• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/*
69 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 	 * are scanned.
71 	 */
72 	nodemask_t	*nodemask;
73 
74 	/*
75 	 * The memory cgroup that hit its limit and as a result is the
76 	 * primary target of this reclaim invocation.
77 	 */
78 	struct mem_cgroup *target_mem_cgroup;
79 
80 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
81 	unsigned int may_writepage:1;
82 
83 	/* Can mapped pages be reclaimed? */
84 	unsigned int may_unmap:1;
85 
86 	/* Can pages be swapped as part of reclaim? */
87 	unsigned int may_swap:1;
88 
89 	/*
90 	 * Cgroups are not reclaimed below their configured memory.low,
91 	 * unless we threaten to OOM. If any cgroups are skipped due to
92 	 * memory.low and nothing was reclaimed, go back for memory.low.
93 	 */
94 	unsigned int memcg_low_reclaim:1;
95 	unsigned int memcg_low_skipped:1;
96 
97 	unsigned int hibernation_mode:1;
98 
99 	/* One of the zones is ready for compaction */
100 	unsigned int compaction_ready:1;
101 
102 	/* Allocation order */
103 	s8 order;
104 
105 	/* Scan (total_size >> priority) pages at once */
106 	s8 priority;
107 
108 	/* The highest zone to isolate pages for reclaim from */
109 	s8 reclaim_idx;
110 
111 	/* This context's GFP mask */
112 	gfp_t gfp_mask;
113 
114 	/* Incremented by the number of inactive pages that were scanned */
115 	unsigned long nr_scanned;
116 
117 	/* Number of pages freed so far during a call to shrink_zones() */
118 	unsigned long nr_reclaimed;
119 
120 	struct {
121 		unsigned int dirty;
122 		unsigned int unqueued_dirty;
123 		unsigned int congested;
124 		unsigned int writeback;
125 		unsigned int immediate;
126 		unsigned int file_taken;
127 		unsigned int taken;
128 	} nr;
129 };
130 
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field)			\
133 	do {								\
134 		if ((_page)->lru.prev != _base) {			\
135 			struct page *prev;				\
136 									\
137 			prev = lru_to_page(&(_page->lru));		\
138 			prefetch(&prev->_field);			\
139 		}							\
140 	} while (0)
141 #else
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143 #endif
144 
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field)			\
147 	do {								\
148 		if ((_page)->lru.prev != _base) {			\
149 			struct page *prev;				\
150 									\
151 			prev = lru_to_page(&(_page->lru));		\
152 			prefetchw(&prev->_field);			\
153 		}							\
154 	} while (0)
155 #else
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157 #endif
158 
159 /*
160  * From 0 .. 100.  Higher means more swappy.
161  */
162 int vm_swappiness = 60;
163 /*
164  * The total number of pages which are beyond the high watermark within all
165  * zones.
166  */
167 unsigned long vm_total_pages;
168 
169 static LIST_HEAD(shrinker_list);
170 static DECLARE_RWSEM(shrinker_rwsem);
171 
172 #ifdef CONFIG_MEMCG_KMEM
173 
174 /*
175  * We allow subsystems to populate their shrinker-related
176  * LRU lists before register_shrinker_prepared() is called
177  * for the shrinker, since we don't want to impose
178  * restrictions on their internal registration order.
179  * In this case shrink_slab_memcg() may find corresponding
180  * bit is set in the shrinkers map.
181  *
182  * This value is used by the function to detect registering
183  * shrinkers and to skip do_shrink_slab() calls for them.
184  */
185 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
186 
187 static DEFINE_IDR(shrinker_idr);
188 static int shrinker_nr_max;
189 
prealloc_memcg_shrinker(struct shrinker * shrinker)190 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
191 {
192 	int id, ret = -ENOMEM;
193 
194 	down_write(&shrinker_rwsem);
195 	/* This may call shrinker, so it must use down_read_trylock() */
196 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
197 	if (id < 0)
198 		goto unlock;
199 
200 	if (id >= shrinker_nr_max) {
201 		if (memcg_expand_shrinker_maps(id)) {
202 			idr_remove(&shrinker_idr, id);
203 			goto unlock;
204 		}
205 
206 		shrinker_nr_max = id + 1;
207 	}
208 	shrinker->id = id;
209 	ret = 0;
210 unlock:
211 	up_write(&shrinker_rwsem);
212 	return ret;
213 }
214 
unregister_memcg_shrinker(struct shrinker * shrinker)215 static void unregister_memcg_shrinker(struct shrinker *shrinker)
216 {
217 	int id = shrinker->id;
218 
219 	BUG_ON(id < 0);
220 
221 	down_write(&shrinker_rwsem);
222 	idr_remove(&shrinker_idr, id);
223 	up_write(&shrinker_rwsem);
224 }
225 #else /* CONFIG_MEMCG_KMEM */
prealloc_memcg_shrinker(struct shrinker * shrinker)226 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
227 {
228 	return 0;
229 }
230 
unregister_memcg_shrinker(struct shrinker * shrinker)231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 {
233 }
234 #endif /* CONFIG_MEMCG_KMEM */
235 
236 #ifdef CONFIG_MEMCG
global_reclaim(struct scan_control * sc)237 static bool global_reclaim(struct scan_control *sc)
238 {
239 	return !sc->target_mem_cgroup;
240 }
241 
242 /**
243  * sane_reclaim - is the usual dirty throttling mechanism operational?
244  * @sc: scan_control in question
245  *
246  * The normal page dirty throttling mechanism in balance_dirty_pages() is
247  * completely broken with the legacy memcg and direct stalling in
248  * shrink_page_list() is used for throttling instead, which lacks all the
249  * niceties such as fairness, adaptive pausing, bandwidth proportional
250  * allocation and configurability.
251  *
252  * This function tests whether the vmscan currently in progress can assume
253  * that the normal dirty throttling mechanism is operational.
254  */
sane_reclaim(struct scan_control * sc)255 static bool sane_reclaim(struct scan_control *sc)
256 {
257 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
258 
259 	if (!memcg)
260 		return true;
261 #ifdef CONFIG_CGROUP_WRITEBACK
262 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
263 		return true;
264 #endif
265 	return false;
266 }
267 
set_memcg_congestion(pg_data_t * pgdat,struct mem_cgroup * memcg,bool congested)268 static void set_memcg_congestion(pg_data_t *pgdat,
269 				struct mem_cgroup *memcg,
270 				bool congested)
271 {
272 	struct mem_cgroup_per_node *mn;
273 
274 	if (!memcg)
275 		return;
276 
277 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
278 	WRITE_ONCE(mn->congested, congested);
279 }
280 
memcg_congested(pg_data_t * pgdat,struct mem_cgroup * memcg)281 static bool memcg_congested(pg_data_t *pgdat,
282 			struct mem_cgroup *memcg)
283 {
284 	struct mem_cgroup_per_node *mn;
285 
286 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
287 	return READ_ONCE(mn->congested);
288 
289 }
290 #else
global_reclaim(struct scan_control * sc)291 static bool global_reclaim(struct scan_control *sc)
292 {
293 	return true;
294 }
295 
sane_reclaim(struct scan_control * sc)296 static bool sane_reclaim(struct scan_control *sc)
297 {
298 	return true;
299 }
300 
set_memcg_congestion(struct pglist_data * pgdat,struct mem_cgroup * memcg,bool congested)301 static inline void set_memcg_congestion(struct pglist_data *pgdat,
302 				struct mem_cgroup *memcg, bool congested)
303 {
304 }
305 
memcg_congested(struct pglist_data * pgdat,struct mem_cgroup * memcg)306 static inline bool memcg_congested(struct pglist_data *pgdat,
307 			struct mem_cgroup *memcg)
308 {
309 	return false;
310 
311 }
312 #endif
313 
314 /*
315  * This misses isolated pages which are not accounted for to save counters.
316  * As the data only determines if reclaim or compaction continues, it is
317  * not expected that isolated pages will be a dominating factor.
318  */
zone_reclaimable_pages(struct zone * zone)319 unsigned long zone_reclaimable_pages(struct zone *zone)
320 {
321 	unsigned long nr;
322 
323 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
324 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
325 	if (get_nr_swap_pages() > 0)
326 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
327 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
328 
329 	return nr;
330 }
331 
332 /**
333  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
334  * @lruvec: lru vector
335  * @lru: lru to use
336  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
337  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)338 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
339 {
340 	unsigned long lru_size;
341 	int zid;
342 
343 	if (!mem_cgroup_disabled())
344 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
345 	else
346 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
347 
348 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
349 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
350 		unsigned long size;
351 
352 		if (!managed_zone(zone))
353 			continue;
354 
355 		if (!mem_cgroup_disabled())
356 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
357 		else
358 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
359 				       NR_ZONE_LRU_BASE + lru);
360 		lru_size -= min(size, lru_size);
361 	}
362 
363 	return lru_size;
364 
365 }
366 
367 /*
368  * Add a shrinker callback to be called from the vm.
369  */
prealloc_shrinker(struct shrinker * shrinker)370 int prealloc_shrinker(struct shrinker *shrinker)
371 {
372 	size_t size = sizeof(*shrinker->nr_deferred);
373 
374 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
375 		size *= nr_node_ids;
376 
377 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
378 	if (!shrinker->nr_deferred)
379 		return -ENOMEM;
380 
381 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
382 		if (prealloc_memcg_shrinker(shrinker))
383 			goto free_deferred;
384 	}
385 
386 	return 0;
387 
388 free_deferred:
389 	kfree(shrinker->nr_deferred);
390 	shrinker->nr_deferred = NULL;
391 	return -ENOMEM;
392 }
393 
free_prealloced_shrinker(struct shrinker * shrinker)394 void free_prealloced_shrinker(struct shrinker *shrinker)
395 {
396 	if (!shrinker->nr_deferred)
397 		return;
398 
399 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
400 		unregister_memcg_shrinker(shrinker);
401 
402 	kfree(shrinker->nr_deferred);
403 	shrinker->nr_deferred = NULL;
404 }
405 
register_shrinker_prepared(struct shrinker * shrinker)406 void register_shrinker_prepared(struct shrinker *shrinker)
407 {
408 	down_write(&shrinker_rwsem);
409 	list_add_tail(&shrinker->list, &shrinker_list);
410 #ifdef CONFIG_MEMCG_KMEM
411 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
412 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
413 #endif
414 	up_write(&shrinker_rwsem);
415 }
416 
register_shrinker(struct shrinker * shrinker)417 int register_shrinker(struct shrinker *shrinker)
418 {
419 	int err = prealloc_shrinker(shrinker);
420 
421 	if (err)
422 		return err;
423 	register_shrinker_prepared(shrinker);
424 	return 0;
425 }
426 EXPORT_SYMBOL(register_shrinker);
427 
428 /*
429  * Remove one
430  */
unregister_shrinker(struct shrinker * shrinker)431 void unregister_shrinker(struct shrinker *shrinker)
432 {
433 	if (!shrinker->nr_deferred)
434 		return;
435 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
436 		unregister_memcg_shrinker(shrinker);
437 	down_write(&shrinker_rwsem);
438 	list_del(&shrinker->list);
439 	up_write(&shrinker_rwsem);
440 	kfree(shrinker->nr_deferred);
441 	shrinker->nr_deferred = NULL;
442 }
443 EXPORT_SYMBOL(unregister_shrinker);
444 
445 #define SHRINK_BATCH 128
446 
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)447 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
448 				    struct shrinker *shrinker, int priority)
449 {
450 	unsigned long freed = 0;
451 	unsigned long long delta;
452 	long total_scan;
453 	long freeable;
454 	long nr;
455 	long new_nr;
456 	int nid = shrinkctl->nid;
457 	long batch_size = shrinker->batch ? shrinker->batch
458 					  : SHRINK_BATCH;
459 	long scanned = 0, next_deferred;
460 
461 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
462 		nid = 0;
463 
464 	freeable = shrinker->count_objects(shrinker, shrinkctl);
465 	if (freeable == 0 || freeable == SHRINK_EMPTY)
466 		return freeable;
467 
468 	/*
469 	 * copy the current shrinker scan count into a local variable
470 	 * and zero it so that other concurrent shrinker invocations
471 	 * don't also do this scanning work.
472 	 */
473 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
474 
475 	total_scan = nr;
476 	delta = freeable >> priority;
477 	delta *= 4;
478 	do_div(delta, shrinker->seeks);
479 
480 	total_scan += delta;
481 	if (total_scan < 0) {
482 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
483 		       shrinker->scan_objects, total_scan);
484 		total_scan = freeable;
485 		next_deferred = nr;
486 	} else
487 		next_deferred = total_scan;
488 
489 	/*
490 	 * We need to avoid excessive windup on filesystem shrinkers
491 	 * due to large numbers of GFP_NOFS allocations causing the
492 	 * shrinkers to return -1 all the time. This results in a large
493 	 * nr being built up so when a shrink that can do some work
494 	 * comes along it empties the entire cache due to nr >>>
495 	 * freeable. This is bad for sustaining a working set in
496 	 * memory.
497 	 *
498 	 * Hence only allow the shrinker to scan the entire cache when
499 	 * a large delta change is calculated directly.
500 	 */
501 	if (delta < freeable / 4)
502 		total_scan = min(total_scan, freeable / 2);
503 
504 	/*
505 	 * Avoid risking looping forever due to too large nr value:
506 	 * never try to free more than twice the estimate number of
507 	 * freeable entries.
508 	 */
509 	if (total_scan > freeable * 2)
510 		total_scan = freeable * 2;
511 
512 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
513 				   freeable, delta, total_scan, priority);
514 
515 	/*
516 	 * Normally, we should not scan less than batch_size objects in one
517 	 * pass to avoid too frequent shrinker calls, but if the slab has less
518 	 * than batch_size objects in total and we are really tight on memory,
519 	 * we will try to reclaim all available objects, otherwise we can end
520 	 * up failing allocations although there are plenty of reclaimable
521 	 * objects spread over several slabs with usage less than the
522 	 * batch_size.
523 	 *
524 	 * We detect the "tight on memory" situations by looking at the total
525 	 * number of objects we want to scan (total_scan). If it is greater
526 	 * than the total number of objects on slab (freeable), we must be
527 	 * scanning at high prio and therefore should try to reclaim as much as
528 	 * possible.
529 	 */
530 	while (total_scan >= batch_size ||
531 	       total_scan >= freeable) {
532 		unsigned long ret;
533 		unsigned long nr_to_scan = min(batch_size, total_scan);
534 
535 		shrinkctl->nr_to_scan = nr_to_scan;
536 		shrinkctl->nr_scanned = nr_to_scan;
537 		ret = shrinker->scan_objects(shrinker, shrinkctl);
538 		if (ret == SHRINK_STOP)
539 			break;
540 		freed += ret;
541 
542 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
543 		total_scan -= shrinkctl->nr_scanned;
544 		scanned += shrinkctl->nr_scanned;
545 
546 		cond_resched();
547 	}
548 
549 	if (next_deferred >= scanned)
550 		next_deferred -= scanned;
551 	else
552 		next_deferred = 0;
553 	/*
554 	 * move the unused scan count back into the shrinker in a
555 	 * manner that handles concurrent updates. If we exhausted the
556 	 * scan, there is no need to do an update.
557 	 */
558 	if (next_deferred > 0)
559 		new_nr = atomic_long_add_return(next_deferred,
560 						&shrinker->nr_deferred[nid]);
561 	else
562 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
563 
564 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
565 	return freed;
566 }
567 
568 #ifdef CONFIG_MEMCG_KMEM
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)569 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
570 			struct mem_cgroup *memcg, int priority)
571 {
572 	struct memcg_shrinker_map *map;
573 	unsigned long ret, freed = 0;
574 	int i;
575 
576 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
577 		return 0;
578 
579 	if (!down_read_trylock(&shrinker_rwsem))
580 		return 0;
581 
582 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
583 					true);
584 	if (unlikely(!map))
585 		goto unlock;
586 
587 	for_each_set_bit(i, map->map, shrinker_nr_max) {
588 		struct shrink_control sc = {
589 			.gfp_mask = gfp_mask,
590 			.nid = nid,
591 			.memcg = memcg,
592 		};
593 		struct shrinker *shrinker;
594 
595 		shrinker = idr_find(&shrinker_idr, i);
596 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
597 			if (!shrinker)
598 				clear_bit(i, map->map);
599 			continue;
600 		}
601 
602 		ret = do_shrink_slab(&sc, shrinker, priority);
603 		if (ret == SHRINK_EMPTY) {
604 			clear_bit(i, map->map);
605 			/*
606 			 * After the shrinker reported that it had no objects to
607 			 * free, but before we cleared the corresponding bit in
608 			 * the memcg shrinker map, a new object might have been
609 			 * added. To make sure, we have the bit set in this
610 			 * case, we invoke the shrinker one more time and reset
611 			 * the bit if it reports that it is not empty anymore.
612 			 * The memory barrier here pairs with the barrier in
613 			 * memcg_set_shrinker_bit():
614 			 *
615 			 * list_lru_add()     shrink_slab_memcg()
616 			 *   list_add_tail()    clear_bit()
617 			 *   <MB>               <MB>
618 			 *   set_bit()          do_shrink_slab()
619 			 */
620 			smp_mb__after_atomic();
621 			ret = do_shrink_slab(&sc, shrinker, priority);
622 			if (ret == SHRINK_EMPTY)
623 				ret = 0;
624 			else
625 				memcg_set_shrinker_bit(memcg, nid, i);
626 		}
627 		freed += ret;
628 
629 		if (rwsem_is_contended(&shrinker_rwsem)) {
630 			freed = freed ? : 1;
631 			break;
632 		}
633 	}
634 unlock:
635 	up_read(&shrinker_rwsem);
636 	return freed;
637 }
638 #else /* CONFIG_MEMCG_KMEM */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)639 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
640 			struct mem_cgroup *memcg, int priority)
641 {
642 	return 0;
643 }
644 #endif /* CONFIG_MEMCG_KMEM */
645 
646 /**
647  * shrink_slab - shrink slab caches
648  * @gfp_mask: allocation context
649  * @nid: node whose slab caches to target
650  * @memcg: memory cgroup whose slab caches to target
651  * @priority: the reclaim priority
652  *
653  * Call the shrink functions to age shrinkable caches.
654  *
655  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
656  * unaware shrinkers will receive a node id of 0 instead.
657  *
658  * @memcg specifies the memory cgroup to target. Unaware shrinkers
659  * are called only if it is the root cgroup.
660  *
661  * @priority is sc->priority, we take the number of objects and >> by priority
662  * in order to get the scan target.
663  *
664  * Returns the number of reclaimed slab objects.
665  */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)666 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
667 				 struct mem_cgroup *memcg,
668 				 int priority)
669 {
670 	unsigned long ret, freed = 0;
671 	struct shrinker *shrinker;
672 
673 	/*
674 	 * The root memcg might be allocated even though memcg is disabled
675 	 * via "cgroup_disable=memory" boot parameter.  This could make
676 	 * mem_cgroup_is_root() return false, then just run memcg slab
677 	 * shrink, but skip global shrink.  This may result in premature
678 	 * oom.
679 	 */
680 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
681 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
682 
683 	if (!down_read_trylock(&shrinker_rwsem))
684 		goto out;
685 
686 	list_for_each_entry(shrinker, &shrinker_list, list) {
687 		struct shrink_control sc = {
688 			.gfp_mask = gfp_mask,
689 			.nid = nid,
690 			.memcg = memcg,
691 		};
692 
693 		ret = do_shrink_slab(&sc, shrinker, priority);
694 		if (ret == SHRINK_EMPTY)
695 			ret = 0;
696 		freed += ret;
697 		/*
698 		 * Bail out if someone want to register a new shrinker to
699 		 * prevent the regsitration from being stalled for long periods
700 		 * by parallel ongoing shrinking.
701 		 */
702 		if (rwsem_is_contended(&shrinker_rwsem)) {
703 			freed = freed ? : 1;
704 			break;
705 		}
706 	}
707 
708 	up_read(&shrinker_rwsem);
709 out:
710 	cond_resched();
711 	return freed;
712 }
713 
drop_slab_node(int nid)714 void drop_slab_node(int nid)
715 {
716 	unsigned long freed;
717 
718 	do {
719 		struct mem_cgroup *memcg = NULL;
720 
721 		freed = 0;
722 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
723 		do {
724 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
725 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
726 	} while (freed > 10);
727 }
728 
drop_slab(void)729 void drop_slab(void)
730 {
731 	int nid;
732 
733 	for_each_online_node(nid)
734 		drop_slab_node(nid);
735 }
736 
is_page_cache_freeable(struct page * page)737 static inline int is_page_cache_freeable(struct page *page)
738 {
739 	/*
740 	 * A freeable page cache page is referenced only by the caller
741 	 * that isolated the page, the page cache radix tree and
742 	 * optional buffer heads at page->private.
743 	 */
744 	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
745 		HPAGE_PMD_NR : 1;
746 	return page_count(page) - page_has_private(page) == 1 + radix_pins;
747 }
748 
may_write_to_inode(struct inode * inode,struct scan_control * sc)749 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
750 {
751 	if (current->flags & PF_SWAPWRITE)
752 		return 1;
753 	if (!inode_write_congested(inode))
754 		return 1;
755 	if (inode_to_bdi(inode) == current->backing_dev_info)
756 		return 1;
757 	return 0;
758 }
759 
760 /*
761  * We detected a synchronous write error writing a page out.  Probably
762  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
763  * fsync(), msync() or close().
764  *
765  * The tricky part is that after writepage we cannot touch the mapping: nothing
766  * prevents it from being freed up.  But we have a ref on the page and once
767  * that page is locked, the mapping is pinned.
768  *
769  * We're allowed to run sleeping lock_page() here because we know the caller has
770  * __GFP_FS.
771  */
handle_write_error(struct address_space * mapping,struct page * page,int error)772 static void handle_write_error(struct address_space *mapping,
773 				struct page *page, int error)
774 {
775 	lock_page(page);
776 	if (page_mapping(page) == mapping)
777 		mapping_set_error(mapping, error);
778 	unlock_page(page);
779 }
780 
781 /* possible outcome of pageout() */
782 typedef enum {
783 	/* failed to write page out, page is locked */
784 	PAGE_KEEP,
785 	/* move page to the active list, page is locked */
786 	PAGE_ACTIVATE,
787 	/* page has been sent to the disk successfully, page is unlocked */
788 	PAGE_SUCCESS,
789 	/* page is clean and locked */
790 	PAGE_CLEAN,
791 } pageout_t;
792 
793 /*
794  * pageout is called by shrink_page_list() for each dirty page.
795  * Calls ->writepage().
796  */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)797 static pageout_t pageout(struct page *page, struct address_space *mapping,
798 			 struct scan_control *sc)
799 {
800 	/*
801 	 * If the page is dirty, only perform writeback if that write
802 	 * will be non-blocking.  To prevent this allocation from being
803 	 * stalled by pagecache activity.  But note that there may be
804 	 * stalls if we need to run get_block().  We could test
805 	 * PagePrivate for that.
806 	 *
807 	 * If this process is currently in __generic_file_write_iter() against
808 	 * this page's queue, we can perform writeback even if that
809 	 * will block.
810 	 *
811 	 * If the page is swapcache, write it back even if that would
812 	 * block, for some throttling. This happens by accident, because
813 	 * swap_backing_dev_info is bust: it doesn't reflect the
814 	 * congestion state of the swapdevs.  Easy to fix, if needed.
815 	 */
816 	if (!is_page_cache_freeable(page))
817 		return PAGE_KEEP;
818 	if (!mapping) {
819 		/*
820 		 * Some data journaling orphaned pages can have
821 		 * page->mapping == NULL while being dirty with clean buffers.
822 		 */
823 		if (page_has_private(page)) {
824 			if (try_to_free_buffers(page)) {
825 				ClearPageDirty(page);
826 				pr_info("%s: orphaned page\n", __func__);
827 				return PAGE_CLEAN;
828 			}
829 		}
830 		return PAGE_KEEP;
831 	}
832 	if (mapping->a_ops->writepage == NULL)
833 		return PAGE_ACTIVATE;
834 	if (!may_write_to_inode(mapping->host, sc))
835 		return PAGE_KEEP;
836 
837 	if (clear_page_dirty_for_io(page)) {
838 		int res;
839 		struct writeback_control wbc = {
840 			.sync_mode = WB_SYNC_NONE,
841 			.nr_to_write = SWAP_CLUSTER_MAX,
842 			.range_start = 0,
843 			.range_end = LLONG_MAX,
844 			.for_reclaim = 1,
845 		};
846 
847 		SetPageReclaim(page);
848 		res = mapping->a_ops->writepage(page, &wbc);
849 		if (res < 0)
850 			handle_write_error(mapping, page, res);
851 		if (res == AOP_WRITEPAGE_ACTIVATE) {
852 			ClearPageReclaim(page);
853 			return PAGE_ACTIVATE;
854 		}
855 
856 		if (!PageWriteback(page)) {
857 			/* synchronous write or broken a_ops? */
858 			ClearPageReclaim(page);
859 		}
860 		trace_mm_vmscan_writepage(page);
861 		inc_node_page_state(page, NR_VMSCAN_WRITE);
862 		return PAGE_SUCCESS;
863 	}
864 
865 	return PAGE_CLEAN;
866 }
867 
868 /*
869  * Same as remove_mapping, but if the page is removed from the mapping, it
870  * gets returned with a refcount of 0.
871  */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed)872 static int __remove_mapping(struct address_space *mapping, struct page *page,
873 			    bool reclaimed)
874 {
875 	unsigned long flags;
876 	int refcount;
877 
878 	BUG_ON(!PageLocked(page));
879 	BUG_ON(mapping != page_mapping(page));
880 
881 	xa_lock_irqsave(&mapping->i_pages, flags);
882 	/*
883 	 * The non racy check for a busy page.
884 	 *
885 	 * Must be careful with the order of the tests. When someone has
886 	 * a ref to the page, it may be possible that they dirty it then
887 	 * drop the reference. So if PageDirty is tested before page_count
888 	 * here, then the following race may occur:
889 	 *
890 	 * get_user_pages(&page);
891 	 * [user mapping goes away]
892 	 * write_to(page);
893 	 *				!PageDirty(page)    [good]
894 	 * SetPageDirty(page);
895 	 * put_page(page);
896 	 *				!page_count(page)   [good, discard it]
897 	 *
898 	 * [oops, our write_to data is lost]
899 	 *
900 	 * Reversing the order of the tests ensures such a situation cannot
901 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
902 	 * load is not satisfied before that of page->_refcount.
903 	 *
904 	 * Note that if SetPageDirty is always performed via set_page_dirty,
905 	 * and thus under the i_pages lock, then this ordering is not required.
906 	 */
907 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
908 		refcount = 1 + HPAGE_PMD_NR;
909 	else
910 		refcount = 2;
911 	if (!page_ref_freeze(page, refcount))
912 		goto cannot_free;
913 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
914 	if (unlikely(PageDirty(page))) {
915 		page_ref_unfreeze(page, refcount);
916 		goto cannot_free;
917 	}
918 
919 	if (PageSwapCache(page)) {
920 		swp_entry_t swap = { .val = page_private(page) };
921 		mem_cgroup_swapout(page, swap);
922 		__delete_from_swap_cache(page);
923 		xa_unlock_irqrestore(&mapping->i_pages, flags);
924 		put_swap_page(page, swap);
925 	} else {
926 		void (*freepage)(struct page *);
927 		void *shadow = NULL;
928 
929 		freepage = mapping->a_ops->freepage;
930 		/*
931 		 * Remember a shadow entry for reclaimed file cache in
932 		 * order to detect refaults, thus thrashing, later on.
933 		 *
934 		 * But don't store shadows in an address space that is
935 		 * already exiting.  This is not just an optizimation,
936 		 * inode reclaim needs to empty out the radix tree or
937 		 * the nodes are lost.  Don't plant shadows behind its
938 		 * back.
939 		 *
940 		 * We also don't store shadows for DAX mappings because the
941 		 * only page cache pages found in these are zero pages
942 		 * covering holes, and because we don't want to mix DAX
943 		 * exceptional entries and shadow exceptional entries in the
944 		 * same address_space.
945 		 */
946 		if (reclaimed && page_is_file_cache(page) &&
947 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
948 			shadow = workingset_eviction(mapping, page);
949 		__delete_from_page_cache(page, shadow);
950 		xa_unlock_irqrestore(&mapping->i_pages, flags);
951 
952 		if (freepage != NULL)
953 			freepage(page);
954 	}
955 
956 	return 1;
957 
958 cannot_free:
959 	xa_unlock_irqrestore(&mapping->i_pages, flags);
960 	return 0;
961 }
962 
963 /*
964  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
965  * someone else has a ref on the page, abort and return 0.  If it was
966  * successfully detached, return 1.  Assumes the caller has a single ref on
967  * this page.
968  */
remove_mapping(struct address_space * mapping,struct page * page)969 int remove_mapping(struct address_space *mapping, struct page *page)
970 {
971 	if (__remove_mapping(mapping, page, false)) {
972 		/*
973 		 * Unfreezing the refcount with 1 rather than 2 effectively
974 		 * drops the pagecache ref for us without requiring another
975 		 * atomic operation.
976 		 */
977 		page_ref_unfreeze(page, 1);
978 		return 1;
979 	}
980 	return 0;
981 }
982 
983 /**
984  * putback_lru_page - put previously isolated page onto appropriate LRU list
985  * @page: page to be put back to appropriate lru list
986  *
987  * Add previously isolated @page to appropriate LRU list.
988  * Page may still be unevictable for other reasons.
989  *
990  * lru_lock must not be held, interrupts must be enabled.
991  */
putback_lru_page(struct page * page)992 void putback_lru_page(struct page *page)
993 {
994 	lru_cache_add(page);
995 	put_page(page);		/* drop ref from isolate */
996 }
997 
998 enum page_references {
999 	PAGEREF_RECLAIM,
1000 	PAGEREF_RECLAIM_CLEAN,
1001 	PAGEREF_KEEP,
1002 	PAGEREF_ACTIVATE,
1003 };
1004 
page_check_references(struct page * page,struct scan_control * sc)1005 static enum page_references page_check_references(struct page *page,
1006 						  struct scan_control *sc)
1007 {
1008 	int referenced_ptes, referenced_page;
1009 	unsigned long vm_flags;
1010 
1011 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1012 					  &vm_flags);
1013 	referenced_page = TestClearPageReferenced(page);
1014 
1015 	/*
1016 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1017 	 * move the page to the unevictable list.
1018 	 */
1019 	if (vm_flags & VM_LOCKED)
1020 		return PAGEREF_RECLAIM;
1021 
1022 	if (referenced_ptes) {
1023 		if (PageSwapBacked(page))
1024 			return PAGEREF_ACTIVATE;
1025 		/*
1026 		 * All mapped pages start out with page table
1027 		 * references from the instantiating fault, so we need
1028 		 * to look twice if a mapped file page is used more
1029 		 * than once.
1030 		 *
1031 		 * Mark it and spare it for another trip around the
1032 		 * inactive list.  Another page table reference will
1033 		 * lead to its activation.
1034 		 *
1035 		 * Note: the mark is set for activated pages as well
1036 		 * so that recently deactivated but used pages are
1037 		 * quickly recovered.
1038 		 */
1039 		SetPageReferenced(page);
1040 
1041 		if (referenced_page || referenced_ptes > 1)
1042 			return PAGEREF_ACTIVATE;
1043 
1044 		/*
1045 		 * Activate file-backed executable pages after first usage.
1046 		 */
1047 		if (vm_flags & VM_EXEC)
1048 			return PAGEREF_ACTIVATE;
1049 
1050 		return PAGEREF_KEEP;
1051 	}
1052 
1053 	/* Reclaim if clean, defer dirty pages to writeback */
1054 	if (referenced_page && !PageSwapBacked(page))
1055 		return PAGEREF_RECLAIM_CLEAN;
1056 
1057 	return PAGEREF_RECLAIM;
1058 }
1059 
1060 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)1061 static void page_check_dirty_writeback(struct page *page,
1062 				       bool *dirty, bool *writeback)
1063 {
1064 	struct address_space *mapping;
1065 
1066 	/*
1067 	 * Anonymous pages are not handled by flushers and must be written
1068 	 * from reclaim context. Do not stall reclaim based on them
1069 	 */
1070 	if (!page_is_file_cache(page) ||
1071 	    (PageAnon(page) && !PageSwapBacked(page))) {
1072 		*dirty = false;
1073 		*writeback = false;
1074 		return;
1075 	}
1076 
1077 	/* By default assume that the page flags are accurate */
1078 	*dirty = PageDirty(page);
1079 	*writeback = PageWriteback(page);
1080 
1081 	/* Verify dirty/writeback state if the filesystem supports it */
1082 	if (!page_has_private(page))
1083 		return;
1084 
1085 	mapping = page_mapping(page);
1086 	if (mapping && mapping->a_ops->is_dirty_writeback)
1087 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1088 }
1089 
1090 /*
1091  * shrink_page_list() returns the number of reclaimed pages
1092  */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,enum ttu_flags ttu_flags,struct reclaim_stat * stat,bool force_reclaim)1093 static unsigned long shrink_page_list(struct list_head *page_list,
1094 				      struct pglist_data *pgdat,
1095 				      struct scan_control *sc,
1096 				      enum ttu_flags ttu_flags,
1097 				      struct reclaim_stat *stat,
1098 				      bool force_reclaim)
1099 {
1100 	LIST_HEAD(ret_pages);
1101 	LIST_HEAD(free_pages);
1102 	int pgactivate = 0;
1103 	unsigned nr_unqueued_dirty = 0;
1104 	unsigned nr_dirty = 0;
1105 	unsigned nr_congested = 0;
1106 	unsigned nr_reclaimed = 0;
1107 	unsigned nr_writeback = 0;
1108 	unsigned nr_immediate = 0;
1109 	unsigned nr_ref_keep = 0;
1110 	unsigned nr_unmap_fail = 0;
1111 
1112 	cond_resched();
1113 
1114 	while (!list_empty(page_list)) {
1115 		struct address_space *mapping;
1116 		struct page *page;
1117 		int may_enter_fs;
1118 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1119 		bool dirty, writeback;
1120 
1121 		cond_resched();
1122 
1123 		page = lru_to_page(page_list);
1124 		list_del(&page->lru);
1125 
1126 		if (!trylock_page(page))
1127 			goto keep;
1128 
1129 		VM_BUG_ON_PAGE(PageActive(page), page);
1130 
1131 		sc->nr_scanned++;
1132 
1133 		if (unlikely(!page_evictable(page)))
1134 			goto activate_locked;
1135 
1136 		if (!sc->may_unmap && page_mapped(page))
1137 			goto keep_locked;
1138 
1139 		/* Double the slab pressure for mapped and swapcache pages */
1140 		if ((page_mapped(page) || PageSwapCache(page)) &&
1141 		    !(PageAnon(page) && !PageSwapBacked(page)))
1142 			sc->nr_scanned++;
1143 
1144 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1145 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1146 
1147 		/*
1148 		 * The number of dirty pages determines if a node is marked
1149 		 * reclaim_congested which affects wait_iff_congested. kswapd
1150 		 * will stall and start writing pages if the tail of the LRU
1151 		 * is all dirty unqueued pages.
1152 		 */
1153 		page_check_dirty_writeback(page, &dirty, &writeback);
1154 		if (dirty || writeback)
1155 			nr_dirty++;
1156 
1157 		if (dirty && !writeback)
1158 			nr_unqueued_dirty++;
1159 
1160 		/*
1161 		 * Treat this page as congested if the underlying BDI is or if
1162 		 * pages are cycling through the LRU so quickly that the
1163 		 * pages marked for immediate reclaim are making it to the
1164 		 * end of the LRU a second time.
1165 		 */
1166 		mapping = page_mapping(page);
1167 		if (((dirty || writeback) && mapping &&
1168 		     inode_write_congested(mapping->host)) ||
1169 		    (writeback && PageReclaim(page)))
1170 			nr_congested++;
1171 
1172 		/*
1173 		 * If a page at the tail of the LRU is under writeback, there
1174 		 * are three cases to consider.
1175 		 *
1176 		 * 1) If reclaim is encountering an excessive number of pages
1177 		 *    under writeback and this page is both under writeback and
1178 		 *    PageReclaim then it indicates that pages are being queued
1179 		 *    for IO but are being recycled through the LRU before the
1180 		 *    IO can complete. Waiting on the page itself risks an
1181 		 *    indefinite stall if it is impossible to writeback the
1182 		 *    page due to IO error or disconnected storage so instead
1183 		 *    note that the LRU is being scanned too quickly and the
1184 		 *    caller can stall after page list has been processed.
1185 		 *
1186 		 * 2) Global or new memcg reclaim encounters a page that is
1187 		 *    not marked for immediate reclaim, or the caller does not
1188 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1189 		 *    not to fs). In this case mark the page for immediate
1190 		 *    reclaim and continue scanning.
1191 		 *
1192 		 *    Require may_enter_fs because we would wait on fs, which
1193 		 *    may not have submitted IO yet. And the loop driver might
1194 		 *    enter reclaim, and deadlock if it waits on a page for
1195 		 *    which it is needed to do the write (loop masks off
1196 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1197 		 *    would probably show more reasons.
1198 		 *
1199 		 * 3) Legacy memcg encounters a page that is already marked
1200 		 *    PageReclaim. memcg does not have any dirty pages
1201 		 *    throttling so we could easily OOM just because too many
1202 		 *    pages are in writeback and there is nothing else to
1203 		 *    reclaim. Wait for the writeback to complete.
1204 		 *
1205 		 * In cases 1) and 2) we activate the pages to get them out of
1206 		 * the way while we continue scanning for clean pages on the
1207 		 * inactive list and refilling from the active list. The
1208 		 * observation here is that waiting for disk writes is more
1209 		 * expensive than potentially causing reloads down the line.
1210 		 * Since they're marked for immediate reclaim, they won't put
1211 		 * memory pressure on the cache working set any longer than it
1212 		 * takes to write them to disk.
1213 		 */
1214 		if (PageWriteback(page)) {
1215 			/* Case 1 above */
1216 			if (current_is_kswapd() &&
1217 			    PageReclaim(page) &&
1218 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1219 				nr_immediate++;
1220 				goto activate_locked;
1221 
1222 			/* Case 2 above */
1223 			} else if (sane_reclaim(sc) ||
1224 			    !PageReclaim(page) || !may_enter_fs) {
1225 				/*
1226 				 * This is slightly racy - end_page_writeback()
1227 				 * might have just cleared PageReclaim, then
1228 				 * setting PageReclaim here end up interpreted
1229 				 * as PageReadahead - but that does not matter
1230 				 * enough to care.  What we do want is for this
1231 				 * page to have PageReclaim set next time memcg
1232 				 * reclaim reaches the tests above, so it will
1233 				 * then wait_on_page_writeback() to avoid OOM;
1234 				 * and it's also appropriate in global reclaim.
1235 				 */
1236 				SetPageReclaim(page);
1237 				nr_writeback++;
1238 				goto activate_locked;
1239 
1240 			/* Case 3 above */
1241 			} else {
1242 				unlock_page(page);
1243 				wait_on_page_writeback(page);
1244 				/* then go back and try same page again */
1245 				list_add_tail(&page->lru, page_list);
1246 				continue;
1247 			}
1248 		}
1249 
1250 		if (!force_reclaim)
1251 			references = page_check_references(page, sc);
1252 
1253 		switch (references) {
1254 		case PAGEREF_ACTIVATE:
1255 			goto activate_locked;
1256 		case PAGEREF_KEEP:
1257 			nr_ref_keep++;
1258 			goto keep_locked;
1259 		case PAGEREF_RECLAIM:
1260 		case PAGEREF_RECLAIM_CLEAN:
1261 			; /* try to reclaim the page below */
1262 		}
1263 
1264 		/*
1265 		 * Anonymous process memory has backing store?
1266 		 * Try to allocate it some swap space here.
1267 		 * Lazyfree page could be freed directly
1268 		 */
1269 		if (PageAnon(page) && PageSwapBacked(page)) {
1270 			if (!PageSwapCache(page)) {
1271 				if (!(sc->gfp_mask & __GFP_IO))
1272 					goto keep_locked;
1273 				if (PageTransHuge(page)) {
1274 					/* cannot split THP, skip it */
1275 					if (!can_split_huge_page(page, NULL))
1276 						goto activate_locked;
1277 					/*
1278 					 * Split pages without a PMD map right
1279 					 * away. Chances are some or all of the
1280 					 * tail pages can be freed without IO.
1281 					 */
1282 					if (!compound_mapcount(page) &&
1283 					    split_huge_page_to_list(page,
1284 								    page_list))
1285 						goto activate_locked;
1286 				}
1287 				if (!add_to_swap(page)) {
1288 					if (!PageTransHuge(page))
1289 						goto activate_locked;
1290 					/* Fallback to swap normal pages */
1291 					if (split_huge_page_to_list(page,
1292 								    page_list))
1293 						goto activate_locked;
1294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1295 					count_vm_event(THP_SWPOUT_FALLBACK);
1296 #endif
1297 					if (!add_to_swap(page))
1298 						goto activate_locked;
1299 				}
1300 
1301 				may_enter_fs = 1;
1302 
1303 				/* Adding to swap updated mapping */
1304 				mapping = page_mapping(page);
1305 			}
1306 		} else if (unlikely(PageTransHuge(page))) {
1307 			/* Split file THP */
1308 			if (split_huge_page_to_list(page, page_list))
1309 				goto keep_locked;
1310 		}
1311 
1312 		/*
1313 		 * The page is mapped into the page tables of one or more
1314 		 * processes. Try to unmap it here.
1315 		 */
1316 		if (page_mapped(page)) {
1317 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1318 
1319 			if (unlikely(PageTransHuge(page)))
1320 				flags |= TTU_SPLIT_HUGE_PMD;
1321 			if (!try_to_unmap(page, flags)) {
1322 				nr_unmap_fail++;
1323 				goto activate_locked;
1324 			}
1325 		}
1326 
1327 		if (PageDirty(page)) {
1328 			/*
1329 			 * Only kswapd can writeback filesystem pages
1330 			 * to avoid risk of stack overflow. But avoid
1331 			 * injecting inefficient single-page IO into
1332 			 * flusher writeback as much as possible: only
1333 			 * write pages when we've encountered many
1334 			 * dirty pages, and when we've already scanned
1335 			 * the rest of the LRU for clean pages and see
1336 			 * the same dirty pages again (PageReclaim).
1337 			 */
1338 			if (page_is_file_cache(page) &&
1339 			    (!current_is_kswapd() || !PageReclaim(page) ||
1340 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1341 				/*
1342 				 * Immediately reclaim when written back.
1343 				 * Similar in principal to deactivate_page()
1344 				 * except we already have the page isolated
1345 				 * and know it's dirty
1346 				 */
1347 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1348 				SetPageReclaim(page);
1349 
1350 				goto activate_locked;
1351 			}
1352 
1353 			if (references == PAGEREF_RECLAIM_CLEAN)
1354 				goto keep_locked;
1355 			if (!may_enter_fs)
1356 				goto keep_locked;
1357 			if (!sc->may_writepage)
1358 				goto keep_locked;
1359 
1360 			/*
1361 			 * Page is dirty. Flush the TLB if a writable entry
1362 			 * potentially exists to avoid CPU writes after IO
1363 			 * starts and then write it out here.
1364 			 */
1365 			try_to_unmap_flush_dirty();
1366 			switch (pageout(page, mapping, sc)) {
1367 			case PAGE_KEEP:
1368 				goto keep_locked;
1369 			case PAGE_ACTIVATE:
1370 				goto activate_locked;
1371 			case PAGE_SUCCESS:
1372 				if (PageWriteback(page))
1373 					goto keep;
1374 				if (PageDirty(page))
1375 					goto keep;
1376 
1377 				/*
1378 				 * A synchronous write - probably a ramdisk.  Go
1379 				 * ahead and try to reclaim the page.
1380 				 */
1381 				if (!trylock_page(page))
1382 					goto keep;
1383 				if (PageDirty(page) || PageWriteback(page))
1384 					goto keep_locked;
1385 				mapping = page_mapping(page);
1386 			case PAGE_CLEAN:
1387 				; /* try to free the page below */
1388 			}
1389 		}
1390 
1391 		/*
1392 		 * If the page has buffers, try to free the buffer mappings
1393 		 * associated with this page. If we succeed we try to free
1394 		 * the page as well.
1395 		 *
1396 		 * We do this even if the page is PageDirty().
1397 		 * try_to_release_page() does not perform I/O, but it is
1398 		 * possible for a page to have PageDirty set, but it is actually
1399 		 * clean (all its buffers are clean).  This happens if the
1400 		 * buffers were written out directly, with submit_bh(). ext3
1401 		 * will do this, as well as the blockdev mapping.
1402 		 * try_to_release_page() will discover that cleanness and will
1403 		 * drop the buffers and mark the page clean - it can be freed.
1404 		 *
1405 		 * Rarely, pages can have buffers and no ->mapping.  These are
1406 		 * the pages which were not successfully invalidated in
1407 		 * truncate_complete_page().  We try to drop those buffers here
1408 		 * and if that worked, and the page is no longer mapped into
1409 		 * process address space (page_count == 1) it can be freed.
1410 		 * Otherwise, leave the page on the LRU so it is swappable.
1411 		 */
1412 		if (page_has_private(page)) {
1413 			if (!try_to_release_page(page, sc->gfp_mask))
1414 				goto activate_locked;
1415 			if (!mapping && page_count(page) == 1) {
1416 				unlock_page(page);
1417 				if (put_page_testzero(page))
1418 					goto free_it;
1419 				else {
1420 					/*
1421 					 * rare race with speculative reference.
1422 					 * the speculative reference will free
1423 					 * this page shortly, so we may
1424 					 * increment nr_reclaimed here (and
1425 					 * leave it off the LRU).
1426 					 */
1427 					nr_reclaimed++;
1428 					continue;
1429 				}
1430 			}
1431 		}
1432 
1433 		if (PageAnon(page) && !PageSwapBacked(page)) {
1434 			/* follow __remove_mapping for reference */
1435 			if (!page_ref_freeze(page, 1))
1436 				goto keep_locked;
1437 			if (PageDirty(page)) {
1438 				page_ref_unfreeze(page, 1);
1439 				goto keep_locked;
1440 			}
1441 
1442 			count_vm_event(PGLAZYFREED);
1443 			count_memcg_page_event(page, PGLAZYFREED);
1444 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1445 			goto keep_locked;
1446 		/*
1447 		 * At this point, we have no other references and there is
1448 		 * no way to pick any more up (removed from LRU, removed
1449 		 * from pagecache). Can use non-atomic bitops now (and
1450 		 * we obviously don't have to worry about waking up a process
1451 		 * waiting on the page lock, because there are no references.
1452 		 */
1453 		__ClearPageLocked(page);
1454 free_it:
1455 		nr_reclaimed++;
1456 
1457 		/*
1458 		 * Is there need to periodically free_page_list? It would
1459 		 * appear not as the counts should be low
1460 		 */
1461 		if (unlikely(PageTransHuge(page))) {
1462 			mem_cgroup_uncharge(page);
1463 			(*get_compound_page_dtor(page))(page);
1464 		} else
1465 			list_add(&page->lru, &free_pages);
1466 		continue;
1467 
1468 activate_locked:
1469 		/* Not a candidate for swapping, so reclaim swap space. */
1470 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1471 						PageMlocked(page)))
1472 			try_to_free_swap(page);
1473 		VM_BUG_ON_PAGE(PageActive(page), page);
1474 		if (!PageMlocked(page)) {
1475 			SetPageActive(page);
1476 			pgactivate++;
1477 			count_memcg_page_event(page, PGACTIVATE);
1478 		}
1479 keep_locked:
1480 		unlock_page(page);
1481 keep:
1482 		list_add(&page->lru, &ret_pages);
1483 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1484 	}
1485 
1486 	mem_cgroup_uncharge_list(&free_pages);
1487 	try_to_unmap_flush();
1488 	free_unref_page_list(&free_pages);
1489 
1490 	list_splice(&ret_pages, page_list);
1491 	count_vm_events(PGACTIVATE, pgactivate);
1492 
1493 	if (stat) {
1494 		stat->nr_dirty = nr_dirty;
1495 		stat->nr_congested = nr_congested;
1496 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1497 		stat->nr_writeback = nr_writeback;
1498 		stat->nr_immediate = nr_immediate;
1499 		stat->nr_activate = pgactivate;
1500 		stat->nr_ref_keep = nr_ref_keep;
1501 		stat->nr_unmap_fail = nr_unmap_fail;
1502 	}
1503 	return nr_reclaimed;
1504 }
1505 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1506 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1507 					    struct list_head *page_list)
1508 {
1509 	struct scan_control sc = {
1510 		.gfp_mask = GFP_KERNEL,
1511 		.priority = DEF_PRIORITY,
1512 		.may_unmap = 1,
1513 	};
1514 	unsigned long ret;
1515 	struct page *page, *next;
1516 	LIST_HEAD(clean_pages);
1517 
1518 	list_for_each_entry_safe(page, next, page_list, lru) {
1519 		if (page_is_file_cache(page) && !PageDirty(page) &&
1520 		    !__PageMovable(page) && !PageUnevictable(page)) {
1521 			ClearPageActive(page);
1522 			list_move(&page->lru, &clean_pages);
1523 		}
1524 	}
1525 
1526 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1527 			TTU_IGNORE_ACCESS, NULL, true);
1528 	list_splice(&clean_pages, page_list);
1529 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1530 	return ret;
1531 }
1532 
1533 /*
1534  * Attempt to remove the specified page from its LRU.  Only take this page
1535  * if it is of the appropriate PageActive status.  Pages which are being
1536  * freed elsewhere are also ignored.
1537  *
1538  * page:	page to consider
1539  * mode:	one of the LRU isolation modes defined above
1540  *
1541  * returns 0 on success, -ve errno on failure.
1542  */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1543 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1544 {
1545 	int ret = -EINVAL;
1546 
1547 	/* Only take pages on the LRU. */
1548 	if (!PageLRU(page))
1549 		return ret;
1550 
1551 	/* Compaction should not handle unevictable pages but CMA can do so */
1552 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1553 		return ret;
1554 
1555 	ret = -EBUSY;
1556 
1557 	/*
1558 	 * To minimise LRU disruption, the caller can indicate that it only
1559 	 * wants to isolate pages it will be able to operate on without
1560 	 * blocking - clean pages for the most part.
1561 	 *
1562 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1563 	 * that it is possible to migrate without blocking
1564 	 */
1565 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1566 		/* All the caller can do on PageWriteback is block */
1567 		if (PageWriteback(page))
1568 			return ret;
1569 
1570 		if (PageDirty(page)) {
1571 			struct address_space *mapping;
1572 			bool migrate_dirty;
1573 
1574 			/*
1575 			 * Only pages without mappings or that have a
1576 			 * ->migratepage callback are possible to migrate
1577 			 * without blocking. However, we can be racing with
1578 			 * truncation so it's necessary to lock the page
1579 			 * to stabilise the mapping as truncation holds
1580 			 * the page lock until after the page is removed
1581 			 * from the page cache.
1582 			 */
1583 			if (!trylock_page(page))
1584 				return ret;
1585 
1586 			mapping = page_mapping(page);
1587 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1588 			unlock_page(page);
1589 			if (!migrate_dirty)
1590 				return ret;
1591 		}
1592 	}
1593 
1594 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1595 		return ret;
1596 
1597 	if (likely(get_page_unless_zero(page))) {
1598 		/*
1599 		 * Be careful not to clear PageLRU until after we're
1600 		 * sure the page is not being freed elsewhere -- the
1601 		 * page release code relies on it.
1602 		 */
1603 		ClearPageLRU(page);
1604 		ret = 0;
1605 	}
1606 
1607 	return ret;
1608 }
1609 
1610 
1611 /*
1612  * Update LRU sizes after isolating pages. The LRU size updates must
1613  * be complete before mem_cgroup_update_lru_size due to a santity check.
1614  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1615 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1616 			enum lru_list lru, unsigned long *nr_zone_taken)
1617 {
1618 	int zid;
1619 
1620 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1621 		if (!nr_zone_taken[zid])
1622 			continue;
1623 
1624 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1625 #ifdef CONFIG_MEMCG
1626 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1627 #endif
1628 	}
1629 
1630 }
1631 
1632 /*
1633  * zone_lru_lock is heavily contended.  Some of the functions that
1634  * shrink the lists perform better by taking out a batch of pages
1635  * and working on them outside the LRU lock.
1636  *
1637  * For pagecache intensive workloads, this function is the hottest
1638  * spot in the kernel (apart from copy_*_user functions).
1639  *
1640  * Appropriate locks must be held before calling this function.
1641  *
1642  * @nr_to_scan:	The number of eligible pages to look through on the list.
1643  * @lruvec:	The LRU vector to pull pages from.
1644  * @dst:	The temp list to put pages on to.
1645  * @nr_scanned:	The number of pages that were scanned.
1646  * @sc:		The scan_control struct for this reclaim session
1647  * @mode:	One of the LRU isolation modes
1648  * @lru:	LRU list id for isolating
1649  *
1650  * returns how many pages were moved onto *@dst.
1651  */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,isolate_mode_t mode,enum lru_list lru)1652 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1653 		struct lruvec *lruvec, struct list_head *dst,
1654 		unsigned long *nr_scanned, struct scan_control *sc,
1655 		isolate_mode_t mode, enum lru_list lru)
1656 {
1657 	struct list_head *src = &lruvec->lists[lru];
1658 	unsigned long nr_taken = 0;
1659 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1660 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1661 	unsigned long skipped = 0;
1662 	unsigned long scan, total_scan, nr_pages;
1663 	LIST_HEAD(pages_skipped);
1664 
1665 	scan = 0;
1666 	for (total_scan = 0;
1667 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1668 	     total_scan++) {
1669 		struct page *page;
1670 
1671 		page = lru_to_page(src);
1672 		prefetchw_prev_lru_page(page, src, flags);
1673 
1674 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1675 
1676 		if (page_zonenum(page) > sc->reclaim_idx) {
1677 			list_move(&page->lru, &pages_skipped);
1678 			nr_skipped[page_zonenum(page)]++;
1679 			continue;
1680 		}
1681 
1682 		/*
1683 		 * Do not count skipped pages because that makes the function
1684 		 * return with no isolated pages if the LRU mostly contains
1685 		 * ineligible pages.  This causes the VM to not reclaim any
1686 		 * pages, triggering a premature OOM.
1687 		 */
1688 		scan++;
1689 		switch (__isolate_lru_page(page, mode)) {
1690 		case 0:
1691 			nr_pages = hpage_nr_pages(page);
1692 			nr_taken += nr_pages;
1693 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1694 			list_move(&page->lru, dst);
1695 			break;
1696 
1697 		case -EBUSY:
1698 			/* else it is being freed elsewhere */
1699 			list_move(&page->lru, src);
1700 			continue;
1701 
1702 		default:
1703 			BUG();
1704 		}
1705 	}
1706 
1707 	/*
1708 	 * Splice any skipped pages to the start of the LRU list. Note that
1709 	 * this disrupts the LRU order when reclaiming for lower zones but
1710 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1711 	 * scanning would soon rescan the same pages to skip and put the
1712 	 * system at risk of premature OOM.
1713 	 */
1714 	if (!list_empty(&pages_skipped)) {
1715 		int zid;
1716 
1717 		list_splice(&pages_skipped, src);
1718 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1719 			if (!nr_skipped[zid])
1720 				continue;
1721 
1722 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1723 			skipped += nr_skipped[zid];
1724 		}
1725 	}
1726 	*nr_scanned = total_scan;
1727 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1728 				    total_scan, skipped, nr_taken, mode, lru);
1729 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1730 	return nr_taken;
1731 }
1732 
1733 /**
1734  * isolate_lru_page - tries to isolate a page from its LRU list
1735  * @page: page to isolate from its LRU list
1736  *
1737  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1738  * vmstat statistic corresponding to whatever LRU list the page was on.
1739  *
1740  * Returns 0 if the page was removed from an LRU list.
1741  * Returns -EBUSY if the page was not on an LRU list.
1742  *
1743  * The returned page will have PageLRU() cleared.  If it was found on
1744  * the active list, it will have PageActive set.  If it was found on
1745  * the unevictable list, it will have the PageUnevictable bit set. That flag
1746  * may need to be cleared by the caller before letting the page go.
1747  *
1748  * The vmstat statistic corresponding to the list on which the page was
1749  * found will be decremented.
1750  *
1751  * Restrictions:
1752  *
1753  * (1) Must be called with an elevated refcount on the page. This is a
1754  *     fundamentnal difference from isolate_lru_pages (which is called
1755  *     without a stable reference).
1756  * (2) the lru_lock must not be held.
1757  * (3) interrupts must be enabled.
1758  */
isolate_lru_page(struct page * page)1759 int isolate_lru_page(struct page *page)
1760 {
1761 	int ret = -EBUSY;
1762 
1763 	VM_BUG_ON_PAGE(!page_count(page), page);
1764 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1765 
1766 	if (PageLRU(page)) {
1767 		struct zone *zone = page_zone(page);
1768 		struct lruvec *lruvec;
1769 
1770 		spin_lock_irq(zone_lru_lock(zone));
1771 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1772 		if (PageLRU(page)) {
1773 			int lru = page_lru(page);
1774 			get_page(page);
1775 			ClearPageLRU(page);
1776 			del_page_from_lru_list(page, lruvec, lru);
1777 			ret = 0;
1778 		}
1779 		spin_unlock_irq(zone_lru_lock(zone));
1780 	}
1781 	return ret;
1782 }
1783 
1784 /*
1785  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1786  * then get resheduled. When there are massive number of tasks doing page
1787  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1788  * the LRU list will go small and be scanned faster than necessary, leading to
1789  * unnecessary swapping, thrashing and OOM.
1790  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1791 static int too_many_isolated(struct pglist_data *pgdat, int file,
1792 		struct scan_control *sc)
1793 {
1794 	unsigned long inactive, isolated;
1795 
1796 	if (current_is_kswapd())
1797 		return 0;
1798 
1799 	if (!sane_reclaim(sc))
1800 		return 0;
1801 
1802 	if (file) {
1803 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1804 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1805 	} else {
1806 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1807 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1808 	}
1809 
1810 	/*
1811 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1812 	 * won't get blocked by normal direct-reclaimers, forming a circular
1813 	 * deadlock.
1814 	 */
1815 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1816 		inactive >>= 3;
1817 
1818 	return isolated > inactive;
1819 }
1820 
1821 static noinline_for_stack void
putback_inactive_pages(struct lruvec * lruvec,struct list_head * page_list)1822 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1823 {
1824 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1825 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1826 	LIST_HEAD(pages_to_free);
1827 
1828 	/*
1829 	 * Put back any unfreeable pages.
1830 	 */
1831 	while (!list_empty(page_list)) {
1832 		struct page *page = lru_to_page(page_list);
1833 		int lru;
1834 
1835 		VM_BUG_ON_PAGE(PageLRU(page), page);
1836 		list_del(&page->lru);
1837 		if (unlikely(!page_evictable(page))) {
1838 			spin_unlock_irq(&pgdat->lru_lock);
1839 			putback_lru_page(page);
1840 			spin_lock_irq(&pgdat->lru_lock);
1841 			continue;
1842 		}
1843 
1844 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1845 
1846 		SetPageLRU(page);
1847 		lru = page_lru(page);
1848 		add_page_to_lru_list(page, lruvec, lru);
1849 
1850 		if (is_active_lru(lru)) {
1851 			int file = is_file_lru(lru);
1852 			int numpages = hpage_nr_pages(page);
1853 			reclaim_stat->recent_rotated[file] += numpages;
1854 		}
1855 		if (put_page_testzero(page)) {
1856 			__ClearPageLRU(page);
1857 			__ClearPageActive(page);
1858 			del_page_from_lru_list(page, lruvec, lru);
1859 
1860 			if (unlikely(PageCompound(page))) {
1861 				spin_unlock_irq(&pgdat->lru_lock);
1862 				mem_cgroup_uncharge(page);
1863 				(*get_compound_page_dtor(page))(page);
1864 				spin_lock_irq(&pgdat->lru_lock);
1865 			} else
1866 				list_add(&page->lru, &pages_to_free);
1867 		}
1868 	}
1869 
1870 	/*
1871 	 * To save our caller's stack, now use input list for pages to free.
1872 	 */
1873 	list_splice(&pages_to_free, page_list);
1874 }
1875 
1876 /*
1877  * If a kernel thread (such as nfsd for loop-back mounts) services
1878  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1879  * In that case we should only throttle if the backing device it is
1880  * writing to is congested.  In other cases it is safe to throttle.
1881  */
current_may_throttle(void)1882 static int current_may_throttle(void)
1883 {
1884 	return !(current->flags & PF_LESS_THROTTLE) ||
1885 		current->backing_dev_info == NULL ||
1886 		bdi_write_congested(current->backing_dev_info);
1887 }
1888 
1889 /*
1890  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1891  * of reclaimed pages
1892  */
1893 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1894 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1895 		     struct scan_control *sc, enum lru_list lru)
1896 {
1897 	LIST_HEAD(page_list);
1898 	unsigned long nr_scanned;
1899 	unsigned long nr_reclaimed = 0;
1900 	unsigned long nr_taken;
1901 	struct reclaim_stat stat = {};
1902 	isolate_mode_t isolate_mode = 0;
1903 	int file = is_file_lru(lru);
1904 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1905 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1906 	bool stalled = false;
1907 
1908 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1909 		if (stalled)
1910 			return 0;
1911 
1912 		/* wait a bit for the reclaimer. */
1913 		msleep(100);
1914 		stalled = true;
1915 
1916 		/* We are about to die and free our memory. Return now. */
1917 		if (fatal_signal_pending(current))
1918 			return SWAP_CLUSTER_MAX;
1919 	}
1920 
1921 	lru_add_drain();
1922 
1923 	if (!sc->may_unmap)
1924 		isolate_mode |= ISOLATE_UNMAPPED;
1925 
1926 	spin_lock_irq(&pgdat->lru_lock);
1927 
1928 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1929 				     &nr_scanned, sc, isolate_mode, lru);
1930 
1931 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1932 	reclaim_stat->recent_scanned[file] += nr_taken;
1933 
1934 	if (current_is_kswapd()) {
1935 		if (global_reclaim(sc))
1936 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1937 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1938 				   nr_scanned);
1939 	} else {
1940 		if (global_reclaim(sc))
1941 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1942 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1943 				   nr_scanned);
1944 	}
1945 	spin_unlock_irq(&pgdat->lru_lock);
1946 
1947 	if (nr_taken == 0)
1948 		return 0;
1949 
1950 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1951 				&stat, false);
1952 
1953 	spin_lock_irq(&pgdat->lru_lock);
1954 
1955 	if (current_is_kswapd()) {
1956 		if (global_reclaim(sc))
1957 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1958 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1959 				   nr_reclaimed);
1960 	} else {
1961 		if (global_reclaim(sc))
1962 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1963 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1964 				   nr_reclaimed);
1965 	}
1966 
1967 	putback_inactive_pages(lruvec, &page_list);
1968 
1969 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1970 
1971 	spin_unlock_irq(&pgdat->lru_lock);
1972 
1973 	mem_cgroup_uncharge_list(&page_list);
1974 	free_unref_page_list(&page_list);
1975 
1976 	/*
1977 	 * If dirty pages are scanned that are not queued for IO, it
1978 	 * implies that flushers are not doing their job. This can
1979 	 * happen when memory pressure pushes dirty pages to the end of
1980 	 * the LRU before the dirty limits are breached and the dirty
1981 	 * data has expired. It can also happen when the proportion of
1982 	 * dirty pages grows not through writes but through memory
1983 	 * pressure reclaiming all the clean cache. And in some cases,
1984 	 * the flushers simply cannot keep up with the allocation
1985 	 * rate. Nudge the flusher threads in case they are asleep.
1986 	 */
1987 	if (stat.nr_unqueued_dirty == nr_taken)
1988 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1989 
1990 	sc->nr.dirty += stat.nr_dirty;
1991 	sc->nr.congested += stat.nr_congested;
1992 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1993 	sc->nr.writeback += stat.nr_writeback;
1994 	sc->nr.immediate += stat.nr_immediate;
1995 	sc->nr.taken += nr_taken;
1996 	if (file)
1997 		sc->nr.file_taken += nr_taken;
1998 
1999 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2000 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2001 	return nr_reclaimed;
2002 }
2003 
2004 /*
2005  * This moves pages from the active list to the inactive list.
2006  *
2007  * We move them the other way if the page is referenced by one or more
2008  * processes, from rmap.
2009  *
2010  * If the pages are mostly unmapped, the processing is fast and it is
2011  * appropriate to hold zone_lru_lock across the whole operation.  But if
2012  * the pages are mapped, the processing is slow (page_referenced()) so we
2013  * should drop zone_lru_lock around each page.  It's impossible to balance
2014  * this, so instead we remove the pages from the LRU while processing them.
2015  * It is safe to rely on PG_active against the non-LRU pages in here because
2016  * nobody will play with that bit on a non-LRU page.
2017  *
2018  * The downside is that we have to touch page->_refcount against each page.
2019  * But we had to alter page->flags anyway.
2020  *
2021  * Returns the number of pages moved to the given lru.
2022  */
2023 
move_active_pages_to_lru(struct lruvec * lruvec,struct list_head * list,struct list_head * pages_to_free,enum lru_list lru)2024 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2025 				     struct list_head *list,
2026 				     struct list_head *pages_to_free,
2027 				     enum lru_list lru)
2028 {
2029 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2030 	struct page *page;
2031 	int nr_pages;
2032 	int nr_moved = 0;
2033 
2034 	while (!list_empty(list)) {
2035 		page = lru_to_page(list);
2036 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2037 
2038 		VM_BUG_ON_PAGE(PageLRU(page), page);
2039 		SetPageLRU(page);
2040 
2041 		nr_pages = hpage_nr_pages(page);
2042 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2043 		list_move(&page->lru, &lruvec->lists[lru]);
2044 
2045 		if (put_page_testzero(page)) {
2046 			__ClearPageLRU(page);
2047 			__ClearPageActive(page);
2048 			del_page_from_lru_list(page, lruvec, lru);
2049 
2050 			if (unlikely(PageCompound(page))) {
2051 				spin_unlock_irq(&pgdat->lru_lock);
2052 				mem_cgroup_uncharge(page);
2053 				(*get_compound_page_dtor(page))(page);
2054 				spin_lock_irq(&pgdat->lru_lock);
2055 			} else
2056 				list_add(&page->lru, pages_to_free);
2057 		} else {
2058 			nr_moved += nr_pages;
2059 		}
2060 	}
2061 
2062 	if (!is_active_lru(lru)) {
2063 		__count_vm_events(PGDEACTIVATE, nr_moved);
2064 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2065 				   nr_moved);
2066 	}
2067 
2068 	return nr_moved;
2069 }
2070 
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2071 static void shrink_active_list(unsigned long nr_to_scan,
2072 			       struct lruvec *lruvec,
2073 			       struct scan_control *sc,
2074 			       enum lru_list lru)
2075 {
2076 	unsigned long nr_taken;
2077 	unsigned long nr_scanned;
2078 	unsigned long vm_flags;
2079 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2080 	LIST_HEAD(l_active);
2081 	LIST_HEAD(l_inactive);
2082 	struct page *page;
2083 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2084 	unsigned nr_deactivate, nr_activate;
2085 	unsigned nr_rotated = 0;
2086 	isolate_mode_t isolate_mode = 0;
2087 	int file = is_file_lru(lru);
2088 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2089 
2090 	lru_add_drain();
2091 
2092 	if (!sc->may_unmap)
2093 		isolate_mode |= ISOLATE_UNMAPPED;
2094 
2095 	spin_lock_irq(&pgdat->lru_lock);
2096 
2097 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2098 				     &nr_scanned, sc, isolate_mode, lru);
2099 
2100 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2101 	reclaim_stat->recent_scanned[file] += nr_taken;
2102 
2103 	__count_vm_events(PGREFILL, nr_scanned);
2104 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2105 
2106 	spin_unlock_irq(&pgdat->lru_lock);
2107 
2108 	while (!list_empty(&l_hold)) {
2109 		cond_resched();
2110 		page = lru_to_page(&l_hold);
2111 		list_del(&page->lru);
2112 
2113 		if (unlikely(!page_evictable(page))) {
2114 			putback_lru_page(page);
2115 			continue;
2116 		}
2117 
2118 		if (unlikely(buffer_heads_over_limit)) {
2119 			if (page_has_private(page) && trylock_page(page)) {
2120 				if (page_has_private(page))
2121 					try_to_release_page(page, 0);
2122 				unlock_page(page);
2123 			}
2124 		}
2125 
2126 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2127 				    &vm_flags)) {
2128 			nr_rotated += hpage_nr_pages(page);
2129 			/*
2130 			 * Identify referenced, file-backed active pages and
2131 			 * give them one more trip around the active list. So
2132 			 * that executable code get better chances to stay in
2133 			 * memory under moderate memory pressure.  Anon pages
2134 			 * are not likely to be evicted by use-once streaming
2135 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2136 			 * so we ignore them here.
2137 			 */
2138 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2139 				list_add(&page->lru, &l_active);
2140 				continue;
2141 			}
2142 		}
2143 
2144 		ClearPageActive(page);	/* we are de-activating */
2145 		list_add(&page->lru, &l_inactive);
2146 	}
2147 
2148 	/*
2149 	 * Move pages back to the lru list.
2150 	 */
2151 	spin_lock_irq(&pgdat->lru_lock);
2152 	/*
2153 	 * Count referenced pages from currently used mappings as rotated,
2154 	 * even though only some of them are actually re-activated.  This
2155 	 * helps balance scan pressure between file and anonymous pages in
2156 	 * get_scan_count.
2157 	 */
2158 	reclaim_stat->recent_rotated[file] += nr_rotated;
2159 
2160 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2161 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2162 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2163 	spin_unlock_irq(&pgdat->lru_lock);
2164 
2165 	mem_cgroup_uncharge_list(&l_hold);
2166 	free_unref_page_list(&l_hold);
2167 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2168 			nr_deactivate, nr_rotated, sc->priority, file);
2169 }
2170 
2171 /*
2172  * The inactive anon list should be small enough that the VM never has
2173  * to do too much work.
2174  *
2175  * The inactive file list should be small enough to leave most memory
2176  * to the established workingset on the scan-resistant active list,
2177  * but large enough to avoid thrashing the aggregate readahead window.
2178  *
2179  * Both inactive lists should also be large enough that each inactive
2180  * page has a chance to be referenced again before it is reclaimed.
2181  *
2182  * If that fails and refaulting is observed, the inactive list grows.
2183  *
2184  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2185  * on this LRU, maintained by the pageout code. An inactive_ratio
2186  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2187  *
2188  * total     target    max
2189  * memory    ratio     inactive
2190  * -------------------------------------
2191  *   10MB       1         5MB
2192  *  100MB       1        50MB
2193  *    1GB       3       250MB
2194  *   10GB      10       0.9GB
2195  *  100GB      31         3GB
2196  *    1TB     101        10GB
2197  *   10TB     320        32GB
2198  */
inactive_list_is_low(struct lruvec * lruvec,bool file,struct scan_control * sc,bool trace)2199 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2200 				 struct scan_control *sc, bool trace)
2201 {
2202 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2203 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2204 	enum lru_list inactive_lru = file * LRU_FILE;
2205 	unsigned long inactive, active;
2206 	unsigned long inactive_ratio;
2207 	unsigned long refaults;
2208 	unsigned long gb;
2209 
2210 	/*
2211 	 * If we don't have swap space, anonymous page deactivation
2212 	 * is pointless.
2213 	 */
2214 	if (!file && !total_swap_pages)
2215 		return false;
2216 
2217 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2218 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2219 
2220 	/*
2221 	 * When refaults are being observed, it means a new workingset
2222 	 * is being established. Disable active list protection to get
2223 	 * rid of the stale workingset quickly.
2224 	 */
2225 	refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2226 	if (file && lruvec->refaults != refaults) {
2227 		inactive_ratio = 0;
2228 	} else {
2229 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2230 		if (gb)
2231 			inactive_ratio = int_sqrt(10 * gb);
2232 		else
2233 			inactive_ratio = 1;
2234 	}
2235 
2236 	if (trace)
2237 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2238 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2239 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2240 			inactive_ratio, file);
2241 
2242 	return inactive * inactive_ratio < active;
2243 }
2244 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2245 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2246 				 struct lruvec *lruvec, struct scan_control *sc)
2247 {
2248 	if (is_active_lru(lru)) {
2249 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2250 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2251 		return 0;
2252 	}
2253 
2254 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2255 }
2256 
2257 enum scan_balance {
2258 	SCAN_EQUAL,
2259 	SCAN_FRACT,
2260 	SCAN_ANON,
2261 	SCAN_FILE,
2262 };
2263 
2264 /*
2265  * Determine how aggressively the anon and file LRU lists should be
2266  * scanned.  The relative value of each set of LRU lists is determined
2267  * by looking at the fraction of the pages scanned we did rotate back
2268  * onto the active list instead of evict.
2269  *
2270  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2271  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2272  */
get_scan_count(struct lruvec * lruvec,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * nr,unsigned long * lru_pages)2273 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2274 			   struct scan_control *sc, unsigned long *nr,
2275 			   unsigned long *lru_pages)
2276 {
2277 	int swappiness = mem_cgroup_swappiness(memcg);
2278 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2279 	u64 fraction[2];
2280 	u64 denominator = 0;	/* gcc */
2281 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2282 	unsigned long anon_prio, file_prio;
2283 	enum scan_balance scan_balance;
2284 	unsigned long anon, file;
2285 	unsigned long ap, fp;
2286 	enum lru_list lru;
2287 
2288 	/* If we have no swap space, do not bother scanning anon pages. */
2289 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2290 		scan_balance = SCAN_FILE;
2291 		goto out;
2292 	}
2293 
2294 	/*
2295 	 * Global reclaim will swap to prevent OOM even with no
2296 	 * swappiness, but memcg users want to use this knob to
2297 	 * disable swapping for individual groups completely when
2298 	 * using the memory controller's swap limit feature would be
2299 	 * too expensive.
2300 	 */
2301 	if (!global_reclaim(sc) && !swappiness) {
2302 		scan_balance = SCAN_FILE;
2303 		goto out;
2304 	}
2305 
2306 	/*
2307 	 * Do not apply any pressure balancing cleverness when the
2308 	 * system is close to OOM, scan both anon and file equally
2309 	 * (unless the swappiness setting disagrees with swapping).
2310 	 */
2311 	if (!sc->priority && swappiness) {
2312 		scan_balance = SCAN_EQUAL;
2313 		goto out;
2314 	}
2315 
2316 	/*
2317 	 * Prevent the reclaimer from falling into the cache trap: as
2318 	 * cache pages start out inactive, every cache fault will tip
2319 	 * the scan balance towards the file LRU.  And as the file LRU
2320 	 * shrinks, so does the window for rotation from references.
2321 	 * This means we have a runaway feedback loop where a tiny
2322 	 * thrashing file LRU becomes infinitely more attractive than
2323 	 * anon pages.  Try to detect this based on file LRU size.
2324 	 */
2325 	if (global_reclaim(sc)) {
2326 		unsigned long pgdatfile;
2327 		unsigned long pgdatfree;
2328 		int z;
2329 		unsigned long total_high_wmark = 0;
2330 
2331 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2332 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2333 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2334 
2335 		for (z = 0; z < MAX_NR_ZONES; z++) {
2336 			struct zone *zone = &pgdat->node_zones[z];
2337 			if (!managed_zone(zone))
2338 				continue;
2339 
2340 			total_high_wmark += high_wmark_pages(zone);
2341 		}
2342 
2343 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2344 			/*
2345 			 * Force SCAN_ANON if there are enough inactive
2346 			 * anonymous pages on the LRU in eligible zones.
2347 			 * Otherwise, the small LRU gets thrashed.
2348 			 */
2349 			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2350 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2351 					>> sc->priority) {
2352 				scan_balance = SCAN_ANON;
2353 				goto out;
2354 			}
2355 		}
2356 	}
2357 
2358 	/*
2359 	 * If there is enough inactive page cache, i.e. if the size of the
2360 	 * inactive list is greater than that of the active list *and* the
2361 	 * inactive list actually has some pages to scan on this priority, we
2362 	 * do not reclaim anything from the anonymous working set right now.
2363 	 * Without the second condition we could end up never scanning an
2364 	 * lruvec even if it has plenty of old anonymous pages unless the
2365 	 * system is under heavy pressure.
2366 	 */
2367 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2368 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2369 		scan_balance = SCAN_FILE;
2370 		goto out;
2371 	}
2372 
2373 	scan_balance = SCAN_FRACT;
2374 
2375 	/*
2376 	 * With swappiness at 100, anonymous and file have the same priority.
2377 	 * This scanning priority is essentially the inverse of IO cost.
2378 	 */
2379 	anon_prio = swappiness;
2380 	file_prio = 200 - anon_prio;
2381 
2382 	/*
2383 	 * OK, so we have swap space and a fair amount of page cache
2384 	 * pages.  We use the recently rotated / recently scanned
2385 	 * ratios to determine how valuable each cache is.
2386 	 *
2387 	 * Because workloads change over time (and to avoid overflow)
2388 	 * we keep these statistics as a floating average, which ends
2389 	 * up weighing recent references more than old ones.
2390 	 *
2391 	 * anon in [0], file in [1]
2392 	 */
2393 
2394 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2395 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2396 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2397 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2398 
2399 	spin_lock_irq(&pgdat->lru_lock);
2400 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2401 		reclaim_stat->recent_scanned[0] /= 2;
2402 		reclaim_stat->recent_rotated[0] /= 2;
2403 	}
2404 
2405 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2406 		reclaim_stat->recent_scanned[1] /= 2;
2407 		reclaim_stat->recent_rotated[1] /= 2;
2408 	}
2409 
2410 	/*
2411 	 * The amount of pressure on anon vs file pages is inversely
2412 	 * proportional to the fraction of recently scanned pages on
2413 	 * each list that were recently referenced and in active use.
2414 	 */
2415 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2416 	ap /= reclaim_stat->recent_rotated[0] + 1;
2417 
2418 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2419 	fp /= reclaim_stat->recent_rotated[1] + 1;
2420 	spin_unlock_irq(&pgdat->lru_lock);
2421 
2422 	fraction[0] = ap;
2423 	fraction[1] = fp;
2424 	denominator = ap + fp + 1;
2425 out:
2426 	*lru_pages = 0;
2427 	for_each_evictable_lru(lru) {
2428 		int file = is_file_lru(lru);
2429 		unsigned long size;
2430 		unsigned long scan;
2431 
2432 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2433 		scan = size >> sc->priority;
2434 		/*
2435 		 * If the cgroup's already been deleted, make sure to
2436 		 * scrape out the remaining cache.
2437 		 */
2438 		if (!scan && !mem_cgroup_online(memcg))
2439 			scan = min(size, SWAP_CLUSTER_MAX);
2440 
2441 		switch (scan_balance) {
2442 		case SCAN_EQUAL:
2443 			/* Scan lists relative to size */
2444 			break;
2445 		case SCAN_FRACT:
2446 			/*
2447 			 * Scan types proportional to swappiness and
2448 			 * their relative recent reclaim efficiency.
2449 			 * Make sure we don't miss the last page on
2450 			 * the offlined memory cgroups because of a
2451 			 * round-off error.
2452 			 */
2453 			scan = mem_cgroup_online(memcg) ?
2454 			       div64_u64(scan * fraction[file], denominator) :
2455 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2456 						  denominator);
2457 			break;
2458 		case SCAN_FILE:
2459 		case SCAN_ANON:
2460 			/* Scan one type exclusively */
2461 			if ((scan_balance == SCAN_FILE) != file) {
2462 				size = 0;
2463 				scan = 0;
2464 			}
2465 			break;
2466 		default:
2467 			/* Look ma, no brain */
2468 			BUG();
2469 		}
2470 
2471 		*lru_pages += size;
2472 		nr[lru] = scan;
2473 	}
2474 }
2475 
2476 /*
2477  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2478  */
shrink_node_memcg(struct pglist_data * pgdat,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * lru_pages)2479 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2480 			      struct scan_control *sc, unsigned long *lru_pages)
2481 {
2482 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2483 	unsigned long nr[NR_LRU_LISTS];
2484 	unsigned long targets[NR_LRU_LISTS];
2485 	unsigned long nr_to_scan;
2486 	enum lru_list lru;
2487 	unsigned long nr_reclaimed = 0;
2488 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2489 	struct blk_plug plug;
2490 	bool scan_adjusted;
2491 
2492 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2493 
2494 	/* Record the original scan target for proportional adjustments later */
2495 	memcpy(targets, nr, sizeof(nr));
2496 
2497 	/*
2498 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2499 	 * event that can occur when there is little memory pressure e.g.
2500 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2501 	 * when the requested number of pages are reclaimed when scanning at
2502 	 * DEF_PRIORITY on the assumption that the fact we are direct
2503 	 * reclaiming implies that kswapd is not keeping up and it is best to
2504 	 * do a batch of work at once. For memcg reclaim one check is made to
2505 	 * abort proportional reclaim if either the file or anon lru has already
2506 	 * dropped to zero at the first pass.
2507 	 */
2508 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2509 			 sc->priority == DEF_PRIORITY);
2510 
2511 	blk_start_plug(&plug);
2512 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2513 					nr[LRU_INACTIVE_FILE]) {
2514 		unsigned long nr_anon, nr_file, percentage;
2515 		unsigned long nr_scanned;
2516 
2517 		for_each_evictable_lru(lru) {
2518 			if (nr[lru]) {
2519 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2520 				nr[lru] -= nr_to_scan;
2521 
2522 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2523 							    lruvec, sc);
2524 			}
2525 		}
2526 
2527 		cond_resched();
2528 
2529 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2530 			continue;
2531 
2532 		/*
2533 		 * For kswapd and memcg, reclaim at least the number of pages
2534 		 * requested. Ensure that the anon and file LRUs are scanned
2535 		 * proportionally what was requested by get_scan_count(). We
2536 		 * stop reclaiming one LRU and reduce the amount scanning
2537 		 * proportional to the original scan target.
2538 		 */
2539 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2540 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2541 
2542 		/*
2543 		 * It's just vindictive to attack the larger once the smaller
2544 		 * has gone to zero.  And given the way we stop scanning the
2545 		 * smaller below, this makes sure that we only make one nudge
2546 		 * towards proportionality once we've got nr_to_reclaim.
2547 		 */
2548 		if (!nr_file || !nr_anon)
2549 			break;
2550 
2551 		if (nr_file > nr_anon) {
2552 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2553 						targets[LRU_ACTIVE_ANON] + 1;
2554 			lru = LRU_BASE;
2555 			percentage = nr_anon * 100 / scan_target;
2556 		} else {
2557 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2558 						targets[LRU_ACTIVE_FILE] + 1;
2559 			lru = LRU_FILE;
2560 			percentage = nr_file * 100 / scan_target;
2561 		}
2562 
2563 		/* Stop scanning the smaller of the LRU */
2564 		nr[lru] = 0;
2565 		nr[lru + LRU_ACTIVE] = 0;
2566 
2567 		/*
2568 		 * Recalculate the other LRU scan count based on its original
2569 		 * scan target and the percentage scanning already complete
2570 		 */
2571 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2572 		nr_scanned = targets[lru] - nr[lru];
2573 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2574 		nr[lru] -= min(nr[lru], nr_scanned);
2575 
2576 		lru += LRU_ACTIVE;
2577 		nr_scanned = targets[lru] - nr[lru];
2578 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2579 		nr[lru] -= min(nr[lru], nr_scanned);
2580 
2581 		scan_adjusted = true;
2582 	}
2583 	blk_finish_plug(&plug);
2584 	sc->nr_reclaimed += nr_reclaimed;
2585 
2586 	/*
2587 	 * Even if we did not try to evict anon pages at all, we want to
2588 	 * rebalance the anon lru active/inactive ratio.
2589 	 */
2590 	if (inactive_list_is_low(lruvec, false, sc, true))
2591 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2592 				   sc, LRU_ACTIVE_ANON);
2593 }
2594 
2595 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2596 static bool in_reclaim_compaction(struct scan_control *sc)
2597 {
2598 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2599 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2600 			 sc->priority < DEF_PRIORITY - 2))
2601 		return true;
2602 
2603 	return false;
2604 }
2605 
2606 /*
2607  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2608  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2609  * true if more pages should be reclaimed such that when the page allocator
2610  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2611  * It will give up earlier than that if there is difficulty reclaiming pages.
2612  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)2613 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2614 					unsigned long nr_reclaimed,
2615 					unsigned long nr_scanned,
2616 					struct scan_control *sc)
2617 {
2618 	unsigned long pages_for_compaction;
2619 	unsigned long inactive_lru_pages;
2620 	int z;
2621 
2622 	/* If not in reclaim/compaction mode, stop */
2623 	if (!in_reclaim_compaction(sc))
2624 		return false;
2625 
2626 	/* Consider stopping depending on scan and reclaim activity */
2627 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2628 		/*
2629 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2630 		 * full LRU list has been scanned and we are still failing
2631 		 * to reclaim pages. This full LRU scan is potentially
2632 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2633 		 */
2634 		if (!nr_reclaimed && !nr_scanned)
2635 			return false;
2636 	} else {
2637 		/*
2638 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2639 		 * fail without consequence, stop if we failed to reclaim
2640 		 * any pages from the last SWAP_CLUSTER_MAX number of
2641 		 * pages that were scanned. This will return to the
2642 		 * caller faster at the risk reclaim/compaction and
2643 		 * the resulting allocation attempt fails
2644 		 */
2645 		if (!nr_reclaimed)
2646 			return false;
2647 	}
2648 
2649 	/*
2650 	 * If we have not reclaimed enough pages for compaction and the
2651 	 * inactive lists are large enough, continue reclaiming
2652 	 */
2653 	pages_for_compaction = compact_gap(sc->order);
2654 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2655 	if (get_nr_swap_pages() > 0)
2656 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2657 	if (sc->nr_reclaimed < pages_for_compaction &&
2658 			inactive_lru_pages > pages_for_compaction)
2659 		return true;
2660 
2661 	/* If compaction would go ahead or the allocation would succeed, stop */
2662 	for (z = 0; z <= sc->reclaim_idx; z++) {
2663 		struct zone *zone = &pgdat->node_zones[z];
2664 		if (!managed_zone(zone))
2665 			continue;
2666 
2667 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2668 		case COMPACT_SUCCESS:
2669 		case COMPACT_CONTINUE:
2670 			return false;
2671 		default:
2672 			/* check next zone */
2673 			;
2674 		}
2675 	}
2676 	return true;
2677 }
2678 
pgdat_memcg_congested(pg_data_t * pgdat,struct mem_cgroup * memcg)2679 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2680 {
2681 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2682 		(memcg && memcg_congested(pgdat, memcg));
2683 }
2684 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2685 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2686 {
2687 	struct reclaim_state *reclaim_state = current->reclaim_state;
2688 	unsigned long nr_reclaimed, nr_scanned;
2689 	bool reclaimable = false;
2690 
2691 	do {
2692 		struct mem_cgroup *root = sc->target_mem_cgroup;
2693 		struct mem_cgroup_reclaim_cookie reclaim = {
2694 			.pgdat = pgdat,
2695 			.priority = sc->priority,
2696 		};
2697 		unsigned long node_lru_pages = 0;
2698 		struct mem_cgroup *memcg;
2699 
2700 		memset(&sc->nr, 0, sizeof(sc->nr));
2701 
2702 		nr_reclaimed = sc->nr_reclaimed;
2703 		nr_scanned = sc->nr_scanned;
2704 
2705 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2706 		do {
2707 			unsigned long lru_pages;
2708 			unsigned long reclaimed;
2709 			unsigned long scanned;
2710 
2711 			/*
2712 			 * This loop can become CPU-bound when target memcgs
2713 			 * aren't eligible for reclaim - either because they
2714 			 * don't have any reclaimable pages, or because their
2715 			 * memory is explicitly protected. Avoid soft lockups.
2716 			 */
2717 			cond_resched();
2718 
2719 			switch (mem_cgroup_protected(root, memcg)) {
2720 			case MEMCG_PROT_MIN:
2721 				/*
2722 				 * Hard protection.
2723 				 * If there is no reclaimable memory, OOM.
2724 				 */
2725 				continue;
2726 			case MEMCG_PROT_LOW:
2727 				/*
2728 				 * Soft protection.
2729 				 * Respect the protection only as long as
2730 				 * there is an unprotected supply
2731 				 * of reclaimable memory from other cgroups.
2732 				 */
2733 				if (!sc->memcg_low_reclaim) {
2734 					sc->memcg_low_skipped = 1;
2735 					continue;
2736 				}
2737 				memcg_memory_event(memcg, MEMCG_LOW);
2738 				break;
2739 			case MEMCG_PROT_NONE:
2740 				break;
2741 			}
2742 
2743 			reclaimed = sc->nr_reclaimed;
2744 			scanned = sc->nr_scanned;
2745 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2746 			node_lru_pages += lru_pages;
2747 
2748 			shrink_slab(sc->gfp_mask, pgdat->node_id,
2749 				    memcg, sc->priority);
2750 
2751 			/* Record the group's reclaim efficiency */
2752 			vmpressure(sc->gfp_mask, memcg, false,
2753 				   sc->nr_scanned - scanned,
2754 				   sc->nr_reclaimed - reclaimed);
2755 
2756 			/*
2757 			 * Direct reclaim and kswapd have to scan all memory
2758 			 * cgroups to fulfill the overall scan target for the
2759 			 * node.
2760 			 *
2761 			 * Limit reclaim, on the other hand, only cares about
2762 			 * nr_to_reclaim pages to be reclaimed and it will
2763 			 * retry with decreasing priority if one round over the
2764 			 * whole hierarchy is not sufficient.
2765 			 */
2766 			if (!global_reclaim(sc) &&
2767 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2768 				mem_cgroup_iter_break(root, memcg);
2769 				break;
2770 			}
2771 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2772 
2773 		if (reclaim_state) {
2774 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2775 			reclaim_state->reclaimed_slab = 0;
2776 		}
2777 
2778 		/* Record the subtree's reclaim efficiency */
2779 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2780 			   sc->nr_scanned - nr_scanned,
2781 			   sc->nr_reclaimed - nr_reclaimed);
2782 
2783 		if (sc->nr_reclaimed - nr_reclaimed)
2784 			reclaimable = true;
2785 
2786 		if (current_is_kswapd()) {
2787 			/*
2788 			 * If reclaim is isolating dirty pages under writeback,
2789 			 * it implies that the long-lived page allocation rate
2790 			 * is exceeding the page laundering rate. Either the
2791 			 * global limits are not being effective at throttling
2792 			 * processes due to the page distribution throughout
2793 			 * zones or there is heavy usage of a slow backing
2794 			 * device. The only option is to throttle from reclaim
2795 			 * context which is not ideal as there is no guarantee
2796 			 * the dirtying process is throttled in the same way
2797 			 * balance_dirty_pages() manages.
2798 			 *
2799 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2800 			 * count the number of pages under pages flagged for
2801 			 * immediate reclaim and stall if any are encountered
2802 			 * in the nr_immediate check below.
2803 			 */
2804 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2805 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2806 
2807 			/*
2808 			 * Tag a node as congested if all the dirty pages
2809 			 * scanned were backed by a congested BDI and
2810 			 * wait_iff_congested will stall.
2811 			 */
2812 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2813 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2814 
2815 			/* Allow kswapd to start writing pages during reclaim.*/
2816 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2817 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2818 
2819 			/*
2820 			 * If kswapd scans pages marked marked for immediate
2821 			 * reclaim and under writeback (nr_immediate), it
2822 			 * implies that pages are cycling through the LRU
2823 			 * faster than they are written so also forcibly stall.
2824 			 */
2825 			if (sc->nr.immediate)
2826 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2827 		}
2828 
2829 		/*
2830 		 * Legacy memcg will stall in page writeback so avoid forcibly
2831 		 * stalling in wait_iff_congested().
2832 		 */
2833 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2834 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2835 			set_memcg_congestion(pgdat, root, true);
2836 
2837 		/*
2838 		 * Stall direct reclaim for IO completions if underlying BDIs
2839 		 * and node is congested. Allow kswapd to continue until it
2840 		 * starts encountering unqueued dirty pages or cycling through
2841 		 * the LRU too quickly.
2842 		 */
2843 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2844 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2845 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2846 
2847 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2848 					 sc->nr_scanned - nr_scanned, sc));
2849 
2850 	/*
2851 	 * Kswapd gives up on balancing particular nodes after too
2852 	 * many failures to reclaim anything from them and goes to
2853 	 * sleep. On reclaim progress, reset the failure counter. A
2854 	 * successful direct reclaim run will revive a dormant kswapd.
2855 	 */
2856 	if (reclaimable)
2857 		pgdat->kswapd_failures = 0;
2858 
2859 	return reclaimable;
2860 }
2861 
2862 /*
2863  * Returns true if compaction should go ahead for a costly-order request, or
2864  * the allocation would already succeed without compaction. Return false if we
2865  * should reclaim first.
2866  */
compaction_ready(struct zone * zone,struct scan_control * sc)2867 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2868 {
2869 	unsigned long watermark;
2870 	enum compact_result suitable;
2871 
2872 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2873 	if (suitable == COMPACT_SUCCESS)
2874 		/* Allocation should succeed already. Don't reclaim. */
2875 		return true;
2876 	if (suitable == COMPACT_SKIPPED)
2877 		/* Compaction cannot yet proceed. Do reclaim. */
2878 		return false;
2879 
2880 	/*
2881 	 * Compaction is already possible, but it takes time to run and there
2882 	 * are potentially other callers using the pages just freed. So proceed
2883 	 * with reclaim to make a buffer of free pages available to give
2884 	 * compaction a reasonable chance of completing and allocating the page.
2885 	 * Note that we won't actually reclaim the whole buffer in one attempt
2886 	 * as the target watermark in should_continue_reclaim() is lower. But if
2887 	 * we are already above the high+gap watermark, don't reclaim at all.
2888 	 */
2889 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2890 
2891 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2892 }
2893 
2894 /*
2895  * This is the direct reclaim path, for page-allocating processes.  We only
2896  * try to reclaim pages from zones which will satisfy the caller's allocation
2897  * request.
2898  *
2899  * If a zone is deemed to be full of pinned pages then just give it a light
2900  * scan then give up on it.
2901  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2902 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2903 {
2904 	struct zoneref *z;
2905 	struct zone *zone;
2906 	unsigned long nr_soft_reclaimed;
2907 	unsigned long nr_soft_scanned;
2908 	gfp_t orig_mask;
2909 	pg_data_t *last_pgdat = NULL;
2910 
2911 	/*
2912 	 * If the number of buffer_heads in the machine exceeds the maximum
2913 	 * allowed level, force direct reclaim to scan the highmem zone as
2914 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2915 	 */
2916 	orig_mask = sc->gfp_mask;
2917 	if (buffer_heads_over_limit) {
2918 		sc->gfp_mask |= __GFP_HIGHMEM;
2919 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2920 	}
2921 
2922 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2923 					sc->reclaim_idx, sc->nodemask) {
2924 		/*
2925 		 * Take care memory controller reclaiming has small influence
2926 		 * to global LRU.
2927 		 */
2928 		if (global_reclaim(sc)) {
2929 			if (!cpuset_zone_allowed(zone,
2930 						 GFP_KERNEL | __GFP_HARDWALL))
2931 				continue;
2932 
2933 			/*
2934 			 * If we already have plenty of memory free for
2935 			 * compaction in this zone, don't free any more.
2936 			 * Even though compaction is invoked for any
2937 			 * non-zero order, only frequent costly order
2938 			 * reclamation is disruptive enough to become a
2939 			 * noticeable problem, like transparent huge
2940 			 * page allocations.
2941 			 */
2942 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2943 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2944 			    compaction_ready(zone, sc)) {
2945 				sc->compaction_ready = true;
2946 				continue;
2947 			}
2948 
2949 			/*
2950 			 * Shrink each node in the zonelist once. If the
2951 			 * zonelist is ordered by zone (not the default) then a
2952 			 * node may be shrunk multiple times but in that case
2953 			 * the user prefers lower zones being preserved.
2954 			 */
2955 			if (zone->zone_pgdat == last_pgdat)
2956 				continue;
2957 
2958 			/*
2959 			 * This steals pages from memory cgroups over softlimit
2960 			 * and returns the number of reclaimed pages and
2961 			 * scanned pages. This works for global memory pressure
2962 			 * and balancing, not for a memcg's limit.
2963 			 */
2964 			nr_soft_scanned = 0;
2965 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2966 						sc->order, sc->gfp_mask,
2967 						&nr_soft_scanned);
2968 			sc->nr_reclaimed += nr_soft_reclaimed;
2969 			sc->nr_scanned += nr_soft_scanned;
2970 			/* need some check for avoid more shrink_zone() */
2971 		}
2972 
2973 		/* See comment about same check for global reclaim above */
2974 		if (zone->zone_pgdat == last_pgdat)
2975 			continue;
2976 		last_pgdat = zone->zone_pgdat;
2977 		shrink_node(zone->zone_pgdat, sc);
2978 	}
2979 
2980 	/*
2981 	 * Restore to original mask to avoid the impact on the caller if we
2982 	 * promoted it to __GFP_HIGHMEM.
2983 	 */
2984 	sc->gfp_mask = orig_mask;
2985 }
2986 
snapshot_refaults(struct mem_cgroup * root_memcg,pg_data_t * pgdat)2987 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2988 {
2989 	struct mem_cgroup *memcg;
2990 
2991 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2992 	do {
2993 		unsigned long refaults;
2994 		struct lruvec *lruvec;
2995 
2996 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2997 		refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2998 		lruvec->refaults = refaults;
2999 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3000 }
3001 
3002 /*
3003  * This is the main entry point to direct page reclaim.
3004  *
3005  * If a full scan of the inactive list fails to free enough memory then we
3006  * are "out of memory" and something needs to be killed.
3007  *
3008  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3009  * high - the zone may be full of dirty or under-writeback pages, which this
3010  * caller can't do much about.  We kick the writeback threads and take explicit
3011  * naps in the hope that some of these pages can be written.  But if the
3012  * allocating task holds filesystem locks which prevent writeout this might not
3013  * work, and the allocation attempt will fail.
3014  *
3015  * returns:	0, if no pages reclaimed
3016  * 		else, the number of pages reclaimed
3017  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)3018 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3019 					  struct scan_control *sc)
3020 {
3021 	int initial_priority = sc->priority;
3022 	pg_data_t *last_pgdat;
3023 	struct zoneref *z;
3024 	struct zone *zone;
3025 retry:
3026 	delayacct_freepages_start();
3027 
3028 	if (global_reclaim(sc))
3029 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3030 
3031 	do {
3032 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3033 				sc->priority);
3034 		sc->nr_scanned = 0;
3035 		shrink_zones(zonelist, sc);
3036 
3037 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3038 			break;
3039 
3040 		if (sc->compaction_ready)
3041 			break;
3042 
3043 		/*
3044 		 * If we're getting trouble reclaiming, start doing
3045 		 * writepage even in laptop mode.
3046 		 */
3047 		if (sc->priority < DEF_PRIORITY - 2)
3048 			sc->may_writepage = 1;
3049 	} while (--sc->priority >= 0);
3050 
3051 	last_pgdat = NULL;
3052 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3053 					sc->nodemask) {
3054 		if (zone->zone_pgdat == last_pgdat)
3055 			continue;
3056 		last_pgdat = zone->zone_pgdat;
3057 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3058 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3059 	}
3060 
3061 	delayacct_freepages_end();
3062 
3063 	if (sc->nr_reclaimed)
3064 		return sc->nr_reclaimed;
3065 
3066 	/* Aborted reclaim to try compaction? don't OOM, then */
3067 	if (sc->compaction_ready)
3068 		return 1;
3069 
3070 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3071 	if (sc->memcg_low_skipped) {
3072 		sc->priority = initial_priority;
3073 		sc->memcg_low_reclaim = 1;
3074 		sc->memcg_low_skipped = 0;
3075 		goto retry;
3076 	}
3077 
3078 	return 0;
3079 }
3080 
allow_direct_reclaim(pg_data_t * pgdat)3081 static bool allow_direct_reclaim(pg_data_t *pgdat)
3082 {
3083 	struct zone *zone;
3084 	unsigned long pfmemalloc_reserve = 0;
3085 	unsigned long free_pages = 0;
3086 	int i;
3087 	bool wmark_ok;
3088 
3089 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3090 		return true;
3091 
3092 	for (i = 0; i <= ZONE_NORMAL; i++) {
3093 		zone = &pgdat->node_zones[i];
3094 		if (!managed_zone(zone))
3095 			continue;
3096 
3097 		if (!zone_reclaimable_pages(zone))
3098 			continue;
3099 
3100 		pfmemalloc_reserve += min_wmark_pages(zone);
3101 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3102 	}
3103 
3104 	/* If there are no reserves (unexpected config) then do not throttle */
3105 	if (!pfmemalloc_reserve)
3106 		return true;
3107 
3108 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3109 
3110 	/* kswapd must be awake if processes are being throttled */
3111 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3112 		if (READ_ONCE(pgdat->kswapd_classzone_idx) > ZONE_NORMAL)
3113 			WRITE_ONCE(pgdat->kswapd_classzone_idx, ZONE_NORMAL);
3114 
3115 		wake_up_interruptible(&pgdat->kswapd_wait);
3116 	}
3117 
3118 	return wmark_ok;
3119 }
3120 
3121 /*
3122  * Throttle direct reclaimers if backing storage is backed by the network
3123  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3124  * depleted. kswapd will continue to make progress and wake the processes
3125  * when the low watermark is reached.
3126  *
3127  * Returns true if a fatal signal was delivered during throttling. If this
3128  * happens, the page allocator should not consider triggering the OOM killer.
3129  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)3130 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3131 					nodemask_t *nodemask)
3132 {
3133 	struct zoneref *z;
3134 	struct zone *zone;
3135 	pg_data_t *pgdat = NULL;
3136 
3137 	/*
3138 	 * Kernel threads should not be throttled as they may be indirectly
3139 	 * responsible for cleaning pages necessary for reclaim to make forward
3140 	 * progress. kjournald for example may enter direct reclaim while
3141 	 * committing a transaction where throttling it could forcing other
3142 	 * processes to block on log_wait_commit().
3143 	 */
3144 	if (current->flags & PF_KTHREAD)
3145 		goto out;
3146 
3147 	/*
3148 	 * If a fatal signal is pending, this process should not throttle.
3149 	 * It should return quickly so it can exit and free its memory
3150 	 */
3151 	if (fatal_signal_pending(current))
3152 		goto out;
3153 
3154 	/*
3155 	 * Check if the pfmemalloc reserves are ok by finding the first node
3156 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3157 	 * GFP_KERNEL will be required for allocating network buffers when
3158 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3159 	 *
3160 	 * Throttling is based on the first usable node and throttled processes
3161 	 * wait on a queue until kswapd makes progress and wakes them. There
3162 	 * is an affinity then between processes waking up and where reclaim
3163 	 * progress has been made assuming the process wakes on the same node.
3164 	 * More importantly, processes running on remote nodes will not compete
3165 	 * for remote pfmemalloc reserves and processes on different nodes
3166 	 * should make reasonable progress.
3167 	 */
3168 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3169 					gfp_zone(gfp_mask), nodemask) {
3170 		if (zone_idx(zone) > ZONE_NORMAL)
3171 			continue;
3172 
3173 		/* Throttle based on the first usable node */
3174 		pgdat = zone->zone_pgdat;
3175 		if (allow_direct_reclaim(pgdat))
3176 			goto out;
3177 		break;
3178 	}
3179 
3180 	/* If no zone was usable by the allocation flags then do not throttle */
3181 	if (!pgdat)
3182 		goto out;
3183 
3184 	/* Account for the throttling */
3185 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3186 
3187 	/*
3188 	 * If the caller cannot enter the filesystem, it's possible that it
3189 	 * is due to the caller holding an FS lock or performing a journal
3190 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3191 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3192 	 * blocked waiting on the same lock. Instead, throttle for up to a
3193 	 * second before continuing.
3194 	 */
3195 	if (!(gfp_mask & __GFP_FS)) {
3196 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3197 			allow_direct_reclaim(pgdat), HZ);
3198 
3199 		goto check_pending;
3200 	}
3201 
3202 	/* Throttle until kswapd wakes the process */
3203 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3204 		allow_direct_reclaim(pgdat));
3205 
3206 check_pending:
3207 	if (fatal_signal_pending(current))
3208 		return true;
3209 
3210 out:
3211 	return false;
3212 }
3213 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3214 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3215 				gfp_t gfp_mask, nodemask_t *nodemask)
3216 {
3217 	unsigned long nr_reclaimed;
3218 	struct scan_control sc = {
3219 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3220 		.gfp_mask = current_gfp_context(gfp_mask),
3221 		.reclaim_idx = gfp_zone(gfp_mask),
3222 		.order = order,
3223 		.nodemask = nodemask,
3224 		.priority = DEF_PRIORITY,
3225 		.may_writepage = !laptop_mode,
3226 		.may_unmap = 1,
3227 		.may_swap = 1,
3228 	};
3229 
3230 	/*
3231 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3232 	 * Confirm they are large enough for max values.
3233 	 */
3234 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3235 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3236 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3237 
3238 	/*
3239 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3240 	 * 1 is returned so that the page allocator does not OOM kill at this
3241 	 * point.
3242 	 */
3243 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3244 		return 1;
3245 
3246 	trace_mm_vmscan_direct_reclaim_begin(order,
3247 				sc.may_writepage,
3248 				sc.gfp_mask,
3249 				sc.reclaim_idx);
3250 
3251 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3252 
3253 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3254 
3255 	return nr_reclaimed;
3256 }
3257 
3258 #ifdef CONFIG_MEMCG
3259 
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3260 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3261 						gfp_t gfp_mask, bool noswap,
3262 						pg_data_t *pgdat,
3263 						unsigned long *nr_scanned)
3264 {
3265 	struct scan_control sc = {
3266 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3267 		.target_mem_cgroup = memcg,
3268 		.may_writepage = !laptop_mode,
3269 		.may_unmap = 1,
3270 		.reclaim_idx = MAX_NR_ZONES - 1,
3271 		.may_swap = !noswap,
3272 	};
3273 	unsigned long lru_pages;
3274 
3275 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3276 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3277 
3278 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3279 						      sc.may_writepage,
3280 						      sc.gfp_mask,
3281 						      sc.reclaim_idx);
3282 
3283 	/*
3284 	 * NOTE: Although we can get the priority field, using it
3285 	 * here is not a good idea, since it limits the pages we can scan.
3286 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3287 	 * will pick up pages from other mem cgroup's as well. We hack
3288 	 * the priority and make it zero.
3289 	 */
3290 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3291 
3292 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3293 
3294 	*nr_scanned = sc.nr_scanned;
3295 	return sc.nr_reclaimed;
3296 }
3297 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3298 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3299 					   unsigned long nr_pages,
3300 					   gfp_t gfp_mask,
3301 					   bool may_swap)
3302 {
3303 	struct zonelist *zonelist;
3304 	unsigned long nr_reclaimed;
3305 	int nid;
3306 	unsigned int noreclaim_flag;
3307 	struct scan_control sc = {
3308 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3309 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3310 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3311 		.reclaim_idx = MAX_NR_ZONES - 1,
3312 		.target_mem_cgroup = memcg,
3313 		.priority = DEF_PRIORITY,
3314 		.may_writepage = !laptop_mode,
3315 		.may_unmap = 1,
3316 		.may_swap = may_swap,
3317 	};
3318 
3319 	/*
3320 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3321 	 * take care of from where we get pages. So the node where we start the
3322 	 * scan does not need to be the current node.
3323 	 */
3324 	nid = mem_cgroup_select_victim_node(memcg);
3325 
3326 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3327 
3328 	trace_mm_vmscan_memcg_reclaim_begin(0,
3329 					    sc.may_writepage,
3330 					    sc.gfp_mask,
3331 					    sc.reclaim_idx);
3332 
3333 	noreclaim_flag = memalloc_noreclaim_save();
3334 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3335 	memalloc_noreclaim_restore(noreclaim_flag);
3336 
3337 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3338 
3339 	return nr_reclaimed;
3340 }
3341 #endif
3342 
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3343 static void age_active_anon(struct pglist_data *pgdat,
3344 				struct scan_control *sc)
3345 {
3346 	struct mem_cgroup *memcg;
3347 
3348 	if (!total_swap_pages)
3349 		return;
3350 
3351 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3352 	do {
3353 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3354 
3355 		if (inactive_list_is_low(lruvec, false, sc, true))
3356 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3357 					   sc, LRU_ACTIVE_ANON);
3358 
3359 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3360 	} while (memcg);
3361 }
3362 
3363 /*
3364  * Returns true if there is an eligible zone balanced for the request order
3365  * and classzone_idx
3366  */
pgdat_balanced(pg_data_t * pgdat,int order,int classzone_idx)3367 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3368 {
3369 	int i;
3370 	unsigned long mark = -1;
3371 	struct zone *zone;
3372 
3373 	for (i = 0; i <= classzone_idx; i++) {
3374 		zone = pgdat->node_zones + i;
3375 
3376 		if (!managed_zone(zone))
3377 			continue;
3378 
3379 		mark = high_wmark_pages(zone);
3380 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3381 			return true;
3382 	}
3383 
3384 	/*
3385 	 * If a node has no populated zone within classzone_idx, it does not
3386 	 * need balancing by definition. This can happen if a zone-restricted
3387 	 * allocation tries to wake a remote kswapd.
3388 	 */
3389 	if (mark == -1)
3390 		return true;
3391 
3392 	return false;
3393 }
3394 
3395 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3396 static void clear_pgdat_congested(pg_data_t *pgdat)
3397 {
3398 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3399 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3400 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3401 }
3402 
3403 /*
3404  * Prepare kswapd for sleeping. This verifies that there are no processes
3405  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3406  *
3407  * Returns true if kswapd is ready to sleep
3408  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int classzone_idx)3409 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3410 {
3411 	/*
3412 	 * The throttled processes are normally woken up in balance_pgdat() as
3413 	 * soon as allow_direct_reclaim() is true. But there is a potential
3414 	 * race between when kswapd checks the watermarks and a process gets
3415 	 * throttled. There is also a potential race if processes get
3416 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3417 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3418 	 * the wake up checks. If kswapd is going to sleep, no process should
3419 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3420 	 * the wake up is premature, processes will wake kswapd and get
3421 	 * throttled again. The difference from wake ups in balance_pgdat() is
3422 	 * that here we are under prepare_to_wait().
3423 	 */
3424 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3425 		wake_up_all(&pgdat->pfmemalloc_wait);
3426 
3427 	/* Hopeless node, leave it to direct reclaim */
3428 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3429 		return true;
3430 
3431 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3432 		clear_pgdat_congested(pgdat);
3433 		return true;
3434 	}
3435 
3436 	return false;
3437 }
3438 
3439 /*
3440  * kswapd shrinks a node of pages that are at or below the highest usable
3441  * zone that is currently unbalanced.
3442  *
3443  * Returns true if kswapd scanned at least the requested number of pages to
3444  * reclaim or if the lack of progress was due to pages under writeback.
3445  * This is used to determine if the scanning priority needs to be raised.
3446  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3447 static bool kswapd_shrink_node(pg_data_t *pgdat,
3448 			       struct scan_control *sc)
3449 {
3450 	struct zone *zone;
3451 	int z;
3452 
3453 	/* Reclaim a number of pages proportional to the number of zones */
3454 	sc->nr_to_reclaim = 0;
3455 	for (z = 0; z <= sc->reclaim_idx; z++) {
3456 		zone = pgdat->node_zones + z;
3457 		if (!managed_zone(zone))
3458 			continue;
3459 
3460 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3461 	}
3462 
3463 	/*
3464 	 * Historically care was taken to put equal pressure on all zones but
3465 	 * now pressure is applied based on node LRU order.
3466 	 */
3467 	shrink_node(pgdat, sc);
3468 
3469 	/*
3470 	 * Fragmentation may mean that the system cannot be rebalanced for
3471 	 * high-order allocations. If twice the allocation size has been
3472 	 * reclaimed then recheck watermarks only at order-0 to prevent
3473 	 * excessive reclaim. Assume that a process requested a high-order
3474 	 * can direct reclaim/compact.
3475 	 */
3476 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3477 		sc->order = 0;
3478 
3479 	return sc->nr_scanned >= sc->nr_to_reclaim;
3480 }
3481 
3482 /*
3483  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3484  * that are eligible for use by the caller until at least one zone is
3485  * balanced.
3486  *
3487  * Returns the order kswapd finished reclaiming at.
3488  *
3489  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3490  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3491  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3492  * or lower is eligible for reclaim until at least one usable zone is
3493  * balanced.
3494  */
balance_pgdat(pg_data_t * pgdat,int order,int classzone_idx)3495 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3496 {
3497 	int i;
3498 	unsigned long nr_soft_reclaimed;
3499 	unsigned long nr_soft_scanned;
3500 	struct zone *zone;
3501 	struct scan_control sc = {
3502 		.gfp_mask = GFP_KERNEL,
3503 		.order = order,
3504 		.priority = DEF_PRIORITY,
3505 		.may_writepage = !laptop_mode,
3506 		.may_unmap = 1,
3507 		.may_swap = 1,
3508 	};
3509 
3510 	__fs_reclaim_acquire();
3511 
3512 	count_vm_event(PAGEOUTRUN);
3513 
3514 	do {
3515 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3516 		bool raise_priority = true;
3517 		bool ret;
3518 
3519 		sc.reclaim_idx = classzone_idx;
3520 
3521 		/*
3522 		 * If the number of buffer_heads exceeds the maximum allowed
3523 		 * then consider reclaiming from all zones. This has a dual
3524 		 * purpose -- on 64-bit systems it is expected that
3525 		 * buffer_heads are stripped during active rotation. On 32-bit
3526 		 * systems, highmem pages can pin lowmem memory and shrinking
3527 		 * buffers can relieve lowmem pressure. Reclaim may still not
3528 		 * go ahead if all eligible zones for the original allocation
3529 		 * request are balanced to avoid excessive reclaim from kswapd.
3530 		 */
3531 		if (buffer_heads_over_limit) {
3532 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3533 				zone = pgdat->node_zones + i;
3534 				if (!managed_zone(zone))
3535 					continue;
3536 
3537 				sc.reclaim_idx = i;
3538 				break;
3539 			}
3540 		}
3541 
3542 		/*
3543 		 * Only reclaim if there are no eligible zones. Note that
3544 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3545 		 * have adjusted it.
3546 		 */
3547 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3548 			goto out;
3549 
3550 		/*
3551 		 * Do some background aging of the anon list, to give
3552 		 * pages a chance to be referenced before reclaiming. All
3553 		 * pages are rotated regardless of classzone as this is
3554 		 * about consistent aging.
3555 		 */
3556 		age_active_anon(pgdat, &sc);
3557 
3558 		/*
3559 		 * If we're getting trouble reclaiming, start doing writepage
3560 		 * even in laptop mode.
3561 		 */
3562 		if (sc.priority < DEF_PRIORITY - 2)
3563 			sc.may_writepage = 1;
3564 
3565 		/* Call soft limit reclaim before calling shrink_node. */
3566 		sc.nr_scanned = 0;
3567 		nr_soft_scanned = 0;
3568 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3569 						sc.gfp_mask, &nr_soft_scanned);
3570 		sc.nr_reclaimed += nr_soft_reclaimed;
3571 
3572 		/*
3573 		 * There should be no need to raise the scanning priority if
3574 		 * enough pages are already being scanned that that high
3575 		 * watermark would be met at 100% efficiency.
3576 		 */
3577 		if (kswapd_shrink_node(pgdat, &sc))
3578 			raise_priority = false;
3579 
3580 		/*
3581 		 * If the low watermark is met there is no need for processes
3582 		 * to be throttled on pfmemalloc_wait as they should not be
3583 		 * able to safely make forward progress. Wake them
3584 		 */
3585 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3586 				allow_direct_reclaim(pgdat))
3587 			wake_up_all(&pgdat->pfmemalloc_wait);
3588 
3589 		/* Check if kswapd should be suspending */
3590 		__fs_reclaim_release();
3591 		ret = try_to_freeze();
3592 		__fs_reclaim_acquire();
3593 		if (ret || kthread_should_stop())
3594 			break;
3595 
3596 		/*
3597 		 * Raise priority if scanning rate is too low or there was no
3598 		 * progress in reclaiming pages
3599 		 */
3600 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3601 		if (raise_priority || !nr_reclaimed)
3602 			sc.priority--;
3603 	} while (sc.priority >= 1);
3604 
3605 	if (!sc.nr_reclaimed)
3606 		pgdat->kswapd_failures++;
3607 
3608 out:
3609 	snapshot_refaults(NULL, pgdat);
3610 	__fs_reclaim_release();
3611 	/*
3612 	 * Return the order kswapd stopped reclaiming at as
3613 	 * prepare_kswapd_sleep() takes it into account. If another caller
3614 	 * entered the allocator slow path while kswapd was awake, order will
3615 	 * remain at the higher level.
3616 	 */
3617 	return sc.order;
3618 }
3619 
3620 /*
3621  * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3622  * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3623  * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3624  * after previous reclaim attempt (node is still unbalanced). In that case
3625  * return the zone index of the previous kswapd reclaim cycle.
3626  */
kswapd_classzone_idx(pg_data_t * pgdat,enum zone_type prev_classzone_idx)3627 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3628 					   enum zone_type prev_classzone_idx)
3629 {
3630 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx);
3631 
3632 	return curr_idx == MAX_NR_ZONES ? prev_classzone_idx : curr_idx;
3633 }
3634 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int classzone_idx)3635 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3636 				unsigned int classzone_idx)
3637 {
3638 	long remaining = 0;
3639 	DEFINE_WAIT(wait);
3640 
3641 	if (freezing(current) || kthread_should_stop())
3642 		return;
3643 
3644 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3645 
3646 	/*
3647 	 * Try to sleep for a short interval. Note that kcompactd will only be
3648 	 * woken if it is possible to sleep for a short interval. This is
3649 	 * deliberate on the assumption that if reclaim cannot keep an
3650 	 * eligible zone balanced that it's also unlikely that compaction will
3651 	 * succeed.
3652 	 */
3653 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3654 		/*
3655 		 * Compaction records what page blocks it recently failed to
3656 		 * isolate pages from and skips them in the future scanning.
3657 		 * When kswapd is going to sleep, it is reasonable to assume
3658 		 * that pages and compaction may succeed so reset the cache.
3659 		 */
3660 		reset_isolation_suitable(pgdat);
3661 
3662 		/*
3663 		 * We have freed the memory, now we should compact it to make
3664 		 * allocation of the requested order possible.
3665 		 */
3666 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3667 
3668 		remaining = schedule_timeout(HZ/10);
3669 
3670 		/*
3671 		 * If woken prematurely then reset kswapd_classzone_idx and
3672 		 * order. The values will either be from a wakeup request or
3673 		 * the previous request that slept prematurely.
3674 		 */
3675 		if (remaining) {
3676 			WRITE_ONCE(pgdat->kswapd_classzone_idx,
3677 				   kswapd_classzone_idx(pgdat, classzone_idx));
3678 
3679 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3680 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3681 		}
3682 
3683 		finish_wait(&pgdat->kswapd_wait, &wait);
3684 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3685 	}
3686 
3687 	/*
3688 	 * After a short sleep, check if it was a premature sleep. If not, then
3689 	 * go fully to sleep until explicitly woken up.
3690 	 */
3691 	if (!remaining &&
3692 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3693 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3694 
3695 		/*
3696 		 * vmstat counters are not perfectly accurate and the estimated
3697 		 * value for counters such as NR_FREE_PAGES can deviate from the
3698 		 * true value by nr_online_cpus * threshold. To avoid the zone
3699 		 * watermarks being breached while under pressure, we reduce the
3700 		 * per-cpu vmstat threshold while kswapd is awake and restore
3701 		 * them before going back to sleep.
3702 		 */
3703 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3704 
3705 		if (!kthread_should_stop())
3706 			schedule();
3707 
3708 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3709 	} else {
3710 		if (remaining)
3711 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3712 		else
3713 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3714 	}
3715 	finish_wait(&pgdat->kswapd_wait, &wait);
3716 }
3717 
3718 /*
3719  * The background pageout daemon, started as a kernel thread
3720  * from the init process.
3721  *
3722  * This basically trickles out pages so that we have _some_
3723  * free memory available even if there is no other activity
3724  * that frees anything up. This is needed for things like routing
3725  * etc, where we otherwise might have all activity going on in
3726  * asynchronous contexts that cannot page things out.
3727  *
3728  * If there are applications that are active memory-allocators
3729  * (most normal use), this basically shouldn't matter.
3730  */
kswapd(void * p)3731 static int kswapd(void *p)
3732 {
3733 	unsigned int alloc_order, reclaim_order;
3734 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3735 	pg_data_t *pgdat = (pg_data_t*)p;
3736 	struct task_struct *tsk = current;
3737 
3738 	struct reclaim_state reclaim_state = {
3739 		.reclaimed_slab = 0,
3740 	};
3741 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3742 
3743 	if (!cpumask_empty(cpumask))
3744 		set_cpus_allowed_ptr(tsk, cpumask);
3745 	current->reclaim_state = &reclaim_state;
3746 
3747 	/*
3748 	 * Tell the memory management that we're a "memory allocator",
3749 	 * and that if we need more memory we should get access to it
3750 	 * regardless (see "__alloc_pages()"). "kswapd" should
3751 	 * never get caught in the normal page freeing logic.
3752 	 *
3753 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3754 	 * you need a small amount of memory in order to be able to
3755 	 * page out something else, and this flag essentially protects
3756 	 * us from recursively trying to free more memory as we're
3757 	 * trying to free the first piece of memory in the first place).
3758 	 */
3759 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3760 	set_freezable();
3761 
3762 	WRITE_ONCE(pgdat->kswapd_order, 0);
3763 	WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES);
3764 	for ( ; ; ) {
3765 		bool ret;
3766 
3767 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3768 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3769 
3770 kswapd_try_sleep:
3771 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3772 					classzone_idx);
3773 
3774 		/* Read the new order and classzone_idx */
3775 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3776 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3777 		WRITE_ONCE(pgdat->kswapd_order, 0);
3778 		WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES);
3779 
3780 		ret = try_to_freeze();
3781 		if (kthread_should_stop())
3782 			break;
3783 
3784 		/*
3785 		 * We can speed up thawing tasks if we don't call balance_pgdat
3786 		 * after returning from the refrigerator
3787 		 */
3788 		if (ret)
3789 			continue;
3790 
3791 		/*
3792 		 * Reclaim begins at the requested order but if a high-order
3793 		 * reclaim fails then kswapd falls back to reclaiming for
3794 		 * order-0. If that happens, kswapd will consider sleeping
3795 		 * for the order it finished reclaiming at (reclaim_order)
3796 		 * but kcompactd is woken to compact for the original
3797 		 * request (alloc_order).
3798 		 */
3799 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3800 						alloc_order);
3801 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3802 		if (reclaim_order < alloc_order)
3803 			goto kswapd_try_sleep;
3804 	}
3805 
3806 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3807 	current->reclaim_state = NULL;
3808 
3809 	return 0;
3810 }
3811 
3812 /*
3813  * A zone is low on free memory or too fragmented for high-order memory.  If
3814  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3815  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3816  * has failed or is not needed, still wake up kcompactd if only compaction is
3817  * needed.
3818  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type classzone_idx)3819 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3820 		   enum zone_type classzone_idx)
3821 {
3822 	pg_data_t *pgdat;
3823 	enum zone_type curr_idx;
3824 
3825 	if (!managed_zone(zone))
3826 		return;
3827 
3828 	if (!cpuset_zone_allowed(zone, gfp_flags))
3829 		return;
3830 
3831 	pgdat = zone->zone_pgdat;
3832 	curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx);
3833 
3834 	if (curr_idx == MAX_NR_ZONES || curr_idx < classzone_idx)
3835 		WRITE_ONCE(pgdat->kswapd_classzone_idx, classzone_idx);
3836 
3837 	if (READ_ONCE(pgdat->kswapd_order) < order)
3838 		WRITE_ONCE(pgdat->kswapd_order, order);
3839 
3840 	if (!waitqueue_active(&pgdat->kswapd_wait))
3841 		return;
3842 
3843 	/* Hopeless node, leave it to direct reclaim if possible */
3844 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3845 	    pgdat_balanced(pgdat, order, classzone_idx)) {
3846 		/*
3847 		 * There may be plenty of free memory available, but it's too
3848 		 * fragmented for high-order allocations.  Wake up kcompactd
3849 		 * and rely on compaction_suitable() to determine if it's
3850 		 * needed.  If it fails, it will defer subsequent attempts to
3851 		 * ratelimit its work.
3852 		 */
3853 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3854 			wakeup_kcompactd(pgdat, order, classzone_idx);
3855 		return;
3856 	}
3857 
3858 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3859 				      gfp_flags);
3860 	wake_up_interruptible(&pgdat->kswapd_wait);
3861 }
3862 
3863 #ifdef CONFIG_HIBERNATION
3864 /*
3865  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3866  * freed pages.
3867  *
3868  * Rather than trying to age LRUs the aim is to preserve the overall
3869  * LRU order by reclaiming preferentially
3870  * inactive > active > active referenced > active mapped
3871  */
shrink_all_memory(unsigned long nr_to_reclaim)3872 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3873 {
3874 	struct reclaim_state reclaim_state;
3875 	struct scan_control sc = {
3876 		.nr_to_reclaim = nr_to_reclaim,
3877 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3878 		.reclaim_idx = MAX_NR_ZONES - 1,
3879 		.priority = DEF_PRIORITY,
3880 		.may_writepage = 1,
3881 		.may_unmap = 1,
3882 		.may_swap = 1,
3883 		.hibernation_mode = 1,
3884 	};
3885 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3886 	struct task_struct *p = current;
3887 	unsigned long nr_reclaimed;
3888 	unsigned int noreclaim_flag;
3889 
3890 	fs_reclaim_acquire(sc.gfp_mask);
3891 	noreclaim_flag = memalloc_noreclaim_save();
3892 	reclaim_state.reclaimed_slab = 0;
3893 	p->reclaim_state = &reclaim_state;
3894 
3895 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3896 
3897 	p->reclaim_state = NULL;
3898 	memalloc_noreclaim_restore(noreclaim_flag);
3899 	fs_reclaim_release(sc.gfp_mask);
3900 
3901 	return nr_reclaimed;
3902 }
3903 #endif /* CONFIG_HIBERNATION */
3904 
3905 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3906    not required for correctness.  So if the last cpu in a node goes
3907    away, we get changed to run anywhere: as the first one comes back,
3908    restore their cpu bindings. */
kswapd_cpu_online(unsigned int cpu)3909 static int kswapd_cpu_online(unsigned int cpu)
3910 {
3911 	int nid;
3912 
3913 	for_each_node_state(nid, N_MEMORY) {
3914 		pg_data_t *pgdat = NODE_DATA(nid);
3915 		const struct cpumask *mask;
3916 
3917 		mask = cpumask_of_node(pgdat->node_id);
3918 
3919 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3920 			/* One of our CPUs online: restore mask */
3921 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3922 	}
3923 	return 0;
3924 }
3925 
3926 /*
3927  * This kswapd start function will be called by init and node-hot-add.
3928  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3929  */
kswapd_run(int nid)3930 int kswapd_run(int nid)
3931 {
3932 	pg_data_t *pgdat = NODE_DATA(nid);
3933 	int ret = 0;
3934 
3935 	if (pgdat->kswapd)
3936 		return 0;
3937 
3938 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3939 	if (IS_ERR(pgdat->kswapd)) {
3940 		/* failure at boot is fatal */
3941 		BUG_ON(system_state < SYSTEM_RUNNING);
3942 		pr_err("Failed to start kswapd on node %d\n", nid);
3943 		ret = PTR_ERR(pgdat->kswapd);
3944 		pgdat->kswapd = NULL;
3945 	}
3946 	return ret;
3947 }
3948 
3949 /*
3950  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3951  * hold mem_hotplug_begin/end().
3952  */
kswapd_stop(int nid)3953 void kswapd_stop(int nid)
3954 {
3955 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3956 
3957 	if (kswapd) {
3958 		kthread_stop(kswapd);
3959 		NODE_DATA(nid)->kswapd = NULL;
3960 	}
3961 }
3962 
kswapd_init(void)3963 static int __init kswapd_init(void)
3964 {
3965 	int nid, ret;
3966 
3967 	swap_setup();
3968 	for_each_node_state(nid, N_MEMORY)
3969  		kswapd_run(nid);
3970 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3971 					"mm/vmscan:online", kswapd_cpu_online,
3972 					NULL);
3973 	WARN_ON(ret < 0);
3974 	return 0;
3975 }
3976 
3977 module_init(kswapd_init)
3978 
3979 #ifdef CONFIG_NUMA
3980 /*
3981  * Node reclaim mode
3982  *
3983  * If non-zero call node_reclaim when the number of free pages falls below
3984  * the watermarks.
3985  */
3986 int node_reclaim_mode __read_mostly;
3987 
3988 #define RECLAIM_OFF 0
3989 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3990 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3991 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3992 
3993 /*
3994  * Priority for NODE_RECLAIM. This determines the fraction of pages
3995  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3996  * a zone.
3997  */
3998 #define NODE_RECLAIM_PRIORITY 4
3999 
4000 /*
4001  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4002  * occur.
4003  */
4004 int sysctl_min_unmapped_ratio = 1;
4005 
4006 /*
4007  * If the number of slab pages in a zone grows beyond this percentage then
4008  * slab reclaim needs to occur.
4009  */
4010 int sysctl_min_slab_ratio = 5;
4011 
node_unmapped_file_pages(struct pglist_data * pgdat)4012 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4013 {
4014 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4015 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4016 		node_page_state(pgdat, NR_ACTIVE_FILE);
4017 
4018 	/*
4019 	 * It's possible for there to be more file mapped pages than
4020 	 * accounted for by the pages on the file LRU lists because
4021 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4022 	 */
4023 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4024 }
4025 
4026 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)4027 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4028 {
4029 	unsigned long nr_pagecache_reclaimable;
4030 	unsigned long delta = 0;
4031 
4032 	/*
4033 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4034 	 * potentially reclaimable. Otherwise, we have to worry about
4035 	 * pages like swapcache and node_unmapped_file_pages() provides
4036 	 * a better estimate
4037 	 */
4038 	if (node_reclaim_mode & RECLAIM_UNMAP)
4039 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4040 	else
4041 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4042 
4043 	/* If we can't clean pages, remove dirty pages from consideration */
4044 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4045 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4046 
4047 	/* Watch for any possible underflows due to delta */
4048 	if (unlikely(delta > nr_pagecache_reclaimable))
4049 		delta = nr_pagecache_reclaimable;
4050 
4051 	return nr_pagecache_reclaimable - delta;
4052 }
4053 
4054 /*
4055  * Try to free up some pages from this node through reclaim.
4056  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4057 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4058 {
4059 	/* Minimum pages needed in order to stay on node */
4060 	const unsigned long nr_pages = 1 << order;
4061 	struct task_struct *p = current;
4062 	struct reclaim_state reclaim_state;
4063 	unsigned int noreclaim_flag;
4064 	struct scan_control sc = {
4065 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4066 		.gfp_mask = current_gfp_context(gfp_mask),
4067 		.order = order,
4068 		.priority = NODE_RECLAIM_PRIORITY,
4069 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4070 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4071 		.may_swap = 1,
4072 		.reclaim_idx = gfp_zone(gfp_mask),
4073 	};
4074 
4075 	cond_resched();
4076 	fs_reclaim_acquire(sc.gfp_mask);
4077 	/*
4078 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4079 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4080 	 * and RECLAIM_UNMAP.
4081 	 */
4082 	noreclaim_flag = memalloc_noreclaim_save();
4083 	p->flags |= PF_SWAPWRITE;
4084 	reclaim_state.reclaimed_slab = 0;
4085 	p->reclaim_state = &reclaim_state;
4086 
4087 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4088 		/*
4089 		 * Free memory by calling shrink node with increasing
4090 		 * priorities until we have enough memory freed.
4091 		 */
4092 		do {
4093 			shrink_node(pgdat, &sc);
4094 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4095 	}
4096 
4097 	p->reclaim_state = NULL;
4098 	current->flags &= ~PF_SWAPWRITE;
4099 	memalloc_noreclaim_restore(noreclaim_flag);
4100 	fs_reclaim_release(sc.gfp_mask);
4101 	return sc.nr_reclaimed >= nr_pages;
4102 }
4103 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4104 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4105 {
4106 	int ret;
4107 
4108 	/*
4109 	 * Node reclaim reclaims unmapped file backed pages and
4110 	 * slab pages if we are over the defined limits.
4111 	 *
4112 	 * A small portion of unmapped file backed pages is needed for
4113 	 * file I/O otherwise pages read by file I/O will be immediately
4114 	 * thrown out if the node is overallocated. So we do not reclaim
4115 	 * if less than a specified percentage of the node is used by
4116 	 * unmapped file backed pages.
4117 	 */
4118 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4119 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4120 		return NODE_RECLAIM_FULL;
4121 
4122 	/*
4123 	 * Do not scan if the allocation should not be delayed.
4124 	 */
4125 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4126 		return NODE_RECLAIM_NOSCAN;
4127 
4128 	/*
4129 	 * Only run node reclaim on the local node or on nodes that do not
4130 	 * have associated processors. This will favor the local processor
4131 	 * over remote processors and spread off node memory allocations
4132 	 * as wide as possible.
4133 	 */
4134 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4135 		return NODE_RECLAIM_NOSCAN;
4136 
4137 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4138 		return NODE_RECLAIM_NOSCAN;
4139 
4140 	ret = __node_reclaim(pgdat, gfp_mask, order);
4141 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4142 
4143 	if (!ret)
4144 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4145 
4146 	return ret;
4147 }
4148 #endif
4149 
4150 /*
4151  * page_evictable - test whether a page is evictable
4152  * @page: the page to test
4153  *
4154  * Test whether page is evictable--i.e., should be placed on active/inactive
4155  * lists vs unevictable list.
4156  *
4157  * Reasons page might not be evictable:
4158  * (1) page's mapping marked unevictable
4159  * (2) page is part of an mlocked VMA
4160  *
4161  */
page_evictable(struct page * page)4162 int page_evictable(struct page *page)
4163 {
4164 	int ret;
4165 
4166 	/* Prevent address_space of inode and swap cache from being freed */
4167 	rcu_read_lock();
4168 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4169 	rcu_read_unlock();
4170 	return ret;
4171 }
4172 
4173 #ifdef CONFIG_SHMEM
4174 /**
4175  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4176  * @pages:	array of pages to check
4177  * @nr_pages:	number of pages to check
4178  *
4179  * Checks pages for evictability and moves them to the appropriate lru list.
4180  *
4181  * This function is only used for SysV IPC SHM_UNLOCK.
4182  */
check_move_unevictable_pages(struct page ** pages,int nr_pages)4183 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4184 {
4185 	struct lruvec *lruvec;
4186 	struct pglist_data *pgdat = NULL;
4187 	int pgscanned = 0;
4188 	int pgrescued = 0;
4189 	int i;
4190 
4191 	for (i = 0; i < nr_pages; i++) {
4192 		struct page *page = pages[i];
4193 		struct pglist_data *pagepgdat = page_pgdat(page);
4194 
4195 		pgscanned++;
4196 		if (pagepgdat != pgdat) {
4197 			if (pgdat)
4198 				spin_unlock_irq(&pgdat->lru_lock);
4199 			pgdat = pagepgdat;
4200 			spin_lock_irq(&pgdat->lru_lock);
4201 		}
4202 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4203 
4204 		if (!PageLRU(page) || !PageUnevictable(page))
4205 			continue;
4206 
4207 		if (page_evictable(page)) {
4208 			enum lru_list lru = page_lru_base_type(page);
4209 
4210 			VM_BUG_ON_PAGE(PageActive(page), page);
4211 			ClearPageUnevictable(page);
4212 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4213 			add_page_to_lru_list(page, lruvec, lru);
4214 			pgrescued++;
4215 		}
4216 	}
4217 
4218 	if (pgdat) {
4219 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4220 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4221 		spin_unlock_irq(&pgdat->lru_lock);
4222 	}
4223 }
4224 #endif /* CONFIG_SHMEM */
4225