• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This implements the various checks for CONFIG_HARDENED_USERCOPY*,
3  * which are designed to protect kernel memory from needless exposure
4  * and overwrite under many unintended conditions. This code is based
5  * on PAX_USERCOPY, which is:
6  *
7  * Copyright (C) 2001-2016 PaX Team, Bradley Spengler, Open Source
8  * Security Inc.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/thread_info.h>
24 #include <linux/atomic.h>
25 #include <linux/jump_label.h>
26 #include <asm/sections.h>
27 
28 /*
29  * Checks if a given pointer and length is contained by the current
30  * stack frame (if possible).
31  *
32  * Returns:
33  *	NOT_STACK: not at all on the stack
34  *	GOOD_FRAME: fully within a valid stack frame
35  *	GOOD_STACK: fully on the stack (when can't do frame-checking)
36  *	BAD_STACK: error condition (invalid stack position or bad stack frame)
37  */
check_stack_object(const void * obj,unsigned long len)38 static noinline int check_stack_object(const void *obj, unsigned long len)
39 {
40 	const void * const stack = task_stack_page(current);
41 	const void * const stackend = stack + THREAD_SIZE;
42 	int ret;
43 
44 	/* Object is not on the stack at all. */
45 	if (obj + len <= stack || stackend <= obj)
46 		return NOT_STACK;
47 
48 	/*
49 	 * Reject: object partially overlaps the stack (passing the
50 	 * the check above means at least one end is within the stack,
51 	 * so if this check fails, the other end is outside the stack).
52 	 */
53 	if (obj < stack || stackend < obj + len)
54 		return BAD_STACK;
55 
56 	/* Check if object is safely within a valid frame. */
57 	ret = arch_within_stack_frames(stack, stackend, obj, len);
58 	if (ret)
59 		return ret;
60 
61 	return GOOD_STACK;
62 }
63 
64 /*
65  * If these functions are reached, then CONFIG_HARDENED_USERCOPY has found
66  * an unexpected state during a copy_from_user() or copy_to_user() call.
67  * There are several checks being performed on the buffer by the
68  * __check_object_size() function. Normal stack buffer usage should never
69  * trip the checks, and kernel text addressing will always trip the check.
70  * For cache objects, it is checking that only the whitelisted range of
71  * bytes for a given cache is being accessed (via the cache's usersize and
72  * useroffset fields). To adjust a cache whitelist, use the usercopy-aware
73  * kmem_cache_create_usercopy() function to create the cache (and
74  * carefully audit the whitelist range).
75  */
usercopy_warn(const char * name,const char * detail,bool to_user,unsigned long offset,unsigned long len)76 void usercopy_warn(const char *name, const char *detail, bool to_user,
77 		   unsigned long offset, unsigned long len)
78 {
79 	WARN_ONCE(1, "Bad or missing usercopy whitelist? Kernel memory %s attempt detected %s %s%s%s%s (offset %lu, size %lu)!\n",
80 		 to_user ? "exposure" : "overwrite",
81 		 to_user ? "from" : "to",
82 		 name ? : "unknown?!",
83 		 detail ? " '" : "", detail ? : "", detail ? "'" : "",
84 		 offset, len);
85 }
86 
usercopy_abort(const char * name,const char * detail,bool to_user,unsigned long offset,unsigned long len)87 void __noreturn usercopy_abort(const char *name, const char *detail,
88 			       bool to_user, unsigned long offset,
89 			       unsigned long len)
90 {
91 	pr_emerg("Kernel memory %s attempt detected %s %s%s%s%s (offset %lu, size %lu)!\n",
92 		 to_user ? "exposure" : "overwrite",
93 		 to_user ? "from" : "to",
94 		 name ? : "unknown?!",
95 		 detail ? " '" : "", detail ? : "", detail ? "'" : "",
96 		 offset, len);
97 
98 	/*
99 	 * For greater effect, it would be nice to do do_group_exit(),
100 	 * but BUG() actually hooks all the lock-breaking and per-arch
101 	 * Oops code, so that is used here instead.
102 	 */
103 	BUG();
104 }
105 
106 /* Returns true if any portion of [ptr,ptr+n) over laps with [low,high). */
overlaps(const unsigned long ptr,unsigned long n,unsigned long low,unsigned long high)107 static bool overlaps(const unsigned long ptr, unsigned long n,
108 		     unsigned long low, unsigned long high)
109 {
110 	const unsigned long check_low = ptr;
111 	unsigned long check_high = check_low + n;
112 
113 	/* Does not overlap if entirely above or entirely below. */
114 	if (check_low >= high || check_high <= low)
115 		return false;
116 
117 	return true;
118 }
119 
120 /* Is this address range in the kernel text area? */
check_kernel_text_object(const unsigned long ptr,unsigned long n,bool to_user)121 static inline void check_kernel_text_object(const unsigned long ptr,
122 					    unsigned long n, bool to_user)
123 {
124 	unsigned long textlow = (unsigned long)_stext;
125 	unsigned long texthigh = (unsigned long)_etext;
126 	unsigned long textlow_linear, texthigh_linear;
127 
128 	if (overlaps(ptr, n, textlow, texthigh))
129 		usercopy_abort("kernel text", NULL, to_user, ptr - textlow, n);
130 
131 	/*
132 	 * Some architectures have virtual memory mappings with a secondary
133 	 * mapping of the kernel text, i.e. there is more than one virtual
134 	 * kernel address that points to the kernel image. It is usually
135 	 * when there is a separate linear physical memory mapping, in that
136 	 * __pa() is not just the reverse of __va(). This can be detected
137 	 * and checked:
138 	 */
139 	textlow_linear = (unsigned long)lm_alias(textlow);
140 	/* No different mapping: we're done. */
141 	if (textlow_linear == textlow)
142 		return;
143 
144 	/* Check the secondary mapping... */
145 	texthigh_linear = (unsigned long)lm_alias(texthigh);
146 	if (overlaps(ptr, n, textlow_linear, texthigh_linear))
147 		usercopy_abort("linear kernel text", NULL, to_user,
148 			       ptr - textlow_linear, n);
149 }
150 
check_bogus_address(const unsigned long ptr,unsigned long n,bool to_user)151 static inline void check_bogus_address(const unsigned long ptr, unsigned long n,
152 				       bool to_user)
153 {
154 	/* Reject if object wraps past end of memory. */
155 	if (ptr + (n - 1) < ptr)
156 		usercopy_abort("wrapped address", NULL, to_user, 0, ptr + n);
157 
158 	/* Reject if NULL or ZERO-allocation. */
159 	if (ZERO_OR_NULL_PTR(ptr))
160 		usercopy_abort("null address", NULL, to_user, ptr, n);
161 }
162 
163 /* Checks for allocs that are marked in some way as spanning multiple pages. */
check_page_span(const void * ptr,unsigned long n,struct page * page,bool to_user)164 static inline void check_page_span(const void *ptr, unsigned long n,
165 				   struct page *page, bool to_user)
166 {
167 #ifdef CONFIG_HARDENED_USERCOPY_PAGESPAN
168 	const void *end = ptr + n - 1;
169 	struct page *endpage;
170 	bool is_reserved, is_cma;
171 
172 	/*
173 	 * Sometimes the kernel data regions are not marked Reserved (see
174 	 * check below). And sometimes [_sdata,_edata) does not cover
175 	 * rodata and/or bss, so check each range explicitly.
176 	 */
177 
178 	/* Allow reads of kernel rodata region (if not marked as Reserved). */
179 	if (ptr >= (const void *)__start_rodata &&
180 	    end <= (const void *)__end_rodata) {
181 		if (!to_user)
182 			usercopy_abort("rodata", NULL, to_user, 0, n);
183 		return;
184 	}
185 
186 	/* Allow kernel data region (if not marked as Reserved). */
187 	if (ptr >= (const void *)_sdata && end <= (const void *)_edata)
188 		return;
189 
190 	/* Allow kernel bss region (if not marked as Reserved). */
191 	if (ptr >= (const void *)__bss_start &&
192 	    end <= (const void *)__bss_stop)
193 		return;
194 
195 	/* Is the object wholly within one base page? */
196 	if (likely(((unsigned long)ptr & (unsigned long)PAGE_MASK) ==
197 		   ((unsigned long)end & (unsigned long)PAGE_MASK)))
198 		return;
199 
200 	/* Allow if fully inside the same compound (__GFP_COMP) page. */
201 	endpage = virt_to_head_page(end);
202 	if (likely(endpage == page))
203 		return;
204 
205 	/*
206 	 * Reject if range is entirely either Reserved (i.e. special or
207 	 * device memory), or CMA. Otherwise, reject since the object spans
208 	 * several independently allocated pages.
209 	 */
210 	is_reserved = PageReserved(page);
211 	is_cma = is_migrate_cma_page(page);
212 	if (!is_reserved && !is_cma)
213 		usercopy_abort("spans multiple pages", NULL, to_user, 0, n);
214 
215 	for (ptr += PAGE_SIZE; ptr <= end; ptr += PAGE_SIZE) {
216 		page = virt_to_head_page(ptr);
217 		if (is_reserved && !PageReserved(page))
218 			usercopy_abort("spans Reserved and non-Reserved pages",
219 				       NULL, to_user, 0, n);
220 		if (is_cma && !is_migrate_cma_page(page))
221 			usercopy_abort("spans CMA and non-CMA pages", NULL,
222 				       to_user, 0, n);
223 	}
224 #endif
225 }
226 
check_heap_object(const void * ptr,unsigned long n,bool to_user)227 static inline void check_heap_object(const void *ptr, unsigned long n,
228 				     bool to_user)
229 {
230 	struct page *page;
231 
232 	if (!virt_addr_valid(ptr))
233 		return;
234 
235 	/*
236 	 * When CONFIG_HIGHMEM=y, kmap_to_page() will give either the
237 	 * highmem page or fallback to virt_to_page(). The following
238 	 * is effectively a highmem-aware virt_to_head_page().
239 	 */
240 	page = compound_head(kmap_to_page((void *)ptr));
241 
242 	if (PageSlab(page)) {
243 		/* Check slab allocator for flags and size. */
244 		__check_heap_object(ptr, n, page, to_user);
245 	} else {
246 		/* Verify object does not incorrectly span multiple pages. */
247 		check_page_span(ptr, n, page, to_user);
248 	}
249 }
250 
251 static DEFINE_STATIC_KEY_FALSE_RO(bypass_usercopy_checks);
252 
253 /*
254  * Validates that the given object is:
255  * - not bogus address
256  * - fully contained by stack (or stack frame, when available)
257  * - fully within SLAB object (or object whitelist area, when available)
258  * - not in kernel text
259  */
__check_object_size(const void * ptr,unsigned long n,bool to_user)260 void __check_object_size(const void *ptr, unsigned long n, bool to_user)
261 {
262 	if (static_branch_unlikely(&bypass_usercopy_checks))
263 		return;
264 
265 	/* Skip all tests if size is zero. */
266 	if (!n)
267 		return;
268 
269 	/* Check for invalid addresses. */
270 	check_bogus_address((const unsigned long)ptr, n, to_user);
271 
272 	/* Check for bad stack object. */
273 	switch (check_stack_object(ptr, n)) {
274 	case NOT_STACK:
275 		/* Object is not touching the current process stack. */
276 		break;
277 	case GOOD_FRAME:
278 	case GOOD_STACK:
279 		/*
280 		 * Object is either in the correct frame (when it
281 		 * is possible to check) or just generally on the
282 		 * process stack (when frame checking not available).
283 		 */
284 		return;
285 	default:
286 		usercopy_abort("process stack", NULL, to_user, 0, n);
287 	}
288 
289 	/* Check for bad heap object. */
290 	check_heap_object(ptr, n, to_user);
291 
292 	/* Check for object in kernel to avoid text exposure. */
293 	check_kernel_text_object((const unsigned long)ptr, n, to_user);
294 }
295 EXPORT_SYMBOL(__check_object_size);
296 
297 static bool enable_checks __initdata = true;
298 
parse_hardened_usercopy(char * str)299 static int __init parse_hardened_usercopy(char *str)
300 {
301 	return strtobool(str, &enable_checks);
302 }
303 
304 __setup("hardened_usercopy=", parse_hardened_usercopy);
305 
set_hardened_usercopy(void)306 static int __init set_hardened_usercopy(void)
307 {
308 	if (enable_checks == false)
309 		static_branch_enable(&bypass_usercopy_checks);
310 	return 1;
311 }
312 
313 late_initcall(set_hardened_usercopy);
314