1 /*
2 * af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 */
42
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64
65 #include "af_can.h"
66
67 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
68 MODULE_LICENSE("Dual BSD/GPL");
69 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
70 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
71
72 MODULE_ALIAS_NETPROTO(PF_CAN);
73
74 static int stats_timer __read_mostly = 1;
75 module_param(stats_timer, int, 0444);
76 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
77
78 static struct kmem_cache *rcv_cache __read_mostly;
79
80 /* table of registered CAN protocols */
81 static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
82 static DEFINE_MUTEX(proto_tab_lock);
83
84 static atomic_t skbcounter = ATOMIC_INIT(0);
85
86 /*
87 * af_can socket functions
88 */
89
can_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)90 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
91 {
92 struct sock *sk = sock->sk;
93
94 switch (cmd) {
95
96 case SIOCGSTAMP:
97 return sock_get_timestamp(sk, (struct timeval __user *)arg);
98
99 default:
100 return -ENOIOCTLCMD;
101 }
102 }
103 EXPORT_SYMBOL(can_ioctl);
104
can_sock_destruct(struct sock * sk)105 static void can_sock_destruct(struct sock *sk)
106 {
107 skb_queue_purge(&sk->sk_receive_queue);
108 skb_queue_purge(&sk->sk_error_queue);
109 }
110
can_get_proto(int protocol)111 static const struct can_proto *can_get_proto(int protocol)
112 {
113 const struct can_proto *cp;
114
115 rcu_read_lock();
116 cp = rcu_dereference(proto_tab[protocol]);
117 if (cp && !try_module_get(cp->prot->owner))
118 cp = NULL;
119 rcu_read_unlock();
120
121 return cp;
122 }
123
can_put_proto(const struct can_proto * cp)124 static inline void can_put_proto(const struct can_proto *cp)
125 {
126 module_put(cp->prot->owner);
127 }
128
can_create(struct net * net,struct socket * sock,int protocol,int kern)129 static int can_create(struct net *net, struct socket *sock, int protocol,
130 int kern)
131 {
132 struct sock *sk;
133 const struct can_proto *cp;
134 int err = 0;
135
136 sock->state = SS_UNCONNECTED;
137
138 if (protocol < 0 || protocol >= CAN_NPROTO)
139 return -EINVAL;
140
141 cp = can_get_proto(protocol);
142
143 #ifdef CONFIG_MODULES
144 if (!cp) {
145 /* try to load protocol module if kernel is modular */
146
147 err = request_module("can-proto-%d", protocol);
148
149 /*
150 * In case of error we only print a message but don't
151 * return the error code immediately. Below we will
152 * return -EPROTONOSUPPORT
153 */
154 if (err)
155 printk_ratelimited(KERN_ERR "can: request_module "
156 "(can-proto-%d) failed.\n", protocol);
157
158 cp = can_get_proto(protocol);
159 }
160 #endif
161
162 /* check for available protocol and correct usage */
163
164 if (!cp)
165 return -EPROTONOSUPPORT;
166
167 if (cp->type != sock->type) {
168 err = -EPROTOTYPE;
169 goto errout;
170 }
171
172 sock->ops = cp->ops;
173
174 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
175 if (!sk) {
176 err = -ENOMEM;
177 goto errout;
178 }
179
180 sock_init_data(sock, sk);
181 sk->sk_destruct = can_sock_destruct;
182
183 if (sk->sk_prot->init)
184 err = sk->sk_prot->init(sk);
185
186 if (err) {
187 /* release sk on errors */
188 sock_orphan(sk);
189 sock_put(sk);
190 }
191
192 errout:
193 can_put_proto(cp);
194 return err;
195 }
196
197 /*
198 * af_can tx path
199 */
200
201 /**
202 * can_send - transmit a CAN frame (optional with local loopback)
203 * @skb: pointer to socket buffer with CAN frame in data section
204 * @loop: loopback for listeners on local CAN sockets (recommended default!)
205 *
206 * Due to the loopback this routine must not be called from hardirq context.
207 *
208 * Return:
209 * 0 on success
210 * -ENETDOWN when the selected interface is down
211 * -ENOBUFS on full driver queue (see net_xmit_errno())
212 * -ENOMEM when local loopback failed at calling skb_clone()
213 * -EPERM when trying to send on a non-CAN interface
214 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU
215 * -EINVAL when the skb->data does not contain a valid CAN frame
216 */
can_send(struct sk_buff * skb,int loop)217 int can_send(struct sk_buff *skb, int loop)
218 {
219 struct sk_buff *newskb = NULL;
220 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
221 struct s_stats *can_stats = dev_net(skb->dev)->can.can_stats;
222 int err = -EINVAL;
223
224 if (skb->len == CAN_MTU) {
225 skb->protocol = htons(ETH_P_CAN);
226 if (unlikely(cfd->len > CAN_MAX_DLEN))
227 goto inval_skb;
228 } else if (skb->len == CANFD_MTU) {
229 skb->protocol = htons(ETH_P_CANFD);
230 if (unlikely(cfd->len > CANFD_MAX_DLEN))
231 goto inval_skb;
232 } else
233 goto inval_skb;
234
235 /*
236 * Make sure the CAN frame can pass the selected CAN netdevice.
237 * As structs can_frame and canfd_frame are similar, we can provide
238 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
239 */
240 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
241 err = -EMSGSIZE;
242 goto inval_skb;
243 }
244
245 if (unlikely(skb->dev->type != ARPHRD_CAN)) {
246 err = -EPERM;
247 goto inval_skb;
248 }
249
250 if (unlikely(!(skb->dev->flags & IFF_UP))) {
251 err = -ENETDOWN;
252 goto inval_skb;
253 }
254
255 skb->ip_summed = CHECKSUM_UNNECESSARY;
256
257 skb_reset_mac_header(skb);
258 skb_reset_network_header(skb);
259 skb_reset_transport_header(skb);
260
261 if (loop) {
262 /* local loopback of sent CAN frames */
263
264 /* indication for the CAN driver: do loopback */
265 skb->pkt_type = PACKET_LOOPBACK;
266
267 /*
268 * The reference to the originating sock may be required
269 * by the receiving socket to check whether the frame is
270 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
271 * Therefore we have to ensure that skb->sk remains the
272 * reference to the originating sock by restoring skb->sk
273 * after each skb_clone() or skb_orphan() usage.
274 */
275
276 if (!(skb->dev->flags & IFF_ECHO)) {
277 /*
278 * If the interface is not capable to do loopback
279 * itself, we do it here.
280 */
281 newskb = skb_clone(skb, GFP_ATOMIC);
282 if (!newskb) {
283 kfree_skb(skb);
284 return -ENOMEM;
285 }
286
287 can_skb_set_owner(newskb, skb->sk);
288 newskb->ip_summed = CHECKSUM_UNNECESSARY;
289 newskb->pkt_type = PACKET_BROADCAST;
290 }
291 } else {
292 /* indication for the CAN driver: no loopback required */
293 skb->pkt_type = PACKET_HOST;
294 }
295
296 /* send to netdevice */
297 err = dev_queue_xmit(skb);
298 if (err > 0)
299 err = net_xmit_errno(err);
300
301 if (err) {
302 kfree_skb(newskb);
303 return err;
304 }
305
306 if (newskb)
307 netif_rx_ni(newskb);
308
309 /* update statistics */
310 can_stats->tx_frames++;
311 can_stats->tx_frames_delta++;
312
313 return 0;
314
315 inval_skb:
316 kfree_skb(skb);
317 return err;
318 }
319 EXPORT_SYMBOL(can_send);
320
321 /*
322 * af_can rx path
323 */
324
find_dev_rcv_lists(struct net * net,struct net_device * dev)325 static struct can_dev_rcv_lists *find_dev_rcv_lists(struct net *net,
326 struct net_device *dev)
327 {
328 if (!dev)
329 return net->can.can_rx_alldev_list;
330 else
331 return (struct can_dev_rcv_lists *)dev->ml_priv;
332 }
333
334 /**
335 * effhash - hash function for 29 bit CAN identifier reduction
336 * @can_id: 29 bit CAN identifier
337 *
338 * Description:
339 * To reduce the linear traversal in one linked list of _single_ EFF CAN
340 * frame subscriptions the 29 bit identifier is mapped to 10 bits.
341 * (see CAN_EFF_RCV_HASH_BITS definition)
342 *
343 * Return:
344 * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
345 */
effhash(canid_t can_id)346 static unsigned int effhash(canid_t can_id)
347 {
348 unsigned int hash;
349
350 hash = can_id;
351 hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
352 hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
353
354 return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
355 }
356
357 /**
358 * find_rcv_list - determine optimal filterlist inside device filter struct
359 * @can_id: pointer to CAN identifier of a given can_filter
360 * @mask: pointer to CAN mask of a given can_filter
361 * @d: pointer to the device filter struct
362 *
363 * Description:
364 * Returns the optimal filterlist to reduce the filter handling in the
365 * receive path. This function is called by service functions that need
366 * to register or unregister a can_filter in the filter lists.
367 *
368 * A filter matches in general, when
369 *
370 * <received_can_id> & mask == can_id & mask
371 *
372 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
373 * relevant bits for the filter.
374 *
375 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
376 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
377 * frames there is a special filterlist and a special rx path filter handling.
378 *
379 * Return:
380 * Pointer to optimal filterlist for the given can_id/mask pair.
381 * Constistency checked mask.
382 * Reduced can_id to have a preprocessed filter compare value.
383 */
find_rcv_list(canid_t * can_id,canid_t * mask,struct can_dev_rcv_lists * d)384 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
385 struct can_dev_rcv_lists *d)
386 {
387 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
388
389 /* filter for error message frames in extra filterlist */
390 if (*mask & CAN_ERR_FLAG) {
391 /* clear CAN_ERR_FLAG in filter entry */
392 *mask &= CAN_ERR_MASK;
393 return &d->rx[RX_ERR];
394 }
395
396 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
397
398 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
399
400 /* ensure valid values in can_mask for 'SFF only' frame filtering */
401 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
402 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
403
404 /* reduce condition testing at receive time */
405 *can_id &= *mask;
406
407 /* inverse can_id/can_mask filter */
408 if (inv)
409 return &d->rx[RX_INV];
410
411 /* mask == 0 => no condition testing at receive time */
412 if (!(*mask))
413 return &d->rx[RX_ALL];
414
415 /* extra filterlists for the subscription of a single non-RTR can_id */
416 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
417 !(*can_id & CAN_RTR_FLAG)) {
418
419 if (*can_id & CAN_EFF_FLAG) {
420 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
421 return &d->rx_eff[effhash(*can_id)];
422 } else {
423 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
424 return &d->rx_sff[*can_id];
425 }
426 }
427
428 /* default: filter via can_id/can_mask */
429 return &d->rx[RX_FIL];
430 }
431
432 /**
433 * can_rx_register - subscribe CAN frames from a specific interface
434 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
435 * @can_id: CAN identifier (see description)
436 * @mask: CAN mask (see description)
437 * @func: callback function on filter match
438 * @data: returned parameter for callback function
439 * @ident: string for calling module identification
440 * @sk: socket pointer (might be NULL)
441 *
442 * Description:
443 * Invokes the callback function with the received sk_buff and the given
444 * parameter 'data' on a matching receive filter. A filter matches, when
445 *
446 * <received_can_id> & mask == can_id & mask
447 *
448 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
449 * filter for error message frames (CAN_ERR_FLAG bit set in mask).
450 *
451 * The provided pointer to the sk_buff is guaranteed to be valid as long as
452 * the callback function is running. The callback function must *not* free
453 * the given sk_buff while processing it's task. When the given sk_buff is
454 * needed after the end of the callback function it must be cloned inside
455 * the callback function with skb_clone().
456 *
457 * Return:
458 * 0 on success
459 * -ENOMEM on missing cache mem to create subscription entry
460 * -ENODEV unknown device
461 */
can_rx_register(struct net * net,struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data,char * ident,struct sock * sk)462 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
463 canid_t mask, void (*func)(struct sk_buff *, void *),
464 void *data, char *ident, struct sock *sk)
465 {
466 struct receiver *r;
467 struct hlist_head *rl;
468 struct can_dev_rcv_lists *d;
469 struct s_pstats *can_pstats = net->can.can_pstats;
470 int err = 0;
471
472 /* insert new receiver (dev,canid,mask) -> (func,data) */
473
474 if (dev && dev->type != ARPHRD_CAN)
475 return -ENODEV;
476
477 if (dev && !net_eq(net, dev_net(dev)))
478 return -ENODEV;
479
480 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
481 if (!r)
482 return -ENOMEM;
483
484 spin_lock(&net->can.can_rcvlists_lock);
485
486 d = find_dev_rcv_lists(net, dev);
487 if (d) {
488 rl = find_rcv_list(&can_id, &mask, d);
489
490 r->can_id = can_id;
491 r->mask = mask;
492 r->matches = 0;
493 r->func = func;
494 r->data = data;
495 r->ident = ident;
496 r->sk = sk;
497
498 hlist_add_head_rcu(&r->list, rl);
499 d->entries++;
500
501 can_pstats->rcv_entries++;
502 if (can_pstats->rcv_entries_max < can_pstats->rcv_entries)
503 can_pstats->rcv_entries_max = can_pstats->rcv_entries;
504 } else {
505 kmem_cache_free(rcv_cache, r);
506 err = -ENODEV;
507 }
508
509 spin_unlock(&net->can.can_rcvlists_lock);
510
511 return err;
512 }
513 EXPORT_SYMBOL(can_rx_register);
514
515 /*
516 * can_rx_delete_receiver - rcu callback for single receiver entry removal
517 */
can_rx_delete_receiver(struct rcu_head * rp)518 static void can_rx_delete_receiver(struct rcu_head *rp)
519 {
520 struct receiver *r = container_of(rp, struct receiver, rcu);
521 struct sock *sk = r->sk;
522
523 kmem_cache_free(rcv_cache, r);
524 if (sk)
525 sock_put(sk);
526 }
527
528 /**
529 * can_rx_unregister - unsubscribe CAN frames from a specific interface
530 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
531 * @can_id: CAN identifier
532 * @mask: CAN mask
533 * @func: callback function on filter match
534 * @data: returned parameter for callback function
535 *
536 * Description:
537 * Removes subscription entry depending on given (subscription) values.
538 */
can_rx_unregister(struct net * net,struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data)539 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
540 canid_t mask, void (*func)(struct sk_buff *, void *),
541 void *data)
542 {
543 struct receiver *r = NULL;
544 struct hlist_head *rl;
545 struct s_pstats *can_pstats = net->can.can_pstats;
546 struct can_dev_rcv_lists *d;
547
548 if (dev && dev->type != ARPHRD_CAN)
549 return;
550
551 if (dev && !net_eq(net, dev_net(dev)))
552 return;
553
554 spin_lock(&net->can.can_rcvlists_lock);
555
556 d = find_dev_rcv_lists(net, dev);
557 if (!d) {
558 pr_err("BUG: receive list not found for "
559 "dev %s, id %03X, mask %03X\n",
560 DNAME(dev), can_id, mask);
561 goto out;
562 }
563
564 rl = find_rcv_list(&can_id, &mask, d);
565
566 /*
567 * Search the receiver list for the item to delete. This should
568 * exist, since no receiver may be unregistered that hasn't
569 * been registered before.
570 */
571
572 hlist_for_each_entry_rcu(r, rl, list) {
573 if (r->can_id == can_id && r->mask == mask &&
574 r->func == func && r->data == data)
575 break;
576 }
577
578 /*
579 * Check for bugs in CAN protocol implementations using af_can.c:
580 * 'r' will be NULL if no matching list item was found for removal.
581 */
582
583 if (!r) {
584 WARN(1, "BUG: receive list entry not found for dev %s, "
585 "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
586 goto out;
587 }
588
589 hlist_del_rcu(&r->list);
590 d->entries--;
591
592 if (can_pstats->rcv_entries > 0)
593 can_pstats->rcv_entries--;
594
595 /* remove device structure requested by NETDEV_UNREGISTER */
596 if (d->remove_on_zero_entries && !d->entries) {
597 kfree(d);
598 dev->ml_priv = NULL;
599 }
600
601 out:
602 spin_unlock(&net->can.can_rcvlists_lock);
603
604 /* schedule the receiver item for deletion */
605 if (r) {
606 if (r->sk)
607 sock_hold(r->sk);
608 call_rcu(&r->rcu, can_rx_delete_receiver);
609 }
610 }
611 EXPORT_SYMBOL(can_rx_unregister);
612
deliver(struct sk_buff * skb,struct receiver * r)613 static inline void deliver(struct sk_buff *skb, struct receiver *r)
614 {
615 r->func(skb, r->data);
616 r->matches++;
617 }
618
can_rcv_filter(struct can_dev_rcv_lists * d,struct sk_buff * skb)619 static int can_rcv_filter(struct can_dev_rcv_lists *d, struct sk_buff *skb)
620 {
621 struct receiver *r;
622 int matches = 0;
623 struct can_frame *cf = (struct can_frame *)skb->data;
624 canid_t can_id = cf->can_id;
625
626 if (d->entries == 0)
627 return 0;
628
629 if (can_id & CAN_ERR_FLAG) {
630 /* check for error message frame entries only */
631 hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
632 if (can_id & r->mask) {
633 deliver(skb, r);
634 matches++;
635 }
636 }
637 return matches;
638 }
639
640 /* check for unfiltered entries */
641 hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
642 deliver(skb, r);
643 matches++;
644 }
645
646 /* check for can_id/mask entries */
647 hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
648 if ((can_id & r->mask) == r->can_id) {
649 deliver(skb, r);
650 matches++;
651 }
652 }
653
654 /* check for inverted can_id/mask entries */
655 hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
656 if ((can_id & r->mask) != r->can_id) {
657 deliver(skb, r);
658 matches++;
659 }
660 }
661
662 /* check filterlists for single non-RTR can_ids */
663 if (can_id & CAN_RTR_FLAG)
664 return matches;
665
666 if (can_id & CAN_EFF_FLAG) {
667 hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
668 if (r->can_id == can_id) {
669 deliver(skb, r);
670 matches++;
671 }
672 }
673 } else {
674 can_id &= CAN_SFF_MASK;
675 hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
676 deliver(skb, r);
677 matches++;
678 }
679 }
680
681 return matches;
682 }
683
can_receive(struct sk_buff * skb,struct net_device * dev)684 static void can_receive(struct sk_buff *skb, struct net_device *dev)
685 {
686 struct can_dev_rcv_lists *d;
687 struct net *net = dev_net(dev);
688 struct s_stats *can_stats = net->can.can_stats;
689 int matches;
690
691 /* update statistics */
692 can_stats->rx_frames++;
693 can_stats->rx_frames_delta++;
694
695 /* create non-zero unique skb identifier together with *skb */
696 while (!(can_skb_prv(skb)->skbcnt))
697 can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
698
699 rcu_read_lock();
700
701 /* deliver the packet to sockets listening on all devices */
702 matches = can_rcv_filter(net->can.can_rx_alldev_list, skb);
703
704 /* find receive list for this device */
705 d = find_dev_rcv_lists(net, dev);
706 if (d)
707 matches += can_rcv_filter(d, skb);
708
709 rcu_read_unlock();
710
711 /* consume the skbuff allocated by the netdevice driver */
712 consume_skb(skb);
713
714 if (matches > 0) {
715 can_stats->matches++;
716 can_stats->matches_delta++;
717 }
718 }
719
can_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)720 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
721 struct packet_type *pt, struct net_device *orig_dev)
722 {
723 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
724
725 if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU ||
726 cfd->len > CAN_MAX_DLEN)) {
727 pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n",
728 dev->type, skb->len, cfd->len);
729 kfree_skb(skb);
730 return NET_RX_DROP;
731 }
732
733 can_receive(skb, dev);
734 return NET_RX_SUCCESS;
735 }
736
canfd_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)737 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
738 struct packet_type *pt, struct net_device *orig_dev)
739 {
740 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
741
742 if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU ||
743 cfd->len > CANFD_MAX_DLEN)) {
744 pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n",
745 dev->type, skb->len, cfd->len);
746 kfree_skb(skb);
747 return NET_RX_DROP;
748 }
749
750 can_receive(skb, dev);
751 return NET_RX_SUCCESS;
752 }
753
754 /*
755 * af_can protocol functions
756 */
757
758 /**
759 * can_proto_register - register CAN transport protocol
760 * @cp: pointer to CAN protocol structure
761 *
762 * Return:
763 * 0 on success
764 * -EINVAL invalid (out of range) protocol number
765 * -EBUSY protocol already in use
766 * -ENOBUF if proto_register() fails
767 */
can_proto_register(const struct can_proto * cp)768 int can_proto_register(const struct can_proto *cp)
769 {
770 int proto = cp->protocol;
771 int err = 0;
772
773 if (proto < 0 || proto >= CAN_NPROTO) {
774 pr_err("can: protocol number %d out of range\n", proto);
775 return -EINVAL;
776 }
777
778 err = proto_register(cp->prot, 0);
779 if (err < 0)
780 return err;
781
782 mutex_lock(&proto_tab_lock);
783
784 if (rcu_access_pointer(proto_tab[proto])) {
785 pr_err("can: protocol %d already registered\n", proto);
786 err = -EBUSY;
787 } else
788 RCU_INIT_POINTER(proto_tab[proto], cp);
789
790 mutex_unlock(&proto_tab_lock);
791
792 if (err < 0)
793 proto_unregister(cp->prot);
794
795 return err;
796 }
797 EXPORT_SYMBOL(can_proto_register);
798
799 /**
800 * can_proto_unregister - unregister CAN transport protocol
801 * @cp: pointer to CAN protocol structure
802 */
can_proto_unregister(const struct can_proto * cp)803 void can_proto_unregister(const struct can_proto *cp)
804 {
805 int proto = cp->protocol;
806
807 mutex_lock(&proto_tab_lock);
808 BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
809 RCU_INIT_POINTER(proto_tab[proto], NULL);
810 mutex_unlock(&proto_tab_lock);
811
812 synchronize_rcu();
813
814 proto_unregister(cp->prot);
815 }
816 EXPORT_SYMBOL(can_proto_unregister);
817
818 /*
819 * af_can notifier to create/remove CAN netdevice specific structs
820 */
can_notifier(struct notifier_block * nb,unsigned long msg,void * ptr)821 static int can_notifier(struct notifier_block *nb, unsigned long msg,
822 void *ptr)
823 {
824 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
825 struct can_dev_rcv_lists *d;
826
827 if (dev->type != ARPHRD_CAN)
828 return NOTIFY_DONE;
829
830 switch (msg) {
831
832 case NETDEV_REGISTER:
833
834 /* create new dev_rcv_lists for this device */
835 d = kzalloc(sizeof(*d), GFP_KERNEL);
836 if (!d)
837 return NOTIFY_DONE;
838 BUG_ON(dev->ml_priv);
839 dev->ml_priv = d;
840
841 break;
842
843 case NETDEV_UNREGISTER:
844 spin_lock(&dev_net(dev)->can.can_rcvlists_lock);
845
846 d = dev->ml_priv;
847 if (d) {
848 if (d->entries)
849 d->remove_on_zero_entries = 1;
850 else {
851 kfree(d);
852 dev->ml_priv = NULL;
853 }
854 } else
855 pr_err("can: notifier: receive list not found for dev "
856 "%s\n", dev->name);
857
858 spin_unlock(&dev_net(dev)->can.can_rcvlists_lock);
859
860 break;
861 }
862
863 return NOTIFY_DONE;
864 }
865
can_pernet_init(struct net * net)866 static int can_pernet_init(struct net *net)
867 {
868 spin_lock_init(&net->can.can_rcvlists_lock);
869 net->can.can_rx_alldev_list =
870 kzalloc(sizeof(struct can_dev_rcv_lists), GFP_KERNEL);
871 if (!net->can.can_rx_alldev_list)
872 goto out;
873 net->can.can_stats = kzalloc(sizeof(struct s_stats), GFP_KERNEL);
874 if (!net->can.can_stats)
875 goto out_free_alldev_list;
876 net->can.can_pstats = kzalloc(sizeof(struct s_pstats), GFP_KERNEL);
877 if (!net->can.can_pstats)
878 goto out_free_can_stats;
879
880 if (IS_ENABLED(CONFIG_PROC_FS)) {
881 /* the statistics are updated every second (timer triggered) */
882 if (stats_timer) {
883 timer_setup(&net->can.can_stattimer, can_stat_update,
884 0);
885 mod_timer(&net->can.can_stattimer,
886 round_jiffies(jiffies + HZ));
887 }
888 net->can.can_stats->jiffies_init = jiffies;
889 can_init_proc(net);
890 }
891
892 return 0;
893
894 out_free_can_stats:
895 kfree(net->can.can_stats);
896 out_free_alldev_list:
897 kfree(net->can.can_rx_alldev_list);
898 out:
899 return -ENOMEM;
900 }
901
can_pernet_exit(struct net * net)902 static void can_pernet_exit(struct net *net)
903 {
904 struct net_device *dev;
905
906 if (IS_ENABLED(CONFIG_PROC_FS)) {
907 can_remove_proc(net);
908 if (stats_timer)
909 del_timer_sync(&net->can.can_stattimer);
910 }
911
912 /* remove created dev_rcv_lists from still registered CAN devices */
913 rcu_read_lock();
914 for_each_netdev_rcu(net, dev) {
915 if (dev->type == ARPHRD_CAN && dev->ml_priv) {
916 struct can_dev_rcv_lists *d = dev->ml_priv;
917
918 BUG_ON(d->entries);
919 kfree(d);
920 dev->ml_priv = NULL;
921 }
922 }
923 rcu_read_unlock();
924
925 kfree(net->can.can_rx_alldev_list);
926 kfree(net->can.can_stats);
927 kfree(net->can.can_pstats);
928 }
929
930 /*
931 * af_can module init/exit functions
932 */
933
934 static struct packet_type can_packet __read_mostly = {
935 .type = cpu_to_be16(ETH_P_CAN),
936 .func = can_rcv,
937 };
938
939 static struct packet_type canfd_packet __read_mostly = {
940 .type = cpu_to_be16(ETH_P_CANFD),
941 .func = canfd_rcv,
942 };
943
944 static const struct net_proto_family can_family_ops = {
945 .family = PF_CAN,
946 .create = can_create,
947 .owner = THIS_MODULE,
948 };
949
950 /* notifier block for netdevice event */
951 static struct notifier_block can_netdev_notifier __read_mostly = {
952 .notifier_call = can_notifier,
953 };
954
955 static struct pernet_operations can_pernet_ops __read_mostly = {
956 .init = can_pernet_init,
957 .exit = can_pernet_exit,
958 };
959
can_init(void)960 static __init int can_init(void)
961 {
962 int err;
963
964 /* check for correct padding to be able to use the structs similarly */
965 BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
966 offsetof(struct canfd_frame, len) ||
967 offsetof(struct can_frame, data) !=
968 offsetof(struct canfd_frame, data));
969
970 pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
971
972 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
973 0, 0, NULL);
974 if (!rcv_cache)
975 return -ENOMEM;
976
977 err = register_pernet_subsys(&can_pernet_ops);
978 if (err)
979 goto out_pernet;
980
981 /* protocol register */
982 err = sock_register(&can_family_ops);
983 if (err)
984 goto out_sock;
985 err = register_netdevice_notifier(&can_netdev_notifier);
986 if (err)
987 goto out_notifier;
988
989 dev_add_pack(&can_packet);
990 dev_add_pack(&canfd_packet);
991
992 return 0;
993
994 out_notifier:
995 sock_unregister(PF_CAN);
996 out_sock:
997 unregister_pernet_subsys(&can_pernet_ops);
998 out_pernet:
999 kmem_cache_destroy(rcv_cache);
1000
1001 return err;
1002 }
1003
can_exit(void)1004 static __exit void can_exit(void)
1005 {
1006 /* protocol unregister */
1007 dev_remove_pack(&canfd_packet);
1008 dev_remove_pack(&can_packet);
1009 unregister_netdevice_notifier(&can_netdev_notifier);
1010 sock_unregister(PF_CAN);
1011
1012 unregister_pernet_subsys(&can_pernet_ops);
1013
1014 rcu_barrier(); /* Wait for completion of call_rcu()'s */
1015
1016 kmem_cache_destroy(rcv_cache);
1017 }
1018
1019 module_init(can_init);
1020 module_exit(can_exit);
1021