• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41 
42 static struct vfsmount *shm_mnt;
43 
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50 
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)110 static unsigned long shmem_default_max_blocks(void)
111 {
112 	return totalram_pages / 2;
113 }
114 
shmem_default_max_inodes(void)115 static unsigned long shmem_default_max_inodes(void)
116 {
117 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120 
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 				struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 		struct page **pagep, enum sgp_type sgp,
126 		gfp_t gfp, struct vm_area_struct *vma,
127 		struct vm_fault *vmf, vm_fault_t *fault_type);
128 
shmem_getpage(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp)129 int shmem_getpage(struct inode *inode, pgoff_t index,
130 		struct page **pagep, enum sgp_type sgp)
131 {
132 	return shmem_getpage_gfp(inode, index, pagep, sgp,
133 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
134 }
135 
SHMEM_SB(struct super_block * sb)136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138 	return sb->s_fs_info;
139 }
140 
141 /*
142  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143  * for shared memory and for shared anonymous (/dev/zero) mappings
144  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145  * consistent with the pre-accounting of private mappings ...
146  */
shmem_acct_size(unsigned long flags,loff_t size)147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149 	return (flags & VM_NORESERVE) ?
150 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 }
152 
shmem_unacct_size(unsigned long flags,loff_t size)153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155 	if (!(flags & VM_NORESERVE))
156 		vm_unacct_memory(VM_ACCT(size));
157 }
158 
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)159 static inline int shmem_reacct_size(unsigned long flags,
160 		loff_t oldsize, loff_t newsize)
161 {
162 	if (!(flags & VM_NORESERVE)) {
163 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164 			return security_vm_enough_memory_mm(current->mm,
165 					VM_ACCT(newsize) - VM_ACCT(oldsize));
166 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168 	}
169 	return 0;
170 }
171 
172 /*
173  * ... whereas tmpfs objects are accounted incrementally as
174  * pages are allocated, in order to allow large sparse files.
175  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177  */
shmem_acct_block(unsigned long flags,long pages)178 static inline int shmem_acct_block(unsigned long flags, long pages)
179 {
180 	if (!(flags & VM_NORESERVE))
181 		return 0;
182 
183 	return security_vm_enough_memory_mm(current->mm,
184 			pages * VM_ACCT(PAGE_SIZE));
185 }
186 
shmem_unacct_blocks(unsigned long flags,long pages)187 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 {
189 	if (flags & VM_NORESERVE)
190 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191 }
192 
shmem_inode_acct_block(struct inode * inode,long pages)193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 {
195 	struct shmem_inode_info *info = SHMEM_I(inode);
196 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197 
198 	if (shmem_acct_block(info->flags, pages))
199 		return false;
200 
201 	if (sbinfo->max_blocks) {
202 		if (percpu_counter_compare(&sbinfo->used_blocks,
203 					   sbinfo->max_blocks - pages) > 0)
204 			goto unacct;
205 		percpu_counter_add(&sbinfo->used_blocks, pages);
206 	}
207 
208 	return true;
209 
210 unacct:
211 	shmem_unacct_blocks(info->flags, pages);
212 	return false;
213 }
214 
shmem_inode_unacct_blocks(struct inode * inode,long pages)215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 {
217 	struct shmem_inode_info *info = SHMEM_I(inode);
218 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219 
220 	if (sbinfo->max_blocks)
221 		percpu_counter_sub(&sbinfo->used_blocks, pages);
222 	shmem_unacct_blocks(info->flags, pages);
223 }
224 
225 static const struct super_operations shmem_ops;
226 static const struct address_space_operations shmem_aops;
227 static const struct file_operations shmem_file_operations;
228 static const struct inode_operations shmem_inode_operations;
229 static const struct inode_operations shmem_dir_inode_operations;
230 static const struct inode_operations shmem_special_inode_operations;
231 static const struct vm_operations_struct shmem_vm_ops;
232 static struct file_system_type shmem_fs_type;
233 
vma_is_shmem(struct vm_area_struct * vma)234 bool vma_is_shmem(struct vm_area_struct *vma)
235 {
236 	return vma->vm_ops == &shmem_vm_ops;
237 }
238 
239 static LIST_HEAD(shmem_swaplist);
240 static DEFINE_MUTEX(shmem_swaplist_mutex);
241 
shmem_reserve_inode(struct super_block * sb)242 static int shmem_reserve_inode(struct super_block *sb)
243 {
244 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245 	if (sbinfo->max_inodes) {
246 		spin_lock(&sbinfo->stat_lock);
247 		if (!sbinfo->free_inodes) {
248 			spin_unlock(&sbinfo->stat_lock);
249 			return -ENOSPC;
250 		}
251 		sbinfo->free_inodes--;
252 		spin_unlock(&sbinfo->stat_lock);
253 	}
254 	return 0;
255 }
256 
shmem_free_inode(struct super_block * sb)257 static void shmem_free_inode(struct super_block *sb)
258 {
259 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260 	if (sbinfo->max_inodes) {
261 		spin_lock(&sbinfo->stat_lock);
262 		sbinfo->free_inodes++;
263 		spin_unlock(&sbinfo->stat_lock);
264 	}
265 }
266 
267 /**
268  * shmem_recalc_inode - recalculate the block usage of an inode
269  * @inode: inode to recalc
270  *
271  * We have to calculate the free blocks since the mm can drop
272  * undirtied hole pages behind our back.
273  *
274  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
275  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276  *
277  * It has to be called with the spinlock held.
278  */
shmem_recalc_inode(struct inode * inode)279 static void shmem_recalc_inode(struct inode *inode)
280 {
281 	struct shmem_inode_info *info = SHMEM_I(inode);
282 	long freed;
283 
284 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285 	if (freed > 0) {
286 		info->alloced -= freed;
287 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
288 		shmem_inode_unacct_blocks(inode, freed);
289 	}
290 }
291 
shmem_charge(struct inode * inode,long pages)292 bool shmem_charge(struct inode *inode, long pages)
293 {
294 	struct shmem_inode_info *info = SHMEM_I(inode);
295 	unsigned long flags;
296 
297 	if (!shmem_inode_acct_block(inode, pages))
298 		return false;
299 
300 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
301 	inode->i_mapping->nrpages += pages;
302 
303 	spin_lock_irqsave(&info->lock, flags);
304 	info->alloced += pages;
305 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
306 	shmem_recalc_inode(inode);
307 	spin_unlock_irqrestore(&info->lock, flags);
308 
309 	return true;
310 }
311 
shmem_uncharge(struct inode * inode,long pages)312 void shmem_uncharge(struct inode *inode, long pages)
313 {
314 	struct shmem_inode_info *info = SHMEM_I(inode);
315 	unsigned long flags;
316 
317 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
318 
319 	spin_lock_irqsave(&info->lock, flags);
320 	info->alloced -= pages;
321 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
322 	shmem_recalc_inode(inode);
323 	spin_unlock_irqrestore(&info->lock, flags);
324 
325 	shmem_inode_unacct_blocks(inode, pages);
326 }
327 
328 /*
329  * Replace item expected in radix tree by a new item, while holding tree lock.
330  */
shmem_radix_tree_replace(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)331 static int shmem_radix_tree_replace(struct address_space *mapping,
332 			pgoff_t index, void *expected, void *replacement)
333 {
334 	struct radix_tree_node *node;
335 	void __rcu **pslot;
336 	void *item;
337 
338 	VM_BUG_ON(!expected);
339 	VM_BUG_ON(!replacement);
340 	item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
341 	if (!item)
342 		return -ENOENT;
343 	if (item != expected)
344 		return -ENOENT;
345 	__radix_tree_replace(&mapping->i_pages, node, pslot,
346 			     replacement, NULL);
347 	return 0;
348 }
349 
350 /*
351  * Sometimes, before we decide whether to proceed or to fail, we must check
352  * that an entry was not already brought back from swap by a racing thread.
353  *
354  * Checking page is not enough: by the time a SwapCache page is locked, it
355  * might be reused, and again be SwapCache, using the same swap as before.
356  */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)357 static bool shmem_confirm_swap(struct address_space *mapping,
358 			       pgoff_t index, swp_entry_t swap)
359 {
360 	void *item;
361 
362 	rcu_read_lock();
363 	item = radix_tree_lookup(&mapping->i_pages, index);
364 	rcu_read_unlock();
365 	return item == swp_to_radix_entry(swap);
366 }
367 
368 /*
369  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
370  *
371  * SHMEM_HUGE_NEVER:
372  *	disables huge pages for the mount;
373  * SHMEM_HUGE_ALWAYS:
374  *	enables huge pages for the mount;
375  * SHMEM_HUGE_WITHIN_SIZE:
376  *	only allocate huge pages if the page will be fully within i_size,
377  *	also respect fadvise()/madvise() hints;
378  * SHMEM_HUGE_ADVISE:
379  *	only allocate huge pages if requested with fadvise()/madvise();
380  */
381 
382 #define SHMEM_HUGE_NEVER	0
383 #define SHMEM_HUGE_ALWAYS	1
384 #define SHMEM_HUGE_WITHIN_SIZE	2
385 #define SHMEM_HUGE_ADVISE	3
386 
387 /*
388  * Special values.
389  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
390  *
391  * SHMEM_HUGE_DENY:
392  *	disables huge on shm_mnt and all mounts, for emergency use;
393  * SHMEM_HUGE_FORCE:
394  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
395  *
396  */
397 #define SHMEM_HUGE_DENY		(-1)
398 #define SHMEM_HUGE_FORCE	(-2)
399 
400 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
401 /* ifdef here to avoid bloating shmem.o when not necessary */
402 
403 static int shmem_huge __read_mostly;
404 
405 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_parse_huge(const char * str)406 static int shmem_parse_huge(const char *str)
407 {
408 	if (!strcmp(str, "never"))
409 		return SHMEM_HUGE_NEVER;
410 	if (!strcmp(str, "always"))
411 		return SHMEM_HUGE_ALWAYS;
412 	if (!strcmp(str, "within_size"))
413 		return SHMEM_HUGE_WITHIN_SIZE;
414 	if (!strcmp(str, "advise"))
415 		return SHMEM_HUGE_ADVISE;
416 	if (!strcmp(str, "deny"))
417 		return SHMEM_HUGE_DENY;
418 	if (!strcmp(str, "force"))
419 		return SHMEM_HUGE_FORCE;
420 	return -EINVAL;
421 }
422 
shmem_format_huge(int huge)423 static const char *shmem_format_huge(int huge)
424 {
425 	switch (huge) {
426 	case SHMEM_HUGE_NEVER:
427 		return "never";
428 	case SHMEM_HUGE_ALWAYS:
429 		return "always";
430 	case SHMEM_HUGE_WITHIN_SIZE:
431 		return "within_size";
432 	case SHMEM_HUGE_ADVISE:
433 		return "advise";
434 	case SHMEM_HUGE_DENY:
435 		return "deny";
436 	case SHMEM_HUGE_FORCE:
437 		return "force";
438 	default:
439 		VM_BUG_ON(1);
440 		return "bad_val";
441 	}
442 }
443 #endif
444 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)445 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
446 		struct shrink_control *sc, unsigned long nr_to_split)
447 {
448 	LIST_HEAD(list), *pos, *next;
449 	LIST_HEAD(to_remove);
450 	struct inode *inode;
451 	struct shmem_inode_info *info;
452 	struct page *page;
453 	unsigned long batch = sc ? sc->nr_to_scan : 128;
454 	int removed = 0, split = 0;
455 
456 	if (list_empty(&sbinfo->shrinklist))
457 		return SHRINK_STOP;
458 
459 	spin_lock(&sbinfo->shrinklist_lock);
460 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
461 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
462 
463 		/* pin the inode */
464 		inode = igrab(&info->vfs_inode);
465 
466 		/* inode is about to be evicted */
467 		if (!inode) {
468 			list_del_init(&info->shrinklist);
469 			removed++;
470 			goto next;
471 		}
472 
473 		/* Check if there's anything to gain */
474 		if (round_up(inode->i_size, PAGE_SIZE) ==
475 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
476 			list_move(&info->shrinklist, &to_remove);
477 			removed++;
478 			goto next;
479 		}
480 
481 		list_move(&info->shrinklist, &list);
482 next:
483 		if (!--batch)
484 			break;
485 	}
486 	spin_unlock(&sbinfo->shrinklist_lock);
487 
488 	list_for_each_safe(pos, next, &to_remove) {
489 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
490 		inode = &info->vfs_inode;
491 		list_del_init(&info->shrinklist);
492 		iput(inode);
493 	}
494 
495 	list_for_each_safe(pos, next, &list) {
496 		int ret;
497 
498 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
499 		inode = &info->vfs_inode;
500 
501 		if (nr_to_split && split >= nr_to_split)
502 			goto leave;
503 
504 		page = find_get_page(inode->i_mapping,
505 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
506 		if (!page)
507 			goto drop;
508 
509 		/* No huge page at the end of the file: nothing to split */
510 		if (!PageTransHuge(page)) {
511 			put_page(page);
512 			goto drop;
513 		}
514 
515 		/*
516 		 * Leave the inode on the list if we failed to lock
517 		 * the page at this time.
518 		 *
519 		 * Waiting for the lock may lead to deadlock in the
520 		 * reclaim path.
521 		 */
522 		if (!trylock_page(page)) {
523 			put_page(page);
524 			goto leave;
525 		}
526 
527 		ret = split_huge_page(page);
528 		unlock_page(page);
529 		put_page(page);
530 
531 		/* If split failed leave the inode on the list */
532 		if (ret)
533 			goto leave;
534 
535 		split++;
536 drop:
537 		list_del_init(&info->shrinklist);
538 		removed++;
539 leave:
540 		iput(inode);
541 	}
542 
543 	spin_lock(&sbinfo->shrinklist_lock);
544 	list_splice_tail(&list, &sbinfo->shrinklist);
545 	sbinfo->shrinklist_len -= removed;
546 	spin_unlock(&sbinfo->shrinklist_lock);
547 
548 	return split;
549 }
550 
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)551 static long shmem_unused_huge_scan(struct super_block *sb,
552 		struct shrink_control *sc)
553 {
554 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
555 
556 	if (!READ_ONCE(sbinfo->shrinklist_len))
557 		return SHRINK_STOP;
558 
559 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
560 }
561 
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)562 static long shmem_unused_huge_count(struct super_block *sb,
563 		struct shrink_control *sc)
564 {
565 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
566 	return READ_ONCE(sbinfo->shrinklist_len);
567 }
568 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
569 
570 #define shmem_huge SHMEM_HUGE_DENY
571 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)572 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
573 		struct shrink_control *sc, unsigned long nr_to_split)
574 {
575 	return 0;
576 }
577 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
578 
is_huge_enabled(struct shmem_sb_info * sbinfo)579 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
580 {
581 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
582 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
583 	    shmem_huge != SHMEM_HUGE_DENY)
584 		return true;
585 	return false;
586 }
587 
588 /*
589  * Like add_to_page_cache_locked, but error if expected item has gone.
590  */
shmem_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t index,void * expected)591 static int shmem_add_to_page_cache(struct page *page,
592 				   struct address_space *mapping,
593 				   pgoff_t index, void *expected)
594 {
595 	int error, nr = hpage_nr_pages(page);
596 
597 	VM_BUG_ON_PAGE(PageTail(page), page);
598 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
599 	VM_BUG_ON_PAGE(!PageLocked(page), page);
600 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
601 	VM_BUG_ON(expected && PageTransHuge(page));
602 
603 	page_ref_add(page, nr);
604 	page->mapping = mapping;
605 	page->index = index;
606 
607 	xa_lock_irq(&mapping->i_pages);
608 	if (PageTransHuge(page)) {
609 		void __rcu **results;
610 		pgoff_t idx;
611 		int i;
612 
613 		error = 0;
614 		if (radix_tree_gang_lookup_slot(&mapping->i_pages,
615 					&results, &idx, index, 1) &&
616 				idx < index + HPAGE_PMD_NR) {
617 			error = -EEXIST;
618 		}
619 
620 		if (!error) {
621 			for (i = 0; i < HPAGE_PMD_NR; i++) {
622 				error = radix_tree_insert(&mapping->i_pages,
623 						index + i, page + i);
624 				VM_BUG_ON(error);
625 			}
626 			count_vm_event(THP_FILE_ALLOC);
627 		}
628 	} else if (!expected) {
629 		error = radix_tree_insert(&mapping->i_pages, index, page);
630 	} else {
631 		error = shmem_radix_tree_replace(mapping, index, expected,
632 								 page);
633 	}
634 
635 	if (!error) {
636 		mapping->nrpages += nr;
637 		if (PageTransHuge(page))
638 			__inc_node_page_state(page, NR_SHMEM_THPS);
639 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
640 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
641 		xa_unlock_irq(&mapping->i_pages);
642 	} else {
643 		page->mapping = NULL;
644 		xa_unlock_irq(&mapping->i_pages);
645 		page_ref_sub(page, nr);
646 	}
647 	return error;
648 }
649 
650 /*
651  * Like delete_from_page_cache, but substitutes swap for page.
652  */
shmem_delete_from_page_cache(struct page * page,void * radswap)653 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
654 {
655 	struct address_space *mapping = page->mapping;
656 	int error;
657 
658 	VM_BUG_ON_PAGE(PageCompound(page), page);
659 
660 	xa_lock_irq(&mapping->i_pages);
661 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
662 	page->mapping = NULL;
663 	mapping->nrpages--;
664 	__dec_node_page_state(page, NR_FILE_PAGES);
665 	__dec_node_page_state(page, NR_SHMEM);
666 	xa_unlock_irq(&mapping->i_pages);
667 	put_page(page);
668 	BUG_ON(error);
669 }
670 
671 /*
672  * Remove swap entry from radix tree, free the swap and its page cache.
673  */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)674 static int shmem_free_swap(struct address_space *mapping,
675 			   pgoff_t index, void *radswap)
676 {
677 	void *old;
678 
679 	xa_lock_irq(&mapping->i_pages);
680 	old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
681 	xa_unlock_irq(&mapping->i_pages);
682 	if (old != radswap)
683 		return -ENOENT;
684 	free_swap_and_cache(radix_to_swp_entry(radswap));
685 	return 0;
686 }
687 
688 /*
689  * Determine (in bytes) how many of the shmem object's pages mapped by the
690  * given offsets are swapped out.
691  *
692  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
693  * as long as the inode doesn't go away and racy results are not a problem.
694  */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)695 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
696 						pgoff_t start, pgoff_t end)
697 {
698 	struct radix_tree_iter iter;
699 	void __rcu **slot;
700 	struct page *page;
701 	unsigned long swapped = 0;
702 
703 	rcu_read_lock();
704 
705 	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
706 		if (iter.index >= end)
707 			break;
708 
709 		page = radix_tree_deref_slot(slot);
710 
711 		if (radix_tree_deref_retry(page)) {
712 			slot = radix_tree_iter_retry(&iter);
713 			continue;
714 		}
715 
716 		if (radix_tree_exceptional_entry(page))
717 			swapped++;
718 
719 		if (need_resched()) {
720 			slot = radix_tree_iter_resume(slot, &iter);
721 			cond_resched_rcu();
722 		}
723 	}
724 
725 	rcu_read_unlock();
726 
727 	return swapped << PAGE_SHIFT;
728 }
729 
730 /*
731  * Determine (in bytes) how many of the shmem object's pages mapped by the
732  * given vma is swapped out.
733  *
734  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
735  * as long as the inode doesn't go away and racy results are not a problem.
736  */
shmem_swap_usage(struct vm_area_struct * vma)737 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
738 {
739 	struct inode *inode = file_inode(vma->vm_file);
740 	struct shmem_inode_info *info = SHMEM_I(inode);
741 	struct address_space *mapping = inode->i_mapping;
742 	unsigned long swapped;
743 
744 	/* Be careful as we don't hold info->lock */
745 	swapped = READ_ONCE(info->swapped);
746 
747 	/*
748 	 * The easier cases are when the shmem object has nothing in swap, or
749 	 * the vma maps it whole. Then we can simply use the stats that we
750 	 * already track.
751 	 */
752 	if (!swapped)
753 		return 0;
754 
755 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
756 		return swapped << PAGE_SHIFT;
757 
758 	/* Here comes the more involved part */
759 	return shmem_partial_swap_usage(mapping,
760 			linear_page_index(vma, vma->vm_start),
761 			linear_page_index(vma, vma->vm_end));
762 }
763 
764 /*
765  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
766  */
shmem_unlock_mapping(struct address_space * mapping)767 void shmem_unlock_mapping(struct address_space *mapping)
768 {
769 	struct pagevec pvec;
770 	pgoff_t indices[PAGEVEC_SIZE];
771 	pgoff_t index = 0;
772 
773 	pagevec_init(&pvec);
774 	/*
775 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
776 	 */
777 	while (!mapping_unevictable(mapping)) {
778 		/*
779 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
780 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
781 		 */
782 		pvec.nr = find_get_entries(mapping, index,
783 					   PAGEVEC_SIZE, pvec.pages, indices);
784 		if (!pvec.nr)
785 			break;
786 		index = indices[pvec.nr - 1] + 1;
787 		pagevec_remove_exceptionals(&pvec);
788 		check_move_unevictable_pages(pvec.pages, pvec.nr);
789 		pagevec_release(&pvec);
790 		cond_resched();
791 	}
792 }
793 
794 /*
795  * Remove range of pages and swap entries from radix tree, and free them.
796  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
797  */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)798 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
799 								 bool unfalloc)
800 {
801 	struct address_space *mapping = inode->i_mapping;
802 	struct shmem_inode_info *info = SHMEM_I(inode);
803 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
804 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
805 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
806 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
807 	struct pagevec pvec;
808 	pgoff_t indices[PAGEVEC_SIZE];
809 	long nr_swaps_freed = 0;
810 	pgoff_t index;
811 	int i;
812 
813 	if (lend == -1)
814 		end = -1;	/* unsigned, so actually very big */
815 
816 	pagevec_init(&pvec);
817 	index = start;
818 	while (index < end) {
819 		pvec.nr = find_get_entries(mapping, index,
820 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
821 			pvec.pages, indices);
822 		if (!pvec.nr)
823 			break;
824 		for (i = 0; i < pagevec_count(&pvec); i++) {
825 			struct page *page = pvec.pages[i];
826 
827 			index = indices[i];
828 			if (index >= end)
829 				break;
830 
831 			if (radix_tree_exceptional_entry(page)) {
832 				if (unfalloc)
833 					continue;
834 				nr_swaps_freed += !shmem_free_swap(mapping,
835 								index, page);
836 				continue;
837 			}
838 
839 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
840 
841 			if (!trylock_page(page))
842 				continue;
843 
844 			if (PageTransTail(page)) {
845 				/* Middle of THP: zero out the page */
846 				clear_highpage(page);
847 				unlock_page(page);
848 				continue;
849 			} else if (PageTransHuge(page)) {
850 				if (index == round_down(end, HPAGE_PMD_NR)) {
851 					/*
852 					 * Range ends in the middle of THP:
853 					 * zero out the page
854 					 */
855 					clear_highpage(page);
856 					unlock_page(page);
857 					continue;
858 				}
859 				index += HPAGE_PMD_NR - 1;
860 				i += HPAGE_PMD_NR - 1;
861 			}
862 
863 			if (!unfalloc || !PageUptodate(page)) {
864 				VM_BUG_ON_PAGE(PageTail(page), page);
865 				if (page_mapping(page) == mapping) {
866 					VM_BUG_ON_PAGE(PageWriteback(page), page);
867 					truncate_inode_page(mapping, page);
868 				}
869 			}
870 			unlock_page(page);
871 		}
872 		pagevec_remove_exceptionals(&pvec);
873 		pagevec_release(&pvec);
874 		cond_resched();
875 		index++;
876 	}
877 
878 	if (partial_start) {
879 		struct page *page = NULL;
880 		shmem_getpage(inode, start - 1, &page, SGP_READ);
881 		if (page) {
882 			unsigned int top = PAGE_SIZE;
883 			if (start > end) {
884 				top = partial_end;
885 				partial_end = 0;
886 			}
887 			zero_user_segment(page, partial_start, top);
888 			set_page_dirty(page);
889 			unlock_page(page);
890 			put_page(page);
891 		}
892 	}
893 	if (partial_end) {
894 		struct page *page = NULL;
895 		shmem_getpage(inode, end, &page, SGP_READ);
896 		if (page) {
897 			zero_user_segment(page, 0, partial_end);
898 			set_page_dirty(page);
899 			unlock_page(page);
900 			put_page(page);
901 		}
902 	}
903 	if (start >= end)
904 		return;
905 
906 	index = start;
907 	while (index < end) {
908 		cond_resched();
909 
910 		pvec.nr = find_get_entries(mapping, index,
911 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
912 				pvec.pages, indices);
913 		if (!pvec.nr) {
914 			/* If all gone or hole-punch or unfalloc, we're done */
915 			if (index == start || end != -1)
916 				break;
917 			/* But if truncating, restart to make sure all gone */
918 			index = start;
919 			continue;
920 		}
921 		for (i = 0; i < pagevec_count(&pvec); i++) {
922 			struct page *page = pvec.pages[i];
923 
924 			index = indices[i];
925 			if (index >= end)
926 				break;
927 
928 			if (radix_tree_exceptional_entry(page)) {
929 				if (unfalloc)
930 					continue;
931 				if (shmem_free_swap(mapping, index, page)) {
932 					/* Swap was replaced by page: retry */
933 					index--;
934 					break;
935 				}
936 				nr_swaps_freed++;
937 				continue;
938 			}
939 
940 			lock_page(page);
941 
942 			if (PageTransTail(page)) {
943 				/* Middle of THP: zero out the page */
944 				clear_highpage(page);
945 				unlock_page(page);
946 				/*
947 				 * Partial thp truncate due 'start' in middle
948 				 * of THP: don't need to look on these pages
949 				 * again on !pvec.nr restart.
950 				 */
951 				if (index != round_down(end, HPAGE_PMD_NR))
952 					start++;
953 				continue;
954 			} else if (PageTransHuge(page)) {
955 				if (index == round_down(end, HPAGE_PMD_NR)) {
956 					/*
957 					 * Range ends in the middle of THP:
958 					 * zero out the page
959 					 */
960 					clear_highpage(page);
961 					unlock_page(page);
962 					continue;
963 				}
964 				index += HPAGE_PMD_NR - 1;
965 				i += HPAGE_PMD_NR - 1;
966 			}
967 
968 			if (!unfalloc || !PageUptodate(page)) {
969 				VM_BUG_ON_PAGE(PageTail(page), page);
970 				if (page_mapping(page) == mapping) {
971 					VM_BUG_ON_PAGE(PageWriteback(page), page);
972 					truncate_inode_page(mapping, page);
973 				} else {
974 					/* Page was replaced by swap: retry */
975 					unlock_page(page);
976 					index--;
977 					break;
978 				}
979 			}
980 			unlock_page(page);
981 		}
982 		pagevec_remove_exceptionals(&pvec);
983 		pagevec_release(&pvec);
984 		index++;
985 	}
986 
987 	spin_lock_irq(&info->lock);
988 	info->swapped -= nr_swaps_freed;
989 	shmem_recalc_inode(inode);
990 	spin_unlock_irq(&info->lock);
991 }
992 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)993 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
994 {
995 	shmem_undo_range(inode, lstart, lend, false);
996 	inode->i_ctime = inode->i_mtime = current_time(inode);
997 }
998 EXPORT_SYMBOL_GPL(shmem_truncate_range);
999 
shmem_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1000 static int shmem_getattr(const struct path *path, struct kstat *stat,
1001 			 u32 request_mask, unsigned int query_flags)
1002 {
1003 	struct inode *inode = path->dentry->d_inode;
1004 	struct shmem_inode_info *info = SHMEM_I(inode);
1005 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1006 
1007 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1008 		spin_lock_irq(&info->lock);
1009 		shmem_recalc_inode(inode);
1010 		spin_unlock_irq(&info->lock);
1011 	}
1012 	generic_fillattr(inode, stat);
1013 
1014 	if (is_huge_enabled(sb_info))
1015 		stat->blksize = HPAGE_PMD_SIZE;
1016 
1017 	return 0;
1018 }
1019 
shmem_setattr(struct dentry * dentry,struct iattr * attr)1020 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1021 {
1022 	struct inode *inode = d_inode(dentry);
1023 	struct shmem_inode_info *info = SHMEM_I(inode);
1024 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1025 	int error;
1026 
1027 	error = setattr_prepare(dentry, attr);
1028 	if (error)
1029 		return error;
1030 
1031 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1032 		loff_t oldsize = inode->i_size;
1033 		loff_t newsize = attr->ia_size;
1034 
1035 		/* protected by i_mutex */
1036 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1037 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1038 			return -EPERM;
1039 
1040 		if (newsize != oldsize) {
1041 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1042 					oldsize, newsize);
1043 			if (error)
1044 				return error;
1045 			i_size_write(inode, newsize);
1046 			inode->i_ctime = inode->i_mtime = current_time(inode);
1047 		}
1048 		if (newsize <= oldsize) {
1049 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1050 			if (oldsize > holebegin)
1051 				unmap_mapping_range(inode->i_mapping,
1052 							holebegin, 0, 1);
1053 			if (info->alloced)
1054 				shmem_truncate_range(inode,
1055 							newsize, (loff_t)-1);
1056 			/* unmap again to remove racily COWed private pages */
1057 			if (oldsize > holebegin)
1058 				unmap_mapping_range(inode->i_mapping,
1059 							holebegin, 0, 1);
1060 
1061 			/*
1062 			 * Part of the huge page can be beyond i_size: subject
1063 			 * to shrink under memory pressure.
1064 			 */
1065 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1066 				spin_lock(&sbinfo->shrinklist_lock);
1067 				/*
1068 				 * _careful to defend against unlocked access to
1069 				 * ->shrink_list in shmem_unused_huge_shrink()
1070 				 */
1071 				if (list_empty_careful(&info->shrinklist)) {
1072 					list_add_tail(&info->shrinklist,
1073 							&sbinfo->shrinklist);
1074 					sbinfo->shrinklist_len++;
1075 				}
1076 				spin_unlock(&sbinfo->shrinklist_lock);
1077 			}
1078 		}
1079 	}
1080 
1081 	setattr_copy(inode, attr);
1082 	if (attr->ia_valid & ATTR_MODE)
1083 		error = posix_acl_chmod(inode, inode->i_mode);
1084 	return error;
1085 }
1086 
shmem_evict_inode(struct inode * inode)1087 static void shmem_evict_inode(struct inode *inode)
1088 {
1089 	struct shmem_inode_info *info = SHMEM_I(inode);
1090 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1091 
1092 	if (inode->i_mapping->a_ops == &shmem_aops) {
1093 		shmem_unacct_size(info->flags, inode->i_size);
1094 		inode->i_size = 0;
1095 		shmem_truncate_range(inode, 0, (loff_t)-1);
1096 		if (!list_empty(&info->shrinklist)) {
1097 			spin_lock(&sbinfo->shrinklist_lock);
1098 			if (!list_empty(&info->shrinklist)) {
1099 				list_del_init(&info->shrinklist);
1100 				sbinfo->shrinklist_len--;
1101 			}
1102 			spin_unlock(&sbinfo->shrinklist_lock);
1103 		}
1104 		if (!list_empty(&info->swaplist)) {
1105 			mutex_lock(&shmem_swaplist_mutex);
1106 			list_del_init(&info->swaplist);
1107 			mutex_unlock(&shmem_swaplist_mutex);
1108 		}
1109 	}
1110 
1111 	simple_xattrs_free(&info->xattrs);
1112 	WARN_ON(inode->i_blocks);
1113 	shmem_free_inode(inode->i_sb);
1114 	clear_inode(inode);
1115 }
1116 
find_swap_entry(struct radix_tree_root * root,void * item)1117 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1118 {
1119 	struct radix_tree_iter iter;
1120 	void __rcu **slot;
1121 	unsigned long found = -1;
1122 	unsigned int checked = 0;
1123 
1124 	rcu_read_lock();
1125 	radix_tree_for_each_slot(slot, root, &iter, 0) {
1126 		void *entry = radix_tree_deref_slot(slot);
1127 
1128 		if (radix_tree_deref_retry(entry)) {
1129 			slot = radix_tree_iter_retry(&iter);
1130 			continue;
1131 		}
1132 		if (entry == item) {
1133 			found = iter.index;
1134 			break;
1135 		}
1136 		checked++;
1137 		if ((checked % 4096) != 0)
1138 			continue;
1139 		slot = radix_tree_iter_resume(slot, &iter);
1140 		cond_resched_rcu();
1141 	}
1142 
1143 	rcu_read_unlock();
1144 	return found;
1145 }
1146 
1147 /*
1148  * If swap found in inode, free it and move page from swapcache to filecache.
1149  */
shmem_unuse_inode(struct shmem_inode_info * info,swp_entry_t swap,struct page ** pagep)1150 static int shmem_unuse_inode(struct shmem_inode_info *info,
1151 			     swp_entry_t swap, struct page **pagep)
1152 {
1153 	struct address_space *mapping = info->vfs_inode.i_mapping;
1154 	void *radswap;
1155 	pgoff_t index;
1156 	gfp_t gfp;
1157 	int error = 0;
1158 
1159 	radswap = swp_to_radix_entry(swap);
1160 	index = find_swap_entry(&mapping->i_pages, radswap);
1161 	if (index == -1)
1162 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1163 
1164 	/*
1165 	 * Move _head_ to start search for next from here.
1166 	 * But be careful: shmem_evict_inode checks list_empty without taking
1167 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1168 	 * would appear empty, if it were the only one on shmem_swaplist.
1169 	 */
1170 	if (shmem_swaplist.next != &info->swaplist)
1171 		list_move_tail(&shmem_swaplist, &info->swaplist);
1172 
1173 	gfp = mapping_gfp_mask(mapping);
1174 	if (shmem_should_replace_page(*pagep, gfp)) {
1175 		mutex_unlock(&shmem_swaplist_mutex);
1176 		error = shmem_replace_page(pagep, gfp, info, index);
1177 		mutex_lock(&shmem_swaplist_mutex);
1178 		/*
1179 		 * We needed to drop mutex to make that restrictive page
1180 		 * allocation, but the inode might have been freed while we
1181 		 * dropped it: although a racing shmem_evict_inode() cannot
1182 		 * complete without emptying the radix_tree, our page lock
1183 		 * on this swapcache page is not enough to prevent that -
1184 		 * free_swap_and_cache() of our swap entry will only
1185 		 * trylock_page(), removing swap from radix_tree whatever.
1186 		 *
1187 		 * We must not proceed to shmem_add_to_page_cache() if the
1188 		 * inode has been freed, but of course we cannot rely on
1189 		 * inode or mapping or info to check that.  However, we can
1190 		 * safely check if our swap entry is still in use (and here
1191 		 * it can't have got reused for another page): if it's still
1192 		 * in use, then the inode cannot have been freed yet, and we
1193 		 * can safely proceed (if it's no longer in use, that tells
1194 		 * nothing about the inode, but we don't need to unuse swap).
1195 		 */
1196 		if (!page_swapcount(*pagep))
1197 			error = -ENOENT;
1198 	}
1199 
1200 	/*
1201 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1202 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1203 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1204 	 */
1205 	if (!error)
1206 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1207 						radswap);
1208 	if (error != -ENOMEM) {
1209 		/*
1210 		 * Truncation and eviction use free_swap_and_cache(), which
1211 		 * only does trylock page: if we raced, best clean up here.
1212 		 */
1213 		delete_from_swap_cache(*pagep);
1214 		set_page_dirty(*pagep);
1215 		if (!error) {
1216 			spin_lock_irq(&info->lock);
1217 			info->swapped--;
1218 			spin_unlock_irq(&info->lock);
1219 			swap_free(swap);
1220 		}
1221 	}
1222 	return error;
1223 }
1224 
1225 /*
1226  * Search through swapped inodes to find and replace swap by page.
1227  */
shmem_unuse(swp_entry_t swap,struct page * page)1228 int shmem_unuse(swp_entry_t swap, struct page *page)
1229 {
1230 	struct list_head *this, *next;
1231 	struct shmem_inode_info *info;
1232 	struct mem_cgroup *memcg;
1233 	int error = 0;
1234 
1235 	/*
1236 	 * There's a faint possibility that swap page was replaced before
1237 	 * caller locked it: caller will come back later with the right page.
1238 	 */
1239 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1240 		goto out;
1241 
1242 	/*
1243 	 * Charge page using GFP_KERNEL while we can wait, before taking
1244 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1245 	 * Charged back to the user (not to caller) when swap account is used.
1246 	 */
1247 	error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1248 					    &memcg, false);
1249 	if (error)
1250 		goto out;
1251 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1252 	error = -EAGAIN;
1253 
1254 	mutex_lock(&shmem_swaplist_mutex);
1255 	list_for_each_safe(this, next, &shmem_swaplist) {
1256 		info = list_entry(this, struct shmem_inode_info, swaplist);
1257 		if (info->swapped)
1258 			error = shmem_unuse_inode(info, swap, &page);
1259 		else
1260 			list_del_init(&info->swaplist);
1261 		cond_resched();
1262 		if (error != -EAGAIN)
1263 			break;
1264 		/* found nothing in this: move on to search the next */
1265 	}
1266 	mutex_unlock(&shmem_swaplist_mutex);
1267 
1268 	if (error) {
1269 		if (error != -ENOMEM)
1270 			error = 0;
1271 		mem_cgroup_cancel_charge(page, memcg, false);
1272 	} else
1273 		mem_cgroup_commit_charge(page, memcg, true, false);
1274 out:
1275 	unlock_page(page);
1276 	put_page(page);
1277 	return error;
1278 }
1279 
1280 /*
1281  * Move the page from the page cache to the swap cache.
1282  */
shmem_writepage(struct page * page,struct writeback_control * wbc)1283 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1284 {
1285 	struct shmem_inode_info *info;
1286 	struct address_space *mapping;
1287 	struct inode *inode;
1288 	swp_entry_t swap;
1289 	pgoff_t index;
1290 
1291 	VM_BUG_ON_PAGE(PageCompound(page), page);
1292 	BUG_ON(!PageLocked(page));
1293 	mapping = page->mapping;
1294 	index = page->index;
1295 	inode = mapping->host;
1296 	info = SHMEM_I(inode);
1297 	if (info->flags & VM_LOCKED)
1298 		goto redirty;
1299 	if (!total_swap_pages)
1300 		goto redirty;
1301 
1302 	/*
1303 	 * Our capabilities prevent regular writeback or sync from ever calling
1304 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1305 	 * its underlying filesystem, in which case tmpfs should write out to
1306 	 * swap only in response to memory pressure, and not for the writeback
1307 	 * threads or sync.
1308 	 */
1309 	if (!wbc->for_reclaim) {
1310 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1311 		goto redirty;
1312 	}
1313 
1314 	/*
1315 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1316 	 * value into swapfile.c, the only way we can correctly account for a
1317 	 * fallocated page arriving here is now to initialize it and write it.
1318 	 *
1319 	 * That's okay for a page already fallocated earlier, but if we have
1320 	 * not yet completed the fallocation, then (a) we want to keep track
1321 	 * of this page in case we have to undo it, and (b) it may not be a
1322 	 * good idea to continue anyway, once we're pushing into swap.  So
1323 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1324 	 */
1325 	if (!PageUptodate(page)) {
1326 		if (inode->i_private) {
1327 			struct shmem_falloc *shmem_falloc;
1328 			spin_lock(&inode->i_lock);
1329 			shmem_falloc = inode->i_private;
1330 			if (shmem_falloc &&
1331 			    !shmem_falloc->waitq &&
1332 			    index >= shmem_falloc->start &&
1333 			    index < shmem_falloc->next)
1334 				shmem_falloc->nr_unswapped++;
1335 			else
1336 				shmem_falloc = NULL;
1337 			spin_unlock(&inode->i_lock);
1338 			if (shmem_falloc)
1339 				goto redirty;
1340 		}
1341 		clear_highpage(page);
1342 		flush_dcache_page(page);
1343 		SetPageUptodate(page);
1344 	}
1345 
1346 	swap = get_swap_page(page);
1347 	if (!swap.val)
1348 		goto redirty;
1349 
1350 	/*
1351 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1352 	 * if it's not already there.  Do it now before the page is
1353 	 * moved to swap cache, when its pagelock no longer protects
1354 	 * the inode from eviction.  But don't unlock the mutex until
1355 	 * we've incremented swapped, because shmem_unuse_inode() will
1356 	 * prune a !swapped inode from the swaplist under this mutex.
1357 	 */
1358 	mutex_lock(&shmem_swaplist_mutex);
1359 	if (list_empty(&info->swaplist))
1360 		list_add_tail(&info->swaplist, &shmem_swaplist);
1361 
1362 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1363 		spin_lock_irq(&info->lock);
1364 		shmem_recalc_inode(inode);
1365 		info->swapped++;
1366 		spin_unlock_irq(&info->lock);
1367 
1368 		swap_shmem_alloc(swap);
1369 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1370 
1371 		mutex_unlock(&shmem_swaplist_mutex);
1372 		BUG_ON(page_mapped(page));
1373 		swap_writepage(page, wbc);
1374 		return 0;
1375 	}
1376 
1377 	mutex_unlock(&shmem_swaplist_mutex);
1378 	put_swap_page(page, swap);
1379 redirty:
1380 	set_page_dirty(page);
1381 	if (wbc->for_reclaim)
1382 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1383 	unlock_page(page);
1384 	return 0;
1385 }
1386 
1387 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1388 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1389 {
1390 	char buffer[64];
1391 
1392 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1393 		return;		/* show nothing */
1394 
1395 	mpol_to_str(buffer, sizeof(buffer), mpol);
1396 
1397 	seq_printf(seq, ",mpol=%s", buffer);
1398 }
1399 
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1400 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1401 {
1402 	struct mempolicy *mpol = NULL;
1403 	if (sbinfo->mpol) {
1404 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1405 		mpol = sbinfo->mpol;
1406 		mpol_get(mpol);
1407 		spin_unlock(&sbinfo->stat_lock);
1408 	}
1409 	return mpol;
1410 }
1411 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1412 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1413 {
1414 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1415 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1416 {
1417 	return NULL;
1418 }
1419 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1420 #ifndef CONFIG_NUMA
1421 #define vm_policy vm_private_data
1422 #endif
1423 
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1424 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1425 		struct shmem_inode_info *info, pgoff_t index)
1426 {
1427 	/* Create a pseudo vma that just contains the policy */
1428 	vma_init(vma, NULL);
1429 	/* Bias interleave by inode number to distribute better across nodes */
1430 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1431 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1432 }
1433 
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1434 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1435 {
1436 	/* Drop reference taken by mpol_shared_policy_lookup() */
1437 	mpol_cond_put(vma->vm_policy);
1438 }
1439 
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1440 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1441 			struct shmem_inode_info *info, pgoff_t index)
1442 {
1443 	struct vm_area_struct pvma;
1444 	struct page *page;
1445 	struct vm_fault vmf;
1446 
1447 	shmem_pseudo_vma_init(&pvma, info, index);
1448 	vmf.vma = &pvma;
1449 	vmf.address = 0;
1450 	page = swap_cluster_readahead(swap, gfp, &vmf);
1451 	shmem_pseudo_vma_destroy(&pvma);
1452 
1453 	return page;
1454 }
1455 
shmem_alloc_hugepage(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1456 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1457 		struct shmem_inode_info *info, pgoff_t index)
1458 {
1459 	struct vm_area_struct pvma;
1460 	struct inode *inode = &info->vfs_inode;
1461 	struct address_space *mapping = inode->i_mapping;
1462 	pgoff_t idx, hindex;
1463 	void __rcu **results;
1464 	struct page *page;
1465 
1466 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1467 		return NULL;
1468 
1469 	hindex = round_down(index, HPAGE_PMD_NR);
1470 	rcu_read_lock();
1471 	if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1472 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1473 		rcu_read_unlock();
1474 		return NULL;
1475 	}
1476 	rcu_read_unlock();
1477 
1478 	shmem_pseudo_vma_init(&pvma, info, hindex);
1479 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1480 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1481 	shmem_pseudo_vma_destroy(&pvma);
1482 	if (page)
1483 		prep_transhuge_page(page);
1484 	return page;
1485 }
1486 
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1487 static struct page *shmem_alloc_page(gfp_t gfp,
1488 			struct shmem_inode_info *info, pgoff_t index)
1489 {
1490 	struct vm_area_struct pvma;
1491 	struct page *page;
1492 
1493 	shmem_pseudo_vma_init(&pvma, info, index);
1494 	page = alloc_page_vma(gfp, &pvma, 0);
1495 	shmem_pseudo_vma_destroy(&pvma);
1496 
1497 	return page;
1498 }
1499 
shmem_alloc_and_acct_page(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1500 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1501 		struct inode *inode,
1502 		pgoff_t index, bool huge)
1503 {
1504 	struct shmem_inode_info *info = SHMEM_I(inode);
1505 	struct page *page;
1506 	int nr;
1507 	int err = -ENOSPC;
1508 
1509 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1510 		huge = false;
1511 	nr = huge ? HPAGE_PMD_NR : 1;
1512 
1513 	if (!shmem_inode_acct_block(inode, nr))
1514 		goto failed;
1515 
1516 	if (huge)
1517 		page = shmem_alloc_hugepage(gfp, info, index);
1518 	else
1519 		page = shmem_alloc_page(gfp, info, index);
1520 	if (page) {
1521 		__SetPageLocked(page);
1522 		__SetPageSwapBacked(page);
1523 		return page;
1524 	}
1525 
1526 	err = -ENOMEM;
1527 	shmem_inode_unacct_blocks(inode, nr);
1528 failed:
1529 	return ERR_PTR(err);
1530 }
1531 
1532 /*
1533  * When a page is moved from swapcache to shmem filecache (either by the
1534  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1535  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1536  * ignorance of the mapping it belongs to.  If that mapping has special
1537  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1538  * we may need to copy to a suitable page before moving to filecache.
1539  *
1540  * In a future release, this may well be extended to respect cpuset and
1541  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1542  * but for now it is a simple matter of zone.
1543  */
shmem_should_replace_page(struct page * page,gfp_t gfp)1544 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1545 {
1546 	return page_zonenum(page) > gfp_zone(gfp);
1547 }
1548 
shmem_replace_page(struct page ** pagep,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1549 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1550 				struct shmem_inode_info *info, pgoff_t index)
1551 {
1552 	struct page *oldpage, *newpage;
1553 	struct address_space *swap_mapping;
1554 	swp_entry_t entry;
1555 	pgoff_t swap_index;
1556 	int error;
1557 
1558 	oldpage = *pagep;
1559 	entry.val = page_private(oldpage);
1560 	swap_index = swp_offset(entry);
1561 	swap_mapping = page_mapping(oldpage);
1562 
1563 	/*
1564 	 * We have arrived here because our zones are constrained, so don't
1565 	 * limit chance of success by further cpuset and node constraints.
1566 	 */
1567 	gfp &= ~GFP_CONSTRAINT_MASK;
1568 	newpage = shmem_alloc_page(gfp, info, index);
1569 	if (!newpage)
1570 		return -ENOMEM;
1571 
1572 	get_page(newpage);
1573 	copy_highpage(newpage, oldpage);
1574 	flush_dcache_page(newpage);
1575 
1576 	__SetPageLocked(newpage);
1577 	__SetPageSwapBacked(newpage);
1578 	SetPageUptodate(newpage);
1579 	set_page_private(newpage, entry.val);
1580 	SetPageSwapCache(newpage);
1581 
1582 	/*
1583 	 * Our caller will very soon move newpage out of swapcache, but it's
1584 	 * a nice clean interface for us to replace oldpage by newpage there.
1585 	 */
1586 	xa_lock_irq(&swap_mapping->i_pages);
1587 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1588 								   newpage);
1589 	if (!error) {
1590 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1591 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1592 	}
1593 	xa_unlock_irq(&swap_mapping->i_pages);
1594 
1595 	if (unlikely(error)) {
1596 		/*
1597 		 * Is this possible?  I think not, now that our callers check
1598 		 * both PageSwapCache and page_private after getting page lock;
1599 		 * but be defensive.  Reverse old to newpage for clear and free.
1600 		 */
1601 		oldpage = newpage;
1602 	} else {
1603 		mem_cgroup_migrate(oldpage, newpage);
1604 		lru_cache_add_anon(newpage);
1605 		*pagep = newpage;
1606 	}
1607 
1608 	ClearPageSwapCache(oldpage);
1609 	set_page_private(oldpage, 0);
1610 
1611 	unlock_page(oldpage);
1612 	put_page(oldpage);
1613 	put_page(oldpage);
1614 	return error;
1615 }
1616 
1617 /*
1618  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1619  *
1620  * If we allocate a new one we do not mark it dirty. That's up to the
1621  * vm. If we swap it in we mark it dirty since we also free the swap
1622  * entry since a page cannot live in both the swap and page cache.
1623  *
1624  * fault_mm and fault_type are only supplied by shmem_fault:
1625  * otherwise they are NULL.
1626  */
shmem_getpage_gfp(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1627 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1628 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1629 	struct vm_area_struct *vma, struct vm_fault *vmf,
1630 			vm_fault_t *fault_type)
1631 {
1632 	struct address_space *mapping = inode->i_mapping;
1633 	struct shmem_inode_info *info = SHMEM_I(inode);
1634 	struct shmem_sb_info *sbinfo;
1635 	struct mm_struct *charge_mm;
1636 	struct mem_cgroup *memcg;
1637 	struct page *page;
1638 	swp_entry_t swap;
1639 	enum sgp_type sgp_huge = sgp;
1640 	pgoff_t hindex = index;
1641 	int error;
1642 	int once = 0;
1643 	int alloced = 0;
1644 
1645 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1646 		return -EFBIG;
1647 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1648 		sgp = SGP_CACHE;
1649 repeat:
1650 	swap.val = 0;
1651 	page = find_lock_entry(mapping, index);
1652 	if (radix_tree_exceptional_entry(page)) {
1653 		swap = radix_to_swp_entry(page);
1654 		page = NULL;
1655 	}
1656 
1657 	if (sgp <= SGP_CACHE &&
1658 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1659 		error = -EINVAL;
1660 		goto unlock;
1661 	}
1662 
1663 	if (page && sgp == SGP_WRITE)
1664 		mark_page_accessed(page);
1665 
1666 	/* fallocated page? */
1667 	if (page && !PageUptodate(page)) {
1668 		if (sgp != SGP_READ)
1669 			goto clear;
1670 		unlock_page(page);
1671 		put_page(page);
1672 		page = NULL;
1673 	}
1674 	if (page || (sgp == SGP_READ && !swap.val)) {
1675 		*pagep = page;
1676 		return 0;
1677 	}
1678 
1679 	/*
1680 	 * Fast cache lookup did not find it:
1681 	 * bring it back from swap or allocate.
1682 	 */
1683 	sbinfo = SHMEM_SB(inode->i_sb);
1684 	charge_mm = vma ? vma->vm_mm : current->mm;
1685 
1686 	if (swap.val) {
1687 		/* Look it up and read it in.. */
1688 		page = lookup_swap_cache(swap, NULL, 0);
1689 		if (!page) {
1690 			/* Or update major stats only when swapin succeeds?? */
1691 			if (fault_type) {
1692 				*fault_type |= VM_FAULT_MAJOR;
1693 				count_vm_event(PGMAJFAULT);
1694 				count_memcg_event_mm(charge_mm, PGMAJFAULT);
1695 			}
1696 			/* Here we actually start the io */
1697 			page = shmem_swapin(swap, gfp, info, index);
1698 			if (!page) {
1699 				error = -ENOMEM;
1700 				goto failed;
1701 			}
1702 		}
1703 
1704 		/* We have to do this with page locked to prevent races */
1705 		lock_page(page);
1706 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1707 		    !shmem_confirm_swap(mapping, index, swap)) {
1708 			error = -EEXIST;	/* try again */
1709 			goto unlock;
1710 		}
1711 		if (!PageUptodate(page)) {
1712 			error = -EIO;
1713 			goto failed;
1714 		}
1715 		wait_on_page_writeback(page);
1716 
1717 		if (shmem_should_replace_page(page, gfp)) {
1718 			error = shmem_replace_page(&page, gfp, info, index);
1719 			if (error)
1720 				goto failed;
1721 		}
1722 
1723 		error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1724 				false);
1725 		if (!error) {
1726 			error = shmem_add_to_page_cache(page, mapping, index,
1727 						swp_to_radix_entry(swap));
1728 			/*
1729 			 * We already confirmed swap under page lock, and make
1730 			 * no memory allocation here, so usually no possibility
1731 			 * of error; but free_swap_and_cache() only trylocks a
1732 			 * page, so it is just possible that the entry has been
1733 			 * truncated or holepunched since swap was confirmed.
1734 			 * shmem_undo_range() will have done some of the
1735 			 * unaccounting, now delete_from_swap_cache() will do
1736 			 * the rest.
1737 			 * Reset swap.val? No, leave it so "failed" goes back to
1738 			 * "repeat": reading a hole and writing should succeed.
1739 			 */
1740 			if (error) {
1741 				mem_cgroup_cancel_charge(page, memcg, false);
1742 				delete_from_swap_cache(page);
1743 			}
1744 		}
1745 		if (error)
1746 			goto failed;
1747 
1748 		mem_cgroup_commit_charge(page, memcg, true, false);
1749 
1750 		spin_lock_irq(&info->lock);
1751 		info->swapped--;
1752 		shmem_recalc_inode(inode);
1753 		spin_unlock_irq(&info->lock);
1754 
1755 		if (sgp == SGP_WRITE)
1756 			mark_page_accessed(page);
1757 
1758 		delete_from_swap_cache(page);
1759 		set_page_dirty(page);
1760 		swap_free(swap);
1761 
1762 	} else {
1763 		if (vma && userfaultfd_missing(vma)) {
1764 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1765 			return 0;
1766 		}
1767 
1768 		/* shmem_symlink() */
1769 		if (mapping->a_ops != &shmem_aops)
1770 			goto alloc_nohuge;
1771 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1772 			goto alloc_nohuge;
1773 		if (shmem_huge == SHMEM_HUGE_FORCE)
1774 			goto alloc_huge;
1775 		switch (sbinfo->huge) {
1776 			loff_t i_size;
1777 			pgoff_t off;
1778 		case SHMEM_HUGE_NEVER:
1779 			goto alloc_nohuge;
1780 		case SHMEM_HUGE_WITHIN_SIZE:
1781 			off = round_up(index, HPAGE_PMD_NR);
1782 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1783 			if (i_size >= HPAGE_PMD_SIZE &&
1784 					i_size >> PAGE_SHIFT >= off)
1785 				goto alloc_huge;
1786 			/* fallthrough */
1787 		case SHMEM_HUGE_ADVISE:
1788 			if (sgp_huge == SGP_HUGE)
1789 				goto alloc_huge;
1790 			/* TODO: implement fadvise() hints */
1791 			goto alloc_nohuge;
1792 		}
1793 
1794 alloc_huge:
1795 		page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1796 		if (IS_ERR(page)) {
1797 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, inode,
1798 					index, false);
1799 		}
1800 		if (IS_ERR(page)) {
1801 			int retry = 5;
1802 			error = PTR_ERR(page);
1803 			page = NULL;
1804 			if (error != -ENOSPC)
1805 				goto failed;
1806 			/*
1807 			 * Try to reclaim some spece by splitting a huge page
1808 			 * beyond i_size on the filesystem.
1809 			 */
1810 			while (retry--) {
1811 				int ret;
1812 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1813 				if (ret == SHRINK_STOP)
1814 					break;
1815 				if (ret)
1816 					goto alloc_nohuge;
1817 			}
1818 			goto failed;
1819 		}
1820 
1821 		if (PageTransHuge(page))
1822 			hindex = round_down(index, HPAGE_PMD_NR);
1823 		else
1824 			hindex = index;
1825 
1826 		if (sgp == SGP_WRITE)
1827 			__SetPageReferenced(page);
1828 
1829 		error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1830 				PageTransHuge(page));
1831 		if (error)
1832 			goto unacct;
1833 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1834 				compound_order(page));
1835 		if (!error) {
1836 			error = shmem_add_to_page_cache(page, mapping, hindex,
1837 							NULL);
1838 			radix_tree_preload_end();
1839 		}
1840 		if (error) {
1841 			mem_cgroup_cancel_charge(page, memcg,
1842 					PageTransHuge(page));
1843 			goto unacct;
1844 		}
1845 		mem_cgroup_commit_charge(page, memcg, false,
1846 				PageTransHuge(page));
1847 		lru_cache_add_anon(page);
1848 
1849 		spin_lock_irq(&info->lock);
1850 		info->alloced += 1 << compound_order(page);
1851 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1852 		shmem_recalc_inode(inode);
1853 		spin_unlock_irq(&info->lock);
1854 		alloced = true;
1855 
1856 		if (PageTransHuge(page) &&
1857 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1858 				hindex + HPAGE_PMD_NR - 1) {
1859 			/*
1860 			 * Part of the huge page is beyond i_size: subject
1861 			 * to shrink under memory pressure.
1862 			 */
1863 			spin_lock(&sbinfo->shrinklist_lock);
1864 			/*
1865 			 * _careful to defend against unlocked access to
1866 			 * ->shrink_list in shmem_unused_huge_shrink()
1867 			 */
1868 			if (list_empty_careful(&info->shrinklist)) {
1869 				list_add_tail(&info->shrinklist,
1870 						&sbinfo->shrinklist);
1871 				sbinfo->shrinklist_len++;
1872 			}
1873 			spin_unlock(&sbinfo->shrinklist_lock);
1874 		}
1875 
1876 		/*
1877 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1878 		 */
1879 		if (sgp == SGP_FALLOC)
1880 			sgp = SGP_WRITE;
1881 clear:
1882 		/*
1883 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1884 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1885 		 * it now, lest undo on failure cancel our earlier guarantee.
1886 		 */
1887 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1888 			struct page *head = compound_head(page);
1889 			int i;
1890 
1891 			for (i = 0; i < (1 << compound_order(head)); i++) {
1892 				clear_highpage(head + i);
1893 				flush_dcache_page(head + i);
1894 			}
1895 			SetPageUptodate(head);
1896 		}
1897 	}
1898 
1899 	/* Perhaps the file has been truncated since we checked */
1900 	if (sgp <= SGP_CACHE &&
1901 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1902 		if (alloced) {
1903 			ClearPageDirty(page);
1904 			delete_from_page_cache(page);
1905 			spin_lock_irq(&info->lock);
1906 			shmem_recalc_inode(inode);
1907 			spin_unlock_irq(&info->lock);
1908 		}
1909 		error = -EINVAL;
1910 		goto unlock;
1911 	}
1912 	*pagep = page + index - hindex;
1913 	return 0;
1914 
1915 	/*
1916 	 * Error recovery.
1917 	 */
1918 unacct:
1919 	shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1920 
1921 	if (PageTransHuge(page)) {
1922 		unlock_page(page);
1923 		put_page(page);
1924 		goto alloc_nohuge;
1925 	}
1926 failed:
1927 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1928 		error = -EEXIST;
1929 unlock:
1930 	if (page) {
1931 		unlock_page(page);
1932 		put_page(page);
1933 	}
1934 	if (error == -ENOSPC && !once++) {
1935 		spin_lock_irq(&info->lock);
1936 		shmem_recalc_inode(inode);
1937 		spin_unlock_irq(&info->lock);
1938 		goto repeat;
1939 	}
1940 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1941 		goto repeat;
1942 	return error;
1943 }
1944 
1945 /*
1946  * This is like autoremove_wake_function, but it removes the wait queue
1947  * entry unconditionally - even if something else had already woken the
1948  * target.
1949  */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1950 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1951 {
1952 	int ret = default_wake_function(wait, mode, sync, key);
1953 	list_del_init(&wait->entry);
1954 	return ret;
1955 }
1956 
shmem_fault(struct vm_fault * vmf)1957 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1958 {
1959 	struct vm_area_struct *vma = vmf->vma;
1960 	struct inode *inode = file_inode(vma->vm_file);
1961 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1962 	enum sgp_type sgp;
1963 	int err;
1964 	vm_fault_t ret = VM_FAULT_LOCKED;
1965 
1966 	/*
1967 	 * Trinity finds that probing a hole which tmpfs is punching can
1968 	 * prevent the hole-punch from ever completing: which in turn
1969 	 * locks writers out with its hold on i_mutex.  So refrain from
1970 	 * faulting pages into the hole while it's being punched.  Although
1971 	 * shmem_undo_range() does remove the additions, it may be unable to
1972 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1973 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1974 	 *
1975 	 * It does not matter if we sometimes reach this check just before the
1976 	 * hole-punch begins, so that one fault then races with the punch:
1977 	 * we just need to make racing faults a rare case.
1978 	 *
1979 	 * The implementation below would be much simpler if we just used a
1980 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1981 	 * and bloating every shmem inode for this unlikely case would be sad.
1982 	 */
1983 	if (unlikely(inode->i_private)) {
1984 		struct shmem_falloc *shmem_falloc;
1985 
1986 		spin_lock(&inode->i_lock);
1987 		shmem_falloc = inode->i_private;
1988 		if (shmem_falloc &&
1989 		    shmem_falloc->waitq &&
1990 		    vmf->pgoff >= shmem_falloc->start &&
1991 		    vmf->pgoff < shmem_falloc->next) {
1992 			wait_queue_head_t *shmem_falloc_waitq;
1993 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1994 
1995 			ret = VM_FAULT_NOPAGE;
1996 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1997 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1998 				/* It's polite to up mmap_sem if we can */
1999 				up_read(&vma->vm_mm->mmap_sem);
2000 				ret = VM_FAULT_RETRY;
2001 			}
2002 
2003 			shmem_falloc_waitq = shmem_falloc->waitq;
2004 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2005 					TASK_UNINTERRUPTIBLE);
2006 			spin_unlock(&inode->i_lock);
2007 			schedule();
2008 
2009 			/*
2010 			 * shmem_falloc_waitq points into the shmem_fallocate()
2011 			 * stack of the hole-punching task: shmem_falloc_waitq
2012 			 * is usually invalid by the time we reach here, but
2013 			 * finish_wait() does not dereference it in that case;
2014 			 * though i_lock needed lest racing with wake_up_all().
2015 			 */
2016 			spin_lock(&inode->i_lock);
2017 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2018 			spin_unlock(&inode->i_lock);
2019 			return ret;
2020 		}
2021 		spin_unlock(&inode->i_lock);
2022 	}
2023 
2024 	sgp = SGP_CACHE;
2025 
2026 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2027 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2028 		sgp = SGP_NOHUGE;
2029 	else if (vma->vm_flags & VM_HUGEPAGE)
2030 		sgp = SGP_HUGE;
2031 
2032 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2033 				  gfp, vma, vmf, &ret);
2034 	if (err)
2035 		return vmf_error(err);
2036 	return ret;
2037 }
2038 
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2039 unsigned long shmem_get_unmapped_area(struct file *file,
2040 				      unsigned long uaddr, unsigned long len,
2041 				      unsigned long pgoff, unsigned long flags)
2042 {
2043 	unsigned long (*get_area)(struct file *,
2044 		unsigned long, unsigned long, unsigned long, unsigned long);
2045 	unsigned long addr;
2046 	unsigned long offset;
2047 	unsigned long inflated_len;
2048 	unsigned long inflated_addr;
2049 	unsigned long inflated_offset;
2050 
2051 	if (len > TASK_SIZE)
2052 		return -ENOMEM;
2053 
2054 	get_area = current->mm->get_unmapped_area;
2055 	addr = get_area(file, uaddr, len, pgoff, flags);
2056 
2057 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2058 		return addr;
2059 	if (IS_ERR_VALUE(addr))
2060 		return addr;
2061 	if (addr & ~PAGE_MASK)
2062 		return addr;
2063 	if (addr > TASK_SIZE - len)
2064 		return addr;
2065 
2066 	if (shmem_huge == SHMEM_HUGE_DENY)
2067 		return addr;
2068 	if (len < HPAGE_PMD_SIZE)
2069 		return addr;
2070 	if (flags & MAP_FIXED)
2071 		return addr;
2072 	/*
2073 	 * Our priority is to support MAP_SHARED mapped hugely;
2074 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2075 	 * But if caller specified an address hint and we allocated area there
2076 	 * successfully, respect that as before.
2077 	 */
2078 	if (uaddr == addr)
2079 		return addr;
2080 
2081 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2082 		struct super_block *sb;
2083 
2084 		if (file) {
2085 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2086 			sb = file_inode(file)->i_sb;
2087 		} else {
2088 			/*
2089 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2090 			 * for "/dev/zero", to create a shared anonymous object.
2091 			 */
2092 			if (IS_ERR(shm_mnt))
2093 				return addr;
2094 			sb = shm_mnt->mnt_sb;
2095 		}
2096 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2097 			return addr;
2098 	}
2099 
2100 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2101 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2102 		return addr;
2103 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2104 		return addr;
2105 
2106 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2107 	if (inflated_len > TASK_SIZE)
2108 		return addr;
2109 	if (inflated_len < len)
2110 		return addr;
2111 
2112 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2113 	if (IS_ERR_VALUE(inflated_addr))
2114 		return addr;
2115 	if (inflated_addr & ~PAGE_MASK)
2116 		return addr;
2117 
2118 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2119 	inflated_addr += offset - inflated_offset;
2120 	if (inflated_offset > offset)
2121 		inflated_addr += HPAGE_PMD_SIZE;
2122 
2123 	if (inflated_addr > TASK_SIZE - len)
2124 		return addr;
2125 	return inflated_addr;
2126 }
2127 
2128 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2129 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2130 {
2131 	struct inode *inode = file_inode(vma->vm_file);
2132 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2133 }
2134 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2135 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2136 					  unsigned long addr)
2137 {
2138 	struct inode *inode = file_inode(vma->vm_file);
2139 	pgoff_t index;
2140 
2141 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2142 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2143 }
2144 #endif
2145 
shmem_lock(struct file * file,int lock,struct user_struct * user)2146 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2147 {
2148 	struct inode *inode = file_inode(file);
2149 	struct shmem_inode_info *info = SHMEM_I(inode);
2150 	int retval = -ENOMEM;
2151 
2152 	/*
2153 	 * What serializes the accesses to info->flags?
2154 	 * ipc_lock_object() when called from shmctl_do_lock(),
2155 	 * no serialization needed when called from shm_destroy().
2156 	 */
2157 	if (lock && !(info->flags & VM_LOCKED)) {
2158 		if (!user_shm_lock(inode->i_size, user))
2159 			goto out_nomem;
2160 		info->flags |= VM_LOCKED;
2161 		mapping_set_unevictable(file->f_mapping);
2162 	}
2163 	if (!lock && (info->flags & VM_LOCKED) && user) {
2164 		user_shm_unlock(inode->i_size, user);
2165 		info->flags &= ~VM_LOCKED;
2166 		mapping_clear_unevictable(file->f_mapping);
2167 	}
2168 	retval = 0;
2169 
2170 out_nomem:
2171 	return retval;
2172 }
2173 
shmem_mmap(struct file * file,struct vm_area_struct * vma)2174 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2175 {
2176 	file_accessed(file);
2177 	vma->vm_ops = &shmem_vm_ops;
2178 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2179 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2180 			(vma->vm_end & HPAGE_PMD_MASK)) {
2181 		khugepaged_enter(vma, vma->vm_flags);
2182 	}
2183 	return 0;
2184 }
2185 
shmem_get_inode(struct super_block * sb,const struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2186 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2187 				     umode_t mode, dev_t dev, unsigned long flags)
2188 {
2189 	struct inode *inode;
2190 	struct shmem_inode_info *info;
2191 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2192 
2193 	if (shmem_reserve_inode(sb))
2194 		return NULL;
2195 
2196 	inode = new_inode(sb);
2197 	if (inode) {
2198 		inode->i_ino = get_next_ino();
2199 		inode_init_owner(inode, dir, mode);
2200 		inode->i_blocks = 0;
2201 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2202 		inode->i_generation = prandom_u32();
2203 		info = SHMEM_I(inode);
2204 		memset(info, 0, (char *)inode - (char *)info);
2205 		spin_lock_init(&info->lock);
2206 		info->seals = F_SEAL_SEAL;
2207 		info->flags = flags & VM_NORESERVE;
2208 		INIT_LIST_HEAD(&info->shrinklist);
2209 		INIT_LIST_HEAD(&info->swaplist);
2210 		simple_xattrs_init(&info->xattrs);
2211 		cache_no_acl(inode);
2212 
2213 		switch (mode & S_IFMT) {
2214 		default:
2215 			inode->i_op = &shmem_special_inode_operations;
2216 			init_special_inode(inode, mode, dev);
2217 			break;
2218 		case S_IFREG:
2219 			inode->i_mapping->a_ops = &shmem_aops;
2220 			inode->i_op = &shmem_inode_operations;
2221 			inode->i_fop = &shmem_file_operations;
2222 			mpol_shared_policy_init(&info->policy,
2223 						 shmem_get_sbmpol(sbinfo));
2224 			break;
2225 		case S_IFDIR:
2226 			inc_nlink(inode);
2227 			/* Some things misbehave if size == 0 on a directory */
2228 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2229 			inode->i_op = &shmem_dir_inode_operations;
2230 			inode->i_fop = &simple_dir_operations;
2231 			break;
2232 		case S_IFLNK:
2233 			/*
2234 			 * Must not load anything in the rbtree,
2235 			 * mpol_free_shared_policy will not be called.
2236 			 */
2237 			mpol_shared_policy_init(&info->policy, NULL);
2238 			break;
2239 		}
2240 
2241 		lockdep_annotate_inode_mutex_key(inode);
2242 	} else
2243 		shmem_free_inode(sb);
2244 	return inode;
2245 }
2246 
shmem_mapping(struct address_space * mapping)2247 bool shmem_mapping(struct address_space *mapping)
2248 {
2249 	return mapping->a_ops == &shmem_aops;
2250 }
2251 
shmem_mfill_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,bool zeropage,struct page ** pagep)2252 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2253 				  pmd_t *dst_pmd,
2254 				  struct vm_area_struct *dst_vma,
2255 				  unsigned long dst_addr,
2256 				  unsigned long src_addr,
2257 				  bool zeropage,
2258 				  struct page **pagep)
2259 {
2260 	struct inode *inode = file_inode(dst_vma->vm_file);
2261 	struct shmem_inode_info *info = SHMEM_I(inode);
2262 	struct address_space *mapping = inode->i_mapping;
2263 	gfp_t gfp = mapping_gfp_mask(mapping);
2264 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2265 	struct mem_cgroup *memcg;
2266 	spinlock_t *ptl;
2267 	void *page_kaddr;
2268 	struct page *page;
2269 	pte_t _dst_pte, *dst_pte;
2270 	int ret;
2271 	pgoff_t offset, max_off;
2272 
2273 	ret = -ENOMEM;
2274 	if (!shmem_inode_acct_block(inode, 1))
2275 		goto out;
2276 
2277 	if (!*pagep) {
2278 		page = shmem_alloc_page(gfp, info, pgoff);
2279 		if (!page)
2280 			goto out_unacct_blocks;
2281 
2282 		if (!zeropage) {	/* mcopy_atomic */
2283 			page_kaddr = kmap_atomic(page);
2284 			ret = copy_from_user(page_kaddr,
2285 					     (const void __user *)src_addr,
2286 					     PAGE_SIZE);
2287 			kunmap_atomic(page_kaddr);
2288 
2289 			/* fallback to copy_from_user outside mmap_sem */
2290 			if (unlikely(ret)) {
2291 				*pagep = page;
2292 				shmem_inode_unacct_blocks(inode, 1);
2293 				/* don't free the page */
2294 				return -ENOENT;
2295 			}
2296 		} else {		/* mfill_zeropage_atomic */
2297 			clear_highpage(page);
2298 		}
2299 	} else {
2300 		page = *pagep;
2301 		*pagep = NULL;
2302 	}
2303 
2304 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2305 	__SetPageLocked(page);
2306 	__SetPageSwapBacked(page);
2307 	__SetPageUptodate(page);
2308 
2309 	ret = -EFAULT;
2310 	offset = linear_page_index(dst_vma, dst_addr);
2311 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2312 	if (unlikely(offset >= max_off))
2313 		goto out_release;
2314 
2315 	ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2316 	if (ret)
2317 		goto out_release;
2318 
2319 	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2320 	if (!ret) {
2321 		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2322 		radix_tree_preload_end();
2323 	}
2324 	if (ret)
2325 		goto out_release_uncharge;
2326 
2327 	mem_cgroup_commit_charge(page, memcg, false, false);
2328 
2329 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2330 	if (dst_vma->vm_flags & VM_WRITE)
2331 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2332 	else {
2333 		/*
2334 		 * We don't set the pte dirty if the vma has no
2335 		 * VM_WRITE permission, so mark the page dirty or it
2336 		 * could be freed from under us. We could do it
2337 		 * unconditionally before unlock_page(), but doing it
2338 		 * only if VM_WRITE is not set is faster.
2339 		 */
2340 		set_page_dirty(page);
2341 	}
2342 
2343 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2344 
2345 	ret = -EFAULT;
2346 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2347 	if (unlikely(offset >= max_off))
2348 		goto out_release_uncharge_unlock;
2349 
2350 	ret = -EEXIST;
2351 	if (!pte_none(*dst_pte))
2352 		goto out_release_uncharge_unlock;
2353 
2354 	lru_cache_add_anon(page);
2355 
2356 	spin_lock_irq(&info->lock);
2357 	info->alloced++;
2358 	inode->i_blocks += BLOCKS_PER_PAGE;
2359 	shmem_recalc_inode(inode);
2360 	spin_unlock_irq(&info->lock);
2361 
2362 	inc_mm_counter(dst_mm, mm_counter_file(page));
2363 	page_add_file_rmap(page, false);
2364 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2365 
2366 	/* No need to invalidate - it was non-present before */
2367 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2368 	pte_unmap_unlock(dst_pte, ptl);
2369 	unlock_page(page);
2370 	ret = 0;
2371 out:
2372 	return ret;
2373 out_release_uncharge_unlock:
2374 	pte_unmap_unlock(dst_pte, ptl);
2375 	ClearPageDirty(page);
2376 	delete_from_page_cache(page);
2377 out_release_uncharge:
2378 	mem_cgroup_cancel_charge(page, memcg, false);
2379 out_release:
2380 	unlock_page(page);
2381 	put_page(page);
2382 out_unacct_blocks:
2383 	shmem_inode_unacct_blocks(inode, 1);
2384 	goto out;
2385 }
2386 
shmem_mcopy_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,struct page ** pagep)2387 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2388 			   pmd_t *dst_pmd,
2389 			   struct vm_area_struct *dst_vma,
2390 			   unsigned long dst_addr,
2391 			   unsigned long src_addr,
2392 			   struct page **pagep)
2393 {
2394 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2395 				      dst_addr, src_addr, false, pagep);
2396 }
2397 
shmem_mfill_zeropage_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr)2398 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2399 			     pmd_t *dst_pmd,
2400 			     struct vm_area_struct *dst_vma,
2401 			     unsigned long dst_addr)
2402 {
2403 	struct page *page = NULL;
2404 
2405 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2406 				      dst_addr, 0, true, &page);
2407 }
2408 
2409 #ifdef CONFIG_TMPFS
2410 static const struct inode_operations shmem_symlink_inode_operations;
2411 static const struct inode_operations shmem_short_symlink_operations;
2412 
2413 #ifdef CONFIG_TMPFS_XATTR
2414 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2415 #else
2416 #define shmem_initxattrs NULL
2417 #endif
2418 
2419 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2420 shmem_write_begin(struct file *file, struct address_space *mapping,
2421 			loff_t pos, unsigned len, unsigned flags,
2422 			struct page **pagep, void **fsdata)
2423 {
2424 	struct inode *inode = mapping->host;
2425 	struct shmem_inode_info *info = SHMEM_I(inode);
2426 	pgoff_t index = pos >> PAGE_SHIFT;
2427 
2428 	/* i_mutex is held by caller */
2429 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2430 		if (info->seals & F_SEAL_WRITE)
2431 			return -EPERM;
2432 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2433 			return -EPERM;
2434 	}
2435 
2436 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2437 }
2438 
2439 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2440 shmem_write_end(struct file *file, struct address_space *mapping,
2441 			loff_t pos, unsigned len, unsigned copied,
2442 			struct page *page, void *fsdata)
2443 {
2444 	struct inode *inode = mapping->host;
2445 
2446 	if (pos + copied > inode->i_size)
2447 		i_size_write(inode, pos + copied);
2448 
2449 	if (!PageUptodate(page)) {
2450 		struct page *head = compound_head(page);
2451 		if (PageTransCompound(page)) {
2452 			int i;
2453 
2454 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2455 				if (head + i == page)
2456 					continue;
2457 				clear_highpage(head + i);
2458 				flush_dcache_page(head + i);
2459 			}
2460 		}
2461 		if (copied < PAGE_SIZE) {
2462 			unsigned from = pos & (PAGE_SIZE - 1);
2463 			zero_user_segments(page, 0, from,
2464 					from + copied, PAGE_SIZE);
2465 		}
2466 		SetPageUptodate(head);
2467 	}
2468 	set_page_dirty(page);
2469 	unlock_page(page);
2470 	put_page(page);
2471 
2472 	return copied;
2473 }
2474 
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2475 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2476 {
2477 	struct file *file = iocb->ki_filp;
2478 	struct inode *inode = file_inode(file);
2479 	struct address_space *mapping = inode->i_mapping;
2480 	pgoff_t index;
2481 	unsigned long offset;
2482 	enum sgp_type sgp = SGP_READ;
2483 	int error = 0;
2484 	ssize_t retval = 0;
2485 	loff_t *ppos = &iocb->ki_pos;
2486 
2487 	/*
2488 	 * Might this read be for a stacking filesystem?  Then when reading
2489 	 * holes of a sparse file, we actually need to allocate those pages,
2490 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2491 	 */
2492 	if (!iter_is_iovec(to))
2493 		sgp = SGP_CACHE;
2494 
2495 	index = *ppos >> PAGE_SHIFT;
2496 	offset = *ppos & ~PAGE_MASK;
2497 
2498 	for (;;) {
2499 		struct page *page = NULL;
2500 		pgoff_t end_index;
2501 		unsigned long nr, ret;
2502 		loff_t i_size = i_size_read(inode);
2503 
2504 		end_index = i_size >> PAGE_SHIFT;
2505 		if (index > end_index)
2506 			break;
2507 		if (index == end_index) {
2508 			nr = i_size & ~PAGE_MASK;
2509 			if (nr <= offset)
2510 				break;
2511 		}
2512 
2513 		error = shmem_getpage(inode, index, &page, sgp);
2514 		if (error) {
2515 			if (error == -EINVAL)
2516 				error = 0;
2517 			break;
2518 		}
2519 		if (page) {
2520 			if (sgp == SGP_CACHE)
2521 				set_page_dirty(page);
2522 			unlock_page(page);
2523 		}
2524 
2525 		/*
2526 		 * We must evaluate after, since reads (unlike writes)
2527 		 * are called without i_mutex protection against truncate
2528 		 */
2529 		nr = PAGE_SIZE;
2530 		i_size = i_size_read(inode);
2531 		end_index = i_size >> PAGE_SHIFT;
2532 		if (index == end_index) {
2533 			nr = i_size & ~PAGE_MASK;
2534 			if (nr <= offset) {
2535 				if (page)
2536 					put_page(page);
2537 				break;
2538 			}
2539 		}
2540 		nr -= offset;
2541 
2542 		if (page) {
2543 			/*
2544 			 * If users can be writing to this page using arbitrary
2545 			 * virtual addresses, take care about potential aliasing
2546 			 * before reading the page on the kernel side.
2547 			 */
2548 			if (mapping_writably_mapped(mapping))
2549 				flush_dcache_page(page);
2550 			/*
2551 			 * Mark the page accessed if we read the beginning.
2552 			 */
2553 			if (!offset)
2554 				mark_page_accessed(page);
2555 		} else {
2556 			page = ZERO_PAGE(0);
2557 			get_page(page);
2558 		}
2559 
2560 		/*
2561 		 * Ok, we have the page, and it's up-to-date, so
2562 		 * now we can copy it to user space...
2563 		 */
2564 		ret = copy_page_to_iter(page, offset, nr, to);
2565 		retval += ret;
2566 		offset += ret;
2567 		index += offset >> PAGE_SHIFT;
2568 		offset &= ~PAGE_MASK;
2569 
2570 		put_page(page);
2571 		if (!iov_iter_count(to))
2572 			break;
2573 		if (ret < nr) {
2574 			error = -EFAULT;
2575 			break;
2576 		}
2577 		cond_resched();
2578 	}
2579 
2580 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2581 	file_accessed(file);
2582 	return retval ? retval : error;
2583 }
2584 
2585 /*
2586  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2587  */
shmem_seek_hole_data(struct address_space * mapping,pgoff_t index,pgoff_t end,int whence)2588 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2589 				    pgoff_t index, pgoff_t end, int whence)
2590 {
2591 	struct page *page;
2592 	struct pagevec pvec;
2593 	pgoff_t indices[PAGEVEC_SIZE];
2594 	bool done = false;
2595 	int i;
2596 
2597 	pagevec_init(&pvec);
2598 	pvec.nr = 1;		/* start small: we may be there already */
2599 	while (!done) {
2600 		pvec.nr = find_get_entries(mapping, index,
2601 					pvec.nr, pvec.pages, indices);
2602 		if (!pvec.nr) {
2603 			if (whence == SEEK_DATA)
2604 				index = end;
2605 			break;
2606 		}
2607 		for (i = 0; i < pvec.nr; i++, index++) {
2608 			if (index < indices[i]) {
2609 				if (whence == SEEK_HOLE) {
2610 					done = true;
2611 					break;
2612 				}
2613 				index = indices[i];
2614 			}
2615 			page = pvec.pages[i];
2616 			if (page && !radix_tree_exceptional_entry(page)) {
2617 				if (!PageUptodate(page))
2618 					page = NULL;
2619 			}
2620 			if (index >= end ||
2621 			    (page && whence == SEEK_DATA) ||
2622 			    (!page && whence == SEEK_HOLE)) {
2623 				done = true;
2624 				break;
2625 			}
2626 		}
2627 		pagevec_remove_exceptionals(&pvec);
2628 		pagevec_release(&pvec);
2629 		pvec.nr = PAGEVEC_SIZE;
2630 		cond_resched();
2631 	}
2632 	return index;
2633 }
2634 
shmem_file_llseek(struct file * file,loff_t offset,int whence)2635 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2636 {
2637 	struct address_space *mapping = file->f_mapping;
2638 	struct inode *inode = mapping->host;
2639 	pgoff_t start, end;
2640 	loff_t new_offset;
2641 
2642 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2643 		return generic_file_llseek_size(file, offset, whence,
2644 					MAX_LFS_FILESIZE, i_size_read(inode));
2645 	inode_lock(inode);
2646 	/* We're holding i_mutex so we can access i_size directly */
2647 
2648 	if (offset < 0 || offset >= inode->i_size)
2649 		offset = -ENXIO;
2650 	else {
2651 		start = offset >> PAGE_SHIFT;
2652 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2653 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2654 		new_offset <<= PAGE_SHIFT;
2655 		if (new_offset > offset) {
2656 			if (new_offset < inode->i_size)
2657 				offset = new_offset;
2658 			else if (whence == SEEK_DATA)
2659 				offset = -ENXIO;
2660 			else
2661 				offset = inode->i_size;
2662 		}
2663 	}
2664 
2665 	if (offset >= 0)
2666 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2667 	inode_unlock(inode);
2668 	return offset;
2669 }
2670 
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2671 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2672 							 loff_t len)
2673 {
2674 	struct inode *inode = file_inode(file);
2675 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2676 	struct shmem_inode_info *info = SHMEM_I(inode);
2677 	struct shmem_falloc shmem_falloc;
2678 	pgoff_t start, index, end;
2679 	int error;
2680 
2681 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2682 		return -EOPNOTSUPP;
2683 
2684 	inode_lock(inode);
2685 
2686 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2687 		struct address_space *mapping = file->f_mapping;
2688 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2689 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2690 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2691 
2692 		/* protected by i_mutex */
2693 		if (info->seals & F_SEAL_WRITE) {
2694 			error = -EPERM;
2695 			goto out;
2696 		}
2697 
2698 		shmem_falloc.waitq = &shmem_falloc_waitq;
2699 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2700 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2701 		spin_lock(&inode->i_lock);
2702 		inode->i_private = &shmem_falloc;
2703 		spin_unlock(&inode->i_lock);
2704 
2705 		if ((u64)unmap_end > (u64)unmap_start)
2706 			unmap_mapping_range(mapping, unmap_start,
2707 					    1 + unmap_end - unmap_start, 0);
2708 		shmem_truncate_range(inode, offset, offset + len - 1);
2709 		/* No need to unmap again: hole-punching leaves COWed pages */
2710 
2711 		spin_lock(&inode->i_lock);
2712 		inode->i_private = NULL;
2713 		wake_up_all(&shmem_falloc_waitq);
2714 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2715 		spin_unlock(&inode->i_lock);
2716 		error = 0;
2717 		goto out;
2718 	}
2719 
2720 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2721 	error = inode_newsize_ok(inode, offset + len);
2722 	if (error)
2723 		goto out;
2724 
2725 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2726 		error = -EPERM;
2727 		goto out;
2728 	}
2729 
2730 	start = offset >> PAGE_SHIFT;
2731 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2732 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2733 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2734 		error = -ENOSPC;
2735 		goto out;
2736 	}
2737 
2738 	shmem_falloc.waitq = NULL;
2739 	shmem_falloc.start = start;
2740 	shmem_falloc.next  = start;
2741 	shmem_falloc.nr_falloced = 0;
2742 	shmem_falloc.nr_unswapped = 0;
2743 	spin_lock(&inode->i_lock);
2744 	inode->i_private = &shmem_falloc;
2745 	spin_unlock(&inode->i_lock);
2746 
2747 	for (index = start; index < end; index++) {
2748 		struct page *page;
2749 
2750 		/*
2751 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2752 		 * been interrupted because we are using up too much memory.
2753 		 */
2754 		if (signal_pending(current))
2755 			error = -EINTR;
2756 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2757 			error = -ENOMEM;
2758 		else
2759 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2760 		if (error) {
2761 			/* Remove the !PageUptodate pages we added */
2762 			if (index > start) {
2763 				shmem_undo_range(inode,
2764 				    (loff_t)start << PAGE_SHIFT,
2765 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2766 			}
2767 			goto undone;
2768 		}
2769 
2770 		/*
2771 		 * Inform shmem_writepage() how far we have reached.
2772 		 * No need for lock or barrier: we have the page lock.
2773 		 */
2774 		shmem_falloc.next++;
2775 		if (!PageUptodate(page))
2776 			shmem_falloc.nr_falloced++;
2777 
2778 		/*
2779 		 * If !PageUptodate, leave it that way so that freeable pages
2780 		 * can be recognized if we need to rollback on error later.
2781 		 * But set_page_dirty so that memory pressure will swap rather
2782 		 * than free the pages we are allocating (and SGP_CACHE pages
2783 		 * might still be clean: we now need to mark those dirty too).
2784 		 */
2785 		set_page_dirty(page);
2786 		unlock_page(page);
2787 		put_page(page);
2788 		cond_resched();
2789 	}
2790 
2791 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2792 		i_size_write(inode, offset + len);
2793 	inode->i_ctime = current_time(inode);
2794 undone:
2795 	spin_lock(&inode->i_lock);
2796 	inode->i_private = NULL;
2797 	spin_unlock(&inode->i_lock);
2798 out:
2799 	inode_unlock(inode);
2800 	return error;
2801 }
2802 
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2803 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2804 {
2805 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2806 
2807 	buf->f_type = TMPFS_MAGIC;
2808 	buf->f_bsize = PAGE_SIZE;
2809 	buf->f_namelen = NAME_MAX;
2810 	if (sbinfo->max_blocks) {
2811 		buf->f_blocks = sbinfo->max_blocks;
2812 		buf->f_bavail =
2813 		buf->f_bfree  = sbinfo->max_blocks -
2814 				percpu_counter_sum(&sbinfo->used_blocks);
2815 	}
2816 	if (sbinfo->max_inodes) {
2817 		buf->f_files = sbinfo->max_inodes;
2818 		buf->f_ffree = sbinfo->free_inodes;
2819 	}
2820 	/* else leave those fields 0 like simple_statfs */
2821 	return 0;
2822 }
2823 
2824 /*
2825  * File creation. Allocate an inode, and we're done..
2826  */
2827 static int
shmem_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2828 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2829 {
2830 	struct inode *inode;
2831 	int error = -ENOSPC;
2832 
2833 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2834 	if (inode) {
2835 		error = simple_acl_create(dir, inode);
2836 		if (error)
2837 			goto out_iput;
2838 		error = security_inode_init_security(inode, dir,
2839 						     &dentry->d_name,
2840 						     shmem_initxattrs, NULL);
2841 		if (error && error != -EOPNOTSUPP)
2842 			goto out_iput;
2843 
2844 		error = 0;
2845 		dir->i_size += BOGO_DIRENT_SIZE;
2846 		dir->i_ctime = dir->i_mtime = current_time(dir);
2847 		d_instantiate(dentry, inode);
2848 		dget(dentry); /* Extra count - pin the dentry in core */
2849 	}
2850 	return error;
2851 out_iput:
2852 	iput(inode);
2853 	return error;
2854 }
2855 
2856 static int
shmem_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)2857 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2858 {
2859 	struct inode *inode;
2860 	int error = -ENOSPC;
2861 
2862 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2863 	if (inode) {
2864 		error = security_inode_init_security(inode, dir,
2865 						     NULL,
2866 						     shmem_initxattrs, NULL);
2867 		if (error && error != -EOPNOTSUPP)
2868 			goto out_iput;
2869 		error = simple_acl_create(dir, inode);
2870 		if (error)
2871 			goto out_iput;
2872 		d_tmpfile(dentry, inode);
2873 	}
2874 	return error;
2875 out_iput:
2876 	iput(inode);
2877 	return error;
2878 }
2879 
shmem_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2880 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2881 {
2882 	int error;
2883 
2884 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2885 		return error;
2886 	inc_nlink(dir);
2887 	return 0;
2888 }
2889 
shmem_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2890 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2891 		bool excl)
2892 {
2893 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2894 }
2895 
2896 /*
2897  * Link a file..
2898  */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2899 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2900 {
2901 	struct inode *inode = d_inode(old_dentry);
2902 	int ret = 0;
2903 
2904 	/*
2905 	 * No ordinary (disk based) filesystem counts links as inodes;
2906 	 * but each new link needs a new dentry, pinning lowmem, and
2907 	 * tmpfs dentries cannot be pruned until they are unlinked.
2908 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2909 	 * first link must skip that, to get the accounting right.
2910 	 */
2911 	if (inode->i_nlink) {
2912 		ret = shmem_reserve_inode(inode->i_sb);
2913 		if (ret)
2914 			goto out;
2915 	}
2916 
2917 	dir->i_size += BOGO_DIRENT_SIZE;
2918 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2919 	inc_nlink(inode);
2920 	ihold(inode);	/* New dentry reference */
2921 	dget(dentry);		/* Extra pinning count for the created dentry */
2922 	d_instantiate(dentry, inode);
2923 out:
2924 	return ret;
2925 }
2926 
shmem_unlink(struct inode * dir,struct dentry * dentry)2927 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2928 {
2929 	struct inode *inode = d_inode(dentry);
2930 
2931 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2932 		shmem_free_inode(inode->i_sb);
2933 
2934 	dir->i_size -= BOGO_DIRENT_SIZE;
2935 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2936 	drop_nlink(inode);
2937 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2938 	return 0;
2939 }
2940 
shmem_rmdir(struct inode * dir,struct dentry * dentry)2941 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2942 {
2943 	if (!simple_empty(dentry))
2944 		return -ENOTEMPTY;
2945 
2946 	drop_nlink(d_inode(dentry));
2947 	drop_nlink(dir);
2948 	return shmem_unlink(dir, dentry);
2949 }
2950 
shmem_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)2951 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2952 {
2953 	bool old_is_dir = d_is_dir(old_dentry);
2954 	bool new_is_dir = d_is_dir(new_dentry);
2955 
2956 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2957 		if (old_is_dir) {
2958 			drop_nlink(old_dir);
2959 			inc_nlink(new_dir);
2960 		} else {
2961 			drop_nlink(new_dir);
2962 			inc_nlink(old_dir);
2963 		}
2964 	}
2965 	old_dir->i_ctime = old_dir->i_mtime =
2966 	new_dir->i_ctime = new_dir->i_mtime =
2967 	d_inode(old_dentry)->i_ctime =
2968 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2969 
2970 	return 0;
2971 }
2972 
shmem_whiteout(struct inode * old_dir,struct dentry * old_dentry)2973 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2974 {
2975 	struct dentry *whiteout;
2976 	int error;
2977 
2978 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2979 	if (!whiteout)
2980 		return -ENOMEM;
2981 
2982 	error = shmem_mknod(old_dir, whiteout,
2983 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2984 	dput(whiteout);
2985 	if (error)
2986 		return error;
2987 
2988 	/*
2989 	 * Cheat and hash the whiteout while the old dentry is still in
2990 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991 	 *
2992 	 * d_lookup() will consistently find one of them at this point,
2993 	 * not sure which one, but that isn't even important.
2994 	 */
2995 	d_rehash(whiteout);
2996 	return 0;
2997 }
2998 
2999 /*
3000  * The VFS layer already does all the dentry stuff for rename,
3001  * we just have to decrement the usage count for the target if
3002  * it exists so that the VFS layer correctly free's it when it
3003  * gets overwritten.
3004  */
shmem_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3005 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3006 {
3007 	struct inode *inode = d_inode(old_dentry);
3008 	int they_are_dirs = S_ISDIR(inode->i_mode);
3009 
3010 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3011 		return -EINVAL;
3012 
3013 	if (flags & RENAME_EXCHANGE)
3014 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3015 
3016 	if (!simple_empty(new_dentry))
3017 		return -ENOTEMPTY;
3018 
3019 	if (flags & RENAME_WHITEOUT) {
3020 		int error;
3021 
3022 		error = shmem_whiteout(old_dir, old_dentry);
3023 		if (error)
3024 			return error;
3025 	}
3026 
3027 	if (d_really_is_positive(new_dentry)) {
3028 		(void) shmem_unlink(new_dir, new_dentry);
3029 		if (they_are_dirs) {
3030 			drop_nlink(d_inode(new_dentry));
3031 			drop_nlink(old_dir);
3032 		}
3033 	} else if (they_are_dirs) {
3034 		drop_nlink(old_dir);
3035 		inc_nlink(new_dir);
3036 	}
3037 
3038 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3039 	new_dir->i_size += BOGO_DIRENT_SIZE;
3040 	old_dir->i_ctime = old_dir->i_mtime =
3041 	new_dir->i_ctime = new_dir->i_mtime =
3042 	inode->i_ctime = current_time(old_dir);
3043 	return 0;
3044 }
3045 
shmem_symlink(struct inode * dir,struct dentry * dentry,const char * symname)3046 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3047 {
3048 	int error;
3049 	int len;
3050 	struct inode *inode;
3051 	struct page *page;
3052 
3053 	len = strlen(symname) + 1;
3054 	if (len > PAGE_SIZE)
3055 		return -ENAMETOOLONG;
3056 
3057 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3058 				VM_NORESERVE);
3059 	if (!inode)
3060 		return -ENOSPC;
3061 
3062 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3063 					     shmem_initxattrs, NULL);
3064 	if (error) {
3065 		if (error != -EOPNOTSUPP) {
3066 			iput(inode);
3067 			return error;
3068 		}
3069 		error = 0;
3070 	}
3071 
3072 	inode->i_size = len-1;
3073 	if (len <= SHORT_SYMLINK_LEN) {
3074 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3075 		if (!inode->i_link) {
3076 			iput(inode);
3077 			return -ENOMEM;
3078 		}
3079 		inode->i_op = &shmem_short_symlink_operations;
3080 	} else {
3081 		inode_nohighmem(inode);
3082 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3083 		if (error) {
3084 			iput(inode);
3085 			return error;
3086 		}
3087 		inode->i_mapping->a_ops = &shmem_aops;
3088 		inode->i_op = &shmem_symlink_inode_operations;
3089 		memcpy(page_address(page), symname, len);
3090 		SetPageUptodate(page);
3091 		set_page_dirty(page);
3092 		unlock_page(page);
3093 		put_page(page);
3094 	}
3095 	dir->i_size += BOGO_DIRENT_SIZE;
3096 	dir->i_ctime = dir->i_mtime = current_time(dir);
3097 	d_instantiate(dentry, inode);
3098 	dget(dentry);
3099 	return 0;
3100 }
3101 
shmem_put_link(void * arg)3102 static void shmem_put_link(void *arg)
3103 {
3104 	mark_page_accessed(arg);
3105 	put_page(arg);
3106 }
3107 
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3108 static const char *shmem_get_link(struct dentry *dentry,
3109 				  struct inode *inode,
3110 				  struct delayed_call *done)
3111 {
3112 	struct page *page = NULL;
3113 	int error;
3114 	if (!dentry) {
3115 		page = find_get_page(inode->i_mapping, 0);
3116 		if (!page)
3117 			return ERR_PTR(-ECHILD);
3118 		if (!PageUptodate(page)) {
3119 			put_page(page);
3120 			return ERR_PTR(-ECHILD);
3121 		}
3122 	} else {
3123 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3124 		if (error)
3125 			return ERR_PTR(error);
3126 		unlock_page(page);
3127 	}
3128 	set_delayed_call(done, shmem_put_link, page);
3129 	return page_address(page);
3130 }
3131 
3132 #ifdef CONFIG_TMPFS_XATTR
3133 /*
3134  * Superblocks without xattr inode operations may get some security.* xattr
3135  * support from the LSM "for free". As soon as we have any other xattrs
3136  * like ACLs, we also need to implement the security.* handlers at
3137  * filesystem level, though.
3138  */
3139 
3140 /*
3141  * Callback for security_inode_init_security() for acquiring xattrs.
3142  */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3143 static int shmem_initxattrs(struct inode *inode,
3144 			    const struct xattr *xattr_array,
3145 			    void *fs_info)
3146 {
3147 	struct shmem_inode_info *info = SHMEM_I(inode);
3148 	const struct xattr *xattr;
3149 	struct simple_xattr *new_xattr;
3150 	size_t len;
3151 
3152 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3153 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3154 		if (!new_xattr)
3155 			return -ENOMEM;
3156 
3157 		len = strlen(xattr->name) + 1;
3158 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3159 					  GFP_KERNEL);
3160 		if (!new_xattr->name) {
3161 			kfree(new_xattr);
3162 			return -ENOMEM;
3163 		}
3164 
3165 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3166 		       XATTR_SECURITY_PREFIX_LEN);
3167 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3168 		       xattr->name, len);
3169 
3170 		simple_xattr_list_add(&info->xattrs, new_xattr);
3171 	}
3172 
3173 	return 0;
3174 }
3175 
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3176 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3177 				   struct dentry *unused, struct inode *inode,
3178 				   const char *name, void *buffer, size_t size)
3179 {
3180 	struct shmem_inode_info *info = SHMEM_I(inode);
3181 
3182 	name = xattr_full_name(handler, name);
3183 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3184 }
3185 
shmem_xattr_handler_set(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3186 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3187 				   struct dentry *unused, struct inode *inode,
3188 				   const char *name, const void *value,
3189 				   size_t size, int flags)
3190 {
3191 	struct shmem_inode_info *info = SHMEM_I(inode);
3192 
3193 	name = xattr_full_name(handler, name);
3194 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3195 }
3196 
3197 static const struct xattr_handler shmem_security_xattr_handler = {
3198 	.prefix = XATTR_SECURITY_PREFIX,
3199 	.get = shmem_xattr_handler_get,
3200 	.set = shmem_xattr_handler_set,
3201 };
3202 
3203 static const struct xattr_handler shmem_trusted_xattr_handler = {
3204 	.prefix = XATTR_TRUSTED_PREFIX,
3205 	.get = shmem_xattr_handler_get,
3206 	.set = shmem_xattr_handler_set,
3207 };
3208 
3209 static const struct xattr_handler *shmem_xattr_handlers[] = {
3210 #ifdef CONFIG_TMPFS_POSIX_ACL
3211 	&posix_acl_access_xattr_handler,
3212 	&posix_acl_default_xattr_handler,
3213 #endif
3214 	&shmem_security_xattr_handler,
3215 	&shmem_trusted_xattr_handler,
3216 	NULL
3217 };
3218 
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3219 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3220 {
3221 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3222 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3223 }
3224 #endif /* CONFIG_TMPFS_XATTR */
3225 
3226 static const struct inode_operations shmem_short_symlink_operations = {
3227 	.get_link	= simple_get_link,
3228 #ifdef CONFIG_TMPFS_XATTR
3229 	.listxattr	= shmem_listxattr,
3230 #endif
3231 };
3232 
3233 static const struct inode_operations shmem_symlink_inode_operations = {
3234 	.get_link	= shmem_get_link,
3235 #ifdef CONFIG_TMPFS_XATTR
3236 	.listxattr	= shmem_listxattr,
3237 #endif
3238 };
3239 
shmem_get_parent(struct dentry * child)3240 static struct dentry *shmem_get_parent(struct dentry *child)
3241 {
3242 	return ERR_PTR(-ESTALE);
3243 }
3244 
shmem_match(struct inode * ino,void * vfh)3245 static int shmem_match(struct inode *ino, void *vfh)
3246 {
3247 	__u32 *fh = vfh;
3248 	__u64 inum = fh[2];
3249 	inum = (inum << 32) | fh[1];
3250 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3251 }
3252 
3253 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3254 static struct dentry *shmem_find_alias(struct inode *inode)
3255 {
3256 	struct dentry *alias = d_find_alias(inode);
3257 
3258 	return alias ?: d_find_any_alias(inode);
3259 }
3260 
3261 
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3262 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3263 		struct fid *fid, int fh_len, int fh_type)
3264 {
3265 	struct inode *inode;
3266 	struct dentry *dentry = NULL;
3267 	u64 inum;
3268 
3269 	if (fh_len < 3)
3270 		return NULL;
3271 
3272 	inum = fid->raw[2];
3273 	inum = (inum << 32) | fid->raw[1];
3274 
3275 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3276 			shmem_match, fid->raw);
3277 	if (inode) {
3278 		dentry = shmem_find_alias(inode);
3279 		iput(inode);
3280 	}
3281 
3282 	return dentry;
3283 }
3284 
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3285 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3286 				struct inode *parent)
3287 {
3288 	if (*len < 3) {
3289 		*len = 3;
3290 		return FILEID_INVALID;
3291 	}
3292 
3293 	if (inode_unhashed(inode)) {
3294 		/* Unfortunately insert_inode_hash is not idempotent,
3295 		 * so as we hash inodes here rather than at creation
3296 		 * time, we need a lock to ensure we only try
3297 		 * to do it once
3298 		 */
3299 		static DEFINE_SPINLOCK(lock);
3300 		spin_lock(&lock);
3301 		if (inode_unhashed(inode))
3302 			__insert_inode_hash(inode,
3303 					    inode->i_ino + inode->i_generation);
3304 		spin_unlock(&lock);
3305 	}
3306 
3307 	fh[0] = inode->i_generation;
3308 	fh[1] = inode->i_ino;
3309 	fh[2] = ((__u64)inode->i_ino) >> 32;
3310 
3311 	*len = 3;
3312 	return 1;
3313 }
3314 
3315 static const struct export_operations shmem_export_ops = {
3316 	.get_parent     = shmem_get_parent,
3317 	.encode_fh      = shmem_encode_fh,
3318 	.fh_to_dentry	= shmem_fh_to_dentry,
3319 };
3320 
shmem_parse_options(char * options,struct shmem_sb_info * sbinfo,bool remount)3321 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3322 			       bool remount)
3323 {
3324 	char *this_char, *value, *rest;
3325 	struct mempolicy *mpol = NULL;
3326 	uid_t uid;
3327 	gid_t gid;
3328 
3329 	while (options != NULL) {
3330 		this_char = options;
3331 		for (;;) {
3332 			/*
3333 			 * NUL-terminate this option: unfortunately,
3334 			 * mount options form a comma-separated list,
3335 			 * but mpol's nodelist may also contain commas.
3336 			 */
3337 			options = strchr(options, ',');
3338 			if (options == NULL)
3339 				break;
3340 			options++;
3341 			if (!isdigit(*options)) {
3342 				options[-1] = '\0';
3343 				break;
3344 			}
3345 		}
3346 		if (!*this_char)
3347 			continue;
3348 		if ((value = strchr(this_char,'=')) != NULL) {
3349 			*value++ = 0;
3350 		} else {
3351 			pr_err("tmpfs: No value for mount option '%s'\n",
3352 			       this_char);
3353 			goto error;
3354 		}
3355 
3356 		if (!strcmp(this_char,"size")) {
3357 			unsigned long long size;
3358 			size = memparse(value,&rest);
3359 			if (*rest == '%') {
3360 				size <<= PAGE_SHIFT;
3361 				size *= totalram_pages;
3362 				do_div(size, 100);
3363 				rest++;
3364 			}
3365 			if (*rest)
3366 				goto bad_val;
3367 			sbinfo->max_blocks =
3368 				DIV_ROUND_UP(size, PAGE_SIZE);
3369 		} else if (!strcmp(this_char,"nr_blocks")) {
3370 			sbinfo->max_blocks = memparse(value, &rest);
3371 			if (*rest)
3372 				goto bad_val;
3373 		} else if (!strcmp(this_char,"nr_inodes")) {
3374 			sbinfo->max_inodes = memparse(value, &rest);
3375 			if (*rest)
3376 				goto bad_val;
3377 		} else if (!strcmp(this_char,"mode")) {
3378 			if (remount)
3379 				continue;
3380 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3381 			if (*rest)
3382 				goto bad_val;
3383 		} else if (!strcmp(this_char,"uid")) {
3384 			if (remount)
3385 				continue;
3386 			uid = simple_strtoul(value, &rest, 0);
3387 			if (*rest)
3388 				goto bad_val;
3389 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3390 			if (!uid_valid(sbinfo->uid))
3391 				goto bad_val;
3392 		} else if (!strcmp(this_char,"gid")) {
3393 			if (remount)
3394 				continue;
3395 			gid = simple_strtoul(value, &rest, 0);
3396 			if (*rest)
3397 				goto bad_val;
3398 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3399 			if (!gid_valid(sbinfo->gid))
3400 				goto bad_val;
3401 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3402 		} else if (!strcmp(this_char, "huge")) {
3403 			int huge;
3404 			huge = shmem_parse_huge(value);
3405 			if (huge < 0)
3406 				goto bad_val;
3407 			if (!has_transparent_hugepage() &&
3408 					huge != SHMEM_HUGE_NEVER)
3409 				goto bad_val;
3410 			sbinfo->huge = huge;
3411 #endif
3412 #ifdef CONFIG_NUMA
3413 		} else if (!strcmp(this_char,"mpol")) {
3414 			mpol_put(mpol);
3415 			mpol = NULL;
3416 			if (mpol_parse_str(value, &mpol))
3417 				goto bad_val;
3418 #endif
3419 		} else {
3420 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3421 			goto error;
3422 		}
3423 	}
3424 	sbinfo->mpol = mpol;
3425 	return 0;
3426 
3427 bad_val:
3428 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3429 	       value, this_char);
3430 error:
3431 	mpol_put(mpol);
3432 	return 1;
3433 
3434 }
3435 
shmem_remount_fs(struct super_block * sb,int * flags,char * data)3436 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3437 {
3438 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3439 	struct shmem_sb_info config = *sbinfo;
3440 	unsigned long inodes;
3441 	int error = -EINVAL;
3442 
3443 	config.mpol = NULL;
3444 	if (shmem_parse_options(data, &config, true))
3445 		return error;
3446 
3447 	spin_lock(&sbinfo->stat_lock);
3448 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3449 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3450 		goto out;
3451 	if (config.max_inodes < inodes)
3452 		goto out;
3453 	/*
3454 	 * Those tests disallow limited->unlimited while any are in use;
3455 	 * but we must separately disallow unlimited->limited, because
3456 	 * in that case we have no record of how much is already in use.
3457 	 */
3458 	if (config.max_blocks && !sbinfo->max_blocks)
3459 		goto out;
3460 	if (config.max_inodes && !sbinfo->max_inodes)
3461 		goto out;
3462 
3463 	error = 0;
3464 	sbinfo->huge = config.huge;
3465 	sbinfo->max_blocks  = config.max_blocks;
3466 	sbinfo->max_inodes  = config.max_inodes;
3467 	sbinfo->free_inodes = config.max_inodes - inodes;
3468 
3469 	/*
3470 	 * Preserve previous mempolicy unless mpol remount option was specified.
3471 	 */
3472 	if (config.mpol) {
3473 		mpol_put(sbinfo->mpol);
3474 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3475 	}
3476 out:
3477 	spin_unlock(&sbinfo->stat_lock);
3478 	return error;
3479 }
3480 
shmem_show_options(struct seq_file * seq,struct dentry * root)3481 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3482 {
3483 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3484 
3485 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3486 		seq_printf(seq, ",size=%luk",
3487 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3488 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3489 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3490 	if (sbinfo->mode != (0777 | S_ISVTX))
3491 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3492 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3493 		seq_printf(seq, ",uid=%u",
3494 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3495 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3496 		seq_printf(seq, ",gid=%u",
3497 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3498 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3499 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3500 	if (sbinfo->huge)
3501 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3502 #endif
3503 	shmem_show_mpol(seq, sbinfo->mpol);
3504 	return 0;
3505 }
3506 
3507 #endif /* CONFIG_TMPFS */
3508 
shmem_put_super(struct super_block * sb)3509 static void shmem_put_super(struct super_block *sb)
3510 {
3511 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3512 
3513 	percpu_counter_destroy(&sbinfo->used_blocks);
3514 	mpol_put(sbinfo->mpol);
3515 	kfree(sbinfo);
3516 	sb->s_fs_info = NULL;
3517 }
3518 
shmem_fill_super(struct super_block * sb,void * data,int silent)3519 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3520 {
3521 	struct inode *inode;
3522 	struct shmem_sb_info *sbinfo;
3523 	int err = -ENOMEM;
3524 
3525 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3526 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3527 				L1_CACHE_BYTES), GFP_KERNEL);
3528 	if (!sbinfo)
3529 		return -ENOMEM;
3530 
3531 	sbinfo->mode = 0777 | S_ISVTX;
3532 	sbinfo->uid = current_fsuid();
3533 	sbinfo->gid = current_fsgid();
3534 	sb->s_fs_info = sbinfo;
3535 
3536 #ifdef CONFIG_TMPFS
3537 	/*
3538 	 * Per default we only allow half of the physical ram per
3539 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3540 	 * but the internal instance is left unlimited.
3541 	 */
3542 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3543 		sbinfo->max_blocks = shmem_default_max_blocks();
3544 		sbinfo->max_inodes = shmem_default_max_inodes();
3545 		if (shmem_parse_options(data, sbinfo, false)) {
3546 			err = -EINVAL;
3547 			goto failed;
3548 		}
3549 	} else {
3550 		sb->s_flags |= SB_NOUSER;
3551 	}
3552 	sb->s_export_op = &shmem_export_ops;
3553 	sb->s_flags |= SB_NOSEC;
3554 #else
3555 	sb->s_flags |= SB_NOUSER;
3556 #endif
3557 
3558 	spin_lock_init(&sbinfo->stat_lock);
3559 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3560 		goto failed;
3561 	sbinfo->free_inodes = sbinfo->max_inodes;
3562 	spin_lock_init(&sbinfo->shrinklist_lock);
3563 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3564 
3565 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3566 	sb->s_blocksize = PAGE_SIZE;
3567 	sb->s_blocksize_bits = PAGE_SHIFT;
3568 	sb->s_magic = TMPFS_MAGIC;
3569 	sb->s_op = &shmem_ops;
3570 	sb->s_time_gran = 1;
3571 #ifdef CONFIG_TMPFS_XATTR
3572 	sb->s_xattr = shmem_xattr_handlers;
3573 #endif
3574 #ifdef CONFIG_TMPFS_POSIX_ACL
3575 	sb->s_flags |= SB_POSIXACL;
3576 #endif
3577 	uuid_gen(&sb->s_uuid);
3578 
3579 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3580 	if (!inode)
3581 		goto failed;
3582 	inode->i_uid = sbinfo->uid;
3583 	inode->i_gid = sbinfo->gid;
3584 	sb->s_root = d_make_root(inode);
3585 	if (!sb->s_root)
3586 		goto failed;
3587 	return 0;
3588 
3589 failed:
3590 	shmem_put_super(sb);
3591 	return err;
3592 }
3593 
3594 static struct kmem_cache *shmem_inode_cachep;
3595 
shmem_alloc_inode(struct super_block * sb)3596 static struct inode *shmem_alloc_inode(struct super_block *sb)
3597 {
3598 	struct shmem_inode_info *info;
3599 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3600 	if (!info)
3601 		return NULL;
3602 	return &info->vfs_inode;
3603 }
3604 
shmem_destroy_callback(struct rcu_head * head)3605 static void shmem_destroy_callback(struct rcu_head *head)
3606 {
3607 	struct inode *inode = container_of(head, struct inode, i_rcu);
3608 	if (S_ISLNK(inode->i_mode))
3609 		kfree(inode->i_link);
3610 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3611 }
3612 
shmem_destroy_inode(struct inode * inode)3613 static void shmem_destroy_inode(struct inode *inode)
3614 {
3615 	if (S_ISREG(inode->i_mode))
3616 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3617 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3618 }
3619 
shmem_init_inode(void * foo)3620 static void shmem_init_inode(void *foo)
3621 {
3622 	struct shmem_inode_info *info = foo;
3623 	inode_init_once(&info->vfs_inode);
3624 }
3625 
shmem_init_inodecache(void)3626 static void shmem_init_inodecache(void)
3627 {
3628 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3629 				sizeof(struct shmem_inode_info),
3630 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3631 }
3632 
shmem_destroy_inodecache(void)3633 static void shmem_destroy_inodecache(void)
3634 {
3635 	kmem_cache_destroy(shmem_inode_cachep);
3636 }
3637 
3638 static const struct address_space_operations shmem_aops = {
3639 	.writepage	= shmem_writepage,
3640 	.set_page_dirty	= __set_page_dirty_no_writeback,
3641 #ifdef CONFIG_TMPFS
3642 	.write_begin	= shmem_write_begin,
3643 	.write_end	= shmem_write_end,
3644 #endif
3645 #ifdef CONFIG_MIGRATION
3646 	.migratepage	= migrate_page,
3647 #endif
3648 	.error_remove_page = generic_error_remove_page,
3649 };
3650 
3651 static const struct file_operations shmem_file_operations = {
3652 	.mmap		= shmem_mmap,
3653 	.get_unmapped_area = shmem_get_unmapped_area,
3654 #ifdef CONFIG_TMPFS
3655 	.llseek		= shmem_file_llseek,
3656 	.read_iter	= shmem_file_read_iter,
3657 	.write_iter	= generic_file_write_iter,
3658 	.fsync		= noop_fsync,
3659 	.splice_read	= generic_file_splice_read,
3660 	.splice_write	= iter_file_splice_write,
3661 	.fallocate	= shmem_fallocate,
3662 #endif
3663 };
3664 
3665 static const struct inode_operations shmem_inode_operations = {
3666 	.getattr	= shmem_getattr,
3667 	.setattr	= shmem_setattr,
3668 #ifdef CONFIG_TMPFS_XATTR
3669 	.listxattr	= shmem_listxattr,
3670 	.set_acl	= simple_set_acl,
3671 #endif
3672 };
3673 
3674 static const struct inode_operations shmem_dir_inode_operations = {
3675 #ifdef CONFIG_TMPFS
3676 	.create		= shmem_create,
3677 	.lookup		= simple_lookup,
3678 	.link		= shmem_link,
3679 	.unlink		= shmem_unlink,
3680 	.symlink	= shmem_symlink,
3681 	.mkdir		= shmem_mkdir,
3682 	.rmdir		= shmem_rmdir,
3683 	.mknod		= shmem_mknod,
3684 	.rename		= shmem_rename2,
3685 	.tmpfile	= shmem_tmpfile,
3686 #endif
3687 #ifdef CONFIG_TMPFS_XATTR
3688 	.listxattr	= shmem_listxattr,
3689 #endif
3690 #ifdef CONFIG_TMPFS_POSIX_ACL
3691 	.setattr	= shmem_setattr,
3692 	.set_acl	= simple_set_acl,
3693 #endif
3694 };
3695 
3696 static const struct inode_operations shmem_special_inode_operations = {
3697 #ifdef CONFIG_TMPFS_XATTR
3698 	.listxattr	= shmem_listxattr,
3699 #endif
3700 #ifdef CONFIG_TMPFS_POSIX_ACL
3701 	.setattr	= shmem_setattr,
3702 	.set_acl	= simple_set_acl,
3703 #endif
3704 };
3705 
3706 static const struct super_operations shmem_ops = {
3707 	.alloc_inode	= shmem_alloc_inode,
3708 	.destroy_inode	= shmem_destroy_inode,
3709 #ifdef CONFIG_TMPFS
3710 	.statfs		= shmem_statfs,
3711 	.remount_fs	= shmem_remount_fs,
3712 	.show_options	= shmem_show_options,
3713 #endif
3714 	.evict_inode	= shmem_evict_inode,
3715 	.drop_inode	= generic_delete_inode,
3716 	.put_super	= shmem_put_super,
3717 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3718 	.nr_cached_objects	= shmem_unused_huge_count,
3719 	.free_cached_objects	= shmem_unused_huge_scan,
3720 #endif
3721 };
3722 
3723 static const struct vm_operations_struct shmem_vm_ops = {
3724 	.fault		= shmem_fault,
3725 	.map_pages	= filemap_map_pages,
3726 #ifdef CONFIG_NUMA
3727 	.set_policy     = shmem_set_policy,
3728 	.get_policy     = shmem_get_policy,
3729 #endif
3730 };
3731 
shmem_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)3732 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3733 	int flags, const char *dev_name, void *data)
3734 {
3735 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3736 }
3737 
3738 static struct file_system_type shmem_fs_type = {
3739 	.owner		= THIS_MODULE,
3740 	.name		= "tmpfs",
3741 	.mount		= shmem_mount,
3742 	.kill_sb	= kill_litter_super,
3743 	.fs_flags	= FS_USERNS_MOUNT,
3744 };
3745 
shmem_init(void)3746 int __init shmem_init(void)
3747 {
3748 	int error;
3749 
3750 	/* If rootfs called this, don't re-init */
3751 	if (shmem_inode_cachep)
3752 		return 0;
3753 
3754 	shmem_init_inodecache();
3755 
3756 	error = register_filesystem(&shmem_fs_type);
3757 	if (error) {
3758 		pr_err("Could not register tmpfs\n");
3759 		goto out2;
3760 	}
3761 
3762 	shm_mnt = kern_mount(&shmem_fs_type);
3763 	if (IS_ERR(shm_mnt)) {
3764 		error = PTR_ERR(shm_mnt);
3765 		pr_err("Could not kern_mount tmpfs\n");
3766 		goto out1;
3767 	}
3768 
3769 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3770 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3771 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3772 	else
3773 		shmem_huge = 0; /* just in case it was patched */
3774 #endif
3775 	return 0;
3776 
3777 out1:
3778 	unregister_filesystem(&shmem_fs_type);
3779 out2:
3780 	shmem_destroy_inodecache();
3781 	shm_mnt = ERR_PTR(error);
3782 	return error;
3783 }
3784 
3785 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3786 static ssize_t shmem_enabled_show(struct kobject *kobj,
3787 		struct kobj_attribute *attr, char *buf)
3788 {
3789 	int values[] = {
3790 		SHMEM_HUGE_ALWAYS,
3791 		SHMEM_HUGE_WITHIN_SIZE,
3792 		SHMEM_HUGE_ADVISE,
3793 		SHMEM_HUGE_NEVER,
3794 		SHMEM_HUGE_DENY,
3795 		SHMEM_HUGE_FORCE,
3796 	};
3797 	int i, count;
3798 
3799 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3800 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3801 
3802 		count += sprintf(buf + count, fmt,
3803 				shmem_format_huge(values[i]));
3804 	}
3805 	buf[count - 1] = '\n';
3806 	return count;
3807 }
3808 
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3809 static ssize_t shmem_enabled_store(struct kobject *kobj,
3810 		struct kobj_attribute *attr, const char *buf, size_t count)
3811 {
3812 	char tmp[16];
3813 	int huge;
3814 
3815 	if (count + 1 > sizeof(tmp))
3816 		return -EINVAL;
3817 	memcpy(tmp, buf, count);
3818 	tmp[count] = '\0';
3819 	if (count && tmp[count - 1] == '\n')
3820 		tmp[count - 1] = '\0';
3821 
3822 	huge = shmem_parse_huge(tmp);
3823 	if (huge == -EINVAL)
3824 		return -EINVAL;
3825 	if (!has_transparent_hugepage() &&
3826 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3827 		return -EINVAL;
3828 
3829 	shmem_huge = huge;
3830 	if (shmem_huge > SHMEM_HUGE_DENY)
3831 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3832 	return count;
3833 }
3834 
3835 struct kobj_attribute shmem_enabled_attr =
3836 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3837 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3838 
3839 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
shmem_huge_enabled(struct vm_area_struct * vma)3840 bool shmem_huge_enabled(struct vm_area_struct *vma)
3841 {
3842 	struct inode *inode = file_inode(vma->vm_file);
3843 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3844 	loff_t i_size;
3845 	pgoff_t off;
3846 
3847 	if (shmem_huge == SHMEM_HUGE_FORCE)
3848 		return true;
3849 	if (shmem_huge == SHMEM_HUGE_DENY)
3850 		return false;
3851 	switch (sbinfo->huge) {
3852 		case SHMEM_HUGE_NEVER:
3853 			return false;
3854 		case SHMEM_HUGE_ALWAYS:
3855 			return true;
3856 		case SHMEM_HUGE_WITHIN_SIZE:
3857 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3858 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3859 			if (i_size >= HPAGE_PMD_SIZE &&
3860 					i_size >> PAGE_SHIFT >= off)
3861 				return true;
3862 			/* fall through */
3863 		case SHMEM_HUGE_ADVISE:
3864 			/* TODO: implement fadvise() hints */
3865 			return (vma->vm_flags & VM_HUGEPAGE);
3866 		default:
3867 			VM_BUG_ON(1);
3868 			return false;
3869 	}
3870 }
3871 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3872 
3873 #else /* !CONFIG_SHMEM */
3874 
3875 /*
3876  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3877  *
3878  * This is intended for small system where the benefits of the full
3879  * shmem code (swap-backed and resource-limited) are outweighed by
3880  * their complexity. On systems without swap this code should be
3881  * effectively equivalent, but much lighter weight.
3882  */
3883 
3884 static struct file_system_type shmem_fs_type = {
3885 	.name		= "tmpfs",
3886 	.mount		= ramfs_mount,
3887 	.kill_sb	= kill_litter_super,
3888 	.fs_flags	= FS_USERNS_MOUNT,
3889 };
3890 
shmem_init(void)3891 int __init shmem_init(void)
3892 {
3893 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3894 
3895 	shm_mnt = kern_mount(&shmem_fs_type);
3896 	BUG_ON(IS_ERR(shm_mnt));
3897 
3898 	return 0;
3899 }
3900 
shmem_unuse(swp_entry_t swap,struct page * page)3901 int shmem_unuse(swp_entry_t swap, struct page *page)
3902 {
3903 	return 0;
3904 }
3905 
shmem_lock(struct file * file,int lock,struct user_struct * user)3906 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3907 {
3908 	return 0;
3909 }
3910 
shmem_unlock_mapping(struct address_space * mapping)3911 void shmem_unlock_mapping(struct address_space *mapping)
3912 {
3913 }
3914 
3915 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3916 unsigned long shmem_get_unmapped_area(struct file *file,
3917 				      unsigned long addr, unsigned long len,
3918 				      unsigned long pgoff, unsigned long flags)
3919 {
3920 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3921 }
3922 #endif
3923 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)3924 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3925 {
3926 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3927 }
3928 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3929 
3930 #define shmem_vm_ops				generic_file_vm_ops
3931 #define shmem_file_operations			ramfs_file_operations
3932 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3933 #define shmem_acct_size(flags, size)		0
3934 #define shmem_unacct_size(flags, size)		do {} while (0)
3935 
3936 #endif /* CONFIG_SHMEM */
3937 
3938 /* common code */
3939 
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)3940 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3941 				       unsigned long flags, unsigned int i_flags)
3942 {
3943 	struct inode *inode;
3944 	struct file *res;
3945 
3946 	if (IS_ERR(mnt))
3947 		return ERR_CAST(mnt);
3948 
3949 	if (size < 0 || size > MAX_LFS_FILESIZE)
3950 		return ERR_PTR(-EINVAL);
3951 
3952 	if (shmem_acct_size(flags, size))
3953 		return ERR_PTR(-ENOMEM);
3954 
3955 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3956 				flags);
3957 	if (unlikely(!inode)) {
3958 		shmem_unacct_size(flags, size);
3959 		return ERR_PTR(-ENOSPC);
3960 	}
3961 	inode->i_flags |= i_flags;
3962 	inode->i_size = size;
3963 	clear_nlink(inode);	/* It is unlinked */
3964 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3965 	if (!IS_ERR(res))
3966 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3967 				&shmem_file_operations);
3968 	if (IS_ERR(res))
3969 		iput(inode);
3970 	return res;
3971 }
3972 
3973 /**
3974  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3975  * 	kernel internal.  There will be NO LSM permission checks against the
3976  * 	underlying inode.  So users of this interface must do LSM checks at a
3977  *	higher layer.  The users are the big_key and shm implementations.  LSM
3978  *	checks are provided at the key or shm level rather than the inode.
3979  * @name: name for dentry (to be seen in /proc/<pid>/maps
3980  * @size: size to be set for the file
3981  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3982  */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)3983 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3984 {
3985 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3986 }
3987 
3988 /**
3989  * shmem_file_setup - get an unlinked file living in tmpfs
3990  * @name: name for dentry (to be seen in /proc/<pid>/maps
3991  * @size: size to be set for the file
3992  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3993  */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)3994 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3995 {
3996 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3997 }
3998 EXPORT_SYMBOL_GPL(shmem_file_setup);
3999 
4000 /**
4001  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4002  * @mnt: the tmpfs mount where the file will be created
4003  * @name: name for dentry (to be seen in /proc/<pid>/maps
4004  * @size: size to be set for the file
4005  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4006  */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4007 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4008 				       loff_t size, unsigned long flags)
4009 {
4010 	return __shmem_file_setup(mnt, name, size, flags, 0);
4011 }
4012 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4013 
4014 /**
4015  * shmem_zero_setup - setup a shared anonymous mapping
4016  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4017  */
shmem_zero_setup(struct vm_area_struct * vma)4018 int shmem_zero_setup(struct vm_area_struct *vma)
4019 {
4020 	struct file *file;
4021 	loff_t size = vma->vm_end - vma->vm_start;
4022 
4023 	/*
4024 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4025 	 * between XFS directory reading and selinux: since this file is only
4026 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4027 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4028 	 */
4029 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4030 	if (IS_ERR(file))
4031 		return PTR_ERR(file);
4032 
4033 	if (vma->vm_file)
4034 		fput(vma->vm_file);
4035 	vma->vm_file = file;
4036 	vma->vm_ops = &shmem_vm_ops;
4037 
4038 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4039 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4040 			(vma->vm_end & HPAGE_PMD_MASK)) {
4041 		khugepaged_enter(vma, vma->vm_flags);
4042 	}
4043 
4044 	return 0;
4045 }
4046 
4047 /**
4048  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4049  * @mapping:	the page's address_space
4050  * @index:	the page index
4051  * @gfp:	the page allocator flags to use if allocating
4052  *
4053  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4054  * with any new page allocations done using the specified allocation flags.
4055  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4056  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4057  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4058  *
4059  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4060  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4061  */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4062 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4063 					 pgoff_t index, gfp_t gfp)
4064 {
4065 #ifdef CONFIG_SHMEM
4066 	struct inode *inode = mapping->host;
4067 	struct page *page;
4068 	int error;
4069 
4070 	BUG_ON(mapping->a_ops != &shmem_aops);
4071 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4072 				  gfp, NULL, NULL, NULL);
4073 	if (error)
4074 		page = ERR_PTR(error);
4075 	else
4076 		unlock_page(page);
4077 	return page;
4078 #else
4079 	/*
4080 	 * The tiny !SHMEM case uses ramfs without swap
4081 	 */
4082 	return read_cache_page_gfp(mapping, index, gfp);
4083 #endif
4084 }
4085 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4086