 		else
724 			s_block->right_free = 0;
725 	}
726 
727 	/*
728 	 * Update e_block.
729 	 */
730 	if (s_index != e_index) {
731 		/*
732 		 * When the allocation is across blocks, the end is along
733 		 * the left part of the e_block.
734 		 */
735 		e_block->first_free = find_next_zero_bit(
736 				pcpu_index_alloc_map(chunk, e_index),
737 				PCPU_BITMAP_BLOCK_BITS, e_off);
738 
739 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
740 			/* reset the block */
741 			e_block++;
742 		} else {
743 			if (e_off > e_block->contig_hint_start) {
744 				/* contig hint is broken - scan to fix it */
745 				pcpu_block_refresh_hint(chunk, e_index);
746 			} else {
747 				e_block->left_free = 0;
748 				e_block->right_free =
749 					min_t(int, e_block->right_free,
750 					      PCPU_BITMAP_BLOCK_BITS - e_off);
751 			}
752 		}
753 
754 		/* update in-between md_blocks */
755 		for (block = s_block + 1; block < e_block; block++) {
756 			block->contig_hint = 0;
757 			block->left_free = 0;
758 			block->right_free = 0;
759 		}
760 	}
761 
762 	/*
763 	 * The only time a full chunk scan is required is if the chunk
764 	 * contig hint is broken.  Otherwise, it means a smaller space
765 	 * was used and therefore the chunk contig hint is still correct.
766 	 */
767 	if (bit_off >= chunk->contig_bits_start  &&
768 	    bit_off < chunk->contig_bits_start + chunk->contig_bits)
769 		pcpu_chunk_refresh_hint(chunk);
770 }
771 
772 /**
773  * pcpu_block_update_hint_free - updates the block hints on the free path
774  * @chunk: chunk of interest
775  * @bit_off: chunk offset
776  * @bits: size of request
777  *
778  * Updates metadata for the allocation path.  This avoids a blind block
779  * refresh by making use of the block contig hints.  If this fails, it scans
780  * forward and backward to determine the extent of the free area.  This is
781  * capped at the boundary of blocks.
782  *
783  * A chunk update is triggered if a page becomes free, a block becomes free,
784  * or the free spans across blocks.  This tradeoff is to minimize iterating
785  * over the block metadata to update chunk->contig_bits.  chunk->contig_bits
786  * may be off by up to a page, but it will never be more than the available
787  * space.  If the contig hint is contained in one block, it will be accurate.
788  */
pcpu_block_update_hint_free(struct pcpu_chunk * chunk,int bit_off,int bits)789 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
790 					int bits)
791 {
792 	struct pcpu_block_md *s_block, *e_block, *block;
793 	int s_index, e_index;	/* block indexes of the freed allocation */
794 	int s_off, e_off;	/* block offsets of the freed allocation */
795 	int start, end;		/* start and end of the whole free area */
796 
797 	/*
798 	 * Calculate per block offsets.
799 	 * The calculation uses an inclusive range, but the resulting offsets
800 	 * are [start, end).  e_index always points to the last block in the
801 	 * range.
802 	 */
803 	s_index = pcpu_off_to_block_index(bit_off);
804 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
805 	s_off = pcpu_off_to_block_off(bit_off);
806 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
807 
808 	s_block = chunk->md_blocks + s_index;
809 	e_block = chunk->md_blocks + e_index;
810 
811 	/*
812 	 * Check if the freed area aligns with the block->contig_hint.
813 	 * If it does, then the scan to find the beginning/end of the
814 	 * larger free area can be avoided.
815 	 *
816 	 * start and end refer to beginning and end of the free area
817 	 * within each their respective blocks.  This is not necessarily
818 	 * the entire free area as it may span blocks past the beginning
819 	 * or end of the block.
820 	 */
821 	start = s_off;
822 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
823 		start = s_block->contig_hint_start;
824 	} else {
825 		/*
826 		 * Scan backwards to find the extent of the free area.
827 		 * find_last_bit returns the starting bit, so if the start bit
828 		 * is returned, that means there was no last bit and the
829 		 * remainder of the chunk is free.
830 		 */
831 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
832 					  start);
833 		start = (start == l_bit) ? 0 : l_bit + 1;
834 	}
835 
836 	end = e_off;
837 	if (e_off == e_block->contig_hint_start)
838 		end = e_block->contig_hint_start + e_block->contig_hint;
839 	else
840 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
841 				    PCPU_BITMAP_BLOCK_BITS, end);
842 
843 	/* update s_block */
844 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
845 	pcpu_block_update(s_block, start, e_off);
846 
847 	/* freeing in the same block */
848 	if (s_index != e_index) {
849 		/* update e_block */
850 		pcpu_block_update(e_block, 0, end);
851 
852 		/* reset md_blocks in the middle */
853 		for (block = s_block + 1; block < e_block; block++) {
854 			block->first_free = 0;
855 			block->contig_hint_start = 0;
856 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
857 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
858 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
859 		}
860 	}
861 
862 	/*
863 	 * Refresh chunk metadata when the free makes a page free, a block
864 	 * free, or spans across blocks.  The contig hint may be off by up to
865 	 * a page, but if the hint is contained in a block, it will be accurate
866 	 * with the else condition below.
867 	 */
868 	if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
869 	     ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
870 	    s_index != e_index)
871 		pcpu_chunk_refresh_hint(chunk);
872 	else
873 		pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
874 				  s_block->contig_hint);
875 }
876 
877 /**
878  * pcpu_is_populated - determines if the region is populated
879  * @chunk: chunk of interest
880  * @bit_off: chunk offset
881  * @bits: size of area
882  * @next_off: return value for the next offset to start searching
883  *
884  * For atomic allocations, check if the backing pages are populated.
885  *
886  * RETURNS:
887  * Bool if the backing pages are populated.
888  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
889  */
pcpu_is_populated(struct pcpu_chunk * chunk,int bit_off,int bits,int * next_off)890 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
891 			      int *next_off)
892 {
893 	int page_start, page_end, rs, re;
894 
895 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
896 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
897 
898 	rs = page_start;
899 	pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
900 	if (rs >= page_end)
901 		return true;
902 
903 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
904 	return false;
905 }
906 
907 /**
908  * pcpu_find_block_fit - finds the block index to start searching
909  * @chunk: chunk of interest
910  * @alloc_bits: size of request in allocation units
911  * @align: alignment of area (max PAGE_SIZE bytes)
912  * @pop_only: use populated regions only
913  *
914  * Given a chunk and an allocation spec, find the offset to begin searching
915  * for a free region.  This iterates over the bitmap metadata blocks to
916  * find an offset that will be guaranteed to fit the requirements.  It is
917  * not quite first fit as if the allocation does not fit in the contig hint
918  * of a block or chunk, it is skipped.  This errs on the side of caution
919  * to prevent excess iteration.  Poor alignment can cause the allocator to
920  * skip over blocks and chunks that have valid free areas.
921  *
922  * RETURNS:
923  * The offset in the bitmap to begin searching.
924  * -1 if no offset is found.
925  */
pcpu_find_block_fit(struct pcpu_chunk * chunk,int alloc_bits,size_t align,bool pop_only)926 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
927 			       size_t align, bool pop_only)
928 {
929 	int bit_off, bits, next_off;
930 
931 	/*
932 	 * Check to see if the allocation can fit in the chunk's contig hint.
933 	 * This is an optimization to prevent scanning by assuming if it
934 	 * cannot fit in the global hint, there is memory pressure and creating
935 	 * a new chunk would happen soon.
936 	 */
937 	bit_off = ALIGN(chunk->contig_bits_start, align) -
938 		  chunk->contig_bits_start;
939 	if (bit_off + alloc_bits > chunk->contig_bits)
940 		return -1;
941 
942 	bit_off = chunk->first_bit;
943 	bits = 0;
944 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
945 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
946 						   &next_off))
947 			break;
948 
949 		bit_off = next_off;
950 		bits = 0;
951 	}
952 
953 	if (bit_off == pcpu_chunk_map_bits(chunk))
954 		return -1;
955 
956 	return bit_off;
957 }
958 
959 /**
960  * pcpu_alloc_area - allocates an area from a pcpu_chunk
961  * @chunk: chunk of interest
962  * @alloc_bits: size of request in allocation units
963  * @align: alignment of area (max PAGE_SIZE)
964  * @start: bit_off to start searching
965  *
966  * This function takes in a @start offset to begin searching to fit an
967  * allocation of @alloc_bits with alignment @align.  It needs to scan
968  * the allocation map because if it fits within the block's contig hint,
969  * @start will be block->first_free. This is an attempt to fill the
970  * allocation prior to breaking the contig hint.  The allocation and
971  * boundary maps are updated accordingly if it confirms a valid
972  * free area.
973  *
974  * RETURNS:
975  * Allocated addr offset in @chunk on success.
976  * -1 if no matching area is found.
977  */
pcpu_alloc_area(struct pcpu_chunk * chunk,int alloc_bits,size_t align,int start)978 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
979 			   size_t align, int start)
980 {
981 	size_t align_mask = (align) ? (align - 1) : 0;
982 	int bit_off, end, oslot;
983 
984 	lockdep_assert_held(&pcpu_lock);
985 
986 	oslot = pcpu_chunk_slot(chunk);
987 
988 	/*
989 	 * Search to find a fit.
990 	 */
991 	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
992 		    pcpu_chunk_map_bits(chunk));
993 	bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
994 					     alloc_bits, align_mask);
995 	if (bit_off >= end)
996 		return -1;
997 
998 	/* update alloc map */
999 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1000 
1001 	/* update boundary map */
1002 	set_bit(bit_off, chunk->bound_map);
1003 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1004 	set_bit(bit_off + alloc_bits, chunk->bound_map);
1005 
1006 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1007 
1008 	/* update first free bit */
1009 	if (bit_off == chunk->first_bit)
1010 		chunk->first_bit = find_next_zero_bit(
1011 					chunk->alloc_map,
1012 					pcpu_chunk_map_bits(chunk),
1013 					bit_off + alloc_bits);
1014 
1015 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1016 
1017 	pcpu_chunk_relocate(chunk, oslot);
1018 
1019 	return bit_off * PCPU_MIN_ALLOC_SIZE;
1020 }
1021 
1022 /**
1023  * pcpu_free_area - frees the corresponding offset
1024  * @chunk: chunk of interest
1025  * @off: addr offset into chunk
1026  *
1027  * This function determines the size of an allocation to free using
1028  * the boundary bitmap and clears the allocation map.
1029  */
pcpu_free_area(struct pcpu_chunk * chunk,int off)1030 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1031 {
1032 	int bit_off, bits, end, oslot;
1033 
1034 	lockdep_assert_held(&pcpu_lock);
1035 	pcpu_stats_area_dealloc(chunk);
1036 
1037 	oslot = pcpu_chunk_slot(chunk);
1038 
1039 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1040 
1041 	/* find end index */
1042 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1043 			    bit_off + 1);
1044 	bits = end - bit_off;
1045 	bitmap_clear(chunk->alloc_map, bit_off, bits);
1046 
1047 	/* update metadata */
1048 	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1049 
1050 	/* update first free bit */
1051 	chunk->first_bit = min(chunk->first_bit, bit_off);
1052 
1053 	pcpu_block_update_hint_free(chunk, bit_off, bits);
1054 
1055 	pcpu_chunk_relocate(chunk, oslot);
1056 }
1057 
pcpu_init_md_blocks(struct pcpu_chunk * chunk)1058 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1059 {
1060 	struct pcpu_block_md *md_block;
1061 
1062 	for (md_block = chunk->md_blocks;
1063 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1064 	     md_block++) {
1065 		md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1066 		md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1067 		md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1068 	}
1069 }
1070 
1071 /**
1072  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1073  * @tmp_addr: the start of the region served
1074  * @map_size: size of the region served
1075  *
1076  * This is responsible for creating the chunks that serve the first chunk.  The
1077  * base_addr is page aligned down of @tmp_addr while the region end is page
1078  * aligned up.  Offsets are kept track of to determine the region served. All
1079  * this is done to appease the bitmap allocator in avoiding partial blocks.
1080  *
1081  * RETURNS:
1082  * Chunk serving the region at @tmp_addr of @map_size.
1083  */
pcpu_alloc_first_chunk(unsigned long tmp_addr,int map_size)1084 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1085 							 int map_size)
1086 {
1087 	struct pcpu_chunk *chunk;
1088 	unsigned long aligned_addr, lcm_align;
1089 	int start_offset, offset_bits, region_size, region_bits;
1090 
1091 	/* region calculations */
1092 	aligned_addr = tmp_addr & PAGE_MASK;
1093 
1094 	start_offset = tmp_addr - aligned_addr;
1095 
1096 	/*
1097 	 * Align the end of the region with the LCM of PAGE_SIZE and
1098 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1099 	 * the other.
1100 	 */
1101 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1102 	region_size = ALIGN(start_offset + map_size, lcm_align);
1103 
1104 	/* allocate chunk */
1105 	chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1106 				    BITS_TO_LONGS(region_size >> PAGE_SHIFT) * sizeof(unsigned long),
1107 				    0);
1108 
1109 	INIT_LIST_HEAD(&chunk->list);
1110 
1111 	chunk->base_addr = (void *)aligned_addr;
1112 	chunk->start_offset = start_offset;
1113 	chunk->end_offset = region_size - chunk->start_offset - map_size;
1114 
1115 	chunk->nr_pages = region_size >> PAGE_SHIFT;
1116 	region_bits = pcpu_chunk_map_bits(chunk);
1117 
1118 	chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1119 					       sizeof(chunk->alloc_map[0]), 0);
1120 	chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1121 					       sizeof(chunk->bound_map[0]), 0);
1122 	chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1123 					       sizeof(chunk->md_blocks[0]), 0);
1124 	pcpu_init_md_blocks(chunk);
1125 
1126 	/* manage populated page bitmap */
1127 	chunk->immutable = true;
1128 	bitmap_fill(chunk->populated, chunk->nr_pages);
1129 	chunk->nr_populated = chunk->nr_pages;
1130 	chunk->nr_empty_pop_pages =
1131 		pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1132 				   map_size / PCPU_MIN_ALLOC_SIZE);
1133 
1134 	chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1135 	chunk->free_bytes = map_size;
1136 
1137 	if (chunk->start_offset) {
1138 		/* hide the beginning of the bitmap */
1139 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1140 		bitmap_set(chunk->alloc_map, 0, offset_bits);
1141 		set_bit(0, chunk->bound_map);
1142 		set_bit(offset_bits, chunk->bound_map);
1143 
1144 		chunk->first_bit = offset_bits;
1145 
1146 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1147 	}
1148 
1149 	if (chunk->end_offset) {
1150 		/* hide the end of the bitmap */
1151 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1152 		bitmap_set(chunk->alloc_map,
1153 			   pcpu_chunk_map_bits(chunk) - offset_bits,
1154 			   offset_bits);
1155 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1156 			chunk->bound_map);
1157 		set_bit(region_bits, chunk->bound_map);
1158 
1159 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1160 					     - offset_bits, offset_bits);
1161 	}
1162 
1163 	return chunk;
1164 }
1165 
pcpu_alloc_chunk(gfp_t gfp)1166 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1167 {
1168 	struct pcpu_chunk *chunk;
1169 	int region_bits;
1170 
1171 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1172 	if (!chunk)
1173 		return NULL;
1174 
1175 	INIT_LIST_HEAD(&chunk->list);
1176 	chunk->nr_pages = pcpu_unit_pages;
1177 	region_bits = pcpu_chunk_map_bits(chunk);
1178 
1179 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1180 					   sizeof(chunk->alloc_map[0]), gfp);
1181 	if (!chunk->alloc_map)
1182 		goto alloc_map_fail;
1183 
1184 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1185 					   sizeof(chunk->bound_map[0]), gfp);
1186 	if (!chunk->bound_map)
1187 		goto bound_map_fail;
1188 
1189 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1190 					   sizeof(chunk->md_blocks[0]), gfp);
1191 	if (!chunk->md_blocks)
1192 		goto md_blocks_fail;
1193 
1194 	pcpu_init_md_blocks(chunk);
1195 
1196 	/* init metadata */
1197 	chunk->contig_bits = region_bits;
1198 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1199 
1200 	return chunk;
1201 
1202 md_blocks_fail:
1203 	pcpu_mem_free(chunk->bound_map);
1204 bound_map_fail:
1205 	pcpu_mem_free(chunk->alloc_map);
1206 alloc_map_fail:
1207 	pcpu_mem_free(chunk);
1208 
1209 	return NULL;
1210 }
1211 
pcpu_free_chunk(struct pcpu_chunk * chunk)1212 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1213 {
1214 	if (!chunk)
1215 		return;
1216 	pcpu_mem_free(chunk->md_blocks);
1217 	pcpu_mem_free(chunk->bound_map);
1218 	pcpu_mem_free(chunk->alloc_map);
1219 	pcpu_mem_free(chunk);
1220 }
1221 
1222 /**
1223  * pcpu_chunk_populated - post-population bookkeeping
1224  * @chunk: pcpu_chunk which got populated
1225  * @page_start: the start page
1226  * @page_end: the end page
1227  * @for_alloc: if this is to populate for allocation
1228  *
1229  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1230  * the bookkeeping information accordingly.  Must be called after each
1231  * successful population.
1232  *
1233  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1234  * is to serve an allocation in that area.
1235  */
pcpu_chunk_populated(struct pcpu_chunk * chunk,int page_start,int page_end,bool for_alloc)1236 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1237 				 int page_end, bool for_alloc)
1238 {
1239 	int nr = page_end - page_start;
1240 
1241 	lockdep_assert_held(&pcpu_lock);
1242 
1243 	bitmap_set(chunk->populated, page_start, nr);
1244 	chunk->nr_populated += nr;
1245 	pcpu_nr_populated += nr;
1246 
1247 	if (!for_alloc) {
1248 		chunk->nr_empty_pop_pages += nr;
1249 		pcpu_nr_empty_pop_pages += nr;
1250 	}
1251 }
1252 
1253 /**
1254  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1255  * @chunk: pcpu_chunk which got depopulated
1256  * @page_start: the start page
1257  * @page_end: the end page
1258  *
1259  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1260  * Update the bookkeeping information accordingly.  Must be called after
1261  * each successful depopulation.
1262  */
pcpu_chunk_depopulated(struct pcpu_chunk * chunk,int page_start,int page_end)1263 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1264 				   int page_start, int page_end)
1265 {
1266 	int nr = page_end - page_start;
1267 
1268 	lockdep_assert_held(&pcpu_lock);
1269 
1270 	bitmap_clear(chunk->populated, page_start, nr);
1271 	chunk->nr_populated -= nr;
1272 	chunk->nr_empty_pop_pages -= nr;
1273 	pcpu_nr_empty_pop_pages -= nr;
1274 	pcpu_nr_populated -= nr;
1275 }
1276 
1277 /*
1278  * Chunk management implementation.
1279  *
1280  * To allow different implementations, chunk alloc/free and
1281  * [de]population are implemented in a separate file which is pulled
1282  * into this file and compiled together.  The following functions
1283  * should be implemented.
1284  *
1285  * pcpu_populate_chunk		- populate the specified range of a chunk
1286  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1287  * pcpu_create_chunk		- create a new chunk
1288  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1289  * pcpu_addr_to_page		- translate address to physical address
1290  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1291  */
1292 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1293 			       int page_start, int page_end, gfp_t gfp);
1294 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1295 				  int page_start, int page_end);
1296 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1297 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1298 static struct page *pcpu_addr_to_page(void *addr);
1299 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1300 
1301 #ifdef CONFIG_NEED_PER_CPU_KM
1302 #include "percpu-km.c"
1303 #else
1304 #include "percpu-vm.c"
1305 #endif
1306 
1307 /**
1308  * pcpu_chunk_addr_search - determine chunk containing specified address
1309  * @addr: address for which the chunk needs to be determined.
1310  *
1311  * This is an internal function that handles all but static allocations.
1312  * Static percpu address values should never be passed into the allocator.
1313  *
1314  * RETURNS:
1315  * The address of the found chunk.
1316  */
pcpu_chunk_addr_search(void * addr)1317 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1318 {
1319 	/* is it in the dynamic region (first chunk)? */
1320 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1321 		return pcpu_first_chunk;
1322 
1323 	/* is it in the reserved region? */
1324 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1325 		return pcpu_reserved_chunk;
1326 
1327 	/*
1328 	 * The address is relative to unit0 which might be unused and
1329 	 * thus unmapped.  Offset the address to the unit space of the
1330 	 * current processor before looking it up in the vmalloc
1331 	 * space.  Note that any possible cpu id can be used here, so
1332 	 * there's no need to worry about preemption or cpu hotplug.
1333 	 */
1334 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1335 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1336 }
1337 
1338 /**
1339  * pcpu_alloc - the percpu allocator
1340  * @size: size of area to allocate in bytes
1341  * @align: alignment of area (max PAGE_SIZE)
1342  * @reserved: allocate from the reserved chunk if available
1343  * @gfp: allocation flags
1344  *
1345  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1346  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1347  * then no warning will be triggered on invalid or failed allocation
1348  * requests.
1349  *
1350  * RETURNS:
1351  * Percpu pointer to the allocated area on success, NULL on failure.
1352  */
pcpu_alloc(size_t size,size_t align,bool reserved,gfp_t gfp)1353 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1354 				 gfp_t gfp)
1355 {
1356 	/* whitelisted flags that can be passed to the backing allocators */
1357 	gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1358 	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1359 	bool do_warn = !(gfp & __GFP_NOWARN);
1360 	static int warn_limit = 10;
1361 	struct pcpu_chunk *chunk;
1362 	const char *err;
1363 	int slot, off, cpu, ret;
1364 	unsigned long flags;
1365 	void __percpu *ptr;
1366 	size_t bits, bit_align;
1367 
1368 	/*
1369 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1370 	 * therefore alignment must be a minimum of that many bytes.
1371 	 * An allocation may have internal fragmentation from rounding up
1372 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1373 	 */
1374 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1375 		align = PCPU_MIN_ALLOC_SIZE;
1376 
1377 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1378 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1379 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1380 
1381 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1382 		     !is_power_of_2(align))) {
1383 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1384 		     size, align);
1385 		return NULL;
1386 	}
1387 
1388 	if (!is_atomic) {
1389 		/*
1390 		 * pcpu_balance_workfn() allocates memory under this mutex,
1391 		 * and it may wait for memory reclaim. Allow current task
1392 		 * to become OOM victim, in case of memory pressure.
1393 		 */
1394 		if (gfp & __GFP_NOFAIL)
1395 			mutex_lock(&pcpu_alloc_mutex);
1396 		else if (mutex_lock_killable(&pcpu_alloc_mutex))
1397 			return NULL;
1398 	}
1399 
1400 	spin_lock_irqsave(&pcpu_lock, flags);
1401 
1402 	/* serve reserved allocations from the reserved chunk if available */
1403 	if (reserved && pcpu_reserved_chunk) {
1404 		chunk = pcpu_reserved_chunk;
1405 
1406 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1407 		if (off < 0) {
1408 			err = "alloc from reserved chunk failed";
1409 			goto fail_unlock;
1410 		}
1411 
1412 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1413 		if (off >= 0)
1414 			goto area_found;
1415 
1416 		err = "alloc from reserved chunk failed";
1417 		goto fail_unlock;
1418 	}
1419 
1420 restart:
1421 	/* search through normal chunks */
1422 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1423 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1424 			off = pcpu_find_block_fit(chunk, bits, bit_align,
1425 						  is_atomic);
1426 			if (off < 0)
1427 				continue;
1428 
1429 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1430 			if (off >= 0)
1431 				goto area_found;
1432 
1433 		}
1434 	}
1435 
1436 	spin_unlock_irqrestore(&pcpu_lock, flags);
1437 
1438 	/*
1439 	 * No space left.  Create a new chunk.  We don't want multiple
1440 	 * tasks to create chunks simultaneously.  Serialize and create iff
1441 	 * there's still no empty chunk after grabbing the mutex.
1442 	 */
1443 	if (is_atomic) {
1444 		err = "atomic alloc failed, no space left";
1445 		goto fail;
1446 	}
1447 
1448 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1449 		chunk = pcpu_create_chunk(pcpu_gfp);
1450 		if (!chunk) {
1451 			err = "failed to allocate new chunk";
1452 			goto fail;
1453 		}
1454 
1455 		spin_lock_irqsave(&pcpu_lock, flags);
1456 		pcpu_chunk_relocate(chunk, -1);
1457 	} else {
1458 		spin_lock_irqsave(&pcpu_lock, flags);
1459 	}
1460 
1461 	goto restart;
1462 
1463 area_found:
1464 	pcpu_stats_area_alloc(chunk, size);
1465 	spin_unlock_irqrestore(&pcpu_lock, flags);
1466 
1467 	/* populate if not all pages are already there */
1468 	if (!is_atomic) {
1469 		int page_start, page_end, rs, re;
1470 
1471 		page_start = PFN_DOWN(off);
1472 		page_end = PFN_UP(off + size);
1473 
1474 		pcpu_for_each_unpop_region(chunk->populated, rs, re,
1475 					   page_start, page_end) {
1476 			WARN_ON(chunk->immutable);
1477 
1478 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1479 
1480 			spin_lock_irqsave(&pcpu_lock, flags);
1481 			if (ret) {
1482 				pcpu_free_area(chunk, off);
1483 				err = "failed to populate";
1484 				goto fail_unlock;
1485 			}
1486 			pcpu_chunk_populated(chunk, rs, re, true);
1487 			spin_unlock_irqrestore(&pcpu_lock, flags);
1488 		}
1489 
1490 		mutex_unlock(&pcpu_alloc_mutex);
1491 	}
1492 
1493 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1494 		pcpu_schedule_balance_work();
1495 
1496 	/* clear the areas and return address relative to base address */
1497 	for_each_possible_cpu(cpu)
1498 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1499 
1500 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1501 	kmemleak_alloc_percpu(ptr, size, gfp);
1502 
1503 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1504 			chunk->base_addr, off, ptr);
1505 
1506 	return ptr;
1507 
1508 fail_unlock:
1509 	spin_unlock_irqrestore(&pcpu_lock, flags);
1510 fail:
1511 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1512 
1513 	if (!is_atomic && do_warn && warn_limit) {
1514 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1515 			size, align, is_atomic, err);
1516 		dump_stack();
1517 		if (!--warn_limit)
1518 			pr_info("limit reached, disable warning\n");
1519 	}
1520 	if (is_atomic) {
1521 		/* see the flag handling in pcpu_blance_workfn() */
1522 		pcpu_atomic_alloc_failed = true;
1523 		pcpu_schedule_balance_work();
1524 	} else {
1525 		mutex_unlock(&pcpu_alloc_mutex);
1526 	}
1527 	return NULL;
1528 }
1529 
1530 /**
1531  * __alloc_percpu_gfp - allocate dynamic percpu area
1532  * @size: size of area to allocate in bytes
1533  * @align: alignment of area (max PAGE_SIZE)
1534  * @gfp: allocation flags
1535  *
1536  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1537  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1538  * be called from any context but is a lot more likely to fail. If @gfp
1539  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1540  * allocation requests.
1541  *
1542  * RETURNS:
1543  * Percpu pointer to the allocated area on success, NULL on failure.
1544  */
__alloc_percpu_gfp(size_t size,size_t align,gfp_t gfp)1545 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1546 {
1547 	return pcpu_alloc(size, align, false, gfp);
1548 }
1549 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1550 
1551 /**
1552  * __alloc_percpu - allocate dynamic percpu area
1553  * @size: size of area to allocate in bytes
1554  * @align: alignment of area (max PAGE_SIZE)
1555  *
1556  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1557  */
__alloc_percpu(size_t size,size_t align)1558 void __percpu *__alloc_percpu(size_t size, size_t align)
1559 {
1560 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1561 }
1562 EXPORT_SYMBOL_GPL(__alloc_percpu);
1563 
1564 /**
1565  * __alloc_reserved_percpu - allocate reserved percpu area
1566  * @size: size of area to allocate in bytes
1567  * @align: alignment of area (max PAGE_SIZE)
1568  *
1569  * Allocate zero-filled percpu area of @size bytes aligned at @align
1570  * from reserved percpu area if arch has set it up; otherwise,
1571  * allocation is served from the same dynamic area.  Might sleep.
1572  * Might trigger writeouts.
1573  *
1574  * CONTEXT:
1575  * Does GFP_KERNEL allocation.
1576  *
1577  * RETURNS:
1578  * Percpu pointer to the allocated area on success, NULL on failure.
1579  */
__alloc_reserved_percpu(size_t size,size_t align)1580 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1581 {
1582 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1583 }
1584 
1585 /**
1586  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1587  * @work: unused
1588  *
1589  * Reclaim all fully free chunks except for the first one.  This is also
1590  * responsible for maintaining the pool of empty populated pages.  However,
1591  * it is possible that this is called when physical memory is scarce causing
1592  * OOM killer to be triggered.  We should avoid doing so until an actual
1593  * allocation causes the failure as it is possible that requests can be
1594  * serviced from already backed regions.
1595  */
pcpu_balance_workfn(struct work_struct * work)1596 static void pcpu_balance_workfn(struct work_struct *work)
1597 {
1598 	/* gfp flags passed to underlying allocators */
1599 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1600 	LIST_HEAD(to_free);
1601 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1602 	struct pcpu_chunk *chunk, *next;
1603 	int slot, nr_to_pop, ret;
1604 
1605 	/*
1606 	 * There's no reason to keep around multiple unused chunks and VM
1607 	 * areas can be scarce.  Destroy all free chunks except for one.
1608 	 */
1609 	mutex_lock(&pcpu_alloc_mutex);
1610 	spin_lock_irq(&pcpu_lock);
1611 
1612 	list_for_each_entry_safe(chunk, next, free_head, list) {
1613 		WARN_ON(chunk->immutable);
1614 
1615 		/* spare the first one */
1616 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1617 			continue;
1618 
1619 		list_move(&chunk->list, &to_free);
1620 	}
1621 
1622 	spin_unlock_irq(&pcpu_lock);
1623 
1624 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1625 		int rs, re;
1626 
1627 		pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1628 					 chunk->nr_pages) {
1629 			pcpu_depopulate_chunk(chunk, rs, re);
1630 			spin_lock_irq(&pcpu_lock);
1631 			pcpu_chunk_depopulated(chunk, rs, re);
1632 			spin_unlock_irq(&pcpu_lock);
1633 		}
1634 		pcpu_destroy_chunk(chunk);
1635 		cond_resched();
1636 	}
1637 
1638 	/*
1639 	 * Ensure there are certain number of free populated pages for
1640 	 * atomic allocs.  Fill up from the most packed so that atomic
1641 	 * allocs don't increase fragmentation.  If atomic allocation
1642 	 * failed previously, always populate the maximum amount.  This
1643 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1644 	 * failing indefinitely; however, large atomic allocs are not
1645 	 * something we support properly and can be highly unreliable and
1646 	 * inefficient.
1647 	 */
1648 retry_pop:
1649 	if (pcpu_atomic_alloc_failed) {
1650 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1651 		/* best effort anyway, don't worry about synchronization */
1652 		pcpu_atomic_alloc_failed = false;
1653 	} else {
1654 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1655 				  pcpu_nr_empty_pop_pages,
1656 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1657 	}
1658 
1659 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1660 		int nr_unpop = 0, rs, re;
1661 
1662 		if (!nr_to_pop)
1663 			break;
1664 
1665 		spin_lock_irq(&pcpu_lock);
1666 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1667 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
1668 			if (nr_unpop)
1669 				break;
1670 		}
1671 		spin_unlock_irq(&pcpu_lock);
1672 
1673 		if (!nr_unpop)
1674 			continue;
1675 
1676 		/* @chunk can't go away while pcpu_alloc_mutex is held */
1677 		pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1678 					   chunk->nr_pages) {
1679 			int nr = min(re - rs, nr_to_pop);
1680 
1681 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1682 			if (!ret) {
1683 				nr_to_pop -= nr;
1684 				spin_lock_irq(&pcpu_lock);
1685 				pcpu_chunk_populated(chunk, rs, rs + nr, false);
1686 				spin_unlock_irq(&pcpu_lock);
1687 			} else {
1688 				nr_to_pop = 0;
1689 			}
1690 
1691 			if (!nr_to_pop)
1692 				break;
1693 		}
1694 	}
1695 
1696 	if (nr_to_pop) {
1697 		/* ran out of chunks to populate, create a new one and retry */
1698 		chunk = pcpu_create_chunk(gfp);
1699 		if (chunk) {
1700 			spin_lock_irq(&pcpu_lock);
1701 			pcpu_chunk_relocate(chunk, -1);
1702 			spin_unlock_irq(&pcpu_lock);
1703 			goto retry_pop;
1704 		}
1705 	}
1706 
1707 	mutex_unlock(&pcpu_alloc_mutex);
1708 }
1709 
1710 /**
1711  * free_percpu - free percpu area
1712  * @ptr: pointer to area to free
1713  *
1714  * Free percpu area @ptr.
1715  *
1716  * CONTEXT:
1717  * Can be called from atomic context.
1718  */
free_percpu(void __percpu * ptr)1719 void free_percpu(void __percpu *ptr)
1720 {
1721 	void *addr;
1722 	struct pcpu_chunk *chunk;
1723 	unsigned long flags;
1724 	int off;
1725 	bool need_balance = false;
1726 
1727 	if (!ptr)
1728 		return;
1729 
1730 	kmemleak_free_percpu(ptr);
1731 
1732 	addr = __pcpu_ptr_to_addr(ptr);
1733 
1734 	spin_lock_irqsave(&pcpu_lock, flags);
1735 
1736 	chunk = pcpu_chunk_addr_search(addr);
1737 	off = addr - chunk->base_addr;
1738 
1739 	pcpu_free_area(chunk, off);
1740 
1741 	/* if there are more than one fully free chunks, wake up grim reaper */
1742 	if (chunk->free_bytes == pcpu_unit_size) {
1743 		struct pcpu_chunk *pos;
1744 
1745 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1746 			if (pos != chunk) {
1747 				need_balance = true;
1748 				break;
1749 			}
1750 	}
1751 
1752 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1753 
1754 	spin_unlock_irqrestore(&pcpu_lock, flags);
1755 
1756 	if (need_balance)
1757 		pcpu_schedule_balance_work();
1758 }
1759 EXPORT_SYMBOL_GPL(free_percpu);
1760 
__is_kernel_percpu_address(unsigned long addr,unsigned long * can_addr)1761 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1762 {
1763 #ifdef CONFIG_SMP
1764 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1765 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1766 	unsigned int cpu;
1767 
1768 	for_each_possible_cpu(cpu) {
1769 		void *start = per_cpu_ptr(base, cpu);
1770 		void *va = (void *)addr;
1771 
1772 		if (va >= start && va < start + static_size) {
1773 			if (can_addr) {
1774 				*can_addr = (unsigned long) (va - start);
1775 				*can_addr += (unsigned long)
1776 					per_cpu_ptr(base, get_boot_cpu_id());
1777 			}
1778 			return true;
1779 		}
1780 	}
1781 #endif
1782 	/* on UP, can't distinguish from other static vars, always false */
1783 	return false;
1784 }
1785 
1786 /**
1787  * is_kernel_percpu_address - test whether address is from static percpu area
1788  * @addr: address to test
1789  *
1790  * Test whether @addr belongs to in-kernel static percpu area.  Module
1791  * static percpu areas are not considered.  For those, use
1792  * is_module_percpu_address().
1793  *
1794  * RETURNS:
1795  * %true if @addr is from in-kernel static percpu area, %false otherwise.
1796  */
is_kernel_percpu_address(unsigned long addr)1797 bool is_kernel_percpu_address(unsigned long addr)
1798 {
1799 	return __is_kernel_percpu_address(addr, NULL);
1800 }
1801 
1802 /**
1803  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1804  * @addr: the address to be converted to physical address
1805  *
1806  * Given @addr which is dereferenceable address obtained via one of
1807  * percpu access macros, this function translates it into its physical
1808  * address.  The caller is responsible for ensuring @addr stays valid
1809  * until this function finishes.
1810  *
1811  * percpu allocator has special setup for the first chunk, which currently
1812  * supports either embedding in linear address space or vmalloc mapping,
1813  * and, from the second one, the backing allocator (currently either vm or
1814  * km) provides translation.
1815  *
1816  * The addr can be translated simply without checking if it falls into the
1817  * first chunk. But the current code reflects better how percpu allocator
1818  * actually works, and the verification can discover both bugs in percpu
1819  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1820  * code.
1821  *
1822  * RETURNS:
1823  * The physical address for @addr.
1824  */
per_cpu_ptr_to_phys(void * addr)1825 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1826 {
1827 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1828 	bool in_first_chunk = false;
1829 	unsigned long first_low, first_high;
1830 	unsigned int cpu;
1831 
1832 	/*
1833 	 * The following test on unit_low/high isn't strictly
1834 	 * necessary but will speed up lookups of addresses which
1835 	 * aren't in the first chunk.
1836 	 *
1837 	 * The address check is against full chunk sizes.  pcpu_base_addr
1838 	 * points to the beginning of the first chunk including the
1839 	 * static region.  Assumes good intent as the first chunk may
1840 	 * not be full (ie. < pcpu_unit_pages in size).
1841 	 */
1842 	first_low = (unsigned long)pcpu_base_addr +
1843 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1844 	first_high = (unsigned long)pcpu_base_addr +
1845 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1846 	if ((unsigned long)addr >= first_low &&
1847 	    (unsigned long)addr < first_high) {
1848 		for_each_possible_cpu(cpu) {
1849 			void *start = per_cpu_ptr(base, cpu);
1850 
1851 			if (addr >= start && addr < start + pcpu_unit_size) {
1852 				in_first_chunk = true;
1853 				break;
1854 			}
1855 		}
1856 	}
1857 
1858 	if (in_first_chunk) {
1859 		if (!is_vmalloc_addr(addr))
1860 			return __pa(addr);
1861 		else
1862 			return page_to_phys(vmalloc_to_page(addr)) +
1863 			       offset_in_page(addr);
1864 	} else
1865 		return page_to_phys(pcpu_addr_to_page(addr)) +
1866 		       offset_in_page(addr);
1867 }
1868 
1869 /**
1870  * pcpu_alloc_alloc_info - allocate percpu allocation info
1871  * @nr_groups: the number of groups
1872  * @nr_units: the number of units
1873  *
1874  * Allocate ai which is large enough for @nr_groups groups containing
1875  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1876  * cpu_map array which is long enough for @nr_units and filled with
1877  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1878  * pointer of other groups.
1879  *
1880  * RETURNS:
1881  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1882  * failure.
1883  */
pcpu_alloc_alloc_info(int nr_groups,int nr_units)1884 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1885 						      int nr_units)
1886 {
1887 	struct pcpu_alloc_info *ai;
1888 	size_t base_size, ai_size;
1889 	void *ptr;
1890 	int unit;
1891 
1892 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1893 			  __alignof__(ai->groups[0].cpu_map[0]));
1894 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1895 
1896 	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
1897 	if (!ptr)
1898 		return NULL;
1899 	ai = ptr;
1900 	ptr += base_size;
1901 
1902 	ai->groups[0].cpu_map = ptr;
1903 
1904 	for (unit = 0; unit < nr_units; unit++)
1905 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1906 
1907 	ai->nr_groups = nr_groups;
1908 	ai->__ai_size = PFN_ALIGN(ai_size);
1909 
1910 	return ai;
1911 }
1912 
1913 /**
1914  * pcpu_free_alloc_info - free percpu allocation info
1915  * @ai: pcpu_alloc_info to free
1916  *
1917  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1918  */
pcpu_free_alloc_info(struct pcpu_alloc_info * ai)1919 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1920 {
1921 	memblock_free_early(__pa(ai), ai->__ai_size);
1922 }
1923 
1924 /**
1925  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1926  * @lvl: loglevel
1927  * @ai: allocation info to dump
1928  *
1929  * Print out information about @ai using loglevel @lvl.
1930  */
pcpu_dump_alloc_info(const char * lvl,const struct pcpu_alloc_info * ai)1931 static void pcpu_dump_alloc_info(const char *lvl,
1932 				 const struct pcpu_alloc_info *ai)
1933 {
1934 	int group_width = 1, cpu_width = 1, width;
1935 	char empty_str[] = "--------";
1936 	int alloc = 0, alloc_end = 0;
1937 	int group, v;
1938 	int upa, apl;	/* units per alloc, allocs per line */
1939 
1940 	v = ai->nr_groups;
1941 	while (v /= 10)
1942 		group_width++;
1943 
1944 	v = num_possible_cpus();
1945 	while (v /= 10)
1946 		cpu_width++;
1947 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1948 
1949 	upa = ai->alloc_size / ai->unit_size;
1950 	width = upa * (cpu_width + 1) + group_width + 3;
1951 	apl = rounddown_pow_of_two(max(60 / width, 1));
1952 
1953 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1954 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1955 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1956 
1957 	for (group = 0; group < ai->nr_groups; group++) {
1958 		const struct pcpu_group_info *gi = &ai->groups[group];
1959 		int unit = 0, unit_end = 0;
1960 
1961 		BUG_ON(gi->nr_units % upa);
1962 		for (alloc_end += gi->nr_units / upa;
1963 		     alloc < alloc_end; alloc++) {
1964 			if (!(alloc % apl)) {
1965 				pr_cont("\n");
1966 				printk("%spcpu-alloc: ", lvl);
1967 			}
1968 			pr_cont("[%0*d] ", group_width, group);
1969 
1970 			for (unit_end += upa; unit < unit_end; unit++)
1971 				if (gi->cpu_map[unit] != NR_CPUS)
1972 					pr_cont("%0*d ",
1973 						cpu_width, gi->cpu_map[unit]);
1974 				else
1975 					pr_cont("%s ", empty_str);
1976 		}
1977 	}
1978 	pr_cont("\n");
1979 }
1980 
1981 /**
1982  * pcpu_setup_first_chunk - initialize the first percpu chunk
1983  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1984  * @base_addr: mapped address
1985  *
1986  * Initialize the first percpu chunk which contains the kernel static
1987  * perpcu area.  This function is to be called from arch percpu area
1988  * setup path.
1989  *
1990  * @ai contains all information necessary to initialize the first
1991  * chunk and prime the dynamic percpu allocator.
1992  *
1993  * @ai->static_size is the size of static percpu area.
1994  *
1995  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1996  * reserve after the static area in the first chunk.  This reserves
1997  * the first chunk such that it's available only through reserved
1998  * percpu allocation.  This is primarily used to serve module percpu
1999  * static areas on architectures where the addressing model has
2000  * limited offset range for symbol relocations to guarantee module
2001  * percpu symbols fall inside the relocatable range.
2002  *
2003  * @ai->dyn_size determines the number of bytes available for dynamic
2004  * allocation in the first chunk.  The area between @ai->static_size +
2005  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2006  *
2007  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2008  * and equal to or larger than @ai->static_size + @ai->reserved_size +
2009  * @ai->dyn_size.
2010  *
2011  * @ai->atom_size is the allocation atom size and used as alignment
2012  * for vm areas.
2013  *
2014  * @ai->alloc_size is the allocation size and always multiple of
2015  * @ai->atom_size.  This is larger than @ai->atom_size if
2016  * @ai->unit_size is larger than @ai->atom_size.
2017  *
2018  * @ai->nr_groups and @ai->groups describe virtual memory layout of
2019  * percpu areas.  Units which should be colocated are put into the
2020  * same group.  Dynamic VM areas will be allocated according to these
2021  * groupings.  If @ai->nr_groups is zero, a single group containing
2022  * all units is assumed.
2023  *
2024  * The caller should have mapped the first chunk at @base_addr and
2025  * copied static data to each unit.
2026  *
2027  * The first chunk will always contain a static and a dynamic region.
2028  * However, the static region is not managed by any chunk.  If the first
2029  * chunk also contains a reserved region, it is served by two chunks -
2030  * one for the reserved region and one for the dynamic region.  They
2031  * share the same vm, but use offset regions in the area allocation map.
2032  * The chunk serving the dynamic region is circulated in the chunk slots
2033  * and available for dynamic allocation like any other chunk.
2034  *
2035  * RETURNS:
2036  * 0 on success, -errno on failure.
2037  */
pcpu_setup_first_chunk(const struct pcpu_alloc_info * ai,void * base_addr)2038 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2039 				  void *base_addr)
2040 {
2041 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2042 	size_t static_size, dyn_size;
2043 	struct pcpu_chunk *chunk;
2044 	unsigned long *group_offsets;
2045 	size_t *group_sizes;
2046 	unsigned long *unit_off;
2047 	unsigned int cpu;
2048 	int *unit_map;
2049 	int group, unit, i;
2050 	int map_size;
2051 	unsigned long tmp_addr;
2052 
2053 #define PCPU_SETUP_BUG_ON(cond)	do {					\
2054 	if (unlikely(cond)) {						\
2055 		pr_emerg("failed to initialize, %s\n", #cond);		\
2056 		pr_emerg("cpu_possible_mask=%*pb\n",			\
2057 			 cpumask_pr_args(cpu_possible_mask));		\
2058 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2059 		BUG();							\
2060 	}								\
2061 } while (0)
2062 
2063 	/* sanity checks */
2064 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2065 #ifdef CONFIG_SMP
2066 	PCPU_SETUP_BUG_ON(!ai->static_size);
2067 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2068 #endif
2069 	PCPU_SETUP_BUG_ON(!base_addr);
2070 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2071 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2072 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2073 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2074 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2075 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2076 	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2077 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2078 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2079 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2080 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2081 
2082 	/* process group information and build config tables accordingly */
2083 	group_offsets = memblock_virt_alloc(ai->nr_groups *
2084 					     sizeof(group_offsets[0]), 0);
2085 	group_sizes = memblock_virt_alloc(ai->nr_groups *
2086 					   sizeof(group_sizes[0]), 0);
2087 	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2088 	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2089 
2090 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2091 		unit_map[cpu] = UINT_MAX;
2092 
2093 	pcpu_low_unit_cpu = NR_CPUS;
2094 	pcpu_high_unit_cpu = NR_CPUS;
2095 
2096 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2097 		const struct pcpu_group_info *gi = &ai->groups[group];
2098 
2099 		group_offsets[group] = gi->base_offset;
2100 		group_sizes[group] = gi->nr_units * ai->unit_size;
2101 
2102 		for (i = 0; i < gi->nr_units; i++) {
2103 			cpu = gi->cpu_map[i];
2104 			if (cpu == NR_CPUS)
2105 				continue;
2106 
2107 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2108 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2109 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2110 
2111 			unit_map[cpu] = unit + i;
2112 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2113 
2114 			/* determine low/high unit_cpu */
2115 			if (pcpu_low_unit_cpu == NR_CPUS ||
2116 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2117 				pcpu_low_unit_cpu = cpu;
2118 			if (pcpu_high_unit_cpu == NR_CPUS ||
2119 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2120 				pcpu_high_unit_cpu = cpu;
2121 		}
2122 	}
2123 	pcpu_nr_units = unit;
2124 
2125 	for_each_possible_cpu(cpu)
2126 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2127 
2128 	/* we're done parsing the input, undefine BUG macro and dump config */
2129 #undef PCPU_SETUP_BUG_ON
2130 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2131 
2132 	pcpu_nr_groups = ai->nr_groups;
2133 	pcpu_group_offsets = group_offsets;
2134 	pcpu_group_sizes = group_sizes;
2135 	pcpu_unit_map = unit_map;
2136 	pcpu_unit_offsets = unit_off;
2137 
2138 	/* determine basic parameters */
2139 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2140 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2141 	pcpu_atom_size = ai->atom_size;
2142 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2143 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2144 
2145 	pcpu_stats_save_ai(ai);
2146 
2147 	/*
2148 	 * Allocate chunk slots.  The additional last slot is for
2149 	 * empty chunks.
2150 	 */
2151 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2152 	pcpu_slot = memblock_virt_alloc(
2153 			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2154 	for (i = 0; i < pcpu_nr_slots; i++)
2155 		INIT_LIST_HEAD(&pcpu_slot[i]);
2156 
2157 	/*
2158 	 * The end of the static region needs to be aligned with the
2159 	 * minimum allocation size as this offsets the reserved and
2160 	 * dynamic region.  The first chunk ends page aligned by
2161 	 * expanding the dynamic region, therefore the dynamic region
2162 	 * can be shrunk to compensate while still staying above the
2163 	 * configured sizes.
2164 	 */
2165 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2166 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2167 
2168 	/*
2169 	 * Initialize first chunk.
2170 	 * If the reserved_size is non-zero, this initializes the reserved
2171 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2172 	 * and the dynamic region is initialized here.  The first chunk,
2173 	 * pcpu_first_chunk, will always point to the chunk that serves
2174 	 * the dynamic region.
2175 	 */
2176 	tmp_addr = (unsigned long)base_addr + static_size;
2177 	map_size = ai->reserved_size ?: dyn_size;
2178 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2179 
2180 	/* init dynamic chunk if necessary */
2181 	if (ai->reserved_size) {
2182 		pcpu_reserved_chunk = chunk;
2183 
2184 		tmp_addr = (unsigned long)base_addr + static_size +
2185 			   ai->reserved_size;
2186 		map_size = dyn_size;
2187 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2188 	}
2189 
2190 	/* link the first chunk in */
2191 	pcpu_first_chunk = chunk;
2192 	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2193 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2194 
2195 	/* include all regions of the first chunk */
2196 	pcpu_nr_populated += PFN_DOWN(size_sum);
2197 
2198 	pcpu_stats_chunk_alloc();
2199 	trace_percpu_create_chunk(base_addr);
2200 
2201 	/* we're done */
2202 	pcpu_base_addr = base_addr;
2203 	return 0;
2204 }
2205 
2206 #ifdef CONFIG_SMP
2207 
2208 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2209 	[PCPU_FC_AUTO]	= "auto",
2210 	[PCPU_FC_EMBED]	= "embed",
2211 	[PCPU_FC_PAGE]	= "page",
2212 };
2213 
2214 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2215 
percpu_alloc_setup(char * str)2216 static int __init percpu_alloc_setup(char *str)
2217 {
2218 	if (!str)
2219 		return -EINVAL;
2220 
2221 	if (0)
2222 		/* nada */;
2223 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2224 	else if (!strcmp(str, "embed"))
2225 		pcpu_chosen_fc = PCPU_FC_EMBED;
2226 #endif
2227 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2228 	else if (!strcmp(str, "page"))
2229 		pcpu_chosen_fc = PCPU_FC_PAGE;
2230 #endif
2231 	else
2232 		pr_warn("unknown allocator %s specified\n", str);
2233 
2234 	return 0;
2235 }
2236 early_param("percpu_alloc", percpu_alloc_setup);
2237 
2238 /*
2239  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2240  * Build it if needed by the arch config or the generic setup is going
2241  * to be used.
2242  */
2243 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2244 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2245 #define BUILD_EMBED_FIRST_CHUNK
2246 #endif
2247 
2248 /* build pcpu_page_first_chunk() iff needed by the arch config */
2249 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2250 #define BUILD_PAGE_FIRST_CHUNK
2251 #endif
2252 
2253 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2254 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2255 /**
2256  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2257  * @reserved_size: the size of reserved percpu area in bytes
2258  * @dyn_size: minimum free size for dynamic allocation in bytes
2259  * @atom_size: allocation atom size
2260  * @cpu_distance_fn: callback to determine distance between cpus, optional
2261  *
2262  * This function determines grouping of units, their mappings to cpus
2263  * and other parameters considering needed percpu size, allocation
2264  * atom size and distances between CPUs.
2265  *
2266  * Groups are always multiples of atom size and CPUs which are of
2267  * LOCAL_DISTANCE both ways are grouped together and share space for
2268  * units in the same group.  The returned configuration is guaranteed
2269  * to have CPUs on different nodes on different groups and >=75% usage
2270  * of allocated virtual address space.
2271  *
2272  * RETURNS:
2273  * On success, pointer to the new allocation_info is returned.  On
2274  * failure, ERR_PTR value is returned.
2275  */
pcpu_build_alloc_info(size_t reserved_size,size_t dyn_size,size_t atom_size,pcpu_fc_cpu_distance_fn_t cpu_distance_fn)2276 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2277 				size_t reserved_size, size_t dyn_size,
2278 				size_t atom_size,
2279 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2280 {
2281 	static int group_map[NR_CPUS] __initdata;
2282 	static int group_cnt[NR_CPUS] __initdata;
2283 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2284 	int nr_groups = 1, nr_units = 0;
2285 	size_t size_sum, min_unit_size, alloc_size;
2286 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
2287 	int last_allocs, group, unit;
2288 	unsigned int cpu, tcpu;
2289 	struct pcpu_alloc_info *ai;
2290 	unsigned int *cpu_map;
2291 
2292 	/* this function may be called multiple times */
2293 	memset(group_map, 0, sizeof(group_map));
2294 	memset(group_cnt, 0, sizeof(group_cnt));
2295 
2296 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2297 	size_sum = PFN_ALIGN(static_size + reserved_size +
2298 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2299 	dyn_size = size_sum - static_size - reserved_size;
2300 
2301 	/*
2302 	 * Determine min_unit_size, alloc_size and max_upa such that
2303 	 * alloc_size is multiple of atom_size and is the smallest
2304 	 * which can accommodate 4k aligned segments which are equal to
2305 	 * or larger than min_unit_size.
2306 	 */
2307 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2308 
2309 	/* determine the maximum # of units that can fit in an allocation */
2310 	alloc_size = roundup(min_unit_size, atom_size);
2311 	upa = alloc_size / min_unit_size;
2312 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2313 		upa--;
2314 	max_upa = upa;
2315 
2316 	/* group cpus according to their proximity */
2317 	for_each_possible_cpu(cpu) {
2318 		group = 0;
2319 	next_group:
2320 		for_each_possible_cpu(tcpu) {
2321 			if (cpu == tcpu)
2322 				break;
2323 			if (group_map[tcpu] == group && cpu_distance_fn &&
2324 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2325 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2326 				group++;
2327 				nr_groups = max(nr_groups, group + 1);
2328 				goto next_group;
2329 			}
2330 		}
2331 		group_map[cpu] = group;
2332 		group_cnt[group]++;
2333 	}
2334 
2335 	/*
2336 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2337 	 * Expand the unit_size until we use >= 75% of the units allocated.
2338 	 * Related to atom_size, which could be much larger than the unit_size.
2339 	 */
2340 	last_allocs = INT_MAX;
2341 	for (upa = max_upa; upa; upa--) {
2342 		int allocs = 0, wasted = 0;
2343 
2344 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2345 			continue;
2346 
2347 		for (group = 0; group < nr_groups; group++) {
2348 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2349 			allocs += this_allocs;
2350 			wasted += this_allocs * upa - group_cnt[group];
2351 		}
2352 
2353 		/*
2354 		 * Don't accept if wastage is over 1/3.  The
2355 		 * greater-than comparison ensures upa==1 always
2356 		 * passes the following check.
2357 		 */
2358 		if (wasted > num_possible_cpus() / 3)
2359 			continue;
2360 
2361 		/* and then don't consume more memory */
2362 		if (allocs > last_allocs)
2363 			break;
2364 		last_allocs = allocs;
2365 		best_upa = upa;
2366 	}
2367 	upa = best_upa;
2368 
2369 	/* allocate and fill alloc_info */
2370 	for (group = 0; group < nr_groups; group++)
2371 		nr_units += roundup(group_cnt[group], upa);
2372 
2373 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2374 	if (!ai)
2375 		return ERR_PTR(-ENOMEM);
2376 	cpu_map = ai->groups[0].cpu_map;
2377 
2378 	for (group = 0; group < nr_groups; group++) {
2379 		ai->groups[group].cpu_map = cpu_map;
2380 		cpu_map += roundup(group_cnt[group], upa);
2381 	}
2382 
2383 	ai->static_size = static_size;
2384 	ai->reserved_size = reserved_size;
2385 	ai->dyn_size = dyn_size;
2386 	ai->unit_size = alloc_size / upa;
2387 	ai->atom_size = atom_size;
2388 	ai->alloc_size = alloc_size;
2389 
2390 	for (group = 0, unit = 0; group_cnt[group]; group++) {
2391 		struct pcpu_group_info *gi = &ai->groups[group];
2392 
2393 		/*
2394 		 * Initialize base_offset as if all groups are located
2395 		 * back-to-back.  The caller should update this to
2396 		 * reflect actual allocation.
2397 		 */
2398 		gi->base_offset = unit * ai->unit_size;
2399 
2400 		for_each_possible_cpu(cpu)
2401 			if (group_map[cpu] == group)
2402 				gi->cpu_map[gi->nr_units++] = cpu;
2403 		gi->nr_units = roundup(gi->nr_units, upa);
2404 		unit += gi->nr_units;
2405 	}
2406 	BUG_ON(unit != nr_units);
2407 
2408 	return ai;
2409 }
2410 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2411 
2412 #if defined(BUILD_EMBED_FIRST_CHUNK)
2413 /**
2414  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2415  * @reserved_size: the size of reserved percpu area in bytes
2416  * @dyn_size: minimum free size for dynamic allocation in bytes
2417  * @atom_size: allocation atom size
2418  * @cpu_distance_fn: callback to determine distance between cpus, optional
2419  * @alloc_fn: function to allocate percpu page
2420  * @free_fn: function to free percpu page
2421  *
2422  * This is a helper to ease setting up embedded first percpu chunk and
2423  * can be called where pcpu_setup_first_chunk() is expected.
2424  *
2425  * If this function is used to setup the first chunk, it is allocated
2426  * by calling @alloc_fn and used as-is without being mapped into
2427  * vmalloc area.  Allocations are always whole multiples of @atom_size
2428  * aligned to @atom_size.
2429  *
2430  * This enables the first chunk to piggy back on the linear physical
2431  * mapping which often uses larger page size.  Please note that this
2432  * can result in very sparse cpu->unit mapping on NUMA machines thus
2433  * requiring large vmalloc address space.  Don't use this allocator if
2434  * vmalloc space is not orders of magnitude larger than distances
2435  * between node memory addresses (ie. 32bit NUMA machines).
2436  *
2437  * @dyn_size specifies the minimum dynamic area size.
2438  *
2439  * If the needed size is smaller than the minimum or specified unit
2440  * size, the leftover is returned using @free_fn.
2441  *
2442  * RETURNS:
2443  * 0 on success, -errno on failure.
2444  */
pcpu_embed_first_chunk(size_t reserved_size,size_t dyn_size,size_t atom_size,pcpu_fc_cpu_distance_fn_t cpu_distance_fn,pcpu_fc_alloc_fn_t alloc_fn,pcpu_fc_free_fn_t free_fn)2445 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2446 				  size_t atom_size,
2447 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2448 				  pcpu_fc_alloc_fn_t alloc_fn,
2449 				  pcpu_fc_free_fn_t free_fn)
2450 {
2451 	void *base = (void *)ULONG_MAX;
2452 	void **areas = NULL;
2453 	struct pcpu_alloc_info *ai;
2454 	size_t size_sum, areas_size;
2455 	unsigned long max_distance;
2456 	int group, i, highest_group, rc;
2457 
2458 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2459 				   cpu_distance_fn);
2460 	if (IS_ERR(ai))
2461 		return PTR_ERR(ai);
2462 
2463 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2464 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2465 
2466 	areas = memblock_virt_alloc_nopanic(areas_size, 0);
2467 	if (!areas) {
2468 		rc = -ENOMEM;
2469 		goto out_free;
2470 	}
2471 
2472 	/* allocate, copy and determine base address & max_distance */
2473 	highest_group = 0;
2474 	for (group = 0; group < ai->nr_groups; group++) {
2475 		struct pcpu_group_info *gi = &ai->groups[group];
2476 		unsigned int cpu = NR_CPUS;
2477 		void *ptr;
2478 
2479 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2480 			cpu = gi->cpu_map[i];
2481 		BUG_ON(cpu == NR_CPUS);
2482 
2483 		/* allocate space for the whole group */
2484 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2485 		if (!ptr) {
2486 			rc = -ENOMEM;
2487 			goto out_free_areas;
2488 		}
2489 		/* kmemleak tracks the percpu allocations separately */
2490 		kmemleak_free(ptr);
2491 		areas[group] = ptr;
2492 
2493 		base = min(ptr, base);
2494 		if (ptr > areas[highest_group])
2495 			highest_group = group;
2496 	}
2497 	max_distance = areas[highest_group] - base;
2498 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2499 
2500 	/* warn if maximum distance is further than 75% of vmalloc space */
2501 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2502 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2503 				max_distance, VMALLOC_TOTAL);
2504 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2505 		/* and fail if we have fallback */
2506 		rc = -EINVAL;
2507 		goto out_free_areas;
2508 #endif
2509 	}
2510 
2511 	/*
2512 	 * Copy data and free unused parts.  This should happen after all
2513 	 * allocations are complete; otherwise, we may end up with
2514 	 * overlapping groups.
2515 	 */
2516 	for (group = 0; group < ai->nr_groups; group++) {
2517 		struct pcpu_group_info *gi = &ai->groups[group];
2518 		void *ptr = areas[group];
2519 
2520 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2521 			if (gi->cpu_map[i] == NR_CPUS) {
2522 				/* unused unit, free whole */
2523 				free_fn(ptr, ai->unit_size);
2524 				continue;
2525 			}
2526 			/* copy and return the unused part */
2527 			memcpy(ptr, __per_cpu_load, ai->static_size);
2528 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2529 		}
2530 	}
2531 
2532 	/* base address is now known, determine group base offsets */
2533 	for (group = 0; group < ai->nr_groups; group++) {
2534 		ai->groups[group].base_offset = areas[group] - base;
2535 	}
2536 
2537 	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2538 		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2539 		ai->dyn_size, ai->unit_size);
2540 
2541 	rc = pcpu_setup_first_chunk(ai, base);
2542 	goto out_free;
2543 
2544 out_free_areas:
2545 	for (group = 0; group < ai->nr_groups; group++)
2546 		if (areas[group])
2547 			free_fn(areas[group],
2548 				ai->groups[group].nr_units * ai->unit_size);
2549 out_free:
2550 	pcpu_free_alloc_info(ai);
2551 	if (areas)
2552 		memblock_free_early(__pa(areas), areas_size);
2553 	return rc;
2554 }
2555 #endif /* BUILD_EMBED_FIRST_CHUNK */
2556 
2557 #ifdef BUILD_PAGE_FIRST_CHUNK
2558 /**
2559  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2560  * @reserved_size: the size of reserved percpu area in bytes
2561  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2562  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2563  * @populate_pte_fn: function to populate pte
2564  *
2565  * This is a helper to ease setting up page-remapped first percpu
2566  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2567  *
2568  * This is the basic allocator.  Static percpu area is allocated
2569  * page-by-page into vmalloc area.
2570  *
2571  * RETURNS:
2572  * 0 on success, -errno on failure.
2573  */
pcpu_page_first_chunk(size_t reserved_size,pcpu_fc_alloc_fn_t alloc_fn,pcpu_fc_free_fn_t free_fn,pcpu_fc_populate_pte_fn_t populate_pte_fn)2574 int __init pcpu_page_first_chunk(size_t reserved_size,
2575 				 pcpu_fc_alloc_fn_t alloc_fn,
2576 				 pcpu_fc_free_fn_t free_fn,
2577 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2578 {
2579 	static struct vm_struct vm;
2580 	struct pcpu_alloc_info *ai;
2581 	char psize_str[16];
2582 	int unit_pages;
2583 	size_t pages_size;
2584 	struct page **pages;
2585 	int unit, i, j, rc;
2586 	int upa;
2587 	int nr_g0_units;
2588 
2589 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2590 
2591 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2592 	if (IS_ERR(ai))
2593 		return PTR_ERR(ai);
2594 	BUG_ON(ai->nr_groups != 1);
2595 	upa = ai->alloc_size/ai->unit_size;
2596 	nr_g0_units = roundup(num_possible_cpus(), upa);
2597 	if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2598 		pcpu_free_alloc_info(ai);
2599 		return -EINVAL;
2600 	}
2601 
2602 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2603 
2604 	/* unaligned allocations can't be freed, round up to page size */
2605 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2606 			       sizeof(pages[0]));
2607 	pages = memblock_virt_alloc(pages_size, 0);
2608 
2609 	/* allocate pages */
2610 	j = 0;
2611 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2612 		unsigned int cpu = ai->groups[0].cpu_map[unit];
2613 		for (i = 0; i < unit_pages; i++) {
2614 			void *ptr;
2615 
2616 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2617 			if (!ptr) {
2618 				pr_warn("failed to allocate %s page for cpu%u\n",
2619 						psize_str, cpu);
2620 				goto enomem;
2621 			}
2622 			/* kmemleak tracks the percpu allocations separately */
2623 			kmemleak_free(ptr);
2624 			pages[j++] = virt_to_page(ptr);
2625 		}
2626 	}
2627 
2628 	/* allocate vm area, map the pages and copy static data */
2629 	vm.flags = VM_ALLOC;
2630 	vm.size = num_possible_cpus() * ai->unit_size;
2631 	vm_area_register_early(&vm, PAGE_SIZE);
2632 
2633 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2634 		unsigned long unit_addr =
2635 			(unsigned long)vm.addr + unit * ai->unit_size;
2636 
2637 		for (i = 0; i < unit_pages; i++)
2638 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2639 
2640 		/* pte already populated, the following shouldn't fail */
2641 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2642 				      unit_pages);
2643 		if (rc < 0)
2644 			panic("failed to map percpu area, err=%d\n", rc);
2645 
2646 		/*
2647 		 * FIXME: Archs with virtual cache should flush local
2648 		 * cache for the linear mapping here - something
2649 		 * equivalent to flush_cache_vmap() on the local cpu.
2650 		 * flush_cache_vmap() can't be used as most supporting
2651 		 * data structures are not set up yet.
2652 		 */
2653 
2654 		/* copy static data */
2655 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2656 	}
2657 
2658 	/* we're ready, commit */
2659 	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
2660 		unit_pages, psize_str, ai->static_size,
2661 		ai->reserved_size, ai->dyn_size);
2662 
2663 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2664 	goto out_free_ar;
2665 
2666 enomem:
2667 	while (--j >= 0)
2668 		free_fn(page_address(pages[j]), PAGE_SIZE);
2669 	rc = -ENOMEM;
2670 out_free_ar:
2671 	memblock_free_early(__pa(pages), pages_size);
2672 	pcpu_free_alloc_info(ai);
2673 	return rc;
2674 }
2675 #endif /* BUILD_PAGE_FIRST_CHUNK */
2676 
2677 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2678 /*
2679  * Generic SMP percpu area setup.
2680  *
2681  * The embedding helper is used because its behavior closely resembles
2682  * the original non-dynamic generic percpu area setup.  This is
2683  * important because many archs have addressing restrictions and might
2684  * fail if the percpu area is located far away from the previous
2685  * location.  As an added bonus, in non-NUMA cases, embedding is
2686  * generally a good idea TLB-wise because percpu area can piggy back
2687  * on the physical linear memory mapping which uses large page
2688  * mappings on applicable archs.
2689  */
2690 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2691 EXPORT_SYMBOL(__per_cpu_offset);
2692 
pcpu_dfl_fc_alloc(unsigned int cpu,size_t size,size_t align)2693 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2694 				       size_t align)
2695 {
2696 	return  memblock_virt_alloc_from_nopanic(
2697 			size, align, __pa(MAX_DMA_ADDRESS));
2698 }
2699 
pcpu_dfl_fc_free(void * ptr,size_t size)2700 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2701 {
2702 	memblock_free_early(__pa(ptr), size);
2703 }
2704 
setup_per_cpu_areas(void)2705 void __init setup_per_cpu_areas(void)
2706 {
2707 	unsigned long delta;
2708 	unsigned int cpu;
2709 	int rc;
2710 
2711 	/*
2712 	 * Always reserve area for module percpu variables.  That's
2713 	 * what the legacy allocator did.
2714 	 */
2715 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2716 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2717 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2718 	if (rc < 0)
2719 		panic("Failed to initialize percpu areas.");
2720 
2721 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2722 	for_each_possible_cpu(cpu)
2723 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2724 }
2725 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2726 
2727 #else	/* CONFIG_SMP */
2728 
2729 /*
2730  * UP percpu area setup.
2731  *
2732  * UP always uses km-based percpu allocator with identity mapping.
2733  * Static percpu variables are indistinguishable from the usual static
2734  * variables and don't require any special preparation.
2735  */
setup_per_cpu_areas(void)2736 void __init setup_per_cpu_areas(void)
2737 {
2738 	const size_t unit_size =
2739 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2740 					 PERCPU_DYNAMIC_RESERVE));
2741 	struct pcpu_alloc_info *ai;
2742 	void *fc;
2743 
2744 	ai = pcpu_alloc_alloc_info(1, 1);
2745 	fc = memblock_virt_alloc_from_nopanic(unit_size,
2746 					      PAGE_SIZE,
2747 					      __pa(MAX_DMA_ADDRESS));
2748 	if (!ai || !fc)
2749 		panic("Failed to allocate memory for percpu areas.");
2750 	/* kmemleak tracks the percpu allocations separately */
2751 	kmemleak_free(fc);
2752 
2753 	ai->dyn_size = unit_size;
2754 	ai->unit_size = unit_size;
2755 	ai->atom_size = unit_size;
2756 	ai->alloc_size = unit_size;
2757 	ai->groups[0].nr_units = 1;
2758 	ai->groups[0].cpu_map[0] = 0;
2759 
2760 	if (pcpu_setup_first_chunk(ai, fc) < 0)
2761 		panic("Failed to initialize percpu areas.");
2762 	pcpu_free_alloc_info(ai);
2763 }
2764 
2765 #endif	/* CONFIG_SMP */
2766 
2767 /*
2768  * pcpu_nr_pages - calculate total number of populated backing pages
2769  *
2770  * This reflects the number of pages populated to back chunks.  Metadata is
2771  * excluded in the number exposed in meminfo as the number of backing pages
2772  * scales with the number of cpus and can quickly outweigh the memory used for
2773  * metadata.  It also keeps this calculation nice and simple.
2774  *
2775  * RETURNS:
2776  * Total number of populated backing pages in use by the allocator.
2777  */
pcpu_nr_pages(void)2778 unsigned long pcpu_nr_pages(void)
2779 {
2780 	return pcpu_nr_populated * pcpu_nr_units;
2781 }
2782 
2783 /*
2784  * Percpu allocator is initialized early during boot when neither slab or
2785  * workqueue is available.  Plug async management until everything is up
2786  * and running.
2787  */
percpu_enable_async(void)2788 static int __init percpu_enable_async(void)
2789 {
2790 	pcpu_async_enabled = true;
2791 	return 0;
2792 }
2793 subsys_initcall(percpu_enable_async);
2794