1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20 #include <linux/uidgid.h>
21
22 #include <net/sock.h>
23 #include <net/netlink.h>
24 #include <net/net_namespace.h>
25 #include <net/netns/generic.h>
26
27 /*
28 * Our network namespace constructor/destructor lists
29 */
30
31 static LIST_HEAD(pernet_list);
32 static struct list_head *first_device = &pernet_list;
33
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36
37 /* Protects net_namespace_list. Nests iside rtnl_lock() */
38 DECLARE_RWSEM(net_rwsem);
39 EXPORT_SYMBOL_GPL(net_rwsem);
40
41 struct net init_net = {
42 .count = REFCOUNT_INIT(1),
43 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
44 };
45 EXPORT_SYMBOL(init_net);
46
47 static bool init_net_initialized;
48 /*
49 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
50 * init_net_initialized and first_device pointer.
51 * This is internal net namespace object. Please, don't use it
52 * outside.
53 */
54 DECLARE_RWSEM(pernet_ops_rwsem);
55 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
56
57 #define MIN_PERNET_OPS_ID \
58 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
59
60 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
61
62 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
63
net_alloc_generic(void)64 static struct net_generic *net_alloc_generic(void)
65 {
66 struct net_generic *ng;
67 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
68
69 ng = kzalloc(generic_size, GFP_KERNEL);
70 if (ng)
71 ng->s.len = max_gen_ptrs;
72
73 return ng;
74 }
75
net_assign_generic(struct net * net,unsigned int id,void * data)76 static int net_assign_generic(struct net *net, unsigned int id, void *data)
77 {
78 struct net_generic *ng, *old_ng;
79
80 BUG_ON(id < MIN_PERNET_OPS_ID);
81
82 old_ng = rcu_dereference_protected(net->gen,
83 lockdep_is_held(&pernet_ops_rwsem));
84 if (old_ng->s.len > id) {
85 old_ng->ptr[id] = data;
86 return 0;
87 }
88
89 ng = net_alloc_generic();
90 if (ng == NULL)
91 return -ENOMEM;
92
93 /*
94 * Some synchronisation notes:
95 *
96 * The net_generic explores the net->gen array inside rcu
97 * read section. Besides once set the net->gen->ptr[x]
98 * pointer never changes (see rules in netns/generic.h).
99 *
100 * That said, we simply duplicate this array and schedule
101 * the old copy for kfree after a grace period.
102 */
103
104 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
105 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
106 ng->ptr[id] = data;
107
108 rcu_assign_pointer(net->gen, ng);
109 kfree_rcu(old_ng, s.rcu);
110 return 0;
111 }
112
ops_init(const struct pernet_operations * ops,struct net * net)113 static int ops_init(const struct pernet_operations *ops, struct net *net)
114 {
115 int err = -ENOMEM;
116 void *data = NULL;
117
118 if (ops->id && ops->size) {
119 data = kzalloc(ops->size, GFP_KERNEL);
120 if (!data)
121 goto out;
122
123 err = net_assign_generic(net, *ops->id, data);
124 if (err)
125 goto cleanup;
126 }
127 err = 0;
128 if (ops->init)
129 err = ops->init(net);
130 if (!err)
131 return 0;
132
133 cleanup:
134 kfree(data);
135
136 out:
137 return err;
138 }
139
ops_free(const struct pernet_operations * ops,struct net * net)140 static void ops_free(const struct pernet_operations *ops, struct net *net)
141 {
142 if (ops->id && ops->size) {
143 kfree(net_generic(net, *ops->id));
144 }
145 }
146
ops_exit_list(const struct pernet_operations * ops,struct list_head * net_exit_list)147 static void ops_exit_list(const struct pernet_operations *ops,
148 struct list_head *net_exit_list)
149 {
150 struct net *net;
151 if (ops->exit) {
152 list_for_each_entry(net, net_exit_list, exit_list)
153 ops->exit(net);
154 }
155 if (ops->exit_batch)
156 ops->exit_batch(net_exit_list);
157 }
158
ops_free_list(const struct pernet_operations * ops,struct list_head * net_exit_list)159 static void ops_free_list(const struct pernet_operations *ops,
160 struct list_head *net_exit_list)
161 {
162 struct net *net;
163 if (ops->size && ops->id) {
164 list_for_each_entry(net, net_exit_list, exit_list)
165 ops_free(ops, net);
166 }
167 }
168
169 /* should be called with nsid_lock held */
alloc_netid(struct net * net,struct net * peer,int reqid)170 static int alloc_netid(struct net *net, struct net *peer, int reqid)
171 {
172 int min = 0, max = 0;
173
174 if (reqid >= 0) {
175 min = reqid;
176 max = reqid + 1;
177 }
178
179 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
180 }
181
182 /* This function is used by idr_for_each(). If net is equal to peer, the
183 * function returns the id so that idr_for_each() stops. Because we cannot
184 * returns the id 0 (idr_for_each() will not stop), we return the magic value
185 * NET_ID_ZERO (-1) for it.
186 */
187 #define NET_ID_ZERO -1
net_eq_idr(int id,void * net,void * peer)188 static int net_eq_idr(int id, void *net, void *peer)
189 {
190 if (net_eq(net, peer))
191 return id ? : NET_ID_ZERO;
192 return 0;
193 }
194
195 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
196 * is set to true, thus the caller knows that the new id must be notified via
197 * rtnl.
198 */
__peernet2id_alloc(struct net * net,struct net * peer,bool * alloc)199 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
200 {
201 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
202 bool alloc_it = *alloc;
203
204 *alloc = false;
205
206 /* Magic value for id 0. */
207 if (id == NET_ID_ZERO)
208 return 0;
209 if (id > 0)
210 return id;
211
212 if (alloc_it) {
213 id = alloc_netid(net, peer, -1);
214 *alloc = true;
215 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
216 }
217
218 return NETNSA_NSID_NOT_ASSIGNED;
219 }
220
221 /* should be called with nsid_lock held */
__peernet2id(struct net * net,struct net * peer)222 static int __peernet2id(struct net *net, struct net *peer)
223 {
224 bool no = false;
225
226 return __peernet2id_alloc(net, peer, &no);
227 }
228
229 static void rtnl_net_notifyid(struct net *net, int cmd, int id, gfp_t gfp);
230 /* This function returns the id of a peer netns. If no id is assigned, one will
231 * be allocated and returned.
232 */
peernet2id_alloc(struct net * net,struct net * peer,gfp_t gfp)233 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
234 {
235 bool alloc = false, alive = false;
236 int id;
237
238 if (refcount_read(&net->count) == 0)
239 return NETNSA_NSID_NOT_ASSIGNED;
240 spin_lock_bh(&net->nsid_lock);
241 /*
242 * When peer is obtained from RCU lists, we may race with
243 * its cleanup. Check whether it's alive, and this guarantees
244 * we never hash a peer back to net->netns_ids, after it has
245 * just been idr_remove()'d from there in cleanup_net().
246 */
247 if (maybe_get_net(peer))
248 alive = alloc = true;
249 id = __peernet2id_alloc(net, peer, &alloc);
250 spin_unlock_bh(&net->nsid_lock);
251 if (alloc && id >= 0)
252 rtnl_net_notifyid(net, RTM_NEWNSID, id, gfp);
253 if (alive)
254 put_net(peer);
255 return id;
256 }
257 EXPORT_SYMBOL_GPL(peernet2id_alloc);
258
259 /* This function returns, if assigned, the id of a peer netns. */
peernet2id(struct net * net,struct net * peer)260 int peernet2id(struct net *net, struct net *peer)
261 {
262 int id;
263
264 spin_lock_bh(&net->nsid_lock);
265 id = __peernet2id(net, peer);
266 spin_unlock_bh(&net->nsid_lock);
267 return id;
268 }
269 EXPORT_SYMBOL(peernet2id);
270
271 /* This function returns true is the peer netns has an id assigned into the
272 * current netns.
273 */
peernet_has_id(struct net * net,struct net * peer)274 bool peernet_has_id(struct net *net, struct net *peer)
275 {
276 return peernet2id(net, peer) >= 0;
277 }
278
get_net_ns_by_id(struct net * net,int id)279 struct net *get_net_ns_by_id(struct net *net, int id)
280 {
281 struct net *peer;
282
283 if (id < 0)
284 return NULL;
285
286 rcu_read_lock();
287 peer = idr_find(&net->netns_ids, id);
288 if (peer)
289 peer = maybe_get_net(peer);
290 rcu_read_unlock();
291
292 return peer;
293 }
294
295 /*
296 * setup_net runs the initializers for the network namespace object.
297 */
setup_net(struct net * net,struct user_namespace * user_ns)298 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
299 {
300 /* Must be called with pernet_ops_rwsem held */
301 const struct pernet_operations *ops, *saved_ops;
302 int error = 0;
303 LIST_HEAD(net_exit_list);
304
305 refcount_set(&net->count, 1);
306 refcount_set(&net->passive, 1);
307 get_random_bytes(&net->hash_mix, sizeof(u32));
308 net->dev_base_seq = 1;
309 net->user_ns = user_ns;
310 idr_init(&net->netns_ids);
311 spin_lock_init(&net->nsid_lock);
312 mutex_init(&net->ipv4.ra_mutex);
313
314 list_for_each_entry(ops, &pernet_list, list) {
315 error = ops_init(ops, net);
316 if (error < 0)
317 goto out_undo;
318 }
319 down_write(&net_rwsem);
320 list_add_tail_rcu(&net->list, &net_namespace_list);
321 up_write(&net_rwsem);
322 out:
323 return error;
324
325 out_undo:
326 /* Walk through the list backwards calling the exit functions
327 * for the pernet modules whose init functions did not fail.
328 */
329 list_add(&net->exit_list, &net_exit_list);
330 saved_ops = ops;
331 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
332 ops_exit_list(ops, &net_exit_list);
333
334 ops = saved_ops;
335 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
336 ops_free_list(ops, &net_exit_list);
337
338 rcu_barrier();
339 goto out;
340 }
341
net_defaults_init_net(struct net * net)342 static int __net_init net_defaults_init_net(struct net *net)
343 {
344 net->core.sysctl_somaxconn = SOMAXCONN;
345 return 0;
346 }
347
348 static struct pernet_operations net_defaults_ops = {
349 .init = net_defaults_init_net,
350 };
351
net_defaults_init(void)352 static __init int net_defaults_init(void)
353 {
354 if (register_pernet_subsys(&net_defaults_ops))
355 panic("Cannot initialize net default settings");
356
357 return 0;
358 }
359
360 core_initcall(net_defaults_init);
361
362 #ifdef CONFIG_NET_NS
inc_net_namespaces(struct user_namespace * ns)363 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
364 {
365 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
366 }
367
dec_net_namespaces(struct ucounts * ucounts)368 static void dec_net_namespaces(struct ucounts *ucounts)
369 {
370 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
371 }
372
373 static struct kmem_cache *net_cachep __ro_after_init;
374 static struct workqueue_struct *netns_wq;
375
net_alloc(void)376 static struct net *net_alloc(void)
377 {
378 struct net *net = NULL;
379 struct net_generic *ng;
380
381 ng = net_alloc_generic();
382 if (!ng)
383 goto out;
384
385 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
386 if (!net)
387 goto out_free;
388
389 rcu_assign_pointer(net->gen, ng);
390 out:
391 return net;
392
393 out_free:
394 kfree(ng);
395 goto out;
396 }
397
net_free(struct net * net)398 static void net_free(struct net *net)
399 {
400 kfree(rcu_access_pointer(net->gen));
401 kmem_cache_free(net_cachep, net);
402 }
403
net_drop_ns(void * p)404 void net_drop_ns(void *p)
405 {
406 struct net *ns = p;
407 if (ns && refcount_dec_and_test(&ns->passive))
408 net_free(ns);
409 }
410
copy_net_ns(unsigned long flags,struct user_namespace * user_ns,struct net * old_net)411 struct net *copy_net_ns(unsigned long flags,
412 struct user_namespace *user_ns, struct net *old_net)
413 {
414 struct ucounts *ucounts;
415 struct net *net;
416 int rv;
417
418 if (!(flags & CLONE_NEWNET))
419 return get_net(old_net);
420
421 ucounts = inc_net_namespaces(user_ns);
422 if (!ucounts)
423 return ERR_PTR(-ENOSPC);
424
425 net = net_alloc();
426 if (!net) {
427 rv = -ENOMEM;
428 goto dec_ucounts;
429 }
430 refcount_set(&net->passive, 1);
431 net->ucounts = ucounts;
432 get_user_ns(user_ns);
433
434 rv = down_read_killable(&pernet_ops_rwsem);
435 if (rv < 0)
436 goto put_userns;
437
438 rv = setup_net(net, user_ns);
439
440 up_read(&pernet_ops_rwsem);
441
442 if (rv < 0) {
443 put_userns:
444 put_user_ns(user_ns);
445 net_drop_ns(net);
446 dec_ucounts:
447 dec_net_namespaces(ucounts);
448 return ERR_PTR(rv);
449 }
450 return net;
451 }
452
453 /**
454 * net_ns_get_ownership - get sysfs ownership data for @net
455 * @net: network namespace in question (can be NULL)
456 * @uid: kernel user ID for sysfs objects
457 * @gid: kernel group ID for sysfs objects
458 *
459 * Returns the uid/gid pair of root in the user namespace associated with the
460 * given network namespace.
461 */
net_ns_get_ownership(const struct net * net,kuid_t * uid,kgid_t * gid)462 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
463 {
464 if (net) {
465 kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
466 kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
467
468 if (uid_valid(ns_root_uid))
469 *uid = ns_root_uid;
470
471 if (gid_valid(ns_root_gid))
472 *gid = ns_root_gid;
473 } else {
474 *uid = GLOBAL_ROOT_UID;
475 *gid = GLOBAL_ROOT_GID;
476 }
477 }
478 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
479
unhash_nsid(struct net * net,struct net * last)480 static void unhash_nsid(struct net *net, struct net *last)
481 {
482 struct net *tmp;
483 /* This function is only called from cleanup_net() work,
484 * and this work is the only process, that may delete
485 * a net from net_namespace_list. So, when the below
486 * is executing, the list may only grow. Thus, we do not
487 * use for_each_net_rcu() or net_rwsem.
488 */
489 for_each_net(tmp) {
490 int id;
491
492 spin_lock_bh(&tmp->nsid_lock);
493 id = __peernet2id(tmp, net);
494 if (id >= 0)
495 idr_remove(&tmp->netns_ids, id);
496 spin_unlock_bh(&tmp->nsid_lock);
497 if (id >= 0)
498 rtnl_net_notifyid(tmp, RTM_DELNSID, id,
499 GFP_KERNEL);
500 if (tmp == last)
501 break;
502 }
503 spin_lock_bh(&net->nsid_lock);
504 idr_destroy(&net->netns_ids);
505 spin_unlock_bh(&net->nsid_lock);
506 }
507
508 static LLIST_HEAD(cleanup_list);
509
cleanup_net(struct work_struct * work)510 static void cleanup_net(struct work_struct *work)
511 {
512 const struct pernet_operations *ops;
513 struct net *net, *tmp, *last;
514 struct llist_node *net_kill_list;
515 LIST_HEAD(net_exit_list);
516
517 /* Atomically snapshot the list of namespaces to cleanup */
518 net_kill_list = llist_del_all(&cleanup_list);
519
520 down_read(&pernet_ops_rwsem);
521
522 /* Don't let anyone else find us. */
523 down_write(&net_rwsem);
524 llist_for_each_entry(net, net_kill_list, cleanup_list)
525 list_del_rcu(&net->list);
526 /* Cache last net. After we unlock rtnl, no one new net
527 * added to net_namespace_list can assign nsid pointer
528 * to a net from net_kill_list (see peernet2id_alloc()).
529 * So, we skip them in unhash_nsid().
530 *
531 * Note, that unhash_nsid() does not delete nsid links
532 * between net_kill_list's nets, as they've already
533 * deleted from net_namespace_list. But, this would be
534 * useless anyway, as netns_ids are destroyed there.
535 */
536 last = list_last_entry(&net_namespace_list, struct net, list);
537 up_write(&net_rwsem);
538
539 llist_for_each_entry(net, net_kill_list, cleanup_list) {
540 unhash_nsid(net, last);
541 list_add_tail(&net->exit_list, &net_exit_list);
542 }
543
544 /*
545 * Another CPU might be rcu-iterating the list, wait for it.
546 * This needs to be before calling the exit() notifiers, so
547 * the rcu_barrier() below isn't sufficient alone.
548 */
549 synchronize_rcu();
550
551 /* Run all of the network namespace exit methods */
552 list_for_each_entry_reverse(ops, &pernet_list, list)
553 ops_exit_list(ops, &net_exit_list);
554
555 /* Free the net generic variables */
556 list_for_each_entry_reverse(ops, &pernet_list, list)
557 ops_free_list(ops, &net_exit_list);
558
559 up_read(&pernet_ops_rwsem);
560
561 /* Ensure there are no outstanding rcu callbacks using this
562 * network namespace.
563 */
564 rcu_barrier();
565
566 /* Finally it is safe to free my network namespace structure */
567 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
568 list_del_init(&net->exit_list);
569 dec_net_namespaces(net->ucounts);
570 put_user_ns(net->user_ns);
571 net_drop_ns(net);
572 }
573 }
574
575 /**
576 * net_ns_barrier - wait until concurrent net_cleanup_work is done
577 *
578 * cleanup_net runs from work queue and will first remove namespaces
579 * from the global list, then run net exit functions.
580 *
581 * Call this in module exit path to make sure that all netns
582 * ->exit ops have been invoked before the function is removed.
583 */
net_ns_barrier(void)584 void net_ns_barrier(void)
585 {
586 down_write(&pernet_ops_rwsem);
587 up_write(&pernet_ops_rwsem);
588 }
589 EXPORT_SYMBOL(net_ns_barrier);
590
591 static DECLARE_WORK(net_cleanup_work, cleanup_net);
592
__put_net(struct net * net)593 void __put_net(struct net *net)
594 {
595 /* Cleanup the network namespace in process context */
596 if (llist_add(&net->cleanup_list, &cleanup_list))
597 queue_work(netns_wq, &net_cleanup_work);
598 }
599 EXPORT_SYMBOL_GPL(__put_net);
600
get_net_ns_by_fd(int fd)601 struct net *get_net_ns_by_fd(int fd)
602 {
603 struct file *file;
604 struct ns_common *ns;
605 struct net *net;
606
607 file = proc_ns_fget(fd);
608 if (IS_ERR(file))
609 return ERR_CAST(file);
610
611 ns = get_proc_ns(file_inode(file));
612 if (ns->ops == &netns_operations)
613 net = get_net(container_of(ns, struct net, ns));
614 else
615 net = ERR_PTR(-EINVAL);
616
617 fput(file);
618 return net;
619 }
620
621 #else
get_net_ns_by_fd(int fd)622 struct net *get_net_ns_by_fd(int fd)
623 {
624 return ERR_PTR(-EINVAL);
625 }
626 #endif
627 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
628
get_net_ns_by_pid(pid_t pid)629 struct net *get_net_ns_by_pid(pid_t pid)
630 {
631 struct task_struct *tsk;
632 struct net *net;
633
634 /* Lookup the network namespace */
635 net = ERR_PTR(-ESRCH);
636 rcu_read_lock();
637 tsk = find_task_by_vpid(pid);
638 if (tsk) {
639 struct nsproxy *nsproxy;
640 task_lock(tsk);
641 nsproxy = tsk->nsproxy;
642 if (nsproxy)
643 net = get_net(nsproxy->net_ns);
644 task_unlock(tsk);
645 }
646 rcu_read_unlock();
647 return net;
648 }
649 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
650
net_ns_net_init(struct net * net)651 static __net_init int net_ns_net_init(struct net *net)
652 {
653 #ifdef CONFIG_NET_NS
654 net->ns.ops = &netns_operations;
655 #endif
656 return ns_alloc_inum(&net->ns);
657 }
658
net_ns_net_exit(struct net * net)659 static __net_exit void net_ns_net_exit(struct net *net)
660 {
661 ns_free_inum(&net->ns);
662 }
663
664 static struct pernet_operations __net_initdata net_ns_ops = {
665 .init = net_ns_net_init,
666 .exit = net_ns_net_exit,
667 };
668
669 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
670 [NETNSA_NONE] = { .type = NLA_UNSPEC },
671 [NETNSA_NSID] = { .type = NLA_S32 },
672 [NETNSA_PID] = { .type = NLA_U32 },
673 [NETNSA_FD] = { .type = NLA_U32 },
674 };
675
rtnl_net_newid(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)676 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
677 struct netlink_ext_ack *extack)
678 {
679 struct net *net = sock_net(skb->sk);
680 struct nlattr *tb[NETNSA_MAX + 1];
681 struct nlattr *nla;
682 struct net *peer;
683 int nsid, err;
684
685 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
686 rtnl_net_policy, extack);
687 if (err < 0)
688 return err;
689 if (!tb[NETNSA_NSID]) {
690 NL_SET_ERR_MSG(extack, "nsid is missing");
691 return -EINVAL;
692 }
693 nsid = nla_get_s32(tb[NETNSA_NSID]);
694
695 if (tb[NETNSA_PID]) {
696 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
697 nla = tb[NETNSA_PID];
698 } else if (tb[NETNSA_FD]) {
699 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
700 nla = tb[NETNSA_FD];
701 } else {
702 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
703 return -EINVAL;
704 }
705 if (IS_ERR(peer)) {
706 NL_SET_BAD_ATTR(extack, nla);
707 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
708 return PTR_ERR(peer);
709 }
710
711 spin_lock_bh(&net->nsid_lock);
712 if (__peernet2id(net, peer) >= 0) {
713 spin_unlock_bh(&net->nsid_lock);
714 err = -EEXIST;
715 NL_SET_BAD_ATTR(extack, nla);
716 NL_SET_ERR_MSG(extack,
717 "Peer netns already has a nsid assigned");
718 goto out;
719 }
720
721 err = alloc_netid(net, peer, nsid);
722 spin_unlock_bh(&net->nsid_lock);
723 if (err >= 0) {
724 rtnl_net_notifyid(net, RTM_NEWNSID, err, GFP_KERNEL);
725 err = 0;
726 } else if (err == -ENOSPC && nsid >= 0) {
727 err = -EEXIST;
728 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
729 NL_SET_ERR_MSG(extack, "The specified nsid is already used");
730 }
731 out:
732 put_net(peer);
733 return err;
734 }
735
rtnl_net_get_size(void)736 static int rtnl_net_get_size(void)
737 {
738 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
739 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
740 ;
741 }
742
rtnl_net_fill(struct sk_buff * skb,u32 portid,u32 seq,int flags,int cmd,struct net * net,int nsid)743 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
744 int cmd, struct net *net, int nsid)
745 {
746 struct nlmsghdr *nlh;
747 struct rtgenmsg *rth;
748
749 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
750 if (!nlh)
751 return -EMSGSIZE;
752
753 rth = nlmsg_data(nlh);
754 rth->rtgen_family = AF_UNSPEC;
755
756 if (nla_put_s32(skb, NETNSA_NSID, nsid))
757 goto nla_put_failure;
758
759 nlmsg_end(skb, nlh);
760 return 0;
761
762 nla_put_failure:
763 nlmsg_cancel(skb, nlh);
764 return -EMSGSIZE;
765 }
766
rtnl_net_getid(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)767 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
768 struct netlink_ext_ack *extack)
769 {
770 struct net *net = sock_net(skb->sk);
771 struct nlattr *tb[NETNSA_MAX + 1];
772 struct nlattr *nla;
773 struct sk_buff *msg;
774 struct net *peer;
775 int err, id;
776
777 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
778 rtnl_net_policy, extack);
779 if (err < 0)
780 return err;
781 if (tb[NETNSA_PID]) {
782 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
783 nla = tb[NETNSA_PID];
784 } else if (tb[NETNSA_FD]) {
785 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
786 nla = tb[NETNSA_FD];
787 } else {
788 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
789 return -EINVAL;
790 }
791
792 if (IS_ERR(peer)) {
793 NL_SET_BAD_ATTR(extack, nla);
794 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
795 return PTR_ERR(peer);
796 }
797
798 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
799 if (!msg) {
800 err = -ENOMEM;
801 goto out;
802 }
803
804 id = peernet2id(net, peer);
805 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
806 RTM_NEWNSID, net, id);
807 if (err < 0)
808 goto err_out;
809
810 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
811 goto out;
812
813 err_out:
814 nlmsg_free(msg);
815 out:
816 put_net(peer);
817 return err;
818 }
819
820 struct rtnl_net_dump_cb {
821 struct net *net;
822 struct sk_buff *skb;
823 struct netlink_callback *cb;
824 int idx;
825 int s_idx;
826 };
827
rtnl_net_dumpid_one(int id,void * peer,void * data)828 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
829 {
830 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
831 int ret;
832
833 if (net_cb->idx < net_cb->s_idx)
834 goto cont;
835
836 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
837 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
838 RTM_NEWNSID, net_cb->net, id);
839 if (ret < 0)
840 return ret;
841
842 cont:
843 net_cb->idx++;
844 return 0;
845 }
846
rtnl_net_dumpid(struct sk_buff * skb,struct netlink_callback * cb)847 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
848 {
849 struct net *net = sock_net(skb->sk);
850 struct rtnl_net_dump_cb net_cb = {
851 .net = net,
852 .skb = skb,
853 .cb = cb,
854 .idx = 0,
855 .s_idx = cb->args[0],
856 };
857
858 spin_lock_bh(&net->nsid_lock);
859 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
860 spin_unlock_bh(&net->nsid_lock);
861
862 cb->args[0] = net_cb.idx;
863 return skb->len;
864 }
865
rtnl_net_notifyid(struct net * net,int cmd,int id,gfp_t gfp)866 static void rtnl_net_notifyid(struct net *net, int cmd, int id, gfp_t gfp)
867 {
868 struct sk_buff *msg;
869 int err = -ENOMEM;
870
871 msg = nlmsg_new(rtnl_net_get_size(), gfp);
872 if (!msg)
873 goto out;
874
875 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
876 if (err < 0)
877 goto err_out;
878
879 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, gfp);
880 return;
881
882 err_out:
883 nlmsg_free(msg);
884 out:
885 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
886 }
887
net_ns_init(void)888 static int __init net_ns_init(void)
889 {
890 struct net_generic *ng;
891
892 #ifdef CONFIG_NET_NS
893 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
894 SMP_CACHE_BYTES,
895 SLAB_PANIC|SLAB_ACCOUNT, NULL);
896
897 /* Create workqueue for cleanup */
898 netns_wq = create_singlethread_workqueue("netns");
899 if (!netns_wq)
900 panic("Could not create netns workq");
901 #endif
902
903 ng = net_alloc_generic();
904 if (!ng)
905 panic("Could not allocate generic netns");
906
907 rcu_assign_pointer(init_net.gen, ng);
908
909 down_write(&pernet_ops_rwsem);
910 if (setup_net(&init_net, &init_user_ns))
911 panic("Could not setup the initial network namespace");
912
913 init_net_initialized = true;
914 up_write(&pernet_ops_rwsem);
915
916 if (register_pernet_subsys(&net_ns_ops))
917 panic("Could not register network namespace subsystems");
918
919 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
920 RTNL_FLAG_DOIT_UNLOCKED);
921 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
922 RTNL_FLAG_DOIT_UNLOCKED);
923
924 return 0;
925 }
926
927 pure_initcall(net_ns_init);
928
929 #ifdef CONFIG_NET_NS
__register_pernet_operations(struct list_head * list,struct pernet_operations * ops)930 static int __register_pernet_operations(struct list_head *list,
931 struct pernet_operations *ops)
932 {
933 struct net *net;
934 int error;
935 LIST_HEAD(net_exit_list);
936
937 list_add_tail(&ops->list, list);
938 if (ops->init || (ops->id && ops->size)) {
939 /* We held write locked pernet_ops_rwsem, and parallel
940 * setup_net() and cleanup_net() are not possible.
941 */
942 for_each_net(net) {
943 error = ops_init(ops, net);
944 if (error)
945 goto out_undo;
946 list_add_tail(&net->exit_list, &net_exit_list);
947 }
948 }
949 return 0;
950
951 out_undo:
952 /* If I have an error cleanup all namespaces I initialized */
953 list_del(&ops->list);
954 ops_exit_list(ops, &net_exit_list);
955 ops_free_list(ops, &net_exit_list);
956 return error;
957 }
958
__unregister_pernet_operations(struct pernet_operations * ops)959 static void __unregister_pernet_operations(struct pernet_operations *ops)
960 {
961 struct net *net;
962 LIST_HEAD(net_exit_list);
963
964 list_del(&ops->list);
965 /* See comment in __register_pernet_operations() */
966 for_each_net(net)
967 list_add_tail(&net->exit_list, &net_exit_list);
968 ops_exit_list(ops, &net_exit_list);
969 ops_free_list(ops, &net_exit_list);
970 }
971
972 #else
973
__register_pernet_operations(struct list_head * list,struct pernet_operations * ops)974 static int __register_pernet_operations(struct list_head *list,
975 struct pernet_operations *ops)
976 {
977 if (!init_net_initialized) {
978 list_add_tail(&ops->list, list);
979 return 0;
980 }
981
982 return ops_init(ops, &init_net);
983 }
984
__unregister_pernet_operations(struct pernet_operations * ops)985 static void __unregister_pernet_operations(struct pernet_operations *ops)
986 {
987 if (!init_net_initialized) {
988 list_del(&ops->list);
989 } else {
990 LIST_HEAD(net_exit_list);
991 list_add(&init_net.exit_list, &net_exit_list);
992 ops_exit_list(ops, &net_exit_list);
993 ops_free_list(ops, &net_exit_list);
994 }
995 }
996
997 #endif /* CONFIG_NET_NS */
998
999 static DEFINE_IDA(net_generic_ids);
1000
register_pernet_operations(struct list_head * list,struct pernet_operations * ops)1001 static int register_pernet_operations(struct list_head *list,
1002 struct pernet_operations *ops)
1003 {
1004 int error;
1005
1006 if (ops->id) {
1007 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1008 GFP_KERNEL);
1009 if (error < 0)
1010 return error;
1011 *ops->id = error;
1012 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1013 }
1014 error = __register_pernet_operations(list, ops);
1015 if (error) {
1016 rcu_barrier();
1017 if (ops->id)
1018 ida_free(&net_generic_ids, *ops->id);
1019 }
1020
1021 return error;
1022 }
1023
unregister_pernet_operations(struct pernet_operations * ops)1024 static void unregister_pernet_operations(struct pernet_operations *ops)
1025 {
1026 __unregister_pernet_operations(ops);
1027 rcu_barrier();
1028 if (ops->id)
1029 ida_free(&net_generic_ids, *ops->id);
1030 }
1031
1032 /**
1033 * register_pernet_subsys - register a network namespace subsystem
1034 * @ops: pernet operations structure for the subsystem
1035 *
1036 * Register a subsystem which has init and exit functions
1037 * that are called when network namespaces are created and
1038 * destroyed respectively.
1039 *
1040 * When registered all network namespace init functions are
1041 * called for every existing network namespace. Allowing kernel
1042 * modules to have a race free view of the set of network namespaces.
1043 *
1044 * When a new network namespace is created all of the init
1045 * methods are called in the order in which they were registered.
1046 *
1047 * When a network namespace is destroyed all of the exit methods
1048 * are called in the reverse of the order with which they were
1049 * registered.
1050 */
register_pernet_subsys(struct pernet_operations * ops)1051 int register_pernet_subsys(struct pernet_operations *ops)
1052 {
1053 int error;
1054 down_write(&pernet_ops_rwsem);
1055 error = register_pernet_operations(first_device, ops);
1056 up_write(&pernet_ops_rwsem);
1057 return error;
1058 }
1059 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1060
1061 /**
1062 * unregister_pernet_subsys - unregister a network namespace subsystem
1063 * @ops: pernet operations structure to manipulate
1064 *
1065 * Remove the pernet operations structure from the list to be
1066 * used when network namespaces are created or destroyed. In
1067 * addition run the exit method for all existing network
1068 * namespaces.
1069 */
unregister_pernet_subsys(struct pernet_operations * ops)1070 void unregister_pernet_subsys(struct pernet_operations *ops)
1071 {
1072 down_write(&pernet_ops_rwsem);
1073 unregister_pernet_operations(ops);
1074 up_write(&pernet_ops_rwsem);
1075 }
1076 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1077
1078 /**
1079 * register_pernet_device - register a network namespace device
1080 * @ops: pernet operations structure for the subsystem
1081 *
1082 * Register a device which has init and exit functions
1083 * that are called when network namespaces are created and
1084 * destroyed respectively.
1085 *
1086 * When registered all network namespace init functions are
1087 * called for every existing network namespace. Allowing kernel
1088 * modules to have a race free view of the set of network namespaces.
1089 *
1090 * When a new network namespace is created all of the init
1091 * methods are called in the order in which they were registered.
1092 *
1093 * When a network namespace is destroyed all of the exit methods
1094 * are called in the reverse of the order with which they were
1095 * registered.
1096 */
register_pernet_device(struct pernet_operations * ops)1097 int register_pernet_device(struct pernet_operations *ops)
1098 {
1099 int error;
1100 down_write(&pernet_ops_rwsem);
1101 error = register_pernet_operations(&pernet_list, ops);
1102 if (!error && (first_device == &pernet_list))
1103 first_device = &ops->list;
1104 up_write(&pernet_ops_rwsem);
1105 return error;
1106 }
1107 EXPORT_SYMBOL_GPL(register_pernet_device);
1108
1109 /**
1110 * unregister_pernet_device - unregister a network namespace netdevice
1111 * @ops: pernet operations structure to manipulate
1112 *
1113 * Remove the pernet operations structure from the list to be
1114 * used when network namespaces are created or destroyed. In
1115 * addition run the exit method for all existing network
1116 * namespaces.
1117 */
unregister_pernet_device(struct pernet_operations * ops)1118 void unregister_pernet_device(struct pernet_operations *ops)
1119 {
1120 down_write(&pernet_ops_rwsem);
1121 if (&ops->list == first_device)
1122 first_device = first_device->next;
1123 unregister_pernet_operations(ops);
1124 up_write(&pernet_ops_rwsem);
1125 }
1126 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1127
1128 #ifdef CONFIG_NET_NS
netns_get(struct task_struct * task)1129 static struct ns_common *netns_get(struct task_struct *task)
1130 {
1131 struct net *net = NULL;
1132 struct nsproxy *nsproxy;
1133
1134 task_lock(task);
1135 nsproxy = task->nsproxy;
1136 if (nsproxy)
1137 net = get_net(nsproxy->net_ns);
1138 task_unlock(task);
1139
1140 return net ? &net->ns : NULL;
1141 }
1142
to_net_ns(struct ns_common * ns)1143 static inline struct net *to_net_ns(struct ns_common *ns)
1144 {
1145 return container_of(ns, struct net, ns);
1146 }
1147
netns_put(struct ns_common * ns)1148 static void netns_put(struct ns_common *ns)
1149 {
1150 put_net(to_net_ns(ns));
1151 }
1152
netns_install(struct nsproxy * nsproxy,struct ns_common * ns)1153 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1154 {
1155 struct net *net = to_net_ns(ns);
1156
1157 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1158 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1159 return -EPERM;
1160
1161 put_net(nsproxy->net_ns);
1162 nsproxy->net_ns = get_net(net);
1163 return 0;
1164 }
1165
netns_owner(struct ns_common * ns)1166 static struct user_namespace *netns_owner(struct ns_common *ns)
1167 {
1168 return to_net_ns(ns)->user_ns;
1169 }
1170
1171 const struct proc_ns_operations netns_operations = {
1172 .name = "net",
1173 .type = CLONE_NEWNET,
1174 .get = netns_get,
1175 .put = netns_put,
1176 .install = netns_install,
1177 .owner = netns_owner,
1178 };
1179 #endif
1180