• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 #include <net/busy_poll.h>
82 
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84 
85 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
86 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
87 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
88 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
89 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
90 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
91 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
92 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
95 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
101 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 
111 #define REXMIT_NONE	0 /* no loss recovery to do */
112 #define REXMIT_LOST	1 /* retransmit packets marked lost */
113 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
114 
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
117 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 			     void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 	icsk->icsk_clean_acked = cad;
122 	static_branch_inc(&clean_acked_data_enabled);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125 
clean_acked_data_disable(struct inet_connection_sock * icsk)126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 	static_branch_dec(&clean_acked_data_enabled);
129 	icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 #endif
133 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
135 			     unsigned int len)
136 {
137 	static bool __once __read_mostly;
138 
139 	if (!__once) {
140 		struct net_device *dev;
141 
142 		__once = true;
143 
144 		rcu_read_lock();
145 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
146 		if (!dev || len >= dev->mtu)
147 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
148 				dev ? dev->name : "Unknown driver");
149 		rcu_read_unlock();
150 	}
151 }
152 
153 /* Adapt the MSS value used to make delayed ack decision to the
154  * real world.
155  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
157 {
158 	struct inet_connection_sock *icsk = inet_csk(sk);
159 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
160 	unsigned int len;
161 
162 	icsk->icsk_ack.last_seg_size = 0;
163 
164 	/* skb->len may jitter because of SACKs, even if peer
165 	 * sends good full-sized frames.
166 	 */
167 	len = skb_shinfo(skb)->gso_size ? : skb->len;
168 	if (len >= icsk->icsk_ack.rcv_mss) {
169 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
170 					       tcp_sk(sk)->advmss);
171 		/* Account for possibly-removed options */
172 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
173 				   MAX_TCP_OPTION_SPACE))
174 			tcp_gro_dev_warn(sk, skb, len);
175 	} else {
176 		/* Otherwise, we make more careful check taking into account,
177 		 * that SACKs block is variable.
178 		 *
179 		 * "len" is invariant segment length, including TCP header.
180 		 */
181 		len += skb->data - skb_transport_header(skb);
182 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
183 		    /* If PSH is not set, packet should be
184 		     * full sized, provided peer TCP is not badly broken.
185 		     * This observation (if it is correct 8)) allows
186 		     * to handle super-low mtu links fairly.
187 		     */
188 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
189 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
190 			/* Subtract also invariant (if peer is RFC compliant),
191 			 * tcp header plus fixed timestamp option length.
192 			 * Resulting "len" is MSS free of SACK jitter.
193 			 */
194 			len -= tcp_sk(sk)->tcp_header_len;
195 			icsk->icsk_ack.last_seg_size = len;
196 			if (len == lss) {
197 				icsk->icsk_ack.rcv_mss = len;
198 				return;
199 			}
200 		}
201 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
202 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
203 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
204 	}
205 }
206 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
208 {
209 	struct inet_connection_sock *icsk = inet_csk(sk);
210 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
211 
212 	if (quickacks == 0)
213 		quickacks = 2;
214 	quickacks = min(quickacks, max_quickacks);
215 	if (quickacks > icsk->icsk_ack.quick)
216 		icsk->icsk_ack.quick = quickacks;
217 }
218 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)219 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
220 {
221 	struct inet_connection_sock *icsk = inet_csk(sk);
222 
223 	tcp_incr_quickack(sk, max_quickacks);
224 	icsk->icsk_ack.pingpong = 0;
225 	icsk->icsk_ack.ato = TCP_ATO_MIN;
226 }
227 EXPORT_SYMBOL(tcp_enter_quickack_mode);
228 
229 /* Send ACKs quickly, if "quick" count is not exhausted
230  * and the session is not interactive.
231  */
232 
tcp_in_quickack_mode(struct sock * sk)233 static bool tcp_in_quickack_mode(struct sock *sk)
234 {
235 	const struct inet_connection_sock *icsk = inet_csk(sk);
236 	const struct dst_entry *dst = __sk_dst_get(sk);
237 
238 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
239 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
240 }
241 
tcp_ecn_queue_cwr(struct tcp_sock * tp)242 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
243 {
244 	if (tp->ecn_flags & TCP_ECN_OK)
245 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
246 }
247 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)248 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
249 {
250 	if (tcp_hdr(skb)->cwr) {
251 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
252 
253 		/* If the sender is telling us it has entered CWR, then its
254 		 * cwnd may be very low (even just 1 packet), so we should ACK
255 		 * immediately.
256 		 */
257 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
258 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
259 	}
260 }
261 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)262 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
263 {
264 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
265 }
266 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)267 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
268 {
269 	struct tcp_sock *tp = tcp_sk(sk);
270 
271 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
272 	case INET_ECN_NOT_ECT:
273 		/* Funny extension: if ECT is not set on a segment,
274 		 * and we already seen ECT on a previous segment,
275 		 * it is probably a retransmit.
276 		 */
277 		if (tp->ecn_flags & TCP_ECN_SEEN)
278 			tcp_enter_quickack_mode(sk, 2);
279 		break;
280 	case INET_ECN_CE:
281 		if (tcp_ca_needs_ecn(sk))
282 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
283 
284 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
285 			/* Better not delay acks, sender can have a very low cwnd */
286 			tcp_enter_quickack_mode(sk, 2);
287 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
288 		}
289 		tp->ecn_flags |= TCP_ECN_SEEN;
290 		break;
291 	default:
292 		if (tcp_ca_needs_ecn(sk))
293 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
294 		tp->ecn_flags |= TCP_ECN_SEEN;
295 		break;
296 	}
297 }
298 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)299 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
300 {
301 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
302 		__tcp_ecn_check_ce(sk, skb);
303 }
304 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)305 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
306 {
307 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
308 		tp->ecn_flags &= ~TCP_ECN_OK;
309 }
310 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)311 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
312 {
313 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
314 		tp->ecn_flags &= ~TCP_ECN_OK;
315 }
316 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)317 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
318 {
319 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
320 		return true;
321 	return false;
322 }
323 
324 /* Buffer size and advertised window tuning.
325  *
326  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
327  */
328 
tcp_sndbuf_expand(struct sock * sk)329 static void tcp_sndbuf_expand(struct sock *sk)
330 {
331 	const struct tcp_sock *tp = tcp_sk(sk);
332 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
333 	int sndmem, per_mss;
334 	u32 nr_segs;
335 
336 	/* Worst case is non GSO/TSO : each frame consumes one skb
337 	 * and skb->head is kmalloced using power of two area of memory
338 	 */
339 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
340 		  MAX_TCP_HEADER +
341 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
342 
343 	per_mss = roundup_pow_of_two(per_mss) +
344 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
345 
346 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
347 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
348 
349 	/* Fast Recovery (RFC 5681 3.2) :
350 	 * Cubic needs 1.7 factor, rounded to 2 to include
351 	 * extra cushion (application might react slowly to EPOLLOUT)
352 	 */
353 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
354 	sndmem *= nr_segs * per_mss;
355 
356 	if (sk->sk_sndbuf < sndmem)
357 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
358 }
359 
360 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
361  *
362  * All tcp_full_space() is split to two parts: "network" buffer, allocated
363  * forward and advertised in receiver window (tp->rcv_wnd) and
364  * "application buffer", required to isolate scheduling/application
365  * latencies from network.
366  * window_clamp is maximal advertised window. It can be less than
367  * tcp_full_space(), in this case tcp_full_space() - window_clamp
368  * is reserved for "application" buffer. The less window_clamp is
369  * the smoother our behaviour from viewpoint of network, but the lower
370  * throughput and the higher sensitivity of the connection to losses. 8)
371  *
372  * rcv_ssthresh is more strict window_clamp used at "slow start"
373  * phase to predict further behaviour of this connection.
374  * It is used for two goals:
375  * - to enforce header prediction at sender, even when application
376  *   requires some significant "application buffer". It is check #1.
377  * - to prevent pruning of receive queue because of misprediction
378  *   of receiver window. Check #2.
379  *
380  * The scheme does not work when sender sends good segments opening
381  * window and then starts to feed us spaghetti. But it should work
382  * in common situations. Otherwise, we have to rely on queue collapsing.
383  */
384 
385 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)386 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
387 {
388 	struct tcp_sock *tp = tcp_sk(sk);
389 	/* Optimize this! */
390 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
391 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
392 
393 	while (tp->rcv_ssthresh <= window) {
394 		if (truesize <= skb->len)
395 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
396 
397 		truesize >>= 1;
398 		window >>= 1;
399 	}
400 	return 0;
401 }
402 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)403 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
404 {
405 	struct tcp_sock *tp = tcp_sk(sk);
406 	int room;
407 
408 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
409 
410 	/* Check #1 */
411 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
412 		int incr;
413 
414 		/* Check #2. Increase window, if skb with such overhead
415 		 * will fit to rcvbuf in future.
416 		 */
417 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
418 			incr = 2 * tp->advmss;
419 		else
420 			incr = __tcp_grow_window(sk, skb);
421 
422 		if (incr) {
423 			incr = max_t(int, incr, 2 * skb->len);
424 			tp->rcv_ssthresh += min(room, incr);
425 			inet_csk(sk)->icsk_ack.quick |= 1;
426 		}
427 	}
428 }
429 
430 /* 3. Try to fixup all. It is made immediately after connection enters
431  *    established state.
432  */
tcp_init_buffer_space(struct sock * sk)433 void tcp_init_buffer_space(struct sock *sk)
434 {
435 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
436 	struct tcp_sock *tp = tcp_sk(sk);
437 	int maxwin;
438 
439 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
440 		tcp_sndbuf_expand(sk);
441 
442 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
443 	tcp_mstamp_refresh(tp);
444 	tp->rcvq_space.time = tp->tcp_mstamp;
445 	tp->rcvq_space.seq = tp->copied_seq;
446 
447 	maxwin = tcp_full_space(sk);
448 
449 	if (tp->window_clamp >= maxwin) {
450 		tp->window_clamp = maxwin;
451 
452 		if (tcp_app_win && maxwin > 4 * tp->advmss)
453 			tp->window_clamp = max(maxwin -
454 					       (maxwin >> tcp_app_win),
455 					       4 * tp->advmss);
456 	}
457 
458 	/* Force reservation of one segment. */
459 	if (tcp_app_win &&
460 	    tp->window_clamp > 2 * tp->advmss &&
461 	    tp->window_clamp + tp->advmss > maxwin)
462 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
463 
464 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
465 	tp->snd_cwnd_stamp = tcp_jiffies32;
466 }
467 
468 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)469 static void tcp_clamp_window(struct sock *sk)
470 {
471 	struct tcp_sock *tp = tcp_sk(sk);
472 	struct inet_connection_sock *icsk = inet_csk(sk);
473 	struct net *net = sock_net(sk);
474 
475 	icsk->icsk_ack.quick = 0;
476 
477 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
478 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
479 	    !tcp_under_memory_pressure(sk) &&
480 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
481 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 				    net->ipv4.sysctl_tcp_rmem[2]);
483 	}
484 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
485 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
486 }
487 
488 /* Initialize RCV_MSS value.
489  * RCV_MSS is an our guess about MSS used by the peer.
490  * We haven't any direct information about the MSS.
491  * It's better to underestimate the RCV_MSS rather than overestimate.
492  * Overestimations make us ACKing less frequently than needed.
493  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494  */
tcp_initialize_rcv_mss(struct sock * sk)495 void tcp_initialize_rcv_mss(struct sock *sk)
496 {
497 	const struct tcp_sock *tp = tcp_sk(sk);
498 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499 
500 	hint = min(hint, tp->rcv_wnd / 2);
501 	hint = min(hint, TCP_MSS_DEFAULT);
502 	hint = max(hint, TCP_MIN_MSS);
503 
504 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
505 }
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
507 
508 /* Receiver "autotuning" code.
509  *
510  * The algorithm for RTT estimation w/o timestamps is based on
511  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512  * <http://public.lanl.gov/radiant/pubs.html#DRS>
513  *
514  * More detail on this code can be found at
515  * <http://staff.psc.edu/jheffner/>,
516  * though this reference is out of date.  A new paper
517  * is pending.
518  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520 {
521 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
522 	long m = sample;
523 
524 	if (new_sample != 0) {
525 		/* If we sample in larger samples in the non-timestamp
526 		 * case, we could grossly overestimate the RTT especially
527 		 * with chatty applications or bulk transfer apps which
528 		 * are stalled on filesystem I/O.
529 		 *
530 		 * Also, since we are only going for a minimum in the
531 		 * non-timestamp case, we do not smooth things out
532 		 * else with timestamps disabled convergence takes too
533 		 * long.
534 		 */
535 		if (!win_dep) {
536 			m -= (new_sample >> 3);
537 			new_sample += m;
538 		} else {
539 			m <<= 3;
540 			if (m < new_sample)
541 				new_sample = m;
542 		}
543 	} else {
544 		/* No previous measure. */
545 		new_sample = m << 3;
546 	}
547 
548 	tp->rcv_rtt_est.rtt_us = new_sample;
549 }
550 
tcp_rcv_rtt_measure(struct tcp_sock * tp)551 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
552 {
553 	u32 delta_us;
554 
555 	if (tp->rcv_rtt_est.time == 0)
556 		goto new_measure;
557 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
558 		return;
559 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
560 	if (!delta_us)
561 		delta_us = 1;
562 	tcp_rcv_rtt_update(tp, delta_us, 1);
563 
564 new_measure:
565 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
566 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
567 }
568 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)569 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
570 					  const struct sk_buff *skb)
571 {
572 	struct tcp_sock *tp = tcp_sk(sk);
573 
574 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
575 		return;
576 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
577 
578 	if (TCP_SKB_CB(skb)->end_seq -
579 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
580 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
581 		u32 delta_us;
582 
583 		if (!delta)
584 			delta = 1;
585 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
586 		tcp_rcv_rtt_update(tp, delta_us, 0);
587 	}
588 }
589 
590 /*
591  * This function should be called every time data is copied to user space.
592  * It calculates the appropriate TCP receive buffer space.
593  */
tcp_rcv_space_adjust(struct sock * sk)594 void tcp_rcv_space_adjust(struct sock *sk)
595 {
596 	struct tcp_sock *tp = tcp_sk(sk);
597 	u32 copied;
598 	int time;
599 
600 	trace_tcp_rcv_space_adjust(sk);
601 
602 	tcp_mstamp_refresh(tp);
603 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
604 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
605 		return;
606 
607 	/* Number of bytes copied to user in last RTT */
608 	copied = tp->copied_seq - tp->rcvq_space.seq;
609 	if (copied <= tp->rcvq_space.space)
610 		goto new_measure;
611 
612 	/* A bit of theory :
613 	 * copied = bytes received in previous RTT, our base window
614 	 * To cope with packet losses, we need a 2x factor
615 	 * To cope with slow start, and sender growing its cwin by 100 %
616 	 * every RTT, we need a 4x factor, because the ACK we are sending
617 	 * now is for the next RTT, not the current one :
618 	 * <prev RTT . ><current RTT .. ><next RTT .... >
619 	 */
620 
621 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
622 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
623 		int rcvmem, rcvbuf;
624 		u64 rcvwin, grow;
625 
626 		/* minimal window to cope with packet losses, assuming
627 		 * steady state. Add some cushion because of small variations.
628 		 */
629 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
630 
631 		/* Accommodate for sender rate increase (eg. slow start) */
632 		grow = rcvwin * (copied - tp->rcvq_space.space);
633 		do_div(grow, tp->rcvq_space.space);
634 		rcvwin += (grow << 1);
635 
636 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
637 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
638 			rcvmem += 128;
639 
640 		do_div(rcvwin, tp->advmss);
641 		rcvbuf = min_t(u64, rcvwin * rcvmem,
642 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
643 		if (rcvbuf > sk->sk_rcvbuf) {
644 			sk->sk_rcvbuf = rcvbuf;
645 
646 			/* Make the window clamp follow along.  */
647 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
648 		}
649 	}
650 	tp->rcvq_space.space = copied;
651 
652 new_measure:
653 	tp->rcvq_space.seq = tp->copied_seq;
654 	tp->rcvq_space.time = tp->tcp_mstamp;
655 }
656 
657 /* There is something which you must keep in mind when you analyze the
658  * behavior of the tp->ato delayed ack timeout interval.  When a
659  * connection starts up, we want to ack as quickly as possible.  The
660  * problem is that "good" TCP's do slow start at the beginning of data
661  * transmission.  The means that until we send the first few ACK's the
662  * sender will sit on his end and only queue most of his data, because
663  * he can only send snd_cwnd unacked packets at any given time.  For
664  * each ACK we send, he increments snd_cwnd and transmits more of his
665  * queue.  -DaveM
666  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)667 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
668 {
669 	struct tcp_sock *tp = tcp_sk(sk);
670 	struct inet_connection_sock *icsk = inet_csk(sk);
671 	u32 now;
672 
673 	inet_csk_schedule_ack(sk);
674 
675 	tcp_measure_rcv_mss(sk, skb);
676 
677 	tcp_rcv_rtt_measure(tp);
678 
679 	now = tcp_jiffies32;
680 
681 	if (!icsk->icsk_ack.ato) {
682 		/* The _first_ data packet received, initialize
683 		 * delayed ACK engine.
684 		 */
685 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
686 		icsk->icsk_ack.ato = TCP_ATO_MIN;
687 	} else {
688 		int m = now - icsk->icsk_ack.lrcvtime;
689 
690 		if (m <= TCP_ATO_MIN / 2) {
691 			/* The fastest case is the first. */
692 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
693 		} else if (m < icsk->icsk_ack.ato) {
694 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
695 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
696 				icsk->icsk_ack.ato = icsk->icsk_rto;
697 		} else if (m > icsk->icsk_rto) {
698 			/* Too long gap. Apparently sender failed to
699 			 * restart window, so that we send ACKs quickly.
700 			 */
701 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
702 			sk_mem_reclaim(sk);
703 		}
704 	}
705 	icsk->icsk_ack.lrcvtime = now;
706 
707 	tcp_ecn_check_ce(sk, skb);
708 
709 	if (skb->len >= 128)
710 		tcp_grow_window(sk, skb);
711 }
712 
713 /* Called to compute a smoothed rtt estimate. The data fed to this
714  * routine either comes from timestamps, or from segments that were
715  * known _not_ to have been retransmitted [see Karn/Partridge
716  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
717  * piece by Van Jacobson.
718  * NOTE: the next three routines used to be one big routine.
719  * To save cycles in the RFC 1323 implementation it was better to break
720  * it up into three procedures. -- erics
721  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)722 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
723 {
724 	struct tcp_sock *tp = tcp_sk(sk);
725 	long m = mrtt_us; /* RTT */
726 	u32 srtt = tp->srtt_us;
727 
728 	/*	The following amusing code comes from Jacobson's
729 	 *	article in SIGCOMM '88.  Note that rtt and mdev
730 	 *	are scaled versions of rtt and mean deviation.
731 	 *	This is designed to be as fast as possible
732 	 *	m stands for "measurement".
733 	 *
734 	 *	On a 1990 paper the rto value is changed to:
735 	 *	RTO = rtt + 4 * mdev
736 	 *
737 	 * Funny. This algorithm seems to be very broken.
738 	 * These formulae increase RTO, when it should be decreased, increase
739 	 * too slowly, when it should be increased quickly, decrease too quickly
740 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
741 	 * does not matter how to _calculate_ it. Seems, it was trap
742 	 * that VJ failed to avoid. 8)
743 	 */
744 	if (srtt != 0) {
745 		m -= (srtt >> 3);	/* m is now error in rtt est */
746 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
747 		if (m < 0) {
748 			m = -m;		/* m is now abs(error) */
749 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
750 			/* This is similar to one of Eifel findings.
751 			 * Eifel blocks mdev updates when rtt decreases.
752 			 * This solution is a bit different: we use finer gain
753 			 * for mdev in this case (alpha*beta).
754 			 * Like Eifel it also prevents growth of rto,
755 			 * but also it limits too fast rto decreases,
756 			 * happening in pure Eifel.
757 			 */
758 			if (m > 0)
759 				m >>= 3;
760 		} else {
761 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
762 		}
763 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
764 		if (tp->mdev_us > tp->mdev_max_us) {
765 			tp->mdev_max_us = tp->mdev_us;
766 			if (tp->mdev_max_us > tp->rttvar_us)
767 				tp->rttvar_us = tp->mdev_max_us;
768 		}
769 		if (after(tp->snd_una, tp->rtt_seq)) {
770 			if (tp->mdev_max_us < tp->rttvar_us)
771 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
772 			tp->rtt_seq = tp->snd_nxt;
773 			tp->mdev_max_us = tcp_rto_min_us(sk);
774 		}
775 	} else {
776 		/* no previous measure. */
777 		srtt = m << 3;		/* take the measured time to be rtt */
778 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
779 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
780 		tp->mdev_max_us = tp->rttvar_us;
781 		tp->rtt_seq = tp->snd_nxt;
782 	}
783 	tp->srtt_us = max(1U, srtt);
784 }
785 
tcp_update_pacing_rate(struct sock * sk)786 static void tcp_update_pacing_rate(struct sock *sk)
787 {
788 	const struct tcp_sock *tp = tcp_sk(sk);
789 	u64 rate;
790 
791 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
792 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
793 
794 	/* current rate is (cwnd * mss) / srtt
795 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
796 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
797 	 *
798 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
799 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
800 	 *	 end of slow start and should slow down.
801 	 */
802 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
803 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
804 	else
805 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
806 
807 	rate *= max(tp->snd_cwnd, tp->packets_out);
808 
809 	if (likely(tp->srtt_us))
810 		do_div(rate, tp->srtt_us);
811 
812 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
813 	 * without any lock. We want to make sure compiler wont store
814 	 * intermediate values in this location.
815 	 */
816 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
817 					     sk->sk_max_pacing_rate));
818 }
819 
820 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
821  * routine referred to above.
822  */
tcp_set_rto(struct sock * sk)823 static void tcp_set_rto(struct sock *sk)
824 {
825 	const struct tcp_sock *tp = tcp_sk(sk);
826 	/* Old crap is replaced with new one. 8)
827 	 *
828 	 * More seriously:
829 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
830 	 *    It cannot be less due to utterly erratic ACK generation made
831 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
832 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
833 	 *    is invisible. Actually, Linux-2.4 also generates erratic
834 	 *    ACKs in some circumstances.
835 	 */
836 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
837 
838 	/* 2. Fixups made earlier cannot be right.
839 	 *    If we do not estimate RTO correctly without them,
840 	 *    all the algo is pure shit and should be replaced
841 	 *    with correct one. It is exactly, which we pretend to do.
842 	 */
843 
844 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
845 	 * guarantees that rto is higher.
846 	 */
847 	tcp_bound_rto(sk);
848 }
849 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)850 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
851 {
852 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
853 
854 	if (!cwnd)
855 		cwnd = TCP_INIT_CWND;
856 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
857 }
858 
859 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)860 static void tcp_dsack_seen(struct tcp_sock *tp)
861 {
862 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
863 	tp->rack.dsack_seen = 1;
864 	tp->dsack_dups++;
865 }
866 
867 /* It's reordering when higher sequence was delivered (i.e. sacked) before
868  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
869  * distance is approximated in full-mss packet distance ("reordering").
870  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)871 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
872 				      const int ts)
873 {
874 	struct tcp_sock *tp = tcp_sk(sk);
875 	const u32 mss = tp->mss_cache;
876 	u32 fack, metric;
877 
878 	fack = tcp_highest_sack_seq(tp);
879 	if (!before(low_seq, fack))
880 		return;
881 
882 	metric = fack - low_seq;
883 	if ((metric > tp->reordering * mss) && mss) {
884 #if FASTRETRANS_DEBUG > 1
885 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
886 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
887 			 tp->reordering,
888 			 0,
889 			 tp->sacked_out,
890 			 tp->undo_marker ? tp->undo_retrans : 0);
891 #endif
892 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
893 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
894 	}
895 
896 	/* This exciting event is worth to be remembered. 8) */
897 	tp->reord_seen++;
898 	NET_INC_STATS(sock_net(sk),
899 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
900 }
901 
902 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)903 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
904 {
905 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
906 	    (tp->retransmit_skb_hint &&
907 	     before(TCP_SKB_CB(skb)->seq,
908 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
909 		tp->retransmit_skb_hint = skb;
910 }
911 
912 /* Sum the number of packets on the wire we have marked as lost.
913  * There are two cases we care about here:
914  * a) Packet hasn't been marked lost (nor retransmitted),
915  *    and this is the first loss.
916  * b) Packet has been marked both lost and retransmitted,
917  *    and this means we think it was lost again.
918  */
tcp_sum_lost(struct tcp_sock * tp,struct sk_buff * skb)919 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
920 {
921 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
922 
923 	if (!(sacked & TCPCB_LOST) ||
924 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
925 		tp->lost += tcp_skb_pcount(skb);
926 }
927 
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)928 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
929 {
930 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
931 		tcp_verify_retransmit_hint(tp, skb);
932 
933 		tp->lost_out += tcp_skb_pcount(skb);
934 		tcp_sum_lost(tp, skb);
935 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
936 	}
937 }
938 
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)939 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
940 {
941 	tcp_verify_retransmit_hint(tp, skb);
942 
943 	tcp_sum_lost(tp, skb);
944 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 		tp->lost_out += tcp_skb_pcount(skb);
946 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
947 	}
948 }
949 
950 /* This procedure tags the retransmission queue when SACKs arrive.
951  *
952  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
953  * Packets in queue with these bits set are counted in variables
954  * sacked_out, retrans_out and lost_out, correspondingly.
955  *
956  * Valid combinations are:
957  * Tag  InFlight	Description
958  * 0	1		- orig segment is in flight.
959  * S	0		- nothing flies, orig reached receiver.
960  * L	0		- nothing flies, orig lost by net.
961  * R	2		- both orig and retransmit are in flight.
962  * L|R	1		- orig is lost, retransmit is in flight.
963  * S|R  1		- orig reached receiver, retrans is still in flight.
964  * (L|S|R is logically valid, it could occur when L|R is sacked,
965  *  but it is equivalent to plain S and code short-curcuits it to S.
966  *  L|S is logically invalid, it would mean -1 packet in flight 8))
967  *
968  * These 6 states form finite state machine, controlled by the following events:
969  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
970  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
971  * 3. Loss detection event of two flavors:
972  *	A. Scoreboard estimator decided the packet is lost.
973  *	   A'. Reno "three dupacks" marks head of queue lost.
974  *	B. SACK arrives sacking SND.NXT at the moment, when the
975  *	   segment was retransmitted.
976  * 4. D-SACK added new rule: D-SACK changes any tag to S.
977  *
978  * It is pleasant to note, that state diagram turns out to be commutative,
979  * so that we are allowed not to be bothered by order of our actions,
980  * when multiple events arrive simultaneously. (see the function below).
981  *
982  * Reordering detection.
983  * --------------------
984  * Reordering metric is maximal distance, which a packet can be displaced
985  * in packet stream. With SACKs we can estimate it:
986  *
987  * 1. SACK fills old hole and the corresponding segment was not
988  *    ever retransmitted -> reordering. Alas, we cannot use it
989  *    when segment was retransmitted.
990  * 2. The last flaw is solved with D-SACK. D-SACK arrives
991  *    for retransmitted and already SACKed segment -> reordering..
992  * Both of these heuristics are not used in Loss state, when we cannot
993  * account for retransmits accurately.
994  *
995  * SACK block validation.
996  * ----------------------
997  *
998  * SACK block range validation checks that the received SACK block fits to
999  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1000  * Note that SND.UNA is not included to the range though being valid because
1001  * it means that the receiver is rather inconsistent with itself reporting
1002  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1003  * perfectly valid, however, in light of RFC2018 which explicitly states
1004  * that "SACK block MUST reflect the newest segment.  Even if the newest
1005  * segment is going to be discarded ...", not that it looks very clever
1006  * in case of head skb. Due to potentional receiver driven attacks, we
1007  * choose to avoid immediate execution of a walk in write queue due to
1008  * reneging and defer head skb's loss recovery to standard loss recovery
1009  * procedure that will eventually trigger (nothing forbids us doing this).
1010  *
1011  * Implements also blockage to start_seq wrap-around. Problem lies in the
1012  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1013  * there's no guarantee that it will be before snd_nxt (n). The problem
1014  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1015  * wrap (s_w):
1016  *
1017  *         <- outs wnd ->                          <- wrapzone ->
1018  *         u     e      n                         u_w   e_w  s n_w
1019  *         |     |      |                          |     |   |  |
1020  * |<------------+------+----- TCP seqno space --------------+---------->|
1021  * ...-- <2^31 ->|                                           |<--------...
1022  * ...---- >2^31 ------>|                                    |<--------...
1023  *
1024  * Current code wouldn't be vulnerable but it's better still to discard such
1025  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1026  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1027  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1028  * equal to the ideal case (infinite seqno space without wrap caused issues).
1029  *
1030  * With D-SACK the lower bound is extended to cover sequence space below
1031  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1032  * again, D-SACK block must not to go across snd_una (for the same reason as
1033  * for the normal SACK blocks, explained above). But there all simplicity
1034  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1035  * fully below undo_marker they do not affect behavior in anyway and can
1036  * therefore be safely ignored. In rare cases (which are more or less
1037  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1038  * fragmentation and packet reordering past skb's retransmission. To consider
1039  * them correctly, the acceptable range must be extended even more though
1040  * the exact amount is rather hard to quantify. However, tp->max_window can
1041  * be used as an exaggerated estimate.
1042  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1043 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1044 				   u32 start_seq, u32 end_seq)
1045 {
1046 	/* Too far in future, or reversed (interpretation is ambiguous) */
1047 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1048 		return false;
1049 
1050 	/* Nasty start_seq wrap-around check (see comments above) */
1051 	if (!before(start_seq, tp->snd_nxt))
1052 		return false;
1053 
1054 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1055 	 * start_seq == snd_una is non-sensical (see comments above)
1056 	 */
1057 	if (after(start_seq, tp->snd_una))
1058 		return true;
1059 
1060 	if (!is_dsack || !tp->undo_marker)
1061 		return false;
1062 
1063 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1064 	if (after(end_seq, tp->snd_una))
1065 		return false;
1066 
1067 	if (!before(start_seq, tp->undo_marker))
1068 		return true;
1069 
1070 	/* Too old */
1071 	if (!after(end_seq, tp->undo_marker))
1072 		return false;
1073 
1074 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1075 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1076 	 */
1077 	return !before(start_seq, end_seq - tp->max_window);
1078 }
1079 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1080 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1081 			    struct tcp_sack_block_wire *sp, int num_sacks,
1082 			    u32 prior_snd_una)
1083 {
1084 	struct tcp_sock *tp = tcp_sk(sk);
1085 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1086 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1087 	bool dup_sack = false;
1088 
1089 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1090 		dup_sack = true;
1091 		tcp_dsack_seen(tp);
1092 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1093 	} else if (num_sacks > 1) {
1094 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1095 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1096 
1097 		if (!after(end_seq_0, end_seq_1) &&
1098 		    !before(start_seq_0, start_seq_1)) {
1099 			dup_sack = true;
1100 			tcp_dsack_seen(tp);
1101 			NET_INC_STATS(sock_net(sk),
1102 					LINUX_MIB_TCPDSACKOFORECV);
1103 		}
1104 	}
1105 
1106 	/* D-SACK for already forgotten data... Do dumb counting. */
1107 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1108 	    !after(end_seq_0, prior_snd_una) &&
1109 	    after(end_seq_0, tp->undo_marker))
1110 		tp->undo_retrans--;
1111 
1112 	return dup_sack;
1113 }
1114 
1115 struct tcp_sacktag_state {
1116 	u32	reord;
1117 	/* Timestamps for earliest and latest never-retransmitted segment
1118 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1119 	 * but congestion control should still get an accurate delay signal.
1120 	 */
1121 	u64	first_sackt;
1122 	u64	last_sackt;
1123 	struct rate_sample *rate;
1124 	int	flag;
1125 	unsigned int mss_now;
1126 };
1127 
1128 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1129  * the incoming SACK may not exactly match but we can find smaller MSS
1130  * aligned portion of it that matches. Therefore we might need to fragment
1131  * which may fail and creates some hassle (caller must handle error case
1132  * returns).
1133  *
1134  * FIXME: this could be merged to shift decision code
1135  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1136 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1137 				  u32 start_seq, u32 end_seq)
1138 {
1139 	int err;
1140 	bool in_sack;
1141 	unsigned int pkt_len;
1142 	unsigned int mss;
1143 
1144 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1145 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1146 
1147 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1148 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1149 		mss = tcp_skb_mss(skb);
1150 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1151 
1152 		if (!in_sack) {
1153 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1154 			if (pkt_len < mss)
1155 				pkt_len = mss;
1156 		} else {
1157 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1158 			if (pkt_len < mss)
1159 				return -EINVAL;
1160 		}
1161 
1162 		/* Round if necessary so that SACKs cover only full MSSes
1163 		 * and/or the remaining small portion (if present)
1164 		 */
1165 		if (pkt_len > mss) {
1166 			unsigned int new_len = (pkt_len / mss) * mss;
1167 			if (!in_sack && new_len < pkt_len)
1168 				new_len += mss;
1169 			pkt_len = new_len;
1170 		}
1171 
1172 		if (pkt_len >= skb->len && !in_sack)
1173 			return 0;
1174 
1175 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1176 				   pkt_len, mss, GFP_ATOMIC);
1177 		if (err < 0)
1178 			return err;
1179 	}
1180 
1181 	return in_sack;
1182 }
1183 
1184 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1185 static u8 tcp_sacktag_one(struct sock *sk,
1186 			  struct tcp_sacktag_state *state, u8 sacked,
1187 			  u32 start_seq, u32 end_seq,
1188 			  int dup_sack, int pcount,
1189 			  u64 xmit_time)
1190 {
1191 	struct tcp_sock *tp = tcp_sk(sk);
1192 
1193 	/* Account D-SACK for retransmitted packet. */
1194 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1195 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1196 		    after(end_seq, tp->undo_marker))
1197 			tp->undo_retrans--;
1198 		if ((sacked & TCPCB_SACKED_ACKED) &&
1199 		    before(start_seq, state->reord))
1200 				state->reord = start_seq;
1201 	}
1202 
1203 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1204 	if (!after(end_seq, tp->snd_una))
1205 		return sacked;
1206 
1207 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1208 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1209 
1210 		if (sacked & TCPCB_SACKED_RETRANS) {
1211 			/* If the segment is not tagged as lost,
1212 			 * we do not clear RETRANS, believing
1213 			 * that retransmission is still in flight.
1214 			 */
1215 			if (sacked & TCPCB_LOST) {
1216 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1217 				tp->lost_out -= pcount;
1218 				tp->retrans_out -= pcount;
1219 			}
1220 		} else {
1221 			if (!(sacked & TCPCB_RETRANS)) {
1222 				/* New sack for not retransmitted frame,
1223 				 * which was in hole. It is reordering.
1224 				 */
1225 				if (before(start_seq,
1226 					   tcp_highest_sack_seq(tp)) &&
1227 				    before(start_seq, state->reord))
1228 					state->reord = start_seq;
1229 
1230 				if (!after(end_seq, tp->high_seq))
1231 					state->flag |= FLAG_ORIG_SACK_ACKED;
1232 				if (state->first_sackt == 0)
1233 					state->first_sackt = xmit_time;
1234 				state->last_sackt = xmit_time;
1235 			}
1236 
1237 			if (sacked & TCPCB_LOST) {
1238 				sacked &= ~TCPCB_LOST;
1239 				tp->lost_out -= pcount;
1240 			}
1241 		}
1242 
1243 		sacked |= TCPCB_SACKED_ACKED;
1244 		state->flag |= FLAG_DATA_SACKED;
1245 		tp->sacked_out += pcount;
1246 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1247 
1248 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1249 		if (tp->lost_skb_hint &&
1250 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1251 			tp->lost_cnt_hint += pcount;
1252 	}
1253 
1254 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1255 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1256 	 * are accounted above as well.
1257 	 */
1258 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1259 		sacked &= ~TCPCB_SACKED_RETRANS;
1260 		tp->retrans_out -= pcount;
1261 	}
1262 
1263 	return sacked;
1264 }
1265 
1266 /* Shift newly-SACKed bytes from this skb to the immediately previous
1267  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1268  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1269 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1270 			    struct sk_buff *skb,
1271 			    struct tcp_sacktag_state *state,
1272 			    unsigned int pcount, int shifted, int mss,
1273 			    bool dup_sack)
1274 {
1275 	struct tcp_sock *tp = tcp_sk(sk);
1276 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1277 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1278 
1279 	BUG_ON(!pcount);
1280 
1281 	/* Adjust counters and hints for the newly sacked sequence
1282 	 * range but discard the return value since prev is already
1283 	 * marked. We must tag the range first because the seq
1284 	 * advancement below implicitly advances
1285 	 * tcp_highest_sack_seq() when skb is highest_sack.
1286 	 */
1287 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1288 			start_seq, end_seq, dup_sack, pcount,
1289 			skb->skb_mstamp);
1290 	tcp_rate_skb_delivered(sk, skb, state->rate);
1291 
1292 	if (skb == tp->lost_skb_hint)
1293 		tp->lost_cnt_hint += pcount;
1294 
1295 	TCP_SKB_CB(prev)->end_seq += shifted;
1296 	TCP_SKB_CB(skb)->seq += shifted;
1297 
1298 	tcp_skb_pcount_add(prev, pcount);
1299 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1300 	tcp_skb_pcount_add(skb, -pcount);
1301 
1302 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1303 	 * in theory this shouldn't be necessary but as long as DSACK
1304 	 * code can come after this skb later on it's better to keep
1305 	 * setting gso_size to something.
1306 	 */
1307 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1308 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1309 
1310 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1311 	if (tcp_skb_pcount(skb) <= 1)
1312 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1313 
1314 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1315 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1316 
1317 	if (skb->len > 0) {
1318 		BUG_ON(!tcp_skb_pcount(skb));
1319 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1320 		return false;
1321 	}
1322 
1323 	/* Whole SKB was eaten :-) */
1324 
1325 	if (skb == tp->retransmit_skb_hint)
1326 		tp->retransmit_skb_hint = prev;
1327 	if (skb == tp->lost_skb_hint) {
1328 		tp->lost_skb_hint = prev;
1329 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1330 	}
1331 
1332 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1333 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1334 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1335 		TCP_SKB_CB(prev)->end_seq++;
1336 
1337 	if (skb == tcp_highest_sack(sk))
1338 		tcp_advance_highest_sack(sk, skb);
1339 
1340 	tcp_skb_collapse_tstamp(prev, skb);
1341 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1342 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1343 
1344 	tcp_rtx_queue_unlink_and_free(skb, sk);
1345 
1346 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1347 
1348 	return true;
1349 }
1350 
1351 /* I wish gso_size would have a bit more sane initialization than
1352  * something-or-zero which complicates things
1353  */
tcp_skb_seglen(const struct sk_buff * skb)1354 static int tcp_skb_seglen(const struct sk_buff *skb)
1355 {
1356 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1357 }
1358 
1359 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1360 static int skb_can_shift(const struct sk_buff *skb)
1361 {
1362 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1363 }
1364 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1365 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1366 		  int pcount, int shiftlen)
1367 {
1368 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1369 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1370 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1371 	 * even if current MSS is bigger.
1372 	 */
1373 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1374 		return 0;
1375 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1376 		return 0;
1377 	return skb_shift(to, from, shiftlen);
1378 }
1379 
1380 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1381  * skb.
1382  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1383 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1384 					  struct tcp_sacktag_state *state,
1385 					  u32 start_seq, u32 end_seq,
1386 					  bool dup_sack)
1387 {
1388 	struct tcp_sock *tp = tcp_sk(sk);
1389 	struct sk_buff *prev;
1390 	int mss;
1391 	int pcount = 0;
1392 	int len;
1393 	int in_sack;
1394 
1395 	/* Normally R but no L won't result in plain S */
1396 	if (!dup_sack &&
1397 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1398 		goto fallback;
1399 	if (!skb_can_shift(skb))
1400 		goto fallback;
1401 	/* This frame is about to be dropped (was ACKed). */
1402 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1403 		goto fallback;
1404 
1405 	/* Can only happen with delayed DSACK + discard craziness */
1406 	prev = skb_rb_prev(skb);
1407 	if (!prev)
1408 		goto fallback;
1409 
1410 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1411 		goto fallback;
1412 
1413 	if (!tcp_skb_can_collapse_to(prev))
1414 		goto fallback;
1415 
1416 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1417 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1418 
1419 	if (in_sack) {
1420 		len = skb->len;
1421 		pcount = tcp_skb_pcount(skb);
1422 		mss = tcp_skb_seglen(skb);
1423 
1424 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1425 		 * drop this restriction as unnecessary
1426 		 */
1427 		if (mss != tcp_skb_seglen(prev))
1428 			goto fallback;
1429 	} else {
1430 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1431 			goto noop;
1432 		/* CHECKME: This is non-MSS split case only?, this will
1433 		 * cause skipped skbs due to advancing loop btw, original
1434 		 * has that feature too
1435 		 */
1436 		if (tcp_skb_pcount(skb) <= 1)
1437 			goto noop;
1438 
1439 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1440 		if (!in_sack) {
1441 			/* TODO: head merge to next could be attempted here
1442 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1443 			 * though it might not be worth of the additional hassle
1444 			 *
1445 			 * ...we can probably just fallback to what was done
1446 			 * previously. We could try merging non-SACKed ones
1447 			 * as well but it probably isn't going to buy off
1448 			 * because later SACKs might again split them, and
1449 			 * it would make skb timestamp tracking considerably
1450 			 * harder problem.
1451 			 */
1452 			goto fallback;
1453 		}
1454 
1455 		len = end_seq - TCP_SKB_CB(skb)->seq;
1456 		BUG_ON(len < 0);
1457 		BUG_ON(len > skb->len);
1458 
1459 		/* MSS boundaries should be honoured or else pcount will
1460 		 * severely break even though it makes things bit trickier.
1461 		 * Optimize common case to avoid most of the divides
1462 		 */
1463 		mss = tcp_skb_mss(skb);
1464 
1465 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1466 		 * drop this restriction as unnecessary
1467 		 */
1468 		if (mss != tcp_skb_seglen(prev))
1469 			goto fallback;
1470 
1471 		if (len == mss) {
1472 			pcount = 1;
1473 		} else if (len < mss) {
1474 			goto noop;
1475 		} else {
1476 			pcount = len / mss;
1477 			len = pcount * mss;
1478 		}
1479 	}
1480 
1481 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1482 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1483 		goto fallback;
1484 
1485 	if (!tcp_skb_shift(prev, skb, pcount, len))
1486 		goto fallback;
1487 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1488 		goto out;
1489 
1490 	/* Hole filled allows collapsing with the next as well, this is very
1491 	 * useful when hole on every nth skb pattern happens
1492 	 */
1493 	skb = skb_rb_next(prev);
1494 	if (!skb)
1495 		goto out;
1496 
1497 	if (!skb_can_shift(skb) ||
1498 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1499 	    (mss != tcp_skb_seglen(skb)))
1500 		goto out;
1501 
1502 	len = skb->len;
1503 	pcount = tcp_skb_pcount(skb);
1504 	if (tcp_skb_shift(prev, skb, pcount, len))
1505 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1506 				len, mss, 0);
1507 
1508 out:
1509 	return prev;
1510 
1511 noop:
1512 	return skb;
1513 
1514 fallback:
1515 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1516 	return NULL;
1517 }
1518 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1519 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1520 					struct tcp_sack_block *next_dup,
1521 					struct tcp_sacktag_state *state,
1522 					u32 start_seq, u32 end_seq,
1523 					bool dup_sack_in)
1524 {
1525 	struct tcp_sock *tp = tcp_sk(sk);
1526 	struct sk_buff *tmp;
1527 
1528 	skb_rbtree_walk_from(skb) {
1529 		int in_sack = 0;
1530 		bool dup_sack = dup_sack_in;
1531 
1532 		/* queue is in-order => we can short-circuit the walk early */
1533 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1534 			break;
1535 
1536 		if (next_dup  &&
1537 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1538 			in_sack = tcp_match_skb_to_sack(sk, skb,
1539 							next_dup->start_seq,
1540 							next_dup->end_seq);
1541 			if (in_sack > 0)
1542 				dup_sack = true;
1543 		}
1544 
1545 		/* skb reference here is a bit tricky to get right, since
1546 		 * shifting can eat and free both this skb and the next,
1547 		 * so not even _safe variant of the loop is enough.
1548 		 */
1549 		if (in_sack <= 0) {
1550 			tmp = tcp_shift_skb_data(sk, skb, state,
1551 						 start_seq, end_seq, dup_sack);
1552 			if (tmp) {
1553 				if (tmp != skb) {
1554 					skb = tmp;
1555 					continue;
1556 				}
1557 
1558 				in_sack = 0;
1559 			} else {
1560 				in_sack = tcp_match_skb_to_sack(sk, skb,
1561 								start_seq,
1562 								end_seq);
1563 			}
1564 		}
1565 
1566 		if (unlikely(in_sack < 0))
1567 			break;
1568 
1569 		if (in_sack) {
1570 			TCP_SKB_CB(skb)->sacked =
1571 				tcp_sacktag_one(sk,
1572 						state,
1573 						TCP_SKB_CB(skb)->sacked,
1574 						TCP_SKB_CB(skb)->seq,
1575 						TCP_SKB_CB(skb)->end_seq,
1576 						dup_sack,
1577 						tcp_skb_pcount(skb),
1578 						skb->skb_mstamp);
1579 			tcp_rate_skb_delivered(sk, skb, state->rate);
1580 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1581 				list_del_init(&skb->tcp_tsorted_anchor);
1582 
1583 			if (!before(TCP_SKB_CB(skb)->seq,
1584 				    tcp_highest_sack_seq(tp)))
1585 				tcp_advance_highest_sack(sk, skb);
1586 		}
1587 	}
1588 	return skb;
1589 }
1590 
tcp_sacktag_bsearch(struct sock * sk,struct tcp_sacktag_state * state,u32 seq)1591 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1592 					   struct tcp_sacktag_state *state,
1593 					   u32 seq)
1594 {
1595 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1596 	struct sk_buff *skb;
1597 
1598 	while (*p) {
1599 		parent = *p;
1600 		skb = rb_to_skb(parent);
1601 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1602 			p = &parent->rb_left;
1603 			continue;
1604 		}
1605 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1606 			p = &parent->rb_right;
1607 			continue;
1608 		}
1609 		return skb;
1610 	}
1611 	return NULL;
1612 }
1613 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,struct tcp_sacktag_state * state,u32 skip_to_seq)1614 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1615 					struct tcp_sacktag_state *state,
1616 					u32 skip_to_seq)
1617 {
1618 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1619 		return skb;
1620 
1621 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1622 }
1623 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1624 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1625 						struct sock *sk,
1626 						struct tcp_sack_block *next_dup,
1627 						struct tcp_sacktag_state *state,
1628 						u32 skip_to_seq)
1629 {
1630 	if (!next_dup)
1631 		return skb;
1632 
1633 	if (before(next_dup->start_seq, skip_to_seq)) {
1634 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1635 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1636 				       next_dup->start_seq, next_dup->end_seq,
1637 				       1);
1638 	}
1639 
1640 	return skb;
1641 }
1642 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1643 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1644 {
1645 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1646 }
1647 
1648 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1649 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1650 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1651 {
1652 	struct tcp_sock *tp = tcp_sk(sk);
1653 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1654 				    TCP_SKB_CB(ack_skb)->sacked);
1655 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1656 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1657 	struct tcp_sack_block *cache;
1658 	struct sk_buff *skb;
1659 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1660 	int used_sacks;
1661 	bool found_dup_sack = false;
1662 	int i, j;
1663 	int first_sack_index;
1664 
1665 	state->flag = 0;
1666 	state->reord = tp->snd_nxt;
1667 
1668 	if (!tp->sacked_out)
1669 		tcp_highest_sack_reset(sk);
1670 
1671 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1672 					 num_sacks, prior_snd_una);
1673 	if (found_dup_sack) {
1674 		state->flag |= FLAG_DSACKING_ACK;
1675 		tp->delivered++; /* A spurious retransmission is delivered */
1676 	}
1677 
1678 	/* Eliminate too old ACKs, but take into
1679 	 * account more or less fresh ones, they can
1680 	 * contain valid SACK info.
1681 	 */
1682 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1683 		return 0;
1684 
1685 	if (!tp->packets_out)
1686 		goto out;
1687 
1688 	used_sacks = 0;
1689 	first_sack_index = 0;
1690 	for (i = 0; i < num_sacks; i++) {
1691 		bool dup_sack = !i && found_dup_sack;
1692 
1693 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1694 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1695 
1696 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1697 					    sp[used_sacks].start_seq,
1698 					    sp[used_sacks].end_seq)) {
1699 			int mib_idx;
1700 
1701 			if (dup_sack) {
1702 				if (!tp->undo_marker)
1703 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1704 				else
1705 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1706 			} else {
1707 				/* Don't count olds caused by ACK reordering */
1708 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1709 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1710 					continue;
1711 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1712 			}
1713 
1714 			NET_INC_STATS(sock_net(sk), mib_idx);
1715 			if (i == 0)
1716 				first_sack_index = -1;
1717 			continue;
1718 		}
1719 
1720 		/* Ignore very old stuff early */
1721 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1722 			if (i == 0)
1723 				first_sack_index = -1;
1724 			continue;
1725 		}
1726 
1727 		used_sacks++;
1728 	}
1729 
1730 	/* order SACK blocks to allow in order walk of the retrans queue */
1731 	for (i = used_sacks - 1; i > 0; i--) {
1732 		for (j = 0; j < i; j++) {
1733 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1734 				swap(sp[j], sp[j + 1]);
1735 
1736 				/* Track where the first SACK block goes to */
1737 				if (j == first_sack_index)
1738 					first_sack_index = j + 1;
1739 			}
1740 		}
1741 	}
1742 
1743 	state->mss_now = tcp_current_mss(sk);
1744 	skb = NULL;
1745 	i = 0;
1746 
1747 	if (!tp->sacked_out) {
1748 		/* It's already past, so skip checking against it */
1749 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1750 	} else {
1751 		cache = tp->recv_sack_cache;
1752 		/* Skip empty blocks in at head of the cache */
1753 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1754 		       !cache->end_seq)
1755 			cache++;
1756 	}
1757 
1758 	while (i < used_sacks) {
1759 		u32 start_seq = sp[i].start_seq;
1760 		u32 end_seq = sp[i].end_seq;
1761 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1762 		struct tcp_sack_block *next_dup = NULL;
1763 
1764 		if (found_dup_sack && ((i + 1) == first_sack_index))
1765 			next_dup = &sp[i + 1];
1766 
1767 		/* Skip too early cached blocks */
1768 		while (tcp_sack_cache_ok(tp, cache) &&
1769 		       !before(start_seq, cache->end_seq))
1770 			cache++;
1771 
1772 		/* Can skip some work by looking recv_sack_cache? */
1773 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1774 		    after(end_seq, cache->start_seq)) {
1775 
1776 			/* Head todo? */
1777 			if (before(start_seq, cache->start_seq)) {
1778 				skb = tcp_sacktag_skip(skb, sk, state,
1779 						       start_seq);
1780 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1781 						       state,
1782 						       start_seq,
1783 						       cache->start_seq,
1784 						       dup_sack);
1785 			}
1786 
1787 			/* Rest of the block already fully processed? */
1788 			if (!after(end_seq, cache->end_seq))
1789 				goto advance_sp;
1790 
1791 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1792 						       state,
1793 						       cache->end_seq);
1794 
1795 			/* ...tail remains todo... */
1796 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1797 				/* ...but better entrypoint exists! */
1798 				skb = tcp_highest_sack(sk);
1799 				if (!skb)
1800 					break;
1801 				cache++;
1802 				goto walk;
1803 			}
1804 
1805 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1806 			/* Check overlap against next cached too (past this one already) */
1807 			cache++;
1808 			continue;
1809 		}
1810 
1811 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1812 			skb = tcp_highest_sack(sk);
1813 			if (!skb)
1814 				break;
1815 		}
1816 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1817 
1818 walk:
1819 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1820 				       start_seq, end_seq, dup_sack);
1821 
1822 advance_sp:
1823 		i++;
1824 	}
1825 
1826 	/* Clear the head of the cache sack blocks so we can skip it next time */
1827 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1828 		tp->recv_sack_cache[i].start_seq = 0;
1829 		tp->recv_sack_cache[i].end_seq = 0;
1830 	}
1831 	for (j = 0; j < used_sacks; j++)
1832 		tp->recv_sack_cache[i++] = sp[j];
1833 
1834 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1835 		tcp_check_sack_reordering(sk, state->reord, 0);
1836 
1837 	tcp_verify_left_out(tp);
1838 out:
1839 
1840 #if FASTRETRANS_DEBUG > 0
1841 	WARN_ON((int)tp->sacked_out < 0);
1842 	WARN_ON((int)tp->lost_out < 0);
1843 	WARN_ON((int)tp->retrans_out < 0);
1844 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1845 #endif
1846 	return state->flag;
1847 }
1848 
1849 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1850  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1851  */
tcp_limit_reno_sacked(struct tcp_sock * tp)1852 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1853 {
1854 	u32 holes;
1855 
1856 	holes = max(tp->lost_out, 1U);
1857 	holes = min(holes, tp->packets_out);
1858 
1859 	if ((tp->sacked_out + holes) > tp->packets_out) {
1860 		tp->sacked_out = tp->packets_out - holes;
1861 		return true;
1862 	}
1863 	return false;
1864 }
1865 
1866 /* If we receive more dupacks than we expected counting segments
1867  * in assumption of absent reordering, interpret this as reordering.
1868  * The only another reason could be bug in receiver TCP.
1869  */
tcp_check_reno_reordering(struct sock * sk,const int addend)1870 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1871 {
1872 	struct tcp_sock *tp = tcp_sk(sk);
1873 
1874 	if (!tcp_limit_reno_sacked(tp))
1875 		return;
1876 
1877 	tp->reordering = min_t(u32, tp->packets_out + addend,
1878 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1879 	tp->reord_seen++;
1880 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1881 }
1882 
1883 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1884 
tcp_add_reno_sack(struct sock * sk)1885 static void tcp_add_reno_sack(struct sock *sk)
1886 {
1887 	struct tcp_sock *tp = tcp_sk(sk);
1888 	u32 prior_sacked = tp->sacked_out;
1889 
1890 	tp->sacked_out++;
1891 	tcp_check_reno_reordering(sk, 0);
1892 	if (tp->sacked_out > prior_sacked)
1893 		tp->delivered++; /* Some out-of-order packet is delivered */
1894 	tcp_verify_left_out(tp);
1895 }
1896 
1897 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1898 
tcp_remove_reno_sacks(struct sock * sk,int acked)1899 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1900 {
1901 	struct tcp_sock *tp = tcp_sk(sk);
1902 
1903 	if (acked > 0) {
1904 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1905 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1906 		if (acked - 1 >= tp->sacked_out)
1907 			tp->sacked_out = 0;
1908 		else
1909 			tp->sacked_out -= acked - 1;
1910 	}
1911 	tcp_check_reno_reordering(sk, acked);
1912 	tcp_verify_left_out(tp);
1913 }
1914 
tcp_reset_reno_sack(struct tcp_sock * tp)1915 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1916 {
1917 	tp->sacked_out = 0;
1918 }
1919 
tcp_clear_retrans(struct tcp_sock * tp)1920 void tcp_clear_retrans(struct tcp_sock *tp)
1921 {
1922 	tp->retrans_out = 0;
1923 	tp->lost_out = 0;
1924 	tp->undo_marker = 0;
1925 	tp->undo_retrans = -1;
1926 	tp->sacked_out = 0;
1927 }
1928 
tcp_init_undo(struct tcp_sock * tp)1929 static inline void tcp_init_undo(struct tcp_sock *tp)
1930 {
1931 	tp->undo_marker = tp->snd_una;
1932 	/* Retransmission still in flight may cause DSACKs later. */
1933 	tp->undo_retrans = tp->retrans_out ? : -1;
1934 }
1935 
tcp_is_rack(const struct sock * sk)1936 static bool tcp_is_rack(const struct sock *sk)
1937 {
1938 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1939 }
1940 
1941 /* If we detect SACK reneging, forget all SACK information
1942  * and reset tags completely, otherwise preserve SACKs. If receiver
1943  * dropped its ofo queue, we will know this due to reneging detection.
1944  */
tcp_timeout_mark_lost(struct sock * sk)1945 static void tcp_timeout_mark_lost(struct sock *sk)
1946 {
1947 	struct tcp_sock *tp = tcp_sk(sk);
1948 	struct sk_buff *skb, *head;
1949 	bool is_reneg;			/* is receiver reneging on SACKs? */
1950 
1951 	head = tcp_rtx_queue_head(sk);
1952 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1953 	if (is_reneg) {
1954 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1955 		tp->sacked_out = 0;
1956 		/* Mark SACK reneging until we recover from this loss event. */
1957 		tp->is_sack_reneg = 1;
1958 	} else if (tcp_is_reno(tp)) {
1959 		tcp_reset_reno_sack(tp);
1960 	}
1961 
1962 	skb = head;
1963 	skb_rbtree_walk_from(skb) {
1964 		if (is_reneg)
1965 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1966 		else if (tcp_is_rack(sk) && skb != head &&
1967 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1968 			continue; /* Don't mark recently sent ones lost yet */
1969 		tcp_mark_skb_lost(sk, skb);
1970 	}
1971 	tcp_verify_left_out(tp);
1972 	tcp_clear_all_retrans_hints(tp);
1973 }
1974 
1975 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)1976 void tcp_enter_loss(struct sock *sk)
1977 {
1978 	const struct inet_connection_sock *icsk = inet_csk(sk);
1979 	struct tcp_sock *tp = tcp_sk(sk);
1980 	struct net *net = sock_net(sk);
1981 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1982 
1983 	tcp_timeout_mark_lost(sk);
1984 
1985 	/* Reduce ssthresh if it has not yet been made inside this window. */
1986 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1987 	    !after(tp->high_seq, tp->snd_una) ||
1988 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1989 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1990 		tp->prior_cwnd = tp->snd_cwnd;
1991 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1992 		tcp_ca_event(sk, CA_EVENT_LOSS);
1993 		tcp_init_undo(tp);
1994 	}
1995 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
1996 	tp->snd_cwnd_cnt   = 0;
1997 	tp->snd_cwnd_stamp = tcp_jiffies32;
1998 
1999 	/* Timeout in disordered state after receiving substantial DUPACKs
2000 	 * suggests that the degree of reordering is over-estimated.
2001 	 */
2002 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2003 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2004 		tp->reordering = min_t(unsigned int, tp->reordering,
2005 				       net->ipv4.sysctl_tcp_reordering);
2006 	tcp_set_ca_state(sk, TCP_CA_Loss);
2007 	tp->high_seq = tp->snd_nxt;
2008 	tcp_ecn_queue_cwr(tp);
2009 
2010 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2011 	 * loss recovery is underway except recurring timeout(s) on
2012 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2013 	 */
2014 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2015 		   (new_recovery || icsk->icsk_retransmits) &&
2016 		   !inet_csk(sk)->icsk_mtup.probe_size;
2017 }
2018 
2019 /* If ACK arrived pointing to a remembered SACK, it means that our
2020  * remembered SACKs do not reflect real state of receiver i.e.
2021  * receiver _host_ is heavily congested (or buggy).
2022  *
2023  * To avoid big spurious retransmission bursts due to transient SACK
2024  * scoreboard oddities that look like reneging, we give the receiver a
2025  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2026  * restore sanity to the SACK scoreboard. If the apparent reneging
2027  * persists until this RTO then we'll clear the SACK scoreboard.
2028  */
tcp_check_sack_reneging(struct sock * sk,int flag)2029 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2030 {
2031 	if (flag & FLAG_SACK_RENEGING) {
2032 		struct tcp_sock *tp = tcp_sk(sk);
2033 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2034 					  msecs_to_jiffies(10));
2035 
2036 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2037 					  delay, TCP_RTO_MAX);
2038 		return true;
2039 	}
2040 	return false;
2041 }
2042 
2043 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2044  * counter when SACK is enabled (without SACK, sacked_out is used for
2045  * that purpose).
2046  *
2047  * With reordering, holes may still be in flight, so RFC3517 recovery
2048  * uses pure sacked_out (total number of SACKed segments) even though
2049  * it violates the RFC that uses duplicate ACKs, often these are equal
2050  * but when e.g. out-of-window ACKs or packet duplication occurs,
2051  * they differ. Since neither occurs due to loss, TCP should really
2052  * ignore them.
2053  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2054 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2055 {
2056 	return tp->sacked_out + 1;
2057 }
2058 
2059 /* Linux NewReno/SACK/ECN state machine.
2060  * --------------------------------------
2061  *
2062  * "Open"	Normal state, no dubious events, fast path.
2063  * "Disorder"   In all the respects it is "Open",
2064  *		but requires a bit more attention. It is entered when
2065  *		we see some SACKs or dupacks. It is split of "Open"
2066  *		mainly to move some processing from fast path to slow one.
2067  * "CWR"	CWND was reduced due to some Congestion Notification event.
2068  *		It can be ECN, ICMP source quench, local device congestion.
2069  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2070  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2071  *
2072  * tcp_fastretrans_alert() is entered:
2073  * - each incoming ACK, if state is not "Open"
2074  * - when arrived ACK is unusual, namely:
2075  *	* SACK
2076  *	* Duplicate ACK.
2077  *	* ECN ECE.
2078  *
2079  * Counting packets in flight is pretty simple.
2080  *
2081  *	in_flight = packets_out - left_out + retrans_out
2082  *
2083  *	packets_out is SND.NXT-SND.UNA counted in packets.
2084  *
2085  *	retrans_out is number of retransmitted segments.
2086  *
2087  *	left_out is number of segments left network, but not ACKed yet.
2088  *
2089  *		left_out = sacked_out + lost_out
2090  *
2091  *     sacked_out: Packets, which arrived to receiver out of order
2092  *		   and hence not ACKed. With SACKs this number is simply
2093  *		   amount of SACKed data. Even without SACKs
2094  *		   it is easy to give pretty reliable estimate of this number,
2095  *		   counting duplicate ACKs.
2096  *
2097  *       lost_out: Packets lost by network. TCP has no explicit
2098  *		   "loss notification" feedback from network (for now).
2099  *		   It means that this number can be only _guessed_.
2100  *		   Actually, it is the heuristics to predict lossage that
2101  *		   distinguishes different algorithms.
2102  *
2103  *	F.e. after RTO, when all the queue is considered as lost,
2104  *	lost_out = packets_out and in_flight = retrans_out.
2105  *
2106  *		Essentially, we have now a few algorithms detecting
2107  *		lost packets.
2108  *
2109  *		If the receiver supports SACK:
2110  *
2111  *		RFC6675/3517: It is the conventional algorithm. A packet is
2112  *		considered lost if the number of higher sequence packets
2113  *		SACKed is greater than or equal the DUPACK thoreshold
2114  *		(reordering). This is implemented in tcp_mark_head_lost and
2115  *		tcp_update_scoreboard.
2116  *
2117  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2118  *		(2017-) that checks timing instead of counting DUPACKs.
2119  *		Essentially a packet is considered lost if it's not S/ACKed
2120  *		after RTT + reordering_window, where both metrics are
2121  *		dynamically measured and adjusted. This is implemented in
2122  *		tcp_rack_mark_lost.
2123  *
2124  *		If the receiver does not support SACK:
2125  *
2126  *		NewReno (RFC6582): in Recovery we assume that one segment
2127  *		is lost (classic Reno). While we are in Recovery and
2128  *		a partial ACK arrives, we assume that one more packet
2129  *		is lost (NewReno). This heuristics are the same in NewReno
2130  *		and SACK.
2131  *
2132  * Really tricky (and requiring careful tuning) part of algorithm
2133  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2134  * The first determines the moment _when_ we should reduce CWND and,
2135  * hence, slow down forward transmission. In fact, it determines the moment
2136  * when we decide that hole is caused by loss, rather than by a reorder.
2137  *
2138  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2139  * holes, caused by lost packets.
2140  *
2141  * And the most logically complicated part of algorithm is undo
2142  * heuristics. We detect false retransmits due to both too early
2143  * fast retransmit (reordering) and underestimated RTO, analyzing
2144  * timestamps and D-SACKs. When we detect that some segments were
2145  * retransmitted by mistake and CWND reduction was wrong, we undo
2146  * window reduction and abort recovery phase. This logic is hidden
2147  * inside several functions named tcp_try_undo_<something>.
2148  */
2149 
2150 /* This function decides, when we should leave Disordered state
2151  * and enter Recovery phase, reducing congestion window.
2152  *
2153  * Main question: may we further continue forward transmission
2154  * with the same cwnd?
2155  */
tcp_time_to_recover(struct sock * sk,int flag)2156 static bool tcp_time_to_recover(struct sock *sk, int flag)
2157 {
2158 	struct tcp_sock *tp = tcp_sk(sk);
2159 
2160 	/* Trick#1: The loss is proven. */
2161 	if (tp->lost_out)
2162 		return true;
2163 
2164 	/* Not-A-Trick#2 : Classic rule... */
2165 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2166 		return true;
2167 
2168 	return false;
2169 }
2170 
2171 /* Detect loss in event "A" above by marking head of queue up as lost.
2172  * For non-SACK(Reno) senders, the first "packets" number of segments
2173  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2174  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2175  * the maximum SACKed segments to pass before reaching this limit.
2176  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2177 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2178 {
2179 	struct tcp_sock *tp = tcp_sk(sk);
2180 	struct sk_buff *skb;
2181 	int cnt, oldcnt, lost;
2182 	unsigned int mss;
2183 	/* Use SACK to deduce losses of new sequences sent during recovery */
2184 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2185 
2186 	WARN_ON(packets > tp->packets_out);
2187 	skb = tp->lost_skb_hint;
2188 	if (skb) {
2189 		/* Head already handled? */
2190 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2191 			return;
2192 		cnt = tp->lost_cnt_hint;
2193 	} else {
2194 		skb = tcp_rtx_queue_head(sk);
2195 		cnt = 0;
2196 	}
2197 
2198 	skb_rbtree_walk_from(skb) {
2199 		/* TODO: do this better */
2200 		/* this is not the most efficient way to do this... */
2201 		tp->lost_skb_hint = skb;
2202 		tp->lost_cnt_hint = cnt;
2203 
2204 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2205 			break;
2206 
2207 		oldcnt = cnt;
2208 		if (tcp_is_reno(tp) ||
2209 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2210 			cnt += tcp_skb_pcount(skb);
2211 
2212 		if (cnt > packets) {
2213 			if (tcp_is_sack(tp) ||
2214 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2215 			    (oldcnt >= packets))
2216 				break;
2217 
2218 			mss = tcp_skb_mss(skb);
2219 			/* If needed, chop off the prefix to mark as lost. */
2220 			lost = (packets - oldcnt) * mss;
2221 			if (lost < skb->len &&
2222 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2223 					 lost, mss, GFP_ATOMIC) < 0)
2224 				break;
2225 			cnt = packets;
2226 		}
2227 
2228 		tcp_skb_mark_lost(tp, skb);
2229 
2230 		if (mark_head)
2231 			break;
2232 	}
2233 	tcp_verify_left_out(tp);
2234 }
2235 
2236 /* Account newly detected lost packet(s) */
2237 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2238 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2239 {
2240 	struct tcp_sock *tp = tcp_sk(sk);
2241 
2242 	if (tcp_is_sack(tp)) {
2243 		int sacked_upto = tp->sacked_out - tp->reordering;
2244 		if (sacked_upto >= 0)
2245 			tcp_mark_head_lost(sk, sacked_upto, 0);
2246 		else if (fast_rexmit)
2247 			tcp_mark_head_lost(sk, 1, 1);
2248 	}
2249 }
2250 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2251 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2252 {
2253 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2254 	       before(tp->rx_opt.rcv_tsecr, when);
2255 }
2256 
2257 /* skb is spurious retransmitted if the returned timestamp echo
2258  * reply is prior to the skb transmission time
2259  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2260 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2261 				     const struct sk_buff *skb)
2262 {
2263 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2264 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2265 }
2266 
2267 /* Nothing was retransmitted or returned timestamp is less
2268  * than timestamp of the first retransmission.
2269  */
tcp_packet_delayed(const struct tcp_sock * tp)2270 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2271 {
2272 	return !tp->retrans_stamp ||
2273 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2274 }
2275 
2276 /* Undo procedures. */
2277 
2278 /* We can clear retrans_stamp when there are no retransmissions in the
2279  * window. It would seem that it is trivially available for us in
2280  * tp->retrans_out, however, that kind of assumptions doesn't consider
2281  * what will happen if errors occur when sending retransmission for the
2282  * second time. ...It could the that such segment has only
2283  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2284  * the head skb is enough except for some reneging corner cases that
2285  * are not worth the effort.
2286  *
2287  * Main reason for all this complexity is the fact that connection dying
2288  * time now depends on the validity of the retrans_stamp, in particular,
2289  * that successive retransmissions of a segment must not advance
2290  * retrans_stamp under any conditions.
2291  */
tcp_any_retrans_done(const struct sock * sk)2292 static bool tcp_any_retrans_done(const struct sock *sk)
2293 {
2294 	const struct tcp_sock *tp = tcp_sk(sk);
2295 	struct sk_buff *skb;
2296 
2297 	if (tp->retrans_out)
2298 		return true;
2299 
2300 	skb = tcp_rtx_queue_head(sk);
2301 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2302 		return true;
2303 
2304 	return false;
2305 }
2306 
DBGUNDO(struct sock * sk,const char * msg)2307 static void DBGUNDO(struct sock *sk, const char *msg)
2308 {
2309 #if FASTRETRANS_DEBUG > 1
2310 	struct tcp_sock *tp = tcp_sk(sk);
2311 	struct inet_sock *inet = inet_sk(sk);
2312 
2313 	if (sk->sk_family == AF_INET) {
2314 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2315 			 msg,
2316 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2317 			 tp->snd_cwnd, tcp_left_out(tp),
2318 			 tp->snd_ssthresh, tp->prior_ssthresh,
2319 			 tp->packets_out);
2320 	}
2321 #if IS_ENABLED(CONFIG_IPV6)
2322 	else if (sk->sk_family == AF_INET6) {
2323 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2324 			 msg,
2325 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2326 			 tp->snd_cwnd, tcp_left_out(tp),
2327 			 tp->snd_ssthresh, tp->prior_ssthresh,
2328 			 tp->packets_out);
2329 	}
2330 #endif
2331 #endif
2332 }
2333 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2334 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2335 {
2336 	struct tcp_sock *tp = tcp_sk(sk);
2337 
2338 	if (unmark_loss) {
2339 		struct sk_buff *skb;
2340 
2341 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2342 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2343 		}
2344 		tp->lost_out = 0;
2345 		tcp_clear_all_retrans_hints(tp);
2346 	}
2347 
2348 	if (tp->prior_ssthresh) {
2349 		const struct inet_connection_sock *icsk = inet_csk(sk);
2350 
2351 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2352 
2353 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2354 			tp->snd_ssthresh = tp->prior_ssthresh;
2355 			tcp_ecn_withdraw_cwr(tp);
2356 		}
2357 	}
2358 	tp->snd_cwnd_stamp = tcp_jiffies32;
2359 	tp->undo_marker = 0;
2360 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2361 }
2362 
tcp_may_undo(const struct tcp_sock * tp)2363 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2364 {
2365 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2366 }
2367 
2368 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2369 static bool tcp_try_undo_recovery(struct sock *sk)
2370 {
2371 	struct tcp_sock *tp = tcp_sk(sk);
2372 
2373 	if (tcp_may_undo(tp)) {
2374 		int mib_idx;
2375 
2376 		/* Happy end! We did not retransmit anything
2377 		 * or our original transmission succeeded.
2378 		 */
2379 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2380 		tcp_undo_cwnd_reduction(sk, false);
2381 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2382 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2383 		else
2384 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2385 
2386 		NET_INC_STATS(sock_net(sk), mib_idx);
2387 	} else if (tp->rack.reo_wnd_persist) {
2388 		tp->rack.reo_wnd_persist--;
2389 	}
2390 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2391 		/* Hold old state until something *above* high_seq
2392 		 * is ACKed. For Reno it is MUST to prevent false
2393 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2394 		if (!tcp_any_retrans_done(sk))
2395 			tp->retrans_stamp = 0;
2396 		return true;
2397 	}
2398 	tcp_set_ca_state(sk, TCP_CA_Open);
2399 	tp->is_sack_reneg = 0;
2400 	return false;
2401 }
2402 
2403 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2404 static bool tcp_try_undo_dsack(struct sock *sk)
2405 {
2406 	struct tcp_sock *tp = tcp_sk(sk);
2407 
2408 	if (tp->undo_marker && !tp->undo_retrans) {
2409 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2410 					       tp->rack.reo_wnd_persist + 1);
2411 		DBGUNDO(sk, "D-SACK");
2412 		tcp_undo_cwnd_reduction(sk, false);
2413 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2414 		return true;
2415 	}
2416 	return false;
2417 }
2418 
2419 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2420 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2421 {
2422 	struct tcp_sock *tp = tcp_sk(sk);
2423 
2424 	if (frto_undo || tcp_may_undo(tp)) {
2425 		tcp_undo_cwnd_reduction(sk, true);
2426 
2427 		DBGUNDO(sk, "partial loss");
2428 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2429 		if (frto_undo)
2430 			NET_INC_STATS(sock_net(sk),
2431 					LINUX_MIB_TCPSPURIOUSRTOS);
2432 		inet_csk(sk)->icsk_retransmits = 0;
2433 		if (frto_undo || tcp_is_sack(tp)) {
2434 			tcp_set_ca_state(sk, TCP_CA_Open);
2435 			tp->is_sack_reneg = 0;
2436 		}
2437 		return true;
2438 	}
2439 	return false;
2440 }
2441 
2442 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2443  * It computes the number of packets to send (sndcnt) based on packets newly
2444  * delivered:
2445  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2446  *	cwnd reductions across a full RTT.
2447  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2448  *      But when the retransmits are acked without further losses, PRR
2449  *      slow starts cwnd up to ssthresh to speed up the recovery.
2450  */
tcp_init_cwnd_reduction(struct sock * sk)2451 static void tcp_init_cwnd_reduction(struct sock *sk)
2452 {
2453 	struct tcp_sock *tp = tcp_sk(sk);
2454 
2455 	tp->high_seq = tp->snd_nxt;
2456 	tp->tlp_high_seq = 0;
2457 	tp->snd_cwnd_cnt = 0;
2458 	tp->prior_cwnd = tp->snd_cwnd;
2459 	tp->prr_delivered = 0;
2460 	tp->prr_out = 0;
2461 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2462 	tcp_ecn_queue_cwr(tp);
2463 }
2464 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2465 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2466 {
2467 	struct tcp_sock *tp = tcp_sk(sk);
2468 	int sndcnt = 0;
2469 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2470 
2471 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2472 		return;
2473 
2474 	tp->prr_delivered += newly_acked_sacked;
2475 	if (delta < 0) {
2476 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2477 			       tp->prior_cwnd - 1;
2478 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2479 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2480 		   !(flag & FLAG_LOST_RETRANS)) {
2481 		sndcnt = min_t(int, delta,
2482 			       max_t(int, tp->prr_delivered - tp->prr_out,
2483 				     newly_acked_sacked) + 1);
2484 	} else {
2485 		sndcnt = min(delta, newly_acked_sacked);
2486 	}
2487 	/* Force a fast retransmit upon entering fast recovery */
2488 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2489 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2490 }
2491 
tcp_end_cwnd_reduction(struct sock * sk)2492 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2493 {
2494 	struct tcp_sock *tp = tcp_sk(sk);
2495 
2496 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2497 		return;
2498 
2499 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2500 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2501 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2502 		tp->snd_cwnd = tp->snd_ssthresh;
2503 		tp->snd_cwnd_stamp = tcp_jiffies32;
2504 	}
2505 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2506 }
2507 
2508 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2509 void tcp_enter_cwr(struct sock *sk)
2510 {
2511 	struct tcp_sock *tp = tcp_sk(sk);
2512 
2513 	tp->prior_ssthresh = 0;
2514 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2515 		tp->undo_marker = 0;
2516 		tcp_init_cwnd_reduction(sk);
2517 		tcp_set_ca_state(sk, TCP_CA_CWR);
2518 	}
2519 }
2520 EXPORT_SYMBOL(tcp_enter_cwr);
2521 
tcp_try_keep_open(struct sock * sk)2522 static void tcp_try_keep_open(struct sock *sk)
2523 {
2524 	struct tcp_sock *tp = tcp_sk(sk);
2525 	int state = TCP_CA_Open;
2526 
2527 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2528 		state = TCP_CA_Disorder;
2529 
2530 	if (inet_csk(sk)->icsk_ca_state != state) {
2531 		tcp_set_ca_state(sk, state);
2532 		tp->high_seq = tp->snd_nxt;
2533 	}
2534 }
2535 
tcp_try_to_open(struct sock * sk,int flag)2536 static void tcp_try_to_open(struct sock *sk, int flag)
2537 {
2538 	struct tcp_sock *tp = tcp_sk(sk);
2539 
2540 	tcp_verify_left_out(tp);
2541 
2542 	if (!tcp_any_retrans_done(sk))
2543 		tp->retrans_stamp = 0;
2544 
2545 	if (flag & FLAG_ECE)
2546 		tcp_enter_cwr(sk);
2547 
2548 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2549 		tcp_try_keep_open(sk);
2550 	}
2551 }
2552 
tcp_mtup_probe_failed(struct sock * sk)2553 static void tcp_mtup_probe_failed(struct sock *sk)
2554 {
2555 	struct inet_connection_sock *icsk = inet_csk(sk);
2556 
2557 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2558 	icsk->icsk_mtup.probe_size = 0;
2559 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2560 }
2561 
tcp_mtup_probe_success(struct sock * sk)2562 static void tcp_mtup_probe_success(struct sock *sk)
2563 {
2564 	struct tcp_sock *tp = tcp_sk(sk);
2565 	struct inet_connection_sock *icsk = inet_csk(sk);
2566 
2567 	/* FIXME: breaks with very large cwnd */
2568 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2569 	tp->snd_cwnd = tp->snd_cwnd *
2570 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2571 		       icsk->icsk_mtup.probe_size;
2572 	tp->snd_cwnd_cnt = 0;
2573 	tp->snd_cwnd_stamp = tcp_jiffies32;
2574 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2575 
2576 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2577 	icsk->icsk_mtup.probe_size = 0;
2578 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2579 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2580 }
2581 
2582 /* Do a simple retransmit without using the backoff mechanisms in
2583  * tcp_timer. This is used for path mtu discovery.
2584  * The socket is already locked here.
2585  */
tcp_simple_retransmit(struct sock * sk)2586 void tcp_simple_retransmit(struct sock *sk)
2587 {
2588 	const struct inet_connection_sock *icsk = inet_csk(sk);
2589 	struct tcp_sock *tp = tcp_sk(sk);
2590 	struct sk_buff *skb;
2591 	unsigned int mss = tcp_current_mss(sk);
2592 
2593 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2594 		if (tcp_skb_seglen(skb) > mss &&
2595 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2596 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2597 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2598 				tp->retrans_out -= tcp_skb_pcount(skb);
2599 			}
2600 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2601 		}
2602 	}
2603 
2604 	tcp_clear_retrans_hints_partial(tp);
2605 
2606 	if (!tp->lost_out)
2607 		return;
2608 
2609 	if (tcp_is_reno(tp))
2610 		tcp_limit_reno_sacked(tp);
2611 
2612 	tcp_verify_left_out(tp);
2613 
2614 	/* Don't muck with the congestion window here.
2615 	 * Reason is that we do not increase amount of _data_
2616 	 * in network, but units changed and effective
2617 	 * cwnd/ssthresh really reduced now.
2618 	 */
2619 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2620 		tp->high_seq = tp->snd_nxt;
2621 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2622 		tp->prior_ssthresh = 0;
2623 		tp->undo_marker = 0;
2624 		tcp_set_ca_state(sk, TCP_CA_Loss);
2625 	}
2626 	tcp_xmit_retransmit_queue(sk);
2627 }
2628 EXPORT_SYMBOL(tcp_simple_retransmit);
2629 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2630 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2631 {
2632 	struct tcp_sock *tp = tcp_sk(sk);
2633 	int mib_idx;
2634 
2635 	if (tcp_is_reno(tp))
2636 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2637 	else
2638 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2639 
2640 	NET_INC_STATS(sock_net(sk), mib_idx);
2641 
2642 	tp->prior_ssthresh = 0;
2643 	tcp_init_undo(tp);
2644 
2645 	if (!tcp_in_cwnd_reduction(sk)) {
2646 		if (!ece_ack)
2647 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2648 		tcp_init_cwnd_reduction(sk);
2649 	}
2650 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2651 }
2652 
2653 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2654  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2655  */
tcp_process_loss(struct sock * sk,int flag,bool is_dupack,int * rexmit)2656 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2657 			     int *rexmit)
2658 {
2659 	struct tcp_sock *tp = tcp_sk(sk);
2660 	bool recovered = !before(tp->snd_una, tp->high_seq);
2661 
2662 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2663 	    tcp_try_undo_loss(sk, false))
2664 		return;
2665 
2666 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2667 		/* Step 3.b. A timeout is spurious if not all data are
2668 		 * lost, i.e., never-retransmitted data are (s)acked.
2669 		 */
2670 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2671 		    tcp_try_undo_loss(sk, true))
2672 			return;
2673 
2674 		if (after(tp->snd_nxt, tp->high_seq)) {
2675 			if (flag & FLAG_DATA_SACKED || is_dupack)
2676 				tp->frto = 0; /* Step 3.a. loss was real */
2677 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2678 			tp->high_seq = tp->snd_nxt;
2679 			/* Step 2.b. Try send new data (but deferred until cwnd
2680 			 * is updated in tcp_ack()). Otherwise fall back to
2681 			 * the conventional recovery.
2682 			 */
2683 			if (!tcp_write_queue_empty(sk) &&
2684 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2685 				*rexmit = REXMIT_NEW;
2686 				return;
2687 			}
2688 			tp->frto = 0;
2689 		}
2690 	}
2691 
2692 	if (recovered) {
2693 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2694 		tcp_try_undo_recovery(sk);
2695 		return;
2696 	}
2697 	if (tcp_is_reno(tp)) {
2698 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2699 		 * delivered. Lower inflight to clock out (re)tranmissions.
2700 		 */
2701 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2702 			tcp_add_reno_sack(sk);
2703 		else if (flag & FLAG_SND_UNA_ADVANCED)
2704 			tcp_reset_reno_sack(tp);
2705 	}
2706 	*rexmit = REXMIT_LOST;
2707 }
2708 
2709 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una)2710 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2711 {
2712 	struct tcp_sock *tp = tcp_sk(sk);
2713 
2714 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2715 		/* Plain luck! Hole if filled with delayed
2716 		 * packet, rather than with a retransmit. Check reordering.
2717 		 */
2718 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2719 
2720 		/* We are getting evidence that the reordering degree is higher
2721 		 * than we realized. If there are no retransmits out then we
2722 		 * can undo. Otherwise we clock out new packets but do not
2723 		 * mark more packets lost or retransmit more.
2724 		 */
2725 		if (tp->retrans_out)
2726 			return true;
2727 
2728 		if (!tcp_any_retrans_done(sk))
2729 			tp->retrans_stamp = 0;
2730 
2731 		DBGUNDO(sk, "partial recovery");
2732 		tcp_undo_cwnd_reduction(sk, true);
2733 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2734 		tcp_try_keep_open(sk);
2735 		return true;
2736 	}
2737 	return false;
2738 }
2739 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2740 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2741 {
2742 	struct tcp_sock *tp = tcp_sk(sk);
2743 
2744 	if (tcp_rtx_queue_empty(sk))
2745 		return;
2746 
2747 	if (unlikely(tcp_is_reno(tp))) {
2748 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2749 	} else if (tcp_is_rack(sk)) {
2750 		u32 prior_retrans = tp->retrans_out;
2751 
2752 		tcp_rack_mark_lost(sk);
2753 		if (prior_retrans > tp->retrans_out)
2754 			*ack_flag |= FLAG_LOST_RETRANS;
2755 	}
2756 }
2757 
tcp_force_fast_retransmit(struct sock * sk)2758 static bool tcp_force_fast_retransmit(struct sock *sk)
2759 {
2760 	struct tcp_sock *tp = tcp_sk(sk);
2761 
2762 	return after(tcp_highest_sack_seq(tp),
2763 		     tp->snd_una + tp->reordering * tp->mss_cache);
2764 }
2765 
2766 /* Process an event, which can update packets-in-flight not trivially.
2767  * Main goal of this function is to calculate new estimate for left_out,
2768  * taking into account both packets sitting in receiver's buffer and
2769  * packets lost by network.
2770  *
2771  * Besides that it updates the congestion state when packet loss or ECN
2772  * is detected. But it does not reduce the cwnd, it is done by the
2773  * congestion control later.
2774  *
2775  * It does _not_ decide what to send, it is made in function
2776  * tcp_xmit_retransmit_queue().
2777  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,bool is_dupack,int * ack_flag,int * rexmit)2778 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2779 				  bool is_dupack, int *ack_flag, int *rexmit)
2780 {
2781 	struct inet_connection_sock *icsk = inet_csk(sk);
2782 	struct tcp_sock *tp = tcp_sk(sk);
2783 	int fast_rexmit = 0, flag = *ack_flag;
2784 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2785 				     tcp_force_fast_retransmit(sk));
2786 
2787 	if (!tp->packets_out && tp->sacked_out)
2788 		tp->sacked_out = 0;
2789 
2790 	/* Now state machine starts.
2791 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2792 	if (flag & FLAG_ECE)
2793 		tp->prior_ssthresh = 0;
2794 
2795 	/* B. In all the states check for reneging SACKs. */
2796 	if (tcp_check_sack_reneging(sk, flag))
2797 		return;
2798 
2799 	/* C. Check consistency of the current state. */
2800 	tcp_verify_left_out(tp);
2801 
2802 	/* D. Check state exit conditions. State can be terminated
2803 	 *    when high_seq is ACKed. */
2804 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2805 		WARN_ON(tp->retrans_out != 0);
2806 		tp->retrans_stamp = 0;
2807 	} else if (!before(tp->snd_una, tp->high_seq)) {
2808 		switch (icsk->icsk_ca_state) {
2809 		case TCP_CA_CWR:
2810 			/* CWR is to be held something *above* high_seq
2811 			 * is ACKed for CWR bit to reach receiver. */
2812 			if (tp->snd_una != tp->high_seq) {
2813 				tcp_end_cwnd_reduction(sk);
2814 				tcp_set_ca_state(sk, TCP_CA_Open);
2815 			}
2816 			break;
2817 
2818 		case TCP_CA_Recovery:
2819 			if (tcp_is_reno(tp))
2820 				tcp_reset_reno_sack(tp);
2821 			if (tcp_try_undo_recovery(sk))
2822 				return;
2823 			tcp_end_cwnd_reduction(sk);
2824 			break;
2825 		}
2826 	}
2827 
2828 	/* E. Process state. */
2829 	switch (icsk->icsk_ca_state) {
2830 	case TCP_CA_Recovery:
2831 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2832 			if (tcp_is_reno(tp) && is_dupack)
2833 				tcp_add_reno_sack(sk);
2834 		} else {
2835 			if (tcp_try_undo_partial(sk, prior_snd_una))
2836 				return;
2837 			/* Partial ACK arrived. Force fast retransmit. */
2838 			do_lost = tcp_is_reno(tp) ||
2839 				  tcp_force_fast_retransmit(sk);
2840 		}
2841 		if (tcp_try_undo_dsack(sk)) {
2842 			tcp_try_keep_open(sk);
2843 			return;
2844 		}
2845 		tcp_identify_packet_loss(sk, ack_flag);
2846 		break;
2847 	case TCP_CA_Loss:
2848 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2849 		tcp_identify_packet_loss(sk, ack_flag);
2850 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2851 		      (*ack_flag & FLAG_LOST_RETRANS)))
2852 			return;
2853 		/* Change state if cwnd is undone or retransmits are lost */
2854 		/* fall through */
2855 	default:
2856 		if (tcp_is_reno(tp)) {
2857 			if (flag & FLAG_SND_UNA_ADVANCED)
2858 				tcp_reset_reno_sack(tp);
2859 			if (is_dupack)
2860 				tcp_add_reno_sack(sk);
2861 		}
2862 
2863 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2864 			tcp_try_undo_dsack(sk);
2865 
2866 		tcp_identify_packet_loss(sk, ack_flag);
2867 		if (!tcp_time_to_recover(sk, flag)) {
2868 			tcp_try_to_open(sk, flag);
2869 			return;
2870 		}
2871 
2872 		/* MTU probe failure: don't reduce cwnd */
2873 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2874 		    icsk->icsk_mtup.probe_size &&
2875 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2876 			tcp_mtup_probe_failed(sk);
2877 			/* Restores the reduction we did in tcp_mtup_probe() */
2878 			tp->snd_cwnd++;
2879 			tcp_simple_retransmit(sk);
2880 			return;
2881 		}
2882 
2883 		/* Otherwise enter Recovery state */
2884 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2885 		fast_rexmit = 1;
2886 	}
2887 
2888 	if (!tcp_is_rack(sk) && do_lost)
2889 		tcp_update_scoreboard(sk, fast_rexmit);
2890 	*rexmit = REXMIT_LOST;
2891 }
2892 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)2893 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2894 {
2895 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2896 	struct tcp_sock *tp = tcp_sk(sk);
2897 
2898 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2899 		/* If the remote keeps returning delayed ACKs, eventually
2900 		 * the min filter would pick it up and overestimate the
2901 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2902 		 */
2903 		return;
2904 	}
2905 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2906 			   rtt_us ? : jiffies_to_usecs(1));
2907 }
2908 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)2909 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2910 			       long seq_rtt_us, long sack_rtt_us,
2911 			       long ca_rtt_us, struct rate_sample *rs)
2912 {
2913 	const struct tcp_sock *tp = tcp_sk(sk);
2914 
2915 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2916 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2917 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2918 	 * is acked (RFC6298).
2919 	 */
2920 	if (seq_rtt_us < 0)
2921 		seq_rtt_us = sack_rtt_us;
2922 
2923 	/* RTTM Rule: A TSecr value received in a segment is used to
2924 	 * update the averaged RTT measurement only if the segment
2925 	 * acknowledges some new data, i.e., only if it advances the
2926 	 * left edge of the send window.
2927 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2928 	 */
2929 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2930 	    flag & FLAG_ACKED) {
2931 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2932 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2933 
2934 		seq_rtt_us = ca_rtt_us = delta_us;
2935 	}
2936 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2937 	if (seq_rtt_us < 0)
2938 		return false;
2939 
2940 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2941 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2942 	 * values will be skipped with the seq_rtt_us < 0 check above.
2943 	 */
2944 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2945 	tcp_rtt_estimator(sk, seq_rtt_us);
2946 	tcp_set_rto(sk);
2947 
2948 	/* RFC6298: only reset backoff on valid RTT measurement. */
2949 	inet_csk(sk)->icsk_backoff = 0;
2950 	return true;
2951 }
2952 
2953 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)2954 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2955 {
2956 	struct rate_sample rs;
2957 	long rtt_us = -1L;
2958 
2959 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2960 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2961 
2962 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2963 }
2964 
2965 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)2966 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2967 {
2968 	const struct inet_connection_sock *icsk = inet_csk(sk);
2969 
2970 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2971 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2972 }
2973 
2974 /* Restart timer after forward progress on connection.
2975  * RFC2988 recommends to restart timer to now+rto.
2976  */
tcp_rearm_rto(struct sock * sk)2977 void tcp_rearm_rto(struct sock *sk)
2978 {
2979 	const struct inet_connection_sock *icsk = inet_csk(sk);
2980 	struct tcp_sock *tp = tcp_sk(sk);
2981 
2982 	/* If the retrans timer is currently being used by Fast Open
2983 	 * for SYN-ACK retrans purpose, stay put.
2984 	 */
2985 	if (tp->fastopen_rsk)
2986 		return;
2987 
2988 	if (!tp->packets_out) {
2989 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2990 	} else {
2991 		u32 rto = inet_csk(sk)->icsk_rto;
2992 		/* Offset the time elapsed after installing regular RTO */
2993 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2994 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2995 			s64 delta_us = tcp_rto_delta_us(sk);
2996 			/* delta_us may not be positive if the socket is locked
2997 			 * when the retrans timer fires and is rescheduled.
2998 			 */
2999 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3000 		}
3001 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3002 					  TCP_RTO_MAX);
3003 	}
3004 }
3005 
3006 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3007 static void tcp_set_xmit_timer(struct sock *sk)
3008 {
3009 	if (!tcp_schedule_loss_probe(sk, true))
3010 		tcp_rearm_rto(sk);
3011 }
3012 
3013 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3014 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3015 {
3016 	struct tcp_sock *tp = tcp_sk(sk);
3017 	u32 packets_acked;
3018 
3019 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3020 
3021 	packets_acked = tcp_skb_pcount(skb);
3022 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3023 		return 0;
3024 	packets_acked -= tcp_skb_pcount(skb);
3025 
3026 	if (packets_acked) {
3027 		BUG_ON(tcp_skb_pcount(skb) == 0);
3028 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3029 	}
3030 
3031 	return packets_acked;
3032 }
3033 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3034 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3035 			   u32 prior_snd_una)
3036 {
3037 	const struct skb_shared_info *shinfo;
3038 
3039 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3040 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3041 		return;
3042 
3043 	shinfo = skb_shinfo(skb);
3044 	if (!before(shinfo->tskey, prior_snd_una) &&
3045 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3046 		tcp_skb_tsorted_save(skb) {
3047 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3048 		} tcp_skb_tsorted_restore(skb);
3049 	}
3050 }
3051 
3052 /* Remove acknowledged frames from the retransmission queue. If our packet
3053  * is before the ack sequence we can discard it as it's confirmed to have
3054  * arrived at the other end.
3055  */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack)3056 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3057 			       u32 prior_snd_una,
3058 			       struct tcp_sacktag_state *sack)
3059 {
3060 	const struct inet_connection_sock *icsk = inet_csk(sk);
3061 	u64 first_ackt, last_ackt;
3062 	struct tcp_sock *tp = tcp_sk(sk);
3063 	u32 prior_sacked = tp->sacked_out;
3064 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3065 	struct sk_buff *skb, *next;
3066 	bool fully_acked = true;
3067 	long sack_rtt_us = -1L;
3068 	long seq_rtt_us = -1L;
3069 	long ca_rtt_us = -1L;
3070 	u32 pkts_acked = 0;
3071 	u32 last_in_flight = 0;
3072 	bool rtt_update;
3073 	int flag = 0;
3074 
3075 	first_ackt = 0;
3076 
3077 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3078 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3079 		const u32 start_seq = scb->seq;
3080 		u8 sacked = scb->sacked;
3081 		u32 acked_pcount;
3082 
3083 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3084 
3085 		/* Determine how many packets and what bytes were acked, tso and else */
3086 		if (after(scb->end_seq, tp->snd_una)) {
3087 			if (tcp_skb_pcount(skb) == 1 ||
3088 			    !after(tp->snd_una, scb->seq))
3089 				break;
3090 
3091 			acked_pcount = tcp_tso_acked(sk, skb);
3092 			if (!acked_pcount)
3093 				break;
3094 			fully_acked = false;
3095 		} else {
3096 			acked_pcount = tcp_skb_pcount(skb);
3097 		}
3098 
3099 		if (unlikely(sacked & TCPCB_RETRANS)) {
3100 			if (sacked & TCPCB_SACKED_RETRANS)
3101 				tp->retrans_out -= acked_pcount;
3102 			flag |= FLAG_RETRANS_DATA_ACKED;
3103 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3104 			last_ackt = skb->skb_mstamp;
3105 			WARN_ON_ONCE(last_ackt == 0);
3106 			if (!first_ackt)
3107 				first_ackt = last_ackt;
3108 
3109 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3110 			if (before(start_seq, reord))
3111 				reord = start_seq;
3112 			if (!after(scb->end_seq, tp->high_seq))
3113 				flag |= FLAG_ORIG_SACK_ACKED;
3114 		}
3115 
3116 		if (sacked & TCPCB_SACKED_ACKED) {
3117 			tp->sacked_out -= acked_pcount;
3118 		} else if (tcp_is_sack(tp)) {
3119 			tp->delivered += acked_pcount;
3120 			if (!tcp_skb_spurious_retrans(tp, skb))
3121 				tcp_rack_advance(tp, sacked, scb->end_seq,
3122 						 skb->skb_mstamp);
3123 		}
3124 		if (sacked & TCPCB_LOST)
3125 			tp->lost_out -= acked_pcount;
3126 
3127 		tp->packets_out -= acked_pcount;
3128 		pkts_acked += acked_pcount;
3129 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3130 
3131 		/* Initial outgoing SYN's get put onto the write_queue
3132 		 * just like anything else we transmit.  It is not
3133 		 * true data, and if we misinform our callers that
3134 		 * this ACK acks real data, we will erroneously exit
3135 		 * connection startup slow start one packet too
3136 		 * quickly.  This is severely frowned upon behavior.
3137 		 */
3138 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3139 			flag |= FLAG_DATA_ACKED;
3140 		} else {
3141 			flag |= FLAG_SYN_ACKED;
3142 			tp->retrans_stamp = 0;
3143 		}
3144 
3145 		if (!fully_acked)
3146 			break;
3147 
3148 		next = skb_rb_next(skb);
3149 		if (unlikely(skb == tp->retransmit_skb_hint))
3150 			tp->retransmit_skb_hint = NULL;
3151 		if (unlikely(skb == tp->lost_skb_hint))
3152 			tp->lost_skb_hint = NULL;
3153 		tcp_highest_sack_replace(sk, skb, next);
3154 		tcp_rtx_queue_unlink_and_free(skb, sk);
3155 	}
3156 
3157 	if (!skb)
3158 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3159 
3160 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3161 		tp->snd_up = tp->snd_una;
3162 
3163 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3164 		flag |= FLAG_SACK_RENEGING;
3165 
3166 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3167 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3168 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3169 
3170 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3171 		    last_in_flight && !prior_sacked && fully_acked &&
3172 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3173 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3174 			/* Conservatively mark a delayed ACK. It's typically
3175 			 * from a lone runt packet over the round trip to
3176 			 * a receiver w/o out-of-order or CE events.
3177 			 */
3178 			flag |= FLAG_ACK_MAYBE_DELAYED;
3179 		}
3180 	}
3181 	if (sack->first_sackt) {
3182 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3183 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3184 	}
3185 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3186 					ca_rtt_us, sack->rate);
3187 
3188 	if (flag & FLAG_ACKED) {
3189 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3190 		if (unlikely(icsk->icsk_mtup.probe_size &&
3191 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3192 			tcp_mtup_probe_success(sk);
3193 		}
3194 
3195 		if (tcp_is_reno(tp)) {
3196 			tcp_remove_reno_sacks(sk, pkts_acked);
3197 
3198 			/* If any of the cumulatively ACKed segments was
3199 			 * retransmitted, non-SACK case cannot confirm that
3200 			 * progress was due to original transmission due to
3201 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3202 			 * the packets may have been never retransmitted.
3203 			 */
3204 			if (flag & FLAG_RETRANS_DATA_ACKED)
3205 				flag &= ~FLAG_ORIG_SACK_ACKED;
3206 		} else {
3207 			int delta;
3208 
3209 			/* Non-retransmitted hole got filled? That's reordering */
3210 			if (before(reord, prior_fack))
3211 				tcp_check_sack_reordering(sk, reord, 0);
3212 
3213 			delta = prior_sacked - tp->sacked_out;
3214 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3215 		}
3216 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3217 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3218 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3219 		 * after when the head was last (re)transmitted. Otherwise the
3220 		 * timeout may continue to extend in loss recovery.
3221 		 */
3222 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3223 	}
3224 
3225 	if (icsk->icsk_ca_ops->pkts_acked) {
3226 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3227 					     .rtt_us = sack->rate->rtt_us,
3228 					     .in_flight = last_in_flight };
3229 
3230 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3231 	}
3232 
3233 #if FASTRETRANS_DEBUG > 0
3234 	WARN_ON((int)tp->sacked_out < 0);
3235 	WARN_ON((int)tp->lost_out < 0);
3236 	WARN_ON((int)tp->retrans_out < 0);
3237 	if (!tp->packets_out && tcp_is_sack(tp)) {
3238 		icsk = inet_csk(sk);
3239 		if (tp->lost_out) {
3240 			pr_debug("Leak l=%u %d\n",
3241 				 tp->lost_out, icsk->icsk_ca_state);
3242 			tp->lost_out = 0;
3243 		}
3244 		if (tp->sacked_out) {
3245 			pr_debug("Leak s=%u %d\n",
3246 				 tp->sacked_out, icsk->icsk_ca_state);
3247 			tp->sacked_out = 0;
3248 		}
3249 		if (tp->retrans_out) {
3250 			pr_debug("Leak r=%u %d\n",
3251 				 tp->retrans_out, icsk->icsk_ca_state);
3252 			tp->retrans_out = 0;
3253 		}
3254 	}
3255 #endif
3256 	return flag;
3257 }
3258 
tcp_ack_probe(struct sock * sk)3259 static void tcp_ack_probe(struct sock *sk)
3260 {
3261 	struct inet_connection_sock *icsk = inet_csk(sk);
3262 	struct sk_buff *head = tcp_send_head(sk);
3263 	const struct tcp_sock *tp = tcp_sk(sk);
3264 
3265 	/* Was it a usable window open? */
3266 	if (!head)
3267 		return;
3268 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3269 		icsk->icsk_backoff = 0;
3270 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3271 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3272 		 * This function is not for random using!
3273 		 */
3274 	} else {
3275 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3276 
3277 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3278 					  when, TCP_RTO_MAX);
3279 	}
3280 }
3281 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3282 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3283 {
3284 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3285 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3286 }
3287 
3288 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3289 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3290 {
3291 	/* If reordering is high then always grow cwnd whenever data is
3292 	 * delivered regardless of its ordering. Otherwise stay conservative
3293 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3294 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3295 	 * cwnd in tcp_fastretrans_alert() based on more states.
3296 	 */
3297 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3298 		return flag & FLAG_FORWARD_PROGRESS;
3299 
3300 	return flag & FLAG_DATA_ACKED;
3301 }
3302 
3303 /* The "ultimate" congestion control function that aims to replace the rigid
3304  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3305  * It's called toward the end of processing an ACK with precise rate
3306  * information. All transmission or retransmission are delayed afterwards.
3307  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3308 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3309 			     int flag, const struct rate_sample *rs)
3310 {
3311 	const struct inet_connection_sock *icsk = inet_csk(sk);
3312 
3313 	if (icsk->icsk_ca_ops->cong_control) {
3314 		icsk->icsk_ca_ops->cong_control(sk, rs);
3315 		return;
3316 	}
3317 
3318 	if (tcp_in_cwnd_reduction(sk)) {
3319 		/* Reduce cwnd if state mandates */
3320 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3321 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3322 		/* Advance cwnd if state allows */
3323 		tcp_cong_avoid(sk, ack, acked_sacked);
3324 	}
3325 	tcp_update_pacing_rate(sk);
3326 }
3327 
3328 /* Check that window update is acceptable.
3329  * The function assumes that snd_una<=ack<=snd_next.
3330  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3331 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3332 					const u32 ack, const u32 ack_seq,
3333 					const u32 nwin)
3334 {
3335 	return	after(ack, tp->snd_una) ||
3336 		after(ack_seq, tp->snd_wl1) ||
3337 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3338 }
3339 
3340 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3341 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3342 {
3343 	u32 delta = ack - tp->snd_una;
3344 
3345 	sock_owned_by_me((struct sock *)tp);
3346 	tp->bytes_acked += delta;
3347 	tp->snd_una = ack;
3348 }
3349 
3350 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3351 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3352 {
3353 	u32 delta = seq - tp->rcv_nxt;
3354 
3355 	sock_owned_by_me((struct sock *)tp);
3356 	tp->bytes_received += delta;
3357 	WRITE_ONCE(tp->rcv_nxt, seq);
3358 }
3359 
3360 /* Update our send window.
3361  *
3362  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3363  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3364  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3365 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3366 				 u32 ack_seq)
3367 {
3368 	struct tcp_sock *tp = tcp_sk(sk);
3369 	int flag = 0;
3370 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3371 
3372 	if (likely(!tcp_hdr(skb)->syn))
3373 		nwin <<= tp->rx_opt.snd_wscale;
3374 
3375 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3376 		flag |= FLAG_WIN_UPDATE;
3377 		tcp_update_wl(tp, ack_seq);
3378 
3379 		if (tp->snd_wnd != nwin) {
3380 			tp->snd_wnd = nwin;
3381 
3382 			/* Note, it is the only place, where
3383 			 * fast path is recovered for sending TCP.
3384 			 */
3385 			tp->pred_flags = 0;
3386 			tcp_fast_path_check(sk);
3387 
3388 			if (!tcp_write_queue_empty(sk))
3389 				tcp_slow_start_after_idle_check(sk);
3390 
3391 			if (nwin > tp->max_window) {
3392 				tp->max_window = nwin;
3393 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3394 			}
3395 		}
3396 	}
3397 
3398 	tcp_snd_una_update(tp, ack);
3399 
3400 	return flag;
3401 }
3402 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3403 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3404 				   u32 *last_oow_ack_time)
3405 {
3406 	if (*last_oow_ack_time) {
3407 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3408 
3409 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3410 			NET_INC_STATS(net, mib_idx);
3411 			return true;	/* rate-limited: don't send yet! */
3412 		}
3413 	}
3414 
3415 	*last_oow_ack_time = tcp_jiffies32;
3416 
3417 	return false;	/* not rate-limited: go ahead, send dupack now! */
3418 }
3419 
3420 /* Return true if we're currently rate-limiting out-of-window ACKs and
3421  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3422  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3423  * attacks that send repeated SYNs or ACKs for the same connection. To
3424  * do this, we do not send a duplicate SYNACK or ACK if the remote
3425  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3426  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3427 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3428 			  int mib_idx, u32 *last_oow_ack_time)
3429 {
3430 	/* Data packets without SYNs are not likely part of an ACK loop. */
3431 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3432 	    !tcp_hdr(skb)->syn)
3433 		return false;
3434 
3435 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3436 }
3437 
3438 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3439 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3440 {
3441 	/* unprotected vars, we dont care of overwrites */
3442 	static u32 challenge_timestamp;
3443 	static unsigned int challenge_count;
3444 	struct tcp_sock *tp = tcp_sk(sk);
3445 	struct net *net = sock_net(sk);
3446 	u32 count, now;
3447 
3448 	/* First check our per-socket dupack rate limit. */
3449 	if (__tcp_oow_rate_limited(net,
3450 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3451 				   &tp->last_oow_ack_time))
3452 		return;
3453 
3454 	/* Then check host-wide RFC 5961 rate limit. */
3455 	now = jiffies / HZ;
3456 	if (now != challenge_timestamp) {
3457 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3458 		u32 half = (ack_limit + 1) >> 1;
3459 
3460 		challenge_timestamp = now;
3461 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3462 	}
3463 	count = READ_ONCE(challenge_count);
3464 	if (count > 0) {
3465 		WRITE_ONCE(challenge_count, count - 1);
3466 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3467 		tcp_send_ack(sk);
3468 	}
3469 }
3470 
tcp_store_ts_recent(struct tcp_sock * tp)3471 static void tcp_store_ts_recent(struct tcp_sock *tp)
3472 {
3473 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3474 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3475 }
3476 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3477 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3478 {
3479 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3480 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3481 		 * extra check below makes sure this can only happen
3482 		 * for pure ACK frames.  -DaveM
3483 		 *
3484 		 * Not only, also it occurs for expired timestamps.
3485 		 */
3486 
3487 		if (tcp_paws_check(&tp->rx_opt, 0))
3488 			tcp_store_ts_recent(tp);
3489 	}
3490 }
3491 
3492 /* This routine deals with acks during a TLP episode and ends an episode by
3493  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3494  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3495 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3496 {
3497 	struct tcp_sock *tp = tcp_sk(sk);
3498 
3499 	if (before(ack, tp->tlp_high_seq))
3500 		return;
3501 
3502 	if (!tp->tlp_retrans) {
3503 		/* TLP of new data has been acknowledged */
3504 		tp->tlp_high_seq = 0;
3505 	} else if (flag & FLAG_DSACKING_ACK) {
3506 		/* This DSACK means original and TLP probe arrived; no loss */
3507 		tp->tlp_high_seq = 0;
3508 	} else if (after(ack, tp->tlp_high_seq)) {
3509 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3510 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3511 		 */
3512 		tcp_init_cwnd_reduction(sk);
3513 		tcp_set_ca_state(sk, TCP_CA_CWR);
3514 		tcp_end_cwnd_reduction(sk);
3515 		tcp_try_keep_open(sk);
3516 		NET_INC_STATS(sock_net(sk),
3517 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3518 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3519 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3520 		/* Pure dupack: original and TLP probe arrived; no loss */
3521 		tp->tlp_high_seq = 0;
3522 	}
3523 }
3524 
tcp_in_ack_event(struct sock * sk,u32 flags)3525 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3526 {
3527 	const struct inet_connection_sock *icsk = inet_csk(sk);
3528 
3529 	if (icsk->icsk_ca_ops->in_ack_event)
3530 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3531 }
3532 
3533 /* Congestion control has updated the cwnd already. So if we're in
3534  * loss recovery then now we do any new sends (for FRTO) or
3535  * retransmits (for CA_Loss or CA_recovery) that make sense.
3536  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3537 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3538 {
3539 	struct tcp_sock *tp = tcp_sk(sk);
3540 
3541 	if (rexmit == REXMIT_NONE)
3542 		return;
3543 
3544 	if (unlikely(rexmit == 2)) {
3545 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3546 					  TCP_NAGLE_OFF);
3547 		if (after(tp->snd_nxt, tp->high_seq))
3548 			return;
3549 		tp->frto = 0;
3550 	}
3551 	tcp_xmit_retransmit_queue(sk);
3552 }
3553 
3554 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3555 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3556 {
3557 	const struct net *net = sock_net(sk);
3558 	struct tcp_sock *tp = tcp_sk(sk);
3559 	u32 delivered;
3560 
3561 	delivered = tp->delivered - prior_delivered;
3562 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3563 	if (flag & FLAG_ECE) {
3564 		tp->delivered_ce += delivered;
3565 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3566 	}
3567 	return delivered;
3568 }
3569 
3570 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3571 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3572 {
3573 	struct inet_connection_sock *icsk = inet_csk(sk);
3574 	struct tcp_sock *tp = tcp_sk(sk);
3575 	struct tcp_sacktag_state sack_state;
3576 	struct rate_sample rs = { .prior_delivered = 0 };
3577 	u32 prior_snd_una = tp->snd_una;
3578 	bool is_sack_reneg = tp->is_sack_reneg;
3579 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3580 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3581 	bool is_dupack = false;
3582 	int prior_packets = tp->packets_out;
3583 	u32 delivered = tp->delivered;
3584 	u32 lost = tp->lost;
3585 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3586 	u32 prior_fack;
3587 
3588 	sack_state.first_sackt = 0;
3589 	sack_state.rate = &rs;
3590 
3591 	/* We very likely will need to access rtx queue. */
3592 	prefetch(sk->tcp_rtx_queue.rb_node);
3593 
3594 	/* If the ack is older than previous acks
3595 	 * then we can probably ignore it.
3596 	 */
3597 	if (before(ack, prior_snd_una)) {
3598 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3599 		if (before(ack, prior_snd_una - tp->max_window)) {
3600 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3601 				tcp_send_challenge_ack(sk, skb);
3602 			return -1;
3603 		}
3604 		goto old_ack;
3605 	}
3606 
3607 	/* If the ack includes data we haven't sent yet, discard
3608 	 * this segment (RFC793 Section 3.9).
3609 	 */
3610 	if (after(ack, tp->snd_nxt))
3611 		goto invalid_ack;
3612 
3613 	if (after(ack, prior_snd_una)) {
3614 		flag |= FLAG_SND_UNA_ADVANCED;
3615 		icsk->icsk_retransmits = 0;
3616 
3617 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3618 		if (static_branch_unlikely(&clean_acked_data_enabled))
3619 			if (icsk->icsk_clean_acked)
3620 				icsk->icsk_clean_acked(sk, ack);
3621 #endif
3622 	}
3623 
3624 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3625 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3626 
3627 	/* ts_recent update must be made after we are sure that the packet
3628 	 * is in window.
3629 	 */
3630 	if (flag & FLAG_UPDATE_TS_RECENT)
3631 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3632 
3633 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3634 		/* Window is constant, pure forward advance.
3635 		 * No more checks are required.
3636 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3637 		 */
3638 		tcp_update_wl(tp, ack_seq);
3639 		tcp_snd_una_update(tp, ack);
3640 		flag |= FLAG_WIN_UPDATE;
3641 
3642 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3643 
3644 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3645 	} else {
3646 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3647 
3648 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3649 			flag |= FLAG_DATA;
3650 		else
3651 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3652 
3653 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3654 
3655 		if (TCP_SKB_CB(skb)->sacked)
3656 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3657 							&sack_state);
3658 
3659 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3660 			flag |= FLAG_ECE;
3661 			ack_ev_flags |= CA_ACK_ECE;
3662 		}
3663 
3664 		if (flag & FLAG_WIN_UPDATE)
3665 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3666 
3667 		tcp_in_ack_event(sk, ack_ev_flags);
3668 	}
3669 
3670 	/* This is a deviation from RFC3168 since it states that:
3671 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3672 	 * the congestion window, it SHOULD set the CWR bit only on the first
3673 	 * new data packet that it transmits."
3674 	 * We accept CWR on pure ACKs to be more robust
3675 	 * with widely-deployed TCP implementations that do this.
3676 	 */
3677 	tcp_ecn_accept_cwr(sk, skb);
3678 
3679 	/* We passed data and got it acked, remove any soft error
3680 	 * log. Something worked...
3681 	 */
3682 	sk->sk_err_soft = 0;
3683 	icsk->icsk_probes_out = 0;
3684 	tp->rcv_tstamp = tcp_jiffies32;
3685 	if (!prior_packets)
3686 		goto no_queue;
3687 
3688 	/* See if we can take anything off of the retransmit queue. */
3689 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3690 
3691 	tcp_rack_update_reo_wnd(sk, &rs);
3692 
3693 	if (tp->tlp_high_seq)
3694 		tcp_process_tlp_ack(sk, ack, flag);
3695 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3696 	if (flag & FLAG_SET_XMIT_TIMER)
3697 		tcp_set_xmit_timer(sk);
3698 
3699 	if (tcp_ack_is_dubious(sk, flag)) {
3700 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3701 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3702 				      &rexmit);
3703 	}
3704 
3705 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3706 		sk_dst_confirm(sk);
3707 
3708 	delivered = tcp_newly_delivered(sk, delivered, flag);
3709 	lost = tp->lost - lost;			/* freshly marked lost */
3710 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3711 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3712 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3713 	tcp_xmit_recovery(sk, rexmit);
3714 	return 1;
3715 
3716 no_queue:
3717 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3718 	if (flag & FLAG_DSACKING_ACK) {
3719 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3720 				      &rexmit);
3721 		tcp_newly_delivered(sk, delivered, flag);
3722 	}
3723 	/* If this ack opens up a zero window, clear backoff.  It was
3724 	 * being used to time the probes, and is probably far higher than
3725 	 * it needs to be for normal retransmission.
3726 	 */
3727 	tcp_ack_probe(sk);
3728 
3729 	if (tp->tlp_high_seq)
3730 		tcp_process_tlp_ack(sk, ack, flag);
3731 	return 1;
3732 
3733 invalid_ack:
3734 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3735 	return -1;
3736 
3737 old_ack:
3738 	/* If data was SACKed, tag it and see if we should send more data.
3739 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3740 	 */
3741 	if (TCP_SKB_CB(skb)->sacked) {
3742 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3743 						&sack_state);
3744 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3745 				      &rexmit);
3746 		tcp_newly_delivered(sk, delivered, flag);
3747 		tcp_xmit_recovery(sk, rexmit);
3748 	}
3749 
3750 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3751 	return 0;
3752 }
3753 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3754 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3755 				      bool syn, struct tcp_fastopen_cookie *foc,
3756 				      bool exp_opt)
3757 {
3758 	/* Valid only in SYN or SYN-ACK with an even length.  */
3759 	if (!foc || !syn || len < 0 || (len & 1))
3760 		return;
3761 
3762 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3763 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3764 		memcpy(foc->val, cookie, len);
3765 	else if (len != 0)
3766 		len = -1;
3767 	foc->len = len;
3768 	foc->exp = exp_opt;
3769 }
3770 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3771 static void smc_parse_options(const struct tcphdr *th,
3772 			      struct tcp_options_received *opt_rx,
3773 			      const unsigned char *ptr,
3774 			      int opsize)
3775 {
3776 #if IS_ENABLED(CONFIG_SMC)
3777 	if (static_branch_unlikely(&tcp_have_smc)) {
3778 		if (th->syn && !(opsize & 1) &&
3779 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3780 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3781 			opt_rx->smc_ok = 1;
3782 	}
3783 #endif
3784 }
3785 
3786 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3787  * But, this can also be called on packets in the established flow when
3788  * the fast version below fails.
3789  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)3790 void tcp_parse_options(const struct net *net,
3791 		       const struct sk_buff *skb,
3792 		       struct tcp_options_received *opt_rx, int estab,
3793 		       struct tcp_fastopen_cookie *foc)
3794 {
3795 	const unsigned char *ptr;
3796 	const struct tcphdr *th = tcp_hdr(skb);
3797 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3798 
3799 	ptr = (const unsigned char *)(th + 1);
3800 	opt_rx->saw_tstamp = 0;
3801 
3802 	while (length > 0) {
3803 		int opcode = *ptr++;
3804 		int opsize;
3805 
3806 		switch (opcode) {
3807 		case TCPOPT_EOL:
3808 			return;
3809 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3810 			length--;
3811 			continue;
3812 		default:
3813 			opsize = *ptr++;
3814 			if (opsize < 2) /* "silly options" */
3815 				return;
3816 			if (opsize > length)
3817 				return;	/* don't parse partial options */
3818 			switch (opcode) {
3819 			case TCPOPT_MSS:
3820 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3821 					u16 in_mss = get_unaligned_be16(ptr);
3822 					if (in_mss) {
3823 						if (opt_rx->user_mss &&
3824 						    opt_rx->user_mss < in_mss)
3825 							in_mss = opt_rx->user_mss;
3826 						opt_rx->mss_clamp = in_mss;
3827 					}
3828 				}
3829 				break;
3830 			case TCPOPT_WINDOW:
3831 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3832 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3833 					__u8 snd_wscale = *(__u8 *)ptr;
3834 					opt_rx->wscale_ok = 1;
3835 					if (snd_wscale > TCP_MAX_WSCALE) {
3836 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3837 								     __func__,
3838 								     snd_wscale,
3839 								     TCP_MAX_WSCALE);
3840 						snd_wscale = TCP_MAX_WSCALE;
3841 					}
3842 					opt_rx->snd_wscale = snd_wscale;
3843 				}
3844 				break;
3845 			case TCPOPT_TIMESTAMP:
3846 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3847 				    ((estab && opt_rx->tstamp_ok) ||
3848 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3849 					opt_rx->saw_tstamp = 1;
3850 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3851 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3852 				}
3853 				break;
3854 			case TCPOPT_SACK_PERM:
3855 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3856 				    !estab && net->ipv4.sysctl_tcp_sack) {
3857 					opt_rx->sack_ok = TCP_SACK_SEEN;
3858 					tcp_sack_reset(opt_rx);
3859 				}
3860 				break;
3861 
3862 			case TCPOPT_SACK:
3863 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3864 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3865 				   opt_rx->sack_ok) {
3866 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3867 				}
3868 				break;
3869 #ifdef CONFIG_TCP_MD5SIG
3870 			case TCPOPT_MD5SIG:
3871 				/*
3872 				 * The MD5 Hash has already been
3873 				 * checked (see tcp_v{4,6}_do_rcv()).
3874 				 */
3875 				break;
3876 #endif
3877 			case TCPOPT_FASTOPEN:
3878 				tcp_parse_fastopen_option(
3879 					opsize - TCPOLEN_FASTOPEN_BASE,
3880 					ptr, th->syn, foc, false);
3881 				break;
3882 
3883 			case TCPOPT_EXP:
3884 				/* Fast Open option shares code 254 using a
3885 				 * 16 bits magic number.
3886 				 */
3887 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3888 				    get_unaligned_be16(ptr) ==
3889 				    TCPOPT_FASTOPEN_MAGIC)
3890 					tcp_parse_fastopen_option(opsize -
3891 						TCPOLEN_EXP_FASTOPEN_BASE,
3892 						ptr + 2, th->syn, foc, true);
3893 				else
3894 					smc_parse_options(th, opt_rx, ptr,
3895 							  opsize);
3896 				break;
3897 
3898 			}
3899 			ptr += opsize-2;
3900 			length -= opsize;
3901 		}
3902 	}
3903 }
3904 EXPORT_SYMBOL(tcp_parse_options);
3905 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)3906 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3907 {
3908 	const __be32 *ptr = (const __be32 *)(th + 1);
3909 
3910 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3911 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3912 		tp->rx_opt.saw_tstamp = 1;
3913 		++ptr;
3914 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3915 		++ptr;
3916 		if (*ptr)
3917 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3918 		else
3919 			tp->rx_opt.rcv_tsecr = 0;
3920 		return true;
3921 	}
3922 	return false;
3923 }
3924 
3925 /* Fast parse options. This hopes to only see timestamps.
3926  * If it is wrong it falls back on tcp_parse_options().
3927  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)3928 static bool tcp_fast_parse_options(const struct net *net,
3929 				   const struct sk_buff *skb,
3930 				   const struct tcphdr *th, struct tcp_sock *tp)
3931 {
3932 	/* In the spirit of fast parsing, compare doff directly to constant
3933 	 * values.  Because equality is used, short doff can be ignored here.
3934 	 */
3935 	if (th->doff == (sizeof(*th) / 4)) {
3936 		tp->rx_opt.saw_tstamp = 0;
3937 		return false;
3938 	} else if (tp->rx_opt.tstamp_ok &&
3939 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3940 		if (tcp_parse_aligned_timestamp(tp, th))
3941 			return true;
3942 	}
3943 
3944 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3945 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3946 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3947 
3948 	return true;
3949 }
3950 
3951 #ifdef CONFIG_TCP_MD5SIG
3952 /*
3953  * Parse MD5 Signature option
3954  */
tcp_parse_md5sig_option(const struct tcphdr * th)3955 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3956 {
3957 	int length = (th->doff << 2) - sizeof(*th);
3958 	const u8 *ptr = (const u8 *)(th + 1);
3959 
3960 	/* If not enough data remaining, we can short cut */
3961 	while (length >= TCPOLEN_MD5SIG) {
3962 		int opcode = *ptr++;
3963 		int opsize;
3964 
3965 		switch (opcode) {
3966 		case TCPOPT_EOL:
3967 			return NULL;
3968 		case TCPOPT_NOP:
3969 			length--;
3970 			continue;
3971 		default:
3972 			opsize = *ptr++;
3973 			if (opsize < 2 || opsize > length)
3974 				return NULL;
3975 			if (opcode == TCPOPT_MD5SIG)
3976 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3977 		}
3978 		ptr += opsize - 2;
3979 		length -= opsize;
3980 	}
3981 	return NULL;
3982 }
3983 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3984 #endif
3985 
3986 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3987  *
3988  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3989  * it can pass through stack. So, the following predicate verifies that
3990  * this segment is not used for anything but congestion avoidance or
3991  * fast retransmit. Moreover, we even are able to eliminate most of such
3992  * second order effects, if we apply some small "replay" window (~RTO)
3993  * to timestamp space.
3994  *
3995  * All these measures still do not guarantee that we reject wrapped ACKs
3996  * on networks with high bandwidth, when sequence space is recycled fastly,
3997  * but it guarantees that such events will be very rare and do not affect
3998  * connection seriously. This doesn't look nice, but alas, PAWS is really
3999  * buggy extension.
4000  *
4001  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4002  * states that events when retransmit arrives after original data are rare.
4003  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4004  * the biggest problem on large power networks even with minor reordering.
4005  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4006  * up to bandwidth of 18Gigabit/sec. 8) ]
4007  */
4008 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4009 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4010 {
4011 	const struct tcp_sock *tp = tcp_sk(sk);
4012 	const struct tcphdr *th = tcp_hdr(skb);
4013 	u32 seq = TCP_SKB_CB(skb)->seq;
4014 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4015 
4016 	return (/* 1. Pure ACK with correct sequence number. */
4017 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4018 
4019 		/* 2. ... and duplicate ACK. */
4020 		ack == tp->snd_una &&
4021 
4022 		/* 3. ... and does not update window. */
4023 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4024 
4025 		/* 4. ... and sits in replay window. */
4026 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4027 }
4028 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4029 static inline bool tcp_paws_discard(const struct sock *sk,
4030 				   const struct sk_buff *skb)
4031 {
4032 	const struct tcp_sock *tp = tcp_sk(sk);
4033 
4034 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4035 	       !tcp_disordered_ack(sk, skb);
4036 }
4037 
4038 /* Check segment sequence number for validity.
4039  *
4040  * Segment controls are considered valid, if the segment
4041  * fits to the window after truncation to the window. Acceptability
4042  * of data (and SYN, FIN, of course) is checked separately.
4043  * See tcp_data_queue(), for example.
4044  *
4045  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4046  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4047  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4048  * (borrowed from freebsd)
4049  */
4050 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4051 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4052 {
4053 	return	!before(end_seq, tp->rcv_wup) &&
4054 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4055 }
4056 
4057 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4058 void tcp_reset(struct sock *sk)
4059 {
4060 	trace_tcp_receive_reset(sk);
4061 
4062 	/* We want the right error as BSD sees it (and indeed as we do). */
4063 	switch (sk->sk_state) {
4064 	case TCP_SYN_SENT:
4065 		sk->sk_err = ECONNREFUSED;
4066 		break;
4067 	case TCP_CLOSE_WAIT:
4068 		sk->sk_err = EPIPE;
4069 		break;
4070 	case TCP_CLOSE:
4071 		return;
4072 	default:
4073 		sk->sk_err = ECONNRESET;
4074 	}
4075 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4076 	smp_wmb();
4077 
4078 	tcp_write_queue_purge(sk);
4079 	tcp_done(sk);
4080 
4081 	if (!sock_flag(sk, SOCK_DEAD))
4082 		sk->sk_error_report(sk);
4083 }
4084 
4085 /*
4086  * 	Process the FIN bit. This now behaves as it is supposed to work
4087  *	and the FIN takes effect when it is validly part of sequence
4088  *	space. Not before when we get holes.
4089  *
4090  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4091  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4092  *	TIME-WAIT)
4093  *
4094  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4095  *	close and we go into CLOSING (and later onto TIME-WAIT)
4096  *
4097  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4098  */
tcp_fin(struct sock * sk)4099 void tcp_fin(struct sock *sk)
4100 {
4101 	struct tcp_sock *tp = tcp_sk(sk);
4102 
4103 	inet_csk_schedule_ack(sk);
4104 
4105 	sk->sk_shutdown |= RCV_SHUTDOWN;
4106 	sock_set_flag(sk, SOCK_DONE);
4107 
4108 	switch (sk->sk_state) {
4109 	case TCP_SYN_RECV:
4110 	case TCP_ESTABLISHED:
4111 		/* Move to CLOSE_WAIT */
4112 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4113 		inet_csk(sk)->icsk_ack.pingpong = 1;
4114 		break;
4115 
4116 	case TCP_CLOSE_WAIT:
4117 	case TCP_CLOSING:
4118 		/* Received a retransmission of the FIN, do
4119 		 * nothing.
4120 		 */
4121 		break;
4122 	case TCP_LAST_ACK:
4123 		/* RFC793: Remain in the LAST-ACK state. */
4124 		break;
4125 
4126 	case TCP_FIN_WAIT1:
4127 		/* This case occurs when a simultaneous close
4128 		 * happens, we must ack the received FIN and
4129 		 * enter the CLOSING state.
4130 		 */
4131 		tcp_send_ack(sk);
4132 		tcp_set_state(sk, TCP_CLOSING);
4133 		break;
4134 	case TCP_FIN_WAIT2:
4135 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4136 		tcp_send_ack(sk);
4137 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4138 		break;
4139 	default:
4140 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4141 		 * cases we should never reach this piece of code.
4142 		 */
4143 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4144 		       __func__, sk->sk_state);
4145 		break;
4146 	}
4147 
4148 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4149 	 * Probably, we should reset in this case. For now drop them.
4150 	 */
4151 	skb_rbtree_purge(&tp->out_of_order_queue);
4152 	if (tcp_is_sack(tp))
4153 		tcp_sack_reset(&tp->rx_opt);
4154 	sk_mem_reclaim(sk);
4155 
4156 	if (!sock_flag(sk, SOCK_DEAD)) {
4157 		sk->sk_state_change(sk);
4158 
4159 		/* Do not send POLL_HUP for half duplex close. */
4160 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4161 		    sk->sk_state == TCP_CLOSE)
4162 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4163 		else
4164 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4165 	}
4166 }
4167 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4168 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4169 				  u32 end_seq)
4170 {
4171 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4172 		if (before(seq, sp->start_seq))
4173 			sp->start_seq = seq;
4174 		if (after(end_seq, sp->end_seq))
4175 			sp->end_seq = end_seq;
4176 		return true;
4177 	}
4178 	return false;
4179 }
4180 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4181 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4182 {
4183 	struct tcp_sock *tp = tcp_sk(sk);
4184 
4185 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4186 		int mib_idx;
4187 
4188 		if (before(seq, tp->rcv_nxt))
4189 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4190 		else
4191 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4192 
4193 		NET_INC_STATS(sock_net(sk), mib_idx);
4194 
4195 		tp->rx_opt.dsack = 1;
4196 		tp->duplicate_sack[0].start_seq = seq;
4197 		tp->duplicate_sack[0].end_seq = end_seq;
4198 	}
4199 }
4200 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4201 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4202 {
4203 	struct tcp_sock *tp = tcp_sk(sk);
4204 
4205 	if (!tp->rx_opt.dsack)
4206 		tcp_dsack_set(sk, seq, end_seq);
4207 	else
4208 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4209 }
4210 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4211 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4212 {
4213 	struct tcp_sock *tp = tcp_sk(sk);
4214 
4215 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4216 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4217 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4218 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4219 
4220 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4221 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4222 
4223 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4224 				end_seq = tp->rcv_nxt;
4225 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4226 		}
4227 	}
4228 
4229 	tcp_send_ack(sk);
4230 }
4231 
4232 /* These routines update the SACK block as out-of-order packets arrive or
4233  * in-order packets close up the sequence space.
4234  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4235 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4236 {
4237 	int this_sack;
4238 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4239 	struct tcp_sack_block *swalk = sp + 1;
4240 
4241 	/* See if the recent change to the first SACK eats into
4242 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4243 	 */
4244 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4245 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4246 			int i;
4247 
4248 			/* Zap SWALK, by moving every further SACK up by one slot.
4249 			 * Decrease num_sacks.
4250 			 */
4251 			tp->rx_opt.num_sacks--;
4252 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4253 				sp[i] = sp[i + 1];
4254 			continue;
4255 		}
4256 		this_sack++, swalk++;
4257 	}
4258 }
4259 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4260 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4261 {
4262 	struct tcp_sock *tp = tcp_sk(sk);
4263 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4264 	int cur_sacks = tp->rx_opt.num_sacks;
4265 	int this_sack;
4266 
4267 	if (!cur_sacks)
4268 		goto new_sack;
4269 
4270 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4271 		if (tcp_sack_extend(sp, seq, end_seq)) {
4272 			/* Rotate this_sack to the first one. */
4273 			for (; this_sack > 0; this_sack--, sp--)
4274 				swap(*sp, *(sp - 1));
4275 			if (cur_sacks > 1)
4276 				tcp_sack_maybe_coalesce(tp);
4277 			return;
4278 		}
4279 	}
4280 
4281 	/* Could not find an adjacent existing SACK, build a new one,
4282 	 * put it at the front, and shift everyone else down.  We
4283 	 * always know there is at least one SACK present already here.
4284 	 *
4285 	 * If the sack array is full, forget about the last one.
4286 	 */
4287 	if (this_sack >= TCP_NUM_SACKS) {
4288 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4289 			tcp_send_ack(sk);
4290 		this_sack--;
4291 		tp->rx_opt.num_sacks--;
4292 		sp--;
4293 	}
4294 	for (; this_sack > 0; this_sack--, sp--)
4295 		*sp = *(sp - 1);
4296 
4297 new_sack:
4298 	/* Build the new head SACK, and we're done. */
4299 	sp->start_seq = seq;
4300 	sp->end_seq = end_seq;
4301 	tp->rx_opt.num_sacks++;
4302 }
4303 
4304 /* RCV.NXT advances, some SACKs should be eaten. */
4305 
tcp_sack_remove(struct tcp_sock * tp)4306 static void tcp_sack_remove(struct tcp_sock *tp)
4307 {
4308 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4309 	int num_sacks = tp->rx_opt.num_sacks;
4310 	int this_sack;
4311 
4312 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4313 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4314 		tp->rx_opt.num_sacks = 0;
4315 		return;
4316 	}
4317 
4318 	for (this_sack = 0; this_sack < num_sacks;) {
4319 		/* Check if the start of the sack is covered by RCV.NXT. */
4320 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4321 			int i;
4322 
4323 			/* RCV.NXT must cover all the block! */
4324 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4325 
4326 			/* Zap this SACK, by moving forward any other SACKS. */
4327 			for (i = this_sack+1; i < num_sacks; i++)
4328 				tp->selective_acks[i-1] = tp->selective_acks[i];
4329 			num_sacks--;
4330 			continue;
4331 		}
4332 		this_sack++;
4333 		sp++;
4334 	}
4335 	tp->rx_opt.num_sacks = num_sacks;
4336 }
4337 
4338 /**
4339  * tcp_try_coalesce - try to merge skb to prior one
4340  * @sk: socket
4341  * @dest: destination queue
4342  * @to: prior buffer
4343  * @from: buffer to add in queue
4344  * @fragstolen: pointer to boolean
4345  *
4346  * Before queueing skb @from after @to, try to merge them
4347  * to reduce overall memory use and queue lengths, if cost is small.
4348  * Packets in ofo or receive queues can stay a long time.
4349  * Better try to coalesce them right now to avoid future collapses.
4350  * Returns true if caller should free @from instead of queueing it
4351  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4352 static bool tcp_try_coalesce(struct sock *sk,
4353 			     struct sk_buff *to,
4354 			     struct sk_buff *from,
4355 			     bool *fragstolen)
4356 {
4357 	int delta;
4358 
4359 	*fragstolen = false;
4360 
4361 	/* Its possible this segment overlaps with prior segment in queue */
4362 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4363 		return false;
4364 
4365 #ifdef CONFIG_TLS_DEVICE
4366 	if (from->decrypted != to->decrypted)
4367 		return false;
4368 #endif
4369 
4370 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4371 		return false;
4372 
4373 	atomic_add(delta, &sk->sk_rmem_alloc);
4374 	sk_mem_charge(sk, delta);
4375 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4376 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4377 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4378 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4379 
4380 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4381 		TCP_SKB_CB(to)->has_rxtstamp = true;
4382 		to->tstamp = from->tstamp;
4383 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4384 	}
4385 
4386 	return true;
4387 }
4388 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4389 static bool tcp_ooo_try_coalesce(struct sock *sk,
4390 			     struct sk_buff *to,
4391 			     struct sk_buff *from,
4392 			     bool *fragstolen)
4393 {
4394 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4395 
4396 	/* In case tcp_drop() is called later, update to->gso_segs */
4397 	if (res) {
4398 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4399 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4400 
4401 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4402 	}
4403 	return res;
4404 }
4405 
tcp_drop(struct sock * sk,struct sk_buff * skb)4406 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4407 {
4408 	sk_drops_add(sk, skb);
4409 	__kfree_skb(skb);
4410 }
4411 
4412 /* This one checks to see if we can put data from the
4413  * out_of_order queue into the receive_queue.
4414  */
tcp_ofo_queue(struct sock * sk)4415 static void tcp_ofo_queue(struct sock *sk)
4416 {
4417 	struct tcp_sock *tp = tcp_sk(sk);
4418 	__u32 dsack_high = tp->rcv_nxt;
4419 	bool fin, fragstolen, eaten;
4420 	struct sk_buff *skb, *tail;
4421 	struct rb_node *p;
4422 
4423 	p = rb_first(&tp->out_of_order_queue);
4424 	while (p) {
4425 		skb = rb_to_skb(p);
4426 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4427 			break;
4428 
4429 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4430 			__u32 dsack = dsack_high;
4431 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4432 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4433 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4434 		}
4435 		p = rb_next(p);
4436 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4437 
4438 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4439 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4440 			tcp_drop(sk, skb);
4441 			continue;
4442 		}
4443 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4444 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4445 			   TCP_SKB_CB(skb)->end_seq);
4446 
4447 		tail = skb_peek_tail(&sk->sk_receive_queue);
4448 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4449 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4450 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4451 		if (!eaten)
4452 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4453 		else
4454 			kfree_skb_partial(skb, fragstolen);
4455 
4456 		if (unlikely(fin)) {
4457 			tcp_fin(sk);
4458 			/* tcp_fin() purges tp->out_of_order_queue,
4459 			 * so we must end this loop right now.
4460 			 */
4461 			break;
4462 		}
4463 	}
4464 }
4465 
4466 static bool tcp_prune_ofo_queue(struct sock *sk);
4467 static int tcp_prune_queue(struct sock *sk);
4468 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4469 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4470 				 unsigned int size)
4471 {
4472 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4473 	    !sk_rmem_schedule(sk, skb, size)) {
4474 
4475 		if (tcp_prune_queue(sk) < 0)
4476 			return -1;
4477 
4478 		while (!sk_rmem_schedule(sk, skb, size)) {
4479 			if (!tcp_prune_ofo_queue(sk))
4480 				return -1;
4481 		}
4482 	}
4483 	return 0;
4484 }
4485 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4486 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4487 {
4488 	struct tcp_sock *tp = tcp_sk(sk);
4489 	struct rb_node **p, *parent;
4490 	struct sk_buff *skb1;
4491 	u32 seq, end_seq;
4492 	bool fragstolen;
4493 
4494 	tcp_ecn_check_ce(sk, skb);
4495 
4496 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4497 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4498 		sk->sk_data_ready(sk);
4499 		tcp_drop(sk, skb);
4500 		return;
4501 	}
4502 
4503 	/* Disable header prediction. */
4504 	tp->pred_flags = 0;
4505 	inet_csk_schedule_ack(sk);
4506 
4507 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4508 	seq = TCP_SKB_CB(skb)->seq;
4509 	end_seq = TCP_SKB_CB(skb)->end_seq;
4510 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4511 		   tp->rcv_nxt, seq, end_seq);
4512 
4513 	p = &tp->out_of_order_queue.rb_node;
4514 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4515 		/* Initial out of order segment, build 1 SACK. */
4516 		if (tcp_is_sack(tp)) {
4517 			tp->rx_opt.num_sacks = 1;
4518 			tp->selective_acks[0].start_seq = seq;
4519 			tp->selective_acks[0].end_seq = end_seq;
4520 		}
4521 		rb_link_node(&skb->rbnode, NULL, p);
4522 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4523 		tp->ooo_last_skb = skb;
4524 		goto end;
4525 	}
4526 
4527 	/* In the typical case, we are adding an skb to the end of the list.
4528 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4529 	 */
4530 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4531 				 skb, &fragstolen)) {
4532 coalesce_done:
4533 		/* For non sack flows, do not grow window to force DUPACK
4534 		 * and trigger fast retransmit.
4535 		 */
4536 		if (tcp_is_sack(tp))
4537 			tcp_grow_window(sk, skb);
4538 		kfree_skb_partial(skb, fragstolen);
4539 		skb = NULL;
4540 		goto add_sack;
4541 	}
4542 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4543 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4544 		parent = &tp->ooo_last_skb->rbnode;
4545 		p = &parent->rb_right;
4546 		goto insert;
4547 	}
4548 
4549 	/* Find place to insert this segment. Handle overlaps on the way. */
4550 	parent = NULL;
4551 	while (*p) {
4552 		parent = *p;
4553 		skb1 = rb_to_skb(parent);
4554 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4555 			p = &parent->rb_left;
4556 			continue;
4557 		}
4558 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4559 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4560 				/* All the bits are present. Drop. */
4561 				NET_INC_STATS(sock_net(sk),
4562 					      LINUX_MIB_TCPOFOMERGE);
4563 				tcp_drop(sk, skb);
4564 				skb = NULL;
4565 				tcp_dsack_set(sk, seq, end_seq);
4566 				goto add_sack;
4567 			}
4568 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4569 				/* Partial overlap. */
4570 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4571 			} else {
4572 				/* skb's seq == skb1's seq and skb covers skb1.
4573 				 * Replace skb1 with skb.
4574 				 */
4575 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4576 						&tp->out_of_order_queue);
4577 				tcp_dsack_extend(sk,
4578 						 TCP_SKB_CB(skb1)->seq,
4579 						 TCP_SKB_CB(skb1)->end_seq);
4580 				NET_INC_STATS(sock_net(sk),
4581 					      LINUX_MIB_TCPOFOMERGE);
4582 				tcp_drop(sk, skb1);
4583 				goto merge_right;
4584 			}
4585 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4586 						skb, &fragstolen)) {
4587 			goto coalesce_done;
4588 		}
4589 		p = &parent->rb_right;
4590 	}
4591 insert:
4592 	/* Insert segment into RB tree. */
4593 	rb_link_node(&skb->rbnode, parent, p);
4594 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4595 
4596 merge_right:
4597 	/* Remove other segments covered by skb. */
4598 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4599 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4600 			break;
4601 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4602 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4603 					 end_seq);
4604 			break;
4605 		}
4606 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4607 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4608 				 TCP_SKB_CB(skb1)->end_seq);
4609 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4610 		tcp_drop(sk, skb1);
4611 	}
4612 	/* If there is no skb after us, we are the last_skb ! */
4613 	if (!skb1)
4614 		tp->ooo_last_skb = skb;
4615 
4616 add_sack:
4617 	if (tcp_is_sack(tp))
4618 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4619 end:
4620 	if (skb) {
4621 		/* For non sack flows, do not grow window to force DUPACK
4622 		 * and trigger fast retransmit.
4623 		 */
4624 		if (tcp_is_sack(tp))
4625 			tcp_grow_window(sk, skb);
4626 		skb_condense(skb);
4627 		skb_set_owner_r(skb, sk);
4628 	}
4629 }
4630 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,int hdrlen,bool * fragstolen)4631 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4632 		  bool *fragstolen)
4633 {
4634 	int eaten;
4635 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4636 
4637 	__skb_pull(skb, hdrlen);
4638 	eaten = (tail &&
4639 		 tcp_try_coalesce(sk, tail,
4640 				  skb, fragstolen)) ? 1 : 0;
4641 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4642 	if (!eaten) {
4643 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4644 		skb_set_owner_r(skb, sk);
4645 	}
4646 	return eaten;
4647 }
4648 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4649 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4650 {
4651 	struct sk_buff *skb;
4652 	int err = -ENOMEM;
4653 	int data_len = 0;
4654 	bool fragstolen;
4655 
4656 	if (size == 0)
4657 		return 0;
4658 
4659 	if (size > PAGE_SIZE) {
4660 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4661 
4662 		data_len = npages << PAGE_SHIFT;
4663 		size = data_len + (size & ~PAGE_MASK);
4664 	}
4665 	skb = alloc_skb_with_frags(size - data_len, data_len,
4666 				   PAGE_ALLOC_COSTLY_ORDER,
4667 				   &err, sk->sk_allocation);
4668 	if (!skb)
4669 		goto err;
4670 
4671 	skb_put(skb, size - data_len);
4672 	skb->data_len = data_len;
4673 	skb->len = size;
4674 
4675 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4676 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4677 		goto err_free;
4678 	}
4679 
4680 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4681 	if (err)
4682 		goto err_free;
4683 
4684 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4685 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4686 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4687 
4688 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4689 		WARN_ON_ONCE(fragstolen); /* should not happen */
4690 		__kfree_skb(skb);
4691 	}
4692 	return size;
4693 
4694 err_free:
4695 	kfree_skb(skb);
4696 err:
4697 	return err;
4698 
4699 }
4700 
tcp_data_ready(struct sock * sk)4701 void tcp_data_ready(struct sock *sk)
4702 {
4703 	const struct tcp_sock *tp = tcp_sk(sk);
4704 	int avail = tp->rcv_nxt - tp->copied_seq;
4705 
4706 	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4707 	    !sock_flag(sk, SOCK_DONE) &&
4708 	    tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4709 		return;
4710 
4711 	sk->sk_data_ready(sk);
4712 }
4713 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4714 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4715 {
4716 	struct tcp_sock *tp = tcp_sk(sk);
4717 	bool fragstolen;
4718 	int eaten;
4719 
4720 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4721 		__kfree_skb(skb);
4722 		return;
4723 	}
4724 	skb_dst_drop(skb);
4725 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4726 
4727 	tp->rx_opt.dsack = 0;
4728 
4729 	/*  Queue data for delivery to the user.
4730 	 *  Packets in sequence go to the receive queue.
4731 	 *  Out of sequence packets to the out_of_order_queue.
4732 	 */
4733 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4734 		if (tcp_receive_window(tp) == 0) {
4735 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4736 			goto out_of_window;
4737 		}
4738 
4739 		/* Ok. In sequence. In window. */
4740 queue_and_out:
4741 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4742 			sk_forced_mem_schedule(sk, skb->truesize);
4743 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4744 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4745 			sk->sk_data_ready(sk);
4746 			goto drop;
4747 		}
4748 
4749 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4750 		if (skb->len)
4751 			tcp_event_data_recv(sk, skb);
4752 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4753 			tcp_fin(sk);
4754 
4755 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4756 			tcp_ofo_queue(sk);
4757 
4758 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4759 			 * gap in queue is filled.
4760 			 */
4761 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4762 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4763 		}
4764 
4765 		if (tp->rx_opt.num_sacks)
4766 			tcp_sack_remove(tp);
4767 
4768 		tcp_fast_path_check(sk);
4769 
4770 		if (eaten > 0)
4771 			kfree_skb_partial(skb, fragstolen);
4772 		if (!sock_flag(sk, SOCK_DEAD))
4773 			tcp_data_ready(sk);
4774 		return;
4775 	}
4776 
4777 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4778 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4779 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4780 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4781 
4782 out_of_window:
4783 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4784 		inet_csk_schedule_ack(sk);
4785 drop:
4786 		tcp_drop(sk, skb);
4787 		return;
4788 	}
4789 
4790 	/* Out of window. F.e. zero window probe. */
4791 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4792 		goto out_of_window;
4793 
4794 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4795 		/* Partial packet, seq < rcv_next < end_seq */
4796 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4797 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4798 			   TCP_SKB_CB(skb)->end_seq);
4799 
4800 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4801 
4802 		/* If window is closed, drop tail of packet. But after
4803 		 * remembering D-SACK for its head made in previous line.
4804 		 */
4805 		if (!tcp_receive_window(tp)) {
4806 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4807 			goto out_of_window;
4808 		}
4809 		goto queue_and_out;
4810 	}
4811 
4812 	tcp_data_queue_ofo(sk, skb);
4813 }
4814 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)4815 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4816 {
4817 	if (list)
4818 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4819 
4820 	return skb_rb_next(skb);
4821 }
4822 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)4823 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4824 					struct sk_buff_head *list,
4825 					struct rb_root *root)
4826 {
4827 	struct sk_buff *next = tcp_skb_next(skb, list);
4828 
4829 	if (list)
4830 		__skb_unlink(skb, list);
4831 	else
4832 		rb_erase(&skb->rbnode, root);
4833 
4834 	__kfree_skb(skb);
4835 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4836 
4837 	return next;
4838 }
4839 
4840 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)4841 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4842 {
4843 	struct rb_node **p = &root->rb_node;
4844 	struct rb_node *parent = NULL;
4845 	struct sk_buff *skb1;
4846 
4847 	while (*p) {
4848 		parent = *p;
4849 		skb1 = rb_to_skb(parent);
4850 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4851 			p = &parent->rb_left;
4852 		else
4853 			p = &parent->rb_right;
4854 	}
4855 	rb_link_node(&skb->rbnode, parent, p);
4856 	rb_insert_color(&skb->rbnode, root);
4857 }
4858 
4859 /* Collapse contiguous sequence of skbs head..tail with
4860  * sequence numbers start..end.
4861  *
4862  * If tail is NULL, this means until the end of the queue.
4863  *
4864  * Segments with FIN/SYN are not collapsed (only because this
4865  * simplifies code)
4866  */
4867 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4868 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4869 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4870 {
4871 	struct sk_buff *skb = head, *n;
4872 	struct sk_buff_head tmp;
4873 	bool end_of_skbs;
4874 
4875 	/* First, check that queue is collapsible and find
4876 	 * the point where collapsing can be useful.
4877 	 */
4878 restart:
4879 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4880 		n = tcp_skb_next(skb, list);
4881 
4882 		/* No new bits? It is possible on ofo queue. */
4883 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4884 			skb = tcp_collapse_one(sk, skb, list, root);
4885 			if (!skb)
4886 				break;
4887 			goto restart;
4888 		}
4889 
4890 		/* The first skb to collapse is:
4891 		 * - not SYN/FIN and
4892 		 * - bloated or contains data before "start" or
4893 		 *   overlaps to the next one.
4894 		 */
4895 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4896 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4897 		     before(TCP_SKB_CB(skb)->seq, start))) {
4898 			end_of_skbs = false;
4899 			break;
4900 		}
4901 
4902 		if (n && n != tail &&
4903 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4904 			end_of_skbs = false;
4905 			break;
4906 		}
4907 
4908 		/* Decided to skip this, advance start seq. */
4909 		start = TCP_SKB_CB(skb)->end_seq;
4910 	}
4911 	if (end_of_skbs ||
4912 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4913 		return;
4914 
4915 	__skb_queue_head_init(&tmp);
4916 
4917 	while (before(start, end)) {
4918 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4919 		struct sk_buff *nskb;
4920 
4921 		nskb = alloc_skb(copy, GFP_ATOMIC);
4922 		if (!nskb)
4923 			break;
4924 
4925 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4926 #ifdef CONFIG_TLS_DEVICE
4927 		nskb->decrypted = skb->decrypted;
4928 #endif
4929 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4930 		if (list)
4931 			__skb_queue_before(list, skb, nskb);
4932 		else
4933 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4934 		skb_set_owner_r(nskb, sk);
4935 
4936 		/* Copy data, releasing collapsed skbs. */
4937 		while (copy > 0) {
4938 			int offset = start - TCP_SKB_CB(skb)->seq;
4939 			int size = TCP_SKB_CB(skb)->end_seq - start;
4940 
4941 			BUG_ON(offset < 0);
4942 			if (size > 0) {
4943 				size = min(copy, size);
4944 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4945 					BUG();
4946 				TCP_SKB_CB(nskb)->end_seq += size;
4947 				copy -= size;
4948 				start += size;
4949 			}
4950 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4951 				skb = tcp_collapse_one(sk, skb, list, root);
4952 				if (!skb ||
4953 				    skb == tail ||
4954 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4955 					goto end;
4956 #ifdef CONFIG_TLS_DEVICE
4957 				if (skb->decrypted != nskb->decrypted)
4958 					goto end;
4959 #endif
4960 			}
4961 		}
4962 	}
4963 end:
4964 	skb_queue_walk_safe(&tmp, skb, n)
4965 		tcp_rbtree_insert(root, skb);
4966 }
4967 
4968 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4969  * and tcp_collapse() them until all the queue is collapsed.
4970  */
tcp_collapse_ofo_queue(struct sock * sk)4971 static void tcp_collapse_ofo_queue(struct sock *sk)
4972 {
4973 	struct tcp_sock *tp = tcp_sk(sk);
4974 	u32 range_truesize, sum_tiny = 0;
4975 	struct sk_buff *skb, *head;
4976 	u32 start, end;
4977 
4978 	skb = skb_rb_first(&tp->out_of_order_queue);
4979 new_range:
4980 	if (!skb) {
4981 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4982 		return;
4983 	}
4984 	start = TCP_SKB_CB(skb)->seq;
4985 	end = TCP_SKB_CB(skb)->end_seq;
4986 	range_truesize = skb->truesize;
4987 
4988 	for (head = skb;;) {
4989 		skb = skb_rb_next(skb);
4990 
4991 		/* Range is terminated when we see a gap or when
4992 		 * we are at the queue end.
4993 		 */
4994 		if (!skb ||
4995 		    after(TCP_SKB_CB(skb)->seq, end) ||
4996 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4997 			/* Do not attempt collapsing tiny skbs */
4998 			if (range_truesize != head->truesize ||
4999 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5000 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5001 					     head, skb, start, end);
5002 			} else {
5003 				sum_tiny += range_truesize;
5004 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5005 					return;
5006 			}
5007 			goto new_range;
5008 		}
5009 
5010 		range_truesize += skb->truesize;
5011 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5012 			start = TCP_SKB_CB(skb)->seq;
5013 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5014 			end = TCP_SKB_CB(skb)->end_seq;
5015 	}
5016 }
5017 
5018 /*
5019  * Clean the out-of-order queue to make room.
5020  * We drop high sequences packets to :
5021  * 1) Let a chance for holes to be filled.
5022  * 2) not add too big latencies if thousands of packets sit there.
5023  *    (But if application shrinks SO_RCVBUF, we could still end up
5024  *     freeing whole queue here)
5025  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5026  *
5027  * Return true if queue has shrunk.
5028  */
tcp_prune_ofo_queue(struct sock * sk)5029 static bool tcp_prune_ofo_queue(struct sock *sk)
5030 {
5031 	struct tcp_sock *tp = tcp_sk(sk);
5032 	struct rb_node *node, *prev;
5033 	int goal;
5034 
5035 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5036 		return false;
5037 
5038 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5039 	goal = sk->sk_rcvbuf >> 3;
5040 	node = &tp->ooo_last_skb->rbnode;
5041 	do {
5042 		prev = rb_prev(node);
5043 		rb_erase(node, &tp->out_of_order_queue);
5044 		goal -= rb_to_skb(node)->truesize;
5045 		tcp_drop(sk, rb_to_skb(node));
5046 		if (!prev || goal <= 0) {
5047 			sk_mem_reclaim(sk);
5048 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5049 			    !tcp_under_memory_pressure(sk))
5050 				break;
5051 			goal = sk->sk_rcvbuf >> 3;
5052 		}
5053 		node = prev;
5054 	} while (node);
5055 	tp->ooo_last_skb = rb_to_skb(prev);
5056 
5057 	/* Reset SACK state.  A conforming SACK implementation will
5058 	 * do the same at a timeout based retransmit.  When a connection
5059 	 * is in a sad state like this, we care only about integrity
5060 	 * of the connection not performance.
5061 	 */
5062 	if (tp->rx_opt.sack_ok)
5063 		tcp_sack_reset(&tp->rx_opt);
5064 	return true;
5065 }
5066 
5067 /* Reduce allocated memory if we can, trying to get
5068  * the socket within its memory limits again.
5069  *
5070  * Return less than zero if we should start dropping frames
5071  * until the socket owning process reads some of the data
5072  * to stabilize the situation.
5073  */
tcp_prune_queue(struct sock * sk)5074 static int tcp_prune_queue(struct sock *sk)
5075 {
5076 	struct tcp_sock *tp = tcp_sk(sk);
5077 
5078 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5079 
5080 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5081 
5082 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5083 		tcp_clamp_window(sk);
5084 	else if (tcp_under_memory_pressure(sk))
5085 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5086 
5087 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5088 		return 0;
5089 
5090 	tcp_collapse_ofo_queue(sk);
5091 	if (!skb_queue_empty(&sk->sk_receive_queue))
5092 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5093 			     skb_peek(&sk->sk_receive_queue),
5094 			     NULL,
5095 			     tp->copied_seq, tp->rcv_nxt);
5096 	sk_mem_reclaim(sk);
5097 
5098 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5099 		return 0;
5100 
5101 	/* Collapsing did not help, destructive actions follow.
5102 	 * This must not ever occur. */
5103 
5104 	tcp_prune_ofo_queue(sk);
5105 
5106 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5107 		return 0;
5108 
5109 	/* If we are really being abused, tell the caller to silently
5110 	 * drop receive data on the floor.  It will get retransmitted
5111 	 * and hopefully then we'll have sufficient space.
5112 	 */
5113 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5114 
5115 	/* Massive buffer overcommit. */
5116 	tp->pred_flags = 0;
5117 	return -1;
5118 }
5119 
tcp_should_expand_sndbuf(const struct sock * sk)5120 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5121 {
5122 	const struct tcp_sock *tp = tcp_sk(sk);
5123 
5124 	/* If the user specified a specific send buffer setting, do
5125 	 * not modify it.
5126 	 */
5127 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5128 		return false;
5129 
5130 	/* If we are under global TCP memory pressure, do not expand.  */
5131 	if (tcp_under_memory_pressure(sk))
5132 		return false;
5133 
5134 	/* If we are under soft global TCP memory pressure, do not expand.  */
5135 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5136 		return false;
5137 
5138 	/* If we filled the congestion window, do not expand.  */
5139 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5140 		return false;
5141 
5142 	return true;
5143 }
5144 
5145 /* When incoming ACK allowed to free some skb from write_queue,
5146  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5147  * on the exit from tcp input handler.
5148  *
5149  * PROBLEM: sndbuf expansion does not work well with largesend.
5150  */
tcp_new_space(struct sock * sk)5151 static void tcp_new_space(struct sock *sk)
5152 {
5153 	struct tcp_sock *tp = tcp_sk(sk);
5154 
5155 	if (tcp_should_expand_sndbuf(sk)) {
5156 		tcp_sndbuf_expand(sk);
5157 		tp->snd_cwnd_stamp = tcp_jiffies32;
5158 	}
5159 
5160 	sk->sk_write_space(sk);
5161 }
5162 
tcp_check_space(struct sock * sk)5163 static void tcp_check_space(struct sock *sk)
5164 {
5165 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5166 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5167 		/* pairs with tcp_poll() */
5168 		smp_mb();
5169 		if (sk->sk_socket &&
5170 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5171 			tcp_new_space(sk);
5172 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5173 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5174 		}
5175 	}
5176 }
5177 
tcp_data_snd_check(struct sock * sk)5178 static inline void tcp_data_snd_check(struct sock *sk)
5179 {
5180 	tcp_push_pending_frames(sk);
5181 	tcp_check_space(sk);
5182 }
5183 
5184 /*
5185  * Check if sending an ack is needed.
5186  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5187 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5188 {
5189 	struct tcp_sock *tp = tcp_sk(sk);
5190 	unsigned long rtt, delay;
5191 
5192 	    /* More than one full frame received... */
5193 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5194 	     /* ... and right edge of window advances far enough.
5195 	      * (tcp_recvmsg() will send ACK otherwise).
5196 	      * If application uses SO_RCVLOWAT, we want send ack now if
5197 	      * we have not received enough bytes to satisfy the condition.
5198 	      */
5199 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5200 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5201 	    /* We ACK each frame or... */
5202 	    tcp_in_quickack_mode(sk) ||
5203 	    /* Protocol state mandates a one-time immediate ACK */
5204 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5205 send_now:
5206 		tcp_send_ack(sk);
5207 		return;
5208 	}
5209 
5210 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5211 		tcp_send_delayed_ack(sk);
5212 		return;
5213 	}
5214 
5215 	if (!tcp_is_sack(tp) ||
5216 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5217 		goto send_now;
5218 
5219 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5220 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5221 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5222 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5223 				      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5224 		tp->compressed_ack = 0;
5225 	}
5226 
5227 	if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5228 		goto send_now;
5229 
5230 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5231 		return;
5232 
5233 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5234 
5235 	rtt = tp->rcv_rtt_est.rtt_us;
5236 	if (tp->srtt_us && tp->srtt_us < rtt)
5237 		rtt = tp->srtt_us;
5238 
5239 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5240 		      rtt * (NSEC_PER_USEC >> 3)/20);
5241 	sock_hold(sk);
5242 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5243 		      HRTIMER_MODE_REL_PINNED_SOFT);
5244 }
5245 
tcp_ack_snd_check(struct sock * sk)5246 static inline void tcp_ack_snd_check(struct sock *sk)
5247 {
5248 	if (!inet_csk_ack_scheduled(sk)) {
5249 		/* We sent a data segment already. */
5250 		return;
5251 	}
5252 	__tcp_ack_snd_check(sk, 1);
5253 }
5254 
5255 /*
5256  *	This routine is only called when we have urgent data
5257  *	signaled. Its the 'slow' part of tcp_urg. It could be
5258  *	moved inline now as tcp_urg is only called from one
5259  *	place. We handle URGent data wrong. We have to - as
5260  *	BSD still doesn't use the correction from RFC961.
5261  *	For 1003.1g we should support a new option TCP_STDURG to permit
5262  *	either form (or just set the sysctl tcp_stdurg).
5263  */
5264 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5265 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5266 {
5267 	struct tcp_sock *tp = tcp_sk(sk);
5268 	u32 ptr = ntohs(th->urg_ptr);
5269 
5270 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5271 		ptr--;
5272 	ptr += ntohl(th->seq);
5273 
5274 	/* Ignore urgent data that we've already seen and read. */
5275 	if (after(tp->copied_seq, ptr))
5276 		return;
5277 
5278 	/* Do not replay urg ptr.
5279 	 *
5280 	 * NOTE: interesting situation not covered by specs.
5281 	 * Misbehaving sender may send urg ptr, pointing to segment,
5282 	 * which we already have in ofo queue. We are not able to fetch
5283 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5284 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5285 	 * situations. But it is worth to think about possibility of some
5286 	 * DoSes using some hypothetical application level deadlock.
5287 	 */
5288 	if (before(ptr, tp->rcv_nxt))
5289 		return;
5290 
5291 	/* Do we already have a newer (or duplicate) urgent pointer? */
5292 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5293 		return;
5294 
5295 	/* Tell the world about our new urgent pointer. */
5296 	sk_send_sigurg(sk);
5297 
5298 	/* We may be adding urgent data when the last byte read was
5299 	 * urgent. To do this requires some care. We cannot just ignore
5300 	 * tp->copied_seq since we would read the last urgent byte again
5301 	 * as data, nor can we alter copied_seq until this data arrives
5302 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5303 	 *
5304 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5305 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5306 	 * and expect that both A and B disappear from stream. This is _wrong_.
5307 	 * Though this happens in BSD with high probability, this is occasional.
5308 	 * Any application relying on this is buggy. Note also, that fix "works"
5309 	 * only in this artificial test. Insert some normal data between A and B and we will
5310 	 * decline of BSD again. Verdict: it is better to remove to trap
5311 	 * buggy users.
5312 	 */
5313 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5314 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5315 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5316 		tp->copied_seq++;
5317 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5318 			__skb_unlink(skb, &sk->sk_receive_queue);
5319 			__kfree_skb(skb);
5320 		}
5321 	}
5322 
5323 	tp->urg_data = TCP_URG_NOTYET;
5324 	tp->urg_seq = ptr;
5325 
5326 	/* Disable header prediction. */
5327 	tp->pred_flags = 0;
5328 }
5329 
5330 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5331 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5332 {
5333 	struct tcp_sock *tp = tcp_sk(sk);
5334 
5335 	/* Check if we get a new urgent pointer - normally not. */
5336 	if (th->urg)
5337 		tcp_check_urg(sk, th);
5338 
5339 	/* Do we wait for any urgent data? - normally not... */
5340 	if (tp->urg_data == TCP_URG_NOTYET) {
5341 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5342 			  th->syn;
5343 
5344 		/* Is the urgent pointer pointing into this packet? */
5345 		if (ptr < skb->len) {
5346 			u8 tmp;
5347 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5348 				BUG();
5349 			tp->urg_data = TCP_URG_VALID | tmp;
5350 			if (!sock_flag(sk, SOCK_DEAD))
5351 				sk->sk_data_ready(sk);
5352 		}
5353 	}
5354 }
5355 
5356 /* Accept RST for rcv_nxt - 1 after a FIN.
5357  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5358  * FIN is sent followed by a RST packet. The RST is sent with the same
5359  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5360  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5361  * ACKs on the closed socket. In addition middleboxes can drop either the
5362  * challenge ACK or a subsequent RST.
5363  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5364 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5365 {
5366 	struct tcp_sock *tp = tcp_sk(sk);
5367 
5368 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5369 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5370 					       TCPF_CLOSING));
5371 }
5372 
5373 /* Does PAWS and seqno based validation of an incoming segment, flags will
5374  * play significant role here.
5375  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5376 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5377 				  const struct tcphdr *th, int syn_inerr)
5378 {
5379 	struct tcp_sock *tp = tcp_sk(sk);
5380 	bool rst_seq_match = false;
5381 
5382 	/* RFC1323: H1. Apply PAWS check first. */
5383 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5384 	    tp->rx_opt.saw_tstamp &&
5385 	    tcp_paws_discard(sk, skb)) {
5386 		if (!th->rst) {
5387 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5388 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5389 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5390 						  &tp->last_oow_ack_time))
5391 				tcp_send_dupack(sk, skb);
5392 			goto discard;
5393 		}
5394 		/* Reset is accepted even if it did not pass PAWS. */
5395 	}
5396 
5397 	/* Step 1: check sequence number */
5398 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5399 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5400 		 * (RST) segments are validated by checking their SEQ-fields."
5401 		 * And page 69: "If an incoming segment is not acceptable,
5402 		 * an acknowledgment should be sent in reply (unless the RST
5403 		 * bit is set, if so drop the segment and return)".
5404 		 */
5405 		if (!th->rst) {
5406 			if (th->syn)
5407 				goto syn_challenge;
5408 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5409 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5410 						  &tp->last_oow_ack_time))
5411 				tcp_send_dupack(sk, skb);
5412 		} else if (tcp_reset_check(sk, skb)) {
5413 			tcp_reset(sk);
5414 		}
5415 		goto discard;
5416 	}
5417 
5418 	/* Step 2: check RST bit */
5419 	if (th->rst) {
5420 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5421 		 * FIN and SACK too if available):
5422 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5423 		 * the right-most SACK block,
5424 		 * then
5425 		 *     RESET the connection
5426 		 * else
5427 		 *     Send a challenge ACK
5428 		 */
5429 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5430 		    tcp_reset_check(sk, skb)) {
5431 			rst_seq_match = true;
5432 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5433 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5434 			int max_sack = sp[0].end_seq;
5435 			int this_sack;
5436 
5437 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5438 			     ++this_sack) {
5439 				max_sack = after(sp[this_sack].end_seq,
5440 						 max_sack) ?
5441 					sp[this_sack].end_seq : max_sack;
5442 			}
5443 
5444 			if (TCP_SKB_CB(skb)->seq == max_sack)
5445 				rst_seq_match = true;
5446 		}
5447 
5448 		if (rst_seq_match)
5449 			tcp_reset(sk);
5450 		else {
5451 			/* Disable TFO if RST is out-of-order
5452 			 * and no data has been received
5453 			 * for current active TFO socket
5454 			 */
5455 			if (tp->syn_fastopen && !tp->data_segs_in &&
5456 			    sk->sk_state == TCP_ESTABLISHED)
5457 				tcp_fastopen_active_disable(sk);
5458 			tcp_send_challenge_ack(sk, skb);
5459 		}
5460 		goto discard;
5461 	}
5462 
5463 	/* step 3: check security and precedence [ignored] */
5464 
5465 	/* step 4: Check for a SYN
5466 	 * RFC 5961 4.2 : Send a challenge ack
5467 	 */
5468 	if (th->syn) {
5469 syn_challenge:
5470 		if (syn_inerr)
5471 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5472 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5473 		tcp_send_challenge_ack(sk, skb);
5474 		goto discard;
5475 	}
5476 
5477 	return true;
5478 
5479 discard:
5480 	tcp_drop(sk, skb);
5481 	return false;
5482 }
5483 
5484 /*
5485  *	TCP receive function for the ESTABLISHED state.
5486  *
5487  *	It is split into a fast path and a slow path. The fast path is
5488  * 	disabled when:
5489  *	- A zero window was announced from us - zero window probing
5490  *        is only handled properly in the slow path.
5491  *	- Out of order segments arrived.
5492  *	- Urgent data is expected.
5493  *	- There is no buffer space left
5494  *	- Unexpected TCP flags/window values/header lengths are received
5495  *	  (detected by checking the TCP header against pred_flags)
5496  *	- Data is sent in both directions. Fast path only supports pure senders
5497  *	  or pure receivers (this means either the sequence number or the ack
5498  *	  value must stay constant)
5499  *	- Unexpected TCP option.
5500  *
5501  *	When these conditions are not satisfied it drops into a standard
5502  *	receive procedure patterned after RFC793 to handle all cases.
5503  *	The first three cases are guaranteed by proper pred_flags setting,
5504  *	the rest is checked inline. Fast processing is turned on in
5505  *	tcp_data_queue when everything is OK.
5506  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5507 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5508 {
5509 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5510 	struct tcp_sock *tp = tcp_sk(sk);
5511 	unsigned int len = skb->len;
5512 
5513 	/* TCP congestion window tracking */
5514 	trace_tcp_probe(sk, skb);
5515 
5516 	tcp_mstamp_refresh(tp);
5517 	if (unlikely(!sk->sk_rx_dst))
5518 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5519 	/*
5520 	 *	Header prediction.
5521 	 *	The code loosely follows the one in the famous
5522 	 *	"30 instruction TCP receive" Van Jacobson mail.
5523 	 *
5524 	 *	Van's trick is to deposit buffers into socket queue
5525 	 *	on a device interrupt, to call tcp_recv function
5526 	 *	on the receive process context and checksum and copy
5527 	 *	the buffer to user space. smart...
5528 	 *
5529 	 *	Our current scheme is not silly either but we take the
5530 	 *	extra cost of the net_bh soft interrupt processing...
5531 	 *	We do checksum and copy also but from device to kernel.
5532 	 */
5533 
5534 	tp->rx_opt.saw_tstamp = 0;
5535 
5536 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5537 	 *	if header_prediction is to be made
5538 	 *	'S' will always be tp->tcp_header_len >> 2
5539 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5540 	 *  turn it off	(when there are holes in the receive
5541 	 *	 space for instance)
5542 	 *	PSH flag is ignored.
5543 	 */
5544 
5545 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5546 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5547 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5548 		int tcp_header_len = tp->tcp_header_len;
5549 
5550 		/* Timestamp header prediction: tcp_header_len
5551 		 * is automatically equal to th->doff*4 due to pred_flags
5552 		 * match.
5553 		 */
5554 
5555 		/* Check timestamp */
5556 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5557 			/* No? Slow path! */
5558 			if (!tcp_parse_aligned_timestamp(tp, th))
5559 				goto slow_path;
5560 
5561 			/* If PAWS failed, check it more carefully in slow path */
5562 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5563 				goto slow_path;
5564 
5565 			/* DO NOT update ts_recent here, if checksum fails
5566 			 * and timestamp was corrupted part, it will result
5567 			 * in a hung connection since we will drop all
5568 			 * future packets due to the PAWS test.
5569 			 */
5570 		}
5571 
5572 		if (len <= tcp_header_len) {
5573 			/* Bulk data transfer: sender */
5574 			if (len == tcp_header_len) {
5575 				/* Predicted packet is in window by definition.
5576 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5577 				 * Hence, check seq<=rcv_wup reduces to:
5578 				 */
5579 				if (tcp_header_len ==
5580 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5581 				    tp->rcv_nxt == tp->rcv_wup)
5582 					tcp_store_ts_recent(tp);
5583 
5584 				/* We know that such packets are checksummed
5585 				 * on entry.
5586 				 */
5587 				tcp_ack(sk, skb, 0);
5588 				__kfree_skb(skb);
5589 				tcp_data_snd_check(sk);
5590 				/* When receiving pure ack in fast path, update
5591 				 * last ts ecr directly instead of calling
5592 				 * tcp_rcv_rtt_measure_ts()
5593 				 */
5594 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5595 				return;
5596 			} else { /* Header too small */
5597 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5598 				goto discard;
5599 			}
5600 		} else {
5601 			int eaten = 0;
5602 			bool fragstolen = false;
5603 
5604 			if (tcp_checksum_complete(skb))
5605 				goto csum_error;
5606 
5607 			if ((int)skb->truesize > sk->sk_forward_alloc)
5608 				goto step5;
5609 
5610 			/* Predicted packet is in window by definition.
5611 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5612 			 * Hence, check seq<=rcv_wup reduces to:
5613 			 */
5614 			if (tcp_header_len ==
5615 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5616 			    tp->rcv_nxt == tp->rcv_wup)
5617 				tcp_store_ts_recent(tp);
5618 
5619 			tcp_rcv_rtt_measure_ts(sk, skb);
5620 
5621 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5622 
5623 			/* Bulk data transfer: receiver */
5624 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5625 					      &fragstolen);
5626 
5627 			tcp_event_data_recv(sk, skb);
5628 
5629 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5630 				/* Well, only one small jumplet in fast path... */
5631 				tcp_ack(sk, skb, FLAG_DATA);
5632 				tcp_data_snd_check(sk);
5633 				if (!inet_csk_ack_scheduled(sk))
5634 					goto no_ack;
5635 			} else {
5636 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5637 			}
5638 
5639 			__tcp_ack_snd_check(sk, 0);
5640 no_ack:
5641 			if (eaten)
5642 				kfree_skb_partial(skb, fragstolen);
5643 			tcp_data_ready(sk);
5644 			return;
5645 		}
5646 	}
5647 
5648 slow_path:
5649 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5650 		goto csum_error;
5651 
5652 	if (!th->ack && !th->rst && !th->syn)
5653 		goto discard;
5654 
5655 	/*
5656 	 *	Standard slow path.
5657 	 */
5658 
5659 	if (!tcp_validate_incoming(sk, skb, th, 1))
5660 		return;
5661 
5662 step5:
5663 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5664 		goto discard;
5665 
5666 	tcp_rcv_rtt_measure_ts(sk, skb);
5667 
5668 	/* Process urgent data. */
5669 	tcp_urg(sk, skb, th);
5670 
5671 	/* step 7: process the segment text */
5672 	tcp_data_queue(sk, skb);
5673 
5674 	tcp_data_snd_check(sk);
5675 	tcp_ack_snd_check(sk);
5676 	return;
5677 
5678 csum_error:
5679 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5680 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5681 
5682 discard:
5683 	tcp_drop(sk, skb);
5684 }
5685 EXPORT_SYMBOL(tcp_rcv_established);
5686 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5687 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5688 {
5689 	struct tcp_sock *tp = tcp_sk(sk);
5690 	struct inet_connection_sock *icsk = inet_csk(sk);
5691 
5692 	tcp_set_state(sk, TCP_ESTABLISHED);
5693 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5694 
5695 	if (skb) {
5696 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5697 		security_inet_conn_established(sk, skb);
5698 		sk_mark_napi_id(sk, skb);
5699 	}
5700 
5701 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5702 
5703 	/* Prevent spurious tcp_cwnd_restart() on first data
5704 	 * packet.
5705 	 */
5706 	tp->lsndtime = tcp_jiffies32;
5707 
5708 	if (sock_flag(sk, SOCK_KEEPOPEN))
5709 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5710 
5711 	if (!tp->rx_opt.snd_wscale)
5712 		__tcp_fast_path_on(tp, tp->snd_wnd);
5713 	else
5714 		tp->pred_flags = 0;
5715 }
5716 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)5717 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5718 				    struct tcp_fastopen_cookie *cookie)
5719 {
5720 	struct tcp_sock *tp = tcp_sk(sk);
5721 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5722 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5723 	bool syn_drop = false;
5724 
5725 	if (mss == tp->rx_opt.user_mss) {
5726 		struct tcp_options_received opt;
5727 
5728 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5729 		tcp_clear_options(&opt);
5730 		opt.user_mss = opt.mss_clamp = 0;
5731 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5732 		mss = opt.mss_clamp;
5733 	}
5734 
5735 	if (!tp->syn_fastopen) {
5736 		/* Ignore an unsolicited cookie */
5737 		cookie->len = -1;
5738 	} else if (tp->total_retrans) {
5739 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5740 		 * acknowledges data. Presumably the remote received only
5741 		 * the retransmitted (regular) SYNs: either the original
5742 		 * SYN-data or the corresponding SYN-ACK was dropped.
5743 		 */
5744 		syn_drop = (cookie->len < 0 && data);
5745 	} else if (cookie->len < 0 && !tp->syn_data) {
5746 		/* We requested a cookie but didn't get it. If we did not use
5747 		 * the (old) exp opt format then try so next time (try_exp=1).
5748 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5749 		 */
5750 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5751 	}
5752 
5753 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5754 
5755 	if (data) { /* Retransmit unacked data in SYN */
5756 		skb_rbtree_walk_from(data) {
5757 			if (__tcp_retransmit_skb(sk, data, 1))
5758 				break;
5759 		}
5760 		tcp_rearm_rto(sk);
5761 		NET_INC_STATS(sock_net(sk),
5762 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5763 		return true;
5764 	}
5765 	tp->syn_data_acked = tp->syn_data;
5766 	if (tp->syn_data_acked) {
5767 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5768 		/* SYN-data is counted as two separate packets in tcp_ack() */
5769 		if (tp->delivered > 1)
5770 			--tp->delivered;
5771 	}
5772 
5773 	tcp_fastopen_add_skb(sk, synack);
5774 
5775 	return false;
5776 }
5777 
smc_check_reset_syn(struct tcp_sock * tp)5778 static void smc_check_reset_syn(struct tcp_sock *tp)
5779 {
5780 #if IS_ENABLED(CONFIG_SMC)
5781 	if (static_branch_unlikely(&tcp_have_smc)) {
5782 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5783 			tp->syn_smc = 0;
5784 	}
5785 #endif
5786 }
5787 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5788 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5789 					 const struct tcphdr *th)
5790 {
5791 	struct inet_connection_sock *icsk = inet_csk(sk);
5792 	struct tcp_sock *tp = tcp_sk(sk);
5793 	struct tcp_fastopen_cookie foc = { .len = -1 };
5794 	int saved_clamp = tp->rx_opt.mss_clamp;
5795 	bool fastopen_fail;
5796 
5797 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5798 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5799 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5800 
5801 	if (th->ack) {
5802 		/* rfc793:
5803 		 * "If the state is SYN-SENT then
5804 		 *    first check the ACK bit
5805 		 *      If the ACK bit is set
5806 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5807 		 *        a reset (unless the RST bit is set, if so drop
5808 		 *        the segment and return)"
5809 		 */
5810 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5811 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5812 			goto reset_and_undo;
5813 
5814 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5815 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5816 			     tcp_time_stamp(tp))) {
5817 			NET_INC_STATS(sock_net(sk),
5818 					LINUX_MIB_PAWSACTIVEREJECTED);
5819 			goto reset_and_undo;
5820 		}
5821 
5822 		/* Now ACK is acceptable.
5823 		 *
5824 		 * "If the RST bit is set
5825 		 *    If the ACK was acceptable then signal the user "error:
5826 		 *    connection reset", drop the segment, enter CLOSED state,
5827 		 *    delete TCB, and return."
5828 		 */
5829 
5830 		if (th->rst) {
5831 			tcp_reset(sk);
5832 			goto discard;
5833 		}
5834 
5835 		/* rfc793:
5836 		 *   "fifth, if neither of the SYN or RST bits is set then
5837 		 *    drop the segment and return."
5838 		 *
5839 		 *    See note below!
5840 		 *                                        --ANK(990513)
5841 		 */
5842 		if (!th->syn)
5843 			goto discard_and_undo;
5844 
5845 		/* rfc793:
5846 		 *   "If the SYN bit is on ...
5847 		 *    are acceptable then ...
5848 		 *    (our SYN has been ACKed), change the connection
5849 		 *    state to ESTABLISHED..."
5850 		 */
5851 
5852 		tcp_ecn_rcv_synack(tp, th);
5853 
5854 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5855 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5856 
5857 		/* Ok.. it's good. Set up sequence numbers and
5858 		 * move to established.
5859 		 */
5860 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5861 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5862 
5863 		/* RFC1323: The window in SYN & SYN/ACK segments is
5864 		 * never scaled.
5865 		 */
5866 		tp->snd_wnd = ntohs(th->window);
5867 
5868 		if (!tp->rx_opt.wscale_ok) {
5869 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5870 			tp->window_clamp = min(tp->window_clamp, 65535U);
5871 		}
5872 
5873 		if (tp->rx_opt.saw_tstamp) {
5874 			tp->rx_opt.tstamp_ok	   = 1;
5875 			tp->tcp_header_len =
5876 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5877 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5878 			tcp_store_ts_recent(tp);
5879 		} else {
5880 			tp->tcp_header_len = sizeof(struct tcphdr);
5881 		}
5882 
5883 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5884 		tcp_initialize_rcv_mss(sk);
5885 
5886 		/* Remember, tcp_poll() does not lock socket!
5887 		 * Change state from SYN-SENT only after copied_seq
5888 		 * is initialized. */
5889 		tp->copied_seq = tp->rcv_nxt;
5890 
5891 		smc_check_reset_syn(tp);
5892 
5893 		smp_mb();
5894 
5895 		tcp_finish_connect(sk, skb);
5896 
5897 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5898 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5899 
5900 		if (!sock_flag(sk, SOCK_DEAD)) {
5901 			sk->sk_state_change(sk);
5902 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5903 		}
5904 		if (fastopen_fail)
5905 			return -1;
5906 		if (sk->sk_write_pending ||
5907 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5908 		    icsk->icsk_ack.pingpong) {
5909 			/* Save one ACK. Data will be ready after
5910 			 * several ticks, if write_pending is set.
5911 			 *
5912 			 * It may be deleted, but with this feature tcpdumps
5913 			 * look so _wonderfully_ clever, that I was not able
5914 			 * to stand against the temptation 8)     --ANK
5915 			 */
5916 			inet_csk_schedule_ack(sk);
5917 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5918 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5919 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5920 
5921 discard:
5922 			tcp_drop(sk, skb);
5923 			return 0;
5924 		} else {
5925 			tcp_send_ack(sk);
5926 		}
5927 		return -1;
5928 	}
5929 
5930 	/* No ACK in the segment */
5931 
5932 	if (th->rst) {
5933 		/* rfc793:
5934 		 * "If the RST bit is set
5935 		 *
5936 		 *      Otherwise (no ACK) drop the segment and return."
5937 		 */
5938 
5939 		goto discard_and_undo;
5940 	}
5941 
5942 	/* PAWS check. */
5943 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5944 	    tcp_paws_reject(&tp->rx_opt, 0))
5945 		goto discard_and_undo;
5946 
5947 	if (th->syn) {
5948 		/* We see SYN without ACK. It is attempt of
5949 		 * simultaneous connect with crossed SYNs.
5950 		 * Particularly, it can be connect to self.
5951 		 */
5952 		tcp_set_state(sk, TCP_SYN_RECV);
5953 
5954 		if (tp->rx_opt.saw_tstamp) {
5955 			tp->rx_opt.tstamp_ok = 1;
5956 			tcp_store_ts_recent(tp);
5957 			tp->tcp_header_len =
5958 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5959 		} else {
5960 			tp->tcp_header_len = sizeof(struct tcphdr);
5961 		}
5962 
5963 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5964 		tp->copied_seq = tp->rcv_nxt;
5965 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5966 
5967 		/* RFC1323: The window in SYN & SYN/ACK segments is
5968 		 * never scaled.
5969 		 */
5970 		tp->snd_wnd    = ntohs(th->window);
5971 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5972 		tp->max_window = tp->snd_wnd;
5973 
5974 		tcp_ecn_rcv_syn(tp, th);
5975 
5976 		tcp_mtup_init(sk);
5977 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5978 		tcp_initialize_rcv_mss(sk);
5979 
5980 		tcp_send_synack(sk);
5981 #if 0
5982 		/* Note, we could accept data and URG from this segment.
5983 		 * There are no obstacles to make this (except that we must
5984 		 * either change tcp_recvmsg() to prevent it from returning data
5985 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5986 		 *
5987 		 * However, if we ignore data in ACKless segments sometimes,
5988 		 * we have no reasons to accept it sometimes.
5989 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5990 		 * is not flawless. So, discard packet for sanity.
5991 		 * Uncomment this return to process the data.
5992 		 */
5993 		return -1;
5994 #else
5995 		goto discard;
5996 #endif
5997 	}
5998 	/* "fifth, if neither of the SYN or RST bits is set then
5999 	 * drop the segment and return."
6000 	 */
6001 
6002 discard_and_undo:
6003 	tcp_clear_options(&tp->rx_opt);
6004 	tp->rx_opt.mss_clamp = saved_clamp;
6005 	goto discard;
6006 
6007 reset_and_undo:
6008 	tcp_clear_options(&tp->rx_opt);
6009 	tp->rx_opt.mss_clamp = saved_clamp;
6010 	return 1;
6011 }
6012 
6013 /*
6014  *	This function implements the receiving procedure of RFC 793 for
6015  *	all states except ESTABLISHED and TIME_WAIT.
6016  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6017  *	address independent.
6018  */
6019 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6020 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6021 {
6022 	struct tcp_sock *tp = tcp_sk(sk);
6023 	struct inet_connection_sock *icsk = inet_csk(sk);
6024 	const struct tcphdr *th = tcp_hdr(skb);
6025 	struct request_sock *req;
6026 	int queued = 0;
6027 	bool acceptable;
6028 
6029 	switch (sk->sk_state) {
6030 	case TCP_CLOSE:
6031 		goto discard;
6032 
6033 	case TCP_LISTEN:
6034 		if (th->ack)
6035 			return 1;
6036 
6037 		if (th->rst)
6038 			goto discard;
6039 
6040 		if (th->syn) {
6041 			if (th->fin)
6042 				goto discard;
6043 			/* It is possible that we process SYN packets from backlog,
6044 			 * so we need to make sure to disable BH and RCU right there.
6045 			 */
6046 			rcu_read_lock();
6047 			local_bh_disable();
6048 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6049 			local_bh_enable();
6050 			rcu_read_unlock();
6051 
6052 			if (!acceptable)
6053 				return 1;
6054 			consume_skb(skb);
6055 			return 0;
6056 		}
6057 		goto discard;
6058 
6059 	case TCP_SYN_SENT:
6060 		tp->rx_opt.saw_tstamp = 0;
6061 		tcp_mstamp_refresh(tp);
6062 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6063 		if (queued >= 0)
6064 			return queued;
6065 
6066 		/* Do step6 onward by hand. */
6067 		tcp_urg(sk, skb, th);
6068 		__kfree_skb(skb);
6069 		tcp_data_snd_check(sk);
6070 		return 0;
6071 	}
6072 
6073 	tcp_mstamp_refresh(tp);
6074 	tp->rx_opt.saw_tstamp = 0;
6075 	req = tp->fastopen_rsk;
6076 	if (req) {
6077 		bool req_stolen;
6078 
6079 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6080 		    sk->sk_state != TCP_FIN_WAIT1);
6081 
6082 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6083 			goto discard;
6084 	}
6085 
6086 	if (!th->ack && !th->rst && !th->syn)
6087 		goto discard;
6088 
6089 	if (!tcp_validate_incoming(sk, skb, th, 0))
6090 		return 0;
6091 
6092 	/* step 5: check the ACK field */
6093 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6094 				      FLAG_UPDATE_TS_RECENT |
6095 				      FLAG_NO_CHALLENGE_ACK) > 0;
6096 
6097 	if (!acceptable) {
6098 		if (sk->sk_state == TCP_SYN_RECV)
6099 			return 1;	/* send one RST */
6100 		tcp_send_challenge_ack(sk, skb);
6101 		goto discard;
6102 	}
6103 	switch (sk->sk_state) {
6104 	case TCP_SYN_RECV:
6105 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6106 		if (!tp->srtt_us)
6107 			tcp_synack_rtt_meas(sk, req);
6108 
6109 		/* Once we leave TCP_SYN_RECV, we no longer need req
6110 		 * so release it.
6111 		 */
6112 		if (req) {
6113 			inet_csk(sk)->icsk_retransmits = 0;
6114 			reqsk_fastopen_remove(sk, req, false);
6115 			/* Re-arm the timer because data may have been sent out.
6116 			 * This is similar to the regular data transmission case
6117 			 * when new data has just been ack'ed.
6118 			 *
6119 			 * (TFO) - we could try to be more aggressive and
6120 			 * retransmitting any data sooner based on when they
6121 			 * are sent out.
6122 			 */
6123 			tcp_rearm_rto(sk);
6124 		} else {
6125 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6126 			tp->copied_seq = tp->rcv_nxt;
6127 		}
6128 		smp_mb();
6129 		tcp_set_state(sk, TCP_ESTABLISHED);
6130 		sk->sk_state_change(sk);
6131 
6132 		/* Note, that this wakeup is only for marginal crossed SYN case.
6133 		 * Passively open sockets are not waked up, because
6134 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6135 		 */
6136 		if (sk->sk_socket)
6137 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6138 
6139 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6140 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6141 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6142 
6143 		if (tp->rx_opt.tstamp_ok)
6144 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6145 
6146 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6147 			tcp_update_pacing_rate(sk);
6148 
6149 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6150 		tp->lsndtime = tcp_jiffies32;
6151 
6152 		tcp_initialize_rcv_mss(sk);
6153 		tcp_fast_path_on(tp);
6154 		break;
6155 
6156 	case TCP_FIN_WAIT1: {
6157 		int tmo;
6158 
6159 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6160 		 * Fast Open socket and this is the first acceptable
6161 		 * ACK we have received, this would have acknowledged
6162 		 * our SYNACK so stop the SYNACK timer.
6163 		 */
6164 		if (req) {
6165 			/* We no longer need the request sock. */
6166 			reqsk_fastopen_remove(sk, req, false);
6167 			tcp_rearm_rto(sk);
6168 		}
6169 		if (tp->snd_una != tp->write_seq)
6170 			break;
6171 
6172 		tcp_set_state(sk, TCP_FIN_WAIT2);
6173 		sk->sk_shutdown |= SEND_SHUTDOWN;
6174 
6175 		sk_dst_confirm(sk);
6176 
6177 		if (!sock_flag(sk, SOCK_DEAD)) {
6178 			/* Wake up lingering close() */
6179 			sk->sk_state_change(sk);
6180 			break;
6181 		}
6182 
6183 		if (tp->linger2 < 0) {
6184 			tcp_done(sk);
6185 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6186 			return 1;
6187 		}
6188 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6189 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6190 			/* Receive out of order FIN after close() */
6191 			if (tp->syn_fastopen && th->fin)
6192 				tcp_fastopen_active_disable(sk);
6193 			tcp_done(sk);
6194 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6195 			return 1;
6196 		}
6197 
6198 		tmo = tcp_fin_time(sk);
6199 		if (tmo > TCP_TIMEWAIT_LEN) {
6200 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6201 		} else if (th->fin || sock_owned_by_user(sk)) {
6202 			/* Bad case. We could lose such FIN otherwise.
6203 			 * It is not a big problem, but it looks confusing
6204 			 * and not so rare event. We still can lose it now,
6205 			 * if it spins in bh_lock_sock(), but it is really
6206 			 * marginal case.
6207 			 */
6208 			inet_csk_reset_keepalive_timer(sk, tmo);
6209 		} else {
6210 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6211 			goto discard;
6212 		}
6213 		break;
6214 	}
6215 
6216 	case TCP_CLOSING:
6217 		if (tp->snd_una == tp->write_seq) {
6218 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6219 			goto discard;
6220 		}
6221 		break;
6222 
6223 	case TCP_LAST_ACK:
6224 		if (tp->snd_una == tp->write_seq) {
6225 			tcp_update_metrics(sk);
6226 			tcp_done(sk);
6227 			goto discard;
6228 		}
6229 		break;
6230 	}
6231 
6232 	/* step 6: check the URG bit */
6233 	tcp_urg(sk, skb, th);
6234 
6235 	/* step 7: process the segment text */
6236 	switch (sk->sk_state) {
6237 	case TCP_CLOSE_WAIT:
6238 	case TCP_CLOSING:
6239 	case TCP_LAST_ACK:
6240 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6241 			break;
6242 		/* fall through */
6243 	case TCP_FIN_WAIT1:
6244 	case TCP_FIN_WAIT2:
6245 		/* RFC 793 says to queue data in these states,
6246 		 * RFC 1122 says we MUST send a reset.
6247 		 * BSD 4.4 also does reset.
6248 		 */
6249 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6250 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6251 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6252 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6253 				tcp_reset(sk);
6254 				return 1;
6255 			}
6256 		}
6257 		/* Fall through */
6258 	case TCP_ESTABLISHED:
6259 		tcp_data_queue(sk, skb);
6260 		queued = 1;
6261 		break;
6262 	}
6263 
6264 	/* tcp_data could move socket to TIME-WAIT */
6265 	if (sk->sk_state != TCP_CLOSE) {
6266 		tcp_data_snd_check(sk);
6267 		tcp_ack_snd_check(sk);
6268 	}
6269 
6270 	if (!queued) {
6271 discard:
6272 		tcp_drop(sk, skb);
6273 	}
6274 	return 0;
6275 }
6276 EXPORT_SYMBOL(tcp_rcv_state_process);
6277 
pr_drop_req(struct request_sock * req,__u16 port,int family)6278 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6279 {
6280 	struct inet_request_sock *ireq = inet_rsk(req);
6281 
6282 	if (family == AF_INET)
6283 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6284 				    &ireq->ir_rmt_addr, port);
6285 #if IS_ENABLED(CONFIG_IPV6)
6286 	else if (family == AF_INET6)
6287 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6288 				    &ireq->ir_v6_rmt_addr, port);
6289 #endif
6290 }
6291 
6292 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6293  *
6294  * If we receive a SYN packet with these bits set, it means a
6295  * network is playing bad games with TOS bits. In order to
6296  * avoid possible false congestion notifications, we disable
6297  * TCP ECN negotiation.
6298  *
6299  * Exception: tcp_ca wants ECN. This is required for DCTCP
6300  * congestion control: Linux DCTCP asserts ECT on all packets,
6301  * including SYN, which is most optimal solution; however,
6302  * others, such as FreeBSD do not.
6303  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6304 static void tcp_ecn_create_request(struct request_sock *req,
6305 				   const struct sk_buff *skb,
6306 				   const struct sock *listen_sk,
6307 				   const struct dst_entry *dst)
6308 {
6309 	const struct tcphdr *th = tcp_hdr(skb);
6310 	const struct net *net = sock_net(listen_sk);
6311 	bool th_ecn = th->ece && th->cwr;
6312 	bool ect, ecn_ok;
6313 	u32 ecn_ok_dst;
6314 
6315 	if (!th_ecn)
6316 		return;
6317 
6318 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6319 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6320 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6321 
6322 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6323 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6324 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6325 		inet_rsk(req)->ecn_ok = 1;
6326 }
6327 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6328 static void tcp_openreq_init(struct request_sock *req,
6329 			     const struct tcp_options_received *rx_opt,
6330 			     struct sk_buff *skb, const struct sock *sk)
6331 {
6332 	struct inet_request_sock *ireq = inet_rsk(req);
6333 
6334 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6335 	req->cookie_ts = 0;
6336 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6337 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6338 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6339 	tcp_rsk(req)->last_oow_ack_time = 0;
6340 	req->mss = rx_opt->mss_clamp;
6341 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6342 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6343 	ireq->sack_ok = rx_opt->sack_ok;
6344 	ireq->snd_wscale = rx_opt->snd_wscale;
6345 	ireq->wscale_ok = rx_opt->wscale_ok;
6346 	ireq->acked = 0;
6347 	ireq->ecn_ok = 0;
6348 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6349 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6350 	ireq->ir_mark = inet_request_mark(sk, skb);
6351 #if IS_ENABLED(CONFIG_SMC)
6352 	ireq->smc_ok = rx_opt->smc_ok;
6353 #endif
6354 }
6355 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6356 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6357 				      struct sock *sk_listener,
6358 				      bool attach_listener)
6359 {
6360 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6361 					       attach_listener);
6362 
6363 	if (req) {
6364 		struct inet_request_sock *ireq = inet_rsk(req);
6365 
6366 		ireq->ireq_opt = NULL;
6367 #if IS_ENABLED(CONFIG_IPV6)
6368 		ireq->pktopts = NULL;
6369 #endif
6370 		atomic64_set(&ireq->ir_cookie, 0);
6371 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6372 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6373 		ireq->ireq_family = sk_listener->sk_family;
6374 	}
6375 
6376 	return req;
6377 }
6378 EXPORT_SYMBOL(inet_reqsk_alloc);
6379 
6380 /*
6381  * Return true if a syncookie should be sent
6382  */
tcp_syn_flood_action(const struct sock * sk,const struct sk_buff * skb,const char * proto)6383 static bool tcp_syn_flood_action(const struct sock *sk,
6384 				 const struct sk_buff *skb,
6385 				 const char *proto)
6386 {
6387 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6388 	const char *msg = "Dropping request";
6389 	bool want_cookie = false;
6390 	struct net *net = sock_net(sk);
6391 
6392 #ifdef CONFIG_SYN_COOKIES
6393 	if (net->ipv4.sysctl_tcp_syncookies) {
6394 		msg = "Sending cookies";
6395 		want_cookie = true;
6396 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6397 	} else
6398 #endif
6399 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6400 
6401 	if (!queue->synflood_warned &&
6402 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6403 	    xchg(&queue->synflood_warned, 1) == 0)
6404 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6405 				     proto, ntohs(tcp_hdr(skb)->dest), msg);
6406 
6407 	return want_cookie;
6408 }
6409 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6410 static void tcp_reqsk_record_syn(const struct sock *sk,
6411 				 struct request_sock *req,
6412 				 const struct sk_buff *skb)
6413 {
6414 	if (tcp_sk(sk)->save_syn) {
6415 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6416 		u32 *copy;
6417 
6418 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6419 		if (copy) {
6420 			copy[0] = len;
6421 			memcpy(&copy[1], skb_network_header(skb), len);
6422 			req->saved_syn = copy;
6423 		}
6424 	}
6425 }
6426 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6427 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6428 		     const struct tcp_request_sock_ops *af_ops,
6429 		     struct sock *sk, struct sk_buff *skb)
6430 {
6431 	struct tcp_fastopen_cookie foc = { .len = -1 };
6432 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6433 	struct tcp_options_received tmp_opt;
6434 	struct tcp_sock *tp = tcp_sk(sk);
6435 	struct net *net = sock_net(sk);
6436 	struct sock *fastopen_sk = NULL;
6437 	struct request_sock *req;
6438 	bool want_cookie = false;
6439 	struct dst_entry *dst;
6440 	struct flowi fl;
6441 
6442 	/* TW buckets are converted to open requests without
6443 	 * limitations, they conserve resources and peer is
6444 	 * evidently real one.
6445 	 */
6446 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6447 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6448 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6449 		if (!want_cookie)
6450 			goto drop;
6451 	}
6452 
6453 	if (sk_acceptq_is_full(sk)) {
6454 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6455 		goto drop;
6456 	}
6457 
6458 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6459 	if (!req)
6460 		goto drop;
6461 
6462 	tcp_rsk(req)->af_specific = af_ops;
6463 	tcp_rsk(req)->ts_off = 0;
6464 
6465 	tcp_clear_options(&tmp_opt);
6466 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6467 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6468 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6469 			  want_cookie ? NULL : &foc);
6470 
6471 	if (want_cookie && !tmp_opt.saw_tstamp)
6472 		tcp_clear_options(&tmp_opt);
6473 
6474 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6475 		tmp_opt.smc_ok = 0;
6476 
6477 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6478 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6479 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6480 
6481 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6482 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6483 
6484 	af_ops->init_req(req, sk, skb);
6485 
6486 	if (security_inet_conn_request(sk, skb, req))
6487 		goto drop_and_free;
6488 
6489 	if (tmp_opt.tstamp_ok)
6490 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6491 
6492 	dst = af_ops->route_req(sk, &fl, req);
6493 	if (!dst)
6494 		goto drop_and_free;
6495 
6496 	if (!want_cookie && !isn) {
6497 		/* Kill the following clause, if you dislike this way. */
6498 		if (!net->ipv4.sysctl_tcp_syncookies &&
6499 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6500 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6501 		    !tcp_peer_is_proven(req, dst)) {
6502 			/* Without syncookies last quarter of
6503 			 * backlog is filled with destinations,
6504 			 * proven to be alive.
6505 			 * It means that we continue to communicate
6506 			 * to destinations, already remembered
6507 			 * to the moment of synflood.
6508 			 */
6509 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6510 				    rsk_ops->family);
6511 			goto drop_and_release;
6512 		}
6513 
6514 		isn = af_ops->init_seq(skb);
6515 	}
6516 
6517 	tcp_ecn_create_request(req, skb, sk, dst);
6518 
6519 	if (want_cookie) {
6520 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6521 		req->cookie_ts = tmp_opt.tstamp_ok;
6522 		if (!tmp_opt.tstamp_ok)
6523 			inet_rsk(req)->ecn_ok = 0;
6524 	}
6525 
6526 	tcp_rsk(req)->snt_isn = isn;
6527 	tcp_rsk(req)->txhash = net_tx_rndhash();
6528 	tcp_openreq_init_rwin(req, sk, dst);
6529 	sk_rx_queue_set(req_to_sk(req), skb);
6530 	if (!want_cookie) {
6531 		tcp_reqsk_record_syn(sk, req, skb);
6532 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6533 	}
6534 	if (fastopen_sk) {
6535 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6536 				    &foc, TCP_SYNACK_FASTOPEN);
6537 		/* Add the child socket directly into the accept queue */
6538 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6539 			reqsk_fastopen_remove(fastopen_sk, req, false);
6540 			bh_unlock_sock(fastopen_sk);
6541 			sock_put(fastopen_sk);
6542 			reqsk_put(req);
6543 			goto drop;
6544 		}
6545 		sk->sk_data_ready(sk);
6546 		bh_unlock_sock(fastopen_sk);
6547 		sock_put(fastopen_sk);
6548 	} else {
6549 		tcp_rsk(req)->tfo_listener = false;
6550 		if (!want_cookie)
6551 			inet_csk_reqsk_queue_hash_add(sk, req,
6552 				tcp_timeout_init((struct sock *)req));
6553 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6554 				    !want_cookie ? TCP_SYNACK_NORMAL :
6555 						   TCP_SYNACK_COOKIE);
6556 		if (want_cookie) {
6557 			reqsk_free(req);
6558 			return 0;
6559 		}
6560 	}
6561 	reqsk_put(req);
6562 	return 0;
6563 
6564 drop_and_release:
6565 	dst_release(dst);
6566 drop_and_free:
6567 	reqsk_free(req);
6568 drop:
6569 	tcp_listendrop(sk);
6570 	return 0;
6571 }
6572 EXPORT_SYMBOL(tcp_conn_request);
6573