• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/wait.h>
57 #include <linux/pagemap.h>
58 #include <linux/fs.h>
59 
60 #define ZSPAGE_MAGIC	0x58
61 
62 /*
63  * This must be power of 2 and greater than of equal to sizeof(link_free).
64  * These two conditions ensure that any 'struct link_free' itself doesn't
65  * span more than 1 page which avoids complex case of mapping 2 pages simply
66  * to restore link_free pointer values.
67  */
68 #define ZS_ALIGN		8
69 
70 /*
71  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
72  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
73  */
74 #define ZS_MAX_ZSPAGE_ORDER 2
75 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
76 
77 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
78 
79 /*
80  * Object location (<PFN>, <obj_idx>) is encoded as
81  * as single (unsigned long) handle value.
82  *
83  * Note that object index <obj_idx> starts from 0.
84  *
85  * This is made more complicated by various memory models and PAE.
86  */
87 
88 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
89 #ifdef MAX_PHYSMEM_BITS
90 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
91 #else
92 /*
93  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
94  * be PAGE_SHIFT
95  */
96 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
97 #endif
98 #endif
99 
100 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
101 
102 /*
103  * Memory for allocating for handle keeps object position by
104  * encoding <page, obj_idx> and the encoded value has a room
105  * in least bit(ie, look at obj_to_location).
106  * We use the bit to synchronize between object access by
107  * user and migration.
108  */
109 #define HANDLE_PIN_BIT	0
110 
111 /*
112  * Head in allocated object should have OBJ_ALLOCATED_TAG
113  * to identify the object was allocated or not.
114  * It's okay to add the status bit in the least bit because
115  * header keeps handle which is 4byte-aligned address so we
116  * have room for two bit at least.
117  */
118 #define OBJ_ALLOCATED_TAG 1
119 #define OBJ_TAG_BITS 1
120 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
121 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
122 
123 #define FULLNESS_BITS	2
124 #define CLASS_BITS	8
125 #define ISOLATED_BITS	3
126 #define MAGIC_VAL_BITS	8
127 
128 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
129 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
130 #define ZS_MIN_ALLOC_SIZE \
131 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
132 /* each chunk includes extra space to keep handle */
133 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
134 
135 /*
136  * On systems with 4K page size, this gives 255 size classes! There is a
137  * trader-off here:
138  *  - Large number of size classes is potentially wasteful as free page are
139  *    spread across these classes
140  *  - Small number of size classes causes large internal fragmentation
141  *  - Probably its better to use specific size classes (empirically
142  *    determined). NOTE: all those class sizes must be set as multiple of
143  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
144  *
145  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
146  *  (reason above)
147  */
148 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
149 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
150 				      ZS_SIZE_CLASS_DELTA) + 1)
151 
152 enum fullness_group {
153 	ZS_EMPTY,
154 	ZS_ALMOST_EMPTY,
155 	ZS_ALMOST_FULL,
156 	ZS_FULL,
157 	NR_ZS_FULLNESS,
158 };
159 
160 enum zs_stat_type {
161 	CLASS_EMPTY,
162 	CLASS_ALMOST_EMPTY,
163 	CLASS_ALMOST_FULL,
164 	CLASS_FULL,
165 	OBJ_ALLOCATED,
166 	OBJ_USED,
167 	NR_ZS_STAT_TYPE,
168 };
169 
170 struct zs_size_stat {
171 	unsigned long objs[NR_ZS_STAT_TYPE];
172 };
173 
174 #ifdef CONFIG_ZSMALLOC_STAT
175 static struct dentry *zs_stat_root;
176 #endif
177 
178 #ifdef CONFIG_COMPACTION
179 static struct vfsmount *zsmalloc_mnt;
180 #endif
181 
182 /*
183  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
184  *	n <= N / f, where
185  * n = number of allocated objects
186  * N = total number of objects zspage can store
187  * f = fullness_threshold_frac
188  *
189  * Similarly, we assign zspage to:
190  *	ZS_ALMOST_FULL	when n > N / f
191  *	ZS_EMPTY	when n == 0
192  *	ZS_FULL		when n == N
193  *
194  * (see: fix_fullness_group())
195  */
196 static const int fullness_threshold_frac = 4;
197 static size_t huge_class_size;
198 
199 struct size_class {
200 	spinlock_t lock;
201 	struct list_head fullness_list[NR_ZS_FULLNESS];
202 	/*
203 	 * Size of objects stored in this class. Must be multiple
204 	 * of ZS_ALIGN.
205 	 */
206 	int size;
207 	int objs_per_zspage;
208 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
209 	int pages_per_zspage;
210 
211 	unsigned int index;
212 	struct zs_size_stat stats;
213 };
214 
215 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetPageHugeObject(struct page * page)216 static void SetPageHugeObject(struct page *page)
217 {
218 	SetPageOwnerPriv1(page);
219 }
220 
ClearPageHugeObject(struct page * page)221 static void ClearPageHugeObject(struct page *page)
222 {
223 	ClearPageOwnerPriv1(page);
224 }
225 
PageHugeObject(struct page * page)226 static int PageHugeObject(struct page *page)
227 {
228 	return PageOwnerPriv1(page);
229 }
230 
231 /*
232  * Placed within free objects to form a singly linked list.
233  * For every zspage, zspage->freeobj gives head of this list.
234  *
235  * This must be power of 2 and less than or equal to ZS_ALIGN
236  */
237 struct link_free {
238 	union {
239 		/*
240 		 * Free object index;
241 		 * It's valid for non-allocated object
242 		 */
243 		unsigned long next;
244 		/*
245 		 * Handle of allocated object.
246 		 */
247 		unsigned long handle;
248 	};
249 };
250 
251 struct zs_pool {
252 	const char *name;
253 
254 	struct size_class *size_class[ZS_SIZE_CLASSES];
255 	struct kmem_cache *handle_cachep;
256 	struct kmem_cache *zspage_cachep;
257 
258 	atomic_long_t pages_allocated;
259 
260 	struct zs_pool_stats stats;
261 
262 	/* Compact classes */
263 	struct shrinker shrinker;
264 
265 #ifdef CONFIG_ZSMALLOC_STAT
266 	struct dentry *stat_dentry;
267 #endif
268 #ifdef CONFIG_COMPACTION
269 	struct inode *inode;
270 	struct work_struct free_work;
271 	/* A wait queue for when migration races with async_free_zspage() */
272 	struct wait_queue_head migration_wait;
273 	atomic_long_t isolated_pages;
274 	bool destroying;
275 #endif
276 };
277 
278 struct zspage {
279 	struct {
280 		unsigned int fullness:FULLNESS_BITS;
281 		unsigned int class:CLASS_BITS + 1;
282 		unsigned int isolated:ISOLATED_BITS;
283 		unsigned int magic:MAGIC_VAL_BITS;
284 	};
285 	unsigned int inuse;
286 	unsigned int freeobj;
287 	struct page *first_page;
288 	struct list_head list; /* fullness list */
289 #ifdef CONFIG_COMPACTION
290 	rwlock_t lock;
291 #endif
292 };
293 
294 struct mapping_area {
295 #ifdef CONFIG_PGTABLE_MAPPING
296 	struct vm_struct *vm; /* vm area for mapping object that span pages */
297 #else
298 	char *vm_buf; /* copy buffer for objects that span pages */
299 #endif
300 	char *vm_addr; /* address of kmap_atomic()'ed pages */
301 	enum zs_mapmode vm_mm; /* mapping mode */
302 };
303 
304 #ifdef CONFIG_COMPACTION
305 static int zs_register_migration(struct zs_pool *pool);
306 static void zs_unregister_migration(struct zs_pool *pool);
307 static void migrate_lock_init(struct zspage *zspage);
308 static void migrate_read_lock(struct zspage *zspage);
309 static void migrate_read_unlock(struct zspage *zspage);
310 static void kick_deferred_free(struct zs_pool *pool);
311 static void init_deferred_free(struct zs_pool *pool);
312 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
313 #else
zsmalloc_mount(void)314 static int zsmalloc_mount(void) { return 0; }
zsmalloc_unmount(void)315 static void zsmalloc_unmount(void) {}
zs_register_migration(struct zs_pool * pool)316 static int zs_register_migration(struct zs_pool *pool) { return 0; }
zs_unregister_migration(struct zs_pool * pool)317 static void zs_unregister_migration(struct zs_pool *pool) {}
migrate_lock_init(struct zspage * zspage)318 static void migrate_lock_init(struct zspage *zspage) {}
migrate_read_lock(struct zspage * zspage)319 static void migrate_read_lock(struct zspage *zspage) {}
migrate_read_unlock(struct zspage * zspage)320 static void migrate_read_unlock(struct zspage *zspage) {}
kick_deferred_free(struct zs_pool * pool)321 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)322 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)323 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
324 #endif
325 
create_cache(struct zs_pool * pool)326 static int create_cache(struct zs_pool *pool)
327 {
328 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
329 					0, 0, NULL);
330 	if (!pool->handle_cachep)
331 		return 1;
332 
333 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
334 					0, 0, NULL);
335 	if (!pool->zspage_cachep) {
336 		kmem_cache_destroy(pool->handle_cachep);
337 		pool->handle_cachep = NULL;
338 		return 1;
339 	}
340 
341 	return 0;
342 }
343 
destroy_cache(struct zs_pool * pool)344 static void destroy_cache(struct zs_pool *pool)
345 {
346 	kmem_cache_destroy(pool->handle_cachep);
347 	kmem_cache_destroy(pool->zspage_cachep);
348 }
349 
cache_alloc_handle(struct zs_pool * pool,gfp_t gfp)350 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
351 {
352 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
353 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
354 }
355 
cache_free_handle(struct zs_pool * pool,unsigned long handle)356 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
357 {
358 	kmem_cache_free(pool->handle_cachep, (void *)handle);
359 }
360 
cache_alloc_zspage(struct zs_pool * pool,gfp_t flags)361 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
362 {
363 	return kmem_cache_alloc(pool->zspage_cachep,
364 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
365 }
366 
cache_free_zspage(struct zs_pool * pool,struct zspage * zspage)367 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
368 {
369 	kmem_cache_free(pool->zspage_cachep, zspage);
370 }
371 
record_obj(unsigned long handle,unsigned long obj)372 static void record_obj(unsigned long handle, unsigned long obj)
373 {
374 	/*
375 	 * lsb of @obj represents handle lock while other bits
376 	 * represent object value the handle is pointing so
377 	 * updating shouldn't do store tearing.
378 	 */
379 	WRITE_ONCE(*(unsigned long *)handle, obj);
380 }
381 
382 /* zpool driver */
383 
384 #ifdef CONFIG_ZPOOL
385 
zs_zpool_create(const char * name,gfp_t gfp,const struct zpool_ops * zpool_ops,struct zpool * zpool)386 static void *zs_zpool_create(const char *name, gfp_t gfp,
387 			     const struct zpool_ops *zpool_ops,
388 			     struct zpool *zpool)
389 {
390 	/*
391 	 * Ignore global gfp flags: zs_malloc() may be invoked from
392 	 * different contexts and its caller must provide a valid
393 	 * gfp mask.
394 	 */
395 	return zs_create_pool(name);
396 }
397 
zs_zpool_destroy(void * pool)398 static void zs_zpool_destroy(void *pool)
399 {
400 	zs_destroy_pool(pool);
401 }
402 
zs_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)403 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
404 			unsigned long *handle)
405 {
406 	*handle = zs_malloc(pool, size, gfp);
407 	return *handle ? 0 : -1;
408 }
zs_zpool_free(void * pool,unsigned long handle)409 static void zs_zpool_free(void *pool, unsigned long handle)
410 {
411 	zs_free(pool, handle);
412 }
413 
zs_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)414 static void *zs_zpool_map(void *pool, unsigned long handle,
415 			enum zpool_mapmode mm)
416 {
417 	enum zs_mapmode zs_mm;
418 
419 	switch (mm) {
420 	case ZPOOL_MM_RO:
421 		zs_mm = ZS_MM_RO;
422 		break;
423 	case ZPOOL_MM_WO:
424 		zs_mm = ZS_MM_WO;
425 		break;
426 	case ZPOOL_MM_RW: /* fallthru */
427 	default:
428 		zs_mm = ZS_MM_RW;
429 		break;
430 	}
431 
432 	return zs_map_object(pool, handle, zs_mm);
433 }
zs_zpool_unmap(void * pool,unsigned long handle)434 static void zs_zpool_unmap(void *pool, unsigned long handle)
435 {
436 	zs_unmap_object(pool, handle);
437 }
438 
zs_zpool_total_size(void * pool)439 static u64 zs_zpool_total_size(void *pool)
440 {
441 	return zs_get_total_pages(pool) << PAGE_SHIFT;
442 }
443 
444 static struct zpool_driver zs_zpool_driver = {
445 	.type =		"zsmalloc",
446 	.owner =	THIS_MODULE,
447 	.create =	zs_zpool_create,
448 	.destroy =	zs_zpool_destroy,
449 	.malloc =	zs_zpool_malloc,
450 	.free =		zs_zpool_free,
451 	.map =		zs_zpool_map,
452 	.unmap =	zs_zpool_unmap,
453 	.total_size =	zs_zpool_total_size,
454 };
455 
456 MODULE_ALIAS("zpool-zsmalloc");
457 #endif /* CONFIG_ZPOOL */
458 
459 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
460 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
461 
is_zspage_isolated(struct zspage * zspage)462 static bool is_zspage_isolated(struct zspage *zspage)
463 {
464 	return zspage->isolated;
465 }
466 
is_first_page(struct page * page)467 static __maybe_unused int is_first_page(struct page *page)
468 {
469 	return PagePrivate(page);
470 }
471 
472 /* Protected by class->lock */
get_zspage_inuse(struct zspage * zspage)473 static inline int get_zspage_inuse(struct zspage *zspage)
474 {
475 	return zspage->inuse;
476 }
477 
set_zspage_inuse(struct zspage * zspage,int val)478 static inline void set_zspage_inuse(struct zspage *zspage, int val)
479 {
480 	zspage->inuse = val;
481 }
482 
mod_zspage_inuse(struct zspage * zspage,int val)483 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
484 {
485 	zspage->inuse += val;
486 }
487 
get_first_page(struct zspage * zspage)488 static inline struct page *get_first_page(struct zspage *zspage)
489 {
490 	struct page *first_page = zspage->first_page;
491 
492 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
493 	return first_page;
494 }
495 
get_first_obj_offset(struct page * page)496 static inline int get_first_obj_offset(struct page *page)
497 {
498 	return page->units;
499 }
500 
set_first_obj_offset(struct page * page,int offset)501 static inline void set_first_obj_offset(struct page *page, int offset)
502 {
503 	page->units = offset;
504 }
505 
get_freeobj(struct zspage * zspage)506 static inline unsigned int get_freeobj(struct zspage *zspage)
507 {
508 	return zspage->freeobj;
509 }
510 
set_freeobj(struct zspage * zspage,unsigned int obj)511 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
512 {
513 	zspage->freeobj = obj;
514 }
515 
get_zspage_mapping(struct zspage * zspage,unsigned int * class_idx,enum fullness_group * fullness)516 static void get_zspage_mapping(struct zspage *zspage,
517 				unsigned int *class_idx,
518 				enum fullness_group *fullness)
519 {
520 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
521 
522 	*fullness = zspage->fullness;
523 	*class_idx = zspage->class;
524 }
525 
set_zspage_mapping(struct zspage * zspage,unsigned int class_idx,enum fullness_group fullness)526 static void set_zspage_mapping(struct zspage *zspage,
527 				unsigned int class_idx,
528 				enum fullness_group fullness)
529 {
530 	zspage->class = class_idx;
531 	zspage->fullness = fullness;
532 }
533 
534 /*
535  * zsmalloc divides the pool into various size classes where each
536  * class maintains a list of zspages where each zspage is divided
537  * into equal sized chunks. Each allocation falls into one of these
538  * classes depending on its size. This function returns index of the
539  * size class which has chunk size big enough to hold the give size.
540  */
get_size_class_index(int size)541 static int get_size_class_index(int size)
542 {
543 	int idx = 0;
544 
545 	if (likely(size > ZS_MIN_ALLOC_SIZE))
546 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
547 				ZS_SIZE_CLASS_DELTA);
548 
549 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
550 }
551 
552 /* type can be of enum type zs_stat_type or fullness_group */
zs_stat_inc(struct size_class * class,int type,unsigned long cnt)553 static inline void zs_stat_inc(struct size_class *class,
554 				int type, unsigned long cnt)
555 {
556 	class->stats.objs[type] += cnt;
557 }
558 
559 /* type can be of enum type zs_stat_type or fullness_group */
zs_stat_dec(struct size_class * class,int type,unsigned long cnt)560 static inline void zs_stat_dec(struct size_class *class,
561 				int type, unsigned long cnt)
562 {
563 	class->stats.objs[type] -= cnt;
564 }
565 
566 /* type can be of enum type zs_stat_type or fullness_group */
zs_stat_get(struct size_class * class,int type)567 static inline unsigned long zs_stat_get(struct size_class *class,
568 				int type)
569 {
570 	return class->stats.objs[type];
571 }
572 
573 #ifdef CONFIG_ZSMALLOC_STAT
574 
zs_stat_init(void)575 static void __init zs_stat_init(void)
576 {
577 	if (!debugfs_initialized()) {
578 		pr_warn("debugfs not available, stat dir not created\n");
579 		return;
580 	}
581 
582 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
583 	if (!zs_stat_root)
584 		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
585 }
586 
zs_stat_exit(void)587 static void __exit zs_stat_exit(void)
588 {
589 	debugfs_remove_recursive(zs_stat_root);
590 }
591 
592 static unsigned long zs_can_compact(struct size_class *class);
593 
zs_stats_size_show(struct seq_file * s,void * v)594 static int zs_stats_size_show(struct seq_file *s, void *v)
595 {
596 	int i;
597 	struct zs_pool *pool = s->private;
598 	struct size_class *class;
599 	int objs_per_zspage;
600 	unsigned long class_almost_full, class_almost_empty;
601 	unsigned long obj_allocated, obj_used, pages_used, freeable;
602 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
603 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
604 	unsigned long total_freeable = 0;
605 
606 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
607 			"class", "size", "almost_full", "almost_empty",
608 			"obj_allocated", "obj_used", "pages_used",
609 			"pages_per_zspage", "freeable");
610 
611 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
612 		class = pool->size_class[i];
613 
614 		if (class->index != i)
615 			continue;
616 
617 		spin_lock(&class->lock);
618 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
619 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
620 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
621 		obj_used = zs_stat_get(class, OBJ_USED);
622 		freeable = zs_can_compact(class);
623 		spin_unlock(&class->lock);
624 
625 		objs_per_zspage = class->objs_per_zspage;
626 		pages_used = obj_allocated / objs_per_zspage *
627 				class->pages_per_zspage;
628 
629 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
630 				" %10lu %10lu %16d %8lu\n",
631 			i, class->size, class_almost_full, class_almost_empty,
632 			obj_allocated, obj_used, pages_used,
633 			class->pages_per_zspage, freeable);
634 
635 		total_class_almost_full += class_almost_full;
636 		total_class_almost_empty += class_almost_empty;
637 		total_objs += obj_allocated;
638 		total_used_objs += obj_used;
639 		total_pages += pages_used;
640 		total_freeable += freeable;
641 	}
642 
643 	seq_puts(s, "\n");
644 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
645 			"Total", "", total_class_almost_full,
646 			total_class_almost_empty, total_objs,
647 			total_used_objs, total_pages, "", total_freeable);
648 
649 	return 0;
650 }
651 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
652 
zs_pool_stat_create(struct zs_pool * pool,const char * name)653 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
654 {
655 	struct dentry *entry;
656 
657 	if (!zs_stat_root) {
658 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
659 		return;
660 	}
661 
662 	entry = debugfs_create_dir(name, zs_stat_root);
663 	if (!entry) {
664 		pr_warn("debugfs dir <%s> creation failed\n", name);
665 		return;
666 	}
667 	pool->stat_dentry = entry;
668 
669 	entry = debugfs_create_file("classes", S_IFREG | 0444,
670 				    pool->stat_dentry, pool,
671 				    &zs_stats_size_fops);
672 	if (!entry) {
673 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
674 				name, "classes");
675 		debugfs_remove_recursive(pool->stat_dentry);
676 		pool->stat_dentry = NULL;
677 	}
678 }
679 
zs_pool_stat_destroy(struct zs_pool * pool)680 static void zs_pool_stat_destroy(struct zs_pool *pool)
681 {
682 	debugfs_remove_recursive(pool->stat_dentry);
683 }
684 
685 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)686 static void __init zs_stat_init(void)
687 {
688 }
689 
zs_stat_exit(void)690 static void __exit zs_stat_exit(void)
691 {
692 }
693 
zs_pool_stat_create(struct zs_pool * pool,const char * name)694 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
695 {
696 }
697 
zs_pool_stat_destroy(struct zs_pool * pool)698 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
699 {
700 }
701 #endif
702 
703 
704 /*
705  * For each size class, zspages are divided into different groups
706  * depending on how "full" they are. This was done so that we could
707  * easily find empty or nearly empty zspages when we try to shrink
708  * the pool (not yet implemented). This function returns fullness
709  * status of the given page.
710  */
get_fullness_group(struct size_class * class,struct zspage * zspage)711 static enum fullness_group get_fullness_group(struct size_class *class,
712 						struct zspage *zspage)
713 {
714 	int inuse, objs_per_zspage;
715 	enum fullness_group fg;
716 
717 	inuse = get_zspage_inuse(zspage);
718 	objs_per_zspage = class->objs_per_zspage;
719 
720 	if (inuse == 0)
721 		fg = ZS_EMPTY;
722 	else if (inuse == objs_per_zspage)
723 		fg = ZS_FULL;
724 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
725 		fg = ZS_ALMOST_EMPTY;
726 	else
727 		fg = ZS_ALMOST_FULL;
728 
729 	return fg;
730 }
731 
732 /*
733  * Each size class maintains various freelists and zspages are assigned
734  * to one of these freelists based on the number of live objects they
735  * have. This functions inserts the given zspage into the freelist
736  * identified by <class, fullness_group>.
737  */
insert_zspage(struct size_class * class,struct zspage * zspage,enum fullness_group fullness)738 static void insert_zspage(struct size_class *class,
739 				struct zspage *zspage,
740 				enum fullness_group fullness)
741 {
742 	struct zspage *head;
743 
744 	zs_stat_inc(class, fullness, 1);
745 	head = list_first_entry_or_null(&class->fullness_list[fullness],
746 					struct zspage, list);
747 	/*
748 	 * We want to see more ZS_FULL pages and less almost empty/full.
749 	 * Put pages with higher ->inuse first.
750 	 */
751 	if (head) {
752 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
753 			list_add(&zspage->list, &head->list);
754 			return;
755 		}
756 	}
757 	list_add(&zspage->list, &class->fullness_list[fullness]);
758 }
759 
760 /*
761  * This function removes the given zspage from the freelist identified
762  * by <class, fullness_group>.
763  */
remove_zspage(struct size_class * class,struct zspage * zspage,enum fullness_group fullness)764 static void remove_zspage(struct size_class *class,
765 				struct zspage *zspage,
766 				enum fullness_group fullness)
767 {
768 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
769 	VM_BUG_ON(is_zspage_isolated(zspage));
770 
771 	list_del_init(&zspage->list);
772 	zs_stat_dec(class, fullness, 1);
773 }
774 
775 /*
776  * Each size class maintains zspages in different fullness groups depending
777  * on the number of live objects they contain. When allocating or freeing
778  * objects, the fullness status of the page can change, say, from ALMOST_FULL
779  * to ALMOST_EMPTY when freeing an object. This function checks if such
780  * a status change has occurred for the given page and accordingly moves the
781  * page from the freelist of the old fullness group to that of the new
782  * fullness group.
783  */
fix_fullness_group(struct size_class * class,struct zspage * zspage)784 static enum fullness_group fix_fullness_group(struct size_class *class,
785 						struct zspage *zspage)
786 {
787 	int class_idx;
788 	enum fullness_group currfg, newfg;
789 
790 	get_zspage_mapping(zspage, &class_idx, &currfg);
791 	newfg = get_fullness_group(class, zspage);
792 	if (newfg == currfg)
793 		goto out;
794 
795 	if (!is_zspage_isolated(zspage)) {
796 		remove_zspage(class, zspage, currfg);
797 		insert_zspage(class, zspage, newfg);
798 	}
799 
800 	set_zspage_mapping(zspage, class_idx, newfg);
801 
802 out:
803 	return newfg;
804 }
805 
806 /*
807  * We have to decide on how many pages to link together
808  * to form a zspage for each size class. This is important
809  * to reduce wastage due to unusable space left at end of
810  * each zspage which is given as:
811  *     wastage = Zp % class_size
812  *     usage = Zp - wastage
813  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
814  *
815  * For example, for size class of 3/8 * PAGE_SIZE, we should
816  * link together 3 PAGE_SIZE sized pages to form a zspage
817  * since then we can perfectly fit in 8 such objects.
818  */
get_pages_per_zspage(int class_size)819 static int get_pages_per_zspage(int class_size)
820 {
821 	int i, max_usedpc = 0;
822 	/* zspage order which gives maximum used size per KB */
823 	int max_usedpc_order = 1;
824 
825 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
826 		int zspage_size;
827 		int waste, usedpc;
828 
829 		zspage_size = i * PAGE_SIZE;
830 		waste = zspage_size % class_size;
831 		usedpc = (zspage_size - waste) * 100 / zspage_size;
832 
833 		if (usedpc > max_usedpc) {
834 			max_usedpc = usedpc;
835 			max_usedpc_order = i;
836 		}
837 	}
838 
839 	return max_usedpc_order;
840 }
841 
get_zspage(struct page * page)842 static struct zspage *get_zspage(struct page *page)
843 {
844 	struct zspage *zspage = (struct zspage *)page->private;
845 
846 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
847 	return zspage;
848 }
849 
get_next_page(struct page * page)850 static struct page *get_next_page(struct page *page)
851 {
852 	if (unlikely(PageHugeObject(page)))
853 		return NULL;
854 
855 	return page->freelist;
856 }
857 
858 /**
859  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
860  * @obj: the encoded object value
861  * @page: page object resides in zspage
862  * @obj_idx: object index
863  */
obj_to_location(unsigned long obj,struct page ** page,unsigned int * obj_idx)864 static void obj_to_location(unsigned long obj, struct page **page,
865 				unsigned int *obj_idx)
866 {
867 	obj >>= OBJ_TAG_BITS;
868 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
869 	*obj_idx = (obj & OBJ_INDEX_MASK);
870 }
871 
872 /**
873  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
874  * @page: page object resides in zspage
875  * @obj_idx: object index
876  */
location_to_obj(struct page * page,unsigned int obj_idx)877 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
878 {
879 	unsigned long obj;
880 
881 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
882 	obj |= obj_idx & OBJ_INDEX_MASK;
883 	obj <<= OBJ_TAG_BITS;
884 
885 	return obj;
886 }
887 
handle_to_obj(unsigned long handle)888 static unsigned long handle_to_obj(unsigned long handle)
889 {
890 	return *(unsigned long *)handle;
891 }
892 
obj_to_head(struct page * page,void * obj)893 static unsigned long obj_to_head(struct page *page, void *obj)
894 {
895 	if (unlikely(PageHugeObject(page))) {
896 		VM_BUG_ON_PAGE(!is_first_page(page), page);
897 		return page->index;
898 	} else
899 		return *(unsigned long *)obj;
900 }
901 
testpin_tag(unsigned long handle)902 static inline int testpin_tag(unsigned long handle)
903 {
904 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
905 }
906 
trypin_tag(unsigned long handle)907 static inline int trypin_tag(unsigned long handle)
908 {
909 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
910 }
911 
pin_tag(unsigned long handle)912 static void pin_tag(unsigned long handle)
913 {
914 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
915 }
916 
unpin_tag(unsigned long handle)917 static void unpin_tag(unsigned long handle)
918 {
919 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
920 }
921 
reset_page(struct page * page)922 static void reset_page(struct page *page)
923 {
924 	__ClearPageMovable(page);
925 	ClearPagePrivate(page);
926 	set_page_private(page, 0);
927 	page_mapcount_reset(page);
928 	ClearPageHugeObject(page);
929 	page->freelist = NULL;
930 }
931 
trylock_zspage(struct zspage * zspage)932 static int trylock_zspage(struct zspage *zspage)
933 {
934 	struct page *cursor, *fail;
935 
936 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
937 					get_next_page(cursor)) {
938 		if (!trylock_page(cursor)) {
939 			fail = cursor;
940 			goto unlock;
941 		}
942 	}
943 
944 	return 1;
945 unlock:
946 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
947 					get_next_page(cursor))
948 		unlock_page(cursor);
949 
950 	return 0;
951 }
952 
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)953 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
954 				struct zspage *zspage)
955 {
956 	struct page *page, *next;
957 	enum fullness_group fg;
958 	unsigned int class_idx;
959 
960 	get_zspage_mapping(zspage, &class_idx, &fg);
961 
962 	assert_spin_locked(&class->lock);
963 
964 	VM_BUG_ON(get_zspage_inuse(zspage));
965 	VM_BUG_ON(fg != ZS_EMPTY);
966 
967 	next = page = get_first_page(zspage);
968 	do {
969 		VM_BUG_ON_PAGE(!PageLocked(page), page);
970 		next = get_next_page(page);
971 		reset_page(page);
972 		unlock_page(page);
973 		dec_zone_page_state(page, NR_ZSPAGES);
974 		put_page(page);
975 		page = next;
976 	} while (page != NULL);
977 
978 	cache_free_zspage(pool, zspage);
979 
980 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
981 	atomic_long_sub(class->pages_per_zspage,
982 					&pool->pages_allocated);
983 }
984 
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)985 static void free_zspage(struct zs_pool *pool, struct size_class *class,
986 				struct zspage *zspage)
987 {
988 	VM_BUG_ON(get_zspage_inuse(zspage));
989 	VM_BUG_ON(list_empty(&zspage->list));
990 
991 	if (!trylock_zspage(zspage)) {
992 		kick_deferred_free(pool);
993 		return;
994 	}
995 
996 	remove_zspage(class, zspage, ZS_EMPTY);
997 	__free_zspage(pool, class, zspage);
998 }
999 
1000 /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)1001 static void init_zspage(struct size_class *class, struct zspage *zspage)
1002 {
1003 	unsigned int freeobj = 1;
1004 	unsigned long off = 0;
1005 	struct page *page = get_first_page(zspage);
1006 
1007 	while (page) {
1008 		struct page *next_page;
1009 		struct link_free *link;
1010 		void *vaddr;
1011 
1012 		set_first_obj_offset(page, off);
1013 
1014 		vaddr = kmap_atomic(page);
1015 		link = (struct link_free *)vaddr + off / sizeof(*link);
1016 
1017 		while ((off += class->size) < PAGE_SIZE) {
1018 			link->next = freeobj++ << OBJ_TAG_BITS;
1019 			link += class->size / sizeof(*link);
1020 		}
1021 
1022 		/*
1023 		 * We now come to the last (full or partial) object on this
1024 		 * page, which must point to the first object on the next
1025 		 * page (if present)
1026 		 */
1027 		next_page = get_next_page(page);
1028 		if (next_page) {
1029 			link->next = freeobj++ << OBJ_TAG_BITS;
1030 		} else {
1031 			/*
1032 			 * Reset OBJ_TAG_BITS bit to last link to tell
1033 			 * whether it's allocated object or not.
1034 			 */
1035 			link->next = -1UL << OBJ_TAG_BITS;
1036 		}
1037 		kunmap_atomic(vaddr);
1038 		page = next_page;
1039 		off %= PAGE_SIZE;
1040 	}
1041 
1042 	set_freeobj(zspage, 0);
1043 }
1044 
create_page_chain(struct size_class * class,struct zspage * zspage,struct page * pages[])1045 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1046 				struct page *pages[])
1047 {
1048 	int i;
1049 	struct page *page;
1050 	struct page *prev_page = NULL;
1051 	int nr_pages = class->pages_per_zspage;
1052 
1053 	/*
1054 	 * Allocate individual pages and link them together as:
1055 	 * 1. all pages are linked together using page->freelist
1056 	 * 2. each sub-page point to zspage using page->private
1057 	 *
1058 	 * we set PG_private to identify the first page (i.e. no other sub-page
1059 	 * has this flag set).
1060 	 */
1061 	for (i = 0; i < nr_pages; i++) {
1062 		page = pages[i];
1063 		set_page_private(page, (unsigned long)zspage);
1064 		page->freelist = NULL;
1065 		if (i == 0) {
1066 			zspage->first_page = page;
1067 			SetPagePrivate(page);
1068 			if (unlikely(class->objs_per_zspage == 1 &&
1069 					class->pages_per_zspage == 1))
1070 				SetPageHugeObject(page);
1071 		} else {
1072 			prev_page->freelist = page;
1073 		}
1074 		prev_page = page;
1075 	}
1076 }
1077 
1078 /*
1079  * Allocate a zspage for the given size class
1080  */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp)1081 static struct zspage *alloc_zspage(struct zs_pool *pool,
1082 					struct size_class *class,
1083 					gfp_t gfp)
1084 {
1085 	int i;
1086 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1087 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1088 
1089 	if (!zspage)
1090 		return NULL;
1091 
1092 	memset(zspage, 0, sizeof(struct zspage));
1093 	zspage->magic = ZSPAGE_MAGIC;
1094 	migrate_lock_init(zspage);
1095 
1096 	for (i = 0; i < class->pages_per_zspage; i++) {
1097 		struct page *page;
1098 
1099 		page = alloc_page(gfp);
1100 		if (!page) {
1101 			while (--i >= 0) {
1102 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1103 				__free_page(pages[i]);
1104 			}
1105 			cache_free_zspage(pool, zspage);
1106 			return NULL;
1107 		}
1108 
1109 		inc_zone_page_state(page, NR_ZSPAGES);
1110 		pages[i] = page;
1111 	}
1112 
1113 	create_page_chain(class, zspage, pages);
1114 	init_zspage(class, zspage);
1115 
1116 	return zspage;
1117 }
1118 
find_get_zspage(struct size_class * class)1119 static struct zspage *find_get_zspage(struct size_class *class)
1120 {
1121 	int i;
1122 	struct zspage *zspage;
1123 
1124 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1125 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1126 				struct zspage, list);
1127 		if (zspage)
1128 			break;
1129 	}
1130 
1131 	return zspage;
1132 }
1133 
1134 #ifdef CONFIG_PGTABLE_MAPPING
__zs_cpu_up(struct mapping_area * area)1135 static inline int __zs_cpu_up(struct mapping_area *area)
1136 {
1137 	/*
1138 	 * Make sure we don't leak memory if a cpu UP notification
1139 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1140 	 */
1141 	if (area->vm)
1142 		return 0;
1143 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1144 	if (!area->vm)
1145 		return -ENOMEM;
1146 	return 0;
1147 }
1148 
__zs_cpu_down(struct mapping_area * area)1149 static inline void __zs_cpu_down(struct mapping_area *area)
1150 {
1151 	if (area->vm)
1152 		free_vm_area(area->vm);
1153 	area->vm = NULL;
1154 }
1155 
__zs_map_object(struct mapping_area * area,struct page * pages[2],int off,int size)1156 static inline void *__zs_map_object(struct mapping_area *area,
1157 				struct page *pages[2], int off, int size)
1158 {
1159 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1160 	area->vm_addr = area->vm->addr;
1161 	return area->vm_addr + off;
1162 }
1163 
__zs_unmap_object(struct mapping_area * area,struct page * pages[2],int off,int size)1164 static inline void __zs_unmap_object(struct mapping_area *area,
1165 				struct page *pages[2], int off, int size)
1166 {
1167 	unsigned long addr = (unsigned long)area->vm_addr;
1168 
1169 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1170 }
1171 
1172 #else /* CONFIG_PGTABLE_MAPPING */
1173 
__zs_cpu_up(struct mapping_area * area)1174 static inline int __zs_cpu_up(struct mapping_area *area)
1175 {
1176 	/*
1177 	 * Make sure we don't leak memory if a cpu UP notification
1178 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1179 	 */
1180 	if (area->vm_buf)
1181 		return 0;
1182 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1183 	if (!area->vm_buf)
1184 		return -ENOMEM;
1185 	return 0;
1186 }
1187 
__zs_cpu_down(struct mapping_area * area)1188 static inline void __zs_cpu_down(struct mapping_area *area)
1189 {
1190 	kfree(area->vm_buf);
1191 	area->vm_buf = NULL;
1192 }
1193 
__zs_map_object(struct mapping_area * area,struct page * pages[2],int off,int size)1194 static void *__zs_map_object(struct mapping_area *area,
1195 			struct page *pages[2], int off, int size)
1196 {
1197 	int sizes[2];
1198 	void *addr;
1199 	char *buf = area->vm_buf;
1200 
1201 	/* disable page faults to match kmap_atomic() return conditions */
1202 	pagefault_disable();
1203 
1204 	/* no read fastpath */
1205 	if (area->vm_mm == ZS_MM_WO)
1206 		goto out;
1207 
1208 	sizes[0] = PAGE_SIZE - off;
1209 	sizes[1] = size - sizes[0];
1210 
1211 	/* copy object to per-cpu buffer */
1212 	addr = kmap_atomic(pages[0]);
1213 	memcpy(buf, addr + off, sizes[0]);
1214 	kunmap_atomic(addr);
1215 	addr = kmap_atomic(pages[1]);
1216 	memcpy(buf + sizes[0], addr, sizes[1]);
1217 	kunmap_atomic(addr);
1218 out:
1219 	return area->vm_buf;
1220 }
1221 
__zs_unmap_object(struct mapping_area * area,struct page * pages[2],int off,int size)1222 static void __zs_unmap_object(struct mapping_area *area,
1223 			struct page *pages[2], int off, int size)
1224 {
1225 	int sizes[2];
1226 	void *addr;
1227 	char *buf;
1228 
1229 	/* no write fastpath */
1230 	if (area->vm_mm == ZS_MM_RO)
1231 		goto out;
1232 
1233 	buf = area->vm_buf;
1234 	buf = buf + ZS_HANDLE_SIZE;
1235 	size -= ZS_HANDLE_SIZE;
1236 	off += ZS_HANDLE_SIZE;
1237 
1238 	sizes[0] = PAGE_SIZE - off;
1239 	sizes[1] = size - sizes[0];
1240 
1241 	/* copy per-cpu buffer to object */
1242 	addr = kmap_atomic(pages[0]);
1243 	memcpy(addr + off, buf, sizes[0]);
1244 	kunmap_atomic(addr);
1245 	addr = kmap_atomic(pages[1]);
1246 	memcpy(addr, buf + sizes[0], sizes[1]);
1247 	kunmap_atomic(addr);
1248 
1249 out:
1250 	/* enable page faults to match kunmap_atomic() return conditions */
1251 	pagefault_enable();
1252 }
1253 
1254 #endif /* CONFIG_PGTABLE_MAPPING */
1255 
zs_cpu_prepare(unsigned int cpu)1256 static int zs_cpu_prepare(unsigned int cpu)
1257 {
1258 	struct mapping_area *area;
1259 
1260 	area = &per_cpu(zs_map_area, cpu);
1261 	return __zs_cpu_up(area);
1262 }
1263 
zs_cpu_dead(unsigned int cpu)1264 static int zs_cpu_dead(unsigned int cpu)
1265 {
1266 	struct mapping_area *area;
1267 
1268 	area = &per_cpu(zs_map_area, cpu);
1269 	__zs_cpu_down(area);
1270 	return 0;
1271 }
1272 
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)1273 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1274 					int objs_per_zspage)
1275 {
1276 	if (prev->pages_per_zspage == pages_per_zspage &&
1277 		prev->objs_per_zspage == objs_per_zspage)
1278 		return true;
1279 
1280 	return false;
1281 }
1282 
zspage_full(struct size_class * class,struct zspage * zspage)1283 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1284 {
1285 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1286 }
1287 
zs_get_total_pages(struct zs_pool * pool)1288 unsigned long zs_get_total_pages(struct zs_pool *pool)
1289 {
1290 	return atomic_long_read(&pool->pages_allocated);
1291 }
1292 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1293 
1294 /**
1295  * zs_map_object - get address of allocated object from handle.
1296  * @pool: pool from which the object was allocated
1297  * @handle: handle returned from zs_malloc
1298  * @mm: maping mode to use
1299  *
1300  * Before using an object allocated from zs_malloc, it must be mapped using
1301  * this function. When done with the object, it must be unmapped using
1302  * zs_unmap_object.
1303  *
1304  * Only one object can be mapped per cpu at a time. There is no protection
1305  * against nested mappings.
1306  *
1307  * This function returns with preemption and page faults disabled.
1308  */
zs_map_object(struct zs_pool * pool,unsigned long handle,enum zs_mapmode mm)1309 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1310 			enum zs_mapmode mm)
1311 {
1312 	struct zspage *zspage;
1313 	struct page *page;
1314 	unsigned long obj, off;
1315 	unsigned int obj_idx;
1316 
1317 	unsigned int class_idx;
1318 	enum fullness_group fg;
1319 	struct size_class *class;
1320 	struct mapping_area *area;
1321 	struct page *pages[2];
1322 	void *ret;
1323 
1324 	/*
1325 	 * Because we use per-cpu mapping areas shared among the
1326 	 * pools/users, we can't allow mapping in interrupt context
1327 	 * because it can corrupt another users mappings.
1328 	 */
1329 	BUG_ON(in_interrupt());
1330 
1331 	/* From now on, migration cannot move the object */
1332 	pin_tag(handle);
1333 
1334 	obj = handle_to_obj(handle);
1335 	obj_to_location(obj, &page, &obj_idx);
1336 	zspage = get_zspage(page);
1337 
1338 	/* migration cannot move any subpage in this zspage */
1339 	migrate_read_lock(zspage);
1340 
1341 	get_zspage_mapping(zspage, &class_idx, &fg);
1342 	class = pool->size_class[class_idx];
1343 	off = (class->size * obj_idx) & ~PAGE_MASK;
1344 
1345 	area = &get_cpu_var(zs_map_area);
1346 	area->vm_mm = mm;
1347 	if (off + class->size <= PAGE_SIZE) {
1348 		/* this object is contained entirely within a page */
1349 		area->vm_addr = kmap_atomic(page);
1350 		ret = area->vm_addr + off;
1351 		goto out;
1352 	}
1353 
1354 	/* this object spans two pages */
1355 	pages[0] = page;
1356 	pages[1] = get_next_page(page);
1357 	BUG_ON(!pages[1]);
1358 
1359 	ret = __zs_map_object(area, pages, off, class->size);
1360 out:
1361 	if (likely(!PageHugeObject(page)))
1362 		ret += ZS_HANDLE_SIZE;
1363 
1364 	return ret;
1365 }
1366 EXPORT_SYMBOL_GPL(zs_map_object);
1367 
zs_unmap_object(struct zs_pool * pool,unsigned long handle)1368 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1369 {
1370 	struct zspage *zspage;
1371 	struct page *page;
1372 	unsigned long obj, off;
1373 	unsigned int obj_idx;
1374 
1375 	unsigned int class_idx;
1376 	enum fullness_group fg;
1377 	struct size_class *class;
1378 	struct mapping_area *area;
1379 
1380 	obj = handle_to_obj(handle);
1381 	obj_to_location(obj, &page, &obj_idx);
1382 	zspage = get_zspage(page);
1383 	get_zspage_mapping(zspage, &class_idx, &fg);
1384 	class = pool->size_class[class_idx];
1385 	off = (class->size * obj_idx) & ~PAGE_MASK;
1386 
1387 	area = this_cpu_ptr(&zs_map_area);
1388 	if (off + class->size <= PAGE_SIZE)
1389 		kunmap_atomic(area->vm_addr);
1390 	else {
1391 		struct page *pages[2];
1392 
1393 		pages[0] = page;
1394 		pages[1] = get_next_page(page);
1395 		BUG_ON(!pages[1]);
1396 
1397 		__zs_unmap_object(area, pages, off, class->size);
1398 	}
1399 	put_cpu_var(zs_map_area);
1400 
1401 	migrate_read_unlock(zspage);
1402 	unpin_tag(handle);
1403 }
1404 EXPORT_SYMBOL_GPL(zs_unmap_object);
1405 
1406 /**
1407  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1408  *                        zsmalloc &size_class.
1409  * @pool: zsmalloc pool to use
1410  *
1411  * The function returns the size of the first huge class - any object of equal
1412  * or bigger size will be stored in zspage consisting of a single physical
1413  * page.
1414  *
1415  * Context: Any context.
1416  *
1417  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1418  */
zs_huge_class_size(struct zs_pool * pool)1419 size_t zs_huge_class_size(struct zs_pool *pool)
1420 {
1421 	return huge_class_size;
1422 }
1423 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1424 
obj_malloc(struct size_class * class,struct zspage * zspage,unsigned long handle)1425 static unsigned long obj_malloc(struct size_class *class,
1426 				struct zspage *zspage, unsigned long handle)
1427 {
1428 	int i, nr_page, offset;
1429 	unsigned long obj;
1430 	struct link_free *link;
1431 
1432 	struct page *m_page;
1433 	unsigned long m_offset;
1434 	void *vaddr;
1435 
1436 	handle |= OBJ_ALLOCATED_TAG;
1437 	obj = get_freeobj(zspage);
1438 
1439 	offset = obj * class->size;
1440 	nr_page = offset >> PAGE_SHIFT;
1441 	m_offset = offset & ~PAGE_MASK;
1442 	m_page = get_first_page(zspage);
1443 
1444 	for (i = 0; i < nr_page; i++)
1445 		m_page = get_next_page(m_page);
1446 
1447 	vaddr = kmap_atomic(m_page);
1448 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1449 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1450 	if (likely(!PageHugeObject(m_page)))
1451 		/* record handle in the header of allocated chunk */
1452 		link->handle = handle;
1453 	else
1454 		/* record handle to page->index */
1455 		zspage->first_page->index = handle;
1456 
1457 	kunmap_atomic(vaddr);
1458 	mod_zspage_inuse(zspage, 1);
1459 	zs_stat_inc(class, OBJ_USED, 1);
1460 
1461 	obj = location_to_obj(m_page, obj);
1462 
1463 	return obj;
1464 }
1465 
1466 
1467 /**
1468  * zs_malloc - Allocate block of given size from pool.
1469  * @pool: pool to allocate from
1470  * @size: size of block to allocate
1471  * @gfp: gfp flags when allocating object
1472  *
1473  * On success, handle to the allocated object is returned,
1474  * otherwise 0.
1475  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1476  */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp)1477 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1478 {
1479 	unsigned long handle, obj;
1480 	struct size_class *class;
1481 	enum fullness_group newfg;
1482 	struct zspage *zspage;
1483 
1484 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1485 		return 0;
1486 
1487 	handle = cache_alloc_handle(pool, gfp);
1488 	if (!handle)
1489 		return 0;
1490 
1491 	/* extra space in chunk to keep the handle */
1492 	size += ZS_HANDLE_SIZE;
1493 	class = pool->size_class[get_size_class_index(size)];
1494 
1495 	spin_lock(&class->lock);
1496 	zspage = find_get_zspage(class);
1497 	if (likely(zspage)) {
1498 		obj = obj_malloc(class, zspage, handle);
1499 		/* Now move the zspage to another fullness group, if required */
1500 		fix_fullness_group(class, zspage);
1501 		record_obj(handle, obj);
1502 		spin_unlock(&class->lock);
1503 
1504 		return handle;
1505 	}
1506 
1507 	spin_unlock(&class->lock);
1508 
1509 	zspage = alloc_zspage(pool, class, gfp);
1510 	if (!zspage) {
1511 		cache_free_handle(pool, handle);
1512 		return 0;
1513 	}
1514 
1515 	spin_lock(&class->lock);
1516 	obj = obj_malloc(class, zspage, handle);
1517 	newfg = get_fullness_group(class, zspage);
1518 	insert_zspage(class, zspage, newfg);
1519 	set_zspage_mapping(zspage, class->index, newfg);
1520 	record_obj(handle, obj);
1521 	atomic_long_add(class->pages_per_zspage,
1522 				&pool->pages_allocated);
1523 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1524 
1525 	/* We completely set up zspage so mark them as movable */
1526 	SetZsPageMovable(pool, zspage);
1527 	spin_unlock(&class->lock);
1528 
1529 	return handle;
1530 }
1531 EXPORT_SYMBOL_GPL(zs_malloc);
1532 
obj_free(struct size_class * class,unsigned long obj)1533 static void obj_free(struct size_class *class, unsigned long obj)
1534 {
1535 	struct link_free *link;
1536 	struct zspage *zspage;
1537 	struct page *f_page;
1538 	unsigned long f_offset;
1539 	unsigned int f_objidx;
1540 	void *vaddr;
1541 
1542 	obj &= ~OBJ_ALLOCATED_TAG;
1543 	obj_to_location(obj, &f_page, &f_objidx);
1544 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1545 	zspage = get_zspage(f_page);
1546 
1547 	vaddr = kmap_atomic(f_page);
1548 
1549 	/* Insert this object in containing zspage's freelist */
1550 	link = (struct link_free *)(vaddr + f_offset);
1551 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1552 	kunmap_atomic(vaddr);
1553 	set_freeobj(zspage, f_objidx);
1554 	mod_zspage_inuse(zspage, -1);
1555 	zs_stat_dec(class, OBJ_USED, 1);
1556 }
1557 
zs_free(struct zs_pool * pool,unsigned long handle)1558 void zs_free(struct zs_pool *pool, unsigned long handle)
1559 {
1560 	struct zspage *zspage;
1561 	struct page *f_page;
1562 	unsigned long obj;
1563 	unsigned int f_objidx;
1564 	int class_idx;
1565 	struct size_class *class;
1566 	enum fullness_group fullness;
1567 	bool isolated;
1568 
1569 	if (unlikely(!handle))
1570 		return;
1571 
1572 	pin_tag(handle);
1573 	obj = handle_to_obj(handle);
1574 	obj_to_location(obj, &f_page, &f_objidx);
1575 	zspage = get_zspage(f_page);
1576 
1577 	migrate_read_lock(zspage);
1578 
1579 	get_zspage_mapping(zspage, &class_idx, &fullness);
1580 	class = pool->size_class[class_idx];
1581 
1582 	spin_lock(&class->lock);
1583 	obj_free(class, obj);
1584 	fullness = fix_fullness_group(class, zspage);
1585 	if (fullness != ZS_EMPTY) {
1586 		migrate_read_unlock(zspage);
1587 		goto out;
1588 	}
1589 
1590 	isolated = is_zspage_isolated(zspage);
1591 	migrate_read_unlock(zspage);
1592 	/* If zspage is isolated, zs_page_putback will free the zspage */
1593 	if (likely(!isolated))
1594 		free_zspage(pool, class, zspage);
1595 out:
1596 
1597 	spin_unlock(&class->lock);
1598 	unpin_tag(handle);
1599 	cache_free_handle(pool, handle);
1600 }
1601 EXPORT_SYMBOL_GPL(zs_free);
1602 
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1603 static void zs_object_copy(struct size_class *class, unsigned long dst,
1604 				unsigned long src)
1605 {
1606 	struct page *s_page, *d_page;
1607 	unsigned int s_objidx, d_objidx;
1608 	unsigned long s_off, d_off;
1609 	void *s_addr, *d_addr;
1610 	int s_size, d_size, size;
1611 	int written = 0;
1612 
1613 	s_size = d_size = class->size;
1614 
1615 	obj_to_location(src, &s_page, &s_objidx);
1616 	obj_to_location(dst, &d_page, &d_objidx);
1617 
1618 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1619 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1620 
1621 	if (s_off + class->size > PAGE_SIZE)
1622 		s_size = PAGE_SIZE - s_off;
1623 
1624 	if (d_off + class->size > PAGE_SIZE)
1625 		d_size = PAGE_SIZE - d_off;
1626 
1627 	s_addr = kmap_atomic(s_page);
1628 	d_addr = kmap_atomic(d_page);
1629 
1630 	while (1) {
1631 		size = min(s_size, d_size);
1632 		memcpy(d_addr + d_off, s_addr + s_off, size);
1633 		written += size;
1634 
1635 		if (written == class->size)
1636 			break;
1637 
1638 		s_off += size;
1639 		s_size -= size;
1640 		d_off += size;
1641 		d_size -= size;
1642 
1643 		if (s_off >= PAGE_SIZE) {
1644 			kunmap_atomic(d_addr);
1645 			kunmap_atomic(s_addr);
1646 			s_page = get_next_page(s_page);
1647 			s_addr = kmap_atomic(s_page);
1648 			d_addr = kmap_atomic(d_page);
1649 			s_size = class->size - written;
1650 			s_off = 0;
1651 		}
1652 
1653 		if (d_off >= PAGE_SIZE) {
1654 			kunmap_atomic(d_addr);
1655 			d_page = get_next_page(d_page);
1656 			d_addr = kmap_atomic(d_page);
1657 			d_size = class->size - written;
1658 			d_off = 0;
1659 		}
1660 	}
1661 
1662 	kunmap_atomic(d_addr);
1663 	kunmap_atomic(s_addr);
1664 }
1665 
1666 /*
1667  * Find alloced object in zspage from index object and
1668  * return handle.
1669  */
find_alloced_obj(struct size_class * class,struct page * page,int * obj_idx)1670 static unsigned long find_alloced_obj(struct size_class *class,
1671 					struct page *page, int *obj_idx)
1672 {
1673 	unsigned long head;
1674 	int offset = 0;
1675 	int index = *obj_idx;
1676 	unsigned long handle = 0;
1677 	void *addr = kmap_atomic(page);
1678 
1679 	offset = get_first_obj_offset(page);
1680 	offset += class->size * index;
1681 
1682 	while (offset < PAGE_SIZE) {
1683 		head = obj_to_head(page, addr + offset);
1684 		if (head & OBJ_ALLOCATED_TAG) {
1685 			handle = head & ~OBJ_ALLOCATED_TAG;
1686 			if (trypin_tag(handle))
1687 				break;
1688 			handle = 0;
1689 		}
1690 
1691 		offset += class->size;
1692 		index++;
1693 	}
1694 
1695 	kunmap_atomic(addr);
1696 
1697 	*obj_idx = index;
1698 
1699 	return handle;
1700 }
1701 
1702 struct zs_compact_control {
1703 	/* Source spage for migration which could be a subpage of zspage */
1704 	struct page *s_page;
1705 	/* Destination page for migration which should be a first page
1706 	 * of zspage. */
1707 	struct page *d_page;
1708 	 /* Starting object index within @s_page which used for live object
1709 	  * in the subpage. */
1710 	int obj_idx;
1711 };
1712 
migrate_zspage(struct zs_pool * pool,struct size_class * class,struct zs_compact_control * cc)1713 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1714 				struct zs_compact_control *cc)
1715 {
1716 	unsigned long used_obj, free_obj;
1717 	unsigned long handle;
1718 	struct page *s_page = cc->s_page;
1719 	struct page *d_page = cc->d_page;
1720 	int obj_idx = cc->obj_idx;
1721 	int ret = 0;
1722 
1723 	while (1) {
1724 		handle = find_alloced_obj(class, s_page, &obj_idx);
1725 		if (!handle) {
1726 			s_page = get_next_page(s_page);
1727 			if (!s_page)
1728 				break;
1729 			obj_idx = 0;
1730 			continue;
1731 		}
1732 
1733 		/* Stop if there is no more space */
1734 		if (zspage_full(class, get_zspage(d_page))) {
1735 			unpin_tag(handle);
1736 			ret = -ENOMEM;
1737 			break;
1738 		}
1739 
1740 		used_obj = handle_to_obj(handle);
1741 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1742 		zs_object_copy(class, free_obj, used_obj);
1743 		obj_idx++;
1744 		/*
1745 		 * record_obj updates handle's value to free_obj and it will
1746 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1747 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1748 		 * let's keep the lock bit.
1749 		 */
1750 		free_obj |= BIT(HANDLE_PIN_BIT);
1751 		record_obj(handle, free_obj);
1752 		unpin_tag(handle);
1753 		obj_free(class, used_obj);
1754 	}
1755 
1756 	/* Remember last position in this iteration */
1757 	cc->s_page = s_page;
1758 	cc->obj_idx = obj_idx;
1759 
1760 	return ret;
1761 }
1762 
isolate_zspage(struct size_class * class,bool source)1763 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1764 {
1765 	int i;
1766 	struct zspage *zspage;
1767 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1768 
1769 	if (!source) {
1770 		fg[0] = ZS_ALMOST_FULL;
1771 		fg[1] = ZS_ALMOST_EMPTY;
1772 	}
1773 
1774 	for (i = 0; i < 2; i++) {
1775 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1776 							struct zspage, list);
1777 		if (zspage) {
1778 			VM_BUG_ON(is_zspage_isolated(zspage));
1779 			remove_zspage(class, zspage, fg[i]);
1780 			return zspage;
1781 		}
1782 	}
1783 
1784 	return zspage;
1785 }
1786 
1787 /*
1788  * putback_zspage - add @zspage into right class's fullness list
1789  * @class: destination class
1790  * @zspage: target page
1791  *
1792  * Return @zspage's fullness_group
1793  */
putback_zspage(struct size_class * class,struct zspage * zspage)1794 static enum fullness_group putback_zspage(struct size_class *class,
1795 			struct zspage *zspage)
1796 {
1797 	enum fullness_group fullness;
1798 
1799 	VM_BUG_ON(is_zspage_isolated(zspage));
1800 
1801 	fullness = get_fullness_group(class, zspage);
1802 	insert_zspage(class, zspage, fullness);
1803 	set_zspage_mapping(zspage, class->index, fullness);
1804 
1805 	return fullness;
1806 }
1807 
1808 #ifdef CONFIG_COMPACTION
1809 /*
1810  * To prevent zspage destroy during migration, zspage freeing should
1811  * hold locks of all pages in the zspage.
1812  */
lock_zspage(struct zspage * zspage)1813 static void lock_zspage(struct zspage *zspage)
1814 {
1815 	struct page *page = get_first_page(zspage);
1816 
1817 	do {
1818 		lock_page(page);
1819 	} while ((page = get_next_page(page)) != NULL);
1820 }
1821 
zs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1822 static struct dentry *zs_mount(struct file_system_type *fs_type,
1823 				int flags, const char *dev_name, void *data)
1824 {
1825 	static const struct dentry_operations ops = {
1826 		.d_dname = simple_dname,
1827 	};
1828 
1829 	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1830 }
1831 
1832 static struct file_system_type zsmalloc_fs = {
1833 	.name		= "zsmalloc",
1834 	.mount		= zs_mount,
1835 	.kill_sb	= kill_anon_super,
1836 };
1837 
zsmalloc_mount(void)1838 static int zsmalloc_mount(void)
1839 {
1840 	int ret = 0;
1841 
1842 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1843 	if (IS_ERR(zsmalloc_mnt))
1844 		ret = PTR_ERR(zsmalloc_mnt);
1845 
1846 	return ret;
1847 }
1848 
zsmalloc_unmount(void)1849 static void zsmalloc_unmount(void)
1850 {
1851 	kern_unmount(zsmalloc_mnt);
1852 }
1853 
migrate_lock_init(struct zspage * zspage)1854 static void migrate_lock_init(struct zspage *zspage)
1855 {
1856 	rwlock_init(&zspage->lock);
1857 }
1858 
migrate_read_lock(struct zspage * zspage)1859 static void migrate_read_lock(struct zspage *zspage)
1860 {
1861 	read_lock(&zspage->lock);
1862 }
1863 
migrate_read_unlock(struct zspage * zspage)1864 static void migrate_read_unlock(struct zspage *zspage)
1865 {
1866 	read_unlock(&zspage->lock);
1867 }
1868 
migrate_write_lock(struct zspage * zspage)1869 static void migrate_write_lock(struct zspage *zspage)
1870 {
1871 	write_lock(&zspage->lock);
1872 }
1873 
migrate_write_unlock(struct zspage * zspage)1874 static void migrate_write_unlock(struct zspage *zspage)
1875 {
1876 	write_unlock(&zspage->lock);
1877 }
1878 
1879 /* Number of isolated subpage for *page migration* in this zspage */
inc_zspage_isolation(struct zspage * zspage)1880 static void inc_zspage_isolation(struct zspage *zspage)
1881 {
1882 	zspage->isolated++;
1883 }
1884 
dec_zspage_isolation(struct zspage * zspage)1885 static void dec_zspage_isolation(struct zspage *zspage)
1886 {
1887 	zspage->isolated--;
1888 }
1889 
putback_zspage_deferred(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)1890 static void putback_zspage_deferred(struct zs_pool *pool,
1891 				    struct size_class *class,
1892 				    struct zspage *zspage)
1893 {
1894 	enum fullness_group fg;
1895 
1896 	fg = putback_zspage(class, zspage);
1897 	if (fg == ZS_EMPTY)
1898 		schedule_work(&pool->free_work);
1899 
1900 }
1901 
zs_pool_dec_isolated(struct zs_pool * pool)1902 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1903 {
1904 	VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1905 	atomic_long_dec(&pool->isolated_pages);
1906 	/*
1907 	 * There's no possibility of racing, since wait_for_isolated_drain()
1908 	 * checks the isolated count under &class->lock after enqueuing
1909 	 * on migration_wait.
1910 	 */
1911 	if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1912 		wake_up_all(&pool->migration_wait);
1913 }
1914 
replace_sub_page(struct size_class * class,struct zspage * zspage,struct page * newpage,struct page * oldpage)1915 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1916 				struct page *newpage, struct page *oldpage)
1917 {
1918 	struct page *page;
1919 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1920 	int idx = 0;
1921 
1922 	page = get_first_page(zspage);
1923 	do {
1924 		if (page == oldpage)
1925 			pages[idx] = newpage;
1926 		else
1927 			pages[idx] = page;
1928 		idx++;
1929 	} while ((page = get_next_page(page)) != NULL);
1930 
1931 	create_page_chain(class, zspage, pages);
1932 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1933 	if (unlikely(PageHugeObject(oldpage)))
1934 		newpage->index = oldpage->index;
1935 	__SetPageMovable(newpage, page_mapping(oldpage));
1936 }
1937 
zs_page_isolate(struct page * page,isolate_mode_t mode)1938 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1939 {
1940 	struct zs_pool *pool;
1941 	struct size_class *class;
1942 	int class_idx;
1943 	enum fullness_group fullness;
1944 	struct zspage *zspage;
1945 	struct address_space *mapping;
1946 
1947 	/*
1948 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1949 	 * lock_zspage in free_zspage.
1950 	 */
1951 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1952 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1953 
1954 	zspage = get_zspage(page);
1955 
1956 	/*
1957 	 * Without class lock, fullness could be stale while class_idx is okay
1958 	 * because class_idx is constant unless page is freed so we should get
1959 	 * fullness again under class lock.
1960 	 */
1961 	get_zspage_mapping(zspage, &class_idx, &fullness);
1962 	mapping = page_mapping(page);
1963 	pool = mapping->private_data;
1964 	class = pool->size_class[class_idx];
1965 
1966 	spin_lock(&class->lock);
1967 	if (get_zspage_inuse(zspage) == 0) {
1968 		spin_unlock(&class->lock);
1969 		return false;
1970 	}
1971 
1972 	/* zspage is isolated for object migration */
1973 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1974 		spin_unlock(&class->lock);
1975 		return false;
1976 	}
1977 
1978 	/*
1979 	 * If this is first time isolation for the zspage, isolate zspage from
1980 	 * size_class to prevent further object allocation from the zspage.
1981 	 */
1982 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1983 		get_zspage_mapping(zspage, &class_idx, &fullness);
1984 		atomic_long_inc(&pool->isolated_pages);
1985 		remove_zspage(class, zspage, fullness);
1986 	}
1987 
1988 	inc_zspage_isolation(zspage);
1989 	spin_unlock(&class->lock);
1990 
1991 	return true;
1992 }
1993 
zs_page_migrate(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)1994 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1995 		struct page *page, enum migrate_mode mode)
1996 {
1997 	struct zs_pool *pool;
1998 	struct size_class *class;
1999 	int class_idx;
2000 	enum fullness_group fullness;
2001 	struct zspage *zspage;
2002 	struct page *dummy;
2003 	void *s_addr, *d_addr, *addr;
2004 	int offset, pos;
2005 	unsigned long handle, head;
2006 	unsigned long old_obj, new_obj;
2007 	unsigned int obj_idx;
2008 	int ret = -EAGAIN;
2009 
2010 	/*
2011 	 * We cannot support the _NO_COPY case here, because copy needs to
2012 	 * happen under the zs lock, which does not work with
2013 	 * MIGRATE_SYNC_NO_COPY workflow.
2014 	 */
2015 	if (mode == MIGRATE_SYNC_NO_COPY)
2016 		return -EINVAL;
2017 
2018 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2019 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2020 
2021 	zspage = get_zspage(page);
2022 
2023 	/* Concurrent compactor cannot migrate any subpage in zspage */
2024 	migrate_write_lock(zspage);
2025 	get_zspage_mapping(zspage, &class_idx, &fullness);
2026 	pool = mapping->private_data;
2027 	class = pool->size_class[class_idx];
2028 	offset = get_first_obj_offset(page);
2029 
2030 	spin_lock(&class->lock);
2031 	if (!get_zspage_inuse(zspage)) {
2032 		/*
2033 		 * Set "offset" to end of the page so that every loops
2034 		 * skips unnecessary object scanning.
2035 		 */
2036 		offset = PAGE_SIZE;
2037 	}
2038 
2039 	pos = offset;
2040 	s_addr = kmap_atomic(page);
2041 	while (pos < PAGE_SIZE) {
2042 		head = obj_to_head(page, s_addr + pos);
2043 		if (head & OBJ_ALLOCATED_TAG) {
2044 			handle = head & ~OBJ_ALLOCATED_TAG;
2045 			if (!trypin_tag(handle))
2046 				goto unpin_objects;
2047 		}
2048 		pos += class->size;
2049 	}
2050 
2051 	/*
2052 	 * Here, any user cannot access all objects in the zspage so let's move.
2053 	 */
2054 	d_addr = kmap_atomic(newpage);
2055 	memcpy(d_addr, s_addr, PAGE_SIZE);
2056 	kunmap_atomic(d_addr);
2057 
2058 	for (addr = s_addr + offset; addr < s_addr + pos;
2059 					addr += class->size) {
2060 		head = obj_to_head(page, addr);
2061 		if (head & OBJ_ALLOCATED_TAG) {
2062 			handle = head & ~OBJ_ALLOCATED_TAG;
2063 			if (!testpin_tag(handle))
2064 				BUG();
2065 
2066 			old_obj = handle_to_obj(handle);
2067 			obj_to_location(old_obj, &dummy, &obj_idx);
2068 			new_obj = (unsigned long)location_to_obj(newpage,
2069 								obj_idx);
2070 			new_obj |= BIT(HANDLE_PIN_BIT);
2071 			record_obj(handle, new_obj);
2072 		}
2073 	}
2074 
2075 	replace_sub_page(class, zspage, newpage, page);
2076 	get_page(newpage);
2077 
2078 	dec_zspage_isolation(zspage);
2079 
2080 	/*
2081 	 * Page migration is done so let's putback isolated zspage to
2082 	 * the list if @page is final isolated subpage in the zspage.
2083 	 */
2084 	if (!is_zspage_isolated(zspage)) {
2085 		/*
2086 		 * We cannot race with zs_destroy_pool() here because we wait
2087 		 * for isolation to hit zero before we start destroying.
2088 		 * Also, we ensure that everyone can see pool->destroying before
2089 		 * we start waiting.
2090 		 */
2091 		putback_zspage_deferred(pool, class, zspage);
2092 		zs_pool_dec_isolated(pool);
2093 	}
2094 
2095 	if (page_zone(newpage) != page_zone(page)) {
2096 		dec_zone_page_state(page, NR_ZSPAGES);
2097 		inc_zone_page_state(newpage, NR_ZSPAGES);
2098 	}
2099 
2100 	reset_page(page);
2101 	put_page(page);
2102 	page = newpage;
2103 
2104 	ret = MIGRATEPAGE_SUCCESS;
2105 unpin_objects:
2106 	for (addr = s_addr + offset; addr < s_addr + pos;
2107 						addr += class->size) {
2108 		head = obj_to_head(page, addr);
2109 		if (head & OBJ_ALLOCATED_TAG) {
2110 			handle = head & ~OBJ_ALLOCATED_TAG;
2111 			if (!testpin_tag(handle))
2112 				BUG();
2113 			unpin_tag(handle);
2114 		}
2115 	}
2116 	kunmap_atomic(s_addr);
2117 	spin_unlock(&class->lock);
2118 	migrate_write_unlock(zspage);
2119 
2120 	return ret;
2121 }
2122 
zs_page_putback(struct page * page)2123 static void zs_page_putback(struct page *page)
2124 {
2125 	struct zs_pool *pool;
2126 	struct size_class *class;
2127 	int class_idx;
2128 	enum fullness_group fg;
2129 	struct address_space *mapping;
2130 	struct zspage *zspage;
2131 
2132 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2133 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2134 
2135 	zspage = get_zspage(page);
2136 	get_zspage_mapping(zspage, &class_idx, &fg);
2137 	mapping = page_mapping(page);
2138 	pool = mapping->private_data;
2139 	class = pool->size_class[class_idx];
2140 
2141 	spin_lock(&class->lock);
2142 	dec_zspage_isolation(zspage);
2143 	if (!is_zspage_isolated(zspage)) {
2144 		/*
2145 		 * Due to page_lock, we cannot free zspage immediately
2146 		 * so let's defer.
2147 		 */
2148 		putback_zspage_deferred(pool, class, zspage);
2149 		zs_pool_dec_isolated(pool);
2150 	}
2151 	spin_unlock(&class->lock);
2152 }
2153 
2154 static const struct address_space_operations zsmalloc_aops = {
2155 	.isolate_page = zs_page_isolate,
2156 	.migratepage = zs_page_migrate,
2157 	.putback_page = zs_page_putback,
2158 };
2159 
zs_register_migration(struct zs_pool * pool)2160 static int zs_register_migration(struct zs_pool *pool)
2161 {
2162 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2163 	if (IS_ERR(pool->inode)) {
2164 		pool->inode = NULL;
2165 		return 1;
2166 	}
2167 
2168 	pool->inode->i_mapping->private_data = pool;
2169 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2170 	return 0;
2171 }
2172 
pool_isolated_are_drained(struct zs_pool * pool)2173 static bool pool_isolated_are_drained(struct zs_pool *pool)
2174 {
2175 	return atomic_long_read(&pool->isolated_pages) == 0;
2176 }
2177 
2178 /* Function for resolving migration */
wait_for_isolated_drain(struct zs_pool * pool)2179 static void wait_for_isolated_drain(struct zs_pool *pool)
2180 {
2181 
2182 	/*
2183 	 * We're in the process of destroying the pool, so there are no
2184 	 * active allocations. zs_page_isolate() fails for completely free
2185 	 * zspages, so we need only wait for the zs_pool's isolated
2186 	 * count to hit zero.
2187 	 */
2188 	wait_event(pool->migration_wait,
2189 		   pool_isolated_are_drained(pool));
2190 }
2191 
zs_unregister_migration(struct zs_pool * pool)2192 static void zs_unregister_migration(struct zs_pool *pool)
2193 {
2194 	pool->destroying = true;
2195 	/*
2196 	 * We need a memory barrier here to ensure global visibility of
2197 	 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2198 	 * case we don't care, or it will be > 0 and pool->destroying will
2199 	 * ensure that we wake up once isolation hits 0.
2200 	 */
2201 	smp_mb();
2202 	wait_for_isolated_drain(pool); /* This can block */
2203 	flush_work(&pool->free_work);
2204 	iput(pool->inode);
2205 }
2206 
2207 /*
2208  * Caller should hold page_lock of all pages in the zspage
2209  * In here, we cannot use zspage meta data.
2210  */
async_free_zspage(struct work_struct * work)2211 static void async_free_zspage(struct work_struct *work)
2212 {
2213 	int i;
2214 	struct size_class *class;
2215 	unsigned int class_idx;
2216 	enum fullness_group fullness;
2217 	struct zspage *zspage, *tmp;
2218 	LIST_HEAD(free_pages);
2219 	struct zs_pool *pool = container_of(work, struct zs_pool,
2220 					free_work);
2221 
2222 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2223 		class = pool->size_class[i];
2224 		if (class->index != i)
2225 			continue;
2226 
2227 		spin_lock(&class->lock);
2228 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2229 		spin_unlock(&class->lock);
2230 	}
2231 
2232 
2233 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2234 		list_del(&zspage->list);
2235 		lock_zspage(zspage);
2236 
2237 		get_zspage_mapping(zspage, &class_idx, &fullness);
2238 		VM_BUG_ON(fullness != ZS_EMPTY);
2239 		class = pool->size_class[class_idx];
2240 		spin_lock(&class->lock);
2241 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2242 		spin_unlock(&class->lock);
2243 	}
2244 };
2245 
kick_deferred_free(struct zs_pool * pool)2246 static void kick_deferred_free(struct zs_pool *pool)
2247 {
2248 	schedule_work(&pool->free_work);
2249 }
2250 
init_deferred_free(struct zs_pool * pool)2251 static void init_deferred_free(struct zs_pool *pool)
2252 {
2253 	INIT_WORK(&pool->free_work, async_free_zspage);
2254 }
2255 
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)2256 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2257 {
2258 	struct page *page = get_first_page(zspage);
2259 
2260 	do {
2261 		WARN_ON(!trylock_page(page));
2262 		__SetPageMovable(page, pool->inode->i_mapping);
2263 		unlock_page(page);
2264 	} while ((page = get_next_page(page)) != NULL);
2265 }
2266 #endif
2267 
2268 /*
2269  *
2270  * Based on the number of unused allocated objects calculate
2271  * and return the number of pages that we can free.
2272  */
zs_can_compact(struct size_class * class)2273 static unsigned long zs_can_compact(struct size_class *class)
2274 {
2275 	unsigned long obj_wasted;
2276 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2277 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2278 
2279 	if (obj_allocated <= obj_used)
2280 		return 0;
2281 
2282 	obj_wasted = obj_allocated - obj_used;
2283 	obj_wasted /= class->objs_per_zspage;
2284 
2285 	return obj_wasted * class->pages_per_zspage;
2286 }
2287 
__zs_compact(struct zs_pool * pool,struct size_class * class)2288 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2289 {
2290 	struct zs_compact_control cc;
2291 	struct zspage *src_zspage;
2292 	struct zspage *dst_zspage = NULL;
2293 
2294 	spin_lock(&class->lock);
2295 	while ((src_zspage = isolate_zspage(class, true))) {
2296 
2297 		if (!zs_can_compact(class))
2298 			break;
2299 
2300 		cc.obj_idx = 0;
2301 		cc.s_page = get_first_page(src_zspage);
2302 
2303 		while ((dst_zspage = isolate_zspage(class, false))) {
2304 			cc.d_page = get_first_page(dst_zspage);
2305 			/*
2306 			 * If there is no more space in dst_page, resched
2307 			 * and see if anyone had allocated another zspage.
2308 			 */
2309 			if (!migrate_zspage(pool, class, &cc))
2310 				break;
2311 
2312 			putback_zspage(class, dst_zspage);
2313 		}
2314 
2315 		/* Stop if we couldn't find slot */
2316 		if (dst_zspage == NULL)
2317 			break;
2318 
2319 		putback_zspage(class, dst_zspage);
2320 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2321 			free_zspage(pool, class, src_zspage);
2322 			pool->stats.pages_compacted += class->pages_per_zspage;
2323 		}
2324 		spin_unlock(&class->lock);
2325 		cond_resched();
2326 		spin_lock(&class->lock);
2327 	}
2328 
2329 	if (src_zspage)
2330 		putback_zspage(class, src_zspage);
2331 
2332 	spin_unlock(&class->lock);
2333 }
2334 
zs_compact(struct zs_pool * pool)2335 unsigned long zs_compact(struct zs_pool *pool)
2336 {
2337 	int i;
2338 	struct size_class *class;
2339 
2340 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2341 		class = pool->size_class[i];
2342 		if (!class)
2343 			continue;
2344 		if (class->index != i)
2345 			continue;
2346 		__zs_compact(pool, class);
2347 	}
2348 
2349 	return pool->stats.pages_compacted;
2350 }
2351 EXPORT_SYMBOL_GPL(zs_compact);
2352 
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)2353 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2354 {
2355 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2356 }
2357 EXPORT_SYMBOL_GPL(zs_pool_stats);
2358 
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)2359 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2360 		struct shrink_control *sc)
2361 {
2362 	unsigned long pages_freed;
2363 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2364 			shrinker);
2365 
2366 	pages_freed = pool->stats.pages_compacted;
2367 	/*
2368 	 * Compact classes and calculate compaction delta.
2369 	 * Can run concurrently with a manually triggered
2370 	 * (by user) compaction.
2371 	 */
2372 	pages_freed = zs_compact(pool) - pages_freed;
2373 
2374 	return pages_freed ? pages_freed : SHRINK_STOP;
2375 }
2376 
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)2377 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2378 		struct shrink_control *sc)
2379 {
2380 	int i;
2381 	struct size_class *class;
2382 	unsigned long pages_to_free = 0;
2383 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2384 			shrinker);
2385 
2386 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2387 		class = pool->size_class[i];
2388 		if (!class)
2389 			continue;
2390 		if (class->index != i)
2391 			continue;
2392 
2393 		pages_to_free += zs_can_compact(class);
2394 	}
2395 
2396 	return pages_to_free;
2397 }
2398 
zs_unregister_shrinker(struct zs_pool * pool)2399 static void zs_unregister_shrinker(struct zs_pool *pool)
2400 {
2401 	unregister_shrinker(&pool->shrinker);
2402 }
2403 
zs_register_shrinker(struct zs_pool * pool)2404 static int zs_register_shrinker(struct zs_pool *pool)
2405 {
2406 	pool->shrinker.scan_objects = zs_shrinker_scan;
2407 	pool->shrinker.count_objects = zs_shrinker_count;
2408 	pool->shrinker.batch = 0;
2409 	pool->shrinker.seeks = DEFAULT_SEEKS;
2410 
2411 	return register_shrinker(&pool->shrinker);
2412 }
2413 
2414 /**
2415  * zs_create_pool - Creates an allocation pool to work from.
2416  * @name: pool name to be created
2417  *
2418  * This function must be called before anything when using
2419  * the zsmalloc allocator.
2420  *
2421  * On success, a pointer to the newly created pool is returned,
2422  * otherwise NULL.
2423  */
zs_create_pool(const char * name)2424 struct zs_pool *zs_create_pool(const char *name)
2425 {
2426 	int i;
2427 	struct zs_pool *pool;
2428 	struct size_class *prev_class = NULL;
2429 
2430 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2431 	if (!pool)
2432 		return NULL;
2433 
2434 	init_deferred_free(pool);
2435 
2436 	pool->name = kstrdup(name, GFP_KERNEL);
2437 	if (!pool->name)
2438 		goto err;
2439 
2440 #ifdef CONFIG_COMPACTION
2441 	init_waitqueue_head(&pool->migration_wait);
2442 #endif
2443 
2444 	if (create_cache(pool))
2445 		goto err;
2446 
2447 	/*
2448 	 * Iterate reversely, because, size of size_class that we want to use
2449 	 * for merging should be larger or equal to current size.
2450 	 */
2451 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2452 		int size;
2453 		int pages_per_zspage;
2454 		int objs_per_zspage;
2455 		struct size_class *class;
2456 		int fullness = 0;
2457 
2458 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2459 		if (size > ZS_MAX_ALLOC_SIZE)
2460 			size = ZS_MAX_ALLOC_SIZE;
2461 		pages_per_zspage = get_pages_per_zspage(size);
2462 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2463 
2464 		/*
2465 		 * We iterate from biggest down to smallest classes,
2466 		 * so huge_class_size holds the size of the first huge
2467 		 * class. Any object bigger than or equal to that will
2468 		 * endup in the huge class.
2469 		 */
2470 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2471 				!huge_class_size) {
2472 			huge_class_size = size;
2473 			/*
2474 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2475 			 * handle. We need to subtract it, because zs_malloc()
2476 			 * unconditionally adds handle size before it performs
2477 			 * size class search - so object may be smaller than
2478 			 * huge class size, yet it still can end up in the huge
2479 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2480 			 * right before class lookup.
2481 			 */
2482 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2483 		}
2484 
2485 		/*
2486 		 * size_class is used for normal zsmalloc operation such
2487 		 * as alloc/free for that size. Although it is natural that we
2488 		 * have one size_class for each size, there is a chance that we
2489 		 * can get more memory utilization if we use one size_class for
2490 		 * many different sizes whose size_class have same
2491 		 * characteristics. So, we makes size_class point to
2492 		 * previous size_class if possible.
2493 		 */
2494 		if (prev_class) {
2495 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2496 				pool->size_class[i] = prev_class;
2497 				continue;
2498 			}
2499 		}
2500 
2501 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2502 		if (!class)
2503 			goto err;
2504 
2505 		class->size = size;
2506 		class->index = i;
2507 		class->pages_per_zspage = pages_per_zspage;
2508 		class->objs_per_zspage = objs_per_zspage;
2509 		spin_lock_init(&class->lock);
2510 		pool->size_class[i] = class;
2511 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2512 							fullness++)
2513 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2514 
2515 		prev_class = class;
2516 	}
2517 
2518 	/* debug only, don't abort if it fails */
2519 	zs_pool_stat_create(pool, name);
2520 
2521 	if (zs_register_migration(pool))
2522 		goto err;
2523 
2524 	/*
2525 	 * Not critical since shrinker is only used to trigger internal
2526 	 * defragmentation of the pool which is pretty optional thing.  If
2527 	 * registration fails we still can use the pool normally and user can
2528 	 * trigger compaction manually. Thus, ignore return code.
2529 	 */
2530 	zs_register_shrinker(pool);
2531 
2532 	return pool;
2533 
2534 err:
2535 	zs_destroy_pool(pool);
2536 	return NULL;
2537 }
2538 EXPORT_SYMBOL_GPL(zs_create_pool);
2539 
zs_destroy_pool(struct zs_pool * pool)2540 void zs_destroy_pool(struct zs_pool *pool)
2541 {
2542 	int i;
2543 
2544 	zs_unregister_shrinker(pool);
2545 	zs_unregister_migration(pool);
2546 	zs_pool_stat_destroy(pool);
2547 
2548 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2549 		int fg;
2550 		struct size_class *class = pool->size_class[i];
2551 
2552 		if (!class)
2553 			continue;
2554 
2555 		if (class->index != i)
2556 			continue;
2557 
2558 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2559 			if (!list_empty(&class->fullness_list[fg])) {
2560 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2561 					class->size, fg);
2562 			}
2563 		}
2564 		kfree(class);
2565 	}
2566 
2567 	destroy_cache(pool);
2568 	kfree(pool->name);
2569 	kfree(pool);
2570 }
2571 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2572 
zs_init(void)2573 static int __init zs_init(void)
2574 {
2575 	int ret;
2576 
2577 	ret = zsmalloc_mount();
2578 	if (ret)
2579 		goto out;
2580 
2581 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2582 				zs_cpu_prepare, zs_cpu_dead);
2583 	if (ret)
2584 		goto hp_setup_fail;
2585 
2586 #ifdef CONFIG_ZPOOL
2587 	zpool_register_driver(&zs_zpool_driver);
2588 #endif
2589 
2590 	zs_stat_init();
2591 
2592 	return 0;
2593 
2594 hp_setup_fail:
2595 	zsmalloc_unmount();
2596 out:
2597 	return ret;
2598 }
2599 
zs_exit(void)2600 static void __exit zs_exit(void)
2601 {
2602 #ifdef CONFIG_ZPOOL
2603 	zpool_unregister_driver(&zs_zpool_driver);
2604 #endif
2605 	zsmalloc_unmount();
2606 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2607 
2608 	zs_stat_exit();
2609 }
2610 
2611 module_init(zs_init);
2612 module_exit(zs_exit);
2613 
2614 MODULE_LICENSE("Dual BSD/GPL");
2615 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2616