• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45 
46 #include <trace/events/tcp.h>
47 
48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
49 			   int push_one, gfp_t gfp);
50 
51 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
53 {
54 	struct inet_connection_sock *icsk = inet_csk(sk);
55 	struct tcp_sock *tp = tcp_sk(sk);
56 	unsigned int prior_packets = tp->packets_out;
57 
58 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
59 
60 	__skb_unlink(skb, &sk->sk_write_queue);
61 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
62 
63 	if (tp->highest_sack == NULL)
64 		tp->highest_sack = skb;
65 
66 	tp->packets_out += tcp_skb_pcount(skb);
67 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
68 		tcp_rearm_rto(sk);
69 
70 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
71 		      tcp_skb_pcount(skb));
72 }
73 
74 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
75  * window scaling factor due to loss of precision.
76  * If window has been shrunk, what should we make? It is not clear at all.
77  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
78  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
79  * invalid. OK, let's make this for now:
80  */
tcp_acceptable_seq(const struct sock * sk)81 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
82 {
83 	const struct tcp_sock *tp = tcp_sk(sk);
84 
85 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
86 	    (tp->rx_opt.wscale_ok &&
87 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
88 		return tp->snd_nxt;
89 	else
90 		return tcp_wnd_end(tp);
91 }
92 
93 /* Calculate mss to advertise in SYN segment.
94  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
95  *
96  * 1. It is independent of path mtu.
97  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
98  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
99  *    attached devices, because some buggy hosts are confused by
100  *    large MSS.
101  * 4. We do not make 3, we advertise MSS, calculated from first
102  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
103  *    This may be overridden via information stored in routing table.
104  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
105  *    probably even Jumbo".
106  */
tcp_advertise_mss(struct sock * sk)107 static __u16 tcp_advertise_mss(struct sock *sk)
108 {
109 	struct tcp_sock *tp = tcp_sk(sk);
110 	const struct dst_entry *dst = __sk_dst_get(sk);
111 	int mss = tp->advmss;
112 
113 	if (dst) {
114 		unsigned int metric = dst_metric_advmss(dst);
115 
116 		if (metric < mss) {
117 			mss = metric;
118 			tp->advmss = mss;
119 		}
120 	}
121 
122 	return (__u16)mss;
123 }
124 
125 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
126  * This is the first part of cwnd validation mechanism.
127  */
tcp_cwnd_restart(struct sock * sk,s32 delta)128 void tcp_cwnd_restart(struct sock *sk, s32 delta)
129 {
130 	struct tcp_sock *tp = tcp_sk(sk);
131 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
132 	u32 cwnd = tp->snd_cwnd;
133 
134 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
135 
136 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
137 	restart_cwnd = min(restart_cwnd, cwnd);
138 
139 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
140 		cwnd >>= 1;
141 	tp->snd_cwnd = max(cwnd, restart_cwnd);
142 	tp->snd_cwnd_stamp = tcp_jiffies32;
143 	tp->snd_cwnd_used = 0;
144 }
145 
146 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)147 static void tcp_event_data_sent(struct tcp_sock *tp,
148 				struct sock *sk)
149 {
150 	struct inet_connection_sock *icsk = inet_csk(sk);
151 	const u32 now = tcp_jiffies32;
152 
153 	if (tcp_packets_in_flight(tp) == 0)
154 		tcp_ca_event(sk, CA_EVENT_TX_START);
155 
156 	tp->lsndtime = now;
157 
158 	/* If it is a reply for ato after last received
159 	 * packet, enter pingpong mode.
160 	 */
161 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
162 		icsk->icsk_ack.pingpong = 1;
163 }
164 
165 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts,u32 rcv_nxt)166 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
167 				      u32 rcv_nxt)
168 {
169 	struct tcp_sock *tp = tcp_sk(sk);
170 
171 	if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
172 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
173 			      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
174 		tp->compressed_ack = TCP_FASTRETRANS_THRESH;
175 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
176 			__sock_put(sk);
177 	}
178 
179 	if (unlikely(rcv_nxt != tp->rcv_nxt))
180 		return;  /* Special ACK sent by DCTCP to reflect ECN */
181 	tcp_dec_quickack_mode(sk, pkts);
182 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
183 }
184 
185 /* Determine a window scaling and initial window to offer.
186  * Based on the assumption that the given amount of space
187  * will be offered. Store the results in the tp structure.
188  * NOTE: for smooth operation initial space offering should
189  * be a multiple of mss if possible. We assume here that mss >= 1.
190  * This MUST be enforced by all callers.
191  */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)192 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
193 			       __u32 *rcv_wnd, __u32 *window_clamp,
194 			       int wscale_ok, __u8 *rcv_wscale,
195 			       __u32 init_rcv_wnd)
196 {
197 	unsigned int space = (__space < 0 ? 0 : __space);
198 
199 	/* If no clamp set the clamp to the max possible scaled window */
200 	if (*window_clamp == 0)
201 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
202 	space = min(*window_clamp, space);
203 
204 	/* Quantize space offering to a multiple of mss if possible. */
205 	if (space > mss)
206 		space = rounddown(space, mss);
207 
208 	/* NOTE: offering an initial window larger than 32767
209 	 * will break some buggy TCP stacks. If the admin tells us
210 	 * it is likely we could be speaking with such a buggy stack
211 	 * we will truncate our initial window offering to 32K-1
212 	 * unless the remote has sent us a window scaling option,
213 	 * which we interpret as a sign the remote TCP is not
214 	 * misinterpreting the window field as a signed quantity.
215 	 */
216 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
217 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
218 	else
219 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
220 
221 	if (init_rcv_wnd)
222 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
223 
224 	(*rcv_wscale) = 0;
225 	if (wscale_ok) {
226 		/* Set window scaling on max possible window */
227 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
228 		space = max_t(u32, space, sysctl_rmem_max);
229 		space = min_t(u32, space, *window_clamp);
230 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
231 			space >>= 1;
232 			(*rcv_wscale)++;
233 		}
234 	}
235 	/* Set the clamp no higher than max representable value */
236 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
237 }
238 EXPORT_SYMBOL(tcp_select_initial_window);
239 
240 /* Chose a new window to advertise, update state in tcp_sock for the
241  * socket, and return result with RFC1323 scaling applied.  The return
242  * value can be stuffed directly into th->window for an outgoing
243  * frame.
244  */
tcp_select_window(struct sock * sk)245 static u16 tcp_select_window(struct sock *sk)
246 {
247 	struct tcp_sock *tp = tcp_sk(sk);
248 	u32 old_win = tp->rcv_wnd;
249 	u32 cur_win = tcp_receive_window(tp);
250 	u32 new_win = __tcp_select_window(sk);
251 
252 	/* Never shrink the offered window */
253 	if (new_win < cur_win) {
254 		/* Danger Will Robinson!
255 		 * Don't update rcv_wup/rcv_wnd here or else
256 		 * we will not be able to advertise a zero
257 		 * window in time.  --DaveM
258 		 *
259 		 * Relax Will Robinson.
260 		 */
261 		if (new_win == 0)
262 			NET_INC_STATS(sock_net(sk),
263 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
264 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
265 	}
266 	tp->rcv_wnd = new_win;
267 	tp->rcv_wup = tp->rcv_nxt;
268 
269 	/* Make sure we do not exceed the maximum possible
270 	 * scaled window.
271 	 */
272 	if (!tp->rx_opt.rcv_wscale &&
273 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
274 		new_win = min(new_win, MAX_TCP_WINDOW);
275 	else
276 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
277 
278 	/* RFC1323 scaling applied */
279 	new_win >>= tp->rx_opt.rcv_wscale;
280 
281 	/* If we advertise zero window, disable fast path. */
282 	if (new_win == 0) {
283 		tp->pred_flags = 0;
284 		if (old_win)
285 			NET_INC_STATS(sock_net(sk),
286 				      LINUX_MIB_TCPTOZEROWINDOWADV);
287 	} else if (old_win == 0) {
288 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
289 	}
290 
291 	return new_win;
292 }
293 
294 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)295 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
296 {
297 	const struct tcp_sock *tp = tcp_sk(sk);
298 
299 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
300 	if (!(tp->ecn_flags & TCP_ECN_OK))
301 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
302 	else if (tcp_ca_needs_ecn(sk) ||
303 		 tcp_bpf_ca_needs_ecn(sk))
304 		INET_ECN_xmit(sk);
305 }
306 
307 /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)308 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
309 {
310 	struct tcp_sock *tp = tcp_sk(sk);
311 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
312 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
313 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
314 
315 	if (!use_ecn) {
316 		const struct dst_entry *dst = __sk_dst_get(sk);
317 
318 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
319 			use_ecn = true;
320 	}
321 
322 	tp->ecn_flags = 0;
323 
324 	if (use_ecn) {
325 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
326 		tp->ecn_flags = TCP_ECN_OK;
327 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
328 			INET_ECN_xmit(sk);
329 	}
330 }
331 
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)332 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
333 {
334 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
335 		/* tp->ecn_flags are cleared at a later point in time when
336 		 * SYN ACK is ultimatively being received.
337 		 */
338 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
339 }
340 
341 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)342 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
343 {
344 	if (inet_rsk(req)->ecn_ok)
345 		th->ece = 1;
346 }
347 
348 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
349  * be sent.
350  */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)351 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
352 			 struct tcphdr *th, int tcp_header_len)
353 {
354 	struct tcp_sock *tp = tcp_sk(sk);
355 
356 	if (tp->ecn_flags & TCP_ECN_OK) {
357 		/* Not-retransmitted data segment: set ECT and inject CWR. */
358 		if (skb->len != tcp_header_len &&
359 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
360 			INET_ECN_xmit(sk);
361 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
362 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
363 				th->cwr = 1;
364 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
365 			}
366 		} else if (!tcp_ca_needs_ecn(sk)) {
367 			/* ACK or retransmitted segment: clear ECT|CE */
368 			INET_ECN_dontxmit(sk);
369 		}
370 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
371 			th->ece = 1;
372 	}
373 }
374 
375 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
376  * auto increment end seqno.
377  */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)378 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
379 {
380 	skb->ip_summed = CHECKSUM_PARTIAL;
381 
382 	TCP_SKB_CB(skb)->tcp_flags = flags;
383 	TCP_SKB_CB(skb)->sacked = 0;
384 
385 	tcp_skb_pcount_set(skb, 1);
386 
387 	TCP_SKB_CB(skb)->seq = seq;
388 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
389 		seq++;
390 	TCP_SKB_CB(skb)->end_seq = seq;
391 }
392 
tcp_urg_mode(const struct tcp_sock * tp)393 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
394 {
395 	return tp->snd_una != tp->snd_up;
396 }
397 
398 #define OPTION_SACK_ADVERTISE	(1 << 0)
399 #define OPTION_TS		(1 << 1)
400 #define OPTION_MD5		(1 << 2)
401 #define OPTION_WSCALE		(1 << 3)
402 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
403 #define OPTION_SMC		(1 << 9)
404 
smc_options_write(__be32 * ptr,u16 * options)405 static void smc_options_write(__be32 *ptr, u16 *options)
406 {
407 #if IS_ENABLED(CONFIG_SMC)
408 	if (static_branch_unlikely(&tcp_have_smc)) {
409 		if (unlikely(OPTION_SMC & *options)) {
410 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
411 				       (TCPOPT_NOP  << 16) |
412 				       (TCPOPT_EXP <<  8) |
413 				       (TCPOLEN_EXP_SMC_BASE));
414 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
415 		}
416 	}
417 #endif
418 }
419 
420 struct tcp_out_options {
421 	u16 options;		/* bit field of OPTION_* */
422 	u16 mss;		/* 0 to disable */
423 	u8 ws;			/* window scale, 0 to disable */
424 	u8 num_sack_blocks;	/* number of SACK blocks to include */
425 	u8 hash_size;		/* bytes in hash_location */
426 	__u8 *hash_location;	/* temporary pointer, overloaded */
427 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
428 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
429 };
430 
431 /* Write previously computed TCP options to the packet.
432  *
433  * Beware: Something in the Internet is very sensitive to the ordering of
434  * TCP options, we learned this through the hard way, so be careful here.
435  * Luckily we can at least blame others for their non-compliance but from
436  * inter-operability perspective it seems that we're somewhat stuck with
437  * the ordering which we have been using if we want to keep working with
438  * those broken things (not that it currently hurts anybody as there isn't
439  * particular reason why the ordering would need to be changed).
440  *
441  * At least SACK_PERM as the first option is known to lead to a disaster
442  * (but it may well be that other scenarios fail similarly).
443  */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 			      struct tcp_out_options *opts)
446 {
447 	u16 options = opts->options;	/* mungable copy */
448 
449 	if (unlikely(OPTION_MD5 & options)) {
450 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
451 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
452 		/* overload cookie hash location */
453 		opts->hash_location = (__u8 *)ptr;
454 		ptr += 4;
455 	}
456 
457 	if (unlikely(opts->mss)) {
458 		*ptr++ = htonl((TCPOPT_MSS << 24) |
459 			       (TCPOLEN_MSS << 16) |
460 			       opts->mss);
461 	}
462 
463 	if (likely(OPTION_TS & options)) {
464 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
465 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
466 				       (TCPOLEN_SACK_PERM << 16) |
467 				       (TCPOPT_TIMESTAMP << 8) |
468 				       TCPOLEN_TIMESTAMP);
469 			options &= ~OPTION_SACK_ADVERTISE;
470 		} else {
471 			*ptr++ = htonl((TCPOPT_NOP << 24) |
472 				       (TCPOPT_NOP << 16) |
473 				       (TCPOPT_TIMESTAMP << 8) |
474 				       TCPOLEN_TIMESTAMP);
475 		}
476 		*ptr++ = htonl(opts->tsval);
477 		*ptr++ = htonl(opts->tsecr);
478 	}
479 
480 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
481 		*ptr++ = htonl((TCPOPT_NOP << 24) |
482 			       (TCPOPT_NOP << 16) |
483 			       (TCPOPT_SACK_PERM << 8) |
484 			       TCPOLEN_SACK_PERM);
485 	}
486 
487 	if (unlikely(OPTION_WSCALE & options)) {
488 		*ptr++ = htonl((TCPOPT_NOP << 24) |
489 			       (TCPOPT_WINDOW << 16) |
490 			       (TCPOLEN_WINDOW << 8) |
491 			       opts->ws);
492 	}
493 
494 	if (unlikely(opts->num_sack_blocks)) {
495 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
496 			tp->duplicate_sack : tp->selective_acks;
497 		int this_sack;
498 
499 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
500 			       (TCPOPT_NOP  << 16) |
501 			       (TCPOPT_SACK <<  8) |
502 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
503 						     TCPOLEN_SACK_PERBLOCK)));
504 
505 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
506 		     ++this_sack) {
507 			*ptr++ = htonl(sp[this_sack].start_seq);
508 			*ptr++ = htonl(sp[this_sack].end_seq);
509 		}
510 
511 		tp->rx_opt.dsack = 0;
512 	}
513 
514 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
515 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 		u8 *p = (u8 *)ptr;
517 		u32 len; /* Fast Open option length */
518 
519 		if (foc->exp) {
520 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
521 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
522 				     TCPOPT_FASTOPEN_MAGIC);
523 			p += TCPOLEN_EXP_FASTOPEN_BASE;
524 		} else {
525 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
526 			*p++ = TCPOPT_FASTOPEN;
527 			*p++ = len;
528 		}
529 
530 		memcpy(p, foc->val, foc->len);
531 		if ((len & 3) == 2) {
532 			p[foc->len] = TCPOPT_NOP;
533 			p[foc->len + 1] = TCPOPT_NOP;
534 		}
535 		ptr += (len + 3) >> 2;
536 	}
537 
538 	smc_options_write(ptr, &options);
539 }
540 
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)541 static void smc_set_option(const struct tcp_sock *tp,
542 			   struct tcp_out_options *opts,
543 			   unsigned int *remaining)
544 {
545 #if IS_ENABLED(CONFIG_SMC)
546 	if (static_branch_unlikely(&tcp_have_smc)) {
547 		if (tp->syn_smc) {
548 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
549 				opts->options |= OPTION_SMC;
550 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
551 			}
552 		}
553 	}
554 #endif
555 }
556 
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)557 static void smc_set_option_cond(const struct tcp_sock *tp,
558 				const struct inet_request_sock *ireq,
559 				struct tcp_out_options *opts,
560 				unsigned int *remaining)
561 {
562 #if IS_ENABLED(CONFIG_SMC)
563 	if (static_branch_unlikely(&tcp_have_smc)) {
564 		if (tp->syn_smc && ireq->smc_ok) {
565 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
566 				opts->options |= OPTION_SMC;
567 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
568 			}
569 		}
570 	}
571 #endif
572 }
573 
574 /* Compute TCP options for SYN packets. This is not the final
575  * network wire format yet.
576  */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)577 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
578 				struct tcp_out_options *opts,
579 				struct tcp_md5sig_key **md5)
580 {
581 	struct tcp_sock *tp = tcp_sk(sk);
582 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
583 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
584 
585 	*md5 = NULL;
586 #ifdef CONFIG_TCP_MD5SIG
587 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
588 		*md5 = tp->af_specific->md5_lookup(sk, sk);
589 		if (*md5) {
590 			opts->options |= OPTION_MD5;
591 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
592 		}
593 	}
594 #endif
595 
596 	/* We always get an MSS option.  The option bytes which will be seen in
597 	 * normal data packets should timestamps be used, must be in the MSS
598 	 * advertised.  But we subtract them from tp->mss_cache so that
599 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
600 	 * fact here if necessary.  If we don't do this correctly, as a
601 	 * receiver we won't recognize data packets as being full sized when we
602 	 * should, and thus we won't abide by the delayed ACK rules correctly.
603 	 * SACKs don't matter, we never delay an ACK when we have any of those
604 	 * going out.  */
605 	opts->mss = tcp_advertise_mss(sk);
606 	remaining -= TCPOLEN_MSS_ALIGNED;
607 
608 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
609 		opts->options |= OPTION_TS;
610 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
611 		opts->tsecr = tp->rx_opt.ts_recent;
612 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
613 	}
614 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
615 		opts->ws = tp->rx_opt.rcv_wscale;
616 		opts->options |= OPTION_WSCALE;
617 		remaining -= TCPOLEN_WSCALE_ALIGNED;
618 	}
619 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
620 		opts->options |= OPTION_SACK_ADVERTISE;
621 		if (unlikely(!(OPTION_TS & opts->options)))
622 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
623 	}
624 
625 	if (fastopen && fastopen->cookie.len >= 0) {
626 		u32 need = fastopen->cookie.len;
627 
628 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
629 					       TCPOLEN_FASTOPEN_BASE;
630 		need = (need + 3) & ~3U;  /* Align to 32 bits */
631 		if (remaining >= need) {
632 			opts->options |= OPTION_FAST_OPEN_COOKIE;
633 			opts->fastopen_cookie = &fastopen->cookie;
634 			remaining -= need;
635 			tp->syn_fastopen = 1;
636 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
637 		}
638 	}
639 
640 	smc_set_option(tp, opts, &remaining);
641 
642 	return MAX_TCP_OPTION_SPACE - remaining;
643 }
644 
645 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type)646 static unsigned int tcp_synack_options(const struct sock *sk,
647 				       struct request_sock *req,
648 				       unsigned int mss, struct sk_buff *skb,
649 				       struct tcp_out_options *opts,
650 				       const struct tcp_md5sig_key *md5,
651 				       struct tcp_fastopen_cookie *foc,
652 				       enum tcp_synack_type synack_type)
653 {
654 	struct inet_request_sock *ireq = inet_rsk(req);
655 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
656 
657 #ifdef CONFIG_TCP_MD5SIG
658 	if (md5) {
659 		opts->options |= OPTION_MD5;
660 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
661 
662 		/* We can't fit any SACK blocks in a packet with MD5 + TS
663 		 * options. There was discussion about disabling SACK
664 		 * rather than TS in order to fit in better with old,
665 		 * buggy kernels, but that was deemed to be unnecessary.
666 		 */
667 		if (synack_type != TCP_SYNACK_COOKIE)
668 			ireq->tstamp_ok &= !ireq->sack_ok;
669 	}
670 #endif
671 
672 	/* We always send an MSS option. */
673 	opts->mss = mss;
674 	remaining -= TCPOLEN_MSS_ALIGNED;
675 
676 	if (likely(ireq->wscale_ok)) {
677 		opts->ws = ireq->rcv_wscale;
678 		opts->options |= OPTION_WSCALE;
679 		remaining -= TCPOLEN_WSCALE_ALIGNED;
680 	}
681 	if (likely(ireq->tstamp_ok)) {
682 		opts->options |= OPTION_TS;
683 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
684 		opts->tsecr = req->ts_recent;
685 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
686 	}
687 	if (likely(ireq->sack_ok)) {
688 		opts->options |= OPTION_SACK_ADVERTISE;
689 		if (unlikely(!ireq->tstamp_ok))
690 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
691 	}
692 	if (foc != NULL && foc->len >= 0) {
693 		u32 need = foc->len;
694 
695 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
696 				   TCPOLEN_FASTOPEN_BASE;
697 		need = (need + 3) & ~3U;  /* Align to 32 bits */
698 		if (remaining >= need) {
699 			opts->options |= OPTION_FAST_OPEN_COOKIE;
700 			opts->fastopen_cookie = foc;
701 			remaining -= need;
702 		}
703 	}
704 
705 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
706 
707 	return MAX_TCP_OPTION_SPACE - remaining;
708 }
709 
710 /* Compute TCP options for ESTABLISHED sockets. This is not the
711  * final wire format yet.
712  */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)713 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
714 					struct tcp_out_options *opts,
715 					struct tcp_md5sig_key **md5)
716 {
717 	struct tcp_sock *tp = tcp_sk(sk);
718 	unsigned int size = 0;
719 	unsigned int eff_sacks;
720 
721 	opts->options = 0;
722 
723 	*md5 = NULL;
724 #ifdef CONFIG_TCP_MD5SIG
725 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
726 		*md5 = tp->af_specific->md5_lookup(sk, sk);
727 		if (*md5) {
728 			opts->options |= OPTION_MD5;
729 			size += TCPOLEN_MD5SIG_ALIGNED;
730 		}
731 	}
732 #endif
733 
734 	if (likely(tp->rx_opt.tstamp_ok)) {
735 		opts->options |= OPTION_TS;
736 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
737 		opts->tsecr = tp->rx_opt.ts_recent;
738 		size += TCPOLEN_TSTAMP_ALIGNED;
739 	}
740 
741 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
742 	if (unlikely(eff_sacks)) {
743 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
744 		opts->num_sack_blocks =
745 			min_t(unsigned int, eff_sacks,
746 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
747 			      TCPOLEN_SACK_PERBLOCK);
748 		if (likely(opts->num_sack_blocks))
749 			size += TCPOLEN_SACK_BASE_ALIGNED +
750 				opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
751 	}
752 
753 	return size;
754 }
755 
756 
757 /* TCP SMALL QUEUES (TSQ)
758  *
759  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
760  * to reduce RTT and bufferbloat.
761  * We do this using a special skb destructor (tcp_wfree).
762  *
763  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
764  * needs to be reallocated in a driver.
765  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
766  *
767  * Since transmit from skb destructor is forbidden, we use a tasklet
768  * to process all sockets that eventually need to send more skbs.
769  * We use one tasklet per cpu, with its own queue of sockets.
770  */
771 struct tsq_tasklet {
772 	struct tasklet_struct	tasklet;
773 	struct list_head	head; /* queue of tcp sockets */
774 };
775 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
776 
tcp_tsq_write(struct sock * sk)777 static void tcp_tsq_write(struct sock *sk)
778 {
779 	if ((1 << sk->sk_state) &
780 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
781 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
782 		struct tcp_sock *tp = tcp_sk(sk);
783 
784 		if (tp->lost_out > tp->retrans_out &&
785 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
786 			tcp_mstamp_refresh(tp);
787 			tcp_xmit_retransmit_queue(sk);
788 		}
789 
790 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
791 			       0, GFP_ATOMIC);
792 	}
793 }
794 
tcp_tsq_handler(struct sock * sk)795 static void tcp_tsq_handler(struct sock *sk)
796 {
797 	bh_lock_sock(sk);
798 	if (!sock_owned_by_user(sk))
799 		tcp_tsq_write(sk);
800 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
801 		sock_hold(sk);
802 	bh_unlock_sock(sk);
803 }
804 /*
805  * One tasklet per cpu tries to send more skbs.
806  * We run in tasklet context but need to disable irqs when
807  * transferring tsq->head because tcp_wfree() might
808  * interrupt us (non NAPI drivers)
809  */
tcp_tasklet_func(unsigned long data)810 static void tcp_tasklet_func(unsigned long data)
811 {
812 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
813 	LIST_HEAD(list);
814 	unsigned long flags;
815 	struct list_head *q, *n;
816 	struct tcp_sock *tp;
817 	struct sock *sk;
818 
819 	local_irq_save(flags);
820 	list_splice_init(&tsq->head, &list);
821 	local_irq_restore(flags);
822 
823 	list_for_each_safe(q, n, &list) {
824 		tp = list_entry(q, struct tcp_sock, tsq_node);
825 		list_del(&tp->tsq_node);
826 
827 		sk = (struct sock *)tp;
828 		smp_mb__before_atomic();
829 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
830 
831 		tcp_tsq_handler(sk);
832 		sk_free(sk);
833 	}
834 }
835 
836 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
837 			  TCPF_WRITE_TIMER_DEFERRED |	\
838 			  TCPF_DELACK_TIMER_DEFERRED |	\
839 			  TCPF_MTU_REDUCED_DEFERRED)
840 /**
841  * tcp_release_cb - tcp release_sock() callback
842  * @sk: socket
843  *
844  * called from release_sock() to perform protocol dependent
845  * actions before socket release.
846  */
tcp_release_cb(struct sock * sk)847 void tcp_release_cb(struct sock *sk)
848 {
849 	unsigned long flags, nflags;
850 
851 	/* perform an atomic operation only if at least one flag is set */
852 	do {
853 		flags = sk->sk_tsq_flags;
854 		if (!(flags & TCP_DEFERRED_ALL))
855 			return;
856 		nflags = flags & ~TCP_DEFERRED_ALL;
857 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
858 
859 	if (flags & TCPF_TSQ_DEFERRED) {
860 		tcp_tsq_write(sk);
861 		__sock_put(sk);
862 	}
863 	/* Here begins the tricky part :
864 	 * We are called from release_sock() with :
865 	 * 1) BH disabled
866 	 * 2) sk_lock.slock spinlock held
867 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
868 	 *
869 	 * But following code is meant to be called from BH handlers,
870 	 * so we should keep BH disabled, but early release socket ownership
871 	 */
872 	sock_release_ownership(sk);
873 
874 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
875 		tcp_write_timer_handler(sk);
876 		__sock_put(sk);
877 	}
878 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
879 		tcp_delack_timer_handler(sk);
880 		__sock_put(sk);
881 	}
882 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
883 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
884 		__sock_put(sk);
885 	}
886 }
887 EXPORT_SYMBOL(tcp_release_cb);
888 
tcp_tasklet_init(void)889 void __init tcp_tasklet_init(void)
890 {
891 	int i;
892 
893 	for_each_possible_cpu(i) {
894 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
895 
896 		INIT_LIST_HEAD(&tsq->head);
897 		tasklet_init(&tsq->tasklet,
898 			     tcp_tasklet_func,
899 			     (unsigned long)tsq);
900 	}
901 }
902 
903 /*
904  * Write buffer destructor automatically called from kfree_skb.
905  * We can't xmit new skbs from this context, as we might already
906  * hold qdisc lock.
907  */
tcp_wfree(struct sk_buff * skb)908 void tcp_wfree(struct sk_buff *skb)
909 {
910 	struct sock *sk = skb->sk;
911 	struct tcp_sock *tp = tcp_sk(sk);
912 	unsigned long flags, nval, oval;
913 
914 	/* Keep one reference on sk_wmem_alloc.
915 	 * Will be released by sk_free() from here or tcp_tasklet_func()
916 	 */
917 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
918 
919 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
920 	 * Wait until our queues (qdisc + devices) are drained.
921 	 * This gives :
922 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
923 	 * - chance for incoming ACK (processed by another cpu maybe)
924 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
925 	 */
926 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
927 		goto out;
928 
929 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
930 		struct tsq_tasklet *tsq;
931 		bool empty;
932 
933 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
934 			goto out;
935 
936 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
937 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
938 		if (nval != oval)
939 			continue;
940 
941 		/* queue this socket to tasklet queue */
942 		local_irq_save(flags);
943 		tsq = this_cpu_ptr(&tsq_tasklet);
944 		empty = list_empty(&tsq->head);
945 		list_add(&tp->tsq_node, &tsq->head);
946 		if (empty)
947 			tasklet_schedule(&tsq->tasklet);
948 		local_irq_restore(flags);
949 		return;
950 	}
951 out:
952 	sk_free(sk);
953 }
954 
955 /* Note: Called under soft irq.
956  * We can call TCP stack right away, unless socket is owned by user.
957  */
tcp_pace_kick(struct hrtimer * timer)958 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
959 {
960 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
961 	struct sock *sk = (struct sock *)tp;
962 
963 	tcp_tsq_handler(sk);
964 	sock_put(sk);
965 
966 	return HRTIMER_NORESTART;
967 }
968 
tcp_internal_pacing(struct sock * sk,const struct sk_buff * skb)969 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
970 {
971 	u64 len_ns;
972 	u32 rate;
973 
974 	if (!tcp_needs_internal_pacing(sk))
975 		return;
976 	rate = sk->sk_pacing_rate;
977 	if (!rate || rate == ~0U)
978 		return;
979 
980 	len_ns = (u64)skb->len * NSEC_PER_SEC;
981 	do_div(len_ns, rate);
982 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
983 		      ktime_add_ns(ktime_get(), len_ns),
984 		      HRTIMER_MODE_ABS_PINNED_SOFT);
985 	sock_hold(sk);
986 }
987 
tcp_update_skb_after_send(struct tcp_sock * tp,struct sk_buff * skb)988 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
989 {
990 	skb->skb_mstamp = tp->tcp_mstamp;
991 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
992 }
993 
994 /* This routine actually transmits TCP packets queued in by
995  * tcp_do_sendmsg().  This is used by both the initial
996  * transmission and possible later retransmissions.
997  * All SKB's seen here are completely headerless.  It is our
998  * job to build the TCP header, and pass the packet down to
999  * IP so it can do the same plus pass the packet off to the
1000  * device.
1001  *
1002  * We are working here with either a clone of the original
1003  * SKB, or a fresh unique copy made by the retransmit engine.
1004  */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1005 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1006 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1007 {
1008 	const struct inet_connection_sock *icsk = inet_csk(sk);
1009 	struct inet_sock *inet;
1010 	struct tcp_sock *tp;
1011 	struct tcp_skb_cb *tcb;
1012 	struct tcp_out_options opts;
1013 	unsigned int tcp_options_size, tcp_header_size;
1014 	struct sk_buff *oskb = NULL;
1015 	struct tcp_md5sig_key *md5;
1016 	struct tcphdr *th;
1017 	int err;
1018 
1019 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1020 	tp = tcp_sk(sk);
1021 
1022 	if (clone_it) {
1023 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1024 			- tp->snd_una;
1025 		oskb = skb;
1026 
1027 		tcp_skb_tsorted_save(oskb) {
1028 			if (unlikely(skb_cloned(oskb)))
1029 				skb = pskb_copy(oskb, gfp_mask);
1030 			else
1031 				skb = skb_clone(oskb, gfp_mask);
1032 		} tcp_skb_tsorted_restore(oskb);
1033 
1034 		if (unlikely(!skb))
1035 			return -ENOBUFS;
1036 	}
1037 	skb->skb_mstamp = tp->tcp_mstamp;
1038 
1039 	inet = inet_sk(sk);
1040 	tcb = TCP_SKB_CB(skb);
1041 	memset(&opts, 0, sizeof(opts));
1042 
1043 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1044 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1045 	else
1046 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1047 							   &md5);
1048 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1049 
1050 	/* if no packet is in qdisc/device queue, then allow XPS to select
1051 	 * another queue. We can be called from tcp_tsq_handler()
1052 	 * which holds one reference to sk.
1053 	 *
1054 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1055 	 * One way to get this would be to set skb->truesize = 2 on them.
1056 	 */
1057 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1058 
1059 	/* If we had to use memory reserve to allocate this skb,
1060 	 * this might cause drops if packet is looped back :
1061 	 * Other socket might not have SOCK_MEMALLOC.
1062 	 * Packets not looped back do not care about pfmemalloc.
1063 	 */
1064 	skb->pfmemalloc = 0;
1065 
1066 	skb_push(skb, tcp_header_size);
1067 	skb_reset_transport_header(skb);
1068 
1069 	skb_orphan(skb);
1070 	skb->sk = sk;
1071 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1072 	skb_set_hash_from_sk(skb, sk);
1073 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1074 
1075 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1076 
1077 	/* Build TCP header and checksum it. */
1078 	th = (struct tcphdr *)skb->data;
1079 	th->source		= inet->inet_sport;
1080 	th->dest		= inet->inet_dport;
1081 	th->seq			= htonl(tcb->seq);
1082 	th->ack_seq		= htonl(rcv_nxt);
1083 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1084 					tcb->tcp_flags);
1085 
1086 	th->check		= 0;
1087 	th->urg_ptr		= 0;
1088 
1089 	/* The urg_mode check is necessary during a below snd_una win probe */
1090 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1091 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1092 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1093 			th->urg = 1;
1094 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1095 			th->urg_ptr = htons(0xFFFF);
1096 			th->urg = 1;
1097 		}
1098 	}
1099 
1100 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1101 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1102 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1103 		th->window      = htons(tcp_select_window(sk));
1104 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1105 	} else {
1106 		/* RFC1323: The window in SYN & SYN/ACK segments
1107 		 * is never scaled.
1108 		 */
1109 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1110 	}
1111 #ifdef CONFIG_TCP_MD5SIG
1112 	/* Calculate the MD5 hash, as we have all we need now */
1113 	if (md5) {
1114 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1115 		tp->af_specific->calc_md5_hash(opts.hash_location,
1116 					       md5, sk, skb);
1117 	}
1118 #endif
1119 
1120 	icsk->icsk_af_ops->send_check(sk, skb);
1121 
1122 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1123 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1124 
1125 	if (skb->len != tcp_header_size) {
1126 		tcp_event_data_sent(tp, sk);
1127 		tp->data_segs_out += tcp_skb_pcount(skb);
1128 		tp->bytes_sent += skb->len - tcp_header_size;
1129 		tcp_internal_pacing(sk, skb);
1130 	}
1131 
1132 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1133 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1134 			      tcp_skb_pcount(skb));
1135 
1136 	tp->segs_out += tcp_skb_pcount(skb);
1137 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1138 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1139 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1140 
1141 	/* Our usage of tstamp should remain private */
1142 	skb->tstamp = 0;
1143 
1144 	/* Cleanup our debris for IP stacks */
1145 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1146 			       sizeof(struct inet6_skb_parm)));
1147 
1148 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1149 
1150 	if (unlikely(err > 0)) {
1151 		tcp_enter_cwr(sk);
1152 		err = net_xmit_eval(err);
1153 	}
1154 	if (!err && oskb) {
1155 		tcp_update_skb_after_send(tp, oskb);
1156 		tcp_rate_skb_sent(sk, oskb);
1157 	}
1158 	return err;
1159 }
1160 
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1161 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1162 			    gfp_t gfp_mask)
1163 {
1164 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1165 				  tcp_sk(sk)->rcv_nxt);
1166 }
1167 
1168 /* This routine just queues the buffer for sending.
1169  *
1170  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1171  * otherwise socket can stall.
1172  */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1173 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1174 {
1175 	struct tcp_sock *tp = tcp_sk(sk);
1176 
1177 	/* Advance write_seq and place onto the write_queue. */
1178 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1179 	__skb_header_release(skb);
1180 	tcp_add_write_queue_tail(sk, skb);
1181 	sk->sk_wmem_queued += skb->truesize;
1182 	sk_mem_charge(sk, skb->truesize);
1183 }
1184 
1185 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1186 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1187 {
1188 	if (skb->len <= mss_now) {
1189 		/* Avoid the costly divide in the normal
1190 		 * non-TSO case.
1191 		 */
1192 		tcp_skb_pcount_set(skb, 1);
1193 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1194 	} else {
1195 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1196 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1197 	}
1198 }
1199 
1200 /* Pcount in the middle of the write queue got changed, we need to do various
1201  * tweaks to fix counters
1202  */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1203 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1204 {
1205 	struct tcp_sock *tp = tcp_sk(sk);
1206 
1207 	tp->packets_out -= decr;
1208 
1209 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1210 		tp->sacked_out -= decr;
1211 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1212 		tp->retrans_out -= decr;
1213 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1214 		tp->lost_out -= decr;
1215 
1216 	/* Reno case is special. Sigh... */
1217 	if (tcp_is_reno(tp) && decr > 0)
1218 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1219 
1220 	if (tp->lost_skb_hint &&
1221 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1222 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1223 		tp->lost_cnt_hint -= decr;
1224 
1225 	tcp_verify_left_out(tp);
1226 }
1227 
tcp_has_tx_tstamp(const struct sk_buff * skb)1228 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1229 {
1230 	return TCP_SKB_CB(skb)->txstamp_ack ||
1231 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1232 }
1233 
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1234 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1235 {
1236 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1237 
1238 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1239 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1240 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1241 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1242 
1243 		shinfo->tx_flags &= ~tsflags;
1244 		shinfo2->tx_flags |= tsflags;
1245 		swap(shinfo->tskey, shinfo2->tskey);
1246 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1247 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1248 	}
1249 }
1250 
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1251 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1252 {
1253 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1254 	TCP_SKB_CB(skb)->eor = 0;
1255 }
1256 
1257 /* Insert buff after skb on the write or rtx queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1258 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1259 					 struct sk_buff *buff,
1260 					 struct sock *sk,
1261 					 enum tcp_queue tcp_queue)
1262 {
1263 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1264 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1265 	else
1266 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1267 }
1268 
1269 /* Function to create two new TCP segments.  Shrinks the given segment
1270  * to the specified size and appends a new segment with the rest of the
1271  * packet to the list.  This won't be called frequently, I hope.
1272  * Remember, these are still headerless SKBs at this point.
1273  */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1274 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1275 		 struct sk_buff *skb, u32 len,
1276 		 unsigned int mss_now, gfp_t gfp)
1277 {
1278 	struct tcp_sock *tp = tcp_sk(sk);
1279 	struct sk_buff *buff;
1280 	int nsize, old_factor;
1281 	long limit;
1282 	int nlen;
1283 	u8 flags;
1284 
1285 	if (WARN_ON(len > skb->len))
1286 		return -EINVAL;
1287 
1288 	nsize = skb_headlen(skb) - len;
1289 	if (nsize < 0)
1290 		nsize = 0;
1291 
1292 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1293 	 * We need some allowance to not penalize applications setting small
1294 	 * SO_SNDBUF values.
1295 	 * Also allow first and last skb in retransmit queue to be split.
1296 	 */
1297 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1298 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1299 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1300 		     skb != tcp_rtx_queue_head(sk) &&
1301 		     skb != tcp_rtx_queue_tail(sk))) {
1302 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1303 		return -ENOMEM;
1304 	}
1305 
1306 	if (skb_unclone(skb, gfp))
1307 		return -ENOMEM;
1308 
1309 	/* Get a new skb... force flag on. */
1310 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1311 	if (!buff)
1312 		return -ENOMEM; /* We'll just try again later. */
1313 
1314 	sk->sk_wmem_queued += buff->truesize;
1315 	sk_mem_charge(sk, buff->truesize);
1316 	nlen = skb->len - len - nsize;
1317 	buff->truesize += nlen;
1318 	skb->truesize -= nlen;
1319 
1320 	/* Correct the sequence numbers. */
1321 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1322 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1323 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1324 
1325 	/* PSH and FIN should only be set in the second packet. */
1326 	flags = TCP_SKB_CB(skb)->tcp_flags;
1327 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1328 	TCP_SKB_CB(buff)->tcp_flags = flags;
1329 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1330 	tcp_skb_fragment_eor(skb, buff);
1331 
1332 	skb_split(skb, buff, len);
1333 
1334 	buff->ip_summed = CHECKSUM_PARTIAL;
1335 
1336 	buff->tstamp = skb->tstamp;
1337 	tcp_fragment_tstamp(skb, buff);
1338 
1339 	old_factor = tcp_skb_pcount(skb);
1340 
1341 	/* Fix up tso_factor for both original and new SKB.  */
1342 	tcp_set_skb_tso_segs(skb, mss_now);
1343 	tcp_set_skb_tso_segs(buff, mss_now);
1344 
1345 	/* Update delivered info for the new segment */
1346 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1347 
1348 	/* If this packet has been sent out already, we must
1349 	 * adjust the various packet counters.
1350 	 */
1351 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1352 		int diff = old_factor - tcp_skb_pcount(skb) -
1353 			tcp_skb_pcount(buff);
1354 
1355 		if (diff)
1356 			tcp_adjust_pcount(sk, skb, diff);
1357 	}
1358 
1359 	/* Link BUFF into the send queue. */
1360 	__skb_header_release(buff);
1361 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1362 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1363 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1364 
1365 	return 0;
1366 }
1367 
1368 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1369  * data is not copied, but immediately discarded.
1370  */
__pskb_trim_head(struct sk_buff * skb,int len)1371 static int __pskb_trim_head(struct sk_buff *skb, int len)
1372 {
1373 	struct skb_shared_info *shinfo;
1374 	int i, k, eat;
1375 
1376 	eat = min_t(int, len, skb_headlen(skb));
1377 	if (eat) {
1378 		__skb_pull(skb, eat);
1379 		len -= eat;
1380 		if (!len)
1381 			return 0;
1382 	}
1383 	eat = len;
1384 	k = 0;
1385 	shinfo = skb_shinfo(skb);
1386 	for (i = 0; i < shinfo->nr_frags; i++) {
1387 		int size = skb_frag_size(&shinfo->frags[i]);
1388 
1389 		if (size <= eat) {
1390 			skb_frag_unref(skb, i);
1391 			eat -= size;
1392 		} else {
1393 			shinfo->frags[k] = shinfo->frags[i];
1394 			if (eat) {
1395 				shinfo->frags[k].page_offset += eat;
1396 				skb_frag_size_sub(&shinfo->frags[k], eat);
1397 				eat = 0;
1398 			}
1399 			k++;
1400 		}
1401 	}
1402 	shinfo->nr_frags = k;
1403 
1404 	skb->data_len -= len;
1405 	skb->len = skb->data_len;
1406 	return len;
1407 }
1408 
1409 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1410 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1411 {
1412 	u32 delta_truesize;
1413 
1414 	if (skb_unclone(skb, GFP_ATOMIC))
1415 		return -ENOMEM;
1416 
1417 	delta_truesize = __pskb_trim_head(skb, len);
1418 
1419 	TCP_SKB_CB(skb)->seq += len;
1420 	skb->ip_summed = CHECKSUM_PARTIAL;
1421 
1422 	if (delta_truesize) {
1423 		skb->truesize	   -= delta_truesize;
1424 		sk->sk_wmem_queued -= delta_truesize;
1425 		sk_mem_uncharge(sk, delta_truesize);
1426 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1427 	}
1428 
1429 	/* Any change of skb->len requires recalculation of tso factor. */
1430 	if (tcp_skb_pcount(skb) > 1)
1431 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1432 
1433 	return 0;
1434 }
1435 
1436 /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1437 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1438 {
1439 	const struct tcp_sock *tp = tcp_sk(sk);
1440 	const struct inet_connection_sock *icsk = inet_csk(sk);
1441 	int mss_now;
1442 
1443 	/* Calculate base mss without TCP options:
1444 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1445 	 */
1446 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1447 
1448 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1449 	if (icsk->icsk_af_ops->net_frag_header_len) {
1450 		const struct dst_entry *dst = __sk_dst_get(sk);
1451 
1452 		if (dst && dst_allfrag(dst))
1453 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1454 	}
1455 
1456 	/* Clamp it (mss_clamp does not include tcp options) */
1457 	if (mss_now > tp->rx_opt.mss_clamp)
1458 		mss_now = tp->rx_opt.mss_clamp;
1459 
1460 	/* Now subtract optional transport overhead */
1461 	mss_now -= icsk->icsk_ext_hdr_len;
1462 
1463 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1464 	mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1465 	return mss_now;
1466 }
1467 
1468 /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1469 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1470 {
1471 	/* Subtract TCP options size, not including SACKs */
1472 	return __tcp_mtu_to_mss(sk, pmtu) -
1473 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1474 }
1475 
1476 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1477 int tcp_mss_to_mtu(struct sock *sk, int mss)
1478 {
1479 	const struct tcp_sock *tp = tcp_sk(sk);
1480 	const struct inet_connection_sock *icsk = inet_csk(sk);
1481 	int mtu;
1482 
1483 	mtu = mss +
1484 	      tp->tcp_header_len +
1485 	      icsk->icsk_ext_hdr_len +
1486 	      icsk->icsk_af_ops->net_header_len;
1487 
1488 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1489 	if (icsk->icsk_af_ops->net_frag_header_len) {
1490 		const struct dst_entry *dst = __sk_dst_get(sk);
1491 
1492 		if (dst && dst_allfrag(dst))
1493 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1494 	}
1495 	return mtu;
1496 }
1497 EXPORT_SYMBOL(tcp_mss_to_mtu);
1498 
1499 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1500 void tcp_mtup_init(struct sock *sk)
1501 {
1502 	struct tcp_sock *tp = tcp_sk(sk);
1503 	struct inet_connection_sock *icsk = inet_csk(sk);
1504 	struct net *net = sock_net(sk);
1505 
1506 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1507 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1508 			       icsk->icsk_af_ops->net_header_len;
1509 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1510 	icsk->icsk_mtup.probe_size = 0;
1511 	if (icsk->icsk_mtup.enabled)
1512 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1513 }
1514 EXPORT_SYMBOL(tcp_mtup_init);
1515 
1516 /* This function synchronize snd mss to current pmtu/exthdr set.
1517 
1518    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1519    for TCP options, but includes only bare TCP header.
1520 
1521    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1522    It is minimum of user_mss and mss received with SYN.
1523    It also does not include TCP options.
1524 
1525    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1526 
1527    tp->mss_cache is current effective sending mss, including
1528    all tcp options except for SACKs. It is evaluated,
1529    taking into account current pmtu, but never exceeds
1530    tp->rx_opt.mss_clamp.
1531 
1532    NOTE1. rfc1122 clearly states that advertised MSS
1533    DOES NOT include either tcp or ip options.
1534 
1535    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1536    are READ ONLY outside this function.		--ANK (980731)
1537  */
tcp_sync_mss(struct sock * sk,u32 pmtu)1538 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1539 {
1540 	struct tcp_sock *tp = tcp_sk(sk);
1541 	struct inet_connection_sock *icsk = inet_csk(sk);
1542 	int mss_now;
1543 
1544 	if (icsk->icsk_mtup.search_high > pmtu)
1545 		icsk->icsk_mtup.search_high = pmtu;
1546 
1547 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1548 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1549 
1550 	/* And store cached results */
1551 	icsk->icsk_pmtu_cookie = pmtu;
1552 	if (icsk->icsk_mtup.enabled)
1553 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1554 	tp->mss_cache = mss_now;
1555 
1556 	return mss_now;
1557 }
1558 EXPORT_SYMBOL(tcp_sync_mss);
1559 
1560 /* Compute the current effective MSS, taking SACKs and IP options,
1561  * and even PMTU discovery events into account.
1562  */
tcp_current_mss(struct sock * sk)1563 unsigned int tcp_current_mss(struct sock *sk)
1564 {
1565 	const struct tcp_sock *tp = tcp_sk(sk);
1566 	const struct dst_entry *dst = __sk_dst_get(sk);
1567 	u32 mss_now;
1568 	unsigned int header_len;
1569 	struct tcp_out_options opts;
1570 	struct tcp_md5sig_key *md5;
1571 
1572 	mss_now = tp->mss_cache;
1573 
1574 	if (dst) {
1575 		u32 mtu = dst_mtu(dst);
1576 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1577 			mss_now = tcp_sync_mss(sk, mtu);
1578 	}
1579 
1580 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1581 		     sizeof(struct tcphdr);
1582 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1583 	 * some common options. If this is an odd packet (because we have SACK
1584 	 * blocks etc) then our calculated header_len will be different, and
1585 	 * we have to adjust mss_now correspondingly */
1586 	if (header_len != tp->tcp_header_len) {
1587 		int delta = (int) header_len - tp->tcp_header_len;
1588 		mss_now -= delta;
1589 	}
1590 
1591 	return mss_now;
1592 }
1593 
1594 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1595  * As additional protections, we do not touch cwnd in retransmission phases,
1596  * and if application hit its sndbuf limit recently.
1597  */
tcp_cwnd_application_limited(struct sock * sk)1598 static void tcp_cwnd_application_limited(struct sock *sk)
1599 {
1600 	struct tcp_sock *tp = tcp_sk(sk);
1601 
1602 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1603 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1604 		/* Limited by application or receiver window. */
1605 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1606 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1607 		if (win_used < tp->snd_cwnd) {
1608 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1609 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1610 		}
1611 		tp->snd_cwnd_used = 0;
1612 	}
1613 	tp->snd_cwnd_stamp = tcp_jiffies32;
1614 }
1615 
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1616 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1617 {
1618 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1619 	struct tcp_sock *tp = tcp_sk(sk);
1620 
1621 	/* Track the maximum number of outstanding packets in each
1622 	 * window, and remember whether we were cwnd-limited then.
1623 	 */
1624 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1625 	    tp->packets_out > tp->max_packets_out) {
1626 		tp->max_packets_out = tp->packets_out;
1627 		tp->max_packets_seq = tp->snd_nxt;
1628 		tp->is_cwnd_limited = is_cwnd_limited;
1629 	}
1630 
1631 	if (tcp_is_cwnd_limited(sk)) {
1632 		/* Network is feed fully. */
1633 		tp->snd_cwnd_used = 0;
1634 		tp->snd_cwnd_stamp = tcp_jiffies32;
1635 	} else {
1636 		/* Network starves. */
1637 		if (tp->packets_out > tp->snd_cwnd_used)
1638 			tp->snd_cwnd_used = tp->packets_out;
1639 
1640 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1641 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1642 		    !ca_ops->cong_control)
1643 			tcp_cwnd_application_limited(sk);
1644 
1645 		/* The following conditions together indicate the starvation
1646 		 * is caused by insufficient sender buffer:
1647 		 * 1) just sent some data (see tcp_write_xmit)
1648 		 * 2) not cwnd limited (this else condition)
1649 		 * 3) no more data to send (tcp_write_queue_empty())
1650 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1651 		 */
1652 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1653 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1654 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1655 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1656 	}
1657 }
1658 
1659 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1660 static bool tcp_minshall_check(const struct tcp_sock *tp)
1661 {
1662 	return after(tp->snd_sml, tp->snd_una) &&
1663 		!after(tp->snd_sml, tp->snd_nxt);
1664 }
1665 
1666 /* Update snd_sml if this skb is under mss
1667  * Note that a TSO packet might end with a sub-mss segment
1668  * The test is really :
1669  * if ((skb->len % mss) != 0)
1670  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1671  * But we can avoid doing the divide again given we already have
1672  *  skb_pcount = skb->len / mss_now
1673  */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1674 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1675 				const struct sk_buff *skb)
1676 {
1677 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1678 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1679 }
1680 
1681 /* Return false, if packet can be sent now without violation Nagle's rules:
1682  * 1. It is full sized. (provided by caller in %partial bool)
1683  * 2. Or it contains FIN. (already checked by caller)
1684  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1685  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1686  *    With Minshall's modification: all sent small packets are ACKed.
1687  */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1688 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1689 			    int nonagle)
1690 {
1691 	return partial &&
1692 		((nonagle & TCP_NAGLE_CORK) ||
1693 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1694 }
1695 
1696 /* Return how many segs we'd like on a TSO packet,
1697  * to send one TSO packet per ms
1698  */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1699 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1700 			    int min_tso_segs)
1701 {
1702 	u32 bytes, segs;
1703 
1704 	bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
1705 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1706 
1707 	/* Goal is to send at least one packet per ms,
1708 	 * not one big TSO packet every 100 ms.
1709 	 * This preserves ACK clocking and is consistent
1710 	 * with tcp_tso_should_defer() heuristic.
1711 	 */
1712 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1713 
1714 	return segs;
1715 }
1716 
1717 /* Return the number of segments we want in the skb we are transmitting.
1718  * See if congestion control module wants to decide; otherwise, autosize.
1719  */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1720 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1721 {
1722 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1723 	u32 min_tso, tso_segs;
1724 
1725 	min_tso = ca_ops->min_tso_segs ?
1726 			ca_ops->min_tso_segs(sk) :
1727 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1728 
1729 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1730 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1731 }
1732 
1733 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1734 static unsigned int tcp_mss_split_point(const struct sock *sk,
1735 					const struct sk_buff *skb,
1736 					unsigned int mss_now,
1737 					unsigned int max_segs,
1738 					int nonagle)
1739 {
1740 	const struct tcp_sock *tp = tcp_sk(sk);
1741 	u32 partial, needed, window, max_len;
1742 
1743 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1744 	max_len = mss_now * max_segs;
1745 
1746 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1747 		return max_len;
1748 
1749 	needed = min(skb->len, window);
1750 
1751 	if (max_len <= needed)
1752 		return max_len;
1753 
1754 	partial = needed % mss_now;
1755 	/* If last segment is not a full MSS, check if Nagle rules allow us
1756 	 * to include this last segment in this skb.
1757 	 * Otherwise, we'll split the skb at last MSS boundary
1758 	 */
1759 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1760 		return needed - partial;
1761 
1762 	return needed;
1763 }
1764 
1765 /* Can at least one segment of SKB be sent right now, according to the
1766  * congestion window rules?  If so, return how many segments are allowed.
1767  */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)1768 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1769 					 const struct sk_buff *skb)
1770 {
1771 	u32 in_flight, cwnd, halfcwnd;
1772 
1773 	/* Don't be strict about the congestion window for the final FIN.  */
1774 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1775 	    tcp_skb_pcount(skb) == 1)
1776 		return 1;
1777 
1778 	in_flight = tcp_packets_in_flight(tp);
1779 	cwnd = tp->snd_cwnd;
1780 	if (in_flight >= cwnd)
1781 		return 0;
1782 
1783 	/* For better scheduling, ensure we have at least
1784 	 * 2 GSO packets in flight.
1785 	 */
1786 	halfcwnd = max(cwnd >> 1, 1U);
1787 	return min(halfcwnd, cwnd - in_flight);
1788 }
1789 
1790 /* Initialize TSO state of a skb.
1791  * This must be invoked the first time we consider transmitting
1792  * SKB onto the wire.
1793  */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)1794 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1795 {
1796 	int tso_segs = tcp_skb_pcount(skb);
1797 
1798 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1799 		tcp_set_skb_tso_segs(skb, mss_now);
1800 		tso_segs = tcp_skb_pcount(skb);
1801 	}
1802 	return tso_segs;
1803 }
1804 
1805 
1806 /* Return true if the Nagle test allows this packet to be
1807  * sent now.
1808  */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)1809 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1810 				  unsigned int cur_mss, int nonagle)
1811 {
1812 	/* Nagle rule does not apply to frames, which sit in the middle of the
1813 	 * write_queue (they have no chances to get new data).
1814 	 *
1815 	 * This is implemented in the callers, where they modify the 'nonagle'
1816 	 * argument based upon the location of SKB in the send queue.
1817 	 */
1818 	if (nonagle & TCP_NAGLE_PUSH)
1819 		return true;
1820 
1821 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1822 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1823 		return true;
1824 
1825 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1826 		return true;
1827 
1828 	return false;
1829 }
1830 
1831 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)1832 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1833 			     const struct sk_buff *skb,
1834 			     unsigned int cur_mss)
1835 {
1836 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1837 
1838 	if (skb->len > cur_mss)
1839 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1840 
1841 	return !after(end_seq, tcp_wnd_end(tp));
1842 }
1843 
1844 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1845  * which is put after SKB on the list.  It is very much like
1846  * tcp_fragment() except that it may make several kinds of assumptions
1847  * in order to speed up the splitting operation.  In particular, we
1848  * know that all the data is in scatter-gather pages, and that the
1849  * packet has never been sent out before (and thus is not cloned).
1850  */
tso_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)1851 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1852 			struct sk_buff *skb, unsigned int len,
1853 			unsigned int mss_now, gfp_t gfp)
1854 {
1855 	struct sk_buff *buff;
1856 	int nlen = skb->len - len;
1857 	u8 flags;
1858 
1859 	/* All of a TSO frame must be composed of paged data.  */
1860 	if (skb->len != skb->data_len)
1861 		return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1862 
1863 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1864 	if (unlikely(!buff))
1865 		return -ENOMEM;
1866 
1867 	sk->sk_wmem_queued += buff->truesize;
1868 	sk_mem_charge(sk, buff->truesize);
1869 	buff->truesize += nlen;
1870 	skb->truesize -= nlen;
1871 
1872 	/* Correct the sequence numbers. */
1873 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1874 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1875 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1876 
1877 	/* PSH and FIN should only be set in the second packet. */
1878 	flags = TCP_SKB_CB(skb)->tcp_flags;
1879 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1880 	TCP_SKB_CB(buff)->tcp_flags = flags;
1881 
1882 	/* This packet was never sent out yet, so no SACK bits. */
1883 	TCP_SKB_CB(buff)->sacked = 0;
1884 
1885 	tcp_skb_fragment_eor(skb, buff);
1886 
1887 	buff->ip_summed = CHECKSUM_PARTIAL;
1888 	skb_split(skb, buff, len);
1889 	tcp_fragment_tstamp(skb, buff);
1890 
1891 	/* Fix up tso_factor for both original and new SKB.  */
1892 	tcp_set_skb_tso_segs(skb, mss_now);
1893 	tcp_set_skb_tso_segs(buff, mss_now);
1894 
1895 	/* Link BUFF into the send queue. */
1896 	__skb_header_release(buff);
1897 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1898 
1899 	return 0;
1900 }
1901 
1902 /* Try to defer sending, if possible, in order to minimize the amount
1903  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1904  *
1905  * This algorithm is from John Heffner.
1906  */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)1907 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1908 				 bool *is_cwnd_limited,
1909 				 bool *is_rwnd_limited,
1910 				 u32 max_segs)
1911 {
1912 	const struct inet_connection_sock *icsk = inet_csk(sk);
1913 	u32 age, send_win, cong_win, limit, in_flight;
1914 	struct tcp_sock *tp = tcp_sk(sk);
1915 	struct sk_buff *head;
1916 	int win_divisor;
1917 
1918 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1919 		goto send_now;
1920 
1921 	/* Avoid bursty behavior by allowing defer
1922 	 * only if the last write was recent.
1923 	 */
1924 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1925 		goto send_now;
1926 
1927 	in_flight = tcp_packets_in_flight(tp);
1928 
1929 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1930 	BUG_ON(tp->snd_cwnd <= in_flight);
1931 
1932 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1933 
1934 	/* From in_flight test above, we know that cwnd > in_flight.  */
1935 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1936 
1937 	limit = min(send_win, cong_win);
1938 
1939 	/* If a full-sized TSO skb can be sent, do it. */
1940 	if (limit >= max_segs * tp->mss_cache)
1941 		goto send_now;
1942 
1943 	/* Middle in queue won't get any more data, full sendable already? */
1944 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1945 		goto send_now;
1946 
1947 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1948 	if (win_divisor) {
1949 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1950 
1951 		/* If at least some fraction of a window is available,
1952 		 * just use it.
1953 		 */
1954 		chunk /= win_divisor;
1955 		if (limit >= chunk)
1956 			goto send_now;
1957 	} else {
1958 		/* Different approach, try not to defer past a single
1959 		 * ACK.  Receiver should ACK every other full sized
1960 		 * frame, so if we have space for more than 3 frames
1961 		 * then send now.
1962 		 */
1963 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1964 			goto send_now;
1965 	}
1966 
1967 	/* TODO : use tsorted_sent_queue ? */
1968 	head = tcp_rtx_queue_head(sk);
1969 	if (!head)
1970 		goto send_now;
1971 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1972 	/* If next ACK is likely to come too late (half srtt), do not defer */
1973 	if (age < (tp->srtt_us >> 4))
1974 		goto send_now;
1975 
1976 	/* Ok, it looks like it is advisable to defer.
1977 	 * Three cases are tracked :
1978 	 * 1) We are cwnd-limited
1979 	 * 2) We are rwnd-limited
1980 	 * 3) We are application limited.
1981 	 */
1982 	if (cong_win < send_win) {
1983 		if (cong_win <= skb->len) {
1984 			*is_cwnd_limited = true;
1985 			return true;
1986 		}
1987 	} else {
1988 		if (send_win <= skb->len) {
1989 			*is_rwnd_limited = true;
1990 			return true;
1991 		}
1992 	}
1993 
1994 	/* If this packet won't get more data, do not wait. */
1995 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1996 		goto send_now;
1997 
1998 	return true;
1999 
2000 send_now:
2001 	return false;
2002 }
2003 
tcp_mtu_check_reprobe(struct sock * sk)2004 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2005 {
2006 	struct inet_connection_sock *icsk = inet_csk(sk);
2007 	struct tcp_sock *tp = tcp_sk(sk);
2008 	struct net *net = sock_net(sk);
2009 	u32 interval;
2010 	s32 delta;
2011 
2012 	interval = net->ipv4.sysctl_tcp_probe_interval;
2013 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2014 	if (unlikely(delta >= interval * HZ)) {
2015 		int mss = tcp_current_mss(sk);
2016 
2017 		/* Update current search range */
2018 		icsk->icsk_mtup.probe_size = 0;
2019 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2020 			sizeof(struct tcphdr) +
2021 			icsk->icsk_af_ops->net_header_len;
2022 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2023 
2024 		/* Update probe time stamp */
2025 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2026 	}
2027 }
2028 
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2029 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2030 {
2031 	struct sk_buff *skb, *next;
2032 
2033 	skb = tcp_send_head(sk);
2034 	tcp_for_write_queue_from_safe(skb, next, sk) {
2035 		if (len <= skb->len)
2036 			break;
2037 
2038 		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2039 			return false;
2040 
2041 		len -= skb->len;
2042 	}
2043 
2044 	return true;
2045 }
2046 
2047 /* Create a new MTU probe if we are ready.
2048  * MTU probe is regularly attempting to increase the path MTU by
2049  * deliberately sending larger packets.  This discovers routing
2050  * changes resulting in larger path MTUs.
2051  *
2052  * Returns 0 if we should wait to probe (no cwnd available),
2053  *         1 if a probe was sent,
2054  *         -1 otherwise
2055  */
tcp_mtu_probe(struct sock * sk)2056 static int tcp_mtu_probe(struct sock *sk)
2057 {
2058 	struct inet_connection_sock *icsk = inet_csk(sk);
2059 	struct tcp_sock *tp = tcp_sk(sk);
2060 	struct sk_buff *skb, *nskb, *next;
2061 	struct net *net = sock_net(sk);
2062 	int probe_size;
2063 	int size_needed;
2064 	int copy, len;
2065 	int mss_now;
2066 	int interval;
2067 
2068 	/* Not currently probing/verifying,
2069 	 * not in recovery,
2070 	 * have enough cwnd, and
2071 	 * not SACKing (the variable headers throw things off)
2072 	 */
2073 	if (likely(!icsk->icsk_mtup.enabled ||
2074 		   icsk->icsk_mtup.probe_size ||
2075 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2076 		   tp->snd_cwnd < 11 ||
2077 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2078 		return -1;
2079 
2080 	/* Use binary search for probe_size between tcp_mss_base,
2081 	 * and current mss_clamp. if (search_high - search_low)
2082 	 * smaller than a threshold, backoff from probing.
2083 	 */
2084 	mss_now = tcp_current_mss(sk);
2085 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2086 				    icsk->icsk_mtup.search_low) >> 1);
2087 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2088 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2089 	/* When misfortune happens, we are reprobing actively,
2090 	 * and then reprobe timer has expired. We stick with current
2091 	 * probing process by not resetting search range to its orignal.
2092 	 */
2093 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2094 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2095 		/* Check whether enough time has elaplased for
2096 		 * another round of probing.
2097 		 */
2098 		tcp_mtu_check_reprobe(sk);
2099 		return -1;
2100 	}
2101 
2102 	/* Have enough data in the send queue to probe? */
2103 	if (tp->write_seq - tp->snd_nxt < size_needed)
2104 		return -1;
2105 
2106 	if (tp->snd_wnd < size_needed)
2107 		return -1;
2108 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2109 		return 0;
2110 
2111 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2112 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2113 		if (!tcp_packets_in_flight(tp))
2114 			return -1;
2115 		else
2116 			return 0;
2117 	}
2118 
2119 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2120 		return -1;
2121 
2122 	/* We're allowed to probe.  Build it now. */
2123 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2124 	if (!nskb)
2125 		return -1;
2126 	sk->sk_wmem_queued += nskb->truesize;
2127 	sk_mem_charge(sk, nskb->truesize);
2128 
2129 	skb = tcp_send_head(sk);
2130 
2131 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2132 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2133 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2134 	TCP_SKB_CB(nskb)->sacked = 0;
2135 	nskb->csum = 0;
2136 	nskb->ip_summed = CHECKSUM_PARTIAL;
2137 
2138 	tcp_insert_write_queue_before(nskb, skb, sk);
2139 	tcp_highest_sack_replace(sk, skb, nskb);
2140 
2141 	len = 0;
2142 	tcp_for_write_queue_from_safe(skb, next, sk) {
2143 		copy = min_t(int, skb->len, probe_size - len);
2144 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2145 
2146 		if (skb->len <= copy) {
2147 			/* We've eaten all the data from this skb.
2148 			 * Throw it away. */
2149 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2150 			/* If this is the last SKB we copy and eor is set
2151 			 * we need to propagate it to the new skb.
2152 			 */
2153 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2154 			tcp_skb_collapse_tstamp(nskb, skb);
2155 			tcp_unlink_write_queue(skb, sk);
2156 			sk_wmem_free_skb(sk, skb);
2157 		} else {
2158 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2159 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2160 			if (!skb_shinfo(skb)->nr_frags) {
2161 				skb_pull(skb, copy);
2162 			} else {
2163 				__pskb_trim_head(skb, copy);
2164 				tcp_set_skb_tso_segs(skb, mss_now);
2165 			}
2166 			TCP_SKB_CB(skb)->seq += copy;
2167 		}
2168 
2169 		len += copy;
2170 
2171 		if (len >= probe_size)
2172 			break;
2173 	}
2174 	tcp_init_tso_segs(nskb, nskb->len);
2175 
2176 	/* We're ready to send.  If this fails, the probe will
2177 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2178 	 */
2179 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2180 		/* Decrement cwnd here because we are sending
2181 		 * effectively two packets. */
2182 		tp->snd_cwnd--;
2183 		tcp_event_new_data_sent(sk, nskb);
2184 
2185 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2186 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2187 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2188 
2189 		return 1;
2190 	}
2191 
2192 	return -1;
2193 }
2194 
tcp_pacing_check(const struct sock * sk)2195 static bool tcp_pacing_check(const struct sock *sk)
2196 {
2197 	return tcp_needs_internal_pacing(sk) &&
2198 	       hrtimer_is_queued(&tcp_sk(sk)->pacing_timer);
2199 }
2200 
2201 /* TCP Small Queues :
2202  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2203  * (These limits are doubled for retransmits)
2204  * This allows for :
2205  *  - better RTT estimation and ACK scheduling
2206  *  - faster recovery
2207  *  - high rates
2208  * Alas, some drivers / subsystems require a fair amount
2209  * of queued bytes to ensure line rate.
2210  * One example is wifi aggregation (802.11 AMPDU)
2211  */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2212 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2213 				  unsigned int factor)
2214 {
2215 	unsigned int limit;
2216 
2217 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
2218 	limit = min_t(u32, limit,
2219 		      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2220 	limit <<= factor;
2221 
2222 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2223 		/* Always send skb if rtx queue is empty.
2224 		 * No need to wait for TX completion to call us back,
2225 		 * after softirq/tasklet schedule.
2226 		 * This helps when TX completions are delayed too much.
2227 		 */
2228 		if (tcp_rtx_queue_empty(sk))
2229 			return false;
2230 
2231 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2232 		/* It is possible TX completion already happened
2233 		 * before we set TSQ_THROTTLED, so we must
2234 		 * test again the condition.
2235 		 */
2236 		smp_mb__after_atomic();
2237 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2238 			return true;
2239 	}
2240 	return false;
2241 }
2242 
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2243 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2244 {
2245 	const u32 now = tcp_jiffies32;
2246 	enum tcp_chrono old = tp->chrono_type;
2247 
2248 	if (old > TCP_CHRONO_UNSPEC)
2249 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2250 	tp->chrono_start = now;
2251 	tp->chrono_type = new;
2252 }
2253 
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2254 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2255 {
2256 	struct tcp_sock *tp = tcp_sk(sk);
2257 
2258 	/* If there are multiple conditions worthy of tracking in a
2259 	 * chronograph then the highest priority enum takes precedence
2260 	 * over the other conditions. So that if something "more interesting"
2261 	 * starts happening, stop the previous chrono and start a new one.
2262 	 */
2263 	if (type > tp->chrono_type)
2264 		tcp_chrono_set(tp, type);
2265 }
2266 
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2267 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2268 {
2269 	struct tcp_sock *tp = tcp_sk(sk);
2270 
2271 
2272 	/* There are multiple conditions worthy of tracking in a
2273 	 * chronograph, so that the highest priority enum takes
2274 	 * precedence over the other conditions (see tcp_chrono_start).
2275 	 * If a condition stops, we only stop chrono tracking if
2276 	 * it's the "most interesting" or current chrono we are
2277 	 * tracking and starts busy chrono if we have pending data.
2278 	 */
2279 	if (tcp_rtx_and_write_queues_empty(sk))
2280 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2281 	else if (type == tp->chrono_type)
2282 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2283 }
2284 
2285 /* This routine writes packets to the network.  It advances the
2286  * send_head.  This happens as incoming acks open up the remote
2287  * window for us.
2288  *
2289  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2290  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2291  * account rare use of URG, this is not a big flaw.
2292  *
2293  * Send at most one packet when push_one > 0. Temporarily ignore
2294  * cwnd limit to force at most one packet out when push_one == 2.
2295 
2296  * Returns true, if no segments are in flight and we have queued segments,
2297  * but cannot send anything now because of SWS or another problem.
2298  */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2299 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2300 			   int push_one, gfp_t gfp)
2301 {
2302 	struct tcp_sock *tp = tcp_sk(sk);
2303 	struct sk_buff *skb;
2304 	unsigned int tso_segs, sent_pkts;
2305 	int cwnd_quota;
2306 	int result;
2307 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2308 	u32 max_segs;
2309 
2310 	sent_pkts = 0;
2311 
2312 	tcp_mstamp_refresh(tp);
2313 	if (!push_one) {
2314 		/* Do MTU probing. */
2315 		result = tcp_mtu_probe(sk);
2316 		if (!result) {
2317 			return false;
2318 		} else if (result > 0) {
2319 			sent_pkts = 1;
2320 		}
2321 	}
2322 
2323 	max_segs = tcp_tso_segs(sk, mss_now);
2324 	while ((skb = tcp_send_head(sk))) {
2325 		unsigned int limit;
2326 
2327 		if (tcp_pacing_check(sk))
2328 			break;
2329 
2330 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2331 		BUG_ON(!tso_segs);
2332 
2333 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2334 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2335 			tcp_update_skb_after_send(tp, skb);
2336 			goto repair; /* Skip network transmission */
2337 		}
2338 
2339 		cwnd_quota = tcp_cwnd_test(tp, skb);
2340 		if (!cwnd_quota) {
2341 			if (push_one == 2)
2342 				/* Force out a loss probe pkt. */
2343 				cwnd_quota = 1;
2344 			else
2345 				break;
2346 		}
2347 
2348 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2349 			is_rwnd_limited = true;
2350 			break;
2351 		}
2352 
2353 		if (tso_segs == 1) {
2354 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2355 						     (tcp_skb_is_last(sk, skb) ?
2356 						      nonagle : TCP_NAGLE_PUSH))))
2357 				break;
2358 		} else {
2359 			if (!push_one &&
2360 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2361 						 &is_rwnd_limited, max_segs))
2362 				break;
2363 		}
2364 
2365 		limit = mss_now;
2366 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2367 			limit = tcp_mss_split_point(sk, skb, mss_now,
2368 						    min_t(unsigned int,
2369 							  cwnd_quota,
2370 							  max_segs),
2371 						    nonagle);
2372 
2373 		if (skb->len > limit &&
2374 		    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2375 					  skb, limit, mss_now, gfp)))
2376 			break;
2377 
2378 		if (tcp_small_queue_check(sk, skb, 0))
2379 			break;
2380 
2381 		/* Argh, we hit an empty skb(), presumably a thread
2382 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2383 		 * We do not want to send a pure-ack packet and have
2384 		 * a strange looking rtx queue with empty packet(s).
2385 		 */
2386 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2387 			break;
2388 
2389 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2390 			break;
2391 
2392 repair:
2393 		/* Advance the send_head.  This one is sent out.
2394 		 * This call will increment packets_out.
2395 		 */
2396 		tcp_event_new_data_sent(sk, skb);
2397 
2398 		tcp_minshall_update(tp, mss_now, skb);
2399 		sent_pkts += tcp_skb_pcount(skb);
2400 
2401 		if (push_one)
2402 			break;
2403 	}
2404 
2405 	if (is_rwnd_limited)
2406 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2407 	else
2408 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2409 
2410 	if (likely(sent_pkts)) {
2411 		if (tcp_in_cwnd_reduction(sk))
2412 			tp->prr_out += sent_pkts;
2413 
2414 		/* Send one loss probe per tail loss episode. */
2415 		if (push_one != 2)
2416 			tcp_schedule_loss_probe(sk, false);
2417 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2418 		tcp_cwnd_validate(sk, is_cwnd_limited);
2419 		return false;
2420 	}
2421 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2422 }
2423 
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2424 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2425 {
2426 	struct inet_connection_sock *icsk = inet_csk(sk);
2427 	struct tcp_sock *tp = tcp_sk(sk);
2428 	u32 timeout, rto_delta_us;
2429 	int early_retrans;
2430 
2431 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2432 	 * finishes.
2433 	 */
2434 	if (tp->fastopen_rsk)
2435 		return false;
2436 
2437 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2438 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2439 	 * not in loss recovery, that are either limited by cwnd or application.
2440 	 */
2441 	if ((early_retrans != 3 && early_retrans != 4) ||
2442 	    !tp->packets_out || !tcp_is_sack(tp) ||
2443 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2444 	     icsk->icsk_ca_state != TCP_CA_CWR))
2445 		return false;
2446 
2447 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2448 	 * for delayed ack when there's one outstanding packet. If no RTT
2449 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2450 	 */
2451 	if (tp->srtt_us) {
2452 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2453 		if (tp->packets_out == 1)
2454 			timeout += TCP_RTO_MIN;
2455 		else
2456 			timeout += TCP_TIMEOUT_MIN;
2457 	} else {
2458 		timeout = TCP_TIMEOUT_INIT;
2459 	}
2460 
2461 	/* If the RTO formula yields an earlier time, then use that time. */
2462 	rto_delta_us = advancing_rto ?
2463 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2464 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2465 	if (rto_delta_us > 0)
2466 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2467 
2468 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2469 				  TCP_RTO_MAX);
2470 	return true;
2471 }
2472 
2473 /* Thanks to skb fast clones, we can detect if a prior transmit of
2474  * a packet is still in a qdisc or driver queue.
2475  * In this case, there is very little point doing a retransmit !
2476  */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2477 static bool skb_still_in_host_queue(const struct sock *sk,
2478 				    const struct sk_buff *skb)
2479 {
2480 	if (unlikely(skb_fclone_busy(sk, skb))) {
2481 		NET_INC_STATS(sock_net(sk),
2482 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2483 		return true;
2484 	}
2485 	return false;
2486 }
2487 
2488 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2489  * retransmit the last segment.
2490  */
tcp_send_loss_probe(struct sock * sk)2491 void tcp_send_loss_probe(struct sock *sk)
2492 {
2493 	struct tcp_sock *tp = tcp_sk(sk);
2494 	struct sk_buff *skb;
2495 	int pcount;
2496 	int mss = tcp_current_mss(sk);
2497 
2498 	/* At most one outstanding TLP */
2499 	if (tp->tlp_high_seq)
2500 		goto rearm_timer;
2501 
2502 	tp->tlp_retrans = 0;
2503 	skb = tcp_send_head(sk);
2504 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2505 		pcount = tp->packets_out;
2506 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2507 		if (tp->packets_out > pcount)
2508 			goto probe_sent;
2509 		goto rearm_timer;
2510 	}
2511 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2512 	if (unlikely(!skb)) {
2513 		WARN_ONCE(tp->packets_out,
2514 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2515 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2516 		inet_csk(sk)->icsk_pending = 0;
2517 		return;
2518 	}
2519 
2520 	if (skb_still_in_host_queue(sk, skb))
2521 		goto rearm_timer;
2522 
2523 	pcount = tcp_skb_pcount(skb);
2524 	if (WARN_ON(!pcount))
2525 		goto rearm_timer;
2526 
2527 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2528 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2529 					  (pcount - 1) * mss, mss,
2530 					  GFP_ATOMIC)))
2531 			goto rearm_timer;
2532 		skb = skb_rb_next(skb);
2533 	}
2534 
2535 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2536 		goto rearm_timer;
2537 
2538 	if (__tcp_retransmit_skb(sk, skb, 1))
2539 		goto rearm_timer;
2540 
2541 	tp->tlp_retrans = 1;
2542 
2543 probe_sent:
2544 	/* Record snd_nxt for loss detection. */
2545 	tp->tlp_high_seq = tp->snd_nxt;
2546 
2547 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2548 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2549 	inet_csk(sk)->icsk_pending = 0;
2550 rearm_timer:
2551 	tcp_rearm_rto(sk);
2552 }
2553 
2554 /* Push out any pending frames which were held back due to
2555  * TCP_CORK or attempt at coalescing tiny packets.
2556  * The socket must be locked by the caller.
2557  */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2558 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2559 			       int nonagle)
2560 {
2561 	/* If we are closed, the bytes will have to remain here.
2562 	 * In time closedown will finish, we empty the write queue and
2563 	 * all will be happy.
2564 	 */
2565 	if (unlikely(sk->sk_state == TCP_CLOSE))
2566 		return;
2567 
2568 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2569 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2570 		tcp_check_probe_timer(sk);
2571 }
2572 
2573 /* Send _single_ skb sitting at the send head. This function requires
2574  * true push pending frames to setup probe timer etc.
2575  */
tcp_push_one(struct sock * sk,unsigned int mss_now)2576 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2577 {
2578 	struct sk_buff *skb = tcp_send_head(sk);
2579 
2580 	BUG_ON(!skb || skb->len < mss_now);
2581 
2582 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2583 }
2584 
2585 /* This function returns the amount that we can raise the
2586  * usable window based on the following constraints
2587  *
2588  * 1. The window can never be shrunk once it is offered (RFC 793)
2589  * 2. We limit memory per socket
2590  *
2591  * RFC 1122:
2592  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2593  *  RECV.NEXT + RCV.WIN fixed until:
2594  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2595  *
2596  * i.e. don't raise the right edge of the window until you can raise
2597  * it at least MSS bytes.
2598  *
2599  * Unfortunately, the recommended algorithm breaks header prediction,
2600  * since header prediction assumes th->window stays fixed.
2601  *
2602  * Strictly speaking, keeping th->window fixed violates the receiver
2603  * side SWS prevention criteria. The problem is that under this rule
2604  * a stream of single byte packets will cause the right side of the
2605  * window to always advance by a single byte.
2606  *
2607  * Of course, if the sender implements sender side SWS prevention
2608  * then this will not be a problem.
2609  *
2610  * BSD seems to make the following compromise:
2611  *
2612  *	If the free space is less than the 1/4 of the maximum
2613  *	space available and the free space is less than 1/2 mss,
2614  *	then set the window to 0.
2615  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2616  *	Otherwise, just prevent the window from shrinking
2617  *	and from being larger than the largest representable value.
2618  *
2619  * This prevents incremental opening of the window in the regime
2620  * where TCP is limited by the speed of the reader side taking
2621  * data out of the TCP receive queue. It does nothing about
2622  * those cases where the window is constrained on the sender side
2623  * because the pipeline is full.
2624  *
2625  * BSD also seems to "accidentally" limit itself to windows that are a
2626  * multiple of MSS, at least until the free space gets quite small.
2627  * This would appear to be a side effect of the mbuf implementation.
2628  * Combining these two algorithms results in the observed behavior
2629  * of having a fixed window size at almost all times.
2630  *
2631  * Below we obtain similar behavior by forcing the offered window to
2632  * a multiple of the mss when it is feasible to do so.
2633  *
2634  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2635  * Regular options like TIMESTAMP are taken into account.
2636  */
__tcp_select_window(struct sock * sk)2637 u32 __tcp_select_window(struct sock *sk)
2638 {
2639 	struct inet_connection_sock *icsk = inet_csk(sk);
2640 	struct tcp_sock *tp = tcp_sk(sk);
2641 	/* MSS for the peer's data.  Previous versions used mss_clamp
2642 	 * here.  I don't know if the value based on our guesses
2643 	 * of peer's MSS is better for the performance.  It's more correct
2644 	 * but may be worse for the performance because of rcv_mss
2645 	 * fluctuations.  --SAW  1998/11/1
2646 	 */
2647 	int mss = icsk->icsk_ack.rcv_mss;
2648 	int free_space = tcp_space(sk);
2649 	int allowed_space = tcp_full_space(sk);
2650 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2651 	int window;
2652 
2653 	if (unlikely(mss > full_space)) {
2654 		mss = full_space;
2655 		if (mss <= 0)
2656 			return 0;
2657 	}
2658 	if (free_space < (full_space >> 1)) {
2659 		icsk->icsk_ack.quick = 0;
2660 
2661 		if (tcp_under_memory_pressure(sk))
2662 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2663 					       4U * tp->advmss);
2664 
2665 		/* free_space might become our new window, make sure we don't
2666 		 * increase it due to wscale.
2667 		 */
2668 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2669 
2670 		/* if free space is less than mss estimate, or is below 1/16th
2671 		 * of the maximum allowed, try to move to zero-window, else
2672 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2673 		 * new incoming data is dropped due to memory limits.
2674 		 * With large window, mss test triggers way too late in order
2675 		 * to announce zero window in time before rmem limit kicks in.
2676 		 */
2677 		if (free_space < (allowed_space >> 4) || free_space < mss)
2678 			return 0;
2679 	}
2680 
2681 	if (free_space > tp->rcv_ssthresh)
2682 		free_space = tp->rcv_ssthresh;
2683 
2684 	/* Don't do rounding if we are using window scaling, since the
2685 	 * scaled window will not line up with the MSS boundary anyway.
2686 	 */
2687 	if (tp->rx_opt.rcv_wscale) {
2688 		window = free_space;
2689 
2690 		/* Advertise enough space so that it won't get scaled away.
2691 		 * Import case: prevent zero window announcement if
2692 		 * 1<<rcv_wscale > mss.
2693 		 */
2694 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2695 	} else {
2696 		window = tp->rcv_wnd;
2697 		/* Get the largest window that is a nice multiple of mss.
2698 		 * Window clamp already applied above.
2699 		 * If our current window offering is within 1 mss of the
2700 		 * free space we just keep it. This prevents the divide
2701 		 * and multiply from happening most of the time.
2702 		 * We also don't do any window rounding when the free space
2703 		 * is too small.
2704 		 */
2705 		if (window <= free_space - mss || window > free_space)
2706 			window = rounddown(free_space, mss);
2707 		else if (mss == full_space &&
2708 			 free_space > window + (full_space >> 1))
2709 			window = free_space;
2710 	}
2711 
2712 	return window;
2713 }
2714 
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)2715 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2716 			     const struct sk_buff *next_skb)
2717 {
2718 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2719 		const struct skb_shared_info *next_shinfo =
2720 			skb_shinfo(next_skb);
2721 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2722 
2723 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2724 		shinfo->tskey = next_shinfo->tskey;
2725 		TCP_SKB_CB(skb)->txstamp_ack |=
2726 			TCP_SKB_CB(next_skb)->txstamp_ack;
2727 	}
2728 }
2729 
2730 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)2731 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2732 {
2733 	struct tcp_sock *tp = tcp_sk(sk);
2734 	struct sk_buff *next_skb = skb_rb_next(skb);
2735 	int next_skb_size;
2736 
2737 	next_skb_size = next_skb->len;
2738 
2739 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2740 
2741 	if (next_skb_size) {
2742 		if (next_skb_size <= skb_availroom(skb))
2743 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2744 				      next_skb_size);
2745 		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2746 			return false;
2747 	}
2748 	tcp_highest_sack_replace(sk, next_skb, skb);
2749 
2750 	/* Update sequence range on original skb. */
2751 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2752 
2753 	/* Merge over control information. This moves PSH/FIN etc. over */
2754 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2755 
2756 	/* All done, get rid of second SKB and account for it so
2757 	 * packet counting does not break.
2758 	 */
2759 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2760 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2761 
2762 	/* changed transmit queue under us so clear hints */
2763 	tcp_clear_retrans_hints_partial(tp);
2764 	if (next_skb == tp->retransmit_skb_hint)
2765 		tp->retransmit_skb_hint = skb;
2766 
2767 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2768 
2769 	tcp_skb_collapse_tstamp(skb, next_skb);
2770 
2771 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2772 	return true;
2773 }
2774 
2775 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)2776 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2777 {
2778 	if (tcp_skb_pcount(skb) > 1)
2779 		return false;
2780 	if (skb_cloned(skb))
2781 		return false;
2782 	/* Some heuristics for collapsing over SACK'd could be invented */
2783 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2784 		return false;
2785 
2786 	return true;
2787 }
2788 
2789 /* Collapse packets in the retransmit queue to make to create
2790  * less packets on the wire. This is only done on retransmission.
2791  */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)2792 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2793 				     int space)
2794 {
2795 	struct tcp_sock *tp = tcp_sk(sk);
2796 	struct sk_buff *skb = to, *tmp;
2797 	bool first = true;
2798 
2799 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2800 		return;
2801 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2802 		return;
2803 
2804 	skb_rbtree_walk_from_safe(skb, tmp) {
2805 		if (!tcp_can_collapse(sk, skb))
2806 			break;
2807 
2808 		if (!tcp_skb_can_collapse_to(to))
2809 			break;
2810 
2811 		space -= skb->len;
2812 
2813 		if (first) {
2814 			first = false;
2815 			continue;
2816 		}
2817 
2818 		if (space < 0)
2819 			break;
2820 
2821 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2822 			break;
2823 
2824 		if (!tcp_collapse_retrans(sk, to))
2825 			break;
2826 	}
2827 }
2828 
2829 /* This retransmits one SKB.  Policy decisions and retransmit queue
2830  * state updates are done by the caller.  Returns non-zero if an
2831  * error occurred which prevented the send.
2832  */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)2833 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2834 {
2835 	struct inet_connection_sock *icsk = inet_csk(sk);
2836 	struct tcp_sock *tp = tcp_sk(sk);
2837 	unsigned int cur_mss;
2838 	int diff, len, err;
2839 
2840 
2841 	/* Inconclusive MTU probe */
2842 	if (icsk->icsk_mtup.probe_size)
2843 		icsk->icsk_mtup.probe_size = 0;
2844 
2845 	/* Do not sent more than we queued. 1/4 is reserved for possible
2846 	 * copying overhead: fragmentation, tunneling, mangling etc.
2847 	 */
2848 	if (refcount_read(&sk->sk_wmem_alloc) >
2849 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2850 		  sk->sk_sndbuf))
2851 		return -EAGAIN;
2852 
2853 	if (skb_still_in_host_queue(sk, skb))
2854 		return -EBUSY;
2855 
2856 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2857 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2858 			WARN_ON_ONCE(1);
2859 			return -EINVAL;
2860 		}
2861 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2862 			return -ENOMEM;
2863 	}
2864 
2865 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2866 		return -EHOSTUNREACH; /* Routing failure or similar. */
2867 
2868 	cur_mss = tcp_current_mss(sk);
2869 
2870 	/* If receiver has shrunk his window, and skb is out of
2871 	 * new window, do not retransmit it. The exception is the
2872 	 * case, when window is shrunk to zero. In this case
2873 	 * our retransmit serves as a zero window probe.
2874 	 */
2875 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2876 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2877 		return -EAGAIN;
2878 
2879 	len = cur_mss * segs;
2880 	if (skb->len > len) {
2881 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2882 				 cur_mss, GFP_ATOMIC))
2883 			return -ENOMEM; /* We'll try again later. */
2884 	} else {
2885 		if (skb_unclone(skb, GFP_ATOMIC))
2886 			return -ENOMEM;
2887 
2888 		diff = tcp_skb_pcount(skb);
2889 		tcp_set_skb_tso_segs(skb, cur_mss);
2890 		diff -= tcp_skb_pcount(skb);
2891 		if (diff)
2892 			tcp_adjust_pcount(sk, skb, diff);
2893 		if (skb->len < cur_mss)
2894 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2895 	}
2896 
2897 	/* RFC3168, section 6.1.1.1. ECN fallback */
2898 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2899 		tcp_ecn_clear_syn(sk, skb);
2900 
2901 	/* Update global and local TCP statistics. */
2902 	segs = tcp_skb_pcount(skb);
2903 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2904 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2905 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2906 	tp->total_retrans += segs;
2907 	tp->bytes_retrans += skb->len;
2908 
2909 	/* make sure skb->data is aligned on arches that require it
2910 	 * and check if ack-trimming & collapsing extended the headroom
2911 	 * beyond what csum_start can cover.
2912 	 */
2913 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2914 		     skb_headroom(skb) >= 0xFFFF)) {
2915 		struct sk_buff *nskb;
2916 
2917 		tcp_skb_tsorted_save(skb) {
2918 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2919 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2920 				     -ENOBUFS;
2921 		} tcp_skb_tsorted_restore(skb);
2922 
2923 		if (!err) {
2924 			tcp_update_skb_after_send(tp, skb);
2925 			tcp_rate_skb_sent(sk, skb);
2926 		}
2927 	} else {
2928 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2929 	}
2930 
2931 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2932 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2933 				  TCP_SKB_CB(skb)->seq, segs, err);
2934 
2935 	if (likely(!err)) {
2936 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2937 		trace_tcp_retransmit_skb(sk, skb);
2938 	} else if (err != -EBUSY) {
2939 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2940 	}
2941 	return err;
2942 }
2943 
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)2944 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2945 {
2946 	struct tcp_sock *tp = tcp_sk(sk);
2947 	int err = __tcp_retransmit_skb(sk, skb, segs);
2948 
2949 	if (err == 0) {
2950 #if FASTRETRANS_DEBUG > 0
2951 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2952 			net_dbg_ratelimited("retrans_out leaked\n");
2953 		}
2954 #endif
2955 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2956 		tp->retrans_out += tcp_skb_pcount(skb);
2957 
2958 		/* Save stamp of the first retransmit. */
2959 		if (!tp->retrans_stamp)
2960 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2961 
2962 	}
2963 
2964 	if (tp->undo_retrans < 0)
2965 		tp->undo_retrans = 0;
2966 	tp->undo_retrans += tcp_skb_pcount(skb);
2967 	return err;
2968 }
2969 
2970 /* This gets called after a retransmit timeout, and the initially
2971  * retransmitted data is acknowledged.  It tries to continue
2972  * resending the rest of the retransmit queue, until either
2973  * we've sent it all or the congestion window limit is reached.
2974  */
tcp_xmit_retransmit_queue(struct sock * sk)2975 void tcp_xmit_retransmit_queue(struct sock *sk)
2976 {
2977 	const struct inet_connection_sock *icsk = inet_csk(sk);
2978 	struct sk_buff *skb, *rtx_head, *hole = NULL;
2979 	struct tcp_sock *tp = tcp_sk(sk);
2980 	u32 max_segs;
2981 	int mib_idx;
2982 
2983 	if (!tp->packets_out)
2984 		return;
2985 
2986 	rtx_head = tcp_rtx_queue_head(sk);
2987 	skb = tp->retransmit_skb_hint ?: rtx_head;
2988 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2989 	skb_rbtree_walk_from(skb) {
2990 		__u8 sacked;
2991 		int segs;
2992 
2993 		if (tcp_pacing_check(sk))
2994 			break;
2995 
2996 		/* we could do better than to assign each time */
2997 		if (!hole)
2998 			tp->retransmit_skb_hint = skb;
2999 
3000 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3001 		if (segs <= 0)
3002 			return;
3003 		sacked = TCP_SKB_CB(skb)->sacked;
3004 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3005 		 * we need to make sure not sending too bigs TSO packets
3006 		 */
3007 		segs = min_t(int, segs, max_segs);
3008 
3009 		if (tp->retrans_out >= tp->lost_out) {
3010 			break;
3011 		} else if (!(sacked & TCPCB_LOST)) {
3012 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3013 				hole = skb;
3014 			continue;
3015 
3016 		} else {
3017 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3018 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3019 			else
3020 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3021 		}
3022 
3023 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3024 			continue;
3025 
3026 		if (tcp_small_queue_check(sk, skb, 1))
3027 			return;
3028 
3029 		if (tcp_retransmit_skb(sk, skb, segs))
3030 			return;
3031 
3032 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3033 
3034 		if (tcp_in_cwnd_reduction(sk))
3035 			tp->prr_out += tcp_skb_pcount(skb);
3036 
3037 		if (skb == rtx_head &&
3038 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3039 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3040 						  inet_csk(sk)->icsk_rto,
3041 						  TCP_RTO_MAX);
3042 	}
3043 }
3044 
3045 /* We allow to exceed memory limits for FIN packets to expedite
3046  * connection tear down and (memory) recovery.
3047  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3048  * or even be forced to close flow without any FIN.
3049  * In general, we want to allow one skb per socket to avoid hangs
3050  * with edge trigger epoll()
3051  */
sk_forced_mem_schedule(struct sock * sk,int size)3052 void sk_forced_mem_schedule(struct sock *sk, int size)
3053 {
3054 	int amt;
3055 
3056 	if (size <= sk->sk_forward_alloc)
3057 		return;
3058 	amt = sk_mem_pages(size);
3059 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3060 	sk_memory_allocated_add(sk, amt);
3061 
3062 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3063 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3064 }
3065 
3066 /* Send a FIN. The caller locks the socket for us.
3067  * We should try to send a FIN packet really hard, but eventually give up.
3068  */
tcp_send_fin(struct sock * sk)3069 void tcp_send_fin(struct sock *sk)
3070 {
3071 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3072 	struct tcp_sock *tp = tcp_sk(sk);
3073 
3074 	/* Optimization, tack on the FIN if we have one skb in write queue and
3075 	 * this skb was not yet sent, or we are under memory pressure.
3076 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3077 	 * as TCP stack thinks it has already been transmitted.
3078 	 */
3079 	if (!tskb && tcp_under_memory_pressure(sk))
3080 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3081 
3082 	if (tskb) {
3083 coalesce:
3084 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3085 		TCP_SKB_CB(tskb)->end_seq++;
3086 		tp->write_seq++;
3087 		if (tcp_write_queue_empty(sk)) {
3088 			/* This means tskb was already sent.
3089 			 * Pretend we included the FIN on previous transmit.
3090 			 * We need to set tp->snd_nxt to the value it would have
3091 			 * if FIN had been sent. This is because retransmit path
3092 			 * does not change tp->snd_nxt.
3093 			 */
3094 			tp->snd_nxt++;
3095 			return;
3096 		}
3097 	} else {
3098 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3099 		if (unlikely(!skb)) {
3100 			if (tskb)
3101 				goto coalesce;
3102 			return;
3103 		}
3104 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3105 		skb_reserve(skb, MAX_TCP_HEADER);
3106 		sk_forced_mem_schedule(sk, skb->truesize);
3107 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3108 		tcp_init_nondata_skb(skb, tp->write_seq,
3109 				     TCPHDR_ACK | TCPHDR_FIN);
3110 		tcp_queue_skb(sk, skb);
3111 	}
3112 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3113 }
3114 
3115 /* We get here when a process closes a file descriptor (either due to
3116  * an explicit close() or as a byproduct of exit()'ing) and there
3117  * was unread data in the receive queue.  This behavior is recommended
3118  * by RFC 2525, section 2.17.  -DaveM
3119  */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3120 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3121 {
3122 	struct sk_buff *skb;
3123 
3124 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3125 
3126 	/* NOTE: No TCP options attached and we never retransmit this. */
3127 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3128 	if (!skb) {
3129 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3130 		return;
3131 	}
3132 
3133 	/* Reserve space for headers and prepare control bits. */
3134 	skb_reserve(skb, MAX_TCP_HEADER);
3135 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3136 			     TCPHDR_ACK | TCPHDR_RST);
3137 	tcp_mstamp_refresh(tcp_sk(sk));
3138 	/* Send it off. */
3139 	if (tcp_transmit_skb(sk, skb, 0, priority))
3140 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3141 
3142 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3143 	 * skb here is different to the troublesome skb, so use NULL
3144 	 */
3145 	trace_tcp_send_reset(sk, NULL);
3146 }
3147 
3148 /* Send a crossed SYN-ACK during socket establishment.
3149  * WARNING: This routine must only be called when we have already sent
3150  * a SYN packet that crossed the incoming SYN that caused this routine
3151  * to get called. If this assumption fails then the initial rcv_wnd
3152  * and rcv_wscale values will not be correct.
3153  */
tcp_send_synack(struct sock * sk)3154 int tcp_send_synack(struct sock *sk)
3155 {
3156 	struct sk_buff *skb;
3157 
3158 	skb = tcp_rtx_queue_head(sk);
3159 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3160 		pr_err("%s: wrong queue state\n", __func__);
3161 		return -EFAULT;
3162 	}
3163 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3164 		if (skb_cloned(skb)) {
3165 			struct sk_buff *nskb;
3166 
3167 			tcp_skb_tsorted_save(skb) {
3168 				nskb = skb_copy(skb, GFP_ATOMIC);
3169 			} tcp_skb_tsorted_restore(skb);
3170 			if (!nskb)
3171 				return -ENOMEM;
3172 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3173 			tcp_highest_sack_replace(sk, skb, nskb);
3174 			tcp_rtx_queue_unlink_and_free(skb, sk);
3175 			__skb_header_release(nskb);
3176 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3177 			sk->sk_wmem_queued += nskb->truesize;
3178 			sk_mem_charge(sk, nskb->truesize);
3179 			skb = nskb;
3180 		}
3181 
3182 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3183 		tcp_ecn_send_synack(sk, skb);
3184 	}
3185 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3186 }
3187 
3188 /**
3189  * tcp_make_synack - Prepare a SYN-ACK.
3190  * sk: listener socket
3191  * dst: dst entry attached to the SYNACK
3192  * req: request_sock pointer
3193  *
3194  * Allocate one skb and build a SYNACK packet.
3195  * @dst is consumed : Caller should not use it again.
3196  */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type)3197 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3198 				struct request_sock *req,
3199 				struct tcp_fastopen_cookie *foc,
3200 				enum tcp_synack_type synack_type)
3201 {
3202 	struct inet_request_sock *ireq = inet_rsk(req);
3203 	const struct tcp_sock *tp = tcp_sk(sk);
3204 	struct tcp_md5sig_key *md5 = NULL;
3205 	struct tcp_out_options opts;
3206 	struct sk_buff *skb;
3207 	int tcp_header_size;
3208 	struct tcphdr *th;
3209 	int mss;
3210 
3211 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3212 	if (unlikely(!skb)) {
3213 		dst_release(dst);
3214 		return NULL;
3215 	}
3216 	/* Reserve space for headers. */
3217 	skb_reserve(skb, MAX_TCP_HEADER);
3218 
3219 	switch (synack_type) {
3220 	case TCP_SYNACK_NORMAL:
3221 		skb_set_owner_w(skb, req_to_sk(req));
3222 		break;
3223 	case TCP_SYNACK_COOKIE:
3224 		/* Under synflood, we do not attach skb to a socket,
3225 		 * to avoid false sharing.
3226 		 */
3227 		break;
3228 	case TCP_SYNACK_FASTOPEN:
3229 		/* sk is a const pointer, because we want to express multiple
3230 		 * cpu might call us concurrently.
3231 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3232 		 */
3233 		skb_set_owner_w(skb, (struct sock *)sk);
3234 		break;
3235 	}
3236 	skb_dst_set(skb, dst);
3237 
3238 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3239 
3240 	memset(&opts, 0, sizeof(opts));
3241 #ifdef CONFIG_SYN_COOKIES
3242 	if (unlikely(req->cookie_ts))
3243 		skb->skb_mstamp = cookie_init_timestamp(req);
3244 	else
3245 #endif
3246 		skb->skb_mstamp = tcp_clock_us();
3247 
3248 #ifdef CONFIG_TCP_MD5SIG
3249 	rcu_read_lock();
3250 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3251 #endif
3252 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3253 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3254 					     foc, synack_type) + sizeof(*th);
3255 
3256 	skb_push(skb, tcp_header_size);
3257 	skb_reset_transport_header(skb);
3258 
3259 	th = (struct tcphdr *)skb->data;
3260 	memset(th, 0, sizeof(struct tcphdr));
3261 	th->syn = 1;
3262 	th->ack = 1;
3263 	tcp_ecn_make_synack(req, th);
3264 	th->source = htons(ireq->ir_num);
3265 	th->dest = ireq->ir_rmt_port;
3266 	skb->mark = ireq->ir_mark;
3267 	skb->ip_summed = CHECKSUM_PARTIAL;
3268 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3269 	/* XXX data is queued and acked as is. No buffer/window check */
3270 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3271 
3272 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3273 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3274 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3275 	th->doff = (tcp_header_size >> 2);
3276 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3277 
3278 #ifdef CONFIG_TCP_MD5SIG
3279 	/* Okay, we have all we need - do the md5 hash if needed */
3280 	if (md5)
3281 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3282 					       md5, req_to_sk(req), skb);
3283 	rcu_read_unlock();
3284 #endif
3285 
3286 	/* Do not fool tcpdump (if any), clean our debris */
3287 	skb->tstamp = 0;
3288 	return skb;
3289 }
3290 EXPORT_SYMBOL(tcp_make_synack);
3291 
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3292 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3293 {
3294 	struct inet_connection_sock *icsk = inet_csk(sk);
3295 	const struct tcp_congestion_ops *ca;
3296 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3297 
3298 	if (ca_key == TCP_CA_UNSPEC)
3299 		return;
3300 
3301 	rcu_read_lock();
3302 	ca = tcp_ca_find_key(ca_key);
3303 	if (likely(ca && try_module_get(ca->owner))) {
3304 		module_put(icsk->icsk_ca_ops->owner);
3305 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3306 		icsk->icsk_ca_ops = ca;
3307 	}
3308 	rcu_read_unlock();
3309 }
3310 
3311 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3312 static void tcp_connect_init(struct sock *sk)
3313 {
3314 	const struct dst_entry *dst = __sk_dst_get(sk);
3315 	struct tcp_sock *tp = tcp_sk(sk);
3316 	__u8 rcv_wscale;
3317 	u32 rcv_wnd;
3318 
3319 	/* We'll fix this up when we get a response from the other end.
3320 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3321 	 */
3322 	tp->tcp_header_len = sizeof(struct tcphdr);
3323 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3324 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3325 
3326 #ifdef CONFIG_TCP_MD5SIG
3327 	if (tp->af_specific->md5_lookup(sk, sk))
3328 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3329 #endif
3330 
3331 	/* If user gave his TCP_MAXSEG, record it to clamp */
3332 	if (tp->rx_opt.user_mss)
3333 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3334 	tp->max_window = 0;
3335 	tcp_mtup_init(sk);
3336 	tcp_sync_mss(sk, dst_mtu(dst));
3337 
3338 	tcp_ca_dst_init(sk, dst);
3339 
3340 	if (!tp->window_clamp)
3341 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3342 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3343 
3344 	tcp_initialize_rcv_mss(sk);
3345 
3346 	/* limit the window selection if the user enforce a smaller rx buffer */
3347 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3348 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3349 		tp->window_clamp = tcp_full_space(sk);
3350 
3351 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3352 	if (rcv_wnd == 0)
3353 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3354 
3355 	tcp_select_initial_window(sk, tcp_full_space(sk),
3356 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3357 				  &tp->rcv_wnd,
3358 				  &tp->window_clamp,
3359 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3360 				  &rcv_wscale,
3361 				  rcv_wnd);
3362 
3363 	tp->rx_opt.rcv_wscale = rcv_wscale;
3364 	tp->rcv_ssthresh = tp->rcv_wnd;
3365 
3366 	sk->sk_err = 0;
3367 	sock_reset_flag(sk, SOCK_DONE);
3368 	tp->snd_wnd = 0;
3369 	tcp_init_wl(tp, 0);
3370 	tcp_write_queue_purge(sk);
3371 	tp->snd_una = tp->write_seq;
3372 	tp->snd_sml = tp->write_seq;
3373 	tp->snd_up = tp->write_seq;
3374 	tp->snd_nxt = tp->write_seq;
3375 
3376 	if (likely(!tp->repair))
3377 		tp->rcv_nxt = 0;
3378 	else
3379 		tp->rcv_tstamp = tcp_jiffies32;
3380 	tp->rcv_wup = tp->rcv_nxt;
3381 	tp->copied_seq = tp->rcv_nxt;
3382 
3383 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3384 	inet_csk(sk)->icsk_retransmits = 0;
3385 	tcp_clear_retrans(tp);
3386 }
3387 
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3388 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3389 {
3390 	struct tcp_sock *tp = tcp_sk(sk);
3391 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3392 
3393 	tcb->end_seq += skb->len;
3394 	__skb_header_release(skb);
3395 	sk->sk_wmem_queued += skb->truesize;
3396 	sk_mem_charge(sk, skb->truesize);
3397 	tp->write_seq = tcb->end_seq;
3398 	tp->packets_out += tcp_skb_pcount(skb);
3399 }
3400 
3401 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3402  * queue a data-only packet after the regular SYN, such that regular SYNs
3403  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3404  * only the SYN sequence, the data are retransmitted in the first ACK.
3405  * If cookie is not cached or other error occurs, falls back to send a
3406  * regular SYN with Fast Open cookie request option.
3407  */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3408 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3409 {
3410 	struct tcp_sock *tp = tcp_sk(sk);
3411 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3412 	int space, err = 0;
3413 	struct sk_buff *syn_data;
3414 
3415 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3416 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3417 		goto fallback;
3418 
3419 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3420 	 * user-MSS. Reserve maximum option space for middleboxes that add
3421 	 * private TCP options. The cost is reduced data space in SYN :(
3422 	 */
3423 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3424 
3425 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3426 		MAX_TCP_OPTION_SPACE;
3427 
3428 	space = min_t(size_t, space, fo->size);
3429 
3430 	/* limit to order-0 allocations */
3431 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3432 
3433 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3434 	if (!syn_data)
3435 		goto fallback;
3436 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3437 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3438 	if (space) {
3439 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3440 					    &fo->data->msg_iter);
3441 		if (unlikely(!copied)) {
3442 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3443 			kfree_skb(syn_data);
3444 			goto fallback;
3445 		}
3446 		if (copied != space) {
3447 			skb_trim(syn_data, copied);
3448 			space = copied;
3449 		}
3450 	}
3451 	/* No more data pending in inet_wait_for_connect() */
3452 	if (space == fo->size)
3453 		fo->data = NULL;
3454 	fo->copied = space;
3455 
3456 	tcp_connect_queue_skb(sk, syn_data);
3457 	if (syn_data->len)
3458 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3459 
3460 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3461 
3462 	syn->skb_mstamp = syn_data->skb_mstamp;
3463 
3464 	/* Now full SYN+DATA was cloned and sent (or not),
3465 	 * remove the SYN from the original skb (syn_data)
3466 	 * we keep in write queue in case of a retransmit, as we
3467 	 * also have the SYN packet (with no data) in the same queue.
3468 	 */
3469 	TCP_SKB_CB(syn_data)->seq++;
3470 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3471 	if (!err) {
3472 		tp->syn_data = (fo->copied > 0);
3473 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3474 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3475 		goto done;
3476 	}
3477 
3478 	/* data was not sent, put it in write_queue */
3479 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3480 	tp->packets_out -= tcp_skb_pcount(syn_data);
3481 
3482 fallback:
3483 	/* Send a regular SYN with Fast Open cookie request option */
3484 	if (fo->cookie.len > 0)
3485 		fo->cookie.len = 0;
3486 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3487 	if (err)
3488 		tp->syn_fastopen = 0;
3489 done:
3490 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3491 	return err;
3492 }
3493 
3494 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3495 int tcp_connect(struct sock *sk)
3496 {
3497 	struct tcp_sock *tp = tcp_sk(sk);
3498 	struct sk_buff *buff;
3499 	int err;
3500 
3501 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3502 
3503 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3504 		return -EHOSTUNREACH; /* Routing failure or similar. */
3505 
3506 	tcp_connect_init(sk);
3507 
3508 	if (unlikely(tp->repair)) {
3509 		tcp_finish_connect(sk, NULL);
3510 		return 0;
3511 	}
3512 
3513 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3514 	if (unlikely(!buff))
3515 		return -ENOBUFS;
3516 
3517 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3518 	tcp_mstamp_refresh(tp);
3519 	tp->retrans_stamp = tcp_time_stamp(tp);
3520 	tcp_connect_queue_skb(sk, buff);
3521 	tcp_ecn_send_syn(sk, buff);
3522 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3523 
3524 	/* Send off SYN; include data in Fast Open. */
3525 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3526 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3527 	if (err == -ECONNREFUSED)
3528 		return err;
3529 
3530 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3531 	 * in order to make this packet get counted in tcpOutSegs.
3532 	 */
3533 	tp->snd_nxt = tp->write_seq;
3534 	tp->pushed_seq = tp->write_seq;
3535 	buff = tcp_send_head(sk);
3536 	if (unlikely(buff)) {
3537 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3538 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3539 	}
3540 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3541 
3542 	/* Timer for repeating the SYN until an answer. */
3543 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3544 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3545 	return 0;
3546 }
3547 EXPORT_SYMBOL(tcp_connect);
3548 
3549 /* Send out a delayed ack, the caller does the policy checking
3550  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3551  * for details.
3552  */
tcp_send_delayed_ack(struct sock * sk)3553 void tcp_send_delayed_ack(struct sock *sk)
3554 {
3555 	struct inet_connection_sock *icsk = inet_csk(sk);
3556 	int ato = icsk->icsk_ack.ato;
3557 	unsigned long timeout;
3558 
3559 	if (ato > TCP_DELACK_MIN) {
3560 		const struct tcp_sock *tp = tcp_sk(sk);
3561 		int max_ato = HZ / 2;
3562 
3563 		if (icsk->icsk_ack.pingpong ||
3564 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3565 			max_ato = TCP_DELACK_MAX;
3566 
3567 		/* Slow path, intersegment interval is "high". */
3568 
3569 		/* If some rtt estimate is known, use it to bound delayed ack.
3570 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3571 		 * directly.
3572 		 */
3573 		if (tp->srtt_us) {
3574 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3575 					TCP_DELACK_MIN);
3576 
3577 			if (rtt < max_ato)
3578 				max_ato = rtt;
3579 		}
3580 
3581 		ato = min(ato, max_ato);
3582 	}
3583 
3584 	/* Stay within the limit we were given */
3585 	timeout = jiffies + ato;
3586 
3587 	/* Use new timeout only if there wasn't a older one earlier. */
3588 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3589 		/* If delack timer was blocked or is about to expire,
3590 		 * send ACK now.
3591 		 */
3592 		if (icsk->icsk_ack.blocked ||
3593 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3594 			tcp_send_ack(sk);
3595 			return;
3596 		}
3597 
3598 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3599 			timeout = icsk->icsk_ack.timeout;
3600 	}
3601 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3602 	icsk->icsk_ack.timeout = timeout;
3603 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3604 }
3605 
3606 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3607 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3608 {
3609 	struct sk_buff *buff;
3610 
3611 	/* If we have been reset, we may not send again. */
3612 	if (sk->sk_state == TCP_CLOSE)
3613 		return;
3614 
3615 	/* We are not putting this on the write queue, so
3616 	 * tcp_transmit_skb() will set the ownership to this
3617 	 * sock.
3618 	 */
3619 	buff = alloc_skb(MAX_TCP_HEADER,
3620 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3621 	if (unlikely(!buff)) {
3622 		inet_csk_schedule_ack(sk);
3623 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3624 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3625 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3626 		return;
3627 	}
3628 
3629 	/* Reserve space for headers and prepare control bits. */
3630 	skb_reserve(buff, MAX_TCP_HEADER);
3631 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3632 
3633 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3634 	 * too much.
3635 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3636 	 */
3637 	skb_set_tcp_pure_ack(buff);
3638 
3639 	/* Send it off, this clears delayed acks for us. */
3640 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3641 }
3642 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3643 
tcp_send_ack(struct sock * sk)3644 void tcp_send_ack(struct sock *sk)
3645 {
3646 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3647 }
3648 
3649 /* This routine sends a packet with an out of date sequence
3650  * number. It assumes the other end will try to ack it.
3651  *
3652  * Question: what should we make while urgent mode?
3653  * 4.4BSD forces sending single byte of data. We cannot send
3654  * out of window data, because we have SND.NXT==SND.MAX...
3655  *
3656  * Current solution: to send TWO zero-length segments in urgent mode:
3657  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3658  * out-of-date with SND.UNA-1 to probe window.
3659  */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)3660 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3661 {
3662 	struct tcp_sock *tp = tcp_sk(sk);
3663 	struct sk_buff *skb;
3664 
3665 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3666 	skb = alloc_skb(MAX_TCP_HEADER,
3667 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3668 	if (!skb)
3669 		return -1;
3670 
3671 	/* Reserve space for headers and set control bits. */
3672 	skb_reserve(skb, MAX_TCP_HEADER);
3673 	/* Use a previous sequence.  This should cause the other
3674 	 * end to send an ack.  Don't queue or clone SKB, just
3675 	 * send it.
3676 	 */
3677 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3678 	NET_INC_STATS(sock_net(sk), mib);
3679 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3680 }
3681 
3682 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)3683 void tcp_send_window_probe(struct sock *sk)
3684 {
3685 	if (sk->sk_state == TCP_ESTABLISHED) {
3686 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3687 		tcp_mstamp_refresh(tcp_sk(sk));
3688 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3689 	}
3690 }
3691 
3692 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)3693 int tcp_write_wakeup(struct sock *sk, int mib)
3694 {
3695 	struct tcp_sock *tp = tcp_sk(sk);
3696 	struct sk_buff *skb;
3697 
3698 	if (sk->sk_state == TCP_CLOSE)
3699 		return -1;
3700 
3701 	skb = tcp_send_head(sk);
3702 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3703 		int err;
3704 		unsigned int mss = tcp_current_mss(sk);
3705 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3706 
3707 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3708 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3709 
3710 		/* We are probing the opening of a window
3711 		 * but the window size is != 0
3712 		 * must have been a result SWS avoidance ( sender )
3713 		 */
3714 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3715 		    skb->len > mss) {
3716 			seg_size = min(seg_size, mss);
3717 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3718 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3719 					 skb, seg_size, mss, GFP_ATOMIC))
3720 				return -1;
3721 		} else if (!tcp_skb_pcount(skb))
3722 			tcp_set_skb_tso_segs(skb, mss);
3723 
3724 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3725 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3726 		if (!err)
3727 			tcp_event_new_data_sent(sk, skb);
3728 		return err;
3729 	} else {
3730 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3731 			tcp_xmit_probe_skb(sk, 1, mib);
3732 		return tcp_xmit_probe_skb(sk, 0, mib);
3733 	}
3734 }
3735 
3736 /* A window probe timeout has occurred.  If window is not closed send
3737  * a partial packet else a zero probe.
3738  */
tcp_send_probe0(struct sock * sk)3739 void tcp_send_probe0(struct sock *sk)
3740 {
3741 	struct inet_connection_sock *icsk = inet_csk(sk);
3742 	struct tcp_sock *tp = tcp_sk(sk);
3743 	struct net *net = sock_net(sk);
3744 	unsigned long probe_max;
3745 	int err;
3746 
3747 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3748 
3749 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3750 		/* Cancel probe timer, if it is not required. */
3751 		icsk->icsk_probes_out = 0;
3752 		icsk->icsk_backoff = 0;
3753 		return;
3754 	}
3755 
3756 	if (err <= 0) {
3757 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3758 			icsk->icsk_backoff++;
3759 		icsk->icsk_probes_out++;
3760 		probe_max = TCP_RTO_MAX;
3761 	} else {
3762 		/* If packet was not sent due to local congestion,
3763 		 * do not backoff and do not remember icsk_probes_out.
3764 		 * Let local senders to fight for local resources.
3765 		 *
3766 		 * Use accumulated backoff yet.
3767 		 */
3768 		if (!icsk->icsk_probes_out)
3769 			icsk->icsk_probes_out = 1;
3770 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3771 	}
3772 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3773 				  tcp_probe0_when(sk, probe_max),
3774 				  TCP_RTO_MAX);
3775 }
3776 
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)3777 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3778 {
3779 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3780 	struct flowi fl;
3781 	int res;
3782 
3783 	tcp_rsk(req)->txhash = net_tx_rndhash();
3784 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3785 	if (!res) {
3786 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3787 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3788 		if (unlikely(tcp_passive_fastopen(sk)))
3789 			tcp_sk(sk)->total_retrans++;
3790 		trace_tcp_retransmit_synack(sk, req);
3791 	}
3792 	return res;
3793 }
3794 EXPORT_SYMBOL(tcp_rtx_synack);
3795