1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 #include <net/busy_poll.h>
82
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84
85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
91 #define FLAG_ECE 0x40 /* ECE in this ACK */
92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
102
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110
111 #define REXMIT_NONE 0 /* no loss recovery to do */
112 #define REXMIT_LOST 1 /* retransmit packets marked lost */
113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
114
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
117
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 icsk->icsk_clean_acked = cad;
122 static_branch_inc(&clean_acked_data_enabled);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125
clean_acked_data_disable(struct inet_connection_sock * icsk)126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 static_branch_dec(&clean_acked_data_enabled);
129 icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 #endif
133
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
135 unsigned int len)
136 {
137 static bool __once __read_mostly;
138
139 if (!__once) {
140 struct net_device *dev;
141
142 __once = true;
143
144 rcu_read_lock();
145 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
146 if (!dev || len >= dev->mtu)
147 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
148 dev ? dev->name : "Unknown driver");
149 rcu_read_unlock();
150 }
151 }
152
153 /* Adapt the MSS value used to make delayed ack decision to the
154 * real world.
155 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
157 {
158 struct inet_connection_sock *icsk = inet_csk(sk);
159 const unsigned int lss = icsk->icsk_ack.last_seg_size;
160 unsigned int len;
161
162 icsk->icsk_ack.last_seg_size = 0;
163
164 /* skb->len may jitter because of SACKs, even if peer
165 * sends good full-sized frames.
166 */
167 len = skb_shinfo(skb)->gso_size ? : skb->len;
168 if (len >= icsk->icsk_ack.rcv_mss) {
169 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
170 tcp_sk(sk)->advmss);
171 /* Account for possibly-removed options */
172 if (unlikely(len > icsk->icsk_ack.rcv_mss +
173 MAX_TCP_OPTION_SPACE))
174 tcp_gro_dev_warn(sk, skb, len);
175 } else {
176 /* Otherwise, we make more careful check taking into account,
177 * that SACKs block is variable.
178 *
179 * "len" is invariant segment length, including TCP header.
180 */
181 len += skb->data - skb_transport_header(skb);
182 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
183 /* If PSH is not set, packet should be
184 * full sized, provided peer TCP is not badly broken.
185 * This observation (if it is correct 8)) allows
186 * to handle super-low mtu links fairly.
187 */
188 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
189 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
190 /* Subtract also invariant (if peer is RFC compliant),
191 * tcp header plus fixed timestamp option length.
192 * Resulting "len" is MSS free of SACK jitter.
193 */
194 len -= tcp_sk(sk)->tcp_header_len;
195 icsk->icsk_ack.last_seg_size = len;
196 if (len == lss) {
197 icsk->icsk_ack.rcv_mss = len;
198 return;
199 }
200 }
201 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
203 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
204 }
205 }
206
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
208 {
209 struct inet_connection_sock *icsk = inet_csk(sk);
210 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
211
212 if (quickacks == 0)
213 quickacks = 2;
214 quickacks = min(quickacks, max_quickacks);
215 if (quickacks > icsk->icsk_ack.quick)
216 icsk->icsk_ack.quick = quickacks;
217 }
218
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)219 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
220 {
221 struct inet_connection_sock *icsk = inet_csk(sk);
222
223 tcp_incr_quickack(sk, max_quickacks);
224 icsk->icsk_ack.pingpong = 0;
225 icsk->icsk_ack.ato = TCP_ATO_MIN;
226 }
227 EXPORT_SYMBOL(tcp_enter_quickack_mode);
228
229 /* Send ACKs quickly, if "quick" count is not exhausted
230 * and the session is not interactive.
231 */
232
tcp_in_quickack_mode(struct sock * sk)233 static bool tcp_in_quickack_mode(struct sock *sk)
234 {
235 const struct inet_connection_sock *icsk = inet_csk(sk);
236 const struct dst_entry *dst = __sk_dst_get(sk);
237
238 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
239 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
240 }
241
tcp_ecn_queue_cwr(struct tcp_sock * tp)242 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
243 {
244 if (tp->ecn_flags & TCP_ECN_OK)
245 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
246 }
247
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)248 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
249 {
250 if (tcp_hdr(skb)->cwr) {
251 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
252
253 /* If the sender is telling us it has entered CWR, then its
254 * cwnd may be very low (even just 1 packet), so we should ACK
255 * immediately.
256 */
257 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
258 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
259 }
260 }
261
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)262 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
263 {
264 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
265 }
266
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)267 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
268 {
269 struct tcp_sock *tp = tcp_sk(sk);
270
271 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
272 case INET_ECN_NOT_ECT:
273 /* Funny extension: if ECT is not set on a segment,
274 * and we already seen ECT on a previous segment,
275 * it is probably a retransmit.
276 */
277 if (tp->ecn_flags & TCP_ECN_SEEN)
278 tcp_enter_quickack_mode(sk, 2);
279 break;
280 case INET_ECN_CE:
281 if (tcp_ca_needs_ecn(sk))
282 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
283
284 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
285 /* Better not delay acks, sender can have a very low cwnd */
286 tcp_enter_quickack_mode(sk, 2);
287 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
288 }
289 tp->ecn_flags |= TCP_ECN_SEEN;
290 break;
291 default:
292 if (tcp_ca_needs_ecn(sk))
293 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
294 tp->ecn_flags |= TCP_ECN_SEEN;
295 break;
296 }
297 }
298
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)299 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
300 {
301 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
302 __tcp_ecn_check_ce(sk, skb);
303 }
304
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)305 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
306 {
307 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
308 tp->ecn_flags &= ~TCP_ECN_OK;
309 }
310
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)311 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
312 {
313 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
314 tp->ecn_flags &= ~TCP_ECN_OK;
315 }
316
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)317 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
318 {
319 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
320 return true;
321 return false;
322 }
323
324 /* Buffer size and advertised window tuning.
325 *
326 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
327 */
328
tcp_sndbuf_expand(struct sock * sk)329 static void tcp_sndbuf_expand(struct sock *sk)
330 {
331 const struct tcp_sock *tp = tcp_sk(sk);
332 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
333 int sndmem, per_mss;
334 u32 nr_segs;
335
336 /* Worst case is non GSO/TSO : each frame consumes one skb
337 * and skb->head is kmalloced using power of two area of memory
338 */
339 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
340 MAX_TCP_HEADER +
341 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
342
343 per_mss = roundup_pow_of_two(per_mss) +
344 SKB_DATA_ALIGN(sizeof(struct sk_buff));
345
346 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
347 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
348
349 /* Fast Recovery (RFC 5681 3.2) :
350 * Cubic needs 1.7 factor, rounded to 2 to include
351 * extra cushion (application might react slowly to EPOLLOUT)
352 */
353 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
354 sndmem *= nr_segs * per_mss;
355
356 if (sk->sk_sndbuf < sndmem)
357 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
358 }
359
360 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
361 *
362 * All tcp_full_space() is split to two parts: "network" buffer, allocated
363 * forward and advertised in receiver window (tp->rcv_wnd) and
364 * "application buffer", required to isolate scheduling/application
365 * latencies from network.
366 * window_clamp is maximal advertised window. It can be less than
367 * tcp_full_space(), in this case tcp_full_space() - window_clamp
368 * is reserved for "application" buffer. The less window_clamp is
369 * the smoother our behaviour from viewpoint of network, but the lower
370 * throughput and the higher sensitivity of the connection to losses. 8)
371 *
372 * rcv_ssthresh is more strict window_clamp used at "slow start"
373 * phase to predict further behaviour of this connection.
374 * It is used for two goals:
375 * - to enforce header prediction at sender, even when application
376 * requires some significant "application buffer". It is check #1.
377 * - to prevent pruning of receive queue because of misprediction
378 * of receiver window. Check #2.
379 *
380 * The scheme does not work when sender sends good segments opening
381 * window and then starts to feed us spaghetti. But it should work
382 * in common situations. Otherwise, we have to rely on queue collapsing.
383 */
384
385 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)386 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
387 {
388 struct tcp_sock *tp = tcp_sk(sk);
389 /* Optimize this! */
390 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
391 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
392
393 while (tp->rcv_ssthresh <= window) {
394 if (truesize <= skb->len)
395 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
396
397 truesize >>= 1;
398 window >>= 1;
399 }
400 return 0;
401 }
402
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)403 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
404 {
405 struct tcp_sock *tp = tcp_sk(sk);
406 int room;
407
408 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
409
410 /* Check #1 */
411 if (room > 0 && !tcp_under_memory_pressure(sk)) {
412 int incr;
413
414 /* Check #2. Increase window, if skb with such overhead
415 * will fit to rcvbuf in future.
416 */
417 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
418 incr = 2 * tp->advmss;
419 else
420 incr = __tcp_grow_window(sk, skb);
421
422 if (incr) {
423 incr = max_t(int, incr, 2 * skb->len);
424 tp->rcv_ssthresh += min(room, incr);
425 inet_csk(sk)->icsk_ack.quick |= 1;
426 }
427 }
428 }
429
430 /* 3. Try to fixup all. It is made immediately after connection enters
431 * established state.
432 */
tcp_init_buffer_space(struct sock * sk)433 void tcp_init_buffer_space(struct sock *sk)
434 {
435 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
436 struct tcp_sock *tp = tcp_sk(sk);
437 int maxwin;
438
439 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
440 tcp_sndbuf_expand(sk);
441
442 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
443 tcp_mstamp_refresh(tp);
444 tp->rcvq_space.time = tp->tcp_mstamp;
445 tp->rcvq_space.seq = tp->copied_seq;
446
447 maxwin = tcp_full_space(sk);
448
449 if (tp->window_clamp >= maxwin) {
450 tp->window_clamp = maxwin;
451
452 if (tcp_app_win && maxwin > 4 * tp->advmss)
453 tp->window_clamp = max(maxwin -
454 (maxwin >> tcp_app_win),
455 4 * tp->advmss);
456 }
457
458 /* Force reservation of one segment. */
459 if (tcp_app_win &&
460 tp->window_clamp > 2 * tp->advmss &&
461 tp->window_clamp + tp->advmss > maxwin)
462 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
463
464 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
465 tp->snd_cwnd_stamp = tcp_jiffies32;
466 }
467
468 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)469 static void tcp_clamp_window(struct sock *sk)
470 {
471 struct tcp_sock *tp = tcp_sk(sk);
472 struct inet_connection_sock *icsk = inet_csk(sk);
473 struct net *net = sock_net(sk);
474
475 icsk->icsk_ack.quick = 0;
476
477 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
479 !tcp_under_memory_pressure(sk) &&
480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 net->ipv4.sysctl_tcp_rmem[2]);
483 }
484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
486 }
487
488 /* Initialize RCV_MSS value.
489 * RCV_MSS is an our guess about MSS used by the peer.
490 * We haven't any direct information about the MSS.
491 * It's better to underestimate the RCV_MSS rather than overestimate.
492 * Overestimations make us ACKing less frequently than needed.
493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494 */
tcp_initialize_rcv_mss(struct sock * sk)495 void tcp_initialize_rcv_mss(struct sock *sk)
496 {
497 const struct tcp_sock *tp = tcp_sk(sk);
498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499
500 hint = min(hint, tp->rcv_wnd / 2);
501 hint = min(hint, TCP_MSS_DEFAULT);
502 hint = max(hint, TCP_MIN_MSS);
503
504 inet_csk(sk)->icsk_ack.rcv_mss = hint;
505 }
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
507
508 /* Receiver "autotuning" code.
509 *
510 * The algorithm for RTT estimation w/o timestamps is based on
511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512 * <http://public.lanl.gov/radiant/pubs.html#DRS>
513 *
514 * More detail on this code can be found at
515 * <http://staff.psc.edu/jheffner/>,
516 * though this reference is out of date. A new paper
517 * is pending.
518 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520 {
521 u32 new_sample = tp->rcv_rtt_est.rtt_us;
522 long m = sample;
523
524 if (new_sample != 0) {
525 /* If we sample in larger samples in the non-timestamp
526 * case, we could grossly overestimate the RTT especially
527 * with chatty applications or bulk transfer apps which
528 * are stalled on filesystem I/O.
529 *
530 * Also, since we are only going for a minimum in the
531 * non-timestamp case, we do not smooth things out
532 * else with timestamps disabled convergence takes too
533 * long.
534 */
535 if (!win_dep) {
536 m -= (new_sample >> 3);
537 new_sample += m;
538 } else {
539 m <<= 3;
540 if (m < new_sample)
541 new_sample = m;
542 }
543 } else {
544 /* No previous measure. */
545 new_sample = m << 3;
546 }
547
548 tp->rcv_rtt_est.rtt_us = new_sample;
549 }
550
tcp_rcv_rtt_measure(struct tcp_sock * tp)551 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
552 {
553 u32 delta_us;
554
555 if (tp->rcv_rtt_est.time == 0)
556 goto new_measure;
557 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
558 return;
559 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
560 if (!delta_us)
561 delta_us = 1;
562 tcp_rcv_rtt_update(tp, delta_us, 1);
563
564 new_measure:
565 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
566 tp->rcv_rtt_est.time = tp->tcp_mstamp;
567 }
568
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)569 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
570 const struct sk_buff *skb)
571 {
572 struct tcp_sock *tp = tcp_sk(sk);
573
574 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
575 return;
576 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
577
578 if (TCP_SKB_CB(skb)->end_seq -
579 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
580 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
581 u32 delta_us;
582
583 if (!delta)
584 delta = 1;
585 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
586 tcp_rcv_rtt_update(tp, delta_us, 0);
587 }
588 }
589
590 /*
591 * This function should be called every time data is copied to user space.
592 * It calculates the appropriate TCP receive buffer space.
593 */
tcp_rcv_space_adjust(struct sock * sk)594 void tcp_rcv_space_adjust(struct sock *sk)
595 {
596 struct tcp_sock *tp = tcp_sk(sk);
597 u32 copied;
598 int time;
599
600 trace_tcp_rcv_space_adjust(sk);
601
602 tcp_mstamp_refresh(tp);
603 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
604 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
605 return;
606
607 /* Number of bytes copied to user in last RTT */
608 copied = tp->copied_seq - tp->rcvq_space.seq;
609 if (copied <= tp->rcvq_space.space)
610 goto new_measure;
611
612 /* A bit of theory :
613 * copied = bytes received in previous RTT, our base window
614 * To cope with packet losses, we need a 2x factor
615 * To cope with slow start, and sender growing its cwin by 100 %
616 * every RTT, we need a 4x factor, because the ACK we are sending
617 * now is for the next RTT, not the current one :
618 * <prev RTT . ><current RTT .. ><next RTT .... >
619 */
620
621 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
622 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
623 int rcvmem, rcvbuf;
624 u64 rcvwin, grow;
625
626 /* minimal window to cope with packet losses, assuming
627 * steady state. Add some cushion because of small variations.
628 */
629 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
630
631 /* Accommodate for sender rate increase (eg. slow start) */
632 grow = rcvwin * (copied - tp->rcvq_space.space);
633 do_div(grow, tp->rcvq_space.space);
634 rcvwin += (grow << 1);
635
636 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
637 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
638 rcvmem += 128;
639
640 do_div(rcvwin, tp->advmss);
641 rcvbuf = min_t(u64, rcvwin * rcvmem,
642 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
643 if (rcvbuf > sk->sk_rcvbuf) {
644 sk->sk_rcvbuf = rcvbuf;
645
646 /* Make the window clamp follow along. */
647 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
648 }
649 }
650 tp->rcvq_space.space = copied;
651
652 new_measure:
653 tp->rcvq_space.seq = tp->copied_seq;
654 tp->rcvq_space.time = tp->tcp_mstamp;
655 }
656
657 /* There is something which you must keep in mind when you analyze the
658 * behavior of the tp->ato delayed ack timeout interval. When a
659 * connection starts up, we want to ack as quickly as possible. The
660 * problem is that "good" TCP's do slow start at the beginning of data
661 * transmission. The means that until we send the first few ACK's the
662 * sender will sit on his end and only queue most of his data, because
663 * he can only send snd_cwnd unacked packets at any given time. For
664 * each ACK we send, he increments snd_cwnd and transmits more of his
665 * queue. -DaveM
666 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)667 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
668 {
669 struct tcp_sock *tp = tcp_sk(sk);
670 struct inet_connection_sock *icsk = inet_csk(sk);
671 u32 now;
672
673 inet_csk_schedule_ack(sk);
674
675 tcp_measure_rcv_mss(sk, skb);
676
677 tcp_rcv_rtt_measure(tp);
678
679 now = tcp_jiffies32;
680
681 if (!icsk->icsk_ack.ato) {
682 /* The _first_ data packet received, initialize
683 * delayed ACK engine.
684 */
685 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
686 icsk->icsk_ack.ato = TCP_ATO_MIN;
687 } else {
688 int m = now - icsk->icsk_ack.lrcvtime;
689
690 if (m <= TCP_ATO_MIN / 2) {
691 /* The fastest case is the first. */
692 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
693 } else if (m < icsk->icsk_ack.ato) {
694 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
695 if (icsk->icsk_ack.ato > icsk->icsk_rto)
696 icsk->icsk_ack.ato = icsk->icsk_rto;
697 } else if (m > icsk->icsk_rto) {
698 /* Too long gap. Apparently sender failed to
699 * restart window, so that we send ACKs quickly.
700 */
701 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
702 sk_mem_reclaim(sk);
703 }
704 }
705 icsk->icsk_ack.lrcvtime = now;
706
707 tcp_ecn_check_ce(sk, skb);
708
709 if (skb->len >= 128)
710 tcp_grow_window(sk, skb);
711 }
712
713 /* Called to compute a smoothed rtt estimate. The data fed to this
714 * routine either comes from timestamps, or from segments that were
715 * known _not_ to have been retransmitted [see Karn/Partridge
716 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
717 * piece by Van Jacobson.
718 * NOTE: the next three routines used to be one big routine.
719 * To save cycles in the RFC 1323 implementation it was better to break
720 * it up into three procedures. -- erics
721 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)722 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
723 {
724 struct tcp_sock *tp = tcp_sk(sk);
725 long m = mrtt_us; /* RTT */
726 u32 srtt = tp->srtt_us;
727
728 /* The following amusing code comes from Jacobson's
729 * article in SIGCOMM '88. Note that rtt and mdev
730 * are scaled versions of rtt and mean deviation.
731 * This is designed to be as fast as possible
732 * m stands for "measurement".
733 *
734 * On a 1990 paper the rto value is changed to:
735 * RTO = rtt + 4 * mdev
736 *
737 * Funny. This algorithm seems to be very broken.
738 * These formulae increase RTO, when it should be decreased, increase
739 * too slowly, when it should be increased quickly, decrease too quickly
740 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
741 * does not matter how to _calculate_ it. Seems, it was trap
742 * that VJ failed to avoid. 8)
743 */
744 if (srtt != 0) {
745 m -= (srtt >> 3); /* m is now error in rtt est */
746 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
747 if (m < 0) {
748 m = -m; /* m is now abs(error) */
749 m -= (tp->mdev_us >> 2); /* similar update on mdev */
750 /* This is similar to one of Eifel findings.
751 * Eifel blocks mdev updates when rtt decreases.
752 * This solution is a bit different: we use finer gain
753 * for mdev in this case (alpha*beta).
754 * Like Eifel it also prevents growth of rto,
755 * but also it limits too fast rto decreases,
756 * happening in pure Eifel.
757 */
758 if (m > 0)
759 m >>= 3;
760 } else {
761 m -= (tp->mdev_us >> 2); /* similar update on mdev */
762 }
763 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
764 if (tp->mdev_us > tp->mdev_max_us) {
765 tp->mdev_max_us = tp->mdev_us;
766 if (tp->mdev_max_us > tp->rttvar_us)
767 tp->rttvar_us = tp->mdev_max_us;
768 }
769 if (after(tp->snd_una, tp->rtt_seq)) {
770 if (tp->mdev_max_us < tp->rttvar_us)
771 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
772 tp->rtt_seq = tp->snd_nxt;
773 tp->mdev_max_us = tcp_rto_min_us(sk);
774 }
775 } else {
776 /* no previous measure. */
777 srtt = m << 3; /* take the measured time to be rtt */
778 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
779 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
780 tp->mdev_max_us = tp->rttvar_us;
781 tp->rtt_seq = tp->snd_nxt;
782 }
783 tp->srtt_us = max(1U, srtt);
784 }
785
tcp_update_pacing_rate(struct sock * sk)786 static void tcp_update_pacing_rate(struct sock *sk)
787 {
788 const struct tcp_sock *tp = tcp_sk(sk);
789 u64 rate;
790
791 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
792 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
793
794 /* current rate is (cwnd * mss) / srtt
795 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
796 * In Congestion Avoidance phase, set it to 120 % the current rate.
797 *
798 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
799 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
800 * end of slow start and should slow down.
801 */
802 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
803 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
804 else
805 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
806
807 rate *= max(tp->snd_cwnd, tp->packets_out);
808
809 if (likely(tp->srtt_us))
810 do_div(rate, tp->srtt_us);
811
812 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
813 * without any lock. We want to make sure compiler wont store
814 * intermediate values in this location.
815 */
816 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
817 sk->sk_max_pacing_rate));
818 }
819
820 /* Calculate rto without backoff. This is the second half of Van Jacobson's
821 * routine referred to above.
822 */
tcp_set_rto(struct sock * sk)823 static void tcp_set_rto(struct sock *sk)
824 {
825 const struct tcp_sock *tp = tcp_sk(sk);
826 /* Old crap is replaced with new one. 8)
827 *
828 * More seriously:
829 * 1. If rtt variance happened to be less 50msec, it is hallucination.
830 * It cannot be less due to utterly erratic ACK generation made
831 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
832 * to do with delayed acks, because at cwnd>2 true delack timeout
833 * is invisible. Actually, Linux-2.4 also generates erratic
834 * ACKs in some circumstances.
835 */
836 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
837
838 /* 2. Fixups made earlier cannot be right.
839 * If we do not estimate RTO correctly without them,
840 * all the algo is pure shit and should be replaced
841 * with correct one. It is exactly, which we pretend to do.
842 */
843
844 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
845 * guarantees that rto is higher.
846 */
847 tcp_bound_rto(sk);
848 }
849
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)850 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
851 {
852 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
853
854 if (!cwnd)
855 cwnd = TCP_INIT_CWND;
856 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
857 }
858
859 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)860 static void tcp_dsack_seen(struct tcp_sock *tp)
861 {
862 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
863 tp->rack.dsack_seen = 1;
864 tp->dsack_dups++;
865 }
866
867 /* It's reordering when higher sequence was delivered (i.e. sacked) before
868 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
869 * distance is approximated in full-mss packet distance ("reordering").
870 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)871 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
872 const int ts)
873 {
874 struct tcp_sock *tp = tcp_sk(sk);
875 const u32 mss = tp->mss_cache;
876 u32 fack, metric;
877
878 fack = tcp_highest_sack_seq(tp);
879 if (!before(low_seq, fack))
880 return;
881
882 metric = fack - low_seq;
883 if ((metric > tp->reordering * mss) && mss) {
884 #if FASTRETRANS_DEBUG > 1
885 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
886 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
887 tp->reordering,
888 0,
889 tp->sacked_out,
890 tp->undo_marker ? tp->undo_retrans : 0);
891 #endif
892 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
893 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
894 }
895
896 /* This exciting event is worth to be remembered. 8) */
897 tp->reord_seen++;
898 NET_INC_STATS(sock_net(sk),
899 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
900 }
901
902 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)903 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
904 {
905 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
906 (tp->retransmit_skb_hint &&
907 before(TCP_SKB_CB(skb)->seq,
908 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
909 tp->retransmit_skb_hint = skb;
910 }
911
912 /* Sum the number of packets on the wire we have marked as lost.
913 * There are two cases we care about here:
914 * a) Packet hasn't been marked lost (nor retransmitted),
915 * and this is the first loss.
916 * b) Packet has been marked both lost and retransmitted,
917 * and this means we think it was lost again.
918 */
tcp_sum_lost(struct tcp_sock * tp,struct sk_buff * skb)919 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
920 {
921 __u8 sacked = TCP_SKB_CB(skb)->sacked;
922
923 if (!(sacked & TCPCB_LOST) ||
924 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
925 tp->lost += tcp_skb_pcount(skb);
926 }
927
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)928 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
929 {
930 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
931 tcp_verify_retransmit_hint(tp, skb);
932
933 tp->lost_out += tcp_skb_pcount(skb);
934 tcp_sum_lost(tp, skb);
935 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
936 }
937 }
938
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)939 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
940 {
941 tcp_verify_retransmit_hint(tp, skb);
942
943 tcp_sum_lost(tp, skb);
944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 tp->lost_out += tcp_skb_pcount(skb);
946 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
947 }
948 }
949
950 /* This procedure tags the retransmission queue when SACKs arrive.
951 *
952 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
953 * Packets in queue with these bits set are counted in variables
954 * sacked_out, retrans_out and lost_out, correspondingly.
955 *
956 * Valid combinations are:
957 * Tag InFlight Description
958 * 0 1 - orig segment is in flight.
959 * S 0 - nothing flies, orig reached receiver.
960 * L 0 - nothing flies, orig lost by net.
961 * R 2 - both orig and retransmit are in flight.
962 * L|R 1 - orig is lost, retransmit is in flight.
963 * S|R 1 - orig reached receiver, retrans is still in flight.
964 * (L|S|R is logically valid, it could occur when L|R is sacked,
965 * but it is equivalent to plain S and code short-curcuits it to S.
966 * L|S is logically invalid, it would mean -1 packet in flight 8))
967 *
968 * These 6 states form finite state machine, controlled by the following events:
969 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
970 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
971 * 3. Loss detection event of two flavors:
972 * A. Scoreboard estimator decided the packet is lost.
973 * A'. Reno "three dupacks" marks head of queue lost.
974 * B. SACK arrives sacking SND.NXT at the moment, when the
975 * segment was retransmitted.
976 * 4. D-SACK added new rule: D-SACK changes any tag to S.
977 *
978 * It is pleasant to note, that state diagram turns out to be commutative,
979 * so that we are allowed not to be bothered by order of our actions,
980 * when multiple events arrive simultaneously. (see the function below).
981 *
982 * Reordering detection.
983 * --------------------
984 * Reordering metric is maximal distance, which a packet can be displaced
985 * in packet stream. With SACKs we can estimate it:
986 *
987 * 1. SACK fills old hole and the corresponding segment was not
988 * ever retransmitted -> reordering. Alas, we cannot use it
989 * when segment was retransmitted.
990 * 2. The last flaw is solved with D-SACK. D-SACK arrives
991 * for retransmitted and already SACKed segment -> reordering..
992 * Both of these heuristics are not used in Loss state, when we cannot
993 * account for retransmits accurately.
994 *
995 * SACK block validation.
996 * ----------------------
997 *
998 * SACK block range validation checks that the received SACK block fits to
999 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1000 * Note that SND.UNA is not included to the range though being valid because
1001 * it means that the receiver is rather inconsistent with itself reporting
1002 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1003 * perfectly valid, however, in light of RFC2018 which explicitly states
1004 * that "SACK block MUST reflect the newest segment. Even if the newest
1005 * segment is going to be discarded ...", not that it looks very clever
1006 * in case of head skb. Due to potentional receiver driven attacks, we
1007 * choose to avoid immediate execution of a walk in write queue due to
1008 * reneging and defer head skb's loss recovery to standard loss recovery
1009 * procedure that will eventually trigger (nothing forbids us doing this).
1010 *
1011 * Implements also blockage to start_seq wrap-around. Problem lies in the
1012 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1013 * there's no guarantee that it will be before snd_nxt (n). The problem
1014 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1015 * wrap (s_w):
1016 *
1017 * <- outs wnd -> <- wrapzone ->
1018 * u e n u_w e_w s n_w
1019 * | | | | | | |
1020 * |<------------+------+----- TCP seqno space --------------+---------->|
1021 * ...-- <2^31 ->| |<--------...
1022 * ...---- >2^31 ------>| |<--------...
1023 *
1024 * Current code wouldn't be vulnerable but it's better still to discard such
1025 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1026 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1027 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1028 * equal to the ideal case (infinite seqno space without wrap caused issues).
1029 *
1030 * With D-SACK the lower bound is extended to cover sequence space below
1031 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1032 * again, D-SACK block must not to go across snd_una (for the same reason as
1033 * for the normal SACK blocks, explained above). But there all simplicity
1034 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1035 * fully below undo_marker they do not affect behavior in anyway and can
1036 * therefore be safely ignored. In rare cases (which are more or less
1037 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1038 * fragmentation and packet reordering past skb's retransmission. To consider
1039 * them correctly, the acceptable range must be extended even more though
1040 * the exact amount is rather hard to quantify. However, tp->max_window can
1041 * be used as an exaggerated estimate.
1042 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1043 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1044 u32 start_seq, u32 end_seq)
1045 {
1046 /* Too far in future, or reversed (interpretation is ambiguous) */
1047 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1048 return false;
1049
1050 /* Nasty start_seq wrap-around check (see comments above) */
1051 if (!before(start_seq, tp->snd_nxt))
1052 return false;
1053
1054 /* In outstanding window? ...This is valid exit for D-SACKs too.
1055 * start_seq == snd_una is non-sensical (see comments above)
1056 */
1057 if (after(start_seq, tp->snd_una))
1058 return true;
1059
1060 if (!is_dsack || !tp->undo_marker)
1061 return false;
1062
1063 /* ...Then it's D-SACK, and must reside below snd_una completely */
1064 if (after(end_seq, tp->snd_una))
1065 return false;
1066
1067 if (!before(start_seq, tp->undo_marker))
1068 return true;
1069
1070 /* Too old */
1071 if (!after(end_seq, tp->undo_marker))
1072 return false;
1073
1074 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1075 * start_seq < undo_marker and end_seq >= undo_marker.
1076 */
1077 return !before(start_seq, end_seq - tp->max_window);
1078 }
1079
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1080 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1081 struct tcp_sack_block_wire *sp, int num_sacks,
1082 u32 prior_snd_una)
1083 {
1084 struct tcp_sock *tp = tcp_sk(sk);
1085 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1086 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1087 bool dup_sack = false;
1088
1089 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1090 dup_sack = true;
1091 tcp_dsack_seen(tp);
1092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1093 } else if (num_sacks > 1) {
1094 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1095 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1096
1097 if (!after(end_seq_0, end_seq_1) &&
1098 !before(start_seq_0, start_seq_1)) {
1099 dup_sack = true;
1100 tcp_dsack_seen(tp);
1101 NET_INC_STATS(sock_net(sk),
1102 LINUX_MIB_TCPDSACKOFORECV);
1103 }
1104 }
1105
1106 /* D-SACK for already forgotten data... Do dumb counting. */
1107 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1108 !after(end_seq_0, prior_snd_una) &&
1109 after(end_seq_0, tp->undo_marker))
1110 tp->undo_retrans--;
1111
1112 return dup_sack;
1113 }
1114
1115 struct tcp_sacktag_state {
1116 u32 reord;
1117 /* Timestamps for earliest and latest never-retransmitted segment
1118 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1119 * but congestion control should still get an accurate delay signal.
1120 */
1121 u64 first_sackt;
1122 u64 last_sackt;
1123 struct rate_sample *rate;
1124 int flag;
1125 unsigned int mss_now;
1126 };
1127
1128 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1129 * the incoming SACK may not exactly match but we can find smaller MSS
1130 * aligned portion of it that matches. Therefore we might need to fragment
1131 * which may fail and creates some hassle (caller must handle error case
1132 * returns).
1133 *
1134 * FIXME: this could be merged to shift decision code
1135 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1136 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1137 u32 start_seq, u32 end_seq)
1138 {
1139 int err;
1140 bool in_sack;
1141 unsigned int pkt_len;
1142 unsigned int mss;
1143
1144 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1145 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1146
1147 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1148 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1149 mss = tcp_skb_mss(skb);
1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1151
1152 if (!in_sack) {
1153 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1154 if (pkt_len < mss)
1155 pkt_len = mss;
1156 } else {
1157 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1158 if (pkt_len < mss)
1159 return -EINVAL;
1160 }
1161
1162 /* Round if necessary so that SACKs cover only full MSSes
1163 * and/or the remaining small portion (if present)
1164 */
1165 if (pkt_len > mss) {
1166 unsigned int new_len = (pkt_len / mss) * mss;
1167 if (!in_sack && new_len < pkt_len)
1168 new_len += mss;
1169 pkt_len = new_len;
1170 }
1171
1172 if (pkt_len >= skb->len && !in_sack)
1173 return 0;
1174
1175 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1176 pkt_len, mss, GFP_ATOMIC);
1177 if (err < 0)
1178 return err;
1179 }
1180
1181 return in_sack;
1182 }
1183
1184 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1185 static u8 tcp_sacktag_one(struct sock *sk,
1186 struct tcp_sacktag_state *state, u8 sacked,
1187 u32 start_seq, u32 end_seq,
1188 int dup_sack, int pcount,
1189 u64 xmit_time)
1190 {
1191 struct tcp_sock *tp = tcp_sk(sk);
1192
1193 /* Account D-SACK for retransmitted packet. */
1194 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1195 if (tp->undo_marker && tp->undo_retrans > 0 &&
1196 after(end_seq, tp->undo_marker))
1197 tp->undo_retrans--;
1198 if ((sacked & TCPCB_SACKED_ACKED) &&
1199 before(start_seq, state->reord))
1200 state->reord = start_seq;
1201 }
1202
1203 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1204 if (!after(end_seq, tp->snd_una))
1205 return sacked;
1206
1207 if (!(sacked & TCPCB_SACKED_ACKED)) {
1208 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1209
1210 if (sacked & TCPCB_SACKED_RETRANS) {
1211 /* If the segment is not tagged as lost,
1212 * we do not clear RETRANS, believing
1213 * that retransmission is still in flight.
1214 */
1215 if (sacked & TCPCB_LOST) {
1216 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1217 tp->lost_out -= pcount;
1218 tp->retrans_out -= pcount;
1219 }
1220 } else {
1221 if (!(sacked & TCPCB_RETRANS)) {
1222 /* New sack for not retransmitted frame,
1223 * which was in hole. It is reordering.
1224 */
1225 if (before(start_seq,
1226 tcp_highest_sack_seq(tp)) &&
1227 before(start_seq, state->reord))
1228 state->reord = start_seq;
1229
1230 if (!after(end_seq, tp->high_seq))
1231 state->flag |= FLAG_ORIG_SACK_ACKED;
1232 if (state->first_sackt == 0)
1233 state->first_sackt = xmit_time;
1234 state->last_sackt = xmit_time;
1235 }
1236
1237 if (sacked & TCPCB_LOST) {
1238 sacked &= ~TCPCB_LOST;
1239 tp->lost_out -= pcount;
1240 }
1241 }
1242
1243 sacked |= TCPCB_SACKED_ACKED;
1244 state->flag |= FLAG_DATA_SACKED;
1245 tp->sacked_out += pcount;
1246 tp->delivered += pcount; /* Out-of-order packets delivered */
1247
1248 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1249 if (tp->lost_skb_hint &&
1250 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1251 tp->lost_cnt_hint += pcount;
1252 }
1253
1254 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1255 * frames and clear it. undo_retrans is decreased above, L|R frames
1256 * are accounted above as well.
1257 */
1258 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1259 sacked &= ~TCPCB_SACKED_RETRANS;
1260 tp->retrans_out -= pcount;
1261 }
1262
1263 return sacked;
1264 }
1265
1266 /* Shift newly-SACKed bytes from this skb to the immediately previous
1267 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1268 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1269 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1270 struct sk_buff *skb,
1271 struct tcp_sacktag_state *state,
1272 unsigned int pcount, int shifted, int mss,
1273 bool dup_sack)
1274 {
1275 struct tcp_sock *tp = tcp_sk(sk);
1276 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1277 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1278
1279 BUG_ON(!pcount);
1280
1281 /* Adjust counters and hints for the newly sacked sequence
1282 * range but discard the return value since prev is already
1283 * marked. We must tag the range first because the seq
1284 * advancement below implicitly advances
1285 * tcp_highest_sack_seq() when skb is highest_sack.
1286 */
1287 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1288 start_seq, end_seq, dup_sack, pcount,
1289 skb->skb_mstamp);
1290 tcp_rate_skb_delivered(sk, skb, state->rate);
1291
1292 if (skb == tp->lost_skb_hint)
1293 tp->lost_cnt_hint += pcount;
1294
1295 TCP_SKB_CB(prev)->end_seq += shifted;
1296 TCP_SKB_CB(skb)->seq += shifted;
1297
1298 tcp_skb_pcount_add(prev, pcount);
1299 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1300 tcp_skb_pcount_add(skb, -pcount);
1301
1302 /* When we're adding to gso_segs == 1, gso_size will be zero,
1303 * in theory this shouldn't be necessary but as long as DSACK
1304 * code can come after this skb later on it's better to keep
1305 * setting gso_size to something.
1306 */
1307 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1308 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1309
1310 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1311 if (tcp_skb_pcount(skb) <= 1)
1312 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1313
1314 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1315 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1316
1317 if (skb->len > 0) {
1318 BUG_ON(!tcp_skb_pcount(skb));
1319 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1320 return false;
1321 }
1322
1323 /* Whole SKB was eaten :-) */
1324
1325 if (skb == tp->retransmit_skb_hint)
1326 tp->retransmit_skb_hint = prev;
1327 if (skb == tp->lost_skb_hint) {
1328 tp->lost_skb_hint = prev;
1329 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1330 }
1331
1332 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1333 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1334 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1335 TCP_SKB_CB(prev)->end_seq++;
1336
1337 if (skb == tcp_highest_sack(sk))
1338 tcp_advance_highest_sack(sk, skb);
1339
1340 tcp_skb_collapse_tstamp(prev, skb);
1341 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1342 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1343
1344 tcp_rtx_queue_unlink_and_free(skb, sk);
1345
1346 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1347
1348 return true;
1349 }
1350
1351 /* I wish gso_size would have a bit more sane initialization than
1352 * something-or-zero which complicates things
1353 */
tcp_skb_seglen(const struct sk_buff * skb)1354 static int tcp_skb_seglen(const struct sk_buff *skb)
1355 {
1356 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1357 }
1358
1359 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1360 static int skb_can_shift(const struct sk_buff *skb)
1361 {
1362 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1363 }
1364
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1365 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1366 int pcount, int shiftlen)
1367 {
1368 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1369 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1370 * to make sure not storing more than 65535 * 8 bytes per skb,
1371 * even if current MSS is bigger.
1372 */
1373 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1374 return 0;
1375 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1376 return 0;
1377 return skb_shift(to, from, shiftlen);
1378 }
1379
1380 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1381 * skb.
1382 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1383 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1384 struct tcp_sacktag_state *state,
1385 u32 start_seq, u32 end_seq,
1386 bool dup_sack)
1387 {
1388 struct tcp_sock *tp = tcp_sk(sk);
1389 struct sk_buff *prev;
1390 int mss;
1391 int pcount = 0;
1392 int len;
1393 int in_sack;
1394
1395 /* Normally R but no L won't result in plain S */
1396 if (!dup_sack &&
1397 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1398 goto fallback;
1399 if (!skb_can_shift(skb))
1400 goto fallback;
1401 /* This frame is about to be dropped (was ACKed). */
1402 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1403 goto fallback;
1404
1405 /* Can only happen with delayed DSACK + discard craziness */
1406 prev = skb_rb_prev(skb);
1407 if (!prev)
1408 goto fallback;
1409
1410 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1411 goto fallback;
1412
1413 if (!tcp_skb_can_collapse_to(prev))
1414 goto fallback;
1415
1416 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1417 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1418
1419 if (in_sack) {
1420 len = skb->len;
1421 pcount = tcp_skb_pcount(skb);
1422 mss = tcp_skb_seglen(skb);
1423
1424 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1425 * drop this restriction as unnecessary
1426 */
1427 if (mss != tcp_skb_seglen(prev))
1428 goto fallback;
1429 } else {
1430 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1431 goto noop;
1432 /* CHECKME: This is non-MSS split case only?, this will
1433 * cause skipped skbs due to advancing loop btw, original
1434 * has that feature too
1435 */
1436 if (tcp_skb_pcount(skb) <= 1)
1437 goto noop;
1438
1439 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1440 if (!in_sack) {
1441 /* TODO: head merge to next could be attempted here
1442 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1443 * though it might not be worth of the additional hassle
1444 *
1445 * ...we can probably just fallback to what was done
1446 * previously. We could try merging non-SACKed ones
1447 * as well but it probably isn't going to buy off
1448 * because later SACKs might again split them, and
1449 * it would make skb timestamp tracking considerably
1450 * harder problem.
1451 */
1452 goto fallback;
1453 }
1454
1455 len = end_seq - TCP_SKB_CB(skb)->seq;
1456 BUG_ON(len < 0);
1457 BUG_ON(len > skb->len);
1458
1459 /* MSS boundaries should be honoured or else pcount will
1460 * severely break even though it makes things bit trickier.
1461 * Optimize common case to avoid most of the divides
1462 */
1463 mss = tcp_skb_mss(skb);
1464
1465 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1466 * drop this restriction as unnecessary
1467 */
1468 if (mss != tcp_skb_seglen(prev))
1469 goto fallback;
1470
1471 if (len == mss) {
1472 pcount = 1;
1473 } else if (len < mss) {
1474 goto noop;
1475 } else {
1476 pcount = len / mss;
1477 len = pcount * mss;
1478 }
1479 }
1480
1481 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1482 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1483 goto fallback;
1484
1485 if (!tcp_skb_shift(prev, skb, pcount, len))
1486 goto fallback;
1487 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1488 goto out;
1489
1490 /* Hole filled allows collapsing with the next as well, this is very
1491 * useful when hole on every nth skb pattern happens
1492 */
1493 skb = skb_rb_next(prev);
1494 if (!skb)
1495 goto out;
1496
1497 if (!skb_can_shift(skb) ||
1498 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1499 (mss != tcp_skb_seglen(skb)))
1500 goto out;
1501
1502 len = skb->len;
1503 pcount = tcp_skb_pcount(skb);
1504 if (tcp_skb_shift(prev, skb, pcount, len))
1505 tcp_shifted_skb(sk, prev, skb, state, pcount,
1506 len, mss, 0);
1507
1508 out:
1509 return prev;
1510
1511 noop:
1512 return skb;
1513
1514 fallback:
1515 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1516 return NULL;
1517 }
1518
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1519 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1520 struct tcp_sack_block *next_dup,
1521 struct tcp_sacktag_state *state,
1522 u32 start_seq, u32 end_seq,
1523 bool dup_sack_in)
1524 {
1525 struct tcp_sock *tp = tcp_sk(sk);
1526 struct sk_buff *tmp;
1527
1528 skb_rbtree_walk_from(skb) {
1529 int in_sack = 0;
1530 bool dup_sack = dup_sack_in;
1531
1532 /* queue is in-order => we can short-circuit the walk early */
1533 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1534 break;
1535
1536 if (next_dup &&
1537 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1538 in_sack = tcp_match_skb_to_sack(sk, skb,
1539 next_dup->start_seq,
1540 next_dup->end_seq);
1541 if (in_sack > 0)
1542 dup_sack = true;
1543 }
1544
1545 /* skb reference here is a bit tricky to get right, since
1546 * shifting can eat and free both this skb and the next,
1547 * so not even _safe variant of the loop is enough.
1548 */
1549 if (in_sack <= 0) {
1550 tmp = tcp_shift_skb_data(sk, skb, state,
1551 start_seq, end_seq, dup_sack);
1552 if (tmp) {
1553 if (tmp != skb) {
1554 skb = tmp;
1555 continue;
1556 }
1557
1558 in_sack = 0;
1559 } else {
1560 in_sack = tcp_match_skb_to_sack(sk, skb,
1561 start_seq,
1562 end_seq);
1563 }
1564 }
1565
1566 if (unlikely(in_sack < 0))
1567 break;
1568
1569 if (in_sack) {
1570 TCP_SKB_CB(skb)->sacked =
1571 tcp_sacktag_one(sk,
1572 state,
1573 TCP_SKB_CB(skb)->sacked,
1574 TCP_SKB_CB(skb)->seq,
1575 TCP_SKB_CB(skb)->end_seq,
1576 dup_sack,
1577 tcp_skb_pcount(skb),
1578 skb->skb_mstamp);
1579 tcp_rate_skb_delivered(sk, skb, state->rate);
1580 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1581 list_del_init(&skb->tcp_tsorted_anchor);
1582
1583 if (!before(TCP_SKB_CB(skb)->seq,
1584 tcp_highest_sack_seq(tp)))
1585 tcp_advance_highest_sack(sk, skb);
1586 }
1587 }
1588 return skb;
1589 }
1590
tcp_sacktag_bsearch(struct sock * sk,struct tcp_sacktag_state * state,u32 seq)1591 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1592 struct tcp_sacktag_state *state,
1593 u32 seq)
1594 {
1595 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1596 struct sk_buff *skb;
1597
1598 while (*p) {
1599 parent = *p;
1600 skb = rb_to_skb(parent);
1601 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1602 p = &parent->rb_left;
1603 continue;
1604 }
1605 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1606 p = &parent->rb_right;
1607 continue;
1608 }
1609 return skb;
1610 }
1611 return NULL;
1612 }
1613
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,struct tcp_sacktag_state * state,u32 skip_to_seq)1614 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1615 struct tcp_sacktag_state *state,
1616 u32 skip_to_seq)
1617 {
1618 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1619 return skb;
1620
1621 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1622 }
1623
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1624 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1625 struct sock *sk,
1626 struct tcp_sack_block *next_dup,
1627 struct tcp_sacktag_state *state,
1628 u32 skip_to_seq)
1629 {
1630 if (!next_dup)
1631 return skb;
1632
1633 if (before(next_dup->start_seq, skip_to_seq)) {
1634 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1635 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1636 next_dup->start_seq, next_dup->end_seq,
1637 1);
1638 }
1639
1640 return skb;
1641 }
1642
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1643 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1644 {
1645 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1646 }
1647
1648 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1649 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1650 u32 prior_snd_una, struct tcp_sacktag_state *state)
1651 {
1652 struct tcp_sock *tp = tcp_sk(sk);
1653 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1654 TCP_SKB_CB(ack_skb)->sacked);
1655 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1656 struct tcp_sack_block sp[TCP_NUM_SACKS];
1657 struct tcp_sack_block *cache;
1658 struct sk_buff *skb;
1659 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1660 int used_sacks;
1661 bool found_dup_sack = false;
1662 int i, j;
1663 int first_sack_index;
1664
1665 state->flag = 0;
1666 state->reord = tp->snd_nxt;
1667
1668 if (!tp->sacked_out)
1669 tcp_highest_sack_reset(sk);
1670
1671 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1672 num_sacks, prior_snd_una);
1673 if (found_dup_sack) {
1674 state->flag |= FLAG_DSACKING_ACK;
1675 tp->delivered++; /* A spurious retransmission is delivered */
1676 }
1677
1678 /* Eliminate too old ACKs, but take into
1679 * account more or less fresh ones, they can
1680 * contain valid SACK info.
1681 */
1682 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1683 return 0;
1684
1685 if (!tp->packets_out)
1686 goto out;
1687
1688 used_sacks = 0;
1689 first_sack_index = 0;
1690 for (i = 0; i < num_sacks; i++) {
1691 bool dup_sack = !i && found_dup_sack;
1692
1693 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1694 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1695
1696 if (!tcp_is_sackblock_valid(tp, dup_sack,
1697 sp[used_sacks].start_seq,
1698 sp[used_sacks].end_seq)) {
1699 int mib_idx;
1700
1701 if (dup_sack) {
1702 if (!tp->undo_marker)
1703 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1704 else
1705 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1706 } else {
1707 /* Don't count olds caused by ACK reordering */
1708 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1709 !after(sp[used_sacks].end_seq, tp->snd_una))
1710 continue;
1711 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1712 }
1713
1714 NET_INC_STATS(sock_net(sk), mib_idx);
1715 if (i == 0)
1716 first_sack_index = -1;
1717 continue;
1718 }
1719
1720 /* Ignore very old stuff early */
1721 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1722 if (i == 0)
1723 first_sack_index = -1;
1724 continue;
1725 }
1726
1727 used_sacks++;
1728 }
1729
1730 /* order SACK blocks to allow in order walk of the retrans queue */
1731 for (i = used_sacks - 1; i > 0; i--) {
1732 for (j = 0; j < i; j++) {
1733 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1734 swap(sp[j], sp[j + 1]);
1735
1736 /* Track where the first SACK block goes to */
1737 if (j == first_sack_index)
1738 first_sack_index = j + 1;
1739 }
1740 }
1741 }
1742
1743 state->mss_now = tcp_current_mss(sk);
1744 skb = NULL;
1745 i = 0;
1746
1747 if (!tp->sacked_out) {
1748 /* It's already past, so skip checking against it */
1749 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1750 } else {
1751 cache = tp->recv_sack_cache;
1752 /* Skip empty blocks in at head of the cache */
1753 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1754 !cache->end_seq)
1755 cache++;
1756 }
1757
1758 while (i < used_sacks) {
1759 u32 start_seq = sp[i].start_seq;
1760 u32 end_seq = sp[i].end_seq;
1761 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1762 struct tcp_sack_block *next_dup = NULL;
1763
1764 if (found_dup_sack && ((i + 1) == first_sack_index))
1765 next_dup = &sp[i + 1];
1766
1767 /* Skip too early cached blocks */
1768 while (tcp_sack_cache_ok(tp, cache) &&
1769 !before(start_seq, cache->end_seq))
1770 cache++;
1771
1772 /* Can skip some work by looking recv_sack_cache? */
1773 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1774 after(end_seq, cache->start_seq)) {
1775
1776 /* Head todo? */
1777 if (before(start_seq, cache->start_seq)) {
1778 skb = tcp_sacktag_skip(skb, sk, state,
1779 start_seq);
1780 skb = tcp_sacktag_walk(skb, sk, next_dup,
1781 state,
1782 start_seq,
1783 cache->start_seq,
1784 dup_sack);
1785 }
1786
1787 /* Rest of the block already fully processed? */
1788 if (!after(end_seq, cache->end_seq))
1789 goto advance_sp;
1790
1791 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1792 state,
1793 cache->end_seq);
1794
1795 /* ...tail remains todo... */
1796 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1797 /* ...but better entrypoint exists! */
1798 skb = tcp_highest_sack(sk);
1799 if (!skb)
1800 break;
1801 cache++;
1802 goto walk;
1803 }
1804
1805 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1806 /* Check overlap against next cached too (past this one already) */
1807 cache++;
1808 continue;
1809 }
1810
1811 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1812 skb = tcp_highest_sack(sk);
1813 if (!skb)
1814 break;
1815 }
1816 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1817
1818 walk:
1819 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1820 start_seq, end_seq, dup_sack);
1821
1822 advance_sp:
1823 i++;
1824 }
1825
1826 /* Clear the head of the cache sack blocks so we can skip it next time */
1827 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1828 tp->recv_sack_cache[i].start_seq = 0;
1829 tp->recv_sack_cache[i].end_seq = 0;
1830 }
1831 for (j = 0; j < used_sacks; j++)
1832 tp->recv_sack_cache[i++] = sp[j];
1833
1834 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1835 tcp_check_sack_reordering(sk, state->reord, 0);
1836
1837 tcp_verify_left_out(tp);
1838 out:
1839
1840 #if FASTRETRANS_DEBUG > 0
1841 WARN_ON((int)tp->sacked_out < 0);
1842 WARN_ON((int)tp->lost_out < 0);
1843 WARN_ON((int)tp->retrans_out < 0);
1844 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1845 #endif
1846 return state->flag;
1847 }
1848
1849 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1850 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1851 */
tcp_limit_reno_sacked(struct tcp_sock * tp)1852 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1853 {
1854 u32 holes;
1855
1856 holes = max(tp->lost_out, 1U);
1857 holes = min(holes, tp->packets_out);
1858
1859 if ((tp->sacked_out + holes) > tp->packets_out) {
1860 tp->sacked_out = tp->packets_out - holes;
1861 return true;
1862 }
1863 return false;
1864 }
1865
1866 /* If we receive more dupacks than we expected counting segments
1867 * in assumption of absent reordering, interpret this as reordering.
1868 * The only another reason could be bug in receiver TCP.
1869 */
tcp_check_reno_reordering(struct sock * sk,const int addend)1870 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1871 {
1872 struct tcp_sock *tp = tcp_sk(sk);
1873
1874 if (!tcp_limit_reno_sacked(tp))
1875 return;
1876
1877 tp->reordering = min_t(u32, tp->packets_out + addend,
1878 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1879 tp->reord_seen++;
1880 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1881 }
1882
1883 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1884
tcp_add_reno_sack(struct sock * sk)1885 static void tcp_add_reno_sack(struct sock *sk)
1886 {
1887 struct tcp_sock *tp = tcp_sk(sk);
1888 u32 prior_sacked = tp->sacked_out;
1889
1890 tp->sacked_out++;
1891 tcp_check_reno_reordering(sk, 0);
1892 if (tp->sacked_out > prior_sacked)
1893 tp->delivered++; /* Some out-of-order packet is delivered */
1894 tcp_verify_left_out(tp);
1895 }
1896
1897 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1898
tcp_remove_reno_sacks(struct sock * sk,int acked)1899 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1900 {
1901 struct tcp_sock *tp = tcp_sk(sk);
1902
1903 if (acked > 0) {
1904 /* One ACK acked hole. The rest eat duplicate ACKs. */
1905 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1906 if (acked - 1 >= tp->sacked_out)
1907 tp->sacked_out = 0;
1908 else
1909 tp->sacked_out -= acked - 1;
1910 }
1911 tcp_check_reno_reordering(sk, acked);
1912 tcp_verify_left_out(tp);
1913 }
1914
tcp_reset_reno_sack(struct tcp_sock * tp)1915 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1916 {
1917 tp->sacked_out = 0;
1918 }
1919
tcp_clear_retrans(struct tcp_sock * tp)1920 void tcp_clear_retrans(struct tcp_sock *tp)
1921 {
1922 tp->retrans_out = 0;
1923 tp->lost_out = 0;
1924 tp->undo_marker = 0;
1925 tp->undo_retrans = -1;
1926 tp->sacked_out = 0;
1927 }
1928
tcp_init_undo(struct tcp_sock * tp)1929 static inline void tcp_init_undo(struct tcp_sock *tp)
1930 {
1931 tp->undo_marker = tp->snd_una;
1932 /* Retransmission still in flight may cause DSACKs later. */
1933 tp->undo_retrans = tp->retrans_out ? : -1;
1934 }
1935
tcp_is_rack(const struct sock * sk)1936 static bool tcp_is_rack(const struct sock *sk)
1937 {
1938 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1939 }
1940
1941 /* If we detect SACK reneging, forget all SACK information
1942 * and reset tags completely, otherwise preserve SACKs. If receiver
1943 * dropped its ofo queue, we will know this due to reneging detection.
1944 */
tcp_timeout_mark_lost(struct sock * sk)1945 static void tcp_timeout_mark_lost(struct sock *sk)
1946 {
1947 struct tcp_sock *tp = tcp_sk(sk);
1948 struct sk_buff *skb, *head;
1949 bool is_reneg; /* is receiver reneging on SACKs? */
1950
1951 head = tcp_rtx_queue_head(sk);
1952 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1953 if (is_reneg) {
1954 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1955 tp->sacked_out = 0;
1956 /* Mark SACK reneging until we recover from this loss event. */
1957 tp->is_sack_reneg = 1;
1958 } else if (tcp_is_reno(tp)) {
1959 tcp_reset_reno_sack(tp);
1960 }
1961
1962 skb = head;
1963 skb_rbtree_walk_from(skb) {
1964 if (is_reneg)
1965 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1966 else if (tcp_is_rack(sk) && skb != head &&
1967 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1968 continue; /* Don't mark recently sent ones lost yet */
1969 tcp_mark_skb_lost(sk, skb);
1970 }
1971 tcp_verify_left_out(tp);
1972 tcp_clear_all_retrans_hints(tp);
1973 }
1974
1975 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)1976 void tcp_enter_loss(struct sock *sk)
1977 {
1978 const struct inet_connection_sock *icsk = inet_csk(sk);
1979 struct tcp_sock *tp = tcp_sk(sk);
1980 struct net *net = sock_net(sk);
1981 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1982
1983 tcp_timeout_mark_lost(sk);
1984
1985 /* Reduce ssthresh if it has not yet been made inside this window. */
1986 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1987 !after(tp->high_seq, tp->snd_una) ||
1988 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1989 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1990 tp->prior_cwnd = tp->snd_cwnd;
1991 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1992 tcp_ca_event(sk, CA_EVENT_LOSS);
1993 tcp_init_undo(tp);
1994 }
1995 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
1996 tp->snd_cwnd_cnt = 0;
1997 tp->snd_cwnd_stamp = tcp_jiffies32;
1998
1999 /* Timeout in disordered state after receiving substantial DUPACKs
2000 * suggests that the degree of reordering is over-estimated.
2001 */
2002 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2003 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2004 tp->reordering = min_t(unsigned int, tp->reordering,
2005 net->ipv4.sysctl_tcp_reordering);
2006 tcp_set_ca_state(sk, TCP_CA_Loss);
2007 tp->high_seq = tp->snd_nxt;
2008 tcp_ecn_queue_cwr(tp);
2009
2010 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2011 * loss recovery is underway except recurring timeout(s) on
2012 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2013 */
2014 tp->frto = net->ipv4.sysctl_tcp_frto &&
2015 (new_recovery || icsk->icsk_retransmits) &&
2016 !inet_csk(sk)->icsk_mtup.probe_size;
2017 }
2018
2019 /* If ACK arrived pointing to a remembered SACK, it means that our
2020 * remembered SACKs do not reflect real state of receiver i.e.
2021 * receiver _host_ is heavily congested (or buggy).
2022 *
2023 * To avoid big spurious retransmission bursts due to transient SACK
2024 * scoreboard oddities that look like reneging, we give the receiver a
2025 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2026 * restore sanity to the SACK scoreboard. If the apparent reneging
2027 * persists until this RTO then we'll clear the SACK scoreboard.
2028 */
tcp_check_sack_reneging(struct sock * sk,int flag)2029 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2030 {
2031 if (flag & FLAG_SACK_RENEGING) {
2032 struct tcp_sock *tp = tcp_sk(sk);
2033 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2034 msecs_to_jiffies(10));
2035
2036 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2037 delay, TCP_RTO_MAX);
2038 return true;
2039 }
2040 return false;
2041 }
2042
2043 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2044 * counter when SACK is enabled (without SACK, sacked_out is used for
2045 * that purpose).
2046 *
2047 * With reordering, holes may still be in flight, so RFC3517 recovery
2048 * uses pure sacked_out (total number of SACKed segments) even though
2049 * it violates the RFC that uses duplicate ACKs, often these are equal
2050 * but when e.g. out-of-window ACKs or packet duplication occurs,
2051 * they differ. Since neither occurs due to loss, TCP should really
2052 * ignore them.
2053 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2054 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2055 {
2056 return tp->sacked_out + 1;
2057 }
2058
2059 /* Linux NewReno/SACK/ECN state machine.
2060 * --------------------------------------
2061 *
2062 * "Open" Normal state, no dubious events, fast path.
2063 * "Disorder" In all the respects it is "Open",
2064 * but requires a bit more attention. It is entered when
2065 * we see some SACKs or dupacks. It is split of "Open"
2066 * mainly to move some processing from fast path to slow one.
2067 * "CWR" CWND was reduced due to some Congestion Notification event.
2068 * It can be ECN, ICMP source quench, local device congestion.
2069 * "Recovery" CWND was reduced, we are fast-retransmitting.
2070 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2071 *
2072 * tcp_fastretrans_alert() is entered:
2073 * - each incoming ACK, if state is not "Open"
2074 * - when arrived ACK is unusual, namely:
2075 * * SACK
2076 * * Duplicate ACK.
2077 * * ECN ECE.
2078 *
2079 * Counting packets in flight is pretty simple.
2080 *
2081 * in_flight = packets_out - left_out + retrans_out
2082 *
2083 * packets_out is SND.NXT-SND.UNA counted in packets.
2084 *
2085 * retrans_out is number of retransmitted segments.
2086 *
2087 * left_out is number of segments left network, but not ACKed yet.
2088 *
2089 * left_out = sacked_out + lost_out
2090 *
2091 * sacked_out: Packets, which arrived to receiver out of order
2092 * and hence not ACKed. With SACKs this number is simply
2093 * amount of SACKed data. Even without SACKs
2094 * it is easy to give pretty reliable estimate of this number,
2095 * counting duplicate ACKs.
2096 *
2097 * lost_out: Packets lost by network. TCP has no explicit
2098 * "loss notification" feedback from network (for now).
2099 * It means that this number can be only _guessed_.
2100 * Actually, it is the heuristics to predict lossage that
2101 * distinguishes different algorithms.
2102 *
2103 * F.e. after RTO, when all the queue is considered as lost,
2104 * lost_out = packets_out and in_flight = retrans_out.
2105 *
2106 * Essentially, we have now a few algorithms detecting
2107 * lost packets.
2108 *
2109 * If the receiver supports SACK:
2110 *
2111 * RFC6675/3517: It is the conventional algorithm. A packet is
2112 * considered lost if the number of higher sequence packets
2113 * SACKed is greater than or equal the DUPACK thoreshold
2114 * (reordering). This is implemented in tcp_mark_head_lost and
2115 * tcp_update_scoreboard.
2116 *
2117 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2118 * (2017-) that checks timing instead of counting DUPACKs.
2119 * Essentially a packet is considered lost if it's not S/ACKed
2120 * after RTT + reordering_window, where both metrics are
2121 * dynamically measured and adjusted. This is implemented in
2122 * tcp_rack_mark_lost.
2123 *
2124 * If the receiver does not support SACK:
2125 *
2126 * NewReno (RFC6582): in Recovery we assume that one segment
2127 * is lost (classic Reno). While we are in Recovery and
2128 * a partial ACK arrives, we assume that one more packet
2129 * is lost (NewReno). This heuristics are the same in NewReno
2130 * and SACK.
2131 *
2132 * Really tricky (and requiring careful tuning) part of algorithm
2133 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2134 * The first determines the moment _when_ we should reduce CWND and,
2135 * hence, slow down forward transmission. In fact, it determines the moment
2136 * when we decide that hole is caused by loss, rather than by a reorder.
2137 *
2138 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2139 * holes, caused by lost packets.
2140 *
2141 * And the most logically complicated part of algorithm is undo
2142 * heuristics. We detect false retransmits due to both too early
2143 * fast retransmit (reordering) and underestimated RTO, analyzing
2144 * timestamps and D-SACKs. When we detect that some segments were
2145 * retransmitted by mistake and CWND reduction was wrong, we undo
2146 * window reduction and abort recovery phase. This logic is hidden
2147 * inside several functions named tcp_try_undo_<something>.
2148 */
2149
2150 /* This function decides, when we should leave Disordered state
2151 * and enter Recovery phase, reducing congestion window.
2152 *
2153 * Main question: may we further continue forward transmission
2154 * with the same cwnd?
2155 */
tcp_time_to_recover(struct sock * sk,int flag)2156 static bool tcp_time_to_recover(struct sock *sk, int flag)
2157 {
2158 struct tcp_sock *tp = tcp_sk(sk);
2159
2160 /* Trick#1: The loss is proven. */
2161 if (tp->lost_out)
2162 return true;
2163
2164 /* Not-A-Trick#2 : Classic rule... */
2165 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2166 return true;
2167
2168 return false;
2169 }
2170
2171 /* Detect loss in event "A" above by marking head of queue up as lost.
2172 * For non-SACK(Reno) senders, the first "packets" number of segments
2173 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2174 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2175 * the maximum SACKed segments to pass before reaching this limit.
2176 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2177 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2178 {
2179 struct tcp_sock *tp = tcp_sk(sk);
2180 struct sk_buff *skb;
2181 int cnt, oldcnt, lost;
2182 unsigned int mss;
2183 /* Use SACK to deduce losses of new sequences sent during recovery */
2184 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2185
2186 WARN_ON(packets > tp->packets_out);
2187 skb = tp->lost_skb_hint;
2188 if (skb) {
2189 /* Head already handled? */
2190 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2191 return;
2192 cnt = tp->lost_cnt_hint;
2193 } else {
2194 skb = tcp_rtx_queue_head(sk);
2195 cnt = 0;
2196 }
2197
2198 skb_rbtree_walk_from(skb) {
2199 /* TODO: do this better */
2200 /* this is not the most efficient way to do this... */
2201 tp->lost_skb_hint = skb;
2202 tp->lost_cnt_hint = cnt;
2203
2204 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2205 break;
2206
2207 oldcnt = cnt;
2208 if (tcp_is_reno(tp) ||
2209 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2210 cnt += tcp_skb_pcount(skb);
2211
2212 if (cnt > packets) {
2213 if (tcp_is_sack(tp) ||
2214 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2215 (oldcnt >= packets))
2216 break;
2217
2218 mss = tcp_skb_mss(skb);
2219 /* If needed, chop off the prefix to mark as lost. */
2220 lost = (packets - oldcnt) * mss;
2221 if (lost < skb->len &&
2222 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2223 lost, mss, GFP_ATOMIC) < 0)
2224 break;
2225 cnt = packets;
2226 }
2227
2228 tcp_skb_mark_lost(tp, skb);
2229
2230 if (mark_head)
2231 break;
2232 }
2233 tcp_verify_left_out(tp);
2234 }
2235
2236 /* Account newly detected lost packet(s) */
2237
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2238 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2239 {
2240 struct tcp_sock *tp = tcp_sk(sk);
2241
2242 if (tcp_is_sack(tp)) {
2243 int sacked_upto = tp->sacked_out - tp->reordering;
2244 if (sacked_upto >= 0)
2245 tcp_mark_head_lost(sk, sacked_upto, 0);
2246 else if (fast_rexmit)
2247 tcp_mark_head_lost(sk, 1, 1);
2248 }
2249 }
2250
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2251 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2252 {
2253 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2254 before(tp->rx_opt.rcv_tsecr, when);
2255 }
2256
2257 /* skb is spurious retransmitted if the returned timestamp echo
2258 * reply is prior to the skb transmission time
2259 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2260 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2261 const struct sk_buff *skb)
2262 {
2263 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2264 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2265 }
2266
2267 /* Nothing was retransmitted or returned timestamp is less
2268 * than timestamp of the first retransmission.
2269 */
tcp_packet_delayed(const struct tcp_sock * tp)2270 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2271 {
2272 return !tp->retrans_stamp ||
2273 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2274 }
2275
2276 /* Undo procedures. */
2277
2278 /* We can clear retrans_stamp when there are no retransmissions in the
2279 * window. It would seem that it is trivially available for us in
2280 * tp->retrans_out, however, that kind of assumptions doesn't consider
2281 * what will happen if errors occur when sending retransmission for the
2282 * second time. ...It could the that such segment has only
2283 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2284 * the head skb is enough except for some reneging corner cases that
2285 * are not worth the effort.
2286 *
2287 * Main reason for all this complexity is the fact that connection dying
2288 * time now depends on the validity of the retrans_stamp, in particular,
2289 * that successive retransmissions of a segment must not advance
2290 * retrans_stamp under any conditions.
2291 */
tcp_any_retrans_done(const struct sock * sk)2292 static bool tcp_any_retrans_done(const struct sock *sk)
2293 {
2294 const struct tcp_sock *tp = tcp_sk(sk);
2295 struct sk_buff *skb;
2296
2297 if (tp->retrans_out)
2298 return true;
2299
2300 skb = tcp_rtx_queue_head(sk);
2301 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2302 return true;
2303
2304 return false;
2305 }
2306
DBGUNDO(struct sock * sk,const char * msg)2307 static void DBGUNDO(struct sock *sk, const char *msg)
2308 {
2309 #if FASTRETRANS_DEBUG > 1
2310 struct tcp_sock *tp = tcp_sk(sk);
2311 struct inet_sock *inet = inet_sk(sk);
2312
2313 if (sk->sk_family == AF_INET) {
2314 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2315 msg,
2316 &inet->inet_daddr, ntohs(inet->inet_dport),
2317 tp->snd_cwnd, tcp_left_out(tp),
2318 tp->snd_ssthresh, tp->prior_ssthresh,
2319 tp->packets_out);
2320 }
2321 #if IS_ENABLED(CONFIG_IPV6)
2322 else if (sk->sk_family == AF_INET6) {
2323 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2324 msg,
2325 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2326 tp->snd_cwnd, tcp_left_out(tp),
2327 tp->snd_ssthresh, tp->prior_ssthresh,
2328 tp->packets_out);
2329 }
2330 #endif
2331 #endif
2332 }
2333
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2334 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2335 {
2336 struct tcp_sock *tp = tcp_sk(sk);
2337
2338 if (unmark_loss) {
2339 struct sk_buff *skb;
2340
2341 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2342 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2343 }
2344 tp->lost_out = 0;
2345 tcp_clear_all_retrans_hints(tp);
2346 }
2347
2348 if (tp->prior_ssthresh) {
2349 const struct inet_connection_sock *icsk = inet_csk(sk);
2350
2351 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2352
2353 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2354 tp->snd_ssthresh = tp->prior_ssthresh;
2355 tcp_ecn_withdraw_cwr(tp);
2356 }
2357 }
2358 tp->snd_cwnd_stamp = tcp_jiffies32;
2359 tp->undo_marker = 0;
2360 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2361 }
2362
tcp_may_undo(const struct tcp_sock * tp)2363 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2364 {
2365 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2366 }
2367
2368 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2369 static bool tcp_try_undo_recovery(struct sock *sk)
2370 {
2371 struct tcp_sock *tp = tcp_sk(sk);
2372
2373 if (tcp_may_undo(tp)) {
2374 int mib_idx;
2375
2376 /* Happy end! We did not retransmit anything
2377 * or our original transmission succeeded.
2378 */
2379 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2380 tcp_undo_cwnd_reduction(sk, false);
2381 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2382 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2383 else
2384 mib_idx = LINUX_MIB_TCPFULLUNDO;
2385
2386 NET_INC_STATS(sock_net(sk), mib_idx);
2387 } else if (tp->rack.reo_wnd_persist) {
2388 tp->rack.reo_wnd_persist--;
2389 }
2390 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2391 /* Hold old state until something *above* high_seq
2392 * is ACKed. For Reno it is MUST to prevent false
2393 * fast retransmits (RFC2582). SACK TCP is safe. */
2394 if (!tcp_any_retrans_done(sk))
2395 tp->retrans_stamp = 0;
2396 return true;
2397 }
2398 tcp_set_ca_state(sk, TCP_CA_Open);
2399 tp->is_sack_reneg = 0;
2400 return false;
2401 }
2402
2403 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2404 static bool tcp_try_undo_dsack(struct sock *sk)
2405 {
2406 struct tcp_sock *tp = tcp_sk(sk);
2407
2408 if (tp->undo_marker && !tp->undo_retrans) {
2409 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2410 tp->rack.reo_wnd_persist + 1);
2411 DBGUNDO(sk, "D-SACK");
2412 tcp_undo_cwnd_reduction(sk, false);
2413 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2414 return true;
2415 }
2416 return false;
2417 }
2418
2419 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2420 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2421 {
2422 struct tcp_sock *tp = tcp_sk(sk);
2423
2424 if (frto_undo || tcp_may_undo(tp)) {
2425 tcp_undo_cwnd_reduction(sk, true);
2426
2427 DBGUNDO(sk, "partial loss");
2428 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2429 if (frto_undo)
2430 NET_INC_STATS(sock_net(sk),
2431 LINUX_MIB_TCPSPURIOUSRTOS);
2432 inet_csk(sk)->icsk_retransmits = 0;
2433 if (frto_undo || tcp_is_sack(tp)) {
2434 tcp_set_ca_state(sk, TCP_CA_Open);
2435 tp->is_sack_reneg = 0;
2436 }
2437 return true;
2438 }
2439 return false;
2440 }
2441
2442 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2443 * It computes the number of packets to send (sndcnt) based on packets newly
2444 * delivered:
2445 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2446 * cwnd reductions across a full RTT.
2447 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2448 * But when the retransmits are acked without further losses, PRR
2449 * slow starts cwnd up to ssthresh to speed up the recovery.
2450 */
tcp_init_cwnd_reduction(struct sock * sk)2451 static void tcp_init_cwnd_reduction(struct sock *sk)
2452 {
2453 struct tcp_sock *tp = tcp_sk(sk);
2454
2455 tp->high_seq = tp->snd_nxt;
2456 tp->tlp_high_seq = 0;
2457 tp->snd_cwnd_cnt = 0;
2458 tp->prior_cwnd = tp->snd_cwnd;
2459 tp->prr_delivered = 0;
2460 tp->prr_out = 0;
2461 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2462 tcp_ecn_queue_cwr(tp);
2463 }
2464
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2465 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2466 {
2467 struct tcp_sock *tp = tcp_sk(sk);
2468 int sndcnt = 0;
2469 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2470
2471 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2472 return;
2473
2474 tp->prr_delivered += newly_acked_sacked;
2475 if (delta < 0) {
2476 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2477 tp->prior_cwnd - 1;
2478 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2479 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2480 !(flag & FLAG_LOST_RETRANS)) {
2481 sndcnt = min_t(int, delta,
2482 max_t(int, tp->prr_delivered - tp->prr_out,
2483 newly_acked_sacked) + 1);
2484 } else {
2485 sndcnt = min(delta, newly_acked_sacked);
2486 }
2487 /* Force a fast retransmit upon entering fast recovery */
2488 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2489 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2490 }
2491
tcp_end_cwnd_reduction(struct sock * sk)2492 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2493 {
2494 struct tcp_sock *tp = tcp_sk(sk);
2495
2496 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2497 return;
2498
2499 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2500 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2501 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2502 tp->snd_cwnd = tp->snd_ssthresh;
2503 tp->snd_cwnd_stamp = tcp_jiffies32;
2504 }
2505 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2506 }
2507
2508 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2509 void tcp_enter_cwr(struct sock *sk)
2510 {
2511 struct tcp_sock *tp = tcp_sk(sk);
2512
2513 tp->prior_ssthresh = 0;
2514 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2515 tp->undo_marker = 0;
2516 tcp_init_cwnd_reduction(sk);
2517 tcp_set_ca_state(sk, TCP_CA_CWR);
2518 }
2519 }
2520 EXPORT_SYMBOL(tcp_enter_cwr);
2521
tcp_try_keep_open(struct sock * sk)2522 static void tcp_try_keep_open(struct sock *sk)
2523 {
2524 struct tcp_sock *tp = tcp_sk(sk);
2525 int state = TCP_CA_Open;
2526
2527 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2528 state = TCP_CA_Disorder;
2529
2530 if (inet_csk(sk)->icsk_ca_state != state) {
2531 tcp_set_ca_state(sk, state);
2532 tp->high_seq = tp->snd_nxt;
2533 }
2534 }
2535
tcp_try_to_open(struct sock * sk,int flag)2536 static void tcp_try_to_open(struct sock *sk, int flag)
2537 {
2538 struct tcp_sock *tp = tcp_sk(sk);
2539
2540 tcp_verify_left_out(tp);
2541
2542 if (!tcp_any_retrans_done(sk))
2543 tp->retrans_stamp = 0;
2544
2545 if (flag & FLAG_ECE)
2546 tcp_enter_cwr(sk);
2547
2548 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2549 tcp_try_keep_open(sk);
2550 }
2551 }
2552
tcp_mtup_probe_failed(struct sock * sk)2553 static void tcp_mtup_probe_failed(struct sock *sk)
2554 {
2555 struct inet_connection_sock *icsk = inet_csk(sk);
2556
2557 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2558 icsk->icsk_mtup.probe_size = 0;
2559 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2560 }
2561
tcp_mtup_probe_success(struct sock * sk)2562 static void tcp_mtup_probe_success(struct sock *sk)
2563 {
2564 struct tcp_sock *tp = tcp_sk(sk);
2565 struct inet_connection_sock *icsk = inet_csk(sk);
2566
2567 /* FIXME: breaks with very large cwnd */
2568 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2569 tp->snd_cwnd = tp->snd_cwnd *
2570 tcp_mss_to_mtu(sk, tp->mss_cache) /
2571 icsk->icsk_mtup.probe_size;
2572 tp->snd_cwnd_cnt = 0;
2573 tp->snd_cwnd_stamp = tcp_jiffies32;
2574 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2575
2576 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2577 icsk->icsk_mtup.probe_size = 0;
2578 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2579 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2580 }
2581
2582 /* Do a simple retransmit without using the backoff mechanisms in
2583 * tcp_timer. This is used for path mtu discovery.
2584 * The socket is already locked here.
2585 */
tcp_simple_retransmit(struct sock * sk)2586 void tcp_simple_retransmit(struct sock *sk)
2587 {
2588 const struct inet_connection_sock *icsk = inet_csk(sk);
2589 struct tcp_sock *tp = tcp_sk(sk);
2590 struct sk_buff *skb;
2591 unsigned int mss = tcp_current_mss(sk);
2592
2593 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2594 if (tcp_skb_seglen(skb) > mss &&
2595 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2596 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2597 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2598 tp->retrans_out -= tcp_skb_pcount(skb);
2599 }
2600 tcp_skb_mark_lost_uncond_verify(tp, skb);
2601 }
2602 }
2603
2604 tcp_clear_retrans_hints_partial(tp);
2605
2606 if (!tp->lost_out)
2607 return;
2608
2609 if (tcp_is_reno(tp))
2610 tcp_limit_reno_sacked(tp);
2611
2612 tcp_verify_left_out(tp);
2613
2614 /* Don't muck with the congestion window here.
2615 * Reason is that we do not increase amount of _data_
2616 * in network, but units changed and effective
2617 * cwnd/ssthresh really reduced now.
2618 */
2619 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2620 tp->high_seq = tp->snd_nxt;
2621 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2622 tp->prior_ssthresh = 0;
2623 tp->undo_marker = 0;
2624 tcp_set_ca_state(sk, TCP_CA_Loss);
2625 }
2626 tcp_xmit_retransmit_queue(sk);
2627 }
2628 EXPORT_SYMBOL(tcp_simple_retransmit);
2629
tcp_enter_recovery(struct sock * sk,bool ece_ack)2630 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2631 {
2632 struct tcp_sock *tp = tcp_sk(sk);
2633 int mib_idx;
2634
2635 if (tcp_is_reno(tp))
2636 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2637 else
2638 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2639
2640 NET_INC_STATS(sock_net(sk), mib_idx);
2641
2642 tp->prior_ssthresh = 0;
2643 tcp_init_undo(tp);
2644
2645 if (!tcp_in_cwnd_reduction(sk)) {
2646 if (!ece_ack)
2647 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2648 tcp_init_cwnd_reduction(sk);
2649 }
2650 tcp_set_ca_state(sk, TCP_CA_Recovery);
2651 }
2652
2653 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2654 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2655 */
tcp_process_loss(struct sock * sk,int flag,bool is_dupack,int * rexmit)2656 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2657 int *rexmit)
2658 {
2659 struct tcp_sock *tp = tcp_sk(sk);
2660 bool recovered = !before(tp->snd_una, tp->high_seq);
2661
2662 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2663 tcp_try_undo_loss(sk, false))
2664 return;
2665
2666 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2667 /* Step 3.b. A timeout is spurious if not all data are
2668 * lost, i.e., never-retransmitted data are (s)acked.
2669 */
2670 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2671 tcp_try_undo_loss(sk, true))
2672 return;
2673
2674 if (after(tp->snd_nxt, tp->high_seq)) {
2675 if (flag & FLAG_DATA_SACKED || is_dupack)
2676 tp->frto = 0; /* Step 3.a. loss was real */
2677 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2678 tp->high_seq = tp->snd_nxt;
2679 /* Step 2.b. Try send new data (but deferred until cwnd
2680 * is updated in tcp_ack()). Otherwise fall back to
2681 * the conventional recovery.
2682 */
2683 if (!tcp_write_queue_empty(sk) &&
2684 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2685 *rexmit = REXMIT_NEW;
2686 return;
2687 }
2688 tp->frto = 0;
2689 }
2690 }
2691
2692 if (recovered) {
2693 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2694 tcp_try_undo_recovery(sk);
2695 return;
2696 }
2697 if (tcp_is_reno(tp)) {
2698 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2699 * delivered. Lower inflight to clock out (re)tranmissions.
2700 */
2701 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2702 tcp_add_reno_sack(sk);
2703 else if (flag & FLAG_SND_UNA_ADVANCED)
2704 tcp_reset_reno_sack(tp);
2705 }
2706 *rexmit = REXMIT_LOST;
2707 }
2708
2709 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una)2710 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2711 {
2712 struct tcp_sock *tp = tcp_sk(sk);
2713
2714 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2715 /* Plain luck! Hole if filled with delayed
2716 * packet, rather than with a retransmit. Check reordering.
2717 */
2718 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2719
2720 /* We are getting evidence that the reordering degree is higher
2721 * than we realized. If there are no retransmits out then we
2722 * can undo. Otherwise we clock out new packets but do not
2723 * mark more packets lost or retransmit more.
2724 */
2725 if (tp->retrans_out)
2726 return true;
2727
2728 if (!tcp_any_retrans_done(sk))
2729 tp->retrans_stamp = 0;
2730
2731 DBGUNDO(sk, "partial recovery");
2732 tcp_undo_cwnd_reduction(sk, true);
2733 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2734 tcp_try_keep_open(sk);
2735 return true;
2736 }
2737 return false;
2738 }
2739
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2740 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2741 {
2742 struct tcp_sock *tp = tcp_sk(sk);
2743
2744 if (tcp_rtx_queue_empty(sk))
2745 return;
2746
2747 if (unlikely(tcp_is_reno(tp))) {
2748 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2749 } else if (tcp_is_rack(sk)) {
2750 u32 prior_retrans = tp->retrans_out;
2751
2752 tcp_rack_mark_lost(sk);
2753 if (prior_retrans > tp->retrans_out)
2754 *ack_flag |= FLAG_LOST_RETRANS;
2755 }
2756 }
2757
tcp_force_fast_retransmit(struct sock * sk)2758 static bool tcp_force_fast_retransmit(struct sock *sk)
2759 {
2760 struct tcp_sock *tp = tcp_sk(sk);
2761
2762 return after(tcp_highest_sack_seq(tp),
2763 tp->snd_una + tp->reordering * tp->mss_cache);
2764 }
2765
2766 /* Process an event, which can update packets-in-flight not trivially.
2767 * Main goal of this function is to calculate new estimate for left_out,
2768 * taking into account both packets sitting in receiver's buffer and
2769 * packets lost by network.
2770 *
2771 * Besides that it updates the congestion state when packet loss or ECN
2772 * is detected. But it does not reduce the cwnd, it is done by the
2773 * congestion control later.
2774 *
2775 * It does _not_ decide what to send, it is made in function
2776 * tcp_xmit_retransmit_queue().
2777 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,bool is_dupack,int * ack_flag,int * rexmit)2778 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2779 bool is_dupack, int *ack_flag, int *rexmit)
2780 {
2781 struct inet_connection_sock *icsk = inet_csk(sk);
2782 struct tcp_sock *tp = tcp_sk(sk);
2783 int fast_rexmit = 0, flag = *ack_flag;
2784 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2785 tcp_force_fast_retransmit(sk));
2786
2787 if (!tp->packets_out && tp->sacked_out)
2788 tp->sacked_out = 0;
2789
2790 /* Now state machine starts.
2791 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2792 if (flag & FLAG_ECE)
2793 tp->prior_ssthresh = 0;
2794
2795 /* B. In all the states check for reneging SACKs. */
2796 if (tcp_check_sack_reneging(sk, flag))
2797 return;
2798
2799 /* C. Check consistency of the current state. */
2800 tcp_verify_left_out(tp);
2801
2802 /* D. Check state exit conditions. State can be terminated
2803 * when high_seq is ACKed. */
2804 if (icsk->icsk_ca_state == TCP_CA_Open) {
2805 WARN_ON(tp->retrans_out != 0);
2806 tp->retrans_stamp = 0;
2807 } else if (!before(tp->snd_una, tp->high_seq)) {
2808 switch (icsk->icsk_ca_state) {
2809 case TCP_CA_CWR:
2810 /* CWR is to be held something *above* high_seq
2811 * is ACKed for CWR bit to reach receiver. */
2812 if (tp->snd_una != tp->high_seq) {
2813 tcp_end_cwnd_reduction(sk);
2814 tcp_set_ca_state(sk, TCP_CA_Open);
2815 }
2816 break;
2817
2818 case TCP_CA_Recovery:
2819 if (tcp_is_reno(tp))
2820 tcp_reset_reno_sack(tp);
2821 if (tcp_try_undo_recovery(sk))
2822 return;
2823 tcp_end_cwnd_reduction(sk);
2824 break;
2825 }
2826 }
2827
2828 /* E. Process state. */
2829 switch (icsk->icsk_ca_state) {
2830 case TCP_CA_Recovery:
2831 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2832 if (tcp_is_reno(tp) && is_dupack)
2833 tcp_add_reno_sack(sk);
2834 } else {
2835 if (tcp_try_undo_partial(sk, prior_snd_una))
2836 return;
2837 /* Partial ACK arrived. Force fast retransmit. */
2838 do_lost = tcp_is_reno(tp) ||
2839 tcp_force_fast_retransmit(sk);
2840 }
2841 if (tcp_try_undo_dsack(sk)) {
2842 tcp_try_keep_open(sk);
2843 return;
2844 }
2845 tcp_identify_packet_loss(sk, ack_flag);
2846 break;
2847 case TCP_CA_Loss:
2848 tcp_process_loss(sk, flag, is_dupack, rexmit);
2849 tcp_identify_packet_loss(sk, ack_flag);
2850 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2851 (*ack_flag & FLAG_LOST_RETRANS)))
2852 return;
2853 /* Change state if cwnd is undone or retransmits are lost */
2854 /* fall through */
2855 default:
2856 if (tcp_is_reno(tp)) {
2857 if (flag & FLAG_SND_UNA_ADVANCED)
2858 tcp_reset_reno_sack(tp);
2859 if (is_dupack)
2860 tcp_add_reno_sack(sk);
2861 }
2862
2863 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2864 tcp_try_undo_dsack(sk);
2865
2866 tcp_identify_packet_loss(sk, ack_flag);
2867 if (!tcp_time_to_recover(sk, flag)) {
2868 tcp_try_to_open(sk, flag);
2869 return;
2870 }
2871
2872 /* MTU probe failure: don't reduce cwnd */
2873 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2874 icsk->icsk_mtup.probe_size &&
2875 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2876 tcp_mtup_probe_failed(sk);
2877 /* Restores the reduction we did in tcp_mtup_probe() */
2878 tp->snd_cwnd++;
2879 tcp_simple_retransmit(sk);
2880 return;
2881 }
2882
2883 /* Otherwise enter Recovery state */
2884 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2885 fast_rexmit = 1;
2886 }
2887
2888 if (!tcp_is_rack(sk) && do_lost)
2889 tcp_update_scoreboard(sk, fast_rexmit);
2890 *rexmit = REXMIT_LOST;
2891 }
2892
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)2893 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2894 {
2895 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2896 struct tcp_sock *tp = tcp_sk(sk);
2897
2898 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2899 /* If the remote keeps returning delayed ACKs, eventually
2900 * the min filter would pick it up and overestimate the
2901 * prop. delay when it expires. Skip suspected delayed ACKs.
2902 */
2903 return;
2904 }
2905 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2906 rtt_us ? : jiffies_to_usecs(1));
2907 }
2908
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)2909 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2910 long seq_rtt_us, long sack_rtt_us,
2911 long ca_rtt_us, struct rate_sample *rs)
2912 {
2913 const struct tcp_sock *tp = tcp_sk(sk);
2914
2915 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2916 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2917 * Karn's algorithm forbids taking RTT if some retransmitted data
2918 * is acked (RFC6298).
2919 */
2920 if (seq_rtt_us < 0)
2921 seq_rtt_us = sack_rtt_us;
2922
2923 /* RTTM Rule: A TSecr value received in a segment is used to
2924 * update the averaged RTT measurement only if the segment
2925 * acknowledges some new data, i.e., only if it advances the
2926 * left edge of the send window.
2927 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2928 */
2929 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2930 flag & FLAG_ACKED) {
2931 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2932 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2933
2934 seq_rtt_us = ca_rtt_us = delta_us;
2935 }
2936 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2937 if (seq_rtt_us < 0)
2938 return false;
2939
2940 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2941 * always taken together with ACK, SACK, or TS-opts. Any negative
2942 * values will be skipped with the seq_rtt_us < 0 check above.
2943 */
2944 tcp_update_rtt_min(sk, ca_rtt_us, flag);
2945 tcp_rtt_estimator(sk, seq_rtt_us);
2946 tcp_set_rto(sk);
2947
2948 /* RFC6298: only reset backoff on valid RTT measurement. */
2949 inet_csk(sk)->icsk_backoff = 0;
2950 return true;
2951 }
2952
2953 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)2954 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2955 {
2956 struct rate_sample rs;
2957 long rtt_us = -1L;
2958
2959 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2960 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2961
2962 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2963 }
2964
2965
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)2966 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2967 {
2968 const struct inet_connection_sock *icsk = inet_csk(sk);
2969
2970 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2971 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2972 }
2973
2974 /* Restart timer after forward progress on connection.
2975 * RFC2988 recommends to restart timer to now+rto.
2976 */
tcp_rearm_rto(struct sock * sk)2977 void tcp_rearm_rto(struct sock *sk)
2978 {
2979 const struct inet_connection_sock *icsk = inet_csk(sk);
2980 struct tcp_sock *tp = tcp_sk(sk);
2981
2982 /* If the retrans timer is currently being used by Fast Open
2983 * for SYN-ACK retrans purpose, stay put.
2984 */
2985 if (tp->fastopen_rsk)
2986 return;
2987
2988 if (!tp->packets_out) {
2989 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2990 } else {
2991 u32 rto = inet_csk(sk)->icsk_rto;
2992 /* Offset the time elapsed after installing regular RTO */
2993 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2994 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2995 s64 delta_us = tcp_rto_delta_us(sk);
2996 /* delta_us may not be positive if the socket is locked
2997 * when the retrans timer fires and is rescheduled.
2998 */
2999 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3000 }
3001 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3002 TCP_RTO_MAX);
3003 }
3004 }
3005
3006 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3007 static void tcp_set_xmit_timer(struct sock *sk)
3008 {
3009 if (!tcp_schedule_loss_probe(sk, true))
3010 tcp_rearm_rto(sk);
3011 }
3012
3013 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3014 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3015 {
3016 struct tcp_sock *tp = tcp_sk(sk);
3017 u32 packets_acked;
3018
3019 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3020
3021 packets_acked = tcp_skb_pcount(skb);
3022 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3023 return 0;
3024 packets_acked -= tcp_skb_pcount(skb);
3025
3026 if (packets_acked) {
3027 BUG_ON(tcp_skb_pcount(skb) == 0);
3028 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3029 }
3030
3031 return packets_acked;
3032 }
3033
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3034 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3035 u32 prior_snd_una)
3036 {
3037 const struct skb_shared_info *shinfo;
3038
3039 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3040 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3041 return;
3042
3043 shinfo = skb_shinfo(skb);
3044 if (!before(shinfo->tskey, prior_snd_una) &&
3045 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3046 tcp_skb_tsorted_save(skb) {
3047 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3048 } tcp_skb_tsorted_restore(skb);
3049 }
3050 }
3051
3052 /* Remove acknowledged frames from the retransmission queue. If our packet
3053 * is before the ack sequence we can discard it as it's confirmed to have
3054 * arrived at the other end.
3055 */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack)3056 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3057 u32 prior_snd_una,
3058 struct tcp_sacktag_state *sack)
3059 {
3060 const struct inet_connection_sock *icsk = inet_csk(sk);
3061 u64 first_ackt, last_ackt;
3062 struct tcp_sock *tp = tcp_sk(sk);
3063 u32 prior_sacked = tp->sacked_out;
3064 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3065 struct sk_buff *skb, *next;
3066 bool fully_acked = true;
3067 long sack_rtt_us = -1L;
3068 long seq_rtt_us = -1L;
3069 long ca_rtt_us = -1L;
3070 u32 pkts_acked = 0;
3071 u32 last_in_flight = 0;
3072 bool rtt_update;
3073 int flag = 0;
3074
3075 first_ackt = 0;
3076
3077 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3078 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3079 const u32 start_seq = scb->seq;
3080 u8 sacked = scb->sacked;
3081 u32 acked_pcount;
3082
3083 tcp_ack_tstamp(sk, skb, prior_snd_una);
3084
3085 /* Determine how many packets and what bytes were acked, tso and else */
3086 if (after(scb->end_seq, tp->snd_una)) {
3087 if (tcp_skb_pcount(skb) == 1 ||
3088 !after(tp->snd_una, scb->seq))
3089 break;
3090
3091 acked_pcount = tcp_tso_acked(sk, skb);
3092 if (!acked_pcount)
3093 break;
3094 fully_acked = false;
3095 } else {
3096 acked_pcount = tcp_skb_pcount(skb);
3097 }
3098
3099 if (unlikely(sacked & TCPCB_RETRANS)) {
3100 if (sacked & TCPCB_SACKED_RETRANS)
3101 tp->retrans_out -= acked_pcount;
3102 flag |= FLAG_RETRANS_DATA_ACKED;
3103 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3104 last_ackt = skb->skb_mstamp;
3105 WARN_ON_ONCE(last_ackt == 0);
3106 if (!first_ackt)
3107 first_ackt = last_ackt;
3108
3109 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3110 if (before(start_seq, reord))
3111 reord = start_seq;
3112 if (!after(scb->end_seq, tp->high_seq))
3113 flag |= FLAG_ORIG_SACK_ACKED;
3114 }
3115
3116 if (sacked & TCPCB_SACKED_ACKED) {
3117 tp->sacked_out -= acked_pcount;
3118 } else if (tcp_is_sack(tp)) {
3119 tp->delivered += acked_pcount;
3120 if (!tcp_skb_spurious_retrans(tp, skb))
3121 tcp_rack_advance(tp, sacked, scb->end_seq,
3122 skb->skb_mstamp);
3123 }
3124 if (sacked & TCPCB_LOST)
3125 tp->lost_out -= acked_pcount;
3126
3127 tp->packets_out -= acked_pcount;
3128 pkts_acked += acked_pcount;
3129 tcp_rate_skb_delivered(sk, skb, sack->rate);
3130
3131 /* Initial outgoing SYN's get put onto the write_queue
3132 * just like anything else we transmit. It is not
3133 * true data, and if we misinform our callers that
3134 * this ACK acks real data, we will erroneously exit
3135 * connection startup slow start one packet too
3136 * quickly. This is severely frowned upon behavior.
3137 */
3138 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3139 flag |= FLAG_DATA_ACKED;
3140 } else {
3141 flag |= FLAG_SYN_ACKED;
3142 tp->retrans_stamp = 0;
3143 }
3144
3145 if (!fully_acked)
3146 break;
3147
3148 next = skb_rb_next(skb);
3149 if (unlikely(skb == tp->retransmit_skb_hint))
3150 tp->retransmit_skb_hint = NULL;
3151 if (unlikely(skb == tp->lost_skb_hint))
3152 tp->lost_skb_hint = NULL;
3153 tcp_highest_sack_replace(sk, skb, next);
3154 tcp_rtx_queue_unlink_and_free(skb, sk);
3155 }
3156
3157 if (!skb)
3158 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3159
3160 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3161 tp->snd_up = tp->snd_una;
3162
3163 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3164 flag |= FLAG_SACK_RENEGING;
3165
3166 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3167 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3168 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3169
3170 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3171 last_in_flight && !prior_sacked && fully_acked &&
3172 sack->rate->prior_delivered + 1 == tp->delivered &&
3173 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3174 /* Conservatively mark a delayed ACK. It's typically
3175 * from a lone runt packet over the round trip to
3176 * a receiver w/o out-of-order or CE events.
3177 */
3178 flag |= FLAG_ACK_MAYBE_DELAYED;
3179 }
3180 }
3181 if (sack->first_sackt) {
3182 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3183 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3184 }
3185 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3186 ca_rtt_us, sack->rate);
3187
3188 if (flag & FLAG_ACKED) {
3189 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3190 if (unlikely(icsk->icsk_mtup.probe_size &&
3191 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3192 tcp_mtup_probe_success(sk);
3193 }
3194
3195 if (tcp_is_reno(tp)) {
3196 tcp_remove_reno_sacks(sk, pkts_acked);
3197
3198 /* If any of the cumulatively ACKed segments was
3199 * retransmitted, non-SACK case cannot confirm that
3200 * progress was due to original transmission due to
3201 * lack of TCPCB_SACKED_ACKED bits even if some of
3202 * the packets may have been never retransmitted.
3203 */
3204 if (flag & FLAG_RETRANS_DATA_ACKED)
3205 flag &= ~FLAG_ORIG_SACK_ACKED;
3206 } else {
3207 int delta;
3208
3209 /* Non-retransmitted hole got filled? That's reordering */
3210 if (before(reord, prior_fack))
3211 tcp_check_sack_reordering(sk, reord, 0);
3212
3213 delta = prior_sacked - tp->sacked_out;
3214 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3215 }
3216 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3217 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3218 /* Do not re-arm RTO if the sack RTT is measured from data sent
3219 * after when the head was last (re)transmitted. Otherwise the
3220 * timeout may continue to extend in loss recovery.
3221 */
3222 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3223 }
3224
3225 if (icsk->icsk_ca_ops->pkts_acked) {
3226 struct ack_sample sample = { .pkts_acked = pkts_acked,
3227 .rtt_us = sack->rate->rtt_us,
3228 .in_flight = last_in_flight };
3229
3230 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3231 }
3232
3233 #if FASTRETRANS_DEBUG > 0
3234 WARN_ON((int)tp->sacked_out < 0);
3235 WARN_ON((int)tp->lost_out < 0);
3236 WARN_ON((int)tp->retrans_out < 0);
3237 if (!tp->packets_out && tcp_is_sack(tp)) {
3238 icsk = inet_csk(sk);
3239 if (tp->lost_out) {
3240 pr_debug("Leak l=%u %d\n",
3241 tp->lost_out, icsk->icsk_ca_state);
3242 tp->lost_out = 0;
3243 }
3244 if (tp->sacked_out) {
3245 pr_debug("Leak s=%u %d\n",
3246 tp->sacked_out, icsk->icsk_ca_state);
3247 tp->sacked_out = 0;
3248 }
3249 if (tp->retrans_out) {
3250 pr_debug("Leak r=%u %d\n",
3251 tp->retrans_out, icsk->icsk_ca_state);
3252 tp->retrans_out = 0;
3253 }
3254 }
3255 #endif
3256 return flag;
3257 }
3258
tcp_ack_probe(struct sock * sk)3259 static void tcp_ack_probe(struct sock *sk)
3260 {
3261 struct inet_connection_sock *icsk = inet_csk(sk);
3262 struct sk_buff *head = tcp_send_head(sk);
3263 const struct tcp_sock *tp = tcp_sk(sk);
3264
3265 /* Was it a usable window open? */
3266 if (!head)
3267 return;
3268 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3269 icsk->icsk_backoff = 0;
3270 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3271 /* Socket must be waked up by subsequent tcp_data_snd_check().
3272 * This function is not for random using!
3273 */
3274 } else {
3275 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3276
3277 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3278 when, TCP_RTO_MAX);
3279 }
3280 }
3281
tcp_ack_is_dubious(const struct sock * sk,const int flag)3282 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3283 {
3284 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3285 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3286 }
3287
3288 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3289 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3290 {
3291 /* If reordering is high then always grow cwnd whenever data is
3292 * delivered regardless of its ordering. Otherwise stay conservative
3293 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3294 * new SACK or ECE mark may first advance cwnd here and later reduce
3295 * cwnd in tcp_fastretrans_alert() based on more states.
3296 */
3297 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3298 return flag & FLAG_FORWARD_PROGRESS;
3299
3300 return flag & FLAG_DATA_ACKED;
3301 }
3302
3303 /* The "ultimate" congestion control function that aims to replace the rigid
3304 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3305 * It's called toward the end of processing an ACK with precise rate
3306 * information. All transmission or retransmission are delayed afterwards.
3307 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3308 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3309 int flag, const struct rate_sample *rs)
3310 {
3311 const struct inet_connection_sock *icsk = inet_csk(sk);
3312
3313 if (icsk->icsk_ca_ops->cong_control) {
3314 icsk->icsk_ca_ops->cong_control(sk, rs);
3315 return;
3316 }
3317
3318 if (tcp_in_cwnd_reduction(sk)) {
3319 /* Reduce cwnd if state mandates */
3320 tcp_cwnd_reduction(sk, acked_sacked, flag);
3321 } else if (tcp_may_raise_cwnd(sk, flag)) {
3322 /* Advance cwnd if state allows */
3323 tcp_cong_avoid(sk, ack, acked_sacked);
3324 }
3325 tcp_update_pacing_rate(sk);
3326 }
3327
3328 /* Check that window update is acceptable.
3329 * The function assumes that snd_una<=ack<=snd_next.
3330 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3331 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3332 const u32 ack, const u32 ack_seq,
3333 const u32 nwin)
3334 {
3335 return after(ack, tp->snd_una) ||
3336 after(ack_seq, tp->snd_wl1) ||
3337 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3338 }
3339
3340 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3341 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3342 {
3343 u32 delta = ack - tp->snd_una;
3344
3345 sock_owned_by_me((struct sock *)tp);
3346 tp->bytes_acked += delta;
3347 tp->snd_una = ack;
3348 }
3349
3350 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3351 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3352 {
3353 u32 delta = seq - tp->rcv_nxt;
3354
3355 sock_owned_by_me((struct sock *)tp);
3356 tp->bytes_received += delta;
3357 WRITE_ONCE(tp->rcv_nxt, seq);
3358 }
3359
3360 /* Update our send window.
3361 *
3362 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3363 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3364 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3365 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3366 u32 ack_seq)
3367 {
3368 struct tcp_sock *tp = tcp_sk(sk);
3369 int flag = 0;
3370 u32 nwin = ntohs(tcp_hdr(skb)->window);
3371
3372 if (likely(!tcp_hdr(skb)->syn))
3373 nwin <<= tp->rx_opt.snd_wscale;
3374
3375 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3376 flag |= FLAG_WIN_UPDATE;
3377 tcp_update_wl(tp, ack_seq);
3378
3379 if (tp->snd_wnd != nwin) {
3380 tp->snd_wnd = nwin;
3381
3382 /* Note, it is the only place, where
3383 * fast path is recovered for sending TCP.
3384 */
3385 tp->pred_flags = 0;
3386 tcp_fast_path_check(sk);
3387
3388 if (!tcp_write_queue_empty(sk))
3389 tcp_slow_start_after_idle_check(sk);
3390
3391 if (nwin > tp->max_window) {
3392 tp->max_window = nwin;
3393 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3394 }
3395 }
3396 }
3397
3398 tcp_snd_una_update(tp, ack);
3399
3400 return flag;
3401 }
3402
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3403 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3404 u32 *last_oow_ack_time)
3405 {
3406 if (*last_oow_ack_time) {
3407 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3408
3409 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3410 NET_INC_STATS(net, mib_idx);
3411 return true; /* rate-limited: don't send yet! */
3412 }
3413 }
3414
3415 *last_oow_ack_time = tcp_jiffies32;
3416
3417 return false; /* not rate-limited: go ahead, send dupack now! */
3418 }
3419
3420 /* Return true if we're currently rate-limiting out-of-window ACKs and
3421 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3422 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3423 * attacks that send repeated SYNs or ACKs for the same connection. To
3424 * do this, we do not send a duplicate SYNACK or ACK if the remote
3425 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3426 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3427 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3428 int mib_idx, u32 *last_oow_ack_time)
3429 {
3430 /* Data packets without SYNs are not likely part of an ACK loop. */
3431 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3432 !tcp_hdr(skb)->syn)
3433 return false;
3434
3435 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3436 }
3437
3438 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3439 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3440 {
3441 /* unprotected vars, we dont care of overwrites */
3442 static u32 challenge_timestamp;
3443 static unsigned int challenge_count;
3444 struct tcp_sock *tp = tcp_sk(sk);
3445 struct net *net = sock_net(sk);
3446 u32 count, now;
3447
3448 /* First check our per-socket dupack rate limit. */
3449 if (__tcp_oow_rate_limited(net,
3450 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3451 &tp->last_oow_ack_time))
3452 return;
3453
3454 /* Then check host-wide RFC 5961 rate limit. */
3455 now = jiffies / HZ;
3456 if (now != challenge_timestamp) {
3457 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3458 u32 half = (ack_limit + 1) >> 1;
3459
3460 challenge_timestamp = now;
3461 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3462 }
3463 count = READ_ONCE(challenge_count);
3464 if (count > 0) {
3465 WRITE_ONCE(challenge_count, count - 1);
3466 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3467 tcp_send_ack(sk);
3468 }
3469 }
3470
tcp_store_ts_recent(struct tcp_sock * tp)3471 static void tcp_store_ts_recent(struct tcp_sock *tp)
3472 {
3473 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3474 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3475 }
3476
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3477 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3478 {
3479 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3480 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3481 * extra check below makes sure this can only happen
3482 * for pure ACK frames. -DaveM
3483 *
3484 * Not only, also it occurs for expired timestamps.
3485 */
3486
3487 if (tcp_paws_check(&tp->rx_opt, 0))
3488 tcp_store_ts_recent(tp);
3489 }
3490 }
3491
3492 /* This routine deals with acks during a TLP episode and ends an episode by
3493 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3494 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3495 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3496 {
3497 struct tcp_sock *tp = tcp_sk(sk);
3498
3499 if (before(ack, tp->tlp_high_seq))
3500 return;
3501
3502 if (!tp->tlp_retrans) {
3503 /* TLP of new data has been acknowledged */
3504 tp->tlp_high_seq = 0;
3505 } else if (flag & FLAG_DSACKING_ACK) {
3506 /* This DSACK means original and TLP probe arrived; no loss */
3507 tp->tlp_high_seq = 0;
3508 } else if (after(ack, tp->tlp_high_seq)) {
3509 /* ACK advances: there was a loss, so reduce cwnd. Reset
3510 * tlp_high_seq in tcp_init_cwnd_reduction()
3511 */
3512 tcp_init_cwnd_reduction(sk);
3513 tcp_set_ca_state(sk, TCP_CA_CWR);
3514 tcp_end_cwnd_reduction(sk);
3515 tcp_try_keep_open(sk);
3516 NET_INC_STATS(sock_net(sk),
3517 LINUX_MIB_TCPLOSSPROBERECOVERY);
3518 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3519 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3520 /* Pure dupack: original and TLP probe arrived; no loss */
3521 tp->tlp_high_seq = 0;
3522 }
3523 }
3524
tcp_in_ack_event(struct sock * sk,u32 flags)3525 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3526 {
3527 const struct inet_connection_sock *icsk = inet_csk(sk);
3528
3529 if (icsk->icsk_ca_ops->in_ack_event)
3530 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3531 }
3532
3533 /* Congestion control has updated the cwnd already. So if we're in
3534 * loss recovery then now we do any new sends (for FRTO) or
3535 * retransmits (for CA_Loss or CA_recovery) that make sense.
3536 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3537 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3538 {
3539 struct tcp_sock *tp = tcp_sk(sk);
3540
3541 if (rexmit == REXMIT_NONE)
3542 return;
3543
3544 if (unlikely(rexmit == 2)) {
3545 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3546 TCP_NAGLE_OFF);
3547 if (after(tp->snd_nxt, tp->high_seq))
3548 return;
3549 tp->frto = 0;
3550 }
3551 tcp_xmit_retransmit_queue(sk);
3552 }
3553
3554 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3555 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3556 {
3557 const struct net *net = sock_net(sk);
3558 struct tcp_sock *tp = tcp_sk(sk);
3559 u32 delivered;
3560
3561 delivered = tp->delivered - prior_delivered;
3562 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3563 if (flag & FLAG_ECE) {
3564 tp->delivered_ce += delivered;
3565 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3566 }
3567 return delivered;
3568 }
3569
3570 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3571 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3572 {
3573 struct inet_connection_sock *icsk = inet_csk(sk);
3574 struct tcp_sock *tp = tcp_sk(sk);
3575 struct tcp_sacktag_state sack_state;
3576 struct rate_sample rs = { .prior_delivered = 0 };
3577 u32 prior_snd_una = tp->snd_una;
3578 bool is_sack_reneg = tp->is_sack_reneg;
3579 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3580 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3581 bool is_dupack = false;
3582 int prior_packets = tp->packets_out;
3583 u32 delivered = tp->delivered;
3584 u32 lost = tp->lost;
3585 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3586 u32 prior_fack;
3587
3588 sack_state.first_sackt = 0;
3589 sack_state.rate = &rs;
3590
3591 /* We very likely will need to access rtx queue. */
3592 prefetch(sk->tcp_rtx_queue.rb_node);
3593
3594 /* If the ack is older than previous acks
3595 * then we can probably ignore it.
3596 */
3597 if (before(ack, prior_snd_una)) {
3598 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3599 if (before(ack, prior_snd_una - tp->max_window)) {
3600 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3601 tcp_send_challenge_ack(sk, skb);
3602 return -1;
3603 }
3604 goto old_ack;
3605 }
3606
3607 /* If the ack includes data we haven't sent yet, discard
3608 * this segment (RFC793 Section 3.9).
3609 */
3610 if (after(ack, tp->snd_nxt))
3611 goto invalid_ack;
3612
3613 if (after(ack, prior_snd_una)) {
3614 flag |= FLAG_SND_UNA_ADVANCED;
3615 icsk->icsk_retransmits = 0;
3616
3617 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3618 if (static_branch_unlikely(&clean_acked_data_enabled))
3619 if (icsk->icsk_clean_acked)
3620 icsk->icsk_clean_acked(sk, ack);
3621 #endif
3622 }
3623
3624 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3625 rs.prior_in_flight = tcp_packets_in_flight(tp);
3626
3627 /* ts_recent update must be made after we are sure that the packet
3628 * is in window.
3629 */
3630 if (flag & FLAG_UPDATE_TS_RECENT)
3631 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3632
3633 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3634 /* Window is constant, pure forward advance.
3635 * No more checks are required.
3636 * Note, we use the fact that SND.UNA>=SND.WL2.
3637 */
3638 tcp_update_wl(tp, ack_seq);
3639 tcp_snd_una_update(tp, ack);
3640 flag |= FLAG_WIN_UPDATE;
3641
3642 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3643
3644 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3645 } else {
3646 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3647
3648 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3649 flag |= FLAG_DATA;
3650 else
3651 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3652
3653 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3654
3655 if (TCP_SKB_CB(skb)->sacked)
3656 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3657 &sack_state);
3658
3659 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3660 flag |= FLAG_ECE;
3661 ack_ev_flags |= CA_ACK_ECE;
3662 }
3663
3664 if (flag & FLAG_WIN_UPDATE)
3665 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3666
3667 tcp_in_ack_event(sk, ack_ev_flags);
3668 }
3669
3670 /* This is a deviation from RFC3168 since it states that:
3671 * "When the TCP data sender is ready to set the CWR bit after reducing
3672 * the congestion window, it SHOULD set the CWR bit only on the first
3673 * new data packet that it transmits."
3674 * We accept CWR on pure ACKs to be more robust
3675 * with widely-deployed TCP implementations that do this.
3676 */
3677 tcp_ecn_accept_cwr(sk, skb);
3678
3679 /* We passed data and got it acked, remove any soft error
3680 * log. Something worked...
3681 */
3682 sk->sk_err_soft = 0;
3683 icsk->icsk_probes_out = 0;
3684 tp->rcv_tstamp = tcp_jiffies32;
3685 if (!prior_packets)
3686 goto no_queue;
3687
3688 /* See if we can take anything off of the retransmit queue. */
3689 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3690
3691 tcp_rack_update_reo_wnd(sk, &rs);
3692
3693 if (tp->tlp_high_seq)
3694 tcp_process_tlp_ack(sk, ack, flag);
3695 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3696 if (flag & FLAG_SET_XMIT_TIMER)
3697 tcp_set_xmit_timer(sk);
3698
3699 if (tcp_ack_is_dubious(sk, flag)) {
3700 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3701 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3702 &rexmit);
3703 }
3704
3705 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3706 sk_dst_confirm(sk);
3707
3708 delivered = tcp_newly_delivered(sk, delivered, flag);
3709 lost = tp->lost - lost; /* freshly marked lost */
3710 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3711 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3712 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3713 tcp_xmit_recovery(sk, rexmit);
3714 return 1;
3715
3716 no_queue:
3717 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3718 if (flag & FLAG_DSACKING_ACK) {
3719 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3720 &rexmit);
3721 tcp_newly_delivered(sk, delivered, flag);
3722 }
3723 /* If this ack opens up a zero window, clear backoff. It was
3724 * being used to time the probes, and is probably far higher than
3725 * it needs to be for normal retransmission.
3726 */
3727 tcp_ack_probe(sk);
3728
3729 if (tp->tlp_high_seq)
3730 tcp_process_tlp_ack(sk, ack, flag);
3731 return 1;
3732
3733 invalid_ack:
3734 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3735 return -1;
3736
3737 old_ack:
3738 /* If data was SACKed, tag it and see if we should send more data.
3739 * If data was DSACKed, see if we can undo a cwnd reduction.
3740 */
3741 if (TCP_SKB_CB(skb)->sacked) {
3742 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3743 &sack_state);
3744 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3745 &rexmit);
3746 tcp_newly_delivered(sk, delivered, flag);
3747 tcp_xmit_recovery(sk, rexmit);
3748 }
3749
3750 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3751 return 0;
3752 }
3753
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3754 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3755 bool syn, struct tcp_fastopen_cookie *foc,
3756 bool exp_opt)
3757 {
3758 /* Valid only in SYN or SYN-ACK with an even length. */
3759 if (!foc || !syn || len < 0 || (len & 1))
3760 return;
3761
3762 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3763 len <= TCP_FASTOPEN_COOKIE_MAX)
3764 memcpy(foc->val, cookie, len);
3765 else if (len != 0)
3766 len = -1;
3767 foc->len = len;
3768 foc->exp = exp_opt;
3769 }
3770
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3771 static void smc_parse_options(const struct tcphdr *th,
3772 struct tcp_options_received *opt_rx,
3773 const unsigned char *ptr,
3774 int opsize)
3775 {
3776 #if IS_ENABLED(CONFIG_SMC)
3777 if (static_branch_unlikely(&tcp_have_smc)) {
3778 if (th->syn && !(opsize & 1) &&
3779 opsize >= TCPOLEN_EXP_SMC_BASE &&
3780 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3781 opt_rx->smc_ok = 1;
3782 }
3783 #endif
3784 }
3785
3786 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3787 * But, this can also be called on packets in the established flow when
3788 * the fast version below fails.
3789 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)3790 void tcp_parse_options(const struct net *net,
3791 const struct sk_buff *skb,
3792 struct tcp_options_received *opt_rx, int estab,
3793 struct tcp_fastopen_cookie *foc)
3794 {
3795 const unsigned char *ptr;
3796 const struct tcphdr *th = tcp_hdr(skb);
3797 int length = (th->doff * 4) - sizeof(struct tcphdr);
3798
3799 ptr = (const unsigned char *)(th + 1);
3800 opt_rx->saw_tstamp = 0;
3801
3802 while (length > 0) {
3803 int opcode = *ptr++;
3804 int opsize;
3805
3806 switch (opcode) {
3807 case TCPOPT_EOL:
3808 return;
3809 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3810 length--;
3811 continue;
3812 default:
3813 opsize = *ptr++;
3814 if (opsize < 2) /* "silly options" */
3815 return;
3816 if (opsize > length)
3817 return; /* don't parse partial options */
3818 switch (opcode) {
3819 case TCPOPT_MSS:
3820 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3821 u16 in_mss = get_unaligned_be16(ptr);
3822 if (in_mss) {
3823 if (opt_rx->user_mss &&
3824 opt_rx->user_mss < in_mss)
3825 in_mss = opt_rx->user_mss;
3826 opt_rx->mss_clamp = in_mss;
3827 }
3828 }
3829 break;
3830 case TCPOPT_WINDOW:
3831 if (opsize == TCPOLEN_WINDOW && th->syn &&
3832 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3833 __u8 snd_wscale = *(__u8 *)ptr;
3834 opt_rx->wscale_ok = 1;
3835 if (snd_wscale > TCP_MAX_WSCALE) {
3836 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3837 __func__,
3838 snd_wscale,
3839 TCP_MAX_WSCALE);
3840 snd_wscale = TCP_MAX_WSCALE;
3841 }
3842 opt_rx->snd_wscale = snd_wscale;
3843 }
3844 break;
3845 case TCPOPT_TIMESTAMP:
3846 if ((opsize == TCPOLEN_TIMESTAMP) &&
3847 ((estab && opt_rx->tstamp_ok) ||
3848 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3849 opt_rx->saw_tstamp = 1;
3850 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3851 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3852 }
3853 break;
3854 case TCPOPT_SACK_PERM:
3855 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3856 !estab && net->ipv4.sysctl_tcp_sack) {
3857 opt_rx->sack_ok = TCP_SACK_SEEN;
3858 tcp_sack_reset(opt_rx);
3859 }
3860 break;
3861
3862 case TCPOPT_SACK:
3863 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3864 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3865 opt_rx->sack_ok) {
3866 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3867 }
3868 break;
3869 #ifdef CONFIG_TCP_MD5SIG
3870 case TCPOPT_MD5SIG:
3871 /*
3872 * The MD5 Hash has already been
3873 * checked (see tcp_v{4,6}_do_rcv()).
3874 */
3875 break;
3876 #endif
3877 case TCPOPT_FASTOPEN:
3878 tcp_parse_fastopen_option(
3879 opsize - TCPOLEN_FASTOPEN_BASE,
3880 ptr, th->syn, foc, false);
3881 break;
3882
3883 case TCPOPT_EXP:
3884 /* Fast Open option shares code 254 using a
3885 * 16 bits magic number.
3886 */
3887 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3888 get_unaligned_be16(ptr) ==
3889 TCPOPT_FASTOPEN_MAGIC)
3890 tcp_parse_fastopen_option(opsize -
3891 TCPOLEN_EXP_FASTOPEN_BASE,
3892 ptr + 2, th->syn, foc, true);
3893 else
3894 smc_parse_options(th, opt_rx, ptr,
3895 opsize);
3896 break;
3897
3898 }
3899 ptr += opsize-2;
3900 length -= opsize;
3901 }
3902 }
3903 }
3904 EXPORT_SYMBOL(tcp_parse_options);
3905
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)3906 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3907 {
3908 const __be32 *ptr = (const __be32 *)(th + 1);
3909
3910 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3911 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3912 tp->rx_opt.saw_tstamp = 1;
3913 ++ptr;
3914 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3915 ++ptr;
3916 if (*ptr)
3917 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3918 else
3919 tp->rx_opt.rcv_tsecr = 0;
3920 return true;
3921 }
3922 return false;
3923 }
3924
3925 /* Fast parse options. This hopes to only see timestamps.
3926 * If it is wrong it falls back on tcp_parse_options().
3927 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)3928 static bool tcp_fast_parse_options(const struct net *net,
3929 const struct sk_buff *skb,
3930 const struct tcphdr *th, struct tcp_sock *tp)
3931 {
3932 /* In the spirit of fast parsing, compare doff directly to constant
3933 * values. Because equality is used, short doff can be ignored here.
3934 */
3935 if (th->doff == (sizeof(*th) / 4)) {
3936 tp->rx_opt.saw_tstamp = 0;
3937 return false;
3938 } else if (tp->rx_opt.tstamp_ok &&
3939 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3940 if (tcp_parse_aligned_timestamp(tp, th))
3941 return true;
3942 }
3943
3944 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3945 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3946 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3947
3948 return true;
3949 }
3950
3951 #ifdef CONFIG_TCP_MD5SIG
3952 /*
3953 * Parse MD5 Signature option
3954 */
tcp_parse_md5sig_option(const struct tcphdr * th)3955 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3956 {
3957 int length = (th->doff << 2) - sizeof(*th);
3958 const u8 *ptr = (const u8 *)(th + 1);
3959
3960 /* If not enough data remaining, we can short cut */
3961 while (length >= TCPOLEN_MD5SIG) {
3962 int opcode = *ptr++;
3963 int opsize;
3964
3965 switch (opcode) {
3966 case TCPOPT_EOL:
3967 return NULL;
3968 case TCPOPT_NOP:
3969 length--;
3970 continue;
3971 default:
3972 opsize = *ptr++;
3973 if (opsize < 2 || opsize > length)
3974 return NULL;
3975 if (opcode == TCPOPT_MD5SIG)
3976 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3977 }
3978 ptr += opsize - 2;
3979 length -= opsize;
3980 }
3981 return NULL;
3982 }
3983 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3984 #endif
3985
3986 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3987 *
3988 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3989 * it can pass through stack. So, the following predicate verifies that
3990 * this segment is not used for anything but congestion avoidance or
3991 * fast retransmit. Moreover, we even are able to eliminate most of such
3992 * second order effects, if we apply some small "replay" window (~RTO)
3993 * to timestamp space.
3994 *
3995 * All these measures still do not guarantee that we reject wrapped ACKs
3996 * on networks with high bandwidth, when sequence space is recycled fastly,
3997 * but it guarantees that such events will be very rare and do not affect
3998 * connection seriously. This doesn't look nice, but alas, PAWS is really
3999 * buggy extension.
4000 *
4001 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4002 * states that events when retransmit arrives after original data are rare.
4003 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4004 * the biggest problem on large power networks even with minor reordering.
4005 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4006 * up to bandwidth of 18Gigabit/sec. 8) ]
4007 */
4008
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4009 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4010 {
4011 const struct tcp_sock *tp = tcp_sk(sk);
4012 const struct tcphdr *th = tcp_hdr(skb);
4013 u32 seq = TCP_SKB_CB(skb)->seq;
4014 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4015
4016 return (/* 1. Pure ACK with correct sequence number. */
4017 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4018
4019 /* 2. ... and duplicate ACK. */
4020 ack == tp->snd_una &&
4021
4022 /* 3. ... and does not update window. */
4023 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4024
4025 /* 4. ... and sits in replay window. */
4026 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4027 }
4028
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4029 static inline bool tcp_paws_discard(const struct sock *sk,
4030 const struct sk_buff *skb)
4031 {
4032 const struct tcp_sock *tp = tcp_sk(sk);
4033
4034 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4035 !tcp_disordered_ack(sk, skb);
4036 }
4037
4038 /* Check segment sequence number for validity.
4039 *
4040 * Segment controls are considered valid, if the segment
4041 * fits to the window after truncation to the window. Acceptability
4042 * of data (and SYN, FIN, of course) is checked separately.
4043 * See tcp_data_queue(), for example.
4044 *
4045 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4046 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4047 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4048 * (borrowed from freebsd)
4049 */
4050
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4051 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4052 {
4053 return !before(end_seq, tp->rcv_wup) &&
4054 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4055 }
4056
4057 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4058 void tcp_reset(struct sock *sk)
4059 {
4060 trace_tcp_receive_reset(sk);
4061
4062 /* We want the right error as BSD sees it (and indeed as we do). */
4063 switch (sk->sk_state) {
4064 case TCP_SYN_SENT:
4065 sk->sk_err = ECONNREFUSED;
4066 break;
4067 case TCP_CLOSE_WAIT:
4068 sk->sk_err = EPIPE;
4069 break;
4070 case TCP_CLOSE:
4071 return;
4072 default:
4073 sk->sk_err = ECONNRESET;
4074 }
4075 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4076 smp_wmb();
4077
4078 tcp_write_queue_purge(sk);
4079 tcp_done(sk);
4080
4081 if (!sock_flag(sk, SOCK_DEAD))
4082 sk->sk_error_report(sk);
4083 }
4084
4085 /*
4086 * Process the FIN bit. This now behaves as it is supposed to work
4087 * and the FIN takes effect when it is validly part of sequence
4088 * space. Not before when we get holes.
4089 *
4090 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4091 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4092 * TIME-WAIT)
4093 *
4094 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4095 * close and we go into CLOSING (and later onto TIME-WAIT)
4096 *
4097 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4098 */
tcp_fin(struct sock * sk)4099 void tcp_fin(struct sock *sk)
4100 {
4101 struct tcp_sock *tp = tcp_sk(sk);
4102
4103 inet_csk_schedule_ack(sk);
4104
4105 sk->sk_shutdown |= RCV_SHUTDOWN;
4106 sock_set_flag(sk, SOCK_DONE);
4107
4108 switch (sk->sk_state) {
4109 case TCP_SYN_RECV:
4110 case TCP_ESTABLISHED:
4111 /* Move to CLOSE_WAIT */
4112 tcp_set_state(sk, TCP_CLOSE_WAIT);
4113 inet_csk(sk)->icsk_ack.pingpong = 1;
4114 break;
4115
4116 case TCP_CLOSE_WAIT:
4117 case TCP_CLOSING:
4118 /* Received a retransmission of the FIN, do
4119 * nothing.
4120 */
4121 break;
4122 case TCP_LAST_ACK:
4123 /* RFC793: Remain in the LAST-ACK state. */
4124 break;
4125
4126 case TCP_FIN_WAIT1:
4127 /* This case occurs when a simultaneous close
4128 * happens, we must ack the received FIN and
4129 * enter the CLOSING state.
4130 */
4131 tcp_send_ack(sk);
4132 tcp_set_state(sk, TCP_CLOSING);
4133 break;
4134 case TCP_FIN_WAIT2:
4135 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4136 tcp_send_ack(sk);
4137 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4138 break;
4139 default:
4140 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4141 * cases we should never reach this piece of code.
4142 */
4143 pr_err("%s: Impossible, sk->sk_state=%d\n",
4144 __func__, sk->sk_state);
4145 break;
4146 }
4147
4148 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4149 * Probably, we should reset in this case. For now drop them.
4150 */
4151 skb_rbtree_purge(&tp->out_of_order_queue);
4152 if (tcp_is_sack(tp))
4153 tcp_sack_reset(&tp->rx_opt);
4154 sk_mem_reclaim(sk);
4155
4156 if (!sock_flag(sk, SOCK_DEAD)) {
4157 sk->sk_state_change(sk);
4158
4159 /* Do not send POLL_HUP for half duplex close. */
4160 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4161 sk->sk_state == TCP_CLOSE)
4162 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4163 else
4164 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4165 }
4166 }
4167
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4168 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4169 u32 end_seq)
4170 {
4171 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4172 if (before(seq, sp->start_seq))
4173 sp->start_seq = seq;
4174 if (after(end_seq, sp->end_seq))
4175 sp->end_seq = end_seq;
4176 return true;
4177 }
4178 return false;
4179 }
4180
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4181 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4182 {
4183 struct tcp_sock *tp = tcp_sk(sk);
4184
4185 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4186 int mib_idx;
4187
4188 if (before(seq, tp->rcv_nxt))
4189 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4190 else
4191 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4192
4193 NET_INC_STATS(sock_net(sk), mib_idx);
4194
4195 tp->rx_opt.dsack = 1;
4196 tp->duplicate_sack[0].start_seq = seq;
4197 tp->duplicate_sack[0].end_seq = end_seq;
4198 }
4199 }
4200
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4201 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4202 {
4203 struct tcp_sock *tp = tcp_sk(sk);
4204
4205 if (!tp->rx_opt.dsack)
4206 tcp_dsack_set(sk, seq, end_seq);
4207 else
4208 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4209 }
4210
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4211 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4212 {
4213 struct tcp_sock *tp = tcp_sk(sk);
4214
4215 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4216 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4217 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4218 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4219
4220 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4221 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4222
4223 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4224 end_seq = tp->rcv_nxt;
4225 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4226 }
4227 }
4228
4229 tcp_send_ack(sk);
4230 }
4231
4232 /* These routines update the SACK block as out-of-order packets arrive or
4233 * in-order packets close up the sequence space.
4234 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4235 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4236 {
4237 int this_sack;
4238 struct tcp_sack_block *sp = &tp->selective_acks[0];
4239 struct tcp_sack_block *swalk = sp + 1;
4240
4241 /* See if the recent change to the first SACK eats into
4242 * or hits the sequence space of other SACK blocks, if so coalesce.
4243 */
4244 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4245 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4246 int i;
4247
4248 /* Zap SWALK, by moving every further SACK up by one slot.
4249 * Decrease num_sacks.
4250 */
4251 tp->rx_opt.num_sacks--;
4252 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4253 sp[i] = sp[i + 1];
4254 continue;
4255 }
4256 this_sack++, swalk++;
4257 }
4258 }
4259
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4260 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4261 {
4262 struct tcp_sock *tp = tcp_sk(sk);
4263 struct tcp_sack_block *sp = &tp->selective_acks[0];
4264 int cur_sacks = tp->rx_opt.num_sacks;
4265 int this_sack;
4266
4267 if (!cur_sacks)
4268 goto new_sack;
4269
4270 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4271 if (tcp_sack_extend(sp, seq, end_seq)) {
4272 /* Rotate this_sack to the first one. */
4273 for (; this_sack > 0; this_sack--, sp--)
4274 swap(*sp, *(sp - 1));
4275 if (cur_sacks > 1)
4276 tcp_sack_maybe_coalesce(tp);
4277 return;
4278 }
4279 }
4280
4281 /* Could not find an adjacent existing SACK, build a new one,
4282 * put it at the front, and shift everyone else down. We
4283 * always know there is at least one SACK present already here.
4284 *
4285 * If the sack array is full, forget about the last one.
4286 */
4287 if (this_sack >= TCP_NUM_SACKS) {
4288 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4289 tcp_send_ack(sk);
4290 this_sack--;
4291 tp->rx_opt.num_sacks--;
4292 sp--;
4293 }
4294 for (; this_sack > 0; this_sack--, sp--)
4295 *sp = *(sp - 1);
4296
4297 new_sack:
4298 /* Build the new head SACK, and we're done. */
4299 sp->start_seq = seq;
4300 sp->end_seq = end_seq;
4301 tp->rx_opt.num_sacks++;
4302 }
4303
4304 /* RCV.NXT advances, some SACKs should be eaten. */
4305
tcp_sack_remove(struct tcp_sock * tp)4306 static void tcp_sack_remove(struct tcp_sock *tp)
4307 {
4308 struct tcp_sack_block *sp = &tp->selective_acks[0];
4309 int num_sacks = tp->rx_opt.num_sacks;
4310 int this_sack;
4311
4312 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4313 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4314 tp->rx_opt.num_sacks = 0;
4315 return;
4316 }
4317
4318 for (this_sack = 0; this_sack < num_sacks;) {
4319 /* Check if the start of the sack is covered by RCV.NXT. */
4320 if (!before(tp->rcv_nxt, sp->start_seq)) {
4321 int i;
4322
4323 /* RCV.NXT must cover all the block! */
4324 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4325
4326 /* Zap this SACK, by moving forward any other SACKS. */
4327 for (i = this_sack+1; i < num_sacks; i++)
4328 tp->selective_acks[i-1] = tp->selective_acks[i];
4329 num_sacks--;
4330 continue;
4331 }
4332 this_sack++;
4333 sp++;
4334 }
4335 tp->rx_opt.num_sacks = num_sacks;
4336 }
4337
4338 /**
4339 * tcp_try_coalesce - try to merge skb to prior one
4340 * @sk: socket
4341 * @dest: destination queue
4342 * @to: prior buffer
4343 * @from: buffer to add in queue
4344 * @fragstolen: pointer to boolean
4345 *
4346 * Before queueing skb @from after @to, try to merge them
4347 * to reduce overall memory use and queue lengths, if cost is small.
4348 * Packets in ofo or receive queues can stay a long time.
4349 * Better try to coalesce them right now to avoid future collapses.
4350 * Returns true if caller should free @from instead of queueing it
4351 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4352 static bool tcp_try_coalesce(struct sock *sk,
4353 struct sk_buff *to,
4354 struct sk_buff *from,
4355 bool *fragstolen)
4356 {
4357 int delta;
4358
4359 *fragstolen = false;
4360
4361 /* Its possible this segment overlaps with prior segment in queue */
4362 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4363 return false;
4364
4365 #ifdef CONFIG_TLS_DEVICE
4366 if (from->decrypted != to->decrypted)
4367 return false;
4368 #endif
4369
4370 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4371 return false;
4372
4373 atomic_add(delta, &sk->sk_rmem_alloc);
4374 sk_mem_charge(sk, delta);
4375 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4376 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4377 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4378 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4379
4380 if (TCP_SKB_CB(from)->has_rxtstamp) {
4381 TCP_SKB_CB(to)->has_rxtstamp = true;
4382 to->tstamp = from->tstamp;
4383 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4384 }
4385
4386 return true;
4387 }
4388
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4389 static bool tcp_ooo_try_coalesce(struct sock *sk,
4390 struct sk_buff *to,
4391 struct sk_buff *from,
4392 bool *fragstolen)
4393 {
4394 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4395
4396 /* In case tcp_drop() is called later, update to->gso_segs */
4397 if (res) {
4398 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4399 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4400
4401 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4402 }
4403 return res;
4404 }
4405
tcp_drop(struct sock * sk,struct sk_buff * skb)4406 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4407 {
4408 sk_drops_add(sk, skb);
4409 __kfree_skb(skb);
4410 }
4411
4412 /* This one checks to see if we can put data from the
4413 * out_of_order queue into the receive_queue.
4414 */
tcp_ofo_queue(struct sock * sk)4415 static void tcp_ofo_queue(struct sock *sk)
4416 {
4417 struct tcp_sock *tp = tcp_sk(sk);
4418 __u32 dsack_high = tp->rcv_nxt;
4419 bool fin, fragstolen, eaten;
4420 struct sk_buff *skb, *tail;
4421 struct rb_node *p;
4422
4423 p = rb_first(&tp->out_of_order_queue);
4424 while (p) {
4425 skb = rb_to_skb(p);
4426 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4427 break;
4428
4429 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4430 __u32 dsack = dsack_high;
4431 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4432 dsack_high = TCP_SKB_CB(skb)->end_seq;
4433 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4434 }
4435 p = rb_next(p);
4436 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4437
4438 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4439 SOCK_DEBUG(sk, "ofo packet was already received\n");
4440 tcp_drop(sk, skb);
4441 continue;
4442 }
4443 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4444 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4445 TCP_SKB_CB(skb)->end_seq);
4446
4447 tail = skb_peek_tail(&sk->sk_receive_queue);
4448 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4449 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4450 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4451 if (!eaten)
4452 __skb_queue_tail(&sk->sk_receive_queue, skb);
4453 else
4454 kfree_skb_partial(skb, fragstolen);
4455
4456 if (unlikely(fin)) {
4457 tcp_fin(sk);
4458 /* tcp_fin() purges tp->out_of_order_queue,
4459 * so we must end this loop right now.
4460 */
4461 break;
4462 }
4463 }
4464 }
4465
4466 static bool tcp_prune_ofo_queue(struct sock *sk);
4467 static int tcp_prune_queue(struct sock *sk);
4468
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4469 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4470 unsigned int size)
4471 {
4472 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4473 !sk_rmem_schedule(sk, skb, size)) {
4474
4475 if (tcp_prune_queue(sk) < 0)
4476 return -1;
4477
4478 while (!sk_rmem_schedule(sk, skb, size)) {
4479 if (!tcp_prune_ofo_queue(sk))
4480 return -1;
4481 }
4482 }
4483 return 0;
4484 }
4485
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4486 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4487 {
4488 struct tcp_sock *tp = tcp_sk(sk);
4489 struct rb_node **p, *parent;
4490 struct sk_buff *skb1;
4491 u32 seq, end_seq;
4492 bool fragstolen;
4493
4494 tcp_ecn_check_ce(sk, skb);
4495
4496 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4497 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4498 sk->sk_data_ready(sk);
4499 tcp_drop(sk, skb);
4500 return;
4501 }
4502
4503 /* Disable header prediction. */
4504 tp->pred_flags = 0;
4505 inet_csk_schedule_ack(sk);
4506
4507 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4508 seq = TCP_SKB_CB(skb)->seq;
4509 end_seq = TCP_SKB_CB(skb)->end_seq;
4510 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4511 tp->rcv_nxt, seq, end_seq);
4512
4513 p = &tp->out_of_order_queue.rb_node;
4514 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4515 /* Initial out of order segment, build 1 SACK. */
4516 if (tcp_is_sack(tp)) {
4517 tp->rx_opt.num_sacks = 1;
4518 tp->selective_acks[0].start_seq = seq;
4519 tp->selective_acks[0].end_seq = end_seq;
4520 }
4521 rb_link_node(&skb->rbnode, NULL, p);
4522 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4523 tp->ooo_last_skb = skb;
4524 goto end;
4525 }
4526
4527 /* In the typical case, we are adding an skb to the end of the list.
4528 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4529 */
4530 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4531 skb, &fragstolen)) {
4532 coalesce_done:
4533 /* For non sack flows, do not grow window to force DUPACK
4534 * and trigger fast retransmit.
4535 */
4536 if (tcp_is_sack(tp))
4537 tcp_grow_window(sk, skb);
4538 kfree_skb_partial(skb, fragstolen);
4539 skb = NULL;
4540 goto add_sack;
4541 }
4542 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4543 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4544 parent = &tp->ooo_last_skb->rbnode;
4545 p = &parent->rb_right;
4546 goto insert;
4547 }
4548
4549 /* Find place to insert this segment. Handle overlaps on the way. */
4550 parent = NULL;
4551 while (*p) {
4552 parent = *p;
4553 skb1 = rb_to_skb(parent);
4554 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4555 p = &parent->rb_left;
4556 continue;
4557 }
4558 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4559 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4560 /* All the bits are present. Drop. */
4561 NET_INC_STATS(sock_net(sk),
4562 LINUX_MIB_TCPOFOMERGE);
4563 tcp_drop(sk, skb);
4564 skb = NULL;
4565 tcp_dsack_set(sk, seq, end_seq);
4566 goto add_sack;
4567 }
4568 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4569 /* Partial overlap. */
4570 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4571 } else {
4572 /* skb's seq == skb1's seq and skb covers skb1.
4573 * Replace skb1 with skb.
4574 */
4575 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4576 &tp->out_of_order_queue);
4577 tcp_dsack_extend(sk,
4578 TCP_SKB_CB(skb1)->seq,
4579 TCP_SKB_CB(skb1)->end_seq);
4580 NET_INC_STATS(sock_net(sk),
4581 LINUX_MIB_TCPOFOMERGE);
4582 tcp_drop(sk, skb1);
4583 goto merge_right;
4584 }
4585 } else if (tcp_ooo_try_coalesce(sk, skb1,
4586 skb, &fragstolen)) {
4587 goto coalesce_done;
4588 }
4589 p = &parent->rb_right;
4590 }
4591 insert:
4592 /* Insert segment into RB tree. */
4593 rb_link_node(&skb->rbnode, parent, p);
4594 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4595
4596 merge_right:
4597 /* Remove other segments covered by skb. */
4598 while ((skb1 = skb_rb_next(skb)) != NULL) {
4599 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4600 break;
4601 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4602 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4603 end_seq);
4604 break;
4605 }
4606 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4607 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4608 TCP_SKB_CB(skb1)->end_seq);
4609 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4610 tcp_drop(sk, skb1);
4611 }
4612 /* If there is no skb after us, we are the last_skb ! */
4613 if (!skb1)
4614 tp->ooo_last_skb = skb;
4615
4616 add_sack:
4617 if (tcp_is_sack(tp))
4618 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4619 end:
4620 if (skb) {
4621 /* For non sack flows, do not grow window to force DUPACK
4622 * and trigger fast retransmit.
4623 */
4624 if (tcp_is_sack(tp))
4625 tcp_grow_window(sk, skb);
4626 skb_condense(skb);
4627 skb_set_owner_r(skb, sk);
4628 }
4629 }
4630
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,int hdrlen,bool * fragstolen)4631 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4632 bool *fragstolen)
4633 {
4634 int eaten;
4635 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4636
4637 __skb_pull(skb, hdrlen);
4638 eaten = (tail &&
4639 tcp_try_coalesce(sk, tail,
4640 skb, fragstolen)) ? 1 : 0;
4641 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4642 if (!eaten) {
4643 __skb_queue_tail(&sk->sk_receive_queue, skb);
4644 skb_set_owner_r(skb, sk);
4645 }
4646 return eaten;
4647 }
4648
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4649 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4650 {
4651 struct sk_buff *skb;
4652 int err = -ENOMEM;
4653 int data_len = 0;
4654 bool fragstolen;
4655
4656 if (size == 0)
4657 return 0;
4658
4659 if (size > PAGE_SIZE) {
4660 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4661
4662 data_len = npages << PAGE_SHIFT;
4663 size = data_len + (size & ~PAGE_MASK);
4664 }
4665 skb = alloc_skb_with_frags(size - data_len, data_len,
4666 PAGE_ALLOC_COSTLY_ORDER,
4667 &err, sk->sk_allocation);
4668 if (!skb)
4669 goto err;
4670
4671 skb_put(skb, size - data_len);
4672 skb->data_len = data_len;
4673 skb->len = size;
4674
4675 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4676 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4677 goto err_free;
4678 }
4679
4680 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4681 if (err)
4682 goto err_free;
4683
4684 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4685 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4686 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4687
4688 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4689 WARN_ON_ONCE(fragstolen); /* should not happen */
4690 __kfree_skb(skb);
4691 }
4692 return size;
4693
4694 err_free:
4695 kfree_skb(skb);
4696 err:
4697 return err;
4698
4699 }
4700
tcp_data_ready(struct sock * sk)4701 void tcp_data_ready(struct sock *sk)
4702 {
4703 const struct tcp_sock *tp = tcp_sk(sk);
4704 int avail = tp->rcv_nxt - tp->copied_seq;
4705
4706 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4707 !sock_flag(sk, SOCK_DONE) &&
4708 tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4709 return;
4710
4711 sk->sk_data_ready(sk);
4712 }
4713
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4714 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4715 {
4716 struct tcp_sock *tp = tcp_sk(sk);
4717 bool fragstolen;
4718 int eaten;
4719
4720 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4721 __kfree_skb(skb);
4722 return;
4723 }
4724 skb_dst_drop(skb);
4725 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4726
4727 tp->rx_opt.dsack = 0;
4728
4729 /* Queue data for delivery to the user.
4730 * Packets in sequence go to the receive queue.
4731 * Out of sequence packets to the out_of_order_queue.
4732 */
4733 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4734 if (tcp_receive_window(tp) == 0) {
4735 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4736 goto out_of_window;
4737 }
4738
4739 /* Ok. In sequence. In window. */
4740 queue_and_out:
4741 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4742 sk_forced_mem_schedule(sk, skb->truesize);
4743 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4744 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4745 sk->sk_data_ready(sk);
4746 goto drop;
4747 }
4748
4749 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4750 if (skb->len)
4751 tcp_event_data_recv(sk, skb);
4752 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4753 tcp_fin(sk);
4754
4755 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4756 tcp_ofo_queue(sk);
4757
4758 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4759 * gap in queue is filled.
4760 */
4761 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4762 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4763 }
4764
4765 if (tp->rx_opt.num_sacks)
4766 tcp_sack_remove(tp);
4767
4768 tcp_fast_path_check(sk);
4769
4770 if (eaten > 0)
4771 kfree_skb_partial(skb, fragstolen);
4772 if (!sock_flag(sk, SOCK_DEAD))
4773 tcp_data_ready(sk);
4774 return;
4775 }
4776
4777 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4778 /* A retransmit, 2nd most common case. Force an immediate ack. */
4779 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4780 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4781
4782 out_of_window:
4783 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4784 inet_csk_schedule_ack(sk);
4785 drop:
4786 tcp_drop(sk, skb);
4787 return;
4788 }
4789
4790 /* Out of window. F.e. zero window probe. */
4791 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4792 goto out_of_window;
4793
4794 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4795 /* Partial packet, seq < rcv_next < end_seq */
4796 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4797 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4798 TCP_SKB_CB(skb)->end_seq);
4799
4800 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4801
4802 /* If window is closed, drop tail of packet. But after
4803 * remembering D-SACK for its head made in previous line.
4804 */
4805 if (!tcp_receive_window(tp)) {
4806 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4807 goto out_of_window;
4808 }
4809 goto queue_and_out;
4810 }
4811
4812 tcp_data_queue_ofo(sk, skb);
4813 }
4814
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)4815 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4816 {
4817 if (list)
4818 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4819
4820 return skb_rb_next(skb);
4821 }
4822
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)4823 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4824 struct sk_buff_head *list,
4825 struct rb_root *root)
4826 {
4827 struct sk_buff *next = tcp_skb_next(skb, list);
4828
4829 if (list)
4830 __skb_unlink(skb, list);
4831 else
4832 rb_erase(&skb->rbnode, root);
4833
4834 __kfree_skb(skb);
4835 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4836
4837 return next;
4838 }
4839
4840 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)4841 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4842 {
4843 struct rb_node **p = &root->rb_node;
4844 struct rb_node *parent = NULL;
4845 struct sk_buff *skb1;
4846
4847 while (*p) {
4848 parent = *p;
4849 skb1 = rb_to_skb(parent);
4850 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4851 p = &parent->rb_left;
4852 else
4853 p = &parent->rb_right;
4854 }
4855 rb_link_node(&skb->rbnode, parent, p);
4856 rb_insert_color(&skb->rbnode, root);
4857 }
4858
4859 /* Collapse contiguous sequence of skbs head..tail with
4860 * sequence numbers start..end.
4861 *
4862 * If tail is NULL, this means until the end of the queue.
4863 *
4864 * Segments with FIN/SYN are not collapsed (only because this
4865 * simplifies code)
4866 */
4867 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4868 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4869 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4870 {
4871 struct sk_buff *skb = head, *n;
4872 struct sk_buff_head tmp;
4873 bool end_of_skbs;
4874
4875 /* First, check that queue is collapsible and find
4876 * the point where collapsing can be useful.
4877 */
4878 restart:
4879 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4880 n = tcp_skb_next(skb, list);
4881
4882 /* No new bits? It is possible on ofo queue. */
4883 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4884 skb = tcp_collapse_one(sk, skb, list, root);
4885 if (!skb)
4886 break;
4887 goto restart;
4888 }
4889
4890 /* The first skb to collapse is:
4891 * - not SYN/FIN and
4892 * - bloated or contains data before "start" or
4893 * overlaps to the next one.
4894 */
4895 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4896 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4897 before(TCP_SKB_CB(skb)->seq, start))) {
4898 end_of_skbs = false;
4899 break;
4900 }
4901
4902 if (n && n != tail &&
4903 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4904 end_of_skbs = false;
4905 break;
4906 }
4907
4908 /* Decided to skip this, advance start seq. */
4909 start = TCP_SKB_CB(skb)->end_seq;
4910 }
4911 if (end_of_skbs ||
4912 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4913 return;
4914
4915 __skb_queue_head_init(&tmp);
4916
4917 while (before(start, end)) {
4918 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4919 struct sk_buff *nskb;
4920
4921 nskb = alloc_skb(copy, GFP_ATOMIC);
4922 if (!nskb)
4923 break;
4924
4925 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4926 #ifdef CONFIG_TLS_DEVICE
4927 nskb->decrypted = skb->decrypted;
4928 #endif
4929 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4930 if (list)
4931 __skb_queue_before(list, skb, nskb);
4932 else
4933 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4934 skb_set_owner_r(nskb, sk);
4935
4936 /* Copy data, releasing collapsed skbs. */
4937 while (copy > 0) {
4938 int offset = start - TCP_SKB_CB(skb)->seq;
4939 int size = TCP_SKB_CB(skb)->end_seq - start;
4940
4941 BUG_ON(offset < 0);
4942 if (size > 0) {
4943 size = min(copy, size);
4944 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4945 BUG();
4946 TCP_SKB_CB(nskb)->end_seq += size;
4947 copy -= size;
4948 start += size;
4949 }
4950 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4951 skb = tcp_collapse_one(sk, skb, list, root);
4952 if (!skb ||
4953 skb == tail ||
4954 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4955 goto end;
4956 #ifdef CONFIG_TLS_DEVICE
4957 if (skb->decrypted != nskb->decrypted)
4958 goto end;
4959 #endif
4960 }
4961 }
4962 }
4963 end:
4964 skb_queue_walk_safe(&tmp, skb, n)
4965 tcp_rbtree_insert(root, skb);
4966 }
4967
4968 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4969 * and tcp_collapse() them until all the queue is collapsed.
4970 */
tcp_collapse_ofo_queue(struct sock * sk)4971 static void tcp_collapse_ofo_queue(struct sock *sk)
4972 {
4973 struct tcp_sock *tp = tcp_sk(sk);
4974 u32 range_truesize, sum_tiny = 0;
4975 struct sk_buff *skb, *head;
4976 u32 start, end;
4977
4978 skb = skb_rb_first(&tp->out_of_order_queue);
4979 new_range:
4980 if (!skb) {
4981 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4982 return;
4983 }
4984 start = TCP_SKB_CB(skb)->seq;
4985 end = TCP_SKB_CB(skb)->end_seq;
4986 range_truesize = skb->truesize;
4987
4988 for (head = skb;;) {
4989 skb = skb_rb_next(skb);
4990
4991 /* Range is terminated when we see a gap or when
4992 * we are at the queue end.
4993 */
4994 if (!skb ||
4995 after(TCP_SKB_CB(skb)->seq, end) ||
4996 before(TCP_SKB_CB(skb)->end_seq, start)) {
4997 /* Do not attempt collapsing tiny skbs */
4998 if (range_truesize != head->truesize ||
4999 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5000 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5001 head, skb, start, end);
5002 } else {
5003 sum_tiny += range_truesize;
5004 if (sum_tiny > sk->sk_rcvbuf >> 3)
5005 return;
5006 }
5007 goto new_range;
5008 }
5009
5010 range_truesize += skb->truesize;
5011 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5012 start = TCP_SKB_CB(skb)->seq;
5013 if (after(TCP_SKB_CB(skb)->end_seq, end))
5014 end = TCP_SKB_CB(skb)->end_seq;
5015 }
5016 }
5017
5018 /*
5019 * Clean the out-of-order queue to make room.
5020 * We drop high sequences packets to :
5021 * 1) Let a chance for holes to be filled.
5022 * 2) not add too big latencies if thousands of packets sit there.
5023 * (But if application shrinks SO_RCVBUF, we could still end up
5024 * freeing whole queue here)
5025 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5026 *
5027 * Return true if queue has shrunk.
5028 */
tcp_prune_ofo_queue(struct sock * sk)5029 static bool tcp_prune_ofo_queue(struct sock *sk)
5030 {
5031 struct tcp_sock *tp = tcp_sk(sk);
5032 struct rb_node *node, *prev;
5033 int goal;
5034
5035 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5036 return false;
5037
5038 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5039 goal = sk->sk_rcvbuf >> 3;
5040 node = &tp->ooo_last_skb->rbnode;
5041 do {
5042 prev = rb_prev(node);
5043 rb_erase(node, &tp->out_of_order_queue);
5044 goal -= rb_to_skb(node)->truesize;
5045 tcp_drop(sk, rb_to_skb(node));
5046 if (!prev || goal <= 0) {
5047 sk_mem_reclaim(sk);
5048 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5049 !tcp_under_memory_pressure(sk))
5050 break;
5051 goal = sk->sk_rcvbuf >> 3;
5052 }
5053 node = prev;
5054 } while (node);
5055 tp->ooo_last_skb = rb_to_skb(prev);
5056
5057 /* Reset SACK state. A conforming SACK implementation will
5058 * do the same at a timeout based retransmit. When a connection
5059 * is in a sad state like this, we care only about integrity
5060 * of the connection not performance.
5061 */
5062 if (tp->rx_opt.sack_ok)
5063 tcp_sack_reset(&tp->rx_opt);
5064 return true;
5065 }
5066
5067 /* Reduce allocated memory if we can, trying to get
5068 * the socket within its memory limits again.
5069 *
5070 * Return less than zero if we should start dropping frames
5071 * until the socket owning process reads some of the data
5072 * to stabilize the situation.
5073 */
tcp_prune_queue(struct sock * sk)5074 static int tcp_prune_queue(struct sock *sk)
5075 {
5076 struct tcp_sock *tp = tcp_sk(sk);
5077
5078 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5079
5080 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5081
5082 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5083 tcp_clamp_window(sk);
5084 else if (tcp_under_memory_pressure(sk))
5085 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5086
5087 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5088 return 0;
5089
5090 tcp_collapse_ofo_queue(sk);
5091 if (!skb_queue_empty(&sk->sk_receive_queue))
5092 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5093 skb_peek(&sk->sk_receive_queue),
5094 NULL,
5095 tp->copied_seq, tp->rcv_nxt);
5096 sk_mem_reclaim(sk);
5097
5098 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5099 return 0;
5100
5101 /* Collapsing did not help, destructive actions follow.
5102 * This must not ever occur. */
5103
5104 tcp_prune_ofo_queue(sk);
5105
5106 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5107 return 0;
5108
5109 /* If we are really being abused, tell the caller to silently
5110 * drop receive data on the floor. It will get retransmitted
5111 * and hopefully then we'll have sufficient space.
5112 */
5113 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5114
5115 /* Massive buffer overcommit. */
5116 tp->pred_flags = 0;
5117 return -1;
5118 }
5119
tcp_should_expand_sndbuf(const struct sock * sk)5120 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5121 {
5122 const struct tcp_sock *tp = tcp_sk(sk);
5123
5124 /* If the user specified a specific send buffer setting, do
5125 * not modify it.
5126 */
5127 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5128 return false;
5129
5130 /* If we are under global TCP memory pressure, do not expand. */
5131 if (tcp_under_memory_pressure(sk))
5132 return false;
5133
5134 /* If we are under soft global TCP memory pressure, do not expand. */
5135 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5136 return false;
5137
5138 /* If we filled the congestion window, do not expand. */
5139 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5140 return false;
5141
5142 return true;
5143 }
5144
5145 /* When incoming ACK allowed to free some skb from write_queue,
5146 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5147 * on the exit from tcp input handler.
5148 *
5149 * PROBLEM: sndbuf expansion does not work well with largesend.
5150 */
tcp_new_space(struct sock * sk)5151 static void tcp_new_space(struct sock *sk)
5152 {
5153 struct tcp_sock *tp = tcp_sk(sk);
5154
5155 if (tcp_should_expand_sndbuf(sk)) {
5156 tcp_sndbuf_expand(sk);
5157 tp->snd_cwnd_stamp = tcp_jiffies32;
5158 }
5159
5160 sk->sk_write_space(sk);
5161 }
5162
tcp_check_space(struct sock * sk)5163 static void tcp_check_space(struct sock *sk)
5164 {
5165 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5166 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5167 /* pairs with tcp_poll() */
5168 smp_mb();
5169 if (sk->sk_socket &&
5170 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5171 tcp_new_space(sk);
5172 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5173 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5174 }
5175 }
5176 }
5177
tcp_data_snd_check(struct sock * sk)5178 static inline void tcp_data_snd_check(struct sock *sk)
5179 {
5180 tcp_push_pending_frames(sk);
5181 tcp_check_space(sk);
5182 }
5183
5184 /*
5185 * Check if sending an ack is needed.
5186 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5187 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5188 {
5189 struct tcp_sock *tp = tcp_sk(sk);
5190 unsigned long rtt, delay;
5191
5192 /* More than one full frame received... */
5193 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5194 /* ... and right edge of window advances far enough.
5195 * (tcp_recvmsg() will send ACK otherwise).
5196 * If application uses SO_RCVLOWAT, we want send ack now if
5197 * we have not received enough bytes to satisfy the condition.
5198 */
5199 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5200 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5201 /* We ACK each frame or... */
5202 tcp_in_quickack_mode(sk) ||
5203 /* Protocol state mandates a one-time immediate ACK */
5204 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5205 send_now:
5206 tcp_send_ack(sk);
5207 return;
5208 }
5209
5210 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5211 tcp_send_delayed_ack(sk);
5212 return;
5213 }
5214
5215 if (!tcp_is_sack(tp) ||
5216 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5217 goto send_now;
5218
5219 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5220 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5221 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5222 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5223 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5224 tp->compressed_ack = 0;
5225 }
5226
5227 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5228 goto send_now;
5229
5230 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5231 return;
5232
5233 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5234
5235 rtt = tp->rcv_rtt_est.rtt_us;
5236 if (tp->srtt_us && tp->srtt_us < rtt)
5237 rtt = tp->srtt_us;
5238
5239 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5240 rtt * (NSEC_PER_USEC >> 3)/20);
5241 sock_hold(sk);
5242 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5243 HRTIMER_MODE_REL_PINNED_SOFT);
5244 }
5245
tcp_ack_snd_check(struct sock * sk)5246 static inline void tcp_ack_snd_check(struct sock *sk)
5247 {
5248 if (!inet_csk_ack_scheduled(sk)) {
5249 /* We sent a data segment already. */
5250 return;
5251 }
5252 __tcp_ack_snd_check(sk, 1);
5253 }
5254
5255 /*
5256 * This routine is only called when we have urgent data
5257 * signaled. Its the 'slow' part of tcp_urg. It could be
5258 * moved inline now as tcp_urg is only called from one
5259 * place. We handle URGent data wrong. We have to - as
5260 * BSD still doesn't use the correction from RFC961.
5261 * For 1003.1g we should support a new option TCP_STDURG to permit
5262 * either form (or just set the sysctl tcp_stdurg).
5263 */
5264
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5265 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5266 {
5267 struct tcp_sock *tp = tcp_sk(sk);
5268 u32 ptr = ntohs(th->urg_ptr);
5269
5270 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5271 ptr--;
5272 ptr += ntohl(th->seq);
5273
5274 /* Ignore urgent data that we've already seen and read. */
5275 if (after(tp->copied_seq, ptr))
5276 return;
5277
5278 /* Do not replay urg ptr.
5279 *
5280 * NOTE: interesting situation not covered by specs.
5281 * Misbehaving sender may send urg ptr, pointing to segment,
5282 * which we already have in ofo queue. We are not able to fetch
5283 * such data and will stay in TCP_URG_NOTYET until will be eaten
5284 * by recvmsg(). Seems, we are not obliged to handle such wicked
5285 * situations. But it is worth to think about possibility of some
5286 * DoSes using some hypothetical application level deadlock.
5287 */
5288 if (before(ptr, tp->rcv_nxt))
5289 return;
5290
5291 /* Do we already have a newer (or duplicate) urgent pointer? */
5292 if (tp->urg_data && !after(ptr, tp->urg_seq))
5293 return;
5294
5295 /* Tell the world about our new urgent pointer. */
5296 sk_send_sigurg(sk);
5297
5298 /* We may be adding urgent data when the last byte read was
5299 * urgent. To do this requires some care. We cannot just ignore
5300 * tp->copied_seq since we would read the last urgent byte again
5301 * as data, nor can we alter copied_seq until this data arrives
5302 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5303 *
5304 * NOTE. Double Dutch. Rendering to plain English: author of comment
5305 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5306 * and expect that both A and B disappear from stream. This is _wrong_.
5307 * Though this happens in BSD with high probability, this is occasional.
5308 * Any application relying on this is buggy. Note also, that fix "works"
5309 * only in this artificial test. Insert some normal data between A and B and we will
5310 * decline of BSD again. Verdict: it is better to remove to trap
5311 * buggy users.
5312 */
5313 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5314 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5315 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5316 tp->copied_seq++;
5317 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5318 __skb_unlink(skb, &sk->sk_receive_queue);
5319 __kfree_skb(skb);
5320 }
5321 }
5322
5323 tp->urg_data = TCP_URG_NOTYET;
5324 tp->urg_seq = ptr;
5325
5326 /* Disable header prediction. */
5327 tp->pred_flags = 0;
5328 }
5329
5330 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5331 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5332 {
5333 struct tcp_sock *tp = tcp_sk(sk);
5334
5335 /* Check if we get a new urgent pointer - normally not. */
5336 if (th->urg)
5337 tcp_check_urg(sk, th);
5338
5339 /* Do we wait for any urgent data? - normally not... */
5340 if (tp->urg_data == TCP_URG_NOTYET) {
5341 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5342 th->syn;
5343
5344 /* Is the urgent pointer pointing into this packet? */
5345 if (ptr < skb->len) {
5346 u8 tmp;
5347 if (skb_copy_bits(skb, ptr, &tmp, 1))
5348 BUG();
5349 tp->urg_data = TCP_URG_VALID | tmp;
5350 if (!sock_flag(sk, SOCK_DEAD))
5351 sk->sk_data_ready(sk);
5352 }
5353 }
5354 }
5355
5356 /* Accept RST for rcv_nxt - 1 after a FIN.
5357 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5358 * FIN is sent followed by a RST packet. The RST is sent with the same
5359 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5360 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5361 * ACKs on the closed socket. In addition middleboxes can drop either the
5362 * challenge ACK or a subsequent RST.
5363 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5364 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5365 {
5366 struct tcp_sock *tp = tcp_sk(sk);
5367
5368 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5369 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5370 TCPF_CLOSING));
5371 }
5372
5373 /* Does PAWS and seqno based validation of an incoming segment, flags will
5374 * play significant role here.
5375 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5376 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5377 const struct tcphdr *th, int syn_inerr)
5378 {
5379 struct tcp_sock *tp = tcp_sk(sk);
5380 bool rst_seq_match = false;
5381
5382 /* RFC1323: H1. Apply PAWS check first. */
5383 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5384 tp->rx_opt.saw_tstamp &&
5385 tcp_paws_discard(sk, skb)) {
5386 if (!th->rst) {
5387 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5388 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5389 LINUX_MIB_TCPACKSKIPPEDPAWS,
5390 &tp->last_oow_ack_time))
5391 tcp_send_dupack(sk, skb);
5392 goto discard;
5393 }
5394 /* Reset is accepted even if it did not pass PAWS. */
5395 }
5396
5397 /* Step 1: check sequence number */
5398 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5399 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5400 * (RST) segments are validated by checking their SEQ-fields."
5401 * And page 69: "If an incoming segment is not acceptable,
5402 * an acknowledgment should be sent in reply (unless the RST
5403 * bit is set, if so drop the segment and return)".
5404 */
5405 if (!th->rst) {
5406 if (th->syn)
5407 goto syn_challenge;
5408 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5409 LINUX_MIB_TCPACKSKIPPEDSEQ,
5410 &tp->last_oow_ack_time))
5411 tcp_send_dupack(sk, skb);
5412 } else if (tcp_reset_check(sk, skb)) {
5413 tcp_reset(sk);
5414 }
5415 goto discard;
5416 }
5417
5418 /* Step 2: check RST bit */
5419 if (th->rst) {
5420 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5421 * FIN and SACK too if available):
5422 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5423 * the right-most SACK block,
5424 * then
5425 * RESET the connection
5426 * else
5427 * Send a challenge ACK
5428 */
5429 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5430 tcp_reset_check(sk, skb)) {
5431 rst_seq_match = true;
5432 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5433 struct tcp_sack_block *sp = &tp->selective_acks[0];
5434 int max_sack = sp[0].end_seq;
5435 int this_sack;
5436
5437 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5438 ++this_sack) {
5439 max_sack = after(sp[this_sack].end_seq,
5440 max_sack) ?
5441 sp[this_sack].end_seq : max_sack;
5442 }
5443
5444 if (TCP_SKB_CB(skb)->seq == max_sack)
5445 rst_seq_match = true;
5446 }
5447
5448 if (rst_seq_match)
5449 tcp_reset(sk);
5450 else {
5451 /* Disable TFO if RST is out-of-order
5452 * and no data has been received
5453 * for current active TFO socket
5454 */
5455 if (tp->syn_fastopen && !tp->data_segs_in &&
5456 sk->sk_state == TCP_ESTABLISHED)
5457 tcp_fastopen_active_disable(sk);
5458 tcp_send_challenge_ack(sk, skb);
5459 }
5460 goto discard;
5461 }
5462
5463 /* step 3: check security and precedence [ignored] */
5464
5465 /* step 4: Check for a SYN
5466 * RFC 5961 4.2 : Send a challenge ack
5467 */
5468 if (th->syn) {
5469 syn_challenge:
5470 if (syn_inerr)
5471 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5472 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5473 tcp_send_challenge_ack(sk, skb);
5474 goto discard;
5475 }
5476
5477 return true;
5478
5479 discard:
5480 tcp_drop(sk, skb);
5481 return false;
5482 }
5483
5484 /*
5485 * TCP receive function for the ESTABLISHED state.
5486 *
5487 * It is split into a fast path and a slow path. The fast path is
5488 * disabled when:
5489 * - A zero window was announced from us - zero window probing
5490 * is only handled properly in the slow path.
5491 * - Out of order segments arrived.
5492 * - Urgent data is expected.
5493 * - There is no buffer space left
5494 * - Unexpected TCP flags/window values/header lengths are received
5495 * (detected by checking the TCP header against pred_flags)
5496 * - Data is sent in both directions. Fast path only supports pure senders
5497 * or pure receivers (this means either the sequence number or the ack
5498 * value must stay constant)
5499 * - Unexpected TCP option.
5500 *
5501 * When these conditions are not satisfied it drops into a standard
5502 * receive procedure patterned after RFC793 to handle all cases.
5503 * The first three cases are guaranteed by proper pred_flags setting,
5504 * the rest is checked inline. Fast processing is turned on in
5505 * tcp_data_queue when everything is OK.
5506 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5507 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5508 {
5509 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5510 struct tcp_sock *tp = tcp_sk(sk);
5511 unsigned int len = skb->len;
5512
5513 /* TCP congestion window tracking */
5514 trace_tcp_probe(sk, skb);
5515
5516 tcp_mstamp_refresh(tp);
5517 if (unlikely(!sk->sk_rx_dst))
5518 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5519 /*
5520 * Header prediction.
5521 * The code loosely follows the one in the famous
5522 * "30 instruction TCP receive" Van Jacobson mail.
5523 *
5524 * Van's trick is to deposit buffers into socket queue
5525 * on a device interrupt, to call tcp_recv function
5526 * on the receive process context and checksum and copy
5527 * the buffer to user space. smart...
5528 *
5529 * Our current scheme is not silly either but we take the
5530 * extra cost of the net_bh soft interrupt processing...
5531 * We do checksum and copy also but from device to kernel.
5532 */
5533
5534 tp->rx_opt.saw_tstamp = 0;
5535
5536 /* pred_flags is 0xS?10 << 16 + snd_wnd
5537 * if header_prediction is to be made
5538 * 'S' will always be tp->tcp_header_len >> 2
5539 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5540 * turn it off (when there are holes in the receive
5541 * space for instance)
5542 * PSH flag is ignored.
5543 */
5544
5545 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5546 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5547 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5548 int tcp_header_len = tp->tcp_header_len;
5549
5550 /* Timestamp header prediction: tcp_header_len
5551 * is automatically equal to th->doff*4 due to pred_flags
5552 * match.
5553 */
5554
5555 /* Check timestamp */
5556 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5557 /* No? Slow path! */
5558 if (!tcp_parse_aligned_timestamp(tp, th))
5559 goto slow_path;
5560
5561 /* If PAWS failed, check it more carefully in slow path */
5562 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5563 goto slow_path;
5564
5565 /* DO NOT update ts_recent here, if checksum fails
5566 * and timestamp was corrupted part, it will result
5567 * in a hung connection since we will drop all
5568 * future packets due to the PAWS test.
5569 */
5570 }
5571
5572 if (len <= tcp_header_len) {
5573 /* Bulk data transfer: sender */
5574 if (len == tcp_header_len) {
5575 /* Predicted packet is in window by definition.
5576 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5577 * Hence, check seq<=rcv_wup reduces to:
5578 */
5579 if (tcp_header_len ==
5580 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5581 tp->rcv_nxt == tp->rcv_wup)
5582 tcp_store_ts_recent(tp);
5583
5584 /* We know that such packets are checksummed
5585 * on entry.
5586 */
5587 tcp_ack(sk, skb, 0);
5588 __kfree_skb(skb);
5589 tcp_data_snd_check(sk);
5590 /* When receiving pure ack in fast path, update
5591 * last ts ecr directly instead of calling
5592 * tcp_rcv_rtt_measure_ts()
5593 */
5594 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5595 return;
5596 } else { /* Header too small */
5597 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5598 goto discard;
5599 }
5600 } else {
5601 int eaten = 0;
5602 bool fragstolen = false;
5603
5604 if (tcp_checksum_complete(skb))
5605 goto csum_error;
5606
5607 if ((int)skb->truesize > sk->sk_forward_alloc)
5608 goto step5;
5609
5610 /* Predicted packet is in window by definition.
5611 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5612 * Hence, check seq<=rcv_wup reduces to:
5613 */
5614 if (tcp_header_len ==
5615 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5616 tp->rcv_nxt == tp->rcv_wup)
5617 tcp_store_ts_recent(tp);
5618
5619 tcp_rcv_rtt_measure_ts(sk, skb);
5620
5621 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5622
5623 /* Bulk data transfer: receiver */
5624 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5625 &fragstolen);
5626
5627 tcp_event_data_recv(sk, skb);
5628
5629 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5630 /* Well, only one small jumplet in fast path... */
5631 tcp_ack(sk, skb, FLAG_DATA);
5632 tcp_data_snd_check(sk);
5633 if (!inet_csk_ack_scheduled(sk))
5634 goto no_ack;
5635 } else {
5636 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5637 }
5638
5639 __tcp_ack_snd_check(sk, 0);
5640 no_ack:
5641 if (eaten)
5642 kfree_skb_partial(skb, fragstolen);
5643 tcp_data_ready(sk);
5644 return;
5645 }
5646 }
5647
5648 slow_path:
5649 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5650 goto csum_error;
5651
5652 if (!th->ack && !th->rst && !th->syn)
5653 goto discard;
5654
5655 /*
5656 * Standard slow path.
5657 */
5658
5659 if (!tcp_validate_incoming(sk, skb, th, 1))
5660 return;
5661
5662 step5:
5663 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5664 goto discard;
5665
5666 tcp_rcv_rtt_measure_ts(sk, skb);
5667
5668 /* Process urgent data. */
5669 tcp_urg(sk, skb, th);
5670
5671 /* step 7: process the segment text */
5672 tcp_data_queue(sk, skb);
5673
5674 tcp_data_snd_check(sk);
5675 tcp_ack_snd_check(sk);
5676 return;
5677
5678 csum_error:
5679 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5680 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5681
5682 discard:
5683 tcp_drop(sk, skb);
5684 }
5685 EXPORT_SYMBOL(tcp_rcv_established);
5686
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5687 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5688 {
5689 struct tcp_sock *tp = tcp_sk(sk);
5690 struct inet_connection_sock *icsk = inet_csk(sk);
5691
5692 tcp_set_state(sk, TCP_ESTABLISHED);
5693 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5694
5695 if (skb) {
5696 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5697 security_inet_conn_established(sk, skb);
5698 sk_mark_napi_id(sk, skb);
5699 }
5700
5701 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5702
5703 /* Prevent spurious tcp_cwnd_restart() on first data
5704 * packet.
5705 */
5706 tp->lsndtime = tcp_jiffies32;
5707
5708 if (sock_flag(sk, SOCK_KEEPOPEN))
5709 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5710
5711 if (!tp->rx_opt.snd_wscale)
5712 __tcp_fast_path_on(tp, tp->snd_wnd);
5713 else
5714 tp->pred_flags = 0;
5715 }
5716
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)5717 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5718 struct tcp_fastopen_cookie *cookie)
5719 {
5720 struct tcp_sock *tp = tcp_sk(sk);
5721 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5722 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5723 bool syn_drop = false;
5724
5725 if (mss == tp->rx_opt.user_mss) {
5726 struct tcp_options_received opt;
5727
5728 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5729 tcp_clear_options(&opt);
5730 opt.user_mss = opt.mss_clamp = 0;
5731 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5732 mss = opt.mss_clamp;
5733 }
5734
5735 if (!tp->syn_fastopen) {
5736 /* Ignore an unsolicited cookie */
5737 cookie->len = -1;
5738 } else if (tp->total_retrans) {
5739 /* SYN timed out and the SYN-ACK neither has a cookie nor
5740 * acknowledges data. Presumably the remote received only
5741 * the retransmitted (regular) SYNs: either the original
5742 * SYN-data or the corresponding SYN-ACK was dropped.
5743 */
5744 syn_drop = (cookie->len < 0 && data);
5745 } else if (cookie->len < 0 && !tp->syn_data) {
5746 /* We requested a cookie but didn't get it. If we did not use
5747 * the (old) exp opt format then try so next time (try_exp=1).
5748 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5749 */
5750 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5751 }
5752
5753 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5754
5755 if (data) { /* Retransmit unacked data in SYN */
5756 skb_rbtree_walk_from(data) {
5757 if (__tcp_retransmit_skb(sk, data, 1))
5758 break;
5759 }
5760 tcp_rearm_rto(sk);
5761 NET_INC_STATS(sock_net(sk),
5762 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5763 return true;
5764 }
5765 tp->syn_data_acked = tp->syn_data;
5766 if (tp->syn_data_acked) {
5767 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5768 /* SYN-data is counted as two separate packets in tcp_ack() */
5769 if (tp->delivered > 1)
5770 --tp->delivered;
5771 }
5772
5773 tcp_fastopen_add_skb(sk, synack);
5774
5775 return false;
5776 }
5777
smc_check_reset_syn(struct tcp_sock * tp)5778 static void smc_check_reset_syn(struct tcp_sock *tp)
5779 {
5780 #if IS_ENABLED(CONFIG_SMC)
5781 if (static_branch_unlikely(&tcp_have_smc)) {
5782 if (tp->syn_smc && !tp->rx_opt.smc_ok)
5783 tp->syn_smc = 0;
5784 }
5785 #endif
5786 }
5787
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5788 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5789 const struct tcphdr *th)
5790 {
5791 struct inet_connection_sock *icsk = inet_csk(sk);
5792 struct tcp_sock *tp = tcp_sk(sk);
5793 struct tcp_fastopen_cookie foc = { .len = -1 };
5794 int saved_clamp = tp->rx_opt.mss_clamp;
5795 bool fastopen_fail;
5796
5797 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5798 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5799 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5800
5801 if (th->ack) {
5802 /* rfc793:
5803 * "If the state is SYN-SENT then
5804 * first check the ACK bit
5805 * If the ACK bit is set
5806 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5807 * a reset (unless the RST bit is set, if so drop
5808 * the segment and return)"
5809 */
5810 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5811 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5812 goto reset_and_undo;
5813
5814 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5815 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5816 tcp_time_stamp(tp))) {
5817 NET_INC_STATS(sock_net(sk),
5818 LINUX_MIB_PAWSACTIVEREJECTED);
5819 goto reset_and_undo;
5820 }
5821
5822 /* Now ACK is acceptable.
5823 *
5824 * "If the RST bit is set
5825 * If the ACK was acceptable then signal the user "error:
5826 * connection reset", drop the segment, enter CLOSED state,
5827 * delete TCB, and return."
5828 */
5829
5830 if (th->rst) {
5831 tcp_reset(sk);
5832 goto discard;
5833 }
5834
5835 /* rfc793:
5836 * "fifth, if neither of the SYN or RST bits is set then
5837 * drop the segment and return."
5838 *
5839 * See note below!
5840 * --ANK(990513)
5841 */
5842 if (!th->syn)
5843 goto discard_and_undo;
5844
5845 /* rfc793:
5846 * "If the SYN bit is on ...
5847 * are acceptable then ...
5848 * (our SYN has been ACKed), change the connection
5849 * state to ESTABLISHED..."
5850 */
5851
5852 tcp_ecn_rcv_synack(tp, th);
5853
5854 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5855 tcp_ack(sk, skb, FLAG_SLOWPATH);
5856
5857 /* Ok.. it's good. Set up sequence numbers and
5858 * move to established.
5859 */
5860 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5861 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5862
5863 /* RFC1323: The window in SYN & SYN/ACK segments is
5864 * never scaled.
5865 */
5866 tp->snd_wnd = ntohs(th->window);
5867
5868 if (!tp->rx_opt.wscale_ok) {
5869 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5870 tp->window_clamp = min(tp->window_clamp, 65535U);
5871 }
5872
5873 if (tp->rx_opt.saw_tstamp) {
5874 tp->rx_opt.tstamp_ok = 1;
5875 tp->tcp_header_len =
5876 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5877 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5878 tcp_store_ts_recent(tp);
5879 } else {
5880 tp->tcp_header_len = sizeof(struct tcphdr);
5881 }
5882
5883 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5884 tcp_initialize_rcv_mss(sk);
5885
5886 /* Remember, tcp_poll() does not lock socket!
5887 * Change state from SYN-SENT only after copied_seq
5888 * is initialized. */
5889 tp->copied_seq = tp->rcv_nxt;
5890
5891 smc_check_reset_syn(tp);
5892
5893 smp_mb();
5894
5895 tcp_finish_connect(sk, skb);
5896
5897 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5898 tcp_rcv_fastopen_synack(sk, skb, &foc);
5899
5900 if (!sock_flag(sk, SOCK_DEAD)) {
5901 sk->sk_state_change(sk);
5902 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5903 }
5904 if (fastopen_fail)
5905 return -1;
5906 if (sk->sk_write_pending ||
5907 icsk->icsk_accept_queue.rskq_defer_accept ||
5908 icsk->icsk_ack.pingpong) {
5909 /* Save one ACK. Data will be ready after
5910 * several ticks, if write_pending is set.
5911 *
5912 * It may be deleted, but with this feature tcpdumps
5913 * look so _wonderfully_ clever, that I was not able
5914 * to stand against the temptation 8) --ANK
5915 */
5916 inet_csk_schedule_ack(sk);
5917 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5918 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5919 TCP_DELACK_MAX, TCP_RTO_MAX);
5920
5921 discard:
5922 tcp_drop(sk, skb);
5923 return 0;
5924 } else {
5925 tcp_send_ack(sk);
5926 }
5927 return -1;
5928 }
5929
5930 /* No ACK in the segment */
5931
5932 if (th->rst) {
5933 /* rfc793:
5934 * "If the RST bit is set
5935 *
5936 * Otherwise (no ACK) drop the segment and return."
5937 */
5938
5939 goto discard_and_undo;
5940 }
5941
5942 /* PAWS check. */
5943 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5944 tcp_paws_reject(&tp->rx_opt, 0))
5945 goto discard_and_undo;
5946
5947 if (th->syn) {
5948 /* We see SYN without ACK. It is attempt of
5949 * simultaneous connect with crossed SYNs.
5950 * Particularly, it can be connect to self.
5951 */
5952 tcp_set_state(sk, TCP_SYN_RECV);
5953
5954 if (tp->rx_opt.saw_tstamp) {
5955 tp->rx_opt.tstamp_ok = 1;
5956 tcp_store_ts_recent(tp);
5957 tp->tcp_header_len =
5958 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5959 } else {
5960 tp->tcp_header_len = sizeof(struct tcphdr);
5961 }
5962
5963 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5964 tp->copied_seq = tp->rcv_nxt;
5965 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5966
5967 /* RFC1323: The window in SYN & SYN/ACK segments is
5968 * never scaled.
5969 */
5970 tp->snd_wnd = ntohs(th->window);
5971 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5972 tp->max_window = tp->snd_wnd;
5973
5974 tcp_ecn_rcv_syn(tp, th);
5975
5976 tcp_mtup_init(sk);
5977 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5978 tcp_initialize_rcv_mss(sk);
5979
5980 tcp_send_synack(sk);
5981 #if 0
5982 /* Note, we could accept data and URG from this segment.
5983 * There are no obstacles to make this (except that we must
5984 * either change tcp_recvmsg() to prevent it from returning data
5985 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5986 *
5987 * However, if we ignore data in ACKless segments sometimes,
5988 * we have no reasons to accept it sometimes.
5989 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5990 * is not flawless. So, discard packet for sanity.
5991 * Uncomment this return to process the data.
5992 */
5993 return -1;
5994 #else
5995 goto discard;
5996 #endif
5997 }
5998 /* "fifth, if neither of the SYN or RST bits is set then
5999 * drop the segment and return."
6000 */
6001
6002 discard_and_undo:
6003 tcp_clear_options(&tp->rx_opt);
6004 tp->rx_opt.mss_clamp = saved_clamp;
6005 goto discard;
6006
6007 reset_and_undo:
6008 tcp_clear_options(&tp->rx_opt);
6009 tp->rx_opt.mss_clamp = saved_clamp;
6010 return 1;
6011 }
6012
6013 /*
6014 * This function implements the receiving procedure of RFC 793 for
6015 * all states except ESTABLISHED and TIME_WAIT.
6016 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6017 * address independent.
6018 */
6019
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6020 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6021 {
6022 struct tcp_sock *tp = tcp_sk(sk);
6023 struct inet_connection_sock *icsk = inet_csk(sk);
6024 const struct tcphdr *th = tcp_hdr(skb);
6025 struct request_sock *req;
6026 int queued = 0;
6027 bool acceptable;
6028
6029 switch (sk->sk_state) {
6030 case TCP_CLOSE:
6031 goto discard;
6032
6033 case TCP_LISTEN:
6034 if (th->ack)
6035 return 1;
6036
6037 if (th->rst)
6038 goto discard;
6039
6040 if (th->syn) {
6041 if (th->fin)
6042 goto discard;
6043 /* It is possible that we process SYN packets from backlog,
6044 * so we need to make sure to disable BH and RCU right there.
6045 */
6046 rcu_read_lock();
6047 local_bh_disable();
6048 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6049 local_bh_enable();
6050 rcu_read_unlock();
6051
6052 if (!acceptable)
6053 return 1;
6054 consume_skb(skb);
6055 return 0;
6056 }
6057 goto discard;
6058
6059 case TCP_SYN_SENT:
6060 tp->rx_opt.saw_tstamp = 0;
6061 tcp_mstamp_refresh(tp);
6062 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6063 if (queued >= 0)
6064 return queued;
6065
6066 /* Do step6 onward by hand. */
6067 tcp_urg(sk, skb, th);
6068 __kfree_skb(skb);
6069 tcp_data_snd_check(sk);
6070 return 0;
6071 }
6072
6073 tcp_mstamp_refresh(tp);
6074 tp->rx_opt.saw_tstamp = 0;
6075 req = tp->fastopen_rsk;
6076 if (req) {
6077 bool req_stolen;
6078
6079 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6080 sk->sk_state != TCP_FIN_WAIT1);
6081
6082 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6083 goto discard;
6084 }
6085
6086 if (!th->ack && !th->rst && !th->syn)
6087 goto discard;
6088
6089 if (!tcp_validate_incoming(sk, skb, th, 0))
6090 return 0;
6091
6092 /* step 5: check the ACK field */
6093 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6094 FLAG_UPDATE_TS_RECENT |
6095 FLAG_NO_CHALLENGE_ACK) > 0;
6096
6097 if (!acceptable) {
6098 if (sk->sk_state == TCP_SYN_RECV)
6099 return 1; /* send one RST */
6100 tcp_send_challenge_ack(sk, skb);
6101 goto discard;
6102 }
6103 switch (sk->sk_state) {
6104 case TCP_SYN_RECV:
6105 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6106 if (!tp->srtt_us)
6107 tcp_synack_rtt_meas(sk, req);
6108
6109 /* Once we leave TCP_SYN_RECV, we no longer need req
6110 * so release it.
6111 */
6112 if (req) {
6113 inet_csk(sk)->icsk_retransmits = 0;
6114 reqsk_fastopen_remove(sk, req, false);
6115 /* Re-arm the timer because data may have been sent out.
6116 * This is similar to the regular data transmission case
6117 * when new data has just been ack'ed.
6118 *
6119 * (TFO) - we could try to be more aggressive and
6120 * retransmitting any data sooner based on when they
6121 * are sent out.
6122 */
6123 tcp_rearm_rto(sk);
6124 } else {
6125 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6126 tp->copied_seq = tp->rcv_nxt;
6127 }
6128 smp_mb();
6129 tcp_set_state(sk, TCP_ESTABLISHED);
6130 sk->sk_state_change(sk);
6131
6132 /* Note, that this wakeup is only for marginal crossed SYN case.
6133 * Passively open sockets are not waked up, because
6134 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6135 */
6136 if (sk->sk_socket)
6137 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6138
6139 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6140 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6141 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6142
6143 if (tp->rx_opt.tstamp_ok)
6144 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6145
6146 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6147 tcp_update_pacing_rate(sk);
6148
6149 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6150 tp->lsndtime = tcp_jiffies32;
6151
6152 tcp_initialize_rcv_mss(sk);
6153 tcp_fast_path_on(tp);
6154 break;
6155
6156 case TCP_FIN_WAIT1: {
6157 int tmo;
6158
6159 /* If we enter the TCP_FIN_WAIT1 state and we are a
6160 * Fast Open socket and this is the first acceptable
6161 * ACK we have received, this would have acknowledged
6162 * our SYNACK so stop the SYNACK timer.
6163 */
6164 if (req) {
6165 /* We no longer need the request sock. */
6166 reqsk_fastopen_remove(sk, req, false);
6167 tcp_rearm_rto(sk);
6168 }
6169 if (tp->snd_una != tp->write_seq)
6170 break;
6171
6172 tcp_set_state(sk, TCP_FIN_WAIT2);
6173 sk->sk_shutdown |= SEND_SHUTDOWN;
6174
6175 sk_dst_confirm(sk);
6176
6177 if (!sock_flag(sk, SOCK_DEAD)) {
6178 /* Wake up lingering close() */
6179 sk->sk_state_change(sk);
6180 break;
6181 }
6182
6183 if (tp->linger2 < 0) {
6184 tcp_done(sk);
6185 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6186 return 1;
6187 }
6188 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6189 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6190 /* Receive out of order FIN after close() */
6191 if (tp->syn_fastopen && th->fin)
6192 tcp_fastopen_active_disable(sk);
6193 tcp_done(sk);
6194 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6195 return 1;
6196 }
6197
6198 tmo = tcp_fin_time(sk);
6199 if (tmo > TCP_TIMEWAIT_LEN) {
6200 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6201 } else if (th->fin || sock_owned_by_user(sk)) {
6202 /* Bad case. We could lose such FIN otherwise.
6203 * It is not a big problem, but it looks confusing
6204 * and not so rare event. We still can lose it now,
6205 * if it spins in bh_lock_sock(), but it is really
6206 * marginal case.
6207 */
6208 inet_csk_reset_keepalive_timer(sk, tmo);
6209 } else {
6210 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6211 goto discard;
6212 }
6213 break;
6214 }
6215
6216 case TCP_CLOSING:
6217 if (tp->snd_una == tp->write_seq) {
6218 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6219 goto discard;
6220 }
6221 break;
6222
6223 case TCP_LAST_ACK:
6224 if (tp->snd_una == tp->write_seq) {
6225 tcp_update_metrics(sk);
6226 tcp_done(sk);
6227 goto discard;
6228 }
6229 break;
6230 }
6231
6232 /* step 6: check the URG bit */
6233 tcp_urg(sk, skb, th);
6234
6235 /* step 7: process the segment text */
6236 switch (sk->sk_state) {
6237 case TCP_CLOSE_WAIT:
6238 case TCP_CLOSING:
6239 case TCP_LAST_ACK:
6240 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6241 break;
6242 /* fall through */
6243 case TCP_FIN_WAIT1:
6244 case TCP_FIN_WAIT2:
6245 /* RFC 793 says to queue data in these states,
6246 * RFC 1122 says we MUST send a reset.
6247 * BSD 4.4 also does reset.
6248 */
6249 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6250 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6251 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6252 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6253 tcp_reset(sk);
6254 return 1;
6255 }
6256 }
6257 /* Fall through */
6258 case TCP_ESTABLISHED:
6259 tcp_data_queue(sk, skb);
6260 queued = 1;
6261 break;
6262 }
6263
6264 /* tcp_data could move socket to TIME-WAIT */
6265 if (sk->sk_state != TCP_CLOSE) {
6266 tcp_data_snd_check(sk);
6267 tcp_ack_snd_check(sk);
6268 }
6269
6270 if (!queued) {
6271 discard:
6272 tcp_drop(sk, skb);
6273 }
6274 return 0;
6275 }
6276 EXPORT_SYMBOL(tcp_rcv_state_process);
6277
pr_drop_req(struct request_sock * req,__u16 port,int family)6278 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6279 {
6280 struct inet_request_sock *ireq = inet_rsk(req);
6281
6282 if (family == AF_INET)
6283 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6284 &ireq->ir_rmt_addr, port);
6285 #if IS_ENABLED(CONFIG_IPV6)
6286 else if (family == AF_INET6)
6287 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6288 &ireq->ir_v6_rmt_addr, port);
6289 #endif
6290 }
6291
6292 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6293 *
6294 * If we receive a SYN packet with these bits set, it means a
6295 * network is playing bad games with TOS bits. In order to
6296 * avoid possible false congestion notifications, we disable
6297 * TCP ECN negotiation.
6298 *
6299 * Exception: tcp_ca wants ECN. This is required for DCTCP
6300 * congestion control: Linux DCTCP asserts ECT on all packets,
6301 * including SYN, which is most optimal solution; however,
6302 * others, such as FreeBSD do not.
6303 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6304 static void tcp_ecn_create_request(struct request_sock *req,
6305 const struct sk_buff *skb,
6306 const struct sock *listen_sk,
6307 const struct dst_entry *dst)
6308 {
6309 const struct tcphdr *th = tcp_hdr(skb);
6310 const struct net *net = sock_net(listen_sk);
6311 bool th_ecn = th->ece && th->cwr;
6312 bool ect, ecn_ok;
6313 u32 ecn_ok_dst;
6314
6315 if (!th_ecn)
6316 return;
6317
6318 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6319 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6320 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6321
6322 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6323 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6324 tcp_bpf_ca_needs_ecn((struct sock *)req))
6325 inet_rsk(req)->ecn_ok = 1;
6326 }
6327
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6328 static void tcp_openreq_init(struct request_sock *req,
6329 const struct tcp_options_received *rx_opt,
6330 struct sk_buff *skb, const struct sock *sk)
6331 {
6332 struct inet_request_sock *ireq = inet_rsk(req);
6333
6334 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6335 req->cookie_ts = 0;
6336 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6337 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6338 tcp_rsk(req)->snt_synack = tcp_clock_us();
6339 tcp_rsk(req)->last_oow_ack_time = 0;
6340 req->mss = rx_opt->mss_clamp;
6341 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6342 ireq->tstamp_ok = rx_opt->tstamp_ok;
6343 ireq->sack_ok = rx_opt->sack_ok;
6344 ireq->snd_wscale = rx_opt->snd_wscale;
6345 ireq->wscale_ok = rx_opt->wscale_ok;
6346 ireq->acked = 0;
6347 ireq->ecn_ok = 0;
6348 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6349 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6350 ireq->ir_mark = inet_request_mark(sk, skb);
6351 #if IS_ENABLED(CONFIG_SMC)
6352 ireq->smc_ok = rx_opt->smc_ok;
6353 #endif
6354 }
6355
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6356 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6357 struct sock *sk_listener,
6358 bool attach_listener)
6359 {
6360 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6361 attach_listener);
6362
6363 if (req) {
6364 struct inet_request_sock *ireq = inet_rsk(req);
6365
6366 ireq->ireq_opt = NULL;
6367 #if IS_ENABLED(CONFIG_IPV6)
6368 ireq->pktopts = NULL;
6369 #endif
6370 atomic64_set(&ireq->ir_cookie, 0);
6371 ireq->ireq_state = TCP_NEW_SYN_RECV;
6372 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6373 ireq->ireq_family = sk_listener->sk_family;
6374 }
6375
6376 return req;
6377 }
6378 EXPORT_SYMBOL(inet_reqsk_alloc);
6379
6380 /*
6381 * Return true if a syncookie should be sent
6382 */
tcp_syn_flood_action(const struct sock * sk,const struct sk_buff * skb,const char * proto)6383 static bool tcp_syn_flood_action(const struct sock *sk,
6384 const struct sk_buff *skb,
6385 const char *proto)
6386 {
6387 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6388 const char *msg = "Dropping request";
6389 bool want_cookie = false;
6390 struct net *net = sock_net(sk);
6391
6392 #ifdef CONFIG_SYN_COOKIES
6393 if (net->ipv4.sysctl_tcp_syncookies) {
6394 msg = "Sending cookies";
6395 want_cookie = true;
6396 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6397 } else
6398 #endif
6399 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6400
6401 if (!queue->synflood_warned &&
6402 net->ipv4.sysctl_tcp_syncookies != 2 &&
6403 xchg(&queue->synflood_warned, 1) == 0)
6404 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6405 proto, ntohs(tcp_hdr(skb)->dest), msg);
6406
6407 return want_cookie;
6408 }
6409
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6410 static void tcp_reqsk_record_syn(const struct sock *sk,
6411 struct request_sock *req,
6412 const struct sk_buff *skb)
6413 {
6414 if (tcp_sk(sk)->save_syn) {
6415 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6416 u32 *copy;
6417
6418 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6419 if (copy) {
6420 copy[0] = len;
6421 memcpy(©[1], skb_network_header(skb), len);
6422 req->saved_syn = copy;
6423 }
6424 }
6425 }
6426
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6427 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6428 const struct tcp_request_sock_ops *af_ops,
6429 struct sock *sk, struct sk_buff *skb)
6430 {
6431 struct tcp_fastopen_cookie foc = { .len = -1 };
6432 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6433 struct tcp_options_received tmp_opt;
6434 struct tcp_sock *tp = tcp_sk(sk);
6435 struct net *net = sock_net(sk);
6436 struct sock *fastopen_sk = NULL;
6437 struct request_sock *req;
6438 bool want_cookie = false;
6439 struct dst_entry *dst;
6440 struct flowi fl;
6441
6442 /* TW buckets are converted to open requests without
6443 * limitations, they conserve resources and peer is
6444 * evidently real one.
6445 */
6446 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6447 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6448 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6449 if (!want_cookie)
6450 goto drop;
6451 }
6452
6453 if (sk_acceptq_is_full(sk)) {
6454 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6455 goto drop;
6456 }
6457
6458 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6459 if (!req)
6460 goto drop;
6461
6462 tcp_rsk(req)->af_specific = af_ops;
6463 tcp_rsk(req)->ts_off = 0;
6464
6465 tcp_clear_options(&tmp_opt);
6466 tmp_opt.mss_clamp = af_ops->mss_clamp;
6467 tmp_opt.user_mss = tp->rx_opt.user_mss;
6468 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6469 want_cookie ? NULL : &foc);
6470
6471 if (want_cookie && !tmp_opt.saw_tstamp)
6472 tcp_clear_options(&tmp_opt);
6473
6474 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6475 tmp_opt.smc_ok = 0;
6476
6477 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6478 tcp_openreq_init(req, &tmp_opt, skb, sk);
6479 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6480
6481 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6482 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6483
6484 af_ops->init_req(req, sk, skb);
6485
6486 if (security_inet_conn_request(sk, skb, req))
6487 goto drop_and_free;
6488
6489 if (tmp_opt.tstamp_ok)
6490 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6491
6492 dst = af_ops->route_req(sk, &fl, req);
6493 if (!dst)
6494 goto drop_and_free;
6495
6496 if (!want_cookie && !isn) {
6497 /* Kill the following clause, if you dislike this way. */
6498 if (!net->ipv4.sysctl_tcp_syncookies &&
6499 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6500 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6501 !tcp_peer_is_proven(req, dst)) {
6502 /* Without syncookies last quarter of
6503 * backlog is filled with destinations,
6504 * proven to be alive.
6505 * It means that we continue to communicate
6506 * to destinations, already remembered
6507 * to the moment of synflood.
6508 */
6509 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6510 rsk_ops->family);
6511 goto drop_and_release;
6512 }
6513
6514 isn = af_ops->init_seq(skb);
6515 }
6516
6517 tcp_ecn_create_request(req, skb, sk, dst);
6518
6519 if (want_cookie) {
6520 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6521 req->cookie_ts = tmp_opt.tstamp_ok;
6522 if (!tmp_opt.tstamp_ok)
6523 inet_rsk(req)->ecn_ok = 0;
6524 }
6525
6526 tcp_rsk(req)->snt_isn = isn;
6527 tcp_rsk(req)->txhash = net_tx_rndhash();
6528 tcp_openreq_init_rwin(req, sk, dst);
6529 sk_rx_queue_set(req_to_sk(req), skb);
6530 if (!want_cookie) {
6531 tcp_reqsk_record_syn(sk, req, skb);
6532 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6533 }
6534 if (fastopen_sk) {
6535 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6536 &foc, TCP_SYNACK_FASTOPEN);
6537 /* Add the child socket directly into the accept queue */
6538 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6539 reqsk_fastopen_remove(fastopen_sk, req, false);
6540 bh_unlock_sock(fastopen_sk);
6541 sock_put(fastopen_sk);
6542 reqsk_put(req);
6543 goto drop;
6544 }
6545 sk->sk_data_ready(sk);
6546 bh_unlock_sock(fastopen_sk);
6547 sock_put(fastopen_sk);
6548 } else {
6549 tcp_rsk(req)->tfo_listener = false;
6550 if (!want_cookie)
6551 inet_csk_reqsk_queue_hash_add(sk, req,
6552 tcp_timeout_init((struct sock *)req));
6553 af_ops->send_synack(sk, dst, &fl, req, &foc,
6554 !want_cookie ? TCP_SYNACK_NORMAL :
6555 TCP_SYNACK_COOKIE);
6556 if (want_cookie) {
6557 reqsk_free(req);
6558 return 0;
6559 }
6560 }
6561 reqsk_put(req);
6562 return 0;
6563
6564 drop_and_release:
6565 dst_release(dst);
6566 drop_and_free:
6567 reqsk_free(req);
6568 drop:
6569 tcp_listendrop(sk);
6570 return 0;
6571 }
6572 EXPORT_SYMBOL(tcp_conn_request);
6573