• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 				 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51 
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
swap_type_to_swap_info(int type)101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 	if (type >= READ_ONCE(nr_swapfiles))
104 		return NULL;
105 
106 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
107 	return READ_ONCE(swap_info[type]);
108 }
109 
swap_count(unsigned char ent)110 static inline unsigned char swap_count(unsigned char ent)
111 {
112 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
113 }
114 
115 /* returns 1 if swap entry is freed */
116 static int
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset)117 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
118 {
119 	swp_entry_t entry = swp_entry(si->type, offset);
120 	struct page *page;
121 	int ret = 0;
122 
123 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
124 	if (!page)
125 		return 0;
126 	/*
127 	 * This function is called from scan_swap_map() and it's called
128 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
129 	 * We have to use trylock for avoiding deadlock. This is a special
130 	 * case and you should use try_to_free_swap() with explicit lock_page()
131 	 * in usual operations.
132 	 */
133 	if (trylock_page(page)) {
134 		ret = try_to_free_swap(page);
135 		unlock_page(page);
136 	}
137 	put_page(page);
138 	return ret;
139 }
140 
141 /*
142  * swapon tell device that all the old swap contents can be discarded,
143  * to allow the swap device to optimize its wear-levelling.
144  */
discard_swap(struct swap_info_struct * si)145 static int discard_swap(struct swap_info_struct *si)
146 {
147 	struct swap_extent *se;
148 	sector_t start_block;
149 	sector_t nr_blocks;
150 	int err = 0;
151 
152 	/* Do not discard the swap header page! */
153 	se = &si->first_swap_extent;
154 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
155 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
156 	if (nr_blocks) {
157 		err = blkdev_issue_discard(si->bdev, start_block,
158 				nr_blocks, GFP_KERNEL, 0);
159 		if (err)
160 			return err;
161 		cond_resched();
162 	}
163 
164 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
165 		start_block = se->start_block << (PAGE_SHIFT - 9);
166 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
167 
168 		err = blkdev_issue_discard(si->bdev, start_block,
169 				nr_blocks, GFP_KERNEL, 0);
170 		if (err)
171 			break;
172 
173 		cond_resched();
174 	}
175 	return err;		/* That will often be -EOPNOTSUPP */
176 }
177 
178 /*
179  * swap allocation tell device that a cluster of swap can now be discarded,
180  * to allow the swap device to optimize its wear-levelling.
181  */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)182 static void discard_swap_cluster(struct swap_info_struct *si,
183 				 pgoff_t start_page, pgoff_t nr_pages)
184 {
185 	struct swap_extent *se = si->curr_swap_extent;
186 	int found_extent = 0;
187 
188 	while (nr_pages) {
189 		if (se->start_page <= start_page &&
190 		    start_page < se->start_page + se->nr_pages) {
191 			pgoff_t offset = start_page - se->start_page;
192 			sector_t start_block = se->start_block + offset;
193 			sector_t nr_blocks = se->nr_pages - offset;
194 
195 			if (nr_blocks > nr_pages)
196 				nr_blocks = nr_pages;
197 			start_page += nr_blocks;
198 			nr_pages -= nr_blocks;
199 
200 			if (!found_extent++)
201 				si->curr_swap_extent = se;
202 
203 			start_block <<= PAGE_SHIFT - 9;
204 			nr_blocks <<= PAGE_SHIFT - 9;
205 			if (blkdev_issue_discard(si->bdev, start_block,
206 				    nr_blocks, GFP_NOIO, 0))
207 				break;
208 		}
209 
210 		se = list_next_entry(se, list);
211 	}
212 }
213 
214 #ifdef CONFIG_THP_SWAP
215 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
216 
217 #define swap_entry_size(size)	(size)
218 #else
219 #define SWAPFILE_CLUSTER	256
220 
221 /*
222  * Define swap_entry_size() as constant to let compiler to optimize
223  * out some code if !CONFIG_THP_SWAP
224  */
225 #define swap_entry_size(size)	1
226 #endif
227 #define LATENCY_LIMIT		256
228 
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)229 static inline void cluster_set_flag(struct swap_cluster_info *info,
230 	unsigned int flag)
231 {
232 	info->flags = flag;
233 }
234 
cluster_count(struct swap_cluster_info * info)235 static inline unsigned int cluster_count(struct swap_cluster_info *info)
236 {
237 	return info->data;
238 }
239 
cluster_set_count(struct swap_cluster_info * info,unsigned int c)240 static inline void cluster_set_count(struct swap_cluster_info *info,
241 				     unsigned int c)
242 {
243 	info->data = c;
244 }
245 
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)246 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
247 					 unsigned int c, unsigned int f)
248 {
249 	info->flags = f;
250 	info->data = c;
251 }
252 
cluster_next(struct swap_cluster_info * info)253 static inline unsigned int cluster_next(struct swap_cluster_info *info)
254 {
255 	return info->data;
256 }
257 
cluster_set_next(struct swap_cluster_info * info,unsigned int n)258 static inline void cluster_set_next(struct swap_cluster_info *info,
259 				    unsigned int n)
260 {
261 	info->data = n;
262 }
263 
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)264 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
265 					 unsigned int n, unsigned int f)
266 {
267 	info->flags = f;
268 	info->data = n;
269 }
270 
cluster_is_free(struct swap_cluster_info * info)271 static inline bool cluster_is_free(struct swap_cluster_info *info)
272 {
273 	return info->flags & CLUSTER_FLAG_FREE;
274 }
275 
cluster_is_null(struct swap_cluster_info * info)276 static inline bool cluster_is_null(struct swap_cluster_info *info)
277 {
278 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
279 }
280 
cluster_set_null(struct swap_cluster_info * info)281 static inline void cluster_set_null(struct swap_cluster_info *info)
282 {
283 	info->flags = CLUSTER_FLAG_NEXT_NULL;
284 	info->data = 0;
285 }
286 
cluster_is_huge(struct swap_cluster_info * info)287 static inline bool cluster_is_huge(struct swap_cluster_info *info)
288 {
289 	if (IS_ENABLED(CONFIG_THP_SWAP))
290 		return info->flags & CLUSTER_FLAG_HUGE;
291 	return false;
292 }
293 
cluster_clear_huge(struct swap_cluster_info * info)294 static inline void cluster_clear_huge(struct swap_cluster_info *info)
295 {
296 	info->flags &= ~CLUSTER_FLAG_HUGE;
297 }
298 
lock_cluster(struct swap_info_struct * si,unsigned long offset)299 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
300 						     unsigned long offset)
301 {
302 	struct swap_cluster_info *ci;
303 
304 	ci = si->cluster_info;
305 	if (ci) {
306 		ci += offset / SWAPFILE_CLUSTER;
307 		spin_lock(&ci->lock);
308 	}
309 	return ci;
310 }
311 
unlock_cluster(struct swap_cluster_info * ci)312 static inline void unlock_cluster(struct swap_cluster_info *ci)
313 {
314 	if (ci)
315 		spin_unlock(&ci->lock);
316 }
317 
318 /*
319  * Determine the locking method in use for this device.  Return
320  * swap_cluster_info if SSD-style cluster-based locking is in place.
321  */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)322 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
323 		struct swap_info_struct *si, unsigned long offset)
324 {
325 	struct swap_cluster_info *ci;
326 
327 	/* Try to use fine-grained SSD-style locking if available: */
328 	ci = lock_cluster(si, offset);
329 	/* Otherwise, fall back to traditional, coarse locking: */
330 	if (!ci)
331 		spin_lock(&si->lock);
332 
333 	return ci;
334 }
335 
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)336 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
337 					       struct swap_cluster_info *ci)
338 {
339 	if (ci)
340 		unlock_cluster(ci);
341 	else
342 		spin_unlock(&si->lock);
343 }
344 
cluster_list_empty(struct swap_cluster_list * list)345 static inline bool cluster_list_empty(struct swap_cluster_list *list)
346 {
347 	return cluster_is_null(&list->head);
348 }
349 
cluster_list_first(struct swap_cluster_list * list)350 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
351 {
352 	return cluster_next(&list->head);
353 }
354 
cluster_list_init(struct swap_cluster_list * list)355 static void cluster_list_init(struct swap_cluster_list *list)
356 {
357 	cluster_set_null(&list->head);
358 	cluster_set_null(&list->tail);
359 }
360 
cluster_list_add_tail(struct swap_cluster_list * list,struct swap_cluster_info * ci,unsigned int idx)361 static void cluster_list_add_tail(struct swap_cluster_list *list,
362 				  struct swap_cluster_info *ci,
363 				  unsigned int idx)
364 {
365 	if (cluster_list_empty(list)) {
366 		cluster_set_next_flag(&list->head, idx, 0);
367 		cluster_set_next_flag(&list->tail, idx, 0);
368 	} else {
369 		struct swap_cluster_info *ci_tail;
370 		unsigned int tail = cluster_next(&list->tail);
371 
372 		/*
373 		 * Nested cluster lock, but both cluster locks are
374 		 * only acquired when we held swap_info_struct->lock
375 		 */
376 		ci_tail = ci + tail;
377 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
378 		cluster_set_next(ci_tail, idx);
379 		spin_unlock(&ci_tail->lock);
380 		cluster_set_next_flag(&list->tail, idx, 0);
381 	}
382 }
383 
cluster_list_del_first(struct swap_cluster_list * list,struct swap_cluster_info * ci)384 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
385 					   struct swap_cluster_info *ci)
386 {
387 	unsigned int idx;
388 
389 	idx = cluster_next(&list->head);
390 	if (cluster_next(&list->tail) == idx) {
391 		cluster_set_null(&list->head);
392 		cluster_set_null(&list->tail);
393 	} else
394 		cluster_set_next_flag(&list->head,
395 				      cluster_next(&ci[idx]), 0);
396 
397 	return idx;
398 }
399 
400 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)401 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
402 		unsigned int idx)
403 {
404 	/*
405 	 * If scan_swap_map() can't find a free cluster, it will check
406 	 * si->swap_map directly. To make sure the discarding cluster isn't
407 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
408 	 * will be cleared after discard
409 	 */
410 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
411 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
412 
413 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
414 
415 	schedule_work(&si->discard_work);
416 }
417 
__free_cluster(struct swap_info_struct * si,unsigned long idx)418 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
419 {
420 	struct swap_cluster_info *ci = si->cluster_info;
421 
422 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
423 	cluster_list_add_tail(&si->free_clusters, ci, idx);
424 }
425 
426 /*
427  * Doing discard actually. After a cluster discard is finished, the cluster
428  * will be added to free cluster list. caller should hold si->lock.
429 */
swap_do_scheduled_discard(struct swap_info_struct * si)430 static void swap_do_scheduled_discard(struct swap_info_struct *si)
431 {
432 	struct swap_cluster_info *info, *ci;
433 	unsigned int idx;
434 
435 	info = si->cluster_info;
436 
437 	while (!cluster_list_empty(&si->discard_clusters)) {
438 		idx = cluster_list_del_first(&si->discard_clusters, info);
439 		spin_unlock(&si->lock);
440 
441 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
442 				SWAPFILE_CLUSTER);
443 
444 		spin_lock(&si->lock);
445 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
446 		__free_cluster(si, idx);
447 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
448 				0, SWAPFILE_CLUSTER);
449 		unlock_cluster(ci);
450 	}
451 }
452 
swap_discard_work(struct work_struct * work)453 static void swap_discard_work(struct work_struct *work)
454 {
455 	struct swap_info_struct *si;
456 
457 	si = container_of(work, struct swap_info_struct, discard_work);
458 
459 	spin_lock(&si->lock);
460 	swap_do_scheduled_discard(si);
461 	spin_unlock(&si->lock);
462 }
463 
alloc_cluster(struct swap_info_struct * si,unsigned long idx)464 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
465 {
466 	struct swap_cluster_info *ci = si->cluster_info;
467 
468 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
469 	cluster_list_del_first(&si->free_clusters, ci);
470 	cluster_set_count_flag(ci + idx, 0, 0);
471 }
472 
free_cluster(struct swap_info_struct * si,unsigned long idx)473 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
474 {
475 	struct swap_cluster_info *ci = si->cluster_info + idx;
476 
477 	VM_BUG_ON(cluster_count(ci) != 0);
478 	/*
479 	 * If the swap is discardable, prepare discard the cluster
480 	 * instead of free it immediately. The cluster will be freed
481 	 * after discard.
482 	 */
483 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
484 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
485 		swap_cluster_schedule_discard(si, idx);
486 		return;
487 	}
488 
489 	__free_cluster(si, idx);
490 }
491 
492 /*
493  * The cluster corresponding to page_nr will be used. The cluster will be
494  * removed from free cluster list and its usage counter will be increased.
495  */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)496 static void inc_cluster_info_page(struct swap_info_struct *p,
497 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
498 {
499 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
500 
501 	if (!cluster_info)
502 		return;
503 	if (cluster_is_free(&cluster_info[idx]))
504 		alloc_cluster(p, idx);
505 
506 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
507 	cluster_set_count(&cluster_info[idx],
508 		cluster_count(&cluster_info[idx]) + 1);
509 }
510 
511 /*
512  * The cluster corresponding to page_nr decreases one usage. If the usage
513  * counter becomes 0, which means no page in the cluster is in using, we can
514  * optionally discard the cluster and add it to free cluster list.
515  */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)516 static void dec_cluster_info_page(struct swap_info_struct *p,
517 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
518 {
519 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
520 
521 	if (!cluster_info)
522 		return;
523 
524 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
525 	cluster_set_count(&cluster_info[idx],
526 		cluster_count(&cluster_info[idx]) - 1);
527 
528 	if (cluster_count(&cluster_info[idx]) == 0)
529 		free_cluster(p, idx);
530 }
531 
532 /*
533  * It's possible scan_swap_map() uses a free cluster in the middle of free
534  * cluster list. Avoiding such abuse to avoid list corruption.
535  */
536 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)537 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
538 	unsigned long offset)
539 {
540 	struct percpu_cluster *percpu_cluster;
541 	bool conflict;
542 
543 	offset /= SWAPFILE_CLUSTER;
544 	conflict = !cluster_list_empty(&si->free_clusters) &&
545 		offset != cluster_list_first(&si->free_clusters) &&
546 		cluster_is_free(&si->cluster_info[offset]);
547 
548 	if (!conflict)
549 		return false;
550 
551 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
552 	cluster_set_null(&percpu_cluster->index);
553 	return true;
554 }
555 
556 /*
557  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
558  * might involve allocating a new cluster for current CPU too.
559  */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)560 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
561 	unsigned long *offset, unsigned long *scan_base)
562 {
563 	struct percpu_cluster *cluster;
564 	struct swap_cluster_info *ci;
565 	bool found_free;
566 	unsigned long tmp, max;
567 
568 new_cluster:
569 	cluster = this_cpu_ptr(si->percpu_cluster);
570 	if (cluster_is_null(&cluster->index)) {
571 		if (!cluster_list_empty(&si->free_clusters)) {
572 			cluster->index = si->free_clusters.head;
573 			cluster->next = cluster_next(&cluster->index) *
574 					SWAPFILE_CLUSTER;
575 		} else if (!cluster_list_empty(&si->discard_clusters)) {
576 			/*
577 			 * we don't have free cluster but have some clusters in
578 			 * discarding, do discard now and reclaim them
579 			 */
580 			swap_do_scheduled_discard(si);
581 			*scan_base = *offset = si->cluster_next;
582 			goto new_cluster;
583 		} else
584 			return false;
585 	}
586 
587 	found_free = false;
588 
589 	/*
590 	 * Other CPUs can use our cluster if they can't find a free cluster,
591 	 * check if there is still free entry in the cluster
592 	 */
593 	tmp = cluster->next;
594 	max = min_t(unsigned long, si->max,
595 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
596 	if (tmp >= max) {
597 		cluster_set_null(&cluster->index);
598 		goto new_cluster;
599 	}
600 	ci = lock_cluster(si, tmp);
601 	while (tmp < max) {
602 		if (!si->swap_map[tmp]) {
603 			found_free = true;
604 			break;
605 		}
606 		tmp++;
607 	}
608 	unlock_cluster(ci);
609 	if (!found_free) {
610 		cluster_set_null(&cluster->index);
611 		goto new_cluster;
612 	}
613 	cluster->next = tmp + 1;
614 	*offset = tmp;
615 	*scan_base = tmp;
616 	return found_free;
617 }
618 
__del_from_avail_list(struct swap_info_struct * p)619 static void __del_from_avail_list(struct swap_info_struct *p)
620 {
621 	int nid;
622 
623 	for_each_node(nid)
624 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
625 }
626 
del_from_avail_list(struct swap_info_struct * p)627 static void del_from_avail_list(struct swap_info_struct *p)
628 {
629 	spin_lock(&swap_avail_lock);
630 	__del_from_avail_list(p);
631 	spin_unlock(&swap_avail_lock);
632 }
633 
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)634 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
635 			     unsigned int nr_entries)
636 {
637 	unsigned int end = offset + nr_entries - 1;
638 
639 	if (offset == si->lowest_bit)
640 		si->lowest_bit += nr_entries;
641 	if (end == si->highest_bit)
642 		si->highest_bit -= nr_entries;
643 	si->inuse_pages += nr_entries;
644 	if (si->inuse_pages == si->pages) {
645 		si->lowest_bit = si->max;
646 		si->highest_bit = 0;
647 		del_from_avail_list(si);
648 	}
649 }
650 
add_to_avail_list(struct swap_info_struct * p)651 static void add_to_avail_list(struct swap_info_struct *p)
652 {
653 	int nid;
654 
655 	spin_lock(&swap_avail_lock);
656 	for_each_node(nid) {
657 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
658 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
659 	}
660 	spin_unlock(&swap_avail_lock);
661 }
662 
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)663 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
664 			    unsigned int nr_entries)
665 {
666 	unsigned long end = offset + nr_entries - 1;
667 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
668 
669 	if (offset < si->lowest_bit)
670 		si->lowest_bit = offset;
671 	if (end > si->highest_bit) {
672 		bool was_full = !si->highest_bit;
673 
674 		si->highest_bit = end;
675 		if (was_full && (si->flags & SWP_WRITEOK))
676 			add_to_avail_list(si);
677 	}
678 	atomic_long_add(nr_entries, &nr_swap_pages);
679 	si->inuse_pages -= nr_entries;
680 	if (si->flags & SWP_BLKDEV)
681 		swap_slot_free_notify =
682 			si->bdev->bd_disk->fops->swap_slot_free_notify;
683 	else
684 		swap_slot_free_notify = NULL;
685 	while (offset <= end) {
686 		frontswap_invalidate_page(si->type, offset);
687 		if (swap_slot_free_notify)
688 			swap_slot_free_notify(si->bdev, offset);
689 		offset++;
690 	}
691 }
692 
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[])693 static int scan_swap_map_slots(struct swap_info_struct *si,
694 			       unsigned char usage, int nr,
695 			       swp_entry_t slots[])
696 {
697 	struct swap_cluster_info *ci;
698 	unsigned long offset;
699 	unsigned long scan_base;
700 	unsigned long last_in_cluster = 0;
701 	int latency_ration = LATENCY_LIMIT;
702 	int n_ret = 0;
703 
704 	if (nr > SWAP_BATCH)
705 		nr = SWAP_BATCH;
706 
707 	/*
708 	 * We try to cluster swap pages by allocating them sequentially
709 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
710 	 * way, however, we resort to first-free allocation, starting
711 	 * a new cluster.  This prevents us from scattering swap pages
712 	 * all over the entire swap partition, so that we reduce
713 	 * overall disk seek times between swap pages.  -- sct
714 	 * But we do now try to find an empty cluster.  -Andrea
715 	 * And we let swap pages go all over an SSD partition.  Hugh
716 	 */
717 
718 	si->flags += SWP_SCANNING;
719 	scan_base = offset = si->cluster_next;
720 
721 	/* SSD algorithm */
722 	if (si->cluster_info) {
723 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
724 			goto checks;
725 		else
726 			goto scan;
727 	}
728 
729 	if (unlikely(!si->cluster_nr--)) {
730 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
731 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
732 			goto checks;
733 		}
734 
735 		spin_unlock(&si->lock);
736 
737 		/*
738 		 * If seek is expensive, start searching for new cluster from
739 		 * start of partition, to minimize the span of allocated swap.
740 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
741 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
742 		 */
743 		scan_base = offset = si->lowest_bit;
744 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
745 
746 		/* Locate the first empty (unaligned) cluster */
747 		for (; last_in_cluster <= si->highest_bit; offset++) {
748 			if (si->swap_map[offset])
749 				last_in_cluster = offset + SWAPFILE_CLUSTER;
750 			else if (offset == last_in_cluster) {
751 				spin_lock(&si->lock);
752 				offset -= SWAPFILE_CLUSTER - 1;
753 				si->cluster_next = offset;
754 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
755 				goto checks;
756 			}
757 			if (unlikely(--latency_ration < 0)) {
758 				cond_resched();
759 				latency_ration = LATENCY_LIMIT;
760 			}
761 		}
762 
763 		offset = scan_base;
764 		spin_lock(&si->lock);
765 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
766 	}
767 
768 checks:
769 	if (si->cluster_info) {
770 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
771 		/* take a break if we already got some slots */
772 			if (n_ret)
773 				goto done;
774 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
775 							&scan_base))
776 				goto scan;
777 		}
778 	}
779 	if (!(si->flags & SWP_WRITEOK))
780 		goto no_page;
781 	if (!si->highest_bit)
782 		goto no_page;
783 	if (offset > si->highest_bit)
784 		scan_base = offset = si->lowest_bit;
785 
786 	ci = lock_cluster(si, offset);
787 	/* reuse swap entry of cache-only swap if not busy. */
788 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
789 		int swap_was_freed;
790 		unlock_cluster(ci);
791 		spin_unlock(&si->lock);
792 		swap_was_freed = __try_to_reclaim_swap(si, offset);
793 		spin_lock(&si->lock);
794 		/* entry was freed successfully, try to use this again */
795 		if (swap_was_freed)
796 			goto checks;
797 		goto scan; /* check next one */
798 	}
799 
800 	if (si->swap_map[offset]) {
801 		unlock_cluster(ci);
802 		if (!n_ret)
803 			goto scan;
804 		else
805 			goto done;
806 	}
807 	si->swap_map[offset] = usage;
808 	inc_cluster_info_page(si, si->cluster_info, offset);
809 	unlock_cluster(ci);
810 
811 	swap_range_alloc(si, offset, 1);
812 	si->cluster_next = offset + 1;
813 	slots[n_ret++] = swp_entry(si->type, offset);
814 
815 	/* got enough slots or reach max slots? */
816 	if ((n_ret == nr) || (offset >= si->highest_bit))
817 		goto done;
818 
819 	/* search for next available slot */
820 
821 	/* time to take a break? */
822 	if (unlikely(--latency_ration < 0)) {
823 		if (n_ret)
824 			goto done;
825 		spin_unlock(&si->lock);
826 		cond_resched();
827 		spin_lock(&si->lock);
828 		latency_ration = LATENCY_LIMIT;
829 	}
830 
831 	/* try to get more slots in cluster */
832 	if (si->cluster_info) {
833 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
834 			goto checks;
835 		else
836 			goto done;
837 	}
838 	/* non-ssd case */
839 	++offset;
840 
841 	/* non-ssd case, still more slots in cluster? */
842 	if (si->cluster_nr && !si->swap_map[offset]) {
843 		--si->cluster_nr;
844 		goto checks;
845 	}
846 
847 done:
848 	si->flags -= SWP_SCANNING;
849 	return n_ret;
850 
851 scan:
852 	spin_unlock(&si->lock);
853 	while (++offset <= si->highest_bit) {
854 		if (!si->swap_map[offset]) {
855 			spin_lock(&si->lock);
856 			goto checks;
857 		}
858 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
859 			spin_lock(&si->lock);
860 			goto checks;
861 		}
862 		if (unlikely(--latency_ration < 0)) {
863 			cond_resched();
864 			latency_ration = LATENCY_LIMIT;
865 		}
866 	}
867 	offset = si->lowest_bit;
868 	while (offset < scan_base) {
869 		if (!si->swap_map[offset]) {
870 			spin_lock(&si->lock);
871 			goto checks;
872 		}
873 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
874 			spin_lock(&si->lock);
875 			goto checks;
876 		}
877 		if (unlikely(--latency_ration < 0)) {
878 			cond_resched();
879 			latency_ration = LATENCY_LIMIT;
880 		}
881 		offset++;
882 	}
883 	spin_lock(&si->lock);
884 
885 no_page:
886 	si->flags -= SWP_SCANNING;
887 	return n_ret;
888 }
889 
swap_alloc_cluster(struct swap_info_struct * si,swp_entry_t * slot)890 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
891 {
892 	unsigned long idx;
893 	struct swap_cluster_info *ci;
894 	unsigned long offset, i;
895 	unsigned char *map;
896 
897 	/*
898 	 * Should not even be attempting cluster allocations when huge
899 	 * page swap is disabled.  Warn and fail the allocation.
900 	 */
901 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
902 		VM_WARN_ON_ONCE(1);
903 		return 0;
904 	}
905 
906 	if (cluster_list_empty(&si->free_clusters))
907 		return 0;
908 
909 	idx = cluster_list_first(&si->free_clusters);
910 	offset = idx * SWAPFILE_CLUSTER;
911 	ci = lock_cluster(si, offset);
912 	alloc_cluster(si, idx);
913 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
914 
915 	map = si->swap_map + offset;
916 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
917 		map[i] = SWAP_HAS_CACHE;
918 	unlock_cluster(ci);
919 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
920 	*slot = swp_entry(si->type, offset);
921 
922 	return 1;
923 }
924 
swap_free_cluster(struct swap_info_struct * si,unsigned long idx)925 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
926 {
927 	unsigned long offset = idx * SWAPFILE_CLUSTER;
928 	struct swap_cluster_info *ci;
929 
930 	ci = lock_cluster(si, offset);
931 	cluster_set_count_flag(ci, 0, 0);
932 	free_cluster(si, idx);
933 	unlock_cluster(ci);
934 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
935 }
936 
scan_swap_map(struct swap_info_struct * si,unsigned char usage)937 static unsigned long scan_swap_map(struct swap_info_struct *si,
938 				   unsigned char usage)
939 {
940 	swp_entry_t entry;
941 	int n_ret;
942 
943 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
944 
945 	if (n_ret)
946 		return swp_offset(entry);
947 	else
948 		return 0;
949 
950 }
951 
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_size)952 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
953 {
954 	unsigned long size = swap_entry_size(entry_size);
955 	struct swap_info_struct *si, *next;
956 	long avail_pgs;
957 	int n_ret = 0;
958 	int node;
959 
960 	/* Only single cluster request supported */
961 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
962 
963 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
964 	if (avail_pgs <= 0)
965 		goto noswap;
966 
967 	if (n_goal > SWAP_BATCH)
968 		n_goal = SWAP_BATCH;
969 
970 	if (n_goal > avail_pgs)
971 		n_goal = avail_pgs;
972 
973 	atomic_long_sub(n_goal * size, &nr_swap_pages);
974 
975 	spin_lock(&swap_avail_lock);
976 
977 start_over:
978 	node = numa_node_id();
979 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
980 		/* requeue si to after same-priority siblings */
981 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
982 		spin_unlock(&swap_avail_lock);
983 		spin_lock(&si->lock);
984 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
985 			spin_lock(&swap_avail_lock);
986 			if (plist_node_empty(&si->avail_lists[node])) {
987 				spin_unlock(&si->lock);
988 				goto nextsi;
989 			}
990 			WARN(!si->highest_bit,
991 			     "swap_info %d in list but !highest_bit\n",
992 			     si->type);
993 			WARN(!(si->flags & SWP_WRITEOK),
994 			     "swap_info %d in list but !SWP_WRITEOK\n",
995 			     si->type);
996 			__del_from_avail_list(si);
997 			spin_unlock(&si->lock);
998 			goto nextsi;
999 		}
1000 		if (size == SWAPFILE_CLUSTER) {
1001 			if (si->flags & SWP_BLKDEV)
1002 				n_ret = swap_alloc_cluster(si, swp_entries);
1003 		} else
1004 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1005 						    n_goal, swp_entries);
1006 		spin_unlock(&si->lock);
1007 		if (n_ret || size == SWAPFILE_CLUSTER)
1008 			goto check_out;
1009 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1010 			si->type);
1011 
1012 		spin_lock(&swap_avail_lock);
1013 nextsi:
1014 		/*
1015 		 * if we got here, it's likely that si was almost full before,
1016 		 * and since scan_swap_map() can drop the si->lock, multiple
1017 		 * callers probably all tried to get a page from the same si
1018 		 * and it filled up before we could get one; or, the si filled
1019 		 * up between us dropping swap_avail_lock and taking si->lock.
1020 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1021 		 * list may have been modified; so if next is still in the
1022 		 * swap_avail_head list then try it, otherwise start over
1023 		 * if we have not gotten any slots.
1024 		 */
1025 		if (plist_node_empty(&next->avail_lists[node]))
1026 			goto start_over;
1027 	}
1028 
1029 	spin_unlock(&swap_avail_lock);
1030 
1031 check_out:
1032 	if (n_ret < n_goal)
1033 		atomic_long_add((long)(n_goal - n_ret) * size,
1034 				&nr_swap_pages);
1035 noswap:
1036 	return n_ret;
1037 }
1038 
1039 /* The only caller of this function is now suspend routine */
get_swap_page_of_type(int type)1040 swp_entry_t get_swap_page_of_type(int type)
1041 {
1042 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1043 	pgoff_t offset;
1044 
1045 	if (!si)
1046 		goto fail;
1047 
1048 	spin_lock(&si->lock);
1049 	if (si->flags & SWP_WRITEOK) {
1050 		atomic_long_dec(&nr_swap_pages);
1051 		/* This is called for allocating swap entry, not cache */
1052 		offset = scan_swap_map(si, 1);
1053 		if (offset) {
1054 			spin_unlock(&si->lock);
1055 			return swp_entry(type, offset);
1056 		}
1057 		atomic_long_inc(&nr_swap_pages);
1058 	}
1059 	spin_unlock(&si->lock);
1060 fail:
1061 	return (swp_entry_t) {0};
1062 }
1063 
__swap_info_get(swp_entry_t entry)1064 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1065 {
1066 	struct swap_info_struct *p;
1067 	unsigned long offset, type;
1068 
1069 	if (!entry.val)
1070 		goto out;
1071 	type = swp_type(entry);
1072 	p = swap_type_to_swap_info(type);
1073 	if (!p)
1074 		goto bad_nofile;
1075 	if (!(p->flags & SWP_USED))
1076 		goto bad_device;
1077 	offset = swp_offset(entry);
1078 	if (offset >= p->max)
1079 		goto bad_offset;
1080 	return p;
1081 
1082 bad_offset:
1083 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1084 	goto out;
1085 bad_device:
1086 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1087 	goto out;
1088 bad_nofile:
1089 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1090 out:
1091 	return NULL;
1092 }
1093 
_swap_info_get(swp_entry_t entry)1094 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1095 {
1096 	struct swap_info_struct *p;
1097 
1098 	p = __swap_info_get(entry);
1099 	if (!p)
1100 		goto out;
1101 	if (!p->swap_map[swp_offset(entry)])
1102 		goto bad_free;
1103 	return p;
1104 
1105 bad_free:
1106 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1107 	goto out;
1108 out:
1109 	return NULL;
1110 }
1111 
swap_info_get(swp_entry_t entry)1112 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1113 {
1114 	struct swap_info_struct *p;
1115 
1116 	p = _swap_info_get(entry);
1117 	if (p)
1118 		spin_lock(&p->lock);
1119 	return p;
1120 }
1121 
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1122 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1123 					struct swap_info_struct *q)
1124 {
1125 	struct swap_info_struct *p;
1126 
1127 	p = _swap_info_get(entry);
1128 
1129 	if (p != q) {
1130 		if (q != NULL)
1131 			spin_unlock(&q->lock);
1132 		if (p != NULL)
1133 			spin_lock(&p->lock);
1134 	}
1135 	return p;
1136 }
1137 
__swap_entry_free_locked(struct swap_info_struct * p,unsigned long offset,unsigned char usage)1138 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1139 					      unsigned long offset,
1140 					      unsigned char usage)
1141 {
1142 	unsigned char count;
1143 	unsigned char has_cache;
1144 
1145 	count = p->swap_map[offset];
1146 
1147 	has_cache = count & SWAP_HAS_CACHE;
1148 	count &= ~SWAP_HAS_CACHE;
1149 
1150 	if (usage == SWAP_HAS_CACHE) {
1151 		VM_BUG_ON(!has_cache);
1152 		has_cache = 0;
1153 	} else if (count == SWAP_MAP_SHMEM) {
1154 		/*
1155 		 * Or we could insist on shmem.c using a special
1156 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1157 		 */
1158 		count = 0;
1159 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1160 		if (count == COUNT_CONTINUED) {
1161 			if (swap_count_continued(p, offset, count))
1162 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1163 			else
1164 				count = SWAP_MAP_MAX;
1165 		} else
1166 			count--;
1167 	}
1168 
1169 	usage = count | has_cache;
1170 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1171 
1172 	return usage;
1173 }
1174 
__swap_entry_free(struct swap_info_struct * p,swp_entry_t entry,unsigned char usage)1175 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1176 				       swp_entry_t entry, unsigned char usage)
1177 {
1178 	struct swap_cluster_info *ci;
1179 	unsigned long offset = swp_offset(entry);
1180 
1181 	ci = lock_cluster_or_swap_info(p, offset);
1182 	usage = __swap_entry_free_locked(p, offset, usage);
1183 	unlock_cluster_or_swap_info(p, ci);
1184 
1185 	return usage;
1186 }
1187 
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1188 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1189 {
1190 	struct swap_cluster_info *ci;
1191 	unsigned long offset = swp_offset(entry);
1192 	unsigned char count;
1193 
1194 	ci = lock_cluster(p, offset);
1195 	count = p->swap_map[offset];
1196 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1197 	p->swap_map[offset] = 0;
1198 	dec_cluster_info_page(p, p->cluster_info, offset);
1199 	unlock_cluster(ci);
1200 
1201 	mem_cgroup_uncharge_swap(entry, 1);
1202 	swap_range_free(p, offset, 1);
1203 }
1204 
1205 /*
1206  * Caller has made sure that the swap device corresponding to entry
1207  * is still around or has not been recycled.
1208  */
swap_free(swp_entry_t entry)1209 void swap_free(swp_entry_t entry)
1210 {
1211 	struct swap_info_struct *p;
1212 
1213 	p = _swap_info_get(entry);
1214 	if (p) {
1215 		if (!__swap_entry_free(p, entry, 1))
1216 			free_swap_slot(entry);
1217 	}
1218 }
1219 
1220 /*
1221  * Called after dropping swapcache to decrease refcnt to swap entries.
1222  */
put_swap_page(struct page * page,swp_entry_t entry)1223 void put_swap_page(struct page *page, swp_entry_t entry)
1224 {
1225 	unsigned long offset = swp_offset(entry);
1226 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1227 	struct swap_cluster_info *ci;
1228 	struct swap_info_struct *si;
1229 	unsigned char *map;
1230 	unsigned int i, free_entries = 0;
1231 	unsigned char val;
1232 	int size = swap_entry_size(hpage_nr_pages(page));
1233 
1234 	si = _swap_info_get(entry);
1235 	if (!si)
1236 		return;
1237 
1238 	ci = lock_cluster_or_swap_info(si, offset);
1239 	if (size == SWAPFILE_CLUSTER) {
1240 		VM_BUG_ON(!cluster_is_huge(ci));
1241 		map = si->swap_map + offset;
1242 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1243 			val = map[i];
1244 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1245 			if (val == SWAP_HAS_CACHE)
1246 				free_entries++;
1247 		}
1248 		cluster_clear_huge(ci);
1249 		if (free_entries == SWAPFILE_CLUSTER) {
1250 			unlock_cluster_or_swap_info(si, ci);
1251 			spin_lock(&si->lock);
1252 			ci = lock_cluster(si, offset);
1253 			memset(map, 0, SWAPFILE_CLUSTER);
1254 			unlock_cluster(ci);
1255 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1256 			swap_free_cluster(si, idx);
1257 			spin_unlock(&si->lock);
1258 			return;
1259 		}
1260 	}
1261 	for (i = 0; i < size; i++, entry.val++) {
1262 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1263 			unlock_cluster_or_swap_info(si, ci);
1264 			free_swap_slot(entry);
1265 			if (i == size - 1)
1266 				return;
1267 			lock_cluster_or_swap_info(si, offset);
1268 		}
1269 	}
1270 	unlock_cluster_or_swap_info(si, ci);
1271 }
1272 
1273 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1274 int split_swap_cluster(swp_entry_t entry)
1275 {
1276 	struct swap_info_struct *si;
1277 	struct swap_cluster_info *ci;
1278 	unsigned long offset = swp_offset(entry);
1279 
1280 	si = _swap_info_get(entry);
1281 	if (!si)
1282 		return -EBUSY;
1283 	ci = lock_cluster(si, offset);
1284 	cluster_clear_huge(ci);
1285 	unlock_cluster(ci);
1286 	return 0;
1287 }
1288 #endif
1289 
swp_entry_cmp(const void * ent1,const void * ent2)1290 static int swp_entry_cmp(const void *ent1, const void *ent2)
1291 {
1292 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1293 
1294 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1295 }
1296 
swapcache_free_entries(swp_entry_t * entries,int n)1297 void swapcache_free_entries(swp_entry_t *entries, int n)
1298 {
1299 	struct swap_info_struct *p, *prev;
1300 	int i;
1301 
1302 	if (n <= 0)
1303 		return;
1304 
1305 	prev = NULL;
1306 	p = NULL;
1307 
1308 	/*
1309 	 * Sort swap entries by swap device, so each lock is only taken once.
1310 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1311 	 * so low that it isn't necessary to optimize further.
1312 	 */
1313 	if (nr_swapfiles > 1)
1314 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1315 	for (i = 0; i < n; ++i) {
1316 		p = swap_info_get_cont(entries[i], prev);
1317 		if (p)
1318 			swap_entry_free(p, entries[i]);
1319 		prev = p;
1320 	}
1321 	if (p)
1322 		spin_unlock(&p->lock);
1323 }
1324 
1325 /*
1326  * How many references to page are currently swapped out?
1327  * This does not give an exact answer when swap count is continued,
1328  * but does include the high COUNT_CONTINUED flag to allow for that.
1329  */
page_swapcount(struct page * page)1330 int page_swapcount(struct page *page)
1331 {
1332 	int count = 0;
1333 	struct swap_info_struct *p;
1334 	struct swap_cluster_info *ci;
1335 	swp_entry_t entry;
1336 	unsigned long offset;
1337 
1338 	entry.val = page_private(page);
1339 	p = _swap_info_get(entry);
1340 	if (p) {
1341 		offset = swp_offset(entry);
1342 		ci = lock_cluster_or_swap_info(p, offset);
1343 		count = swap_count(p->swap_map[offset]);
1344 		unlock_cluster_or_swap_info(p, ci);
1345 	}
1346 	return count;
1347 }
1348 
__swap_count(struct swap_info_struct * si,swp_entry_t entry)1349 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1350 {
1351 	pgoff_t offset = swp_offset(entry);
1352 
1353 	return swap_count(si->swap_map[offset]);
1354 }
1355 
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1356 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1357 {
1358 	int count = 0;
1359 	pgoff_t offset = swp_offset(entry);
1360 	struct swap_cluster_info *ci;
1361 
1362 	ci = lock_cluster_or_swap_info(si, offset);
1363 	count = swap_count(si->swap_map[offset]);
1364 	unlock_cluster_or_swap_info(si, ci);
1365 	return count;
1366 }
1367 
1368 /*
1369  * How many references to @entry are currently swapped out?
1370  * This does not give an exact answer when swap count is continued,
1371  * but does include the high COUNT_CONTINUED flag to allow for that.
1372  */
__swp_swapcount(swp_entry_t entry)1373 int __swp_swapcount(swp_entry_t entry)
1374 {
1375 	int count = 0;
1376 	struct swap_info_struct *si;
1377 
1378 	si = __swap_info_get(entry);
1379 	if (si)
1380 		count = swap_swapcount(si, entry);
1381 	return count;
1382 }
1383 
1384 /*
1385  * How many references to @entry are currently swapped out?
1386  * This considers COUNT_CONTINUED so it returns exact answer.
1387  */
swp_swapcount(swp_entry_t entry)1388 int swp_swapcount(swp_entry_t entry)
1389 {
1390 	int count, tmp_count, n;
1391 	struct swap_info_struct *p;
1392 	struct swap_cluster_info *ci;
1393 	struct page *page;
1394 	pgoff_t offset;
1395 	unsigned char *map;
1396 
1397 	p = _swap_info_get(entry);
1398 	if (!p)
1399 		return 0;
1400 
1401 	offset = swp_offset(entry);
1402 
1403 	ci = lock_cluster_or_swap_info(p, offset);
1404 
1405 	count = swap_count(p->swap_map[offset]);
1406 	if (!(count & COUNT_CONTINUED))
1407 		goto out;
1408 
1409 	count &= ~COUNT_CONTINUED;
1410 	n = SWAP_MAP_MAX + 1;
1411 
1412 	page = vmalloc_to_page(p->swap_map + offset);
1413 	offset &= ~PAGE_MASK;
1414 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1415 
1416 	do {
1417 		page = list_next_entry(page, lru);
1418 		map = kmap_atomic(page);
1419 		tmp_count = map[offset];
1420 		kunmap_atomic(map);
1421 
1422 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1423 		n *= (SWAP_CONT_MAX + 1);
1424 	} while (tmp_count & COUNT_CONTINUED);
1425 out:
1426 	unlock_cluster_or_swap_info(p, ci);
1427 	return count;
1428 }
1429 
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry)1430 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1431 					 swp_entry_t entry)
1432 {
1433 	struct swap_cluster_info *ci;
1434 	unsigned char *map = si->swap_map;
1435 	unsigned long roffset = swp_offset(entry);
1436 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1437 	int i;
1438 	bool ret = false;
1439 
1440 	ci = lock_cluster_or_swap_info(si, offset);
1441 	if (!ci || !cluster_is_huge(ci)) {
1442 		if (swap_count(map[roffset]))
1443 			ret = true;
1444 		goto unlock_out;
1445 	}
1446 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1447 		if (swap_count(map[offset + i])) {
1448 			ret = true;
1449 			break;
1450 		}
1451 	}
1452 unlock_out:
1453 	unlock_cluster_or_swap_info(si, ci);
1454 	return ret;
1455 }
1456 
page_swapped(struct page * page)1457 static bool page_swapped(struct page *page)
1458 {
1459 	swp_entry_t entry;
1460 	struct swap_info_struct *si;
1461 
1462 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1463 		return page_swapcount(page) != 0;
1464 
1465 	page = compound_head(page);
1466 	entry.val = page_private(page);
1467 	si = _swap_info_get(entry);
1468 	if (si)
1469 		return swap_page_trans_huge_swapped(si, entry);
1470 	return false;
1471 }
1472 
page_trans_huge_map_swapcount(struct page * page,int * total_mapcount,int * total_swapcount)1473 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1474 					 int *total_swapcount)
1475 {
1476 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1477 	unsigned long offset = 0;
1478 	struct swap_info_struct *si;
1479 	struct swap_cluster_info *ci = NULL;
1480 	unsigned char *map = NULL;
1481 	int mapcount, swapcount = 0;
1482 
1483 	/* hugetlbfs shouldn't call it */
1484 	VM_BUG_ON_PAGE(PageHuge(page), page);
1485 
1486 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1487 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1488 		if (PageSwapCache(page))
1489 			swapcount = page_swapcount(page);
1490 		if (total_swapcount)
1491 			*total_swapcount = swapcount;
1492 		return mapcount + swapcount;
1493 	}
1494 
1495 	page = compound_head(page);
1496 
1497 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1498 	if (PageSwapCache(page)) {
1499 		swp_entry_t entry;
1500 
1501 		entry.val = page_private(page);
1502 		si = _swap_info_get(entry);
1503 		if (si) {
1504 			map = si->swap_map;
1505 			offset = swp_offset(entry);
1506 		}
1507 	}
1508 	if (map)
1509 		ci = lock_cluster(si, offset);
1510 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1511 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1512 		_total_mapcount += mapcount;
1513 		if (map) {
1514 			swapcount = swap_count(map[offset + i]);
1515 			_total_swapcount += swapcount;
1516 		}
1517 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1518 	}
1519 	unlock_cluster(ci);
1520 	if (PageDoubleMap(page)) {
1521 		map_swapcount -= 1;
1522 		_total_mapcount -= HPAGE_PMD_NR;
1523 	}
1524 	mapcount = compound_mapcount(page);
1525 	map_swapcount += mapcount;
1526 	_total_mapcount += mapcount;
1527 	if (total_mapcount)
1528 		*total_mapcount = _total_mapcount;
1529 	if (total_swapcount)
1530 		*total_swapcount = _total_swapcount;
1531 
1532 	return map_swapcount;
1533 }
1534 
1535 /*
1536  * We can write to an anon page without COW if there are no other references
1537  * to it.  And as a side-effect, free up its swap: because the old content
1538  * on disk will never be read, and seeking back there to write new content
1539  * later would only waste time away from clustering.
1540  *
1541  * NOTE: total_map_swapcount should not be relied upon by the caller if
1542  * reuse_swap_page() returns false, but it may be always overwritten
1543  * (see the other implementation for CONFIG_SWAP=n).
1544  */
reuse_swap_page(struct page * page,int * total_map_swapcount)1545 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1546 {
1547 	int count, total_mapcount, total_swapcount;
1548 
1549 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1550 	if (unlikely(PageKsm(page)))
1551 		return false;
1552 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1553 					      &total_swapcount);
1554 	if (total_map_swapcount)
1555 		*total_map_swapcount = total_mapcount + total_swapcount;
1556 	if (count == 1 && PageSwapCache(page) &&
1557 	    (likely(!PageTransCompound(page)) ||
1558 	     /* The remaining swap count will be freed soon */
1559 	     total_swapcount == page_swapcount(page))) {
1560 		if (!PageWriteback(page)) {
1561 			page = compound_head(page);
1562 			delete_from_swap_cache(page);
1563 			SetPageDirty(page);
1564 		} else {
1565 			swp_entry_t entry;
1566 			struct swap_info_struct *p;
1567 
1568 			entry.val = page_private(page);
1569 			p = swap_info_get(entry);
1570 			if (p->flags & SWP_STABLE_WRITES) {
1571 				spin_unlock(&p->lock);
1572 				return false;
1573 			}
1574 			spin_unlock(&p->lock);
1575 		}
1576 	}
1577 
1578 	return count <= 1;
1579 }
1580 
1581 /*
1582  * If swap is getting full, or if there are no more mappings of this page,
1583  * then try_to_free_swap is called to free its swap space.
1584  */
try_to_free_swap(struct page * page)1585 int try_to_free_swap(struct page *page)
1586 {
1587 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1588 
1589 	if (!PageSwapCache(page))
1590 		return 0;
1591 	if (PageWriteback(page))
1592 		return 0;
1593 	if (page_swapped(page))
1594 		return 0;
1595 
1596 	/*
1597 	 * Once hibernation has begun to create its image of memory,
1598 	 * there's a danger that one of the calls to try_to_free_swap()
1599 	 * - most probably a call from __try_to_reclaim_swap() while
1600 	 * hibernation is allocating its own swap pages for the image,
1601 	 * but conceivably even a call from memory reclaim - will free
1602 	 * the swap from a page which has already been recorded in the
1603 	 * image as a clean swapcache page, and then reuse its swap for
1604 	 * another page of the image.  On waking from hibernation, the
1605 	 * original page might be freed under memory pressure, then
1606 	 * later read back in from swap, now with the wrong data.
1607 	 *
1608 	 * Hibernation suspends storage while it is writing the image
1609 	 * to disk so check that here.
1610 	 */
1611 	if (pm_suspended_storage())
1612 		return 0;
1613 
1614 	page = compound_head(page);
1615 	delete_from_swap_cache(page);
1616 	SetPageDirty(page);
1617 	return 1;
1618 }
1619 
1620 /*
1621  * Free the swap entry like above, but also try to
1622  * free the page cache entry if it is the last user.
1623  */
free_swap_and_cache(swp_entry_t entry)1624 int free_swap_and_cache(swp_entry_t entry)
1625 {
1626 	struct swap_info_struct *p;
1627 	struct page *page = NULL;
1628 	unsigned char count;
1629 
1630 	if (non_swap_entry(entry))
1631 		return 1;
1632 
1633 	p = _swap_info_get(entry);
1634 	if (p) {
1635 		count = __swap_entry_free(p, entry, 1);
1636 		if (count == SWAP_HAS_CACHE &&
1637 		    !swap_page_trans_huge_swapped(p, entry)) {
1638 			page = find_get_page(swap_address_space(entry),
1639 					     swp_offset(entry));
1640 			if (page && !trylock_page(page)) {
1641 				put_page(page);
1642 				page = NULL;
1643 			}
1644 		} else if (!count)
1645 			free_swap_slot(entry);
1646 	}
1647 	if (page) {
1648 		/*
1649 		 * Not mapped elsewhere, or swap space full? Free it!
1650 		 * Also recheck PageSwapCache now page is locked (above).
1651 		 */
1652 		if (PageSwapCache(page) && !PageWriteback(page) &&
1653 		    (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1654 		    !swap_page_trans_huge_swapped(p, entry)) {
1655 			page = compound_head(page);
1656 			delete_from_swap_cache(page);
1657 			SetPageDirty(page);
1658 		}
1659 		unlock_page(page);
1660 		put_page(page);
1661 	}
1662 	return p != NULL;
1663 }
1664 
1665 #ifdef CONFIG_HIBERNATION
1666 /*
1667  * Find the swap type that corresponds to given device (if any).
1668  *
1669  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1670  * from 0, in which the swap header is expected to be located.
1671  *
1672  * This is needed for the suspend to disk (aka swsusp).
1673  */
swap_type_of(dev_t device,sector_t offset,struct block_device ** bdev_p)1674 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1675 {
1676 	struct block_device *bdev = NULL;
1677 	int type;
1678 
1679 	if (device)
1680 		bdev = bdget(device);
1681 
1682 	spin_lock(&swap_lock);
1683 	for (type = 0; type < nr_swapfiles; type++) {
1684 		struct swap_info_struct *sis = swap_info[type];
1685 
1686 		if (!(sis->flags & SWP_WRITEOK))
1687 			continue;
1688 
1689 		if (!bdev) {
1690 			if (bdev_p)
1691 				*bdev_p = bdgrab(sis->bdev);
1692 
1693 			spin_unlock(&swap_lock);
1694 			return type;
1695 		}
1696 		if (bdev == sis->bdev) {
1697 			struct swap_extent *se = &sis->first_swap_extent;
1698 
1699 			if (se->start_block == offset) {
1700 				if (bdev_p)
1701 					*bdev_p = bdgrab(sis->bdev);
1702 
1703 				spin_unlock(&swap_lock);
1704 				bdput(bdev);
1705 				return type;
1706 			}
1707 		}
1708 	}
1709 	spin_unlock(&swap_lock);
1710 	if (bdev)
1711 		bdput(bdev);
1712 
1713 	return -ENODEV;
1714 }
1715 
1716 /*
1717  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1718  * corresponding to given index in swap_info (swap type).
1719  */
swapdev_block(int type,pgoff_t offset)1720 sector_t swapdev_block(int type, pgoff_t offset)
1721 {
1722 	struct block_device *bdev;
1723 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1724 
1725 	if (!si || !(si->flags & SWP_WRITEOK))
1726 		return 0;
1727 	return map_swap_entry(swp_entry(type, offset), &bdev);
1728 }
1729 
1730 /*
1731  * Return either the total number of swap pages of given type, or the number
1732  * of free pages of that type (depending on @free)
1733  *
1734  * This is needed for software suspend
1735  */
count_swap_pages(int type,int free)1736 unsigned int count_swap_pages(int type, int free)
1737 {
1738 	unsigned int n = 0;
1739 
1740 	spin_lock(&swap_lock);
1741 	if ((unsigned int)type < nr_swapfiles) {
1742 		struct swap_info_struct *sis = swap_info[type];
1743 
1744 		spin_lock(&sis->lock);
1745 		if (sis->flags & SWP_WRITEOK) {
1746 			n = sis->pages;
1747 			if (free)
1748 				n -= sis->inuse_pages;
1749 		}
1750 		spin_unlock(&sis->lock);
1751 	}
1752 	spin_unlock(&swap_lock);
1753 	return n;
1754 }
1755 #endif /* CONFIG_HIBERNATION */
1756 
pte_same_as_swp(pte_t pte,pte_t swp_pte)1757 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1758 {
1759 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1760 }
1761 
1762 /*
1763  * No need to decide whether this PTE shares the swap entry with others,
1764  * just let do_wp_page work it out if a write is requested later - to
1765  * force COW, vm_page_prot omits write permission from any private vma.
1766  */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct page * page)1767 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1768 		unsigned long addr, swp_entry_t entry, struct page *page)
1769 {
1770 	struct page *swapcache;
1771 	struct mem_cgroup *memcg;
1772 	spinlock_t *ptl;
1773 	pte_t *pte;
1774 	int ret = 1;
1775 
1776 	swapcache = page;
1777 	page = ksm_might_need_to_copy(page, vma, addr);
1778 	if (unlikely(!page))
1779 		return -ENOMEM;
1780 
1781 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1782 				&memcg, false)) {
1783 		ret = -ENOMEM;
1784 		goto out_nolock;
1785 	}
1786 
1787 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1788 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1789 		mem_cgroup_cancel_charge(page, memcg, false);
1790 		ret = 0;
1791 		goto out;
1792 	}
1793 
1794 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1795 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1796 	get_page(page);
1797 	set_pte_at(vma->vm_mm, addr, pte,
1798 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1799 	if (page == swapcache) {
1800 		page_add_anon_rmap(page, vma, addr, false);
1801 		mem_cgroup_commit_charge(page, memcg, true, false);
1802 	} else { /* ksm created a completely new copy */
1803 		page_add_new_anon_rmap(page, vma, addr, false);
1804 		mem_cgroup_commit_charge(page, memcg, false, false);
1805 		lru_cache_add_active_or_unevictable(page, vma);
1806 	}
1807 	swap_free(entry);
1808 	/*
1809 	 * Move the page to the active list so it is not
1810 	 * immediately swapped out again after swapon.
1811 	 */
1812 	activate_page(page);
1813 out:
1814 	pte_unmap_unlock(pte, ptl);
1815 out_nolock:
1816 	if (page != swapcache) {
1817 		unlock_page(page);
1818 		put_page(page);
1819 	}
1820 	return ret;
1821 }
1822 
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,swp_entry_t entry,struct page * page)1823 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1824 				unsigned long addr, unsigned long end,
1825 				swp_entry_t entry, struct page *page)
1826 {
1827 	pte_t swp_pte = swp_entry_to_pte(entry);
1828 	pte_t *pte;
1829 	int ret = 0;
1830 
1831 	/*
1832 	 * We don't actually need pte lock while scanning for swp_pte: since
1833 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1834 	 * page table while we're scanning; though it could get zapped, and on
1835 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1836 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1837 	 * recheck under pte lock.  Scanning without pte lock lets it be
1838 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1839 	 */
1840 	pte = pte_offset_map(pmd, addr);
1841 	do {
1842 		/*
1843 		 * swapoff spends a _lot_ of time in this loop!
1844 		 * Test inline before going to call unuse_pte.
1845 		 */
1846 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1847 			pte_unmap(pte);
1848 			ret = unuse_pte(vma, pmd, addr, entry, page);
1849 			if (ret)
1850 				goto out;
1851 			pte = pte_offset_map(pmd, addr);
1852 		}
1853 	} while (pte++, addr += PAGE_SIZE, addr != end);
1854 	pte_unmap(pte - 1);
1855 out:
1856 	return ret;
1857 }
1858 
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,swp_entry_t entry,struct page * page)1859 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1860 				unsigned long addr, unsigned long end,
1861 				swp_entry_t entry, struct page *page)
1862 {
1863 	pmd_t *pmd;
1864 	unsigned long next;
1865 	int ret;
1866 
1867 	pmd = pmd_offset(pud, addr);
1868 	do {
1869 		cond_resched();
1870 		next = pmd_addr_end(addr, end);
1871 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1872 			continue;
1873 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1874 		if (ret)
1875 			return ret;
1876 	} while (pmd++, addr = next, addr != end);
1877 	return 0;
1878 }
1879 
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,swp_entry_t entry,struct page * page)1880 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1881 				unsigned long addr, unsigned long end,
1882 				swp_entry_t entry, struct page *page)
1883 {
1884 	pud_t *pud;
1885 	unsigned long next;
1886 	int ret;
1887 
1888 	pud = pud_offset(p4d, addr);
1889 	do {
1890 		next = pud_addr_end(addr, end);
1891 		if (pud_none_or_clear_bad(pud))
1892 			continue;
1893 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1894 		if (ret)
1895 			return ret;
1896 	} while (pud++, addr = next, addr != end);
1897 	return 0;
1898 }
1899 
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,swp_entry_t entry,struct page * page)1900 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1901 				unsigned long addr, unsigned long end,
1902 				swp_entry_t entry, struct page *page)
1903 {
1904 	p4d_t *p4d;
1905 	unsigned long next;
1906 	int ret;
1907 
1908 	p4d = p4d_offset(pgd, addr);
1909 	do {
1910 		next = p4d_addr_end(addr, end);
1911 		if (p4d_none_or_clear_bad(p4d))
1912 			continue;
1913 		ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1914 		if (ret)
1915 			return ret;
1916 	} while (p4d++, addr = next, addr != end);
1917 	return 0;
1918 }
1919 
unuse_vma(struct vm_area_struct * vma,swp_entry_t entry,struct page * page)1920 static int unuse_vma(struct vm_area_struct *vma,
1921 				swp_entry_t entry, struct page *page)
1922 {
1923 	pgd_t *pgd;
1924 	unsigned long addr, end, next;
1925 	int ret;
1926 
1927 	if (page_anon_vma(page)) {
1928 		addr = page_address_in_vma(page, vma);
1929 		if (addr == -EFAULT)
1930 			return 0;
1931 		else
1932 			end = addr + PAGE_SIZE;
1933 	} else {
1934 		addr = vma->vm_start;
1935 		end = vma->vm_end;
1936 	}
1937 
1938 	pgd = pgd_offset(vma->vm_mm, addr);
1939 	do {
1940 		next = pgd_addr_end(addr, end);
1941 		if (pgd_none_or_clear_bad(pgd))
1942 			continue;
1943 		ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1944 		if (ret)
1945 			return ret;
1946 	} while (pgd++, addr = next, addr != end);
1947 	return 0;
1948 }
1949 
unuse_mm(struct mm_struct * mm,swp_entry_t entry,struct page * page)1950 static int unuse_mm(struct mm_struct *mm,
1951 				swp_entry_t entry, struct page *page)
1952 {
1953 	struct vm_area_struct *vma;
1954 	int ret = 0;
1955 
1956 	if (!down_read_trylock(&mm->mmap_sem)) {
1957 		/*
1958 		 * Activate page so shrink_inactive_list is unlikely to unmap
1959 		 * its ptes while lock is dropped, so swapoff can make progress.
1960 		 */
1961 		activate_page(page);
1962 		unlock_page(page);
1963 		down_read(&mm->mmap_sem);
1964 		lock_page(page);
1965 	}
1966 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1967 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1968 			break;
1969 		cond_resched();
1970 	}
1971 	up_read(&mm->mmap_sem);
1972 	return (ret < 0)? ret: 0;
1973 }
1974 
1975 /*
1976  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1977  * from current position to next entry still in use.
1978  * Recycle to start on reaching the end, returning 0 when empty.
1979  */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev,bool frontswap)1980 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1981 					unsigned int prev, bool frontswap)
1982 {
1983 	unsigned int max = si->max;
1984 	unsigned int i = prev;
1985 	unsigned char count;
1986 
1987 	/*
1988 	 * No need for swap_lock here: we're just looking
1989 	 * for whether an entry is in use, not modifying it; false
1990 	 * hits are okay, and sys_swapoff() has already prevented new
1991 	 * allocations from this area (while holding swap_lock).
1992 	 */
1993 	for (;;) {
1994 		if (++i >= max) {
1995 			if (!prev) {
1996 				i = 0;
1997 				break;
1998 			}
1999 			/*
2000 			 * No entries in use at top of swap_map,
2001 			 * loop back to start and recheck there.
2002 			 */
2003 			max = prev + 1;
2004 			prev = 0;
2005 			i = 1;
2006 		}
2007 		count = READ_ONCE(si->swap_map[i]);
2008 		if (count && swap_count(count) != SWAP_MAP_BAD)
2009 			if (!frontswap || frontswap_test(si, i))
2010 				break;
2011 		if ((i % LATENCY_LIMIT) == 0)
2012 			cond_resched();
2013 	}
2014 	return i;
2015 }
2016 
2017 /*
2018  * We completely avoid races by reading each swap page in advance,
2019  * and then search for the process using it.  All the necessary
2020  * page table adjustments can then be made atomically.
2021  *
2022  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2023  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2024  */
try_to_unuse(unsigned int type,bool frontswap,unsigned long pages_to_unuse)2025 int try_to_unuse(unsigned int type, bool frontswap,
2026 		 unsigned long pages_to_unuse)
2027 {
2028 	struct swap_info_struct *si = swap_info[type];
2029 	struct mm_struct *start_mm;
2030 	volatile unsigned char *swap_map; /* swap_map is accessed without
2031 					   * locking. Mark it as volatile
2032 					   * to prevent compiler doing
2033 					   * something odd.
2034 					   */
2035 	unsigned char swcount;
2036 	struct page *page;
2037 	swp_entry_t entry;
2038 	unsigned int i = 0;
2039 	int retval = 0;
2040 
2041 	/*
2042 	 * When searching mms for an entry, a good strategy is to
2043 	 * start at the first mm we freed the previous entry from
2044 	 * (though actually we don't notice whether we or coincidence
2045 	 * freed the entry).  Initialize this start_mm with a hold.
2046 	 *
2047 	 * A simpler strategy would be to start at the last mm we
2048 	 * freed the previous entry from; but that would take less
2049 	 * advantage of mmlist ordering, which clusters forked mms
2050 	 * together, child after parent.  If we race with dup_mmap(), we
2051 	 * prefer to resolve parent before child, lest we miss entries
2052 	 * duplicated after we scanned child: using last mm would invert
2053 	 * that.
2054 	 */
2055 	start_mm = &init_mm;
2056 	mmget(&init_mm);
2057 
2058 	/*
2059 	 * Keep on scanning until all entries have gone.  Usually,
2060 	 * one pass through swap_map is enough, but not necessarily:
2061 	 * there are races when an instance of an entry might be missed.
2062 	 */
2063 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2064 		if (signal_pending(current)) {
2065 			retval = -EINTR;
2066 			break;
2067 		}
2068 
2069 		/*
2070 		 * Get a page for the entry, using the existing swap
2071 		 * cache page if there is one.  Otherwise, get a clean
2072 		 * page and read the swap into it.
2073 		 */
2074 		swap_map = &si->swap_map[i];
2075 		entry = swp_entry(type, i);
2076 		page = read_swap_cache_async(entry,
2077 					GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2078 		if (!page) {
2079 			/*
2080 			 * Either swap_duplicate() failed because entry
2081 			 * has been freed independently, and will not be
2082 			 * reused since sys_swapoff() already disabled
2083 			 * allocation from here, or alloc_page() failed.
2084 			 */
2085 			swcount = *swap_map;
2086 			/*
2087 			 * We don't hold lock here, so the swap entry could be
2088 			 * SWAP_MAP_BAD (when the cluster is discarding).
2089 			 * Instead of fail out, We can just skip the swap
2090 			 * entry because swapoff will wait for discarding
2091 			 * finish anyway.
2092 			 */
2093 			if (!swcount || swcount == SWAP_MAP_BAD)
2094 				continue;
2095 			retval = -ENOMEM;
2096 			break;
2097 		}
2098 
2099 		/*
2100 		 * Don't hold on to start_mm if it looks like exiting.
2101 		 */
2102 		if (atomic_read(&start_mm->mm_users) == 1) {
2103 			mmput(start_mm);
2104 			start_mm = &init_mm;
2105 			mmget(&init_mm);
2106 		}
2107 
2108 		/*
2109 		 * Wait for and lock page.  When do_swap_page races with
2110 		 * try_to_unuse, do_swap_page can handle the fault much
2111 		 * faster than try_to_unuse can locate the entry.  This
2112 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2113 		 * defer to do_swap_page in such a case - in some tests,
2114 		 * do_swap_page and try_to_unuse repeatedly compete.
2115 		 */
2116 		wait_on_page_locked(page);
2117 		wait_on_page_writeback(page);
2118 		lock_page(page);
2119 		wait_on_page_writeback(page);
2120 
2121 		/*
2122 		 * Remove all references to entry.
2123 		 */
2124 		swcount = *swap_map;
2125 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2126 			retval = shmem_unuse(entry, page);
2127 			/* page has already been unlocked and released */
2128 			if (retval < 0)
2129 				break;
2130 			continue;
2131 		}
2132 		if (swap_count(swcount) && start_mm != &init_mm)
2133 			retval = unuse_mm(start_mm, entry, page);
2134 
2135 		if (swap_count(*swap_map)) {
2136 			int set_start_mm = (*swap_map >= swcount);
2137 			struct list_head *p = &start_mm->mmlist;
2138 			struct mm_struct *new_start_mm = start_mm;
2139 			struct mm_struct *prev_mm = start_mm;
2140 			struct mm_struct *mm;
2141 
2142 			mmget(new_start_mm);
2143 			mmget(prev_mm);
2144 			spin_lock(&mmlist_lock);
2145 			while (swap_count(*swap_map) && !retval &&
2146 					(p = p->next) != &start_mm->mmlist) {
2147 				mm = list_entry(p, struct mm_struct, mmlist);
2148 				if (!mmget_not_zero(mm))
2149 					continue;
2150 				spin_unlock(&mmlist_lock);
2151 				mmput(prev_mm);
2152 				prev_mm = mm;
2153 
2154 				cond_resched();
2155 
2156 				swcount = *swap_map;
2157 				if (!swap_count(swcount)) /* any usage ? */
2158 					;
2159 				else if (mm == &init_mm)
2160 					set_start_mm = 1;
2161 				else
2162 					retval = unuse_mm(mm, entry, page);
2163 
2164 				if (set_start_mm && *swap_map < swcount) {
2165 					mmput(new_start_mm);
2166 					mmget(mm);
2167 					new_start_mm = mm;
2168 					set_start_mm = 0;
2169 				}
2170 				spin_lock(&mmlist_lock);
2171 			}
2172 			spin_unlock(&mmlist_lock);
2173 			mmput(prev_mm);
2174 			mmput(start_mm);
2175 			start_mm = new_start_mm;
2176 		}
2177 		if (retval) {
2178 			unlock_page(page);
2179 			put_page(page);
2180 			break;
2181 		}
2182 
2183 		/*
2184 		 * If a reference remains (rare), we would like to leave
2185 		 * the page in the swap cache; but try_to_unmap could
2186 		 * then re-duplicate the entry once we drop page lock,
2187 		 * so we might loop indefinitely; also, that page could
2188 		 * not be swapped out to other storage meanwhile.  So:
2189 		 * delete from cache even if there's another reference,
2190 		 * after ensuring that the data has been saved to disk -
2191 		 * since if the reference remains (rarer), it will be
2192 		 * read from disk into another page.  Splitting into two
2193 		 * pages would be incorrect if swap supported "shared
2194 		 * private" pages, but they are handled by tmpfs files.
2195 		 *
2196 		 * Given how unuse_vma() targets one particular offset
2197 		 * in an anon_vma, once the anon_vma has been determined,
2198 		 * this splitting happens to be just what is needed to
2199 		 * handle where KSM pages have been swapped out: re-reading
2200 		 * is unnecessarily slow, but we can fix that later on.
2201 		 */
2202 		if (swap_count(*swap_map) &&
2203 		     PageDirty(page) && PageSwapCache(page)) {
2204 			struct writeback_control wbc = {
2205 				.sync_mode = WB_SYNC_NONE,
2206 			};
2207 
2208 			swap_writepage(compound_head(page), &wbc);
2209 			lock_page(page);
2210 			wait_on_page_writeback(page);
2211 		}
2212 
2213 		/*
2214 		 * It is conceivable that a racing task removed this page from
2215 		 * swap cache just before we acquired the page lock at the top,
2216 		 * or while we dropped it in unuse_mm().  The page might even
2217 		 * be back in swap cache on another swap area: that we must not
2218 		 * delete, since it may not have been written out to swap yet.
2219 		 */
2220 		if (PageSwapCache(page) &&
2221 		    likely(page_private(page) == entry.val) &&
2222 		    (!PageTransCompound(page) ||
2223 		     !swap_page_trans_huge_swapped(si, entry)))
2224 			delete_from_swap_cache(compound_head(page));
2225 
2226 		/*
2227 		 * So we could skip searching mms once swap count went
2228 		 * to 1, we did not mark any present ptes as dirty: must
2229 		 * mark page dirty so shrink_page_list will preserve it.
2230 		 */
2231 		SetPageDirty(page);
2232 		unlock_page(page);
2233 		put_page(page);
2234 
2235 		/*
2236 		 * Make sure that we aren't completely killing
2237 		 * interactive performance.
2238 		 */
2239 		cond_resched();
2240 		if (frontswap && pages_to_unuse > 0) {
2241 			if (!--pages_to_unuse)
2242 				break;
2243 		}
2244 	}
2245 
2246 	mmput(start_mm);
2247 	return retval;
2248 }
2249 
2250 /*
2251  * After a successful try_to_unuse, if no swap is now in use, we know
2252  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2253  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2254  * added to the mmlist just after page_duplicate - before would be racy.
2255  */
drain_mmlist(void)2256 static void drain_mmlist(void)
2257 {
2258 	struct list_head *p, *next;
2259 	unsigned int type;
2260 
2261 	for (type = 0; type < nr_swapfiles; type++)
2262 		if (swap_info[type]->inuse_pages)
2263 			return;
2264 	spin_lock(&mmlist_lock);
2265 	list_for_each_safe(p, next, &init_mm.mmlist)
2266 		list_del_init(p);
2267 	spin_unlock(&mmlist_lock);
2268 }
2269 
2270 /*
2271  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2272  * corresponds to page offset for the specified swap entry.
2273  * Note that the type of this function is sector_t, but it returns page offset
2274  * into the bdev, not sector offset.
2275  */
map_swap_entry(swp_entry_t entry,struct block_device ** bdev)2276 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2277 {
2278 	struct swap_info_struct *sis;
2279 	struct swap_extent *start_se;
2280 	struct swap_extent *se;
2281 	pgoff_t offset;
2282 
2283 	sis = swp_swap_info(entry);
2284 	*bdev = sis->bdev;
2285 
2286 	offset = swp_offset(entry);
2287 	start_se = sis->curr_swap_extent;
2288 	se = start_se;
2289 
2290 	for ( ; ; ) {
2291 		if (se->start_page <= offset &&
2292 				offset < (se->start_page + se->nr_pages)) {
2293 			return se->start_block + (offset - se->start_page);
2294 		}
2295 		se = list_next_entry(se, list);
2296 		sis->curr_swap_extent = se;
2297 		BUG_ON(se == start_se);		/* It *must* be present */
2298 	}
2299 }
2300 
2301 /*
2302  * Returns the page offset into bdev for the specified page's swap entry.
2303  */
map_swap_page(struct page * page,struct block_device ** bdev)2304 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2305 {
2306 	swp_entry_t entry;
2307 	entry.val = page_private(page);
2308 	return map_swap_entry(entry, bdev);
2309 }
2310 
2311 /*
2312  * Free all of a swapdev's extent information
2313  */
destroy_swap_extents(struct swap_info_struct * sis)2314 static void destroy_swap_extents(struct swap_info_struct *sis)
2315 {
2316 	while (!list_empty(&sis->first_swap_extent.list)) {
2317 		struct swap_extent *se;
2318 
2319 		se = list_first_entry(&sis->first_swap_extent.list,
2320 				struct swap_extent, list);
2321 		list_del(&se->list);
2322 		kfree(se);
2323 	}
2324 
2325 	if (sis->flags & SWP_FILE) {
2326 		struct file *swap_file = sis->swap_file;
2327 		struct address_space *mapping = swap_file->f_mapping;
2328 
2329 		sis->flags &= ~SWP_FILE;
2330 		mapping->a_ops->swap_deactivate(swap_file);
2331 	}
2332 }
2333 
2334 /*
2335  * Add a block range (and the corresponding page range) into this swapdev's
2336  * extent list.  The extent list is kept sorted in page order.
2337  *
2338  * This function rather assumes that it is called in ascending page order.
2339  */
2340 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2341 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2342 		unsigned long nr_pages, sector_t start_block)
2343 {
2344 	struct swap_extent *se;
2345 	struct swap_extent *new_se;
2346 	struct list_head *lh;
2347 
2348 	if (start_page == 0) {
2349 		se = &sis->first_swap_extent;
2350 		sis->curr_swap_extent = se;
2351 		se->start_page = 0;
2352 		se->nr_pages = nr_pages;
2353 		se->start_block = start_block;
2354 		return 1;
2355 	} else {
2356 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
2357 		se = list_entry(lh, struct swap_extent, list);
2358 		BUG_ON(se->start_page + se->nr_pages != start_page);
2359 		if (se->start_block + se->nr_pages == start_block) {
2360 			/* Merge it */
2361 			se->nr_pages += nr_pages;
2362 			return 0;
2363 		}
2364 	}
2365 
2366 	/*
2367 	 * No merge.  Insert a new extent, preserving ordering.
2368 	 */
2369 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2370 	if (new_se == NULL)
2371 		return -ENOMEM;
2372 	new_se->start_page = start_page;
2373 	new_se->nr_pages = nr_pages;
2374 	new_se->start_block = start_block;
2375 
2376 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2377 	return 1;
2378 }
2379 
2380 /*
2381  * A `swap extent' is a simple thing which maps a contiguous range of pages
2382  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2383  * is built at swapon time and is then used at swap_writepage/swap_readpage
2384  * time for locating where on disk a page belongs.
2385  *
2386  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2387  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2388  * swap files identically.
2389  *
2390  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2391  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2392  * swapfiles are handled *identically* after swapon time.
2393  *
2394  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2395  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2396  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2397  * requirements, they are simply tossed out - we will never use those blocks
2398  * for swapping.
2399  *
2400  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2401  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2402  * which will scribble on the fs.
2403  *
2404  * The amount of disk space which a single swap extent represents varies.
2405  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2406  * extents in the list.  To avoid much list walking, we cache the previous
2407  * search location in `curr_swap_extent', and start new searches from there.
2408  * This is extremely effective.  The average number of iterations in
2409  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2410  */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2411 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2412 {
2413 	struct file *swap_file = sis->swap_file;
2414 	struct address_space *mapping = swap_file->f_mapping;
2415 	struct inode *inode = mapping->host;
2416 	int ret;
2417 
2418 	if (S_ISBLK(inode->i_mode)) {
2419 		ret = add_swap_extent(sis, 0, sis->max, 0);
2420 		*span = sis->pages;
2421 		return ret;
2422 	}
2423 
2424 	if (mapping->a_ops->swap_activate) {
2425 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2426 		if (!ret) {
2427 			sis->flags |= SWP_FILE;
2428 			ret = add_swap_extent(sis, 0, sis->max, 0);
2429 			*span = sis->pages;
2430 		}
2431 		return ret;
2432 	}
2433 
2434 	return generic_swapfile_activate(sis, swap_file, span);
2435 }
2436 
swap_node(struct swap_info_struct * p)2437 static int swap_node(struct swap_info_struct *p)
2438 {
2439 	struct block_device *bdev;
2440 
2441 	if (p->bdev)
2442 		bdev = p->bdev;
2443 	else
2444 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2445 
2446 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2447 }
2448 
_enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2449 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2450 				unsigned char *swap_map,
2451 				struct swap_cluster_info *cluster_info)
2452 {
2453 	int i;
2454 
2455 	if (prio >= 0)
2456 		p->prio = prio;
2457 	else
2458 		p->prio = --least_priority;
2459 	/*
2460 	 * the plist prio is negated because plist ordering is
2461 	 * low-to-high, while swap ordering is high-to-low
2462 	 */
2463 	p->list.prio = -p->prio;
2464 	for_each_node(i) {
2465 		if (p->prio >= 0)
2466 			p->avail_lists[i].prio = -p->prio;
2467 		else {
2468 			if (swap_node(p) == i)
2469 				p->avail_lists[i].prio = 1;
2470 			else
2471 				p->avail_lists[i].prio = -p->prio;
2472 		}
2473 	}
2474 	p->swap_map = swap_map;
2475 	p->cluster_info = cluster_info;
2476 	p->flags |= SWP_WRITEOK;
2477 	atomic_long_add(p->pages, &nr_swap_pages);
2478 	total_swap_pages += p->pages;
2479 
2480 	assert_spin_locked(&swap_lock);
2481 	/*
2482 	 * both lists are plists, and thus priority ordered.
2483 	 * swap_active_head needs to be priority ordered for swapoff(),
2484 	 * which on removal of any swap_info_struct with an auto-assigned
2485 	 * (i.e. negative) priority increments the auto-assigned priority
2486 	 * of any lower-priority swap_info_structs.
2487 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2488 	 * which allocates swap pages from the highest available priority
2489 	 * swap_info_struct.
2490 	 */
2491 	plist_add(&p->list, &swap_active_head);
2492 	add_to_avail_list(p);
2493 }
2494 
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * frontswap_map)2495 static void enable_swap_info(struct swap_info_struct *p, int prio,
2496 				unsigned char *swap_map,
2497 				struct swap_cluster_info *cluster_info,
2498 				unsigned long *frontswap_map)
2499 {
2500 	frontswap_init(p->type, frontswap_map);
2501 	spin_lock(&swap_lock);
2502 	spin_lock(&p->lock);
2503 	 _enable_swap_info(p, prio, swap_map, cluster_info);
2504 	spin_unlock(&p->lock);
2505 	spin_unlock(&swap_lock);
2506 }
2507 
reinsert_swap_info(struct swap_info_struct * p)2508 static void reinsert_swap_info(struct swap_info_struct *p)
2509 {
2510 	spin_lock(&swap_lock);
2511 	spin_lock(&p->lock);
2512 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2513 	spin_unlock(&p->lock);
2514 	spin_unlock(&swap_lock);
2515 }
2516 
has_usable_swap(void)2517 bool has_usable_swap(void)
2518 {
2519 	bool ret = true;
2520 
2521 	spin_lock(&swap_lock);
2522 	if (plist_head_empty(&swap_active_head))
2523 		ret = false;
2524 	spin_unlock(&swap_lock);
2525 	return ret;
2526 }
2527 
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2528 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2529 {
2530 	struct swap_info_struct *p = NULL;
2531 	unsigned char *swap_map;
2532 	struct swap_cluster_info *cluster_info;
2533 	unsigned long *frontswap_map;
2534 	struct file *swap_file, *victim;
2535 	struct address_space *mapping;
2536 	struct inode *inode;
2537 	struct filename *pathname;
2538 	int err, found = 0;
2539 	unsigned int old_block_size;
2540 
2541 	if (!capable(CAP_SYS_ADMIN))
2542 		return -EPERM;
2543 
2544 	BUG_ON(!current->mm);
2545 
2546 	pathname = getname(specialfile);
2547 	if (IS_ERR(pathname))
2548 		return PTR_ERR(pathname);
2549 
2550 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2551 	err = PTR_ERR(victim);
2552 	if (IS_ERR(victim))
2553 		goto out;
2554 
2555 	mapping = victim->f_mapping;
2556 	spin_lock(&swap_lock);
2557 	plist_for_each_entry(p, &swap_active_head, list) {
2558 		if (p->flags & SWP_WRITEOK) {
2559 			if (p->swap_file->f_mapping == mapping) {
2560 				found = 1;
2561 				break;
2562 			}
2563 		}
2564 	}
2565 	if (!found) {
2566 		err = -EINVAL;
2567 		spin_unlock(&swap_lock);
2568 		goto out_dput;
2569 	}
2570 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2571 		vm_unacct_memory(p->pages);
2572 	else {
2573 		err = -ENOMEM;
2574 		spin_unlock(&swap_lock);
2575 		goto out_dput;
2576 	}
2577 	del_from_avail_list(p);
2578 	spin_lock(&p->lock);
2579 	if (p->prio < 0) {
2580 		struct swap_info_struct *si = p;
2581 		int nid;
2582 
2583 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2584 			si->prio++;
2585 			si->list.prio--;
2586 			for_each_node(nid) {
2587 				if (si->avail_lists[nid].prio != 1)
2588 					si->avail_lists[nid].prio--;
2589 			}
2590 		}
2591 		least_priority++;
2592 	}
2593 	plist_del(&p->list, &swap_active_head);
2594 	atomic_long_sub(p->pages, &nr_swap_pages);
2595 	total_swap_pages -= p->pages;
2596 	p->flags &= ~SWP_WRITEOK;
2597 	spin_unlock(&p->lock);
2598 	spin_unlock(&swap_lock);
2599 
2600 	disable_swap_slots_cache_lock();
2601 
2602 	set_current_oom_origin();
2603 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2604 	clear_current_oom_origin();
2605 
2606 	if (err) {
2607 		/* re-insert swap space back into swap_list */
2608 		reinsert_swap_info(p);
2609 		reenable_swap_slots_cache_unlock();
2610 		goto out_dput;
2611 	}
2612 
2613 	reenable_swap_slots_cache_unlock();
2614 
2615 	flush_work(&p->discard_work);
2616 
2617 	destroy_swap_extents(p);
2618 	if (p->flags & SWP_CONTINUED)
2619 		free_swap_count_continuations(p);
2620 
2621 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2622 		atomic_dec(&nr_rotate_swap);
2623 
2624 	mutex_lock(&swapon_mutex);
2625 	spin_lock(&swap_lock);
2626 	spin_lock(&p->lock);
2627 	drain_mmlist();
2628 
2629 	/* wait for anyone still in scan_swap_map */
2630 	p->highest_bit = 0;		/* cuts scans short */
2631 	while (p->flags >= SWP_SCANNING) {
2632 		spin_unlock(&p->lock);
2633 		spin_unlock(&swap_lock);
2634 		schedule_timeout_uninterruptible(1);
2635 		spin_lock(&swap_lock);
2636 		spin_lock(&p->lock);
2637 	}
2638 
2639 	swap_file = p->swap_file;
2640 	old_block_size = p->old_block_size;
2641 	p->swap_file = NULL;
2642 	p->max = 0;
2643 	swap_map = p->swap_map;
2644 	p->swap_map = NULL;
2645 	cluster_info = p->cluster_info;
2646 	p->cluster_info = NULL;
2647 	frontswap_map = frontswap_map_get(p);
2648 	spin_unlock(&p->lock);
2649 	spin_unlock(&swap_lock);
2650 	frontswap_invalidate_area(p->type);
2651 	frontswap_map_set(p, NULL);
2652 	mutex_unlock(&swapon_mutex);
2653 	free_percpu(p->percpu_cluster);
2654 	p->percpu_cluster = NULL;
2655 	vfree(swap_map);
2656 	kvfree(cluster_info);
2657 	kvfree(frontswap_map);
2658 	/* Destroy swap account information */
2659 	swap_cgroup_swapoff(p->type);
2660 	exit_swap_address_space(p->type);
2661 
2662 	inode = mapping->host;
2663 	if (S_ISBLK(inode->i_mode)) {
2664 		struct block_device *bdev = I_BDEV(inode);
2665 		set_blocksize(bdev, old_block_size);
2666 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2667 	} else {
2668 		inode_lock(inode);
2669 		inode->i_flags &= ~S_SWAPFILE;
2670 		inode_unlock(inode);
2671 	}
2672 	filp_close(swap_file, NULL);
2673 
2674 	/*
2675 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2676 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2677 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2678 	 */
2679 	spin_lock(&swap_lock);
2680 	p->flags = 0;
2681 	spin_unlock(&swap_lock);
2682 
2683 	err = 0;
2684 	atomic_inc(&proc_poll_event);
2685 	wake_up_interruptible(&proc_poll_wait);
2686 
2687 out_dput:
2688 	filp_close(victim, NULL);
2689 out:
2690 	putname(pathname);
2691 	return err;
2692 }
2693 
2694 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2695 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2696 {
2697 	struct seq_file *seq = file->private_data;
2698 
2699 	poll_wait(file, &proc_poll_wait, wait);
2700 
2701 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2702 		seq->poll_event = atomic_read(&proc_poll_event);
2703 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2704 	}
2705 
2706 	return EPOLLIN | EPOLLRDNORM;
2707 }
2708 
2709 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2710 static void *swap_start(struct seq_file *swap, loff_t *pos)
2711 {
2712 	struct swap_info_struct *si;
2713 	int type;
2714 	loff_t l = *pos;
2715 
2716 	mutex_lock(&swapon_mutex);
2717 
2718 	if (!l)
2719 		return SEQ_START_TOKEN;
2720 
2721 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2722 		if (!(si->flags & SWP_USED) || !si->swap_map)
2723 			continue;
2724 		if (!--l)
2725 			return si;
2726 	}
2727 
2728 	return NULL;
2729 }
2730 
swap_next(struct seq_file * swap,void * v,loff_t * pos)2731 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2732 {
2733 	struct swap_info_struct *si = v;
2734 	int type;
2735 
2736 	if (v == SEQ_START_TOKEN)
2737 		type = 0;
2738 	else
2739 		type = si->type + 1;
2740 
2741 	++(*pos);
2742 	for (; (si = swap_type_to_swap_info(type)); type++) {
2743 		if (!(si->flags & SWP_USED) || !si->swap_map)
2744 			continue;
2745 		return si;
2746 	}
2747 
2748 	return NULL;
2749 }
2750 
swap_stop(struct seq_file * swap,void * v)2751 static void swap_stop(struct seq_file *swap, void *v)
2752 {
2753 	mutex_unlock(&swapon_mutex);
2754 }
2755 
swap_show(struct seq_file * swap,void * v)2756 static int swap_show(struct seq_file *swap, void *v)
2757 {
2758 	struct swap_info_struct *si = v;
2759 	struct file *file;
2760 	int len;
2761 
2762 	if (si == SEQ_START_TOKEN) {
2763 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2764 		return 0;
2765 	}
2766 
2767 	file = si->swap_file;
2768 	len = seq_file_path(swap, file, " \t\n\\");
2769 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2770 			len < 40 ? 40 - len : 1, " ",
2771 			S_ISBLK(file_inode(file)->i_mode) ?
2772 				"partition" : "file\t",
2773 			si->pages << (PAGE_SHIFT - 10),
2774 			si->inuse_pages << (PAGE_SHIFT - 10),
2775 			si->prio);
2776 	return 0;
2777 }
2778 
2779 static const struct seq_operations swaps_op = {
2780 	.start =	swap_start,
2781 	.next =		swap_next,
2782 	.stop =		swap_stop,
2783 	.show =		swap_show
2784 };
2785 
swaps_open(struct inode * inode,struct file * file)2786 static int swaps_open(struct inode *inode, struct file *file)
2787 {
2788 	struct seq_file *seq;
2789 	int ret;
2790 
2791 	ret = seq_open(file, &swaps_op);
2792 	if (ret)
2793 		return ret;
2794 
2795 	seq = file->private_data;
2796 	seq->poll_event = atomic_read(&proc_poll_event);
2797 	return 0;
2798 }
2799 
2800 static const struct file_operations proc_swaps_operations = {
2801 	.open		= swaps_open,
2802 	.read		= seq_read,
2803 	.llseek		= seq_lseek,
2804 	.release	= seq_release,
2805 	.poll		= swaps_poll,
2806 };
2807 
procswaps_init(void)2808 static int __init procswaps_init(void)
2809 {
2810 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2811 	return 0;
2812 }
2813 __initcall(procswaps_init);
2814 #endif /* CONFIG_PROC_FS */
2815 
2816 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2817 static int __init max_swapfiles_check(void)
2818 {
2819 	MAX_SWAPFILES_CHECK();
2820 	return 0;
2821 }
2822 late_initcall(max_swapfiles_check);
2823 #endif
2824 
alloc_swap_info(void)2825 static struct swap_info_struct *alloc_swap_info(void)
2826 {
2827 	struct swap_info_struct *p;
2828 	unsigned int type;
2829 	int i;
2830 	int size = sizeof(*p) + nr_node_ids * sizeof(struct plist_node);
2831 
2832 	p = kvzalloc(size, GFP_KERNEL);
2833 	if (!p)
2834 		return ERR_PTR(-ENOMEM);
2835 
2836 	spin_lock(&swap_lock);
2837 	for (type = 0; type < nr_swapfiles; type++) {
2838 		if (!(swap_info[type]->flags & SWP_USED))
2839 			break;
2840 	}
2841 	if (type >= MAX_SWAPFILES) {
2842 		spin_unlock(&swap_lock);
2843 		kvfree(p);
2844 		return ERR_PTR(-EPERM);
2845 	}
2846 	if (type >= nr_swapfiles) {
2847 		p->type = type;
2848 		WRITE_ONCE(swap_info[type], p);
2849 		/*
2850 		 * Write swap_info[type] before nr_swapfiles, in case a
2851 		 * racing procfs swap_start() or swap_next() is reading them.
2852 		 * (We never shrink nr_swapfiles, we never free this entry.)
2853 		 */
2854 		smp_wmb();
2855 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2856 	} else {
2857 		kvfree(p);
2858 		p = swap_info[type];
2859 		/*
2860 		 * Do not memset this entry: a racing procfs swap_next()
2861 		 * would be relying on p->type to remain valid.
2862 		 */
2863 	}
2864 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2865 	plist_node_init(&p->list, 0);
2866 	for_each_node(i)
2867 		plist_node_init(&p->avail_lists[i], 0);
2868 	p->flags = SWP_USED;
2869 	spin_unlock(&swap_lock);
2870 	spin_lock_init(&p->lock);
2871 	spin_lock_init(&p->cont_lock);
2872 
2873 	return p;
2874 }
2875 
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2876 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2877 {
2878 	int error;
2879 
2880 	if (S_ISBLK(inode->i_mode)) {
2881 		p->bdev = bdgrab(I_BDEV(inode));
2882 		error = blkdev_get(p->bdev,
2883 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2884 		if (error < 0) {
2885 			p->bdev = NULL;
2886 			return error;
2887 		}
2888 		p->old_block_size = block_size(p->bdev);
2889 		error = set_blocksize(p->bdev, PAGE_SIZE);
2890 		if (error < 0)
2891 			return error;
2892 		p->flags |= SWP_BLKDEV;
2893 	} else if (S_ISREG(inode->i_mode)) {
2894 		p->bdev = inode->i_sb->s_bdev;
2895 		inode_lock(inode);
2896 		if (IS_SWAPFILE(inode))
2897 			return -EBUSY;
2898 	} else
2899 		return -EINVAL;
2900 
2901 	return 0;
2902 }
2903 
2904 
2905 /*
2906  * Find out how many pages are allowed for a single swap device. There
2907  * are two limiting factors:
2908  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2909  * 2) the number of bits in the swap pte, as defined by the different
2910  * architectures.
2911  *
2912  * In order to find the largest possible bit mask, a swap entry with
2913  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2914  * decoded to a swp_entry_t again, and finally the swap offset is
2915  * extracted.
2916  *
2917  * This will mask all the bits from the initial ~0UL mask that can't
2918  * be encoded in either the swp_entry_t or the architecture definition
2919  * of a swap pte.
2920  */
generic_max_swapfile_size(void)2921 unsigned long generic_max_swapfile_size(void)
2922 {
2923 	return swp_offset(pte_to_swp_entry(
2924 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2925 }
2926 
2927 /* Can be overridden by an architecture for additional checks. */
max_swapfile_size(void)2928 __weak unsigned long max_swapfile_size(void)
2929 {
2930 	return generic_max_swapfile_size();
2931 }
2932 
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)2933 static unsigned long read_swap_header(struct swap_info_struct *p,
2934 					union swap_header *swap_header,
2935 					struct inode *inode)
2936 {
2937 	int i;
2938 	unsigned long maxpages;
2939 	unsigned long swapfilepages;
2940 	unsigned long last_page;
2941 
2942 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2943 		pr_err("Unable to find swap-space signature\n");
2944 		return 0;
2945 	}
2946 
2947 	/* swap partition endianess hack... */
2948 	if (swab32(swap_header->info.version) == 1) {
2949 		swab32s(&swap_header->info.version);
2950 		swab32s(&swap_header->info.last_page);
2951 		swab32s(&swap_header->info.nr_badpages);
2952 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2953 			return 0;
2954 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2955 			swab32s(&swap_header->info.badpages[i]);
2956 	}
2957 	/* Check the swap header's sub-version */
2958 	if (swap_header->info.version != 1) {
2959 		pr_warn("Unable to handle swap header version %d\n",
2960 			swap_header->info.version);
2961 		return 0;
2962 	}
2963 
2964 	p->lowest_bit  = 1;
2965 	p->cluster_next = 1;
2966 	p->cluster_nr = 0;
2967 
2968 	maxpages = max_swapfile_size();
2969 	last_page = swap_header->info.last_page;
2970 	if (!last_page) {
2971 		pr_warn("Empty swap-file\n");
2972 		return 0;
2973 	}
2974 	if (last_page > maxpages) {
2975 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2976 			maxpages << (PAGE_SHIFT - 10),
2977 			last_page << (PAGE_SHIFT - 10));
2978 	}
2979 	if (maxpages > last_page) {
2980 		maxpages = last_page + 1;
2981 		/* p->max is an unsigned int: don't overflow it */
2982 		if ((unsigned int)maxpages == 0)
2983 			maxpages = UINT_MAX;
2984 	}
2985 	p->highest_bit = maxpages - 1;
2986 
2987 	if (!maxpages)
2988 		return 0;
2989 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2990 	if (swapfilepages && maxpages > swapfilepages) {
2991 		pr_warn("Swap area shorter than signature indicates\n");
2992 		return 0;
2993 	}
2994 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2995 		return 0;
2996 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2997 		return 0;
2998 
2999 	return maxpages;
3000 }
3001 
3002 #define SWAP_CLUSTER_INFO_COLS						\
3003 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3004 #define SWAP_CLUSTER_SPACE_COLS						\
3005 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3006 #define SWAP_CLUSTER_COLS						\
3007 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3008 
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)3009 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3010 					union swap_header *swap_header,
3011 					unsigned char *swap_map,
3012 					struct swap_cluster_info *cluster_info,
3013 					unsigned long maxpages,
3014 					sector_t *span)
3015 {
3016 	unsigned int j, k;
3017 	unsigned int nr_good_pages;
3018 	int nr_extents;
3019 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3020 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3021 	unsigned long i, idx;
3022 
3023 	nr_good_pages = maxpages - 1;	/* omit header page */
3024 
3025 	cluster_list_init(&p->free_clusters);
3026 	cluster_list_init(&p->discard_clusters);
3027 
3028 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3029 		unsigned int page_nr = swap_header->info.badpages[i];
3030 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3031 			return -EINVAL;
3032 		if (page_nr < maxpages) {
3033 			swap_map[page_nr] = SWAP_MAP_BAD;
3034 			nr_good_pages--;
3035 			/*
3036 			 * Haven't marked the cluster free yet, no list
3037 			 * operation involved
3038 			 */
3039 			inc_cluster_info_page(p, cluster_info, page_nr);
3040 		}
3041 	}
3042 
3043 	/* Haven't marked the cluster free yet, no list operation involved */
3044 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3045 		inc_cluster_info_page(p, cluster_info, i);
3046 
3047 	if (nr_good_pages) {
3048 		swap_map[0] = SWAP_MAP_BAD;
3049 		/*
3050 		 * Not mark the cluster free yet, no list
3051 		 * operation involved
3052 		 */
3053 		inc_cluster_info_page(p, cluster_info, 0);
3054 		p->max = maxpages;
3055 		p->pages = nr_good_pages;
3056 		nr_extents = setup_swap_extents(p, span);
3057 		if (nr_extents < 0)
3058 			return nr_extents;
3059 		nr_good_pages = p->pages;
3060 	}
3061 	if (!nr_good_pages) {
3062 		pr_warn("Empty swap-file\n");
3063 		return -EINVAL;
3064 	}
3065 
3066 	if (!cluster_info)
3067 		return nr_extents;
3068 
3069 
3070 	/*
3071 	 * Reduce false cache line sharing between cluster_info and
3072 	 * sharing same address space.
3073 	 */
3074 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3075 		j = (k + col) % SWAP_CLUSTER_COLS;
3076 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3077 			idx = i * SWAP_CLUSTER_COLS + j;
3078 			if (idx >= nr_clusters)
3079 				continue;
3080 			if (cluster_count(&cluster_info[idx]))
3081 				continue;
3082 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3083 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3084 					      idx);
3085 		}
3086 	}
3087 	return nr_extents;
3088 }
3089 
3090 /*
3091  * Helper to sys_swapon determining if a given swap
3092  * backing device queue supports DISCARD operations.
3093  */
swap_discardable(struct swap_info_struct * si)3094 static bool swap_discardable(struct swap_info_struct *si)
3095 {
3096 	struct request_queue *q = bdev_get_queue(si->bdev);
3097 
3098 	if (!q || !blk_queue_discard(q))
3099 		return false;
3100 
3101 	return true;
3102 }
3103 
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3104 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3105 {
3106 	struct swap_info_struct *p;
3107 	struct filename *name;
3108 	struct file *swap_file = NULL;
3109 	struct address_space *mapping;
3110 	int prio;
3111 	int error;
3112 	union swap_header *swap_header;
3113 	int nr_extents;
3114 	sector_t span;
3115 	unsigned long maxpages;
3116 	unsigned char *swap_map = NULL;
3117 	struct swap_cluster_info *cluster_info = NULL;
3118 	unsigned long *frontswap_map = NULL;
3119 	struct page *page = NULL;
3120 	struct inode *inode = NULL;
3121 	bool inced_nr_rotate_swap = false;
3122 
3123 	if (swap_flags & ~SWAP_FLAGS_VALID)
3124 		return -EINVAL;
3125 
3126 	if (!capable(CAP_SYS_ADMIN))
3127 		return -EPERM;
3128 
3129 	if (!swap_avail_heads)
3130 		return -ENOMEM;
3131 
3132 	p = alloc_swap_info();
3133 	if (IS_ERR(p))
3134 		return PTR_ERR(p);
3135 
3136 	INIT_WORK(&p->discard_work, swap_discard_work);
3137 
3138 	name = getname(specialfile);
3139 	if (IS_ERR(name)) {
3140 		error = PTR_ERR(name);
3141 		name = NULL;
3142 		goto bad_swap;
3143 	}
3144 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3145 	if (IS_ERR(swap_file)) {
3146 		error = PTR_ERR(swap_file);
3147 		swap_file = NULL;
3148 		goto bad_swap;
3149 	}
3150 
3151 	p->swap_file = swap_file;
3152 	mapping = swap_file->f_mapping;
3153 	inode = mapping->host;
3154 
3155 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3156 	error = claim_swapfile(p, inode);
3157 	if (unlikely(error))
3158 		goto bad_swap;
3159 
3160 	/*
3161 	 * Read the swap header.
3162 	 */
3163 	if (!mapping->a_ops->readpage) {
3164 		error = -EINVAL;
3165 		goto bad_swap;
3166 	}
3167 	page = read_mapping_page(mapping, 0, swap_file);
3168 	if (IS_ERR(page)) {
3169 		error = PTR_ERR(page);
3170 		goto bad_swap;
3171 	}
3172 	swap_header = kmap(page);
3173 
3174 	maxpages = read_swap_header(p, swap_header, inode);
3175 	if (unlikely(!maxpages)) {
3176 		error = -EINVAL;
3177 		goto bad_swap;
3178 	}
3179 
3180 	/* OK, set up the swap map and apply the bad block list */
3181 	swap_map = vzalloc(maxpages);
3182 	if (!swap_map) {
3183 		error = -ENOMEM;
3184 		goto bad_swap;
3185 	}
3186 
3187 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3188 		p->flags |= SWP_STABLE_WRITES;
3189 
3190 	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3191 		p->flags |= SWP_SYNCHRONOUS_IO;
3192 
3193 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3194 		int cpu;
3195 		unsigned long ci, nr_cluster;
3196 
3197 		p->flags |= SWP_SOLIDSTATE;
3198 		/*
3199 		 * select a random position to start with to help wear leveling
3200 		 * SSD
3201 		 */
3202 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3203 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3204 
3205 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3206 					GFP_KERNEL);
3207 		if (!cluster_info) {
3208 			error = -ENOMEM;
3209 			goto bad_swap;
3210 		}
3211 
3212 		for (ci = 0; ci < nr_cluster; ci++)
3213 			spin_lock_init(&((cluster_info + ci)->lock));
3214 
3215 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3216 		if (!p->percpu_cluster) {
3217 			error = -ENOMEM;
3218 			goto bad_swap;
3219 		}
3220 		for_each_possible_cpu(cpu) {
3221 			struct percpu_cluster *cluster;
3222 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3223 			cluster_set_null(&cluster->index);
3224 		}
3225 	} else {
3226 		atomic_inc(&nr_rotate_swap);
3227 		inced_nr_rotate_swap = true;
3228 	}
3229 
3230 	error = swap_cgroup_swapon(p->type, maxpages);
3231 	if (error)
3232 		goto bad_swap;
3233 
3234 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3235 		cluster_info, maxpages, &span);
3236 	if (unlikely(nr_extents < 0)) {
3237 		error = nr_extents;
3238 		goto bad_swap;
3239 	}
3240 	/* frontswap enabled? set up bit-per-page map for frontswap */
3241 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3242 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3243 					 sizeof(long),
3244 					 GFP_KERNEL);
3245 
3246 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3247 		/*
3248 		 * When discard is enabled for swap with no particular
3249 		 * policy flagged, we set all swap discard flags here in
3250 		 * order to sustain backward compatibility with older
3251 		 * swapon(8) releases.
3252 		 */
3253 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3254 			     SWP_PAGE_DISCARD);
3255 
3256 		/*
3257 		 * By flagging sys_swapon, a sysadmin can tell us to
3258 		 * either do single-time area discards only, or to just
3259 		 * perform discards for released swap page-clusters.
3260 		 * Now it's time to adjust the p->flags accordingly.
3261 		 */
3262 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3263 			p->flags &= ~SWP_PAGE_DISCARD;
3264 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3265 			p->flags &= ~SWP_AREA_DISCARD;
3266 
3267 		/* issue a swapon-time discard if it's still required */
3268 		if (p->flags & SWP_AREA_DISCARD) {
3269 			int err = discard_swap(p);
3270 			if (unlikely(err))
3271 				pr_err("swapon: discard_swap(%p): %d\n",
3272 					p, err);
3273 		}
3274 	}
3275 
3276 	error = init_swap_address_space(p->type, maxpages);
3277 	if (error)
3278 		goto bad_swap;
3279 
3280 	mutex_lock(&swapon_mutex);
3281 	prio = -1;
3282 	if (swap_flags & SWAP_FLAG_PREFER)
3283 		prio =
3284 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3285 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3286 
3287 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3288 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3289 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3290 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3291 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3292 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3293 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3294 		(frontswap_map) ? "FS" : "");
3295 
3296 	mutex_unlock(&swapon_mutex);
3297 	atomic_inc(&proc_poll_event);
3298 	wake_up_interruptible(&proc_poll_wait);
3299 
3300 	if (S_ISREG(inode->i_mode))
3301 		inode->i_flags |= S_SWAPFILE;
3302 	error = 0;
3303 	goto out;
3304 bad_swap:
3305 	free_percpu(p->percpu_cluster);
3306 	p->percpu_cluster = NULL;
3307 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3308 		set_blocksize(p->bdev, p->old_block_size);
3309 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3310 	}
3311 	destroy_swap_extents(p);
3312 	swap_cgroup_swapoff(p->type);
3313 	spin_lock(&swap_lock);
3314 	p->swap_file = NULL;
3315 	p->flags = 0;
3316 	spin_unlock(&swap_lock);
3317 	vfree(swap_map);
3318 	kvfree(cluster_info);
3319 	kvfree(frontswap_map);
3320 	if (inced_nr_rotate_swap)
3321 		atomic_dec(&nr_rotate_swap);
3322 	if (swap_file) {
3323 		if (inode && S_ISREG(inode->i_mode)) {
3324 			inode_unlock(inode);
3325 			inode = NULL;
3326 		}
3327 		filp_close(swap_file, NULL);
3328 	}
3329 out:
3330 	if (page && !IS_ERR(page)) {
3331 		kunmap(page);
3332 		put_page(page);
3333 	}
3334 	if (name)
3335 		putname(name);
3336 	if (inode && S_ISREG(inode->i_mode))
3337 		inode_unlock(inode);
3338 	if (!error)
3339 		enable_swap_slots_cache();
3340 	return error;
3341 }
3342 
si_swapinfo(struct sysinfo * val)3343 void si_swapinfo(struct sysinfo *val)
3344 {
3345 	unsigned int type;
3346 	unsigned long nr_to_be_unused = 0;
3347 
3348 	spin_lock(&swap_lock);
3349 	for (type = 0; type < nr_swapfiles; type++) {
3350 		struct swap_info_struct *si = swap_info[type];
3351 
3352 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3353 			nr_to_be_unused += si->inuse_pages;
3354 	}
3355 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3356 	val->totalswap = total_swap_pages + nr_to_be_unused;
3357 	spin_unlock(&swap_lock);
3358 }
3359 
3360 /*
3361  * Verify that a swap entry is valid and increment its swap map count.
3362  *
3363  * Returns error code in following case.
3364  * - success -> 0
3365  * - swp_entry is invalid -> EINVAL
3366  * - swp_entry is migration entry -> EINVAL
3367  * - swap-cache reference is requested but there is already one. -> EEXIST
3368  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3369  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3370  */
__swap_duplicate(swp_entry_t entry,unsigned char usage)3371 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3372 {
3373 	struct swap_info_struct *p;
3374 	struct swap_cluster_info *ci;
3375 	unsigned long offset;
3376 	unsigned char count;
3377 	unsigned char has_cache;
3378 	int err = -EINVAL;
3379 
3380 	if (non_swap_entry(entry))
3381 		goto out;
3382 
3383 	p = swp_swap_info(entry);
3384 	if (!p)
3385 		goto bad_file;
3386 
3387 	offset = swp_offset(entry);
3388 	if (unlikely(offset >= p->max))
3389 		goto out;
3390 
3391 	ci = lock_cluster_or_swap_info(p, offset);
3392 
3393 	count = p->swap_map[offset];
3394 
3395 	/*
3396 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3397 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3398 	 */
3399 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3400 		err = -ENOENT;
3401 		goto unlock_out;
3402 	}
3403 
3404 	has_cache = count & SWAP_HAS_CACHE;
3405 	count &= ~SWAP_HAS_CACHE;
3406 	err = 0;
3407 
3408 	if (usage == SWAP_HAS_CACHE) {
3409 
3410 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3411 		if (!has_cache && count)
3412 			has_cache = SWAP_HAS_CACHE;
3413 		else if (has_cache)		/* someone else added cache */
3414 			err = -EEXIST;
3415 		else				/* no users remaining */
3416 			err = -ENOENT;
3417 
3418 	} else if (count || has_cache) {
3419 
3420 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3421 			count += usage;
3422 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3423 			err = -EINVAL;
3424 		else if (swap_count_continued(p, offset, count))
3425 			count = COUNT_CONTINUED;
3426 		else
3427 			err = -ENOMEM;
3428 	} else
3429 		err = -ENOENT;			/* unused swap entry */
3430 
3431 	p->swap_map[offset] = count | has_cache;
3432 
3433 unlock_out:
3434 	unlock_cluster_or_swap_info(p, ci);
3435 out:
3436 	return err;
3437 
3438 bad_file:
3439 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3440 	goto out;
3441 }
3442 
3443 /*
3444  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3445  * (in which case its reference count is never incremented).
3446  */
swap_shmem_alloc(swp_entry_t entry)3447 void swap_shmem_alloc(swp_entry_t entry)
3448 {
3449 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3450 }
3451 
3452 /*
3453  * Increase reference count of swap entry by 1.
3454  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3455  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3456  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3457  * might occur if a page table entry has got corrupted.
3458  */
swap_duplicate(swp_entry_t entry)3459 int swap_duplicate(swp_entry_t entry)
3460 {
3461 	int err = 0;
3462 
3463 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3464 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3465 	return err;
3466 }
3467 
3468 /*
3469  * @entry: swap entry for which we allocate swap cache.
3470  *
3471  * Called when allocating swap cache for existing swap entry,
3472  * This can return error codes. Returns 0 at success.
3473  * -EBUSY means there is a swap cache.
3474  * Note: return code is different from swap_duplicate().
3475  */
swapcache_prepare(swp_entry_t entry)3476 int swapcache_prepare(swp_entry_t entry)
3477 {
3478 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3479 }
3480 
swp_swap_info(swp_entry_t entry)3481 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3482 {
3483 	return swap_type_to_swap_info(swp_type(entry));
3484 }
3485 
page_swap_info(struct page * page)3486 struct swap_info_struct *page_swap_info(struct page *page)
3487 {
3488 	swp_entry_t entry = { .val = page_private(page) };
3489 	return swp_swap_info(entry);
3490 }
3491 
3492 /*
3493  * out-of-line __page_file_ methods to avoid include hell.
3494  */
__page_file_mapping(struct page * page)3495 struct address_space *__page_file_mapping(struct page *page)
3496 {
3497 	return page_swap_info(page)->swap_file->f_mapping;
3498 }
3499 EXPORT_SYMBOL_GPL(__page_file_mapping);
3500 
__page_file_index(struct page * page)3501 pgoff_t __page_file_index(struct page *page)
3502 {
3503 	swp_entry_t swap = { .val = page_private(page) };
3504 	return swp_offset(swap);
3505 }
3506 EXPORT_SYMBOL_GPL(__page_file_index);
3507 
3508 /*
3509  * add_swap_count_continuation - called when a swap count is duplicated
3510  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3511  * page of the original vmalloc'ed swap_map, to hold the continuation count
3512  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3513  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3514  *
3515  * These continuation pages are seldom referenced: the common paths all work
3516  * on the original swap_map, only referring to a continuation page when the
3517  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3518  *
3519  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3520  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3521  * can be called after dropping locks.
3522  */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3523 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3524 {
3525 	struct swap_info_struct *si;
3526 	struct swap_cluster_info *ci;
3527 	struct page *head;
3528 	struct page *page;
3529 	struct page *list_page;
3530 	pgoff_t offset;
3531 	unsigned char count;
3532 
3533 	/*
3534 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3535 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3536 	 */
3537 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3538 
3539 	si = swap_info_get(entry);
3540 	if (!si) {
3541 		/*
3542 		 * An acceptable race has occurred since the failing
3543 		 * __swap_duplicate(): the swap entry has been freed,
3544 		 * perhaps even the whole swap_map cleared for swapoff.
3545 		 */
3546 		goto outer;
3547 	}
3548 
3549 	offset = swp_offset(entry);
3550 
3551 	ci = lock_cluster(si, offset);
3552 
3553 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3554 
3555 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3556 		/*
3557 		 * The higher the swap count, the more likely it is that tasks
3558 		 * will race to add swap count continuation: we need to avoid
3559 		 * over-provisioning.
3560 		 */
3561 		goto out;
3562 	}
3563 
3564 	if (!page) {
3565 		unlock_cluster(ci);
3566 		spin_unlock(&si->lock);
3567 		return -ENOMEM;
3568 	}
3569 
3570 	/*
3571 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3572 	 * no architecture is using highmem pages for kernel page tables: so it
3573 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3574 	 */
3575 	head = vmalloc_to_page(si->swap_map + offset);
3576 	offset &= ~PAGE_MASK;
3577 
3578 	spin_lock(&si->cont_lock);
3579 	/*
3580 	 * Page allocation does not initialize the page's lru field,
3581 	 * but it does always reset its private field.
3582 	 */
3583 	if (!page_private(head)) {
3584 		BUG_ON(count & COUNT_CONTINUED);
3585 		INIT_LIST_HEAD(&head->lru);
3586 		set_page_private(head, SWP_CONTINUED);
3587 		si->flags |= SWP_CONTINUED;
3588 	}
3589 
3590 	list_for_each_entry(list_page, &head->lru, lru) {
3591 		unsigned char *map;
3592 
3593 		/*
3594 		 * If the previous map said no continuation, but we've found
3595 		 * a continuation page, free our allocation and use this one.
3596 		 */
3597 		if (!(count & COUNT_CONTINUED))
3598 			goto out_unlock_cont;
3599 
3600 		map = kmap_atomic(list_page) + offset;
3601 		count = *map;
3602 		kunmap_atomic(map);
3603 
3604 		/*
3605 		 * If this continuation count now has some space in it,
3606 		 * free our allocation and use this one.
3607 		 */
3608 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3609 			goto out_unlock_cont;
3610 	}
3611 
3612 	list_add_tail(&page->lru, &head->lru);
3613 	page = NULL;			/* now it's attached, don't free it */
3614 out_unlock_cont:
3615 	spin_unlock(&si->cont_lock);
3616 out:
3617 	unlock_cluster(ci);
3618 	spin_unlock(&si->lock);
3619 outer:
3620 	if (page)
3621 		__free_page(page);
3622 	return 0;
3623 }
3624 
3625 /*
3626  * swap_count_continued - when the original swap_map count is incremented
3627  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3628  * into, carry if so, or else fail until a new continuation page is allocated;
3629  * when the original swap_map count is decremented from 0 with continuation,
3630  * borrow from the continuation and report whether it still holds more.
3631  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3632  * lock.
3633  */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3634 static bool swap_count_continued(struct swap_info_struct *si,
3635 				 pgoff_t offset, unsigned char count)
3636 {
3637 	struct page *head;
3638 	struct page *page;
3639 	unsigned char *map;
3640 	bool ret;
3641 
3642 	head = vmalloc_to_page(si->swap_map + offset);
3643 	if (page_private(head) != SWP_CONTINUED) {
3644 		BUG_ON(count & COUNT_CONTINUED);
3645 		return false;		/* need to add count continuation */
3646 	}
3647 
3648 	spin_lock(&si->cont_lock);
3649 	offset &= ~PAGE_MASK;
3650 	page = list_entry(head->lru.next, struct page, lru);
3651 	map = kmap_atomic(page) + offset;
3652 
3653 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3654 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3655 
3656 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3657 		/*
3658 		 * Think of how you add 1 to 999
3659 		 */
3660 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3661 			kunmap_atomic(map);
3662 			page = list_entry(page->lru.next, struct page, lru);
3663 			BUG_ON(page == head);
3664 			map = kmap_atomic(page) + offset;
3665 		}
3666 		if (*map == SWAP_CONT_MAX) {
3667 			kunmap_atomic(map);
3668 			page = list_entry(page->lru.next, struct page, lru);
3669 			if (page == head) {
3670 				ret = false;	/* add count continuation */
3671 				goto out;
3672 			}
3673 			map = kmap_atomic(page) + offset;
3674 init_map:		*map = 0;		/* we didn't zero the page */
3675 		}
3676 		*map += 1;
3677 		kunmap_atomic(map);
3678 		page = list_entry(page->lru.prev, struct page, lru);
3679 		while (page != head) {
3680 			map = kmap_atomic(page) + offset;
3681 			*map = COUNT_CONTINUED;
3682 			kunmap_atomic(map);
3683 			page = list_entry(page->lru.prev, struct page, lru);
3684 		}
3685 		ret = true;			/* incremented */
3686 
3687 	} else {				/* decrementing */
3688 		/*
3689 		 * Think of how you subtract 1 from 1000
3690 		 */
3691 		BUG_ON(count != COUNT_CONTINUED);
3692 		while (*map == COUNT_CONTINUED) {
3693 			kunmap_atomic(map);
3694 			page = list_entry(page->lru.next, struct page, lru);
3695 			BUG_ON(page == head);
3696 			map = kmap_atomic(page) + offset;
3697 		}
3698 		BUG_ON(*map == 0);
3699 		*map -= 1;
3700 		if (*map == 0)
3701 			count = 0;
3702 		kunmap_atomic(map);
3703 		page = list_entry(page->lru.prev, struct page, lru);
3704 		while (page != head) {
3705 			map = kmap_atomic(page) + offset;
3706 			*map = SWAP_CONT_MAX | count;
3707 			count = COUNT_CONTINUED;
3708 			kunmap_atomic(map);
3709 			page = list_entry(page->lru.prev, struct page, lru);
3710 		}
3711 		ret = count == COUNT_CONTINUED;
3712 	}
3713 out:
3714 	spin_unlock(&si->cont_lock);
3715 	return ret;
3716 }
3717 
3718 /*
3719  * free_swap_count_continuations - swapoff free all the continuation pages
3720  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3721  */
free_swap_count_continuations(struct swap_info_struct * si)3722 static void free_swap_count_continuations(struct swap_info_struct *si)
3723 {
3724 	pgoff_t offset;
3725 
3726 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3727 		struct page *head;
3728 		head = vmalloc_to_page(si->swap_map + offset);
3729 		if (page_private(head)) {
3730 			struct page *page, *next;
3731 
3732 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3733 				list_del(&page->lru);
3734 				__free_page(page);
3735 			}
3736 		}
3737 	}
3738 }
3739 
3740 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
mem_cgroup_throttle_swaprate(struct mem_cgroup * memcg,int node,gfp_t gfp_mask)3741 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3742 				  gfp_t gfp_mask)
3743 {
3744 	struct swap_info_struct *si, *next;
3745 	if (!(gfp_mask & __GFP_IO) || !memcg)
3746 		return;
3747 
3748 	if (!blk_cgroup_congested())
3749 		return;
3750 
3751 	/*
3752 	 * We've already scheduled a throttle, avoid taking the global swap
3753 	 * lock.
3754 	 */
3755 	if (current->throttle_queue)
3756 		return;
3757 
3758 	spin_lock(&swap_avail_lock);
3759 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3760 				  avail_lists[node]) {
3761 		if (si->bdev) {
3762 			blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3763 						true);
3764 			break;
3765 		}
3766 	}
3767 	spin_unlock(&swap_avail_lock);
3768 }
3769 #endif
3770 
swapfile_init(void)3771 static int __init swapfile_init(void)
3772 {
3773 	int nid;
3774 
3775 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3776 					 GFP_KERNEL);
3777 	if (!swap_avail_heads) {
3778 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3779 		return -ENOMEM;
3780 	}
3781 
3782 	for_each_node(nid)
3783 		plist_head_init(&swap_avail_heads[nid]);
3784 
3785 	return 0;
3786 }
3787 subsys_initcall(swapfile_init);
3788