• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memremap.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 
39 #include "internal.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/pagemap.h>
43 
44 /* How many pages do we try to swap or page in/out together? */
45 int page_cluster;
46 
47 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
48 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
50 static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
51 #ifdef CONFIG_SMP
52 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
53 #endif
54 
55 /*
56  * This path almost never happens for VM activity - pages are normally
57  * freed via pagevecs.  But it gets used by networking.
58  */
__page_cache_release(struct page * page)59 static void __page_cache_release(struct page *page)
60 {
61 	if (PageLRU(page)) {
62 		struct zone *zone = page_zone(page);
63 		struct lruvec *lruvec;
64 		unsigned long flags;
65 
66 		spin_lock_irqsave(zone_lru_lock(zone), flags);
67 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
68 		VM_BUG_ON_PAGE(!PageLRU(page), page);
69 		__ClearPageLRU(page);
70 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
71 		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
72 	}
73 	__ClearPageWaiters(page);
74 	mem_cgroup_uncharge(page);
75 }
76 
__put_single_page(struct page * page)77 static void __put_single_page(struct page *page)
78 {
79 	__page_cache_release(page);
80 	free_unref_page(page);
81 }
82 
__put_compound_page(struct page * page)83 static void __put_compound_page(struct page *page)
84 {
85 	compound_page_dtor *dtor;
86 
87 	/*
88 	 * __page_cache_release() is supposed to be called for thp, not for
89 	 * hugetlb. This is because hugetlb page does never have PageLRU set
90 	 * (it's never listed to any LRU lists) and no memcg routines should
91 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
92 	 */
93 	if (!PageHuge(page))
94 		__page_cache_release(page);
95 	dtor = get_compound_page_dtor(page);
96 	(*dtor)(page);
97 }
98 
__put_page(struct page * page)99 void __put_page(struct page *page)
100 {
101 	if (is_zone_device_page(page)) {
102 		put_dev_pagemap(page->pgmap);
103 
104 		/*
105 		 * The page belongs to the device that created pgmap. Do
106 		 * not return it to page allocator.
107 		 */
108 		return;
109 	}
110 
111 	if (unlikely(PageCompound(page)))
112 		__put_compound_page(page);
113 	else
114 		__put_single_page(page);
115 }
116 EXPORT_SYMBOL(__put_page);
117 
118 /**
119  * put_pages_list() - release a list of pages
120  * @pages: list of pages threaded on page->lru
121  *
122  * Release a list of pages which are strung together on page.lru.  Currently
123  * used by read_cache_pages() and related error recovery code.
124  */
put_pages_list(struct list_head * pages)125 void put_pages_list(struct list_head *pages)
126 {
127 	while (!list_empty(pages)) {
128 		struct page *victim;
129 
130 		victim = list_entry(pages->prev, struct page, lru);
131 		list_del(&victim->lru);
132 		put_page(victim);
133 	}
134 }
135 EXPORT_SYMBOL(put_pages_list);
136 
137 /*
138  * get_kernel_pages() - pin kernel pages in memory
139  * @kiov:	An array of struct kvec structures
140  * @nr_segs:	number of segments to pin
141  * @write:	pinning for read/write, currently ignored
142  * @pages:	array that receives pointers to the pages pinned.
143  *		Should be at least nr_segs long.
144  *
145  * Returns number of pages pinned. This may be fewer than the number
146  * requested. If nr_pages is 0 or negative, returns 0. If no pages
147  * were pinned, returns -errno. Each page returned must be released
148  * with a put_page() call when it is finished with.
149  */
get_kernel_pages(const struct kvec * kiov,int nr_segs,int write,struct page ** pages)150 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
151 		struct page **pages)
152 {
153 	int seg;
154 
155 	for (seg = 0; seg < nr_segs; seg++) {
156 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
157 			return seg;
158 
159 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
160 		get_page(pages[seg]);
161 	}
162 
163 	return seg;
164 }
165 EXPORT_SYMBOL_GPL(get_kernel_pages);
166 
167 /*
168  * get_kernel_page() - pin a kernel page in memory
169  * @start:	starting kernel address
170  * @write:	pinning for read/write, currently ignored
171  * @pages:	array that receives pointer to the page pinned.
172  *		Must be at least nr_segs long.
173  *
174  * Returns 1 if page is pinned. If the page was not pinned, returns
175  * -errno. The page returned must be released with a put_page() call
176  * when it is finished with.
177  */
get_kernel_page(unsigned long start,int write,struct page ** pages)178 int get_kernel_page(unsigned long start, int write, struct page **pages)
179 {
180 	const struct kvec kiov = {
181 		.iov_base = (void *)start,
182 		.iov_len = PAGE_SIZE
183 	};
184 
185 	return get_kernel_pages(&kiov, 1, write, pages);
186 }
187 EXPORT_SYMBOL_GPL(get_kernel_page);
188 
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,struct lruvec * lruvec,void * arg),void * arg)189 static void pagevec_lru_move_fn(struct pagevec *pvec,
190 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
191 	void *arg)
192 {
193 	int i;
194 	struct pglist_data *pgdat = NULL;
195 	struct lruvec *lruvec;
196 	unsigned long flags = 0;
197 
198 	for (i = 0; i < pagevec_count(pvec); i++) {
199 		struct page *page = pvec->pages[i];
200 		struct pglist_data *pagepgdat = page_pgdat(page);
201 
202 		if (pagepgdat != pgdat) {
203 			if (pgdat)
204 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
205 			pgdat = pagepgdat;
206 			spin_lock_irqsave(&pgdat->lru_lock, flags);
207 		}
208 
209 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
210 		(*move_fn)(page, lruvec, arg);
211 	}
212 	if (pgdat)
213 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
214 	release_pages(pvec->pages, pvec->nr);
215 	pagevec_reinit(pvec);
216 }
217 
pagevec_move_tail_fn(struct page * page,struct lruvec * lruvec,void * arg)218 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
219 				 void *arg)
220 {
221 	int *pgmoved = arg;
222 
223 	if (PageLRU(page) && !PageUnevictable(page)) {
224 		del_page_from_lru_list(page, lruvec, page_lru(page));
225 		ClearPageActive(page);
226 		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
227 		(*pgmoved)++;
228 	}
229 }
230 
231 /*
232  * pagevec_move_tail() must be called with IRQ disabled.
233  * Otherwise this may cause nasty races.
234  */
pagevec_move_tail(struct pagevec * pvec)235 static void pagevec_move_tail(struct pagevec *pvec)
236 {
237 	int pgmoved = 0;
238 
239 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
240 	__count_vm_events(PGROTATED, pgmoved);
241 }
242 
243 /*
244  * Writeback is about to end against a page which has been marked for immediate
245  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
246  * inactive list.
247  */
rotate_reclaimable_page(struct page * page)248 void rotate_reclaimable_page(struct page *page)
249 {
250 	if (!PageLocked(page) && !PageDirty(page) &&
251 	    !PageUnevictable(page) && PageLRU(page)) {
252 		struct pagevec *pvec;
253 		unsigned long flags;
254 
255 		get_page(page);
256 		local_irq_save(flags);
257 		pvec = this_cpu_ptr(&lru_rotate_pvecs);
258 		if (!pagevec_add(pvec, page) || PageCompound(page))
259 			pagevec_move_tail(pvec);
260 		local_irq_restore(flags);
261 	}
262 }
263 
update_page_reclaim_stat(struct lruvec * lruvec,int file,int rotated)264 static void update_page_reclaim_stat(struct lruvec *lruvec,
265 				     int file, int rotated)
266 {
267 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
268 
269 	reclaim_stat->recent_scanned[file]++;
270 	if (rotated)
271 		reclaim_stat->recent_rotated[file]++;
272 }
273 
__activate_page(struct page * page,struct lruvec * lruvec,void * arg)274 static void __activate_page(struct page *page, struct lruvec *lruvec,
275 			    void *arg)
276 {
277 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
278 		int file = page_is_file_cache(page);
279 		int lru = page_lru_base_type(page);
280 
281 		del_page_from_lru_list(page, lruvec, lru);
282 		SetPageActive(page);
283 		lru += LRU_ACTIVE;
284 		add_page_to_lru_list(page, lruvec, lru);
285 		trace_mm_lru_activate(page);
286 
287 		__count_vm_event(PGACTIVATE);
288 		update_page_reclaim_stat(lruvec, file, 1);
289 	}
290 }
291 
292 #ifdef CONFIG_SMP
activate_page_drain(int cpu)293 static void activate_page_drain(int cpu)
294 {
295 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
296 
297 	if (pagevec_count(pvec))
298 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
299 }
300 
need_activate_page_drain(int cpu)301 static bool need_activate_page_drain(int cpu)
302 {
303 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
304 }
305 
activate_page(struct page * page)306 void activate_page(struct page *page)
307 {
308 	page = compound_head(page);
309 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
310 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
311 
312 		get_page(page);
313 		if (!pagevec_add(pvec, page) || PageCompound(page))
314 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
315 		put_cpu_var(activate_page_pvecs);
316 	}
317 }
318 
319 #else
activate_page_drain(int cpu)320 static inline void activate_page_drain(int cpu)
321 {
322 }
323 
activate_page(struct page * page)324 void activate_page(struct page *page)
325 {
326 	struct zone *zone = page_zone(page);
327 
328 	page = compound_head(page);
329 	spin_lock_irq(zone_lru_lock(zone));
330 	__activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
331 	spin_unlock_irq(zone_lru_lock(zone));
332 }
333 #endif
334 
__lru_cache_activate_page(struct page * page)335 static void __lru_cache_activate_page(struct page *page)
336 {
337 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
338 	int i;
339 
340 	/*
341 	 * Search backwards on the optimistic assumption that the page being
342 	 * activated has just been added to this pagevec. Note that only
343 	 * the local pagevec is examined as a !PageLRU page could be in the
344 	 * process of being released, reclaimed, migrated or on a remote
345 	 * pagevec that is currently being drained. Furthermore, marking
346 	 * a remote pagevec's page PageActive potentially hits a race where
347 	 * a page is marked PageActive just after it is added to the inactive
348 	 * list causing accounting errors and BUG_ON checks to trigger.
349 	 */
350 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
351 		struct page *pagevec_page = pvec->pages[i];
352 
353 		if (pagevec_page == page) {
354 			SetPageActive(page);
355 			break;
356 		}
357 	}
358 
359 	put_cpu_var(lru_add_pvec);
360 }
361 
362 /*
363  * Mark a page as having seen activity.
364  *
365  * inactive,unreferenced	->	inactive,referenced
366  * inactive,referenced		->	active,unreferenced
367  * active,unreferenced		->	active,referenced
368  *
369  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
370  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
371  */
mark_page_accessed(struct page * page)372 void mark_page_accessed(struct page *page)
373 {
374 	page = compound_head(page);
375 	if (!PageActive(page) && !PageUnevictable(page) &&
376 			PageReferenced(page)) {
377 
378 		/*
379 		 * If the page is on the LRU, queue it for activation via
380 		 * activate_page_pvecs. Otherwise, assume the page is on a
381 		 * pagevec, mark it active and it'll be moved to the active
382 		 * LRU on the next drain.
383 		 */
384 		if (PageLRU(page))
385 			activate_page(page);
386 		else
387 			__lru_cache_activate_page(page);
388 		ClearPageReferenced(page);
389 		if (page_is_file_cache(page))
390 			workingset_activation(page);
391 	} else if (!PageReferenced(page)) {
392 		SetPageReferenced(page);
393 	}
394 	if (page_is_idle(page))
395 		clear_page_idle(page);
396 }
397 EXPORT_SYMBOL(mark_page_accessed);
398 
__lru_cache_add(struct page * page)399 static void __lru_cache_add(struct page *page)
400 {
401 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
402 
403 	get_page(page);
404 	if (!pagevec_add(pvec, page) || PageCompound(page))
405 		__pagevec_lru_add(pvec);
406 	put_cpu_var(lru_add_pvec);
407 }
408 
409 /**
410  * lru_cache_add_anon - add a page to the page lists
411  * @page: the page to add
412  */
lru_cache_add_anon(struct page * page)413 void lru_cache_add_anon(struct page *page)
414 {
415 	if (PageActive(page))
416 		ClearPageActive(page);
417 	__lru_cache_add(page);
418 }
419 
lru_cache_add_file(struct page * page)420 void lru_cache_add_file(struct page *page)
421 {
422 	if (PageActive(page))
423 		ClearPageActive(page);
424 	__lru_cache_add(page);
425 }
426 EXPORT_SYMBOL(lru_cache_add_file);
427 
428 /**
429  * lru_cache_add - add a page to a page list
430  * @page: the page to be added to the LRU.
431  *
432  * Queue the page for addition to the LRU via pagevec. The decision on whether
433  * to add the page to the [in]active [file|anon] list is deferred until the
434  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
435  * have the page added to the active list using mark_page_accessed().
436  */
lru_cache_add(struct page * page)437 void lru_cache_add(struct page *page)
438 {
439 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
440 	VM_BUG_ON_PAGE(PageLRU(page), page);
441 	__lru_cache_add(page);
442 }
443 
444 /**
445  * lru_cache_add_active_or_unevictable
446  * @page:  the page to be added to LRU
447  * @vma:   vma in which page is mapped for determining reclaimability
448  *
449  * Place @page on the active or unevictable LRU list, depending on its
450  * evictability.  Note that if the page is not evictable, it goes
451  * directly back onto it's zone's unevictable list, it does NOT use a
452  * per cpu pagevec.
453  */
lru_cache_add_active_or_unevictable(struct page * page,struct vm_area_struct * vma)454 void lru_cache_add_active_or_unevictable(struct page *page,
455 					 struct vm_area_struct *vma)
456 {
457 	VM_BUG_ON_PAGE(PageLRU(page), page);
458 
459 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
460 		SetPageActive(page);
461 	else if (!TestSetPageMlocked(page)) {
462 		/*
463 		 * We use the irq-unsafe __mod_zone_page_stat because this
464 		 * counter is not modified from interrupt context, and the pte
465 		 * lock is held(spinlock), which implies preemption disabled.
466 		 */
467 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
468 				    hpage_nr_pages(page));
469 		count_vm_event(UNEVICTABLE_PGMLOCKED);
470 	}
471 	lru_cache_add(page);
472 }
473 
474 /*
475  * If the page can not be invalidated, it is moved to the
476  * inactive list to speed up its reclaim.  It is moved to the
477  * head of the list, rather than the tail, to give the flusher
478  * threads some time to write it out, as this is much more
479  * effective than the single-page writeout from reclaim.
480  *
481  * If the page isn't page_mapped and dirty/writeback, the page
482  * could reclaim asap using PG_reclaim.
483  *
484  * 1. active, mapped page -> none
485  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
486  * 3. inactive, mapped page -> none
487  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
488  * 5. inactive, clean -> inactive, tail
489  * 6. Others -> none
490  *
491  * In 4, why it moves inactive's head, the VM expects the page would
492  * be write it out by flusher threads as this is much more effective
493  * than the single-page writeout from reclaim.
494  */
lru_deactivate_file_fn(struct page * page,struct lruvec * lruvec,void * arg)495 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
496 			      void *arg)
497 {
498 	int lru, file;
499 	bool active;
500 
501 	if (!PageLRU(page))
502 		return;
503 
504 	if (PageUnevictable(page))
505 		return;
506 
507 	/* Some processes are using the page */
508 	if (page_mapped(page))
509 		return;
510 
511 	active = PageActive(page);
512 	file = page_is_file_cache(page);
513 	lru = page_lru_base_type(page);
514 
515 	del_page_from_lru_list(page, lruvec, lru + active);
516 	ClearPageActive(page);
517 	ClearPageReferenced(page);
518 	add_page_to_lru_list(page, lruvec, lru);
519 
520 	if (PageWriteback(page) || PageDirty(page)) {
521 		/*
522 		 * PG_reclaim could be raced with end_page_writeback
523 		 * It can make readahead confusing.  But race window
524 		 * is _really_ small and  it's non-critical problem.
525 		 */
526 		SetPageReclaim(page);
527 	} else {
528 		/*
529 		 * The page's writeback ends up during pagevec
530 		 * We moves tha page into tail of inactive.
531 		 */
532 		list_move_tail(&page->lru, &lruvec->lists[lru]);
533 		__count_vm_event(PGROTATED);
534 	}
535 
536 	if (active)
537 		__count_vm_event(PGDEACTIVATE);
538 	update_page_reclaim_stat(lruvec, file, 0);
539 }
540 
541 
lru_lazyfree_fn(struct page * page,struct lruvec * lruvec,void * arg)542 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
543 			    void *arg)
544 {
545 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
546 	    !PageSwapCache(page) && !PageUnevictable(page)) {
547 		bool active = PageActive(page);
548 
549 		del_page_from_lru_list(page, lruvec,
550 				       LRU_INACTIVE_ANON + active);
551 		ClearPageActive(page);
552 		ClearPageReferenced(page);
553 		/*
554 		 * lazyfree pages are clean anonymous pages. They have
555 		 * SwapBacked flag cleared to distinguish normal anonymous
556 		 * pages
557 		 */
558 		ClearPageSwapBacked(page);
559 		add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
560 
561 		__count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
562 		count_memcg_page_event(page, PGLAZYFREE);
563 		update_page_reclaim_stat(lruvec, 1, 0);
564 	}
565 }
566 
567 /*
568  * Drain pages out of the cpu's pagevecs.
569  * Either "cpu" is the current CPU, and preemption has already been
570  * disabled; or "cpu" is being hot-unplugged, and is already dead.
571  */
lru_add_drain_cpu(int cpu)572 void lru_add_drain_cpu(int cpu)
573 {
574 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
575 
576 	if (pagevec_count(pvec))
577 		__pagevec_lru_add(pvec);
578 
579 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
580 	if (pagevec_count(pvec)) {
581 		unsigned long flags;
582 
583 		/* No harm done if a racing interrupt already did this */
584 		local_irq_save(flags);
585 		pagevec_move_tail(pvec);
586 		local_irq_restore(flags);
587 	}
588 
589 	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
590 	if (pagevec_count(pvec))
591 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
592 
593 	pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
594 	if (pagevec_count(pvec))
595 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
596 
597 	activate_page_drain(cpu);
598 }
599 
600 /**
601  * deactivate_file_page - forcefully deactivate a file page
602  * @page: page to deactivate
603  *
604  * This function hints the VM that @page is a good reclaim candidate,
605  * for example if its invalidation fails due to the page being dirty
606  * or under writeback.
607  */
deactivate_file_page(struct page * page)608 void deactivate_file_page(struct page *page)
609 {
610 	/*
611 	 * In a workload with many unevictable page such as mprotect,
612 	 * unevictable page deactivation for accelerating reclaim is pointless.
613 	 */
614 	if (PageUnevictable(page))
615 		return;
616 
617 	if (likely(get_page_unless_zero(page))) {
618 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
619 
620 		if (!pagevec_add(pvec, page) || PageCompound(page))
621 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
622 		put_cpu_var(lru_deactivate_file_pvecs);
623 	}
624 }
625 
626 /**
627  * mark_page_lazyfree - make an anon page lazyfree
628  * @page: page to deactivate
629  *
630  * mark_page_lazyfree() moves @page to the inactive file list.
631  * This is done to accelerate the reclaim of @page.
632  */
mark_page_lazyfree(struct page * page)633 void mark_page_lazyfree(struct page *page)
634 {
635 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
636 	    !PageSwapCache(page) && !PageUnevictable(page)) {
637 		struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
638 
639 		get_page(page);
640 		if (!pagevec_add(pvec, page) || PageCompound(page))
641 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
642 		put_cpu_var(lru_lazyfree_pvecs);
643 	}
644 }
645 
lru_add_drain(void)646 void lru_add_drain(void)
647 {
648 	lru_add_drain_cpu(get_cpu());
649 	put_cpu();
650 }
651 
652 #ifdef CONFIG_SMP
653 
654 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
655 
lru_add_drain_per_cpu(struct work_struct * dummy)656 static void lru_add_drain_per_cpu(struct work_struct *dummy)
657 {
658 	lru_add_drain();
659 }
660 
661 /*
662  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
663  * kworkers being shut down before our page_alloc_cpu_dead callback is
664  * executed on the offlined cpu.
665  * Calling this function with cpu hotplug locks held can actually lead
666  * to obscure indirect dependencies via WQ context.
667  */
lru_add_drain_all(void)668 void lru_add_drain_all(void)
669 {
670 	static DEFINE_MUTEX(lock);
671 	static struct cpumask has_work;
672 	int cpu;
673 
674 	/*
675 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
676 	 * initialized.
677 	 */
678 	if (WARN_ON(!mm_percpu_wq))
679 		return;
680 
681 	mutex_lock(&lock);
682 	cpumask_clear(&has_work);
683 
684 	for_each_online_cpu(cpu) {
685 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
686 
687 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
688 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
689 		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
690 		    pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
691 		    need_activate_page_drain(cpu)) {
692 			INIT_WORK(work, lru_add_drain_per_cpu);
693 			queue_work_on(cpu, mm_percpu_wq, work);
694 			cpumask_set_cpu(cpu, &has_work);
695 		}
696 	}
697 
698 	for_each_cpu(cpu, &has_work)
699 		flush_work(&per_cpu(lru_add_drain_work, cpu));
700 
701 	mutex_unlock(&lock);
702 }
703 #else
lru_add_drain_all(void)704 void lru_add_drain_all(void)
705 {
706 	lru_add_drain();
707 }
708 #endif
709 
710 /**
711  * release_pages - batched put_page()
712  * @pages: array of pages to release
713  * @nr: number of pages
714  *
715  * Decrement the reference count on all the pages in @pages.  If it
716  * fell to zero, remove the page from the LRU and free it.
717  */
release_pages(struct page ** pages,int nr)718 void release_pages(struct page **pages, int nr)
719 {
720 	int i;
721 	LIST_HEAD(pages_to_free);
722 	struct pglist_data *locked_pgdat = NULL;
723 	struct lruvec *lruvec;
724 	unsigned long uninitialized_var(flags);
725 	unsigned int uninitialized_var(lock_batch);
726 
727 	for (i = 0; i < nr; i++) {
728 		struct page *page = pages[i];
729 
730 		/*
731 		 * Make sure the IRQ-safe lock-holding time does not get
732 		 * excessive with a continuous string of pages from the
733 		 * same pgdat. The lock is held only if pgdat != NULL.
734 		 */
735 		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
736 			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
737 			locked_pgdat = NULL;
738 		}
739 
740 		if (is_huge_zero_page(page))
741 			continue;
742 
743 		if (is_zone_device_page(page)) {
744 			if (locked_pgdat) {
745 				spin_unlock_irqrestore(&locked_pgdat->lru_lock,
746 						       flags);
747 				locked_pgdat = NULL;
748 			}
749 			/*
750 			 * ZONE_DEVICE pages that return 'false' from
751 			 * put_devmap_managed_page() do not require special
752 			 * processing, and instead, expect a call to
753 			 * put_page_testzero().
754 			 */
755 			if (put_devmap_managed_page(page))
756 				continue;
757 		}
758 
759 		page = compound_head(page);
760 		if (!put_page_testzero(page))
761 			continue;
762 
763 		if (PageCompound(page)) {
764 			if (locked_pgdat) {
765 				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
766 				locked_pgdat = NULL;
767 			}
768 			__put_compound_page(page);
769 			continue;
770 		}
771 
772 		if (PageLRU(page)) {
773 			struct pglist_data *pgdat = page_pgdat(page);
774 
775 			if (pgdat != locked_pgdat) {
776 				if (locked_pgdat)
777 					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
778 									flags);
779 				lock_batch = 0;
780 				locked_pgdat = pgdat;
781 				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
782 			}
783 
784 			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
785 			VM_BUG_ON_PAGE(!PageLRU(page), page);
786 			__ClearPageLRU(page);
787 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
788 		}
789 
790 		/* Clear Active bit in case of parallel mark_page_accessed */
791 		__ClearPageActive(page);
792 		__ClearPageWaiters(page);
793 
794 		list_add(&page->lru, &pages_to_free);
795 	}
796 	if (locked_pgdat)
797 		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
798 
799 	mem_cgroup_uncharge_list(&pages_to_free);
800 	free_unref_page_list(&pages_to_free);
801 }
802 EXPORT_SYMBOL(release_pages);
803 
804 /*
805  * The pages which we're about to release may be in the deferred lru-addition
806  * queues.  That would prevent them from really being freed right now.  That's
807  * OK from a correctness point of view but is inefficient - those pages may be
808  * cache-warm and we want to give them back to the page allocator ASAP.
809  *
810  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
811  * and __pagevec_lru_add_active() call release_pages() directly to avoid
812  * mutual recursion.
813  */
__pagevec_release(struct pagevec * pvec)814 void __pagevec_release(struct pagevec *pvec)
815 {
816 	if (!pvec->percpu_pvec_drained) {
817 		lru_add_drain();
818 		pvec->percpu_pvec_drained = true;
819 	}
820 	release_pages(pvec->pages, pagevec_count(pvec));
821 	pagevec_reinit(pvec);
822 }
823 EXPORT_SYMBOL(__pagevec_release);
824 
825 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
826 /* used by __split_huge_page_refcount() */
lru_add_page_tail(struct page * page,struct page * page_tail,struct lruvec * lruvec,struct list_head * list)827 void lru_add_page_tail(struct page *page, struct page *page_tail,
828 		       struct lruvec *lruvec, struct list_head *list)
829 {
830 	const int file = 0;
831 
832 	VM_BUG_ON_PAGE(!PageHead(page), page);
833 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
834 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
835 	VM_BUG_ON(NR_CPUS != 1 &&
836 		  !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
837 
838 	if (!list)
839 		SetPageLRU(page_tail);
840 
841 	if (likely(PageLRU(page)))
842 		list_add_tail(&page_tail->lru, &page->lru);
843 	else if (list) {
844 		/* page reclaim is reclaiming a huge page */
845 		get_page(page_tail);
846 		list_add_tail(&page_tail->lru, list);
847 	} else {
848 		struct list_head *list_head;
849 		/*
850 		 * Head page has not yet been counted, as an hpage,
851 		 * so we must account for each subpage individually.
852 		 *
853 		 * Use the standard add function to put page_tail on the list,
854 		 * but then correct its position so they all end up in order.
855 		 */
856 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
857 		list_head = page_tail->lru.prev;
858 		list_move_tail(&page_tail->lru, list_head);
859 	}
860 
861 	if (!PageUnevictable(page))
862 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
863 }
864 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
865 
__pagevec_lru_add_fn(struct page * page,struct lruvec * lruvec,void * arg)866 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
867 				 void *arg)
868 {
869 	enum lru_list lru;
870 	int was_unevictable = TestClearPageUnevictable(page);
871 
872 	VM_BUG_ON_PAGE(PageLRU(page), page);
873 
874 	SetPageLRU(page);
875 	/*
876 	 * Page becomes evictable in two ways:
877 	 * 1) Within LRU lock [munlock_vma_pages() and __munlock_pagevec()].
878 	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
879 	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
880 	 *   b) do PageLRU check before lock [clear_page_mlock]
881 	 *
882 	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
883 	 * following strict ordering:
884 	 *
885 	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
886 	 *
887 	 * SetPageLRU()				TestClearPageMlocked()
888 	 * smp_mb() // explicit ordering	// above provides strict
889 	 *					// ordering
890 	 * PageMlocked()			PageLRU()
891 	 *
892 	 *
893 	 * if '#1' does not observe setting of PG_lru by '#0' and fails
894 	 * isolation, the explicit barrier will make sure that page_evictable
895 	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
896 	 * can be reordered after PageMlocked check and can make '#1' to fail
897 	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
898 	 * looking at the same page) and the evictable page will be stranded
899 	 * in an unevictable LRU.
900 	 */
901 	smp_mb();
902 
903 	if (page_evictable(page)) {
904 		lru = page_lru(page);
905 		update_page_reclaim_stat(lruvec, page_is_file_cache(page),
906 					 PageActive(page));
907 		if (was_unevictable)
908 			count_vm_event(UNEVICTABLE_PGRESCUED);
909 	} else {
910 		lru = LRU_UNEVICTABLE;
911 		ClearPageActive(page);
912 		SetPageUnevictable(page);
913 		if (!was_unevictable)
914 			count_vm_event(UNEVICTABLE_PGCULLED);
915 	}
916 
917 	add_page_to_lru_list(page, lruvec, lru);
918 	trace_mm_lru_insertion(page, lru);
919 }
920 
921 /*
922  * Add the passed pages to the LRU, then drop the caller's refcount
923  * on them.  Reinitialises the caller's pagevec.
924  */
__pagevec_lru_add(struct pagevec * pvec)925 void __pagevec_lru_add(struct pagevec *pvec)
926 {
927 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
928 }
929 EXPORT_SYMBOL(__pagevec_lru_add);
930 
931 /**
932  * pagevec_lookup_entries - gang pagecache lookup
933  * @pvec:	Where the resulting entries are placed
934  * @mapping:	The address_space to search
935  * @start:	The starting entry index
936  * @nr_entries:	The maximum number of pages
937  * @indices:	The cache indices corresponding to the entries in @pvec
938  *
939  * pagevec_lookup_entries() will search for and return a group of up
940  * to @nr_pages pages and shadow entries in the mapping.  All
941  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
942  * reference against actual pages in @pvec.
943  *
944  * The search returns a group of mapping-contiguous entries with
945  * ascending indexes.  There may be holes in the indices due to
946  * not-present entries.
947  *
948  * pagevec_lookup_entries() returns the number of entries which were
949  * found.
950  */
pagevec_lookup_entries(struct pagevec * pvec,struct address_space * mapping,pgoff_t start,unsigned nr_entries,pgoff_t * indices)951 unsigned pagevec_lookup_entries(struct pagevec *pvec,
952 				struct address_space *mapping,
953 				pgoff_t start, unsigned nr_entries,
954 				pgoff_t *indices)
955 {
956 	pvec->nr = find_get_entries(mapping, start, nr_entries,
957 				    pvec->pages, indices);
958 	return pagevec_count(pvec);
959 }
960 
961 /**
962  * pagevec_remove_exceptionals - pagevec exceptionals pruning
963  * @pvec:	The pagevec to prune
964  *
965  * pagevec_lookup_entries() fills both pages and exceptional radix
966  * tree entries into the pagevec.  This function prunes all
967  * exceptionals from @pvec without leaving holes, so that it can be
968  * passed on to page-only pagevec operations.
969  */
pagevec_remove_exceptionals(struct pagevec * pvec)970 void pagevec_remove_exceptionals(struct pagevec *pvec)
971 {
972 	int i, j;
973 
974 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
975 		struct page *page = pvec->pages[i];
976 		if (!radix_tree_exceptional_entry(page))
977 			pvec->pages[j++] = page;
978 	}
979 	pvec->nr = j;
980 }
981 
982 /**
983  * pagevec_lookup_range - gang pagecache lookup
984  * @pvec:	Where the resulting pages are placed
985  * @mapping:	The address_space to search
986  * @start:	The starting page index
987  * @end:	The final page index
988  *
989  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
990  * pages in the mapping starting from index @start and upto index @end
991  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
992  * reference against the pages in @pvec.
993  *
994  * The search returns a group of mapping-contiguous pages with ascending
995  * indexes.  There may be holes in the indices due to not-present pages. We
996  * also update @start to index the next page for the traversal.
997  *
998  * pagevec_lookup_range() returns the number of pages which were found. If this
999  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1000  * reached.
1001  */
pagevec_lookup_range(struct pagevec * pvec,struct address_space * mapping,pgoff_t * start,pgoff_t end)1002 unsigned pagevec_lookup_range(struct pagevec *pvec,
1003 		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1004 {
1005 	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1006 					pvec->pages);
1007 	return pagevec_count(pvec);
1008 }
1009 EXPORT_SYMBOL(pagevec_lookup_range);
1010 
pagevec_lookup_range_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,int tag)1011 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1012 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1013 		int tag)
1014 {
1015 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1016 					PAGEVEC_SIZE, pvec->pages);
1017 	return pagevec_count(pvec);
1018 }
1019 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1020 
pagevec_lookup_range_nr_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,int tag,unsigned max_pages)1021 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1022 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1023 		int tag, unsigned max_pages)
1024 {
1025 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1026 		min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1027 	return pagevec_count(pvec);
1028 }
1029 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1030 /*
1031  * Perform any setup for the swap system
1032  */
swap_setup(void)1033 void __init swap_setup(void)
1034 {
1035 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1036 
1037 	/* Use a smaller cluster for small-memory machines */
1038 	if (megs < 16)
1039 		page_cluster = 2;
1040 	else
1041 		page_cluster = 3;
1042 	/*
1043 	 * Right now other parts of the system means that we
1044 	 * _really_ don't want to cluster much more
1045 	 */
1046 }
1047