1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45
46 #include <trace/events/tcp.h>
47
48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
49 int push_one, gfp_t gfp);
50
51 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
53 {
54 struct inet_connection_sock *icsk = inet_csk(sk);
55 struct tcp_sock *tp = tcp_sk(sk);
56 unsigned int prior_packets = tp->packets_out;
57
58 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
59
60 __skb_unlink(skb, &sk->sk_write_queue);
61 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
62
63 if (tp->highest_sack == NULL)
64 tp->highest_sack = skb;
65
66 tp->packets_out += tcp_skb_pcount(skb);
67 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
68 tcp_rearm_rto(sk);
69
70 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
71 tcp_skb_pcount(skb));
72 }
73
74 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
75 * window scaling factor due to loss of precision.
76 * If window has been shrunk, what should we make? It is not clear at all.
77 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
78 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
79 * invalid. OK, let's make this for now:
80 */
tcp_acceptable_seq(const struct sock * sk)81 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
82 {
83 const struct tcp_sock *tp = tcp_sk(sk);
84
85 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
86 (tp->rx_opt.wscale_ok &&
87 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
88 return tp->snd_nxt;
89 else
90 return tcp_wnd_end(tp);
91 }
92
93 /* Calculate mss to advertise in SYN segment.
94 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
95 *
96 * 1. It is independent of path mtu.
97 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
98 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
99 * attached devices, because some buggy hosts are confused by
100 * large MSS.
101 * 4. We do not make 3, we advertise MSS, calculated from first
102 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
103 * This may be overridden via information stored in routing table.
104 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
105 * probably even Jumbo".
106 */
tcp_advertise_mss(struct sock * sk)107 static __u16 tcp_advertise_mss(struct sock *sk)
108 {
109 struct tcp_sock *tp = tcp_sk(sk);
110 const struct dst_entry *dst = __sk_dst_get(sk);
111 int mss = tp->advmss;
112
113 if (dst) {
114 unsigned int metric = dst_metric_advmss(dst);
115
116 if (metric < mss) {
117 mss = metric;
118 tp->advmss = mss;
119 }
120 }
121
122 return (__u16)mss;
123 }
124
125 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
126 * This is the first part of cwnd validation mechanism.
127 */
tcp_cwnd_restart(struct sock * sk,s32 delta)128 void tcp_cwnd_restart(struct sock *sk, s32 delta)
129 {
130 struct tcp_sock *tp = tcp_sk(sk);
131 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
132 u32 cwnd = tp->snd_cwnd;
133
134 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
135
136 tp->snd_ssthresh = tcp_current_ssthresh(sk);
137 restart_cwnd = min(restart_cwnd, cwnd);
138
139 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
140 cwnd >>= 1;
141 tp->snd_cwnd = max(cwnd, restart_cwnd);
142 tp->snd_cwnd_stamp = tcp_jiffies32;
143 tp->snd_cwnd_used = 0;
144 }
145
146 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)147 static void tcp_event_data_sent(struct tcp_sock *tp,
148 struct sock *sk)
149 {
150 struct inet_connection_sock *icsk = inet_csk(sk);
151 const u32 now = tcp_jiffies32;
152
153 if (tcp_packets_in_flight(tp) == 0)
154 tcp_ca_event(sk, CA_EVENT_TX_START);
155
156 tp->lsndtime = now;
157
158 /* If it is a reply for ato after last received
159 * packet, enter pingpong mode.
160 */
161 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
162 icsk->icsk_ack.pingpong = 1;
163 }
164
165 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts,u32 rcv_nxt)166 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
167 u32 rcv_nxt)
168 {
169 struct tcp_sock *tp = tcp_sk(sk);
170
171 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
172 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
173 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
174 tp->compressed_ack = TCP_FASTRETRANS_THRESH;
175 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
176 __sock_put(sk);
177 }
178
179 if (unlikely(rcv_nxt != tp->rcv_nxt))
180 return; /* Special ACK sent by DCTCP to reflect ECN */
181 tcp_dec_quickack_mode(sk, pkts);
182 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
183 }
184
185 /* Determine a window scaling and initial window to offer.
186 * Based on the assumption that the given amount of space
187 * will be offered. Store the results in the tp structure.
188 * NOTE: for smooth operation initial space offering should
189 * be a multiple of mss if possible. We assume here that mss >= 1.
190 * This MUST be enforced by all callers.
191 */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)192 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
193 __u32 *rcv_wnd, __u32 *window_clamp,
194 int wscale_ok, __u8 *rcv_wscale,
195 __u32 init_rcv_wnd)
196 {
197 unsigned int space = (__space < 0 ? 0 : __space);
198
199 /* If no clamp set the clamp to the max possible scaled window */
200 if (*window_clamp == 0)
201 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
202 space = min(*window_clamp, space);
203
204 /* Quantize space offering to a multiple of mss if possible. */
205 if (space > mss)
206 space = rounddown(space, mss);
207
208 /* NOTE: offering an initial window larger than 32767
209 * will break some buggy TCP stacks. If the admin tells us
210 * it is likely we could be speaking with such a buggy stack
211 * we will truncate our initial window offering to 32K-1
212 * unless the remote has sent us a window scaling option,
213 * which we interpret as a sign the remote TCP is not
214 * misinterpreting the window field as a signed quantity.
215 */
216 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
217 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
218 else
219 (*rcv_wnd) = min_t(u32, space, U16_MAX);
220
221 if (init_rcv_wnd)
222 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
223
224 (*rcv_wscale) = 0;
225 if (wscale_ok) {
226 /* Set window scaling on max possible window */
227 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
228 space = max_t(u32, space, sysctl_rmem_max);
229 space = min_t(u32, space, *window_clamp);
230 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
231 space >>= 1;
232 (*rcv_wscale)++;
233 }
234 }
235 /* Set the clamp no higher than max representable value */
236 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
237 }
238 EXPORT_SYMBOL(tcp_select_initial_window);
239
240 /* Chose a new window to advertise, update state in tcp_sock for the
241 * socket, and return result with RFC1323 scaling applied. The return
242 * value can be stuffed directly into th->window for an outgoing
243 * frame.
244 */
tcp_select_window(struct sock * sk)245 static u16 tcp_select_window(struct sock *sk)
246 {
247 struct tcp_sock *tp = tcp_sk(sk);
248 u32 old_win = tp->rcv_wnd;
249 u32 cur_win = tcp_receive_window(tp);
250 u32 new_win = __tcp_select_window(sk);
251
252 /* Never shrink the offered window */
253 if (new_win < cur_win) {
254 /* Danger Will Robinson!
255 * Don't update rcv_wup/rcv_wnd here or else
256 * we will not be able to advertise a zero
257 * window in time. --DaveM
258 *
259 * Relax Will Robinson.
260 */
261 if (new_win == 0)
262 NET_INC_STATS(sock_net(sk),
263 LINUX_MIB_TCPWANTZEROWINDOWADV);
264 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
265 }
266 tp->rcv_wnd = new_win;
267 tp->rcv_wup = tp->rcv_nxt;
268
269 /* Make sure we do not exceed the maximum possible
270 * scaled window.
271 */
272 if (!tp->rx_opt.rcv_wscale &&
273 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
274 new_win = min(new_win, MAX_TCP_WINDOW);
275 else
276 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
277
278 /* RFC1323 scaling applied */
279 new_win >>= tp->rx_opt.rcv_wscale;
280
281 /* If we advertise zero window, disable fast path. */
282 if (new_win == 0) {
283 tp->pred_flags = 0;
284 if (old_win)
285 NET_INC_STATS(sock_net(sk),
286 LINUX_MIB_TCPTOZEROWINDOWADV);
287 } else if (old_win == 0) {
288 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
289 }
290
291 return new_win;
292 }
293
294 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)295 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
296 {
297 const struct tcp_sock *tp = tcp_sk(sk);
298
299 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
300 if (!(tp->ecn_flags & TCP_ECN_OK))
301 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
302 else if (tcp_ca_needs_ecn(sk) ||
303 tcp_bpf_ca_needs_ecn(sk))
304 INET_ECN_xmit(sk);
305 }
306
307 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)308 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
309 {
310 struct tcp_sock *tp = tcp_sk(sk);
311 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
312 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
313 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
314
315 if (!use_ecn) {
316 const struct dst_entry *dst = __sk_dst_get(sk);
317
318 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
319 use_ecn = true;
320 }
321
322 tp->ecn_flags = 0;
323
324 if (use_ecn) {
325 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
326 tp->ecn_flags = TCP_ECN_OK;
327 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
328 INET_ECN_xmit(sk);
329 }
330 }
331
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)332 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
333 {
334 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
335 /* tp->ecn_flags are cleared at a later point in time when
336 * SYN ACK is ultimatively being received.
337 */
338 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
339 }
340
341 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)342 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
343 {
344 if (inet_rsk(req)->ecn_ok)
345 th->ece = 1;
346 }
347
348 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
349 * be sent.
350 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)351 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
352 struct tcphdr *th, int tcp_header_len)
353 {
354 struct tcp_sock *tp = tcp_sk(sk);
355
356 if (tp->ecn_flags & TCP_ECN_OK) {
357 /* Not-retransmitted data segment: set ECT and inject CWR. */
358 if (skb->len != tcp_header_len &&
359 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
360 INET_ECN_xmit(sk);
361 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
362 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
363 th->cwr = 1;
364 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
365 }
366 } else if (!tcp_ca_needs_ecn(sk)) {
367 /* ACK or retransmitted segment: clear ECT|CE */
368 INET_ECN_dontxmit(sk);
369 }
370 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
371 th->ece = 1;
372 }
373 }
374
375 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
376 * auto increment end seqno.
377 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)378 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
379 {
380 skb->ip_summed = CHECKSUM_PARTIAL;
381
382 TCP_SKB_CB(skb)->tcp_flags = flags;
383 TCP_SKB_CB(skb)->sacked = 0;
384
385 tcp_skb_pcount_set(skb, 1);
386
387 TCP_SKB_CB(skb)->seq = seq;
388 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
389 seq++;
390 TCP_SKB_CB(skb)->end_seq = seq;
391 }
392
tcp_urg_mode(const struct tcp_sock * tp)393 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
394 {
395 return tp->snd_una != tp->snd_up;
396 }
397
398 #define OPTION_SACK_ADVERTISE (1 << 0)
399 #define OPTION_TS (1 << 1)
400 #define OPTION_MD5 (1 << 2)
401 #define OPTION_WSCALE (1 << 3)
402 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
403 #define OPTION_SMC (1 << 9)
404
smc_options_write(__be32 * ptr,u16 * options)405 static void smc_options_write(__be32 *ptr, u16 *options)
406 {
407 #if IS_ENABLED(CONFIG_SMC)
408 if (static_branch_unlikely(&tcp_have_smc)) {
409 if (unlikely(OPTION_SMC & *options)) {
410 *ptr++ = htonl((TCPOPT_NOP << 24) |
411 (TCPOPT_NOP << 16) |
412 (TCPOPT_EXP << 8) |
413 (TCPOLEN_EXP_SMC_BASE));
414 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
415 }
416 }
417 #endif
418 }
419
420 struct tcp_out_options {
421 u16 options; /* bit field of OPTION_* */
422 u16 mss; /* 0 to disable */
423 u8 ws; /* window scale, 0 to disable */
424 u8 num_sack_blocks; /* number of SACK blocks to include */
425 u8 hash_size; /* bytes in hash_location */
426 __u8 *hash_location; /* temporary pointer, overloaded */
427 __u32 tsval, tsecr; /* need to include OPTION_TS */
428 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
429 };
430
431 /* Write previously computed TCP options to the packet.
432 *
433 * Beware: Something in the Internet is very sensitive to the ordering of
434 * TCP options, we learned this through the hard way, so be careful here.
435 * Luckily we can at least blame others for their non-compliance but from
436 * inter-operability perspective it seems that we're somewhat stuck with
437 * the ordering which we have been using if we want to keep working with
438 * those broken things (not that it currently hurts anybody as there isn't
439 * particular reason why the ordering would need to be changed).
440 *
441 * At least SACK_PERM as the first option is known to lead to a disaster
442 * (but it may well be that other scenarios fail similarly).
443 */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 struct tcp_out_options *opts)
446 {
447 u16 options = opts->options; /* mungable copy */
448
449 if (unlikely(OPTION_MD5 & options)) {
450 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
451 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
452 /* overload cookie hash location */
453 opts->hash_location = (__u8 *)ptr;
454 ptr += 4;
455 }
456
457 if (unlikely(opts->mss)) {
458 *ptr++ = htonl((TCPOPT_MSS << 24) |
459 (TCPOLEN_MSS << 16) |
460 opts->mss);
461 }
462
463 if (likely(OPTION_TS & options)) {
464 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
465 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
466 (TCPOLEN_SACK_PERM << 16) |
467 (TCPOPT_TIMESTAMP << 8) |
468 TCPOLEN_TIMESTAMP);
469 options &= ~OPTION_SACK_ADVERTISE;
470 } else {
471 *ptr++ = htonl((TCPOPT_NOP << 24) |
472 (TCPOPT_NOP << 16) |
473 (TCPOPT_TIMESTAMP << 8) |
474 TCPOLEN_TIMESTAMP);
475 }
476 *ptr++ = htonl(opts->tsval);
477 *ptr++ = htonl(opts->tsecr);
478 }
479
480 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
481 *ptr++ = htonl((TCPOPT_NOP << 24) |
482 (TCPOPT_NOP << 16) |
483 (TCPOPT_SACK_PERM << 8) |
484 TCPOLEN_SACK_PERM);
485 }
486
487 if (unlikely(OPTION_WSCALE & options)) {
488 *ptr++ = htonl((TCPOPT_NOP << 24) |
489 (TCPOPT_WINDOW << 16) |
490 (TCPOLEN_WINDOW << 8) |
491 opts->ws);
492 }
493
494 if (unlikely(opts->num_sack_blocks)) {
495 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
496 tp->duplicate_sack : tp->selective_acks;
497 int this_sack;
498
499 *ptr++ = htonl((TCPOPT_NOP << 24) |
500 (TCPOPT_NOP << 16) |
501 (TCPOPT_SACK << 8) |
502 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
503 TCPOLEN_SACK_PERBLOCK)));
504
505 for (this_sack = 0; this_sack < opts->num_sack_blocks;
506 ++this_sack) {
507 *ptr++ = htonl(sp[this_sack].start_seq);
508 *ptr++ = htonl(sp[this_sack].end_seq);
509 }
510
511 tp->rx_opt.dsack = 0;
512 }
513
514 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
515 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 u8 *p = (u8 *)ptr;
517 u32 len; /* Fast Open option length */
518
519 if (foc->exp) {
520 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
521 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
522 TCPOPT_FASTOPEN_MAGIC);
523 p += TCPOLEN_EXP_FASTOPEN_BASE;
524 } else {
525 len = TCPOLEN_FASTOPEN_BASE + foc->len;
526 *p++ = TCPOPT_FASTOPEN;
527 *p++ = len;
528 }
529
530 memcpy(p, foc->val, foc->len);
531 if ((len & 3) == 2) {
532 p[foc->len] = TCPOPT_NOP;
533 p[foc->len + 1] = TCPOPT_NOP;
534 }
535 ptr += (len + 3) >> 2;
536 }
537
538 smc_options_write(ptr, &options);
539 }
540
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)541 static void smc_set_option(const struct tcp_sock *tp,
542 struct tcp_out_options *opts,
543 unsigned int *remaining)
544 {
545 #if IS_ENABLED(CONFIG_SMC)
546 if (static_branch_unlikely(&tcp_have_smc)) {
547 if (tp->syn_smc) {
548 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
549 opts->options |= OPTION_SMC;
550 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
551 }
552 }
553 }
554 #endif
555 }
556
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)557 static void smc_set_option_cond(const struct tcp_sock *tp,
558 const struct inet_request_sock *ireq,
559 struct tcp_out_options *opts,
560 unsigned int *remaining)
561 {
562 #if IS_ENABLED(CONFIG_SMC)
563 if (static_branch_unlikely(&tcp_have_smc)) {
564 if (tp->syn_smc && ireq->smc_ok) {
565 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
566 opts->options |= OPTION_SMC;
567 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
568 }
569 }
570 }
571 #endif
572 }
573
574 /* Compute TCP options for SYN packets. This is not the final
575 * network wire format yet.
576 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)577 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
578 struct tcp_out_options *opts,
579 struct tcp_md5sig_key **md5)
580 {
581 struct tcp_sock *tp = tcp_sk(sk);
582 unsigned int remaining = MAX_TCP_OPTION_SPACE;
583 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
584
585 *md5 = NULL;
586 #ifdef CONFIG_TCP_MD5SIG
587 if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
588 *md5 = tp->af_specific->md5_lookup(sk, sk);
589 if (*md5) {
590 opts->options |= OPTION_MD5;
591 remaining -= TCPOLEN_MD5SIG_ALIGNED;
592 }
593 }
594 #endif
595
596 /* We always get an MSS option. The option bytes which will be seen in
597 * normal data packets should timestamps be used, must be in the MSS
598 * advertised. But we subtract them from tp->mss_cache so that
599 * calculations in tcp_sendmsg are simpler etc. So account for this
600 * fact here if necessary. If we don't do this correctly, as a
601 * receiver we won't recognize data packets as being full sized when we
602 * should, and thus we won't abide by the delayed ACK rules correctly.
603 * SACKs don't matter, we never delay an ACK when we have any of those
604 * going out. */
605 opts->mss = tcp_advertise_mss(sk);
606 remaining -= TCPOLEN_MSS_ALIGNED;
607
608 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
609 opts->options |= OPTION_TS;
610 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
611 opts->tsecr = tp->rx_opt.ts_recent;
612 remaining -= TCPOLEN_TSTAMP_ALIGNED;
613 }
614 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
615 opts->ws = tp->rx_opt.rcv_wscale;
616 opts->options |= OPTION_WSCALE;
617 remaining -= TCPOLEN_WSCALE_ALIGNED;
618 }
619 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
620 opts->options |= OPTION_SACK_ADVERTISE;
621 if (unlikely(!(OPTION_TS & opts->options)))
622 remaining -= TCPOLEN_SACKPERM_ALIGNED;
623 }
624
625 if (fastopen && fastopen->cookie.len >= 0) {
626 u32 need = fastopen->cookie.len;
627
628 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
629 TCPOLEN_FASTOPEN_BASE;
630 need = (need + 3) & ~3U; /* Align to 32 bits */
631 if (remaining >= need) {
632 opts->options |= OPTION_FAST_OPEN_COOKIE;
633 opts->fastopen_cookie = &fastopen->cookie;
634 remaining -= need;
635 tp->syn_fastopen = 1;
636 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
637 }
638 }
639
640 smc_set_option(tp, opts, &remaining);
641
642 return MAX_TCP_OPTION_SPACE - remaining;
643 }
644
645 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type)646 static unsigned int tcp_synack_options(const struct sock *sk,
647 struct request_sock *req,
648 unsigned int mss, struct sk_buff *skb,
649 struct tcp_out_options *opts,
650 const struct tcp_md5sig_key *md5,
651 struct tcp_fastopen_cookie *foc,
652 enum tcp_synack_type synack_type)
653 {
654 struct inet_request_sock *ireq = inet_rsk(req);
655 unsigned int remaining = MAX_TCP_OPTION_SPACE;
656
657 #ifdef CONFIG_TCP_MD5SIG
658 if (md5) {
659 opts->options |= OPTION_MD5;
660 remaining -= TCPOLEN_MD5SIG_ALIGNED;
661
662 /* We can't fit any SACK blocks in a packet with MD5 + TS
663 * options. There was discussion about disabling SACK
664 * rather than TS in order to fit in better with old,
665 * buggy kernels, but that was deemed to be unnecessary.
666 */
667 if (synack_type != TCP_SYNACK_COOKIE)
668 ireq->tstamp_ok &= !ireq->sack_ok;
669 }
670 #endif
671
672 /* We always send an MSS option. */
673 opts->mss = mss;
674 remaining -= TCPOLEN_MSS_ALIGNED;
675
676 if (likely(ireq->wscale_ok)) {
677 opts->ws = ireq->rcv_wscale;
678 opts->options |= OPTION_WSCALE;
679 remaining -= TCPOLEN_WSCALE_ALIGNED;
680 }
681 if (likely(ireq->tstamp_ok)) {
682 opts->options |= OPTION_TS;
683 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
684 opts->tsecr = req->ts_recent;
685 remaining -= TCPOLEN_TSTAMP_ALIGNED;
686 }
687 if (likely(ireq->sack_ok)) {
688 opts->options |= OPTION_SACK_ADVERTISE;
689 if (unlikely(!ireq->tstamp_ok))
690 remaining -= TCPOLEN_SACKPERM_ALIGNED;
691 }
692 if (foc != NULL && foc->len >= 0) {
693 u32 need = foc->len;
694
695 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
696 TCPOLEN_FASTOPEN_BASE;
697 need = (need + 3) & ~3U; /* Align to 32 bits */
698 if (remaining >= need) {
699 opts->options |= OPTION_FAST_OPEN_COOKIE;
700 opts->fastopen_cookie = foc;
701 remaining -= need;
702 }
703 }
704
705 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
706
707 return MAX_TCP_OPTION_SPACE - remaining;
708 }
709
710 /* Compute TCP options for ESTABLISHED sockets. This is not the
711 * final wire format yet.
712 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)713 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
714 struct tcp_out_options *opts,
715 struct tcp_md5sig_key **md5)
716 {
717 struct tcp_sock *tp = tcp_sk(sk);
718 unsigned int size = 0;
719 unsigned int eff_sacks;
720
721 opts->options = 0;
722
723 *md5 = NULL;
724 #ifdef CONFIG_TCP_MD5SIG
725 if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
726 *md5 = tp->af_specific->md5_lookup(sk, sk);
727 if (*md5) {
728 opts->options |= OPTION_MD5;
729 size += TCPOLEN_MD5SIG_ALIGNED;
730 }
731 }
732 #endif
733
734 if (likely(tp->rx_opt.tstamp_ok)) {
735 opts->options |= OPTION_TS;
736 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
737 opts->tsecr = tp->rx_opt.ts_recent;
738 size += TCPOLEN_TSTAMP_ALIGNED;
739 }
740
741 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
742 if (unlikely(eff_sacks)) {
743 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
744 opts->num_sack_blocks =
745 min_t(unsigned int, eff_sacks,
746 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
747 TCPOLEN_SACK_PERBLOCK);
748 if (likely(opts->num_sack_blocks))
749 size += TCPOLEN_SACK_BASE_ALIGNED +
750 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
751 }
752
753 return size;
754 }
755
756
757 /* TCP SMALL QUEUES (TSQ)
758 *
759 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
760 * to reduce RTT and bufferbloat.
761 * We do this using a special skb destructor (tcp_wfree).
762 *
763 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
764 * needs to be reallocated in a driver.
765 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
766 *
767 * Since transmit from skb destructor is forbidden, we use a tasklet
768 * to process all sockets that eventually need to send more skbs.
769 * We use one tasklet per cpu, with its own queue of sockets.
770 */
771 struct tsq_tasklet {
772 struct tasklet_struct tasklet;
773 struct list_head head; /* queue of tcp sockets */
774 };
775 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
776
tcp_tsq_write(struct sock * sk)777 static void tcp_tsq_write(struct sock *sk)
778 {
779 if ((1 << sk->sk_state) &
780 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
781 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
782 struct tcp_sock *tp = tcp_sk(sk);
783
784 if (tp->lost_out > tp->retrans_out &&
785 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
786 tcp_mstamp_refresh(tp);
787 tcp_xmit_retransmit_queue(sk);
788 }
789
790 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
791 0, GFP_ATOMIC);
792 }
793 }
794
tcp_tsq_handler(struct sock * sk)795 static void tcp_tsq_handler(struct sock *sk)
796 {
797 bh_lock_sock(sk);
798 if (!sock_owned_by_user(sk))
799 tcp_tsq_write(sk);
800 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
801 sock_hold(sk);
802 bh_unlock_sock(sk);
803 }
804 /*
805 * One tasklet per cpu tries to send more skbs.
806 * We run in tasklet context but need to disable irqs when
807 * transferring tsq->head because tcp_wfree() might
808 * interrupt us (non NAPI drivers)
809 */
tcp_tasklet_func(unsigned long data)810 static void tcp_tasklet_func(unsigned long data)
811 {
812 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
813 LIST_HEAD(list);
814 unsigned long flags;
815 struct list_head *q, *n;
816 struct tcp_sock *tp;
817 struct sock *sk;
818
819 local_irq_save(flags);
820 list_splice_init(&tsq->head, &list);
821 local_irq_restore(flags);
822
823 list_for_each_safe(q, n, &list) {
824 tp = list_entry(q, struct tcp_sock, tsq_node);
825 list_del(&tp->tsq_node);
826
827 sk = (struct sock *)tp;
828 smp_mb__before_atomic();
829 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
830
831 tcp_tsq_handler(sk);
832 sk_free(sk);
833 }
834 }
835
836 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
837 TCPF_WRITE_TIMER_DEFERRED | \
838 TCPF_DELACK_TIMER_DEFERRED | \
839 TCPF_MTU_REDUCED_DEFERRED)
840 /**
841 * tcp_release_cb - tcp release_sock() callback
842 * @sk: socket
843 *
844 * called from release_sock() to perform protocol dependent
845 * actions before socket release.
846 */
tcp_release_cb(struct sock * sk)847 void tcp_release_cb(struct sock *sk)
848 {
849 unsigned long flags, nflags;
850
851 /* perform an atomic operation only if at least one flag is set */
852 do {
853 flags = sk->sk_tsq_flags;
854 if (!(flags & TCP_DEFERRED_ALL))
855 return;
856 nflags = flags & ~TCP_DEFERRED_ALL;
857 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
858
859 if (flags & TCPF_TSQ_DEFERRED) {
860 tcp_tsq_write(sk);
861 __sock_put(sk);
862 }
863 /* Here begins the tricky part :
864 * We are called from release_sock() with :
865 * 1) BH disabled
866 * 2) sk_lock.slock spinlock held
867 * 3) socket owned by us (sk->sk_lock.owned == 1)
868 *
869 * But following code is meant to be called from BH handlers,
870 * so we should keep BH disabled, but early release socket ownership
871 */
872 sock_release_ownership(sk);
873
874 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
875 tcp_write_timer_handler(sk);
876 __sock_put(sk);
877 }
878 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
879 tcp_delack_timer_handler(sk);
880 __sock_put(sk);
881 }
882 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
883 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
884 __sock_put(sk);
885 }
886 }
887 EXPORT_SYMBOL(tcp_release_cb);
888
tcp_tasklet_init(void)889 void __init tcp_tasklet_init(void)
890 {
891 int i;
892
893 for_each_possible_cpu(i) {
894 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
895
896 INIT_LIST_HEAD(&tsq->head);
897 tasklet_init(&tsq->tasklet,
898 tcp_tasklet_func,
899 (unsigned long)tsq);
900 }
901 }
902
903 /*
904 * Write buffer destructor automatically called from kfree_skb.
905 * We can't xmit new skbs from this context, as we might already
906 * hold qdisc lock.
907 */
tcp_wfree(struct sk_buff * skb)908 void tcp_wfree(struct sk_buff *skb)
909 {
910 struct sock *sk = skb->sk;
911 struct tcp_sock *tp = tcp_sk(sk);
912 unsigned long flags, nval, oval;
913
914 /* Keep one reference on sk_wmem_alloc.
915 * Will be released by sk_free() from here or tcp_tasklet_func()
916 */
917 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
918
919 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
920 * Wait until our queues (qdisc + devices) are drained.
921 * This gives :
922 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
923 * - chance for incoming ACK (processed by another cpu maybe)
924 * to migrate this flow (skb->ooo_okay will be eventually set)
925 */
926 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
927 goto out;
928
929 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
930 struct tsq_tasklet *tsq;
931 bool empty;
932
933 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
934 goto out;
935
936 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
937 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
938 if (nval != oval)
939 continue;
940
941 /* queue this socket to tasklet queue */
942 local_irq_save(flags);
943 tsq = this_cpu_ptr(&tsq_tasklet);
944 empty = list_empty(&tsq->head);
945 list_add(&tp->tsq_node, &tsq->head);
946 if (empty)
947 tasklet_schedule(&tsq->tasklet);
948 local_irq_restore(flags);
949 return;
950 }
951 out:
952 sk_free(sk);
953 }
954
955 /* Note: Called under soft irq.
956 * We can call TCP stack right away, unless socket is owned by user.
957 */
tcp_pace_kick(struct hrtimer * timer)958 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
959 {
960 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
961 struct sock *sk = (struct sock *)tp;
962
963 tcp_tsq_handler(sk);
964 sock_put(sk);
965
966 return HRTIMER_NORESTART;
967 }
968
tcp_internal_pacing(struct sock * sk,const struct sk_buff * skb)969 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
970 {
971 u64 len_ns;
972 u32 rate;
973
974 if (!tcp_needs_internal_pacing(sk))
975 return;
976 rate = sk->sk_pacing_rate;
977 if (!rate || rate == ~0U)
978 return;
979
980 len_ns = (u64)skb->len * NSEC_PER_SEC;
981 do_div(len_ns, rate);
982 hrtimer_start(&tcp_sk(sk)->pacing_timer,
983 ktime_add_ns(ktime_get(), len_ns),
984 HRTIMER_MODE_ABS_PINNED_SOFT);
985 sock_hold(sk);
986 }
987
tcp_update_skb_after_send(struct tcp_sock * tp,struct sk_buff * skb)988 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
989 {
990 skb->skb_mstamp = tp->tcp_mstamp;
991 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
992 }
993
994 /* This routine actually transmits TCP packets queued in by
995 * tcp_do_sendmsg(). This is used by both the initial
996 * transmission and possible later retransmissions.
997 * All SKB's seen here are completely headerless. It is our
998 * job to build the TCP header, and pass the packet down to
999 * IP so it can do the same plus pass the packet off to the
1000 * device.
1001 *
1002 * We are working here with either a clone of the original
1003 * SKB, or a fresh unique copy made by the retransmit engine.
1004 */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1005 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1006 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1007 {
1008 const struct inet_connection_sock *icsk = inet_csk(sk);
1009 struct inet_sock *inet;
1010 struct tcp_sock *tp;
1011 struct tcp_skb_cb *tcb;
1012 struct tcp_out_options opts;
1013 unsigned int tcp_options_size, tcp_header_size;
1014 struct sk_buff *oskb = NULL;
1015 struct tcp_md5sig_key *md5;
1016 struct tcphdr *th;
1017 int err;
1018
1019 BUG_ON(!skb || !tcp_skb_pcount(skb));
1020 tp = tcp_sk(sk);
1021
1022 if (clone_it) {
1023 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1024 - tp->snd_una;
1025 oskb = skb;
1026
1027 tcp_skb_tsorted_save(oskb) {
1028 if (unlikely(skb_cloned(oskb)))
1029 skb = pskb_copy(oskb, gfp_mask);
1030 else
1031 skb = skb_clone(oskb, gfp_mask);
1032 } tcp_skb_tsorted_restore(oskb);
1033
1034 if (unlikely(!skb))
1035 return -ENOBUFS;
1036 }
1037 skb->skb_mstamp = tp->tcp_mstamp;
1038
1039 inet = inet_sk(sk);
1040 tcb = TCP_SKB_CB(skb);
1041 memset(&opts, 0, sizeof(opts));
1042
1043 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1044 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1045 else
1046 tcp_options_size = tcp_established_options(sk, skb, &opts,
1047 &md5);
1048 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1049
1050 /* if no packet is in qdisc/device queue, then allow XPS to select
1051 * another queue. We can be called from tcp_tsq_handler()
1052 * which holds one reference to sk.
1053 *
1054 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1055 * One way to get this would be to set skb->truesize = 2 on them.
1056 */
1057 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1058
1059 /* If we had to use memory reserve to allocate this skb,
1060 * this might cause drops if packet is looped back :
1061 * Other socket might not have SOCK_MEMALLOC.
1062 * Packets not looped back do not care about pfmemalloc.
1063 */
1064 skb->pfmemalloc = 0;
1065
1066 skb_push(skb, tcp_header_size);
1067 skb_reset_transport_header(skb);
1068
1069 skb_orphan(skb);
1070 skb->sk = sk;
1071 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1072 skb_set_hash_from_sk(skb, sk);
1073 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1074
1075 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1076
1077 /* Build TCP header and checksum it. */
1078 th = (struct tcphdr *)skb->data;
1079 th->source = inet->inet_sport;
1080 th->dest = inet->inet_dport;
1081 th->seq = htonl(tcb->seq);
1082 th->ack_seq = htonl(rcv_nxt);
1083 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1084 tcb->tcp_flags);
1085
1086 th->check = 0;
1087 th->urg_ptr = 0;
1088
1089 /* The urg_mode check is necessary during a below snd_una win probe */
1090 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1091 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1092 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1093 th->urg = 1;
1094 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1095 th->urg_ptr = htons(0xFFFF);
1096 th->urg = 1;
1097 }
1098 }
1099
1100 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1101 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1102 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1103 th->window = htons(tcp_select_window(sk));
1104 tcp_ecn_send(sk, skb, th, tcp_header_size);
1105 } else {
1106 /* RFC1323: The window in SYN & SYN/ACK segments
1107 * is never scaled.
1108 */
1109 th->window = htons(min(tp->rcv_wnd, 65535U));
1110 }
1111 #ifdef CONFIG_TCP_MD5SIG
1112 /* Calculate the MD5 hash, as we have all we need now */
1113 if (md5) {
1114 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1115 tp->af_specific->calc_md5_hash(opts.hash_location,
1116 md5, sk, skb);
1117 }
1118 #endif
1119
1120 icsk->icsk_af_ops->send_check(sk, skb);
1121
1122 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1123 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1124
1125 if (skb->len != tcp_header_size) {
1126 tcp_event_data_sent(tp, sk);
1127 tp->data_segs_out += tcp_skb_pcount(skb);
1128 tp->bytes_sent += skb->len - tcp_header_size;
1129 tcp_internal_pacing(sk, skb);
1130 }
1131
1132 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1133 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1134 tcp_skb_pcount(skb));
1135
1136 tp->segs_out += tcp_skb_pcount(skb);
1137 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1138 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1139 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1140
1141 /* Our usage of tstamp should remain private */
1142 skb->tstamp = 0;
1143
1144 /* Cleanup our debris for IP stacks */
1145 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1146 sizeof(struct inet6_skb_parm)));
1147
1148 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1149
1150 if (unlikely(err > 0)) {
1151 tcp_enter_cwr(sk);
1152 err = net_xmit_eval(err);
1153 }
1154 if (!err && oskb) {
1155 tcp_update_skb_after_send(tp, oskb);
1156 tcp_rate_skb_sent(sk, oskb);
1157 }
1158 return err;
1159 }
1160
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1161 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1162 gfp_t gfp_mask)
1163 {
1164 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1165 tcp_sk(sk)->rcv_nxt);
1166 }
1167
1168 /* This routine just queues the buffer for sending.
1169 *
1170 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1171 * otherwise socket can stall.
1172 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1173 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1174 {
1175 struct tcp_sock *tp = tcp_sk(sk);
1176
1177 /* Advance write_seq and place onto the write_queue. */
1178 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1179 __skb_header_release(skb);
1180 tcp_add_write_queue_tail(sk, skb);
1181 sk->sk_wmem_queued += skb->truesize;
1182 sk_mem_charge(sk, skb->truesize);
1183 }
1184
1185 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1186 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1187 {
1188 if (skb->len <= mss_now) {
1189 /* Avoid the costly divide in the normal
1190 * non-TSO case.
1191 */
1192 tcp_skb_pcount_set(skb, 1);
1193 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1194 } else {
1195 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1196 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1197 }
1198 }
1199
1200 /* Pcount in the middle of the write queue got changed, we need to do various
1201 * tweaks to fix counters
1202 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1203 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1204 {
1205 struct tcp_sock *tp = tcp_sk(sk);
1206
1207 tp->packets_out -= decr;
1208
1209 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1210 tp->sacked_out -= decr;
1211 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1212 tp->retrans_out -= decr;
1213 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1214 tp->lost_out -= decr;
1215
1216 /* Reno case is special. Sigh... */
1217 if (tcp_is_reno(tp) && decr > 0)
1218 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1219
1220 if (tp->lost_skb_hint &&
1221 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1222 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1223 tp->lost_cnt_hint -= decr;
1224
1225 tcp_verify_left_out(tp);
1226 }
1227
tcp_has_tx_tstamp(const struct sk_buff * skb)1228 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1229 {
1230 return TCP_SKB_CB(skb)->txstamp_ack ||
1231 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1232 }
1233
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1234 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1235 {
1236 struct skb_shared_info *shinfo = skb_shinfo(skb);
1237
1238 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1239 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1240 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1241 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1242
1243 shinfo->tx_flags &= ~tsflags;
1244 shinfo2->tx_flags |= tsflags;
1245 swap(shinfo->tskey, shinfo2->tskey);
1246 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1247 TCP_SKB_CB(skb)->txstamp_ack = 0;
1248 }
1249 }
1250
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1251 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1252 {
1253 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1254 TCP_SKB_CB(skb)->eor = 0;
1255 }
1256
1257 /* Insert buff after skb on the write or rtx queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1258 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1259 struct sk_buff *buff,
1260 struct sock *sk,
1261 enum tcp_queue tcp_queue)
1262 {
1263 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1264 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1265 else
1266 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1267 }
1268
1269 /* Function to create two new TCP segments. Shrinks the given segment
1270 * to the specified size and appends a new segment with the rest of the
1271 * packet to the list. This won't be called frequently, I hope.
1272 * Remember, these are still headerless SKBs at this point.
1273 */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1274 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1275 struct sk_buff *skb, u32 len,
1276 unsigned int mss_now, gfp_t gfp)
1277 {
1278 struct tcp_sock *tp = tcp_sk(sk);
1279 struct sk_buff *buff;
1280 int nsize, old_factor;
1281 long limit;
1282 int nlen;
1283 u8 flags;
1284
1285 if (WARN_ON(len > skb->len))
1286 return -EINVAL;
1287
1288 nsize = skb_headlen(skb) - len;
1289 if (nsize < 0)
1290 nsize = 0;
1291
1292 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1293 * We need some allowance to not penalize applications setting small
1294 * SO_SNDBUF values.
1295 * Also allow first and last skb in retransmit queue to be split.
1296 */
1297 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1298 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1299 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1300 skb != tcp_rtx_queue_head(sk) &&
1301 skb != tcp_rtx_queue_tail(sk))) {
1302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1303 return -ENOMEM;
1304 }
1305
1306 if (skb_unclone(skb, gfp))
1307 return -ENOMEM;
1308
1309 /* Get a new skb... force flag on. */
1310 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1311 if (!buff)
1312 return -ENOMEM; /* We'll just try again later. */
1313
1314 sk->sk_wmem_queued += buff->truesize;
1315 sk_mem_charge(sk, buff->truesize);
1316 nlen = skb->len - len - nsize;
1317 buff->truesize += nlen;
1318 skb->truesize -= nlen;
1319
1320 /* Correct the sequence numbers. */
1321 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1322 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1323 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1324
1325 /* PSH and FIN should only be set in the second packet. */
1326 flags = TCP_SKB_CB(skb)->tcp_flags;
1327 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1328 TCP_SKB_CB(buff)->tcp_flags = flags;
1329 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1330 tcp_skb_fragment_eor(skb, buff);
1331
1332 skb_split(skb, buff, len);
1333
1334 buff->ip_summed = CHECKSUM_PARTIAL;
1335
1336 buff->tstamp = skb->tstamp;
1337 tcp_fragment_tstamp(skb, buff);
1338
1339 old_factor = tcp_skb_pcount(skb);
1340
1341 /* Fix up tso_factor for both original and new SKB. */
1342 tcp_set_skb_tso_segs(skb, mss_now);
1343 tcp_set_skb_tso_segs(buff, mss_now);
1344
1345 /* Update delivered info for the new segment */
1346 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1347
1348 /* If this packet has been sent out already, we must
1349 * adjust the various packet counters.
1350 */
1351 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1352 int diff = old_factor - tcp_skb_pcount(skb) -
1353 tcp_skb_pcount(buff);
1354
1355 if (diff)
1356 tcp_adjust_pcount(sk, skb, diff);
1357 }
1358
1359 /* Link BUFF into the send queue. */
1360 __skb_header_release(buff);
1361 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1362 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1363 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1364
1365 return 0;
1366 }
1367
1368 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1369 * data is not copied, but immediately discarded.
1370 */
__pskb_trim_head(struct sk_buff * skb,int len)1371 static int __pskb_trim_head(struct sk_buff *skb, int len)
1372 {
1373 struct skb_shared_info *shinfo;
1374 int i, k, eat;
1375
1376 eat = min_t(int, len, skb_headlen(skb));
1377 if (eat) {
1378 __skb_pull(skb, eat);
1379 len -= eat;
1380 if (!len)
1381 return 0;
1382 }
1383 eat = len;
1384 k = 0;
1385 shinfo = skb_shinfo(skb);
1386 for (i = 0; i < shinfo->nr_frags; i++) {
1387 int size = skb_frag_size(&shinfo->frags[i]);
1388
1389 if (size <= eat) {
1390 skb_frag_unref(skb, i);
1391 eat -= size;
1392 } else {
1393 shinfo->frags[k] = shinfo->frags[i];
1394 if (eat) {
1395 shinfo->frags[k].page_offset += eat;
1396 skb_frag_size_sub(&shinfo->frags[k], eat);
1397 eat = 0;
1398 }
1399 k++;
1400 }
1401 }
1402 shinfo->nr_frags = k;
1403
1404 skb->data_len -= len;
1405 skb->len = skb->data_len;
1406 return len;
1407 }
1408
1409 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1410 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1411 {
1412 u32 delta_truesize;
1413
1414 if (skb_unclone(skb, GFP_ATOMIC))
1415 return -ENOMEM;
1416
1417 delta_truesize = __pskb_trim_head(skb, len);
1418
1419 TCP_SKB_CB(skb)->seq += len;
1420 skb->ip_summed = CHECKSUM_PARTIAL;
1421
1422 if (delta_truesize) {
1423 skb->truesize -= delta_truesize;
1424 sk->sk_wmem_queued -= delta_truesize;
1425 sk_mem_uncharge(sk, delta_truesize);
1426 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1427 }
1428
1429 /* Any change of skb->len requires recalculation of tso factor. */
1430 if (tcp_skb_pcount(skb) > 1)
1431 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1432
1433 return 0;
1434 }
1435
1436 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1437 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1438 {
1439 const struct tcp_sock *tp = tcp_sk(sk);
1440 const struct inet_connection_sock *icsk = inet_csk(sk);
1441 int mss_now;
1442
1443 /* Calculate base mss without TCP options:
1444 It is MMS_S - sizeof(tcphdr) of rfc1122
1445 */
1446 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1447
1448 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1449 if (icsk->icsk_af_ops->net_frag_header_len) {
1450 const struct dst_entry *dst = __sk_dst_get(sk);
1451
1452 if (dst && dst_allfrag(dst))
1453 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1454 }
1455
1456 /* Clamp it (mss_clamp does not include tcp options) */
1457 if (mss_now > tp->rx_opt.mss_clamp)
1458 mss_now = tp->rx_opt.mss_clamp;
1459
1460 /* Now subtract optional transport overhead */
1461 mss_now -= icsk->icsk_ext_hdr_len;
1462
1463 /* Then reserve room for full set of TCP options and 8 bytes of data */
1464 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1465 return mss_now;
1466 }
1467
1468 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1469 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1470 {
1471 /* Subtract TCP options size, not including SACKs */
1472 return __tcp_mtu_to_mss(sk, pmtu) -
1473 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1474 }
1475
1476 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1477 int tcp_mss_to_mtu(struct sock *sk, int mss)
1478 {
1479 const struct tcp_sock *tp = tcp_sk(sk);
1480 const struct inet_connection_sock *icsk = inet_csk(sk);
1481 int mtu;
1482
1483 mtu = mss +
1484 tp->tcp_header_len +
1485 icsk->icsk_ext_hdr_len +
1486 icsk->icsk_af_ops->net_header_len;
1487
1488 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1489 if (icsk->icsk_af_ops->net_frag_header_len) {
1490 const struct dst_entry *dst = __sk_dst_get(sk);
1491
1492 if (dst && dst_allfrag(dst))
1493 mtu += icsk->icsk_af_ops->net_frag_header_len;
1494 }
1495 return mtu;
1496 }
1497 EXPORT_SYMBOL(tcp_mss_to_mtu);
1498
1499 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1500 void tcp_mtup_init(struct sock *sk)
1501 {
1502 struct tcp_sock *tp = tcp_sk(sk);
1503 struct inet_connection_sock *icsk = inet_csk(sk);
1504 struct net *net = sock_net(sk);
1505
1506 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1507 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1508 icsk->icsk_af_ops->net_header_len;
1509 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1510 icsk->icsk_mtup.probe_size = 0;
1511 if (icsk->icsk_mtup.enabled)
1512 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1513 }
1514 EXPORT_SYMBOL(tcp_mtup_init);
1515
1516 /* This function synchronize snd mss to current pmtu/exthdr set.
1517
1518 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1519 for TCP options, but includes only bare TCP header.
1520
1521 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1522 It is minimum of user_mss and mss received with SYN.
1523 It also does not include TCP options.
1524
1525 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1526
1527 tp->mss_cache is current effective sending mss, including
1528 all tcp options except for SACKs. It is evaluated,
1529 taking into account current pmtu, but never exceeds
1530 tp->rx_opt.mss_clamp.
1531
1532 NOTE1. rfc1122 clearly states that advertised MSS
1533 DOES NOT include either tcp or ip options.
1534
1535 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1536 are READ ONLY outside this function. --ANK (980731)
1537 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1538 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1539 {
1540 struct tcp_sock *tp = tcp_sk(sk);
1541 struct inet_connection_sock *icsk = inet_csk(sk);
1542 int mss_now;
1543
1544 if (icsk->icsk_mtup.search_high > pmtu)
1545 icsk->icsk_mtup.search_high = pmtu;
1546
1547 mss_now = tcp_mtu_to_mss(sk, pmtu);
1548 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1549
1550 /* And store cached results */
1551 icsk->icsk_pmtu_cookie = pmtu;
1552 if (icsk->icsk_mtup.enabled)
1553 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1554 tp->mss_cache = mss_now;
1555
1556 return mss_now;
1557 }
1558 EXPORT_SYMBOL(tcp_sync_mss);
1559
1560 /* Compute the current effective MSS, taking SACKs and IP options,
1561 * and even PMTU discovery events into account.
1562 */
tcp_current_mss(struct sock * sk)1563 unsigned int tcp_current_mss(struct sock *sk)
1564 {
1565 const struct tcp_sock *tp = tcp_sk(sk);
1566 const struct dst_entry *dst = __sk_dst_get(sk);
1567 u32 mss_now;
1568 unsigned int header_len;
1569 struct tcp_out_options opts;
1570 struct tcp_md5sig_key *md5;
1571
1572 mss_now = tp->mss_cache;
1573
1574 if (dst) {
1575 u32 mtu = dst_mtu(dst);
1576 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1577 mss_now = tcp_sync_mss(sk, mtu);
1578 }
1579
1580 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1581 sizeof(struct tcphdr);
1582 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1583 * some common options. If this is an odd packet (because we have SACK
1584 * blocks etc) then our calculated header_len will be different, and
1585 * we have to adjust mss_now correspondingly */
1586 if (header_len != tp->tcp_header_len) {
1587 int delta = (int) header_len - tp->tcp_header_len;
1588 mss_now -= delta;
1589 }
1590
1591 return mss_now;
1592 }
1593
1594 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1595 * As additional protections, we do not touch cwnd in retransmission phases,
1596 * and if application hit its sndbuf limit recently.
1597 */
tcp_cwnd_application_limited(struct sock * sk)1598 static void tcp_cwnd_application_limited(struct sock *sk)
1599 {
1600 struct tcp_sock *tp = tcp_sk(sk);
1601
1602 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1603 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1604 /* Limited by application or receiver window. */
1605 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1606 u32 win_used = max(tp->snd_cwnd_used, init_win);
1607 if (win_used < tp->snd_cwnd) {
1608 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1609 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1610 }
1611 tp->snd_cwnd_used = 0;
1612 }
1613 tp->snd_cwnd_stamp = tcp_jiffies32;
1614 }
1615
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1616 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1617 {
1618 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1619 struct tcp_sock *tp = tcp_sk(sk);
1620
1621 /* Track the maximum number of outstanding packets in each
1622 * window, and remember whether we were cwnd-limited then.
1623 */
1624 if (!before(tp->snd_una, tp->max_packets_seq) ||
1625 tp->packets_out > tp->max_packets_out) {
1626 tp->max_packets_out = tp->packets_out;
1627 tp->max_packets_seq = tp->snd_nxt;
1628 tp->is_cwnd_limited = is_cwnd_limited;
1629 }
1630
1631 if (tcp_is_cwnd_limited(sk)) {
1632 /* Network is feed fully. */
1633 tp->snd_cwnd_used = 0;
1634 tp->snd_cwnd_stamp = tcp_jiffies32;
1635 } else {
1636 /* Network starves. */
1637 if (tp->packets_out > tp->snd_cwnd_used)
1638 tp->snd_cwnd_used = tp->packets_out;
1639
1640 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1641 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1642 !ca_ops->cong_control)
1643 tcp_cwnd_application_limited(sk);
1644
1645 /* The following conditions together indicate the starvation
1646 * is caused by insufficient sender buffer:
1647 * 1) just sent some data (see tcp_write_xmit)
1648 * 2) not cwnd limited (this else condition)
1649 * 3) no more data to send (tcp_write_queue_empty())
1650 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1651 */
1652 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1653 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1654 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1655 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1656 }
1657 }
1658
1659 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1660 static bool tcp_minshall_check(const struct tcp_sock *tp)
1661 {
1662 return after(tp->snd_sml, tp->snd_una) &&
1663 !after(tp->snd_sml, tp->snd_nxt);
1664 }
1665
1666 /* Update snd_sml if this skb is under mss
1667 * Note that a TSO packet might end with a sub-mss segment
1668 * The test is really :
1669 * if ((skb->len % mss) != 0)
1670 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1671 * But we can avoid doing the divide again given we already have
1672 * skb_pcount = skb->len / mss_now
1673 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1674 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1675 const struct sk_buff *skb)
1676 {
1677 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1678 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1679 }
1680
1681 /* Return false, if packet can be sent now without violation Nagle's rules:
1682 * 1. It is full sized. (provided by caller in %partial bool)
1683 * 2. Or it contains FIN. (already checked by caller)
1684 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1685 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1686 * With Minshall's modification: all sent small packets are ACKed.
1687 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1688 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1689 int nonagle)
1690 {
1691 return partial &&
1692 ((nonagle & TCP_NAGLE_CORK) ||
1693 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1694 }
1695
1696 /* Return how many segs we'd like on a TSO packet,
1697 * to send one TSO packet per ms
1698 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1699 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1700 int min_tso_segs)
1701 {
1702 u32 bytes, segs;
1703
1704 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
1705 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1706
1707 /* Goal is to send at least one packet per ms,
1708 * not one big TSO packet every 100 ms.
1709 * This preserves ACK clocking and is consistent
1710 * with tcp_tso_should_defer() heuristic.
1711 */
1712 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1713
1714 return segs;
1715 }
1716
1717 /* Return the number of segments we want in the skb we are transmitting.
1718 * See if congestion control module wants to decide; otherwise, autosize.
1719 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1720 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1721 {
1722 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1723 u32 min_tso, tso_segs;
1724
1725 min_tso = ca_ops->min_tso_segs ?
1726 ca_ops->min_tso_segs(sk) :
1727 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1728
1729 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1730 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1731 }
1732
1733 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1734 static unsigned int tcp_mss_split_point(const struct sock *sk,
1735 const struct sk_buff *skb,
1736 unsigned int mss_now,
1737 unsigned int max_segs,
1738 int nonagle)
1739 {
1740 const struct tcp_sock *tp = tcp_sk(sk);
1741 u32 partial, needed, window, max_len;
1742
1743 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1744 max_len = mss_now * max_segs;
1745
1746 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1747 return max_len;
1748
1749 needed = min(skb->len, window);
1750
1751 if (max_len <= needed)
1752 return max_len;
1753
1754 partial = needed % mss_now;
1755 /* If last segment is not a full MSS, check if Nagle rules allow us
1756 * to include this last segment in this skb.
1757 * Otherwise, we'll split the skb at last MSS boundary
1758 */
1759 if (tcp_nagle_check(partial != 0, tp, nonagle))
1760 return needed - partial;
1761
1762 return needed;
1763 }
1764
1765 /* Can at least one segment of SKB be sent right now, according to the
1766 * congestion window rules? If so, return how many segments are allowed.
1767 */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)1768 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1769 const struct sk_buff *skb)
1770 {
1771 u32 in_flight, cwnd, halfcwnd;
1772
1773 /* Don't be strict about the congestion window for the final FIN. */
1774 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1775 tcp_skb_pcount(skb) == 1)
1776 return 1;
1777
1778 in_flight = tcp_packets_in_flight(tp);
1779 cwnd = tp->snd_cwnd;
1780 if (in_flight >= cwnd)
1781 return 0;
1782
1783 /* For better scheduling, ensure we have at least
1784 * 2 GSO packets in flight.
1785 */
1786 halfcwnd = max(cwnd >> 1, 1U);
1787 return min(halfcwnd, cwnd - in_flight);
1788 }
1789
1790 /* Initialize TSO state of a skb.
1791 * This must be invoked the first time we consider transmitting
1792 * SKB onto the wire.
1793 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)1794 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1795 {
1796 int tso_segs = tcp_skb_pcount(skb);
1797
1798 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1799 tcp_set_skb_tso_segs(skb, mss_now);
1800 tso_segs = tcp_skb_pcount(skb);
1801 }
1802 return tso_segs;
1803 }
1804
1805
1806 /* Return true if the Nagle test allows this packet to be
1807 * sent now.
1808 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)1809 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1810 unsigned int cur_mss, int nonagle)
1811 {
1812 /* Nagle rule does not apply to frames, which sit in the middle of the
1813 * write_queue (they have no chances to get new data).
1814 *
1815 * This is implemented in the callers, where they modify the 'nonagle'
1816 * argument based upon the location of SKB in the send queue.
1817 */
1818 if (nonagle & TCP_NAGLE_PUSH)
1819 return true;
1820
1821 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1822 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1823 return true;
1824
1825 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1826 return true;
1827
1828 return false;
1829 }
1830
1831 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)1832 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1833 const struct sk_buff *skb,
1834 unsigned int cur_mss)
1835 {
1836 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1837
1838 if (skb->len > cur_mss)
1839 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1840
1841 return !after(end_seq, tcp_wnd_end(tp));
1842 }
1843
1844 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1845 * which is put after SKB on the list. It is very much like
1846 * tcp_fragment() except that it may make several kinds of assumptions
1847 * in order to speed up the splitting operation. In particular, we
1848 * know that all the data is in scatter-gather pages, and that the
1849 * packet has never been sent out before (and thus is not cloned).
1850 */
tso_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)1851 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1852 struct sk_buff *skb, unsigned int len,
1853 unsigned int mss_now, gfp_t gfp)
1854 {
1855 struct sk_buff *buff;
1856 int nlen = skb->len - len;
1857 u8 flags;
1858
1859 /* All of a TSO frame must be composed of paged data. */
1860 if (skb->len != skb->data_len)
1861 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1862
1863 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1864 if (unlikely(!buff))
1865 return -ENOMEM;
1866
1867 sk->sk_wmem_queued += buff->truesize;
1868 sk_mem_charge(sk, buff->truesize);
1869 buff->truesize += nlen;
1870 skb->truesize -= nlen;
1871
1872 /* Correct the sequence numbers. */
1873 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1874 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1875 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1876
1877 /* PSH and FIN should only be set in the second packet. */
1878 flags = TCP_SKB_CB(skb)->tcp_flags;
1879 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1880 TCP_SKB_CB(buff)->tcp_flags = flags;
1881
1882 /* This packet was never sent out yet, so no SACK bits. */
1883 TCP_SKB_CB(buff)->sacked = 0;
1884
1885 tcp_skb_fragment_eor(skb, buff);
1886
1887 buff->ip_summed = CHECKSUM_PARTIAL;
1888 skb_split(skb, buff, len);
1889 tcp_fragment_tstamp(skb, buff);
1890
1891 /* Fix up tso_factor for both original and new SKB. */
1892 tcp_set_skb_tso_segs(skb, mss_now);
1893 tcp_set_skb_tso_segs(buff, mss_now);
1894
1895 /* Link BUFF into the send queue. */
1896 __skb_header_release(buff);
1897 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1898
1899 return 0;
1900 }
1901
1902 /* Try to defer sending, if possible, in order to minimize the amount
1903 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1904 *
1905 * This algorithm is from John Heffner.
1906 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)1907 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1908 bool *is_cwnd_limited,
1909 bool *is_rwnd_limited,
1910 u32 max_segs)
1911 {
1912 const struct inet_connection_sock *icsk = inet_csk(sk);
1913 u32 age, send_win, cong_win, limit, in_flight;
1914 struct tcp_sock *tp = tcp_sk(sk);
1915 struct sk_buff *head;
1916 int win_divisor;
1917
1918 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1919 goto send_now;
1920
1921 /* Avoid bursty behavior by allowing defer
1922 * only if the last write was recent.
1923 */
1924 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1925 goto send_now;
1926
1927 in_flight = tcp_packets_in_flight(tp);
1928
1929 BUG_ON(tcp_skb_pcount(skb) <= 1);
1930 BUG_ON(tp->snd_cwnd <= in_flight);
1931
1932 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1933
1934 /* From in_flight test above, we know that cwnd > in_flight. */
1935 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1936
1937 limit = min(send_win, cong_win);
1938
1939 /* If a full-sized TSO skb can be sent, do it. */
1940 if (limit >= max_segs * tp->mss_cache)
1941 goto send_now;
1942
1943 /* Middle in queue won't get any more data, full sendable already? */
1944 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1945 goto send_now;
1946
1947 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1948 if (win_divisor) {
1949 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1950
1951 /* If at least some fraction of a window is available,
1952 * just use it.
1953 */
1954 chunk /= win_divisor;
1955 if (limit >= chunk)
1956 goto send_now;
1957 } else {
1958 /* Different approach, try not to defer past a single
1959 * ACK. Receiver should ACK every other full sized
1960 * frame, so if we have space for more than 3 frames
1961 * then send now.
1962 */
1963 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1964 goto send_now;
1965 }
1966
1967 /* TODO : use tsorted_sent_queue ? */
1968 head = tcp_rtx_queue_head(sk);
1969 if (!head)
1970 goto send_now;
1971 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1972 /* If next ACK is likely to come too late (half srtt), do not defer */
1973 if (age < (tp->srtt_us >> 4))
1974 goto send_now;
1975
1976 /* Ok, it looks like it is advisable to defer.
1977 * Three cases are tracked :
1978 * 1) We are cwnd-limited
1979 * 2) We are rwnd-limited
1980 * 3) We are application limited.
1981 */
1982 if (cong_win < send_win) {
1983 if (cong_win <= skb->len) {
1984 *is_cwnd_limited = true;
1985 return true;
1986 }
1987 } else {
1988 if (send_win <= skb->len) {
1989 *is_rwnd_limited = true;
1990 return true;
1991 }
1992 }
1993
1994 /* If this packet won't get more data, do not wait. */
1995 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1996 goto send_now;
1997
1998 return true;
1999
2000 send_now:
2001 return false;
2002 }
2003
tcp_mtu_check_reprobe(struct sock * sk)2004 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2005 {
2006 struct inet_connection_sock *icsk = inet_csk(sk);
2007 struct tcp_sock *tp = tcp_sk(sk);
2008 struct net *net = sock_net(sk);
2009 u32 interval;
2010 s32 delta;
2011
2012 interval = net->ipv4.sysctl_tcp_probe_interval;
2013 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2014 if (unlikely(delta >= interval * HZ)) {
2015 int mss = tcp_current_mss(sk);
2016
2017 /* Update current search range */
2018 icsk->icsk_mtup.probe_size = 0;
2019 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2020 sizeof(struct tcphdr) +
2021 icsk->icsk_af_ops->net_header_len;
2022 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2023
2024 /* Update probe time stamp */
2025 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2026 }
2027 }
2028
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2029 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2030 {
2031 struct sk_buff *skb, *next;
2032
2033 skb = tcp_send_head(sk);
2034 tcp_for_write_queue_from_safe(skb, next, sk) {
2035 if (len <= skb->len)
2036 break;
2037
2038 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2039 return false;
2040
2041 len -= skb->len;
2042 }
2043
2044 return true;
2045 }
2046
2047 /* Create a new MTU probe if we are ready.
2048 * MTU probe is regularly attempting to increase the path MTU by
2049 * deliberately sending larger packets. This discovers routing
2050 * changes resulting in larger path MTUs.
2051 *
2052 * Returns 0 if we should wait to probe (no cwnd available),
2053 * 1 if a probe was sent,
2054 * -1 otherwise
2055 */
tcp_mtu_probe(struct sock * sk)2056 static int tcp_mtu_probe(struct sock *sk)
2057 {
2058 struct inet_connection_sock *icsk = inet_csk(sk);
2059 struct tcp_sock *tp = tcp_sk(sk);
2060 struct sk_buff *skb, *nskb, *next;
2061 struct net *net = sock_net(sk);
2062 int probe_size;
2063 int size_needed;
2064 int copy, len;
2065 int mss_now;
2066 int interval;
2067
2068 /* Not currently probing/verifying,
2069 * not in recovery,
2070 * have enough cwnd, and
2071 * not SACKing (the variable headers throw things off)
2072 */
2073 if (likely(!icsk->icsk_mtup.enabled ||
2074 icsk->icsk_mtup.probe_size ||
2075 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2076 tp->snd_cwnd < 11 ||
2077 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2078 return -1;
2079
2080 /* Use binary search for probe_size between tcp_mss_base,
2081 * and current mss_clamp. if (search_high - search_low)
2082 * smaller than a threshold, backoff from probing.
2083 */
2084 mss_now = tcp_current_mss(sk);
2085 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2086 icsk->icsk_mtup.search_low) >> 1);
2087 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2088 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2089 /* When misfortune happens, we are reprobing actively,
2090 * and then reprobe timer has expired. We stick with current
2091 * probing process by not resetting search range to its orignal.
2092 */
2093 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2094 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2095 /* Check whether enough time has elaplased for
2096 * another round of probing.
2097 */
2098 tcp_mtu_check_reprobe(sk);
2099 return -1;
2100 }
2101
2102 /* Have enough data in the send queue to probe? */
2103 if (tp->write_seq - tp->snd_nxt < size_needed)
2104 return -1;
2105
2106 if (tp->snd_wnd < size_needed)
2107 return -1;
2108 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2109 return 0;
2110
2111 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2112 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2113 if (!tcp_packets_in_flight(tp))
2114 return -1;
2115 else
2116 return 0;
2117 }
2118
2119 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2120 return -1;
2121
2122 /* We're allowed to probe. Build it now. */
2123 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2124 if (!nskb)
2125 return -1;
2126 sk->sk_wmem_queued += nskb->truesize;
2127 sk_mem_charge(sk, nskb->truesize);
2128
2129 skb = tcp_send_head(sk);
2130
2131 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2132 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2133 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2134 TCP_SKB_CB(nskb)->sacked = 0;
2135 nskb->csum = 0;
2136 nskb->ip_summed = CHECKSUM_PARTIAL;
2137
2138 tcp_insert_write_queue_before(nskb, skb, sk);
2139 tcp_highest_sack_replace(sk, skb, nskb);
2140
2141 len = 0;
2142 tcp_for_write_queue_from_safe(skb, next, sk) {
2143 copy = min_t(int, skb->len, probe_size - len);
2144 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2145
2146 if (skb->len <= copy) {
2147 /* We've eaten all the data from this skb.
2148 * Throw it away. */
2149 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2150 /* If this is the last SKB we copy and eor is set
2151 * we need to propagate it to the new skb.
2152 */
2153 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2154 tcp_skb_collapse_tstamp(nskb, skb);
2155 tcp_unlink_write_queue(skb, sk);
2156 sk_wmem_free_skb(sk, skb);
2157 } else {
2158 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2159 ~(TCPHDR_FIN|TCPHDR_PSH);
2160 if (!skb_shinfo(skb)->nr_frags) {
2161 skb_pull(skb, copy);
2162 } else {
2163 __pskb_trim_head(skb, copy);
2164 tcp_set_skb_tso_segs(skb, mss_now);
2165 }
2166 TCP_SKB_CB(skb)->seq += copy;
2167 }
2168
2169 len += copy;
2170
2171 if (len >= probe_size)
2172 break;
2173 }
2174 tcp_init_tso_segs(nskb, nskb->len);
2175
2176 /* We're ready to send. If this fails, the probe will
2177 * be resegmented into mss-sized pieces by tcp_write_xmit().
2178 */
2179 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2180 /* Decrement cwnd here because we are sending
2181 * effectively two packets. */
2182 tp->snd_cwnd--;
2183 tcp_event_new_data_sent(sk, nskb);
2184
2185 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2186 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2187 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2188
2189 return 1;
2190 }
2191
2192 return -1;
2193 }
2194
tcp_pacing_check(const struct sock * sk)2195 static bool tcp_pacing_check(const struct sock *sk)
2196 {
2197 return tcp_needs_internal_pacing(sk) &&
2198 hrtimer_is_queued(&tcp_sk(sk)->pacing_timer);
2199 }
2200
2201 /* TCP Small Queues :
2202 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2203 * (These limits are doubled for retransmits)
2204 * This allows for :
2205 * - better RTT estimation and ACK scheduling
2206 * - faster recovery
2207 * - high rates
2208 * Alas, some drivers / subsystems require a fair amount
2209 * of queued bytes to ensure line rate.
2210 * One example is wifi aggregation (802.11 AMPDU)
2211 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2212 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2213 unsigned int factor)
2214 {
2215 unsigned int limit;
2216
2217 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
2218 limit = min_t(u32, limit,
2219 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2220 limit <<= factor;
2221
2222 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2223 /* Always send skb if rtx queue is empty.
2224 * No need to wait for TX completion to call us back,
2225 * after softirq/tasklet schedule.
2226 * This helps when TX completions are delayed too much.
2227 */
2228 if (tcp_rtx_queue_empty(sk))
2229 return false;
2230
2231 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2232 /* It is possible TX completion already happened
2233 * before we set TSQ_THROTTLED, so we must
2234 * test again the condition.
2235 */
2236 smp_mb__after_atomic();
2237 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2238 return true;
2239 }
2240 return false;
2241 }
2242
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2243 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2244 {
2245 const u32 now = tcp_jiffies32;
2246 enum tcp_chrono old = tp->chrono_type;
2247
2248 if (old > TCP_CHRONO_UNSPEC)
2249 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2250 tp->chrono_start = now;
2251 tp->chrono_type = new;
2252 }
2253
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2254 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2255 {
2256 struct tcp_sock *tp = tcp_sk(sk);
2257
2258 /* If there are multiple conditions worthy of tracking in a
2259 * chronograph then the highest priority enum takes precedence
2260 * over the other conditions. So that if something "more interesting"
2261 * starts happening, stop the previous chrono and start a new one.
2262 */
2263 if (type > tp->chrono_type)
2264 tcp_chrono_set(tp, type);
2265 }
2266
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2267 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2268 {
2269 struct tcp_sock *tp = tcp_sk(sk);
2270
2271
2272 /* There are multiple conditions worthy of tracking in a
2273 * chronograph, so that the highest priority enum takes
2274 * precedence over the other conditions (see tcp_chrono_start).
2275 * If a condition stops, we only stop chrono tracking if
2276 * it's the "most interesting" or current chrono we are
2277 * tracking and starts busy chrono if we have pending data.
2278 */
2279 if (tcp_rtx_and_write_queues_empty(sk))
2280 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2281 else if (type == tp->chrono_type)
2282 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2283 }
2284
2285 /* This routine writes packets to the network. It advances the
2286 * send_head. This happens as incoming acks open up the remote
2287 * window for us.
2288 *
2289 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2290 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2291 * account rare use of URG, this is not a big flaw.
2292 *
2293 * Send at most one packet when push_one > 0. Temporarily ignore
2294 * cwnd limit to force at most one packet out when push_one == 2.
2295
2296 * Returns true, if no segments are in flight and we have queued segments,
2297 * but cannot send anything now because of SWS or another problem.
2298 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2299 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2300 int push_one, gfp_t gfp)
2301 {
2302 struct tcp_sock *tp = tcp_sk(sk);
2303 struct sk_buff *skb;
2304 unsigned int tso_segs, sent_pkts;
2305 int cwnd_quota;
2306 int result;
2307 bool is_cwnd_limited = false, is_rwnd_limited = false;
2308 u32 max_segs;
2309
2310 sent_pkts = 0;
2311
2312 tcp_mstamp_refresh(tp);
2313 if (!push_one) {
2314 /* Do MTU probing. */
2315 result = tcp_mtu_probe(sk);
2316 if (!result) {
2317 return false;
2318 } else if (result > 0) {
2319 sent_pkts = 1;
2320 }
2321 }
2322
2323 max_segs = tcp_tso_segs(sk, mss_now);
2324 while ((skb = tcp_send_head(sk))) {
2325 unsigned int limit;
2326
2327 if (tcp_pacing_check(sk))
2328 break;
2329
2330 tso_segs = tcp_init_tso_segs(skb, mss_now);
2331 BUG_ON(!tso_segs);
2332
2333 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2334 /* "skb_mstamp" is used as a start point for the retransmit timer */
2335 tcp_update_skb_after_send(tp, skb);
2336 goto repair; /* Skip network transmission */
2337 }
2338
2339 cwnd_quota = tcp_cwnd_test(tp, skb);
2340 if (!cwnd_quota) {
2341 if (push_one == 2)
2342 /* Force out a loss probe pkt. */
2343 cwnd_quota = 1;
2344 else
2345 break;
2346 }
2347
2348 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2349 is_rwnd_limited = true;
2350 break;
2351 }
2352
2353 if (tso_segs == 1) {
2354 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2355 (tcp_skb_is_last(sk, skb) ?
2356 nonagle : TCP_NAGLE_PUSH))))
2357 break;
2358 } else {
2359 if (!push_one &&
2360 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2361 &is_rwnd_limited, max_segs))
2362 break;
2363 }
2364
2365 limit = mss_now;
2366 if (tso_segs > 1 && !tcp_urg_mode(tp))
2367 limit = tcp_mss_split_point(sk, skb, mss_now,
2368 min_t(unsigned int,
2369 cwnd_quota,
2370 max_segs),
2371 nonagle);
2372
2373 if (skb->len > limit &&
2374 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2375 skb, limit, mss_now, gfp)))
2376 break;
2377
2378 if (tcp_small_queue_check(sk, skb, 0))
2379 break;
2380
2381 /* Argh, we hit an empty skb(), presumably a thread
2382 * is sleeping in sendmsg()/sk_stream_wait_memory().
2383 * We do not want to send a pure-ack packet and have
2384 * a strange looking rtx queue with empty packet(s).
2385 */
2386 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2387 break;
2388
2389 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2390 break;
2391
2392 repair:
2393 /* Advance the send_head. This one is sent out.
2394 * This call will increment packets_out.
2395 */
2396 tcp_event_new_data_sent(sk, skb);
2397
2398 tcp_minshall_update(tp, mss_now, skb);
2399 sent_pkts += tcp_skb_pcount(skb);
2400
2401 if (push_one)
2402 break;
2403 }
2404
2405 if (is_rwnd_limited)
2406 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2407 else
2408 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2409
2410 if (likely(sent_pkts)) {
2411 if (tcp_in_cwnd_reduction(sk))
2412 tp->prr_out += sent_pkts;
2413
2414 /* Send one loss probe per tail loss episode. */
2415 if (push_one != 2)
2416 tcp_schedule_loss_probe(sk, false);
2417 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2418 tcp_cwnd_validate(sk, is_cwnd_limited);
2419 return false;
2420 }
2421 return !tp->packets_out && !tcp_write_queue_empty(sk);
2422 }
2423
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2424 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2425 {
2426 struct inet_connection_sock *icsk = inet_csk(sk);
2427 struct tcp_sock *tp = tcp_sk(sk);
2428 u32 timeout, rto_delta_us;
2429 int early_retrans;
2430
2431 /* Don't do any loss probe on a Fast Open connection before 3WHS
2432 * finishes.
2433 */
2434 if (tp->fastopen_rsk)
2435 return false;
2436
2437 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2438 /* Schedule a loss probe in 2*RTT for SACK capable connections
2439 * not in loss recovery, that are either limited by cwnd or application.
2440 */
2441 if ((early_retrans != 3 && early_retrans != 4) ||
2442 !tp->packets_out || !tcp_is_sack(tp) ||
2443 (icsk->icsk_ca_state != TCP_CA_Open &&
2444 icsk->icsk_ca_state != TCP_CA_CWR))
2445 return false;
2446
2447 /* Probe timeout is 2*rtt. Add minimum RTO to account
2448 * for delayed ack when there's one outstanding packet. If no RTT
2449 * sample is available then probe after TCP_TIMEOUT_INIT.
2450 */
2451 if (tp->srtt_us) {
2452 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2453 if (tp->packets_out == 1)
2454 timeout += TCP_RTO_MIN;
2455 else
2456 timeout += TCP_TIMEOUT_MIN;
2457 } else {
2458 timeout = TCP_TIMEOUT_INIT;
2459 }
2460
2461 /* If the RTO formula yields an earlier time, then use that time. */
2462 rto_delta_us = advancing_rto ?
2463 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2464 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2465 if (rto_delta_us > 0)
2466 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2467
2468 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2469 TCP_RTO_MAX);
2470 return true;
2471 }
2472
2473 /* Thanks to skb fast clones, we can detect if a prior transmit of
2474 * a packet is still in a qdisc or driver queue.
2475 * In this case, there is very little point doing a retransmit !
2476 */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2477 static bool skb_still_in_host_queue(const struct sock *sk,
2478 const struct sk_buff *skb)
2479 {
2480 if (unlikely(skb_fclone_busy(sk, skb))) {
2481 NET_INC_STATS(sock_net(sk),
2482 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2483 return true;
2484 }
2485 return false;
2486 }
2487
2488 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2489 * retransmit the last segment.
2490 */
tcp_send_loss_probe(struct sock * sk)2491 void tcp_send_loss_probe(struct sock *sk)
2492 {
2493 struct tcp_sock *tp = tcp_sk(sk);
2494 struct sk_buff *skb;
2495 int pcount;
2496 int mss = tcp_current_mss(sk);
2497
2498 /* At most one outstanding TLP */
2499 if (tp->tlp_high_seq)
2500 goto rearm_timer;
2501
2502 tp->tlp_retrans = 0;
2503 skb = tcp_send_head(sk);
2504 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2505 pcount = tp->packets_out;
2506 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2507 if (tp->packets_out > pcount)
2508 goto probe_sent;
2509 goto rearm_timer;
2510 }
2511 skb = skb_rb_last(&sk->tcp_rtx_queue);
2512 if (unlikely(!skb)) {
2513 WARN_ONCE(tp->packets_out,
2514 "invalid inflight: %u state %u cwnd %u mss %d\n",
2515 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2516 inet_csk(sk)->icsk_pending = 0;
2517 return;
2518 }
2519
2520 if (skb_still_in_host_queue(sk, skb))
2521 goto rearm_timer;
2522
2523 pcount = tcp_skb_pcount(skb);
2524 if (WARN_ON(!pcount))
2525 goto rearm_timer;
2526
2527 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2528 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2529 (pcount - 1) * mss, mss,
2530 GFP_ATOMIC)))
2531 goto rearm_timer;
2532 skb = skb_rb_next(skb);
2533 }
2534
2535 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2536 goto rearm_timer;
2537
2538 if (__tcp_retransmit_skb(sk, skb, 1))
2539 goto rearm_timer;
2540
2541 tp->tlp_retrans = 1;
2542
2543 probe_sent:
2544 /* Record snd_nxt for loss detection. */
2545 tp->tlp_high_seq = tp->snd_nxt;
2546
2547 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2548 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2549 inet_csk(sk)->icsk_pending = 0;
2550 rearm_timer:
2551 tcp_rearm_rto(sk);
2552 }
2553
2554 /* Push out any pending frames which were held back due to
2555 * TCP_CORK or attempt at coalescing tiny packets.
2556 * The socket must be locked by the caller.
2557 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2558 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2559 int nonagle)
2560 {
2561 /* If we are closed, the bytes will have to remain here.
2562 * In time closedown will finish, we empty the write queue and
2563 * all will be happy.
2564 */
2565 if (unlikely(sk->sk_state == TCP_CLOSE))
2566 return;
2567
2568 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2569 sk_gfp_mask(sk, GFP_ATOMIC)))
2570 tcp_check_probe_timer(sk);
2571 }
2572
2573 /* Send _single_ skb sitting at the send head. This function requires
2574 * true push pending frames to setup probe timer etc.
2575 */
tcp_push_one(struct sock * sk,unsigned int mss_now)2576 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2577 {
2578 struct sk_buff *skb = tcp_send_head(sk);
2579
2580 BUG_ON(!skb || skb->len < mss_now);
2581
2582 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2583 }
2584
2585 /* This function returns the amount that we can raise the
2586 * usable window based on the following constraints
2587 *
2588 * 1. The window can never be shrunk once it is offered (RFC 793)
2589 * 2. We limit memory per socket
2590 *
2591 * RFC 1122:
2592 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2593 * RECV.NEXT + RCV.WIN fixed until:
2594 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2595 *
2596 * i.e. don't raise the right edge of the window until you can raise
2597 * it at least MSS bytes.
2598 *
2599 * Unfortunately, the recommended algorithm breaks header prediction,
2600 * since header prediction assumes th->window stays fixed.
2601 *
2602 * Strictly speaking, keeping th->window fixed violates the receiver
2603 * side SWS prevention criteria. The problem is that under this rule
2604 * a stream of single byte packets will cause the right side of the
2605 * window to always advance by a single byte.
2606 *
2607 * Of course, if the sender implements sender side SWS prevention
2608 * then this will not be a problem.
2609 *
2610 * BSD seems to make the following compromise:
2611 *
2612 * If the free space is less than the 1/4 of the maximum
2613 * space available and the free space is less than 1/2 mss,
2614 * then set the window to 0.
2615 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2616 * Otherwise, just prevent the window from shrinking
2617 * and from being larger than the largest representable value.
2618 *
2619 * This prevents incremental opening of the window in the regime
2620 * where TCP is limited by the speed of the reader side taking
2621 * data out of the TCP receive queue. It does nothing about
2622 * those cases where the window is constrained on the sender side
2623 * because the pipeline is full.
2624 *
2625 * BSD also seems to "accidentally" limit itself to windows that are a
2626 * multiple of MSS, at least until the free space gets quite small.
2627 * This would appear to be a side effect of the mbuf implementation.
2628 * Combining these two algorithms results in the observed behavior
2629 * of having a fixed window size at almost all times.
2630 *
2631 * Below we obtain similar behavior by forcing the offered window to
2632 * a multiple of the mss when it is feasible to do so.
2633 *
2634 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2635 * Regular options like TIMESTAMP are taken into account.
2636 */
__tcp_select_window(struct sock * sk)2637 u32 __tcp_select_window(struct sock *sk)
2638 {
2639 struct inet_connection_sock *icsk = inet_csk(sk);
2640 struct tcp_sock *tp = tcp_sk(sk);
2641 /* MSS for the peer's data. Previous versions used mss_clamp
2642 * here. I don't know if the value based on our guesses
2643 * of peer's MSS is better for the performance. It's more correct
2644 * but may be worse for the performance because of rcv_mss
2645 * fluctuations. --SAW 1998/11/1
2646 */
2647 int mss = icsk->icsk_ack.rcv_mss;
2648 int free_space = tcp_space(sk);
2649 int allowed_space = tcp_full_space(sk);
2650 int full_space = min_t(int, tp->window_clamp, allowed_space);
2651 int window;
2652
2653 if (unlikely(mss > full_space)) {
2654 mss = full_space;
2655 if (mss <= 0)
2656 return 0;
2657 }
2658 if (free_space < (full_space >> 1)) {
2659 icsk->icsk_ack.quick = 0;
2660
2661 if (tcp_under_memory_pressure(sk))
2662 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2663 4U * tp->advmss);
2664
2665 /* free_space might become our new window, make sure we don't
2666 * increase it due to wscale.
2667 */
2668 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2669
2670 /* if free space is less than mss estimate, or is below 1/16th
2671 * of the maximum allowed, try to move to zero-window, else
2672 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2673 * new incoming data is dropped due to memory limits.
2674 * With large window, mss test triggers way too late in order
2675 * to announce zero window in time before rmem limit kicks in.
2676 */
2677 if (free_space < (allowed_space >> 4) || free_space < mss)
2678 return 0;
2679 }
2680
2681 if (free_space > tp->rcv_ssthresh)
2682 free_space = tp->rcv_ssthresh;
2683
2684 /* Don't do rounding if we are using window scaling, since the
2685 * scaled window will not line up with the MSS boundary anyway.
2686 */
2687 if (tp->rx_opt.rcv_wscale) {
2688 window = free_space;
2689
2690 /* Advertise enough space so that it won't get scaled away.
2691 * Import case: prevent zero window announcement if
2692 * 1<<rcv_wscale > mss.
2693 */
2694 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2695 } else {
2696 window = tp->rcv_wnd;
2697 /* Get the largest window that is a nice multiple of mss.
2698 * Window clamp already applied above.
2699 * If our current window offering is within 1 mss of the
2700 * free space we just keep it. This prevents the divide
2701 * and multiply from happening most of the time.
2702 * We also don't do any window rounding when the free space
2703 * is too small.
2704 */
2705 if (window <= free_space - mss || window > free_space)
2706 window = rounddown(free_space, mss);
2707 else if (mss == full_space &&
2708 free_space > window + (full_space >> 1))
2709 window = free_space;
2710 }
2711
2712 return window;
2713 }
2714
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)2715 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2716 const struct sk_buff *next_skb)
2717 {
2718 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2719 const struct skb_shared_info *next_shinfo =
2720 skb_shinfo(next_skb);
2721 struct skb_shared_info *shinfo = skb_shinfo(skb);
2722
2723 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2724 shinfo->tskey = next_shinfo->tskey;
2725 TCP_SKB_CB(skb)->txstamp_ack |=
2726 TCP_SKB_CB(next_skb)->txstamp_ack;
2727 }
2728 }
2729
2730 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)2731 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2732 {
2733 struct tcp_sock *tp = tcp_sk(sk);
2734 struct sk_buff *next_skb = skb_rb_next(skb);
2735 int next_skb_size;
2736
2737 next_skb_size = next_skb->len;
2738
2739 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2740
2741 if (next_skb_size) {
2742 if (next_skb_size <= skb_availroom(skb))
2743 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2744 next_skb_size);
2745 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2746 return false;
2747 }
2748 tcp_highest_sack_replace(sk, next_skb, skb);
2749
2750 /* Update sequence range on original skb. */
2751 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2752
2753 /* Merge over control information. This moves PSH/FIN etc. over */
2754 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2755
2756 /* All done, get rid of second SKB and account for it so
2757 * packet counting does not break.
2758 */
2759 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2760 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2761
2762 /* changed transmit queue under us so clear hints */
2763 tcp_clear_retrans_hints_partial(tp);
2764 if (next_skb == tp->retransmit_skb_hint)
2765 tp->retransmit_skb_hint = skb;
2766
2767 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2768
2769 tcp_skb_collapse_tstamp(skb, next_skb);
2770
2771 tcp_rtx_queue_unlink_and_free(next_skb, sk);
2772 return true;
2773 }
2774
2775 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)2776 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2777 {
2778 if (tcp_skb_pcount(skb) > 1)
2779 return false;
2780 if (skb_cloned(skb))
2781 return false;
2782 /* Some heuristics for collapsing over SACK'd could be invented */
2783 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2784 return false;
2785
2786 return true;
2787 }
2788
2789 /* Collapse packets in the retransmit queue to make to create
2790 * less packets on the wire. This is only done on retransmission.
2791 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)2792 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2793 int space)
2794 {
2795 struct tcp_sock *tp = tcp_sk(sk);
2796 struct sk_buff *skb = to, *tmp;
2797 bool first = true;
2798
2799 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2800 return;
2801 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2802 return;
2803
2804 skb_rbtree_walk_from_safe(skb, tmp) {
2805 if (!tcp_can_collapse(sk, skb))
2806 break;
2807
2808 if (!tcp_skb_can_collapse_to(to))
2809 break;
2810
2811 space -= skb->len;
2812
2813 if (first) {
2814 first = false;
2815 continue;
2816 }
2817
2818 if (space < 0)
2819 break;
2820
2821 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2822 break;
2823
2824 if (!tcp_collapse_retrans(sk, to))
2825 break;
2826 }
2827 }
2828
2829 /* This retransmits one SKB. Policy decisions and retransmit queue
2830 * state updates are done by the caller. Returns non-zero if an
2831 * error occurred which prevented the send.
2832 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)2833 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2834 {
2835 struct inet_connection_sock *icsk = inet_csk(sk);
2836 struct tcp_sock *tp = tcp_sk(sk);
2837 unsigned int cur_mss;
2838 int diff, len, err;
2839
2840
2841 /* Inconclusive MTU probe */
2842 if (icsk->icsk_mtup.probe_size)
2843 icsk->icsk_mtup.probe_size = 0;
2844
2845 /* Do not sent more than we queued. 1/4 is reserved for possible
2846 * copying overhead: fragmentation, tunneling, mangling etc.
2847 */
2848 if (refcount_read(&sk->sk_wmem_alloc) >
2849 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2850 sk->sk_sndbuf))
2851 return -EAGAIN;
2852
2853 if (skb_still_in_host_queue(sk, skb))
2854 return -EBUSY;
2855
2856 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2857 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2858 WARN_ON_ONCE(1);
2859 return -EINVAL;
2860 }
2861 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2862 return -ENOMEM;
2863 }
2864
2865 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2866 return -EHOSTUNREACH; /* Routing failure or similar. */
2867
2868 cur_mss = tcp_current_mss(sk);
2869
2870 /* If receiver has shrunk his window, and skb is out of
2871 * new window, do not retransmit it. The exception is the
2872 * case, when window is shrunk to zero. In this case
2873 * our retransmit serves as a zero window probe.
2874 */
2875 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2876 TCP_SKB_CB(skb)->seq != tp->snd_una)
2877 return -EAGAIN;
2878
2879 len = cur_mss * segs;
2880 if (skb->len > len) {
2881 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2882 cur_mss, GFP_ATOMIC))
2883 return -ENOMEM; /* We'll try again later. */
2884 } else {
2885 if (skb_unclone(skb, GFP_ATOMIC))
2886 return -ENOMEM;
2887
2888 diff = tcp_skb_pcount(skb);
2889 tcp_set_skb_tso_segs(skb, cur_mss);
2890 diff -= tcp_skb_pcount(skb);
2891 if (diff)
2892 tcp_adjust_pcount(sk, skb, diff);
2893 if (skb->len < cur_mss)
2894 tcp_retrans_try_collapse(sk, skb, cur_mss);
2895 }
2896
2897 /* RFC3168, section 6.1.1.1. ECN fallback */
2898 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2899 tcp_ecn_clear_syn(sk, skb);
2900
2901 /* Update global and local TCP statistics. */
2902 segs = tcp_skb_pcount(skb);
2903 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2904 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2905 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2906 tp->total_retrans += segs;
2907 tp->bytes_retrans += skb->len;
2908
2909 /* make sure skb->data is aligned on arches that require it
2910 * and check if ack-trimming & collapsing extended the headroom
2911 * beyond what csum_start can cover.
2912 */
2913 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2914 skb_headroom(skb) >= 0xFFFF)) {
2915 struct sk_buff *nskb;
2916
2917 tcp_skb_tsorted_save(skb) {
2918 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2919 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2920 -ENOBUFS;
2921 } tcp_skb_tsorted_restore(skb);
2922
2923 if (!err) {
2924 tcp_update_skb_after_send(tp, skb);
2925 tcp_rate_skb_sent(sk, skb);
2926 }
2927 } else {
2928 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2929 }
2930
2931 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2932 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2933 TCP_SKB_CB(skb)->seq, segs, err);
2934
2935 if (likely(!err)) {
2936 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2937 trace_tcp_retransmit_skb(sk, skb);
2938 } else if (err != -EBUSY) {
2939 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2940 }
2941 return err;
2942 }
2943
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)2944 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2945 {
2946 struct tcp_sock *tp = tcp_sk(sk);
2947 int err = __tcp_retransmit_skb(sk, skb, segs);
2948
2949 if (err == 0) {
2950 #if FASTRETRANS_DEBUG > 0
2951 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2952 net_dbg_ratelimited("retrans_out leaked\n");
2953 }
2954 #endif
2955 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2956 tp->retrans_out += tcp_skb_pcount(skb);
2957
2958 /* Save stamp of the first retransmit. */
2959 if (!tp->retrans_stamp)
2960 tp->retrans_stamp = tcp_skb_timestamp(skb);
2961
2962 }
2963
2964 if (tp->undo_retrans < 0)
2965 tp->undo_retrans = 0;
2966 tp->undo_retrans += tcp_skb_pcount(skb);
2967 return err;
2968 }
2969
2970 /* This gets called after a retransmit timeout, and the initially
2971 * retransmitted data is acknowledged. It tries to continue
2972 * resending the rest of the retransmit queue, until either
2973 * we've sent it all or the congestion window limit is reached.
2974 */
tcp_xmit_retransmit_queue(struct sock * sk)2975 void tcp_xmit_retransmit_queue(struct sock *sk)
2976 {
2977 const struct inet_connection_sock *icsk = inet_csk(sk);
2978 struct sk_buff *skb, *rtx_head, *hole = NULL;
2979 struct tcp_sock *tp = tcp_sk(sk);
2980 u32 max_segs;
2981 int mib_idx;
2982
2983 if (!tp->packets_out)
2984 return;
2985
2986 rtx_head = tcp_rtx_queue_head(sk);
2987 skb = tp->retransmit_skb_hint ?: rtx_head;
2988 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2989 skb_rbtree_walk_from(skb) {
2990 __u8 sacked;
2991 int segs;
2992
2993 if (tcp_pacing_check(sk))
2994 break;
2995
2996 /* we could do better than to assign each time */
2997 if (!hole)
2998 tp->retransmit_skb_hint = skb;
2999
3000 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3001 if (segs <= 0)
3002 return;
3003 sacked = TCP_SKB_CB(skb)->sacked;
3004 /* In case tcp_shift_skb_data() have aggregated large skbs,
3005 * we need to make sure not sending too bigs TSO packets
3006 */
3007 segs = min_t(int, segs, max_segs);
3008
3009 if (tp->retrans_out >= tp->lost_out) {
3010 break;
3011 } else if (!(sacked & TCPCB_LOST)) {
3012 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3013 hole = skb;
3014 continue;
3015
3016 } else {
3017 if (icsk->icsk_ca_state != TCP_CA_Loss)
3018 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3019 else
3020 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3021 }
3022
3023 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3024 continue;
3025
3026 if (tcp_small_queue_check(sk, skb, 1))
3027 return;
3028
3029 if (tcp_retransmit_skb(sk, skb, segs))
3030 return;
3031
3032 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3033
3034 if (tcp_in_cwnd_reduction(sk))
3035 tp->prr_out += tcp_skb_pcount(skb);
3036
3037 if (skb == rtx_head &&
3038 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3039 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3040 inet_csk(sk)->icsk_rto,
3041 TCP_RTO_MAX);
3042 }
3043 }
3044
3045 /* We allow to exceed memory limits for FIN packets to expedite
3046 * connection tear down and (memory) recovery.
3047 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3048 * or even be forced to close flow without any FIN.
3049 * In general, we want to allow one skb per socket to avoid hangs
3050 * with edge trigger epoll()
3051 */
sk_forced_mem_schedule(struct sock * sk,int size)3052 void sk_forced_mem_schedule(struct sock *sk, int size)
3053 {
3054 int amt;
3055
3056 if (size <= sk->sk_forward_alloc)
3057 return;
3058 amt = sk_mem_pages(size);
3059 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3060 sk_memory_allocated_add(sk, amt);
3061
3062 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3063 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3064 }
3065
3066 /* Send a FIN. The caller locks the socket for us.
3067 * We should try to send a FIN packet really hard, but eventually give up.
3068 */
tcp_send_fin(struct sock * sk)3069 void tcp_send_fin(struct sock *sk)
3070 {
3071 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3072 struct tcp_sock *tp = tcp_sk(sk);
3073
3074 /* Optimization, tack on the FIN if we have one skb in write queue and
3075 * this skb was not yet sent, or we are under memory pressure.
3076 * Note: in the latter case, FIN packet will be sent after a timeout,
3077 * as TCP stack thinks it has already been transmitted.
3078 */
3079 if (!tskb && tcp_under_memory_pressure(sk))
3080 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3081
3082 if (tskb) {
3083 coalesce:
3084 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3085 TCP_SKB_CB(tskb)->end_seq++;
3086 tp->write_seq++;
3087 if (tcp_write_queue_empty(sk)) {
3088 /* This means tskb was already sent.
3089 * Pretend we included the FIN on previous transmit.
3090 * We need to set tp->snd_nxt to the value it would have
3091 * if FIN had been sent. This is because retransmit path
3092 * does not change tp->snd_nxt.
3093 */
3094 tp->snd_nxt++;
3095 return;
3096 }
3097 } else {
3098 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3099 if (unlikely(!skb)) {
3100 if (tskb)
3101 goto coalesce;
3102 return;
3103 }
3104 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3105 skb_reserve(skb, MAX_TCP_HEADER);
3106 sk_forced_mem_schedule(sk, skb->truesize);
3107 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3108 tcp_init_nondata_skb(skb, tp->write_seq,
3109 TCPHDR_ACK | TCPHDR_FIN);
3110 tcp_queue_skb(sk, skb);
3111 }
3112 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3113 }
3114
3115 /* We get here when a process closes a file descriptor (either due to
3116 * an explicit close() or as a byproduct of exit()'ing) and there
3117 * was unread data in the receive queue. This behavior is recommended
3118 * by RFC 2525, section 2.17. -DaveM
3119 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3120 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3121 {
3122 struct sk_buff *skb;
3123
3124 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3125
3126 /* NOTE: No TCP options attached and we never retransmit this. */
3127 skb = alloc_skb(MAX_TCP_HEADER, priority);
3128 if (!skb) {
3129 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3130 return;
3131 }
3132
3133 /* Reserve space for headers and prepare control bits. */
3134 skb_reserve(skb, MAX_TCP_HEADER);
3135 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3136 TCPHDR_ACK | TCPHDR_RST);
3137 tcp_mstamp_refresh(tcp_sk(sk));
3138 /* Send it off. */
3139 if (tcp_transmit_skb(sk, skb, 0, priority))
3140 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3141
3142 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3143 * skb here is different to the troublesome skb, so use NULL
3144 */
3145 trace_tcp_send_reset(sk, NULL);
3146 }
3147
3148 /* Send a crossed SYN-ACK during socket establishment.
3149 * WARNING: This routine must only be called when we have already sent
3150 * a SYN packet that crossed the incoming SYN that caused this routine
3151 * to get called. If this assumption fails then the initial rcv_wnd
3152 * and rcv_wscale values will not be correct.
3153 */
tcp_send_synack(struct sock * sk)3154 int tcp_send_synack(struct sock *sk)
3155 {
3156 struct sk_buff *skb;
3157
3158 skb = tcp_rtx_queue_head(sk);
3159 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3160 pr_err("%s: wrong queue state\n", __func__);
3161 return -EFAULT;
3162 }
3163 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3164 if (skb_cloned(skb)) {
3165 struct sk_buff *nskb;
3166
3167 tcp_skb_tsorted_save(skb) {
3168 nskb = skb_copy(skb, GFP_ATOMIC);
3169 } tcp_skb_tsorted_restore(skb);
3170 if (!nskb)
3171 return -ENOMEM;
3172 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3173 tcp_highest_sack_replace(sk, skb, nskb);
3174 tcp_rtx_queue_unlink_and_free(skb, sk);
3175 __skb_header_release(nskb);
3176 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3177 sk->sk_wmem_queued += nskb->truesize;
3178 sk_mem_charge(sk, nskb->truesize);
3179 skb = nskb;
3180 }
3181
3182 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3183 tcp_ecn_send_synack(sk, skb);
3184 }
3185 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3186 }
3187
3188 /**
3189 * tcp_make_synack - Prepare a SYN-ACK.
3190 * sk: listener socket
3191 * dst: dst entry attached to the SYNACK
3192 * req: request_sock pointer
3193 *
3194 * Allocate one skb and build a SYNACK packet.
3195 * @dst is consumed : Caller should not use it again.
3196 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type)3197 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3198 struct request_sock *req,
3199 struct tcp_fastopen_cookie *foc,
3200 enum tcp_synack_type synack_type)
3201 {
3202 struct inet_request_sock *ireq = inet_rsk(req);
3203 const struct tcp_sock *tp = tcp_sk(sk);
3204 struct tcp_md5sig_key *md5 = NULL;
3205 struct tcp_out_options opts;
3206 struct sk_buff *skb;
3207 int tcp_header_size;
3208 struct tcphdr *th;
3209 int mss;
3210
3211 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3212 if (unlikely(!skb)) {
3213 dst_release(dst);
3214 return NULL;
3215 }
3216 /* Reserve space for headers. */
3217 skb_reserve(skb, MAX_TCP_HEADER);
3218
3219 switch (synack_type) {
3220 case TCP_SYNACK_NORMAL:
3221 skb_set_owner_w(skb, req_to_sk(req));
3222 break;
3223 case TCP_SYNACK_COOKIE:
3224 /* Under synflood, we do not attach skb to a socket,
3225 * to avoid false sharing.
3226 */
3227 break;
3228 case TCP_SYNACK_FASTOPEN:
3229 /* sk is a const pointer, because we want to express multiple
3230 * cpu might call us concurrently.
3231 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3232 */
3233 skb_set_owner_w(skb, (struct sock *)sk);
3234 break;
3235 }
3236 skb_dst_set(skb, dst);
3237
3238 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3239
3240 memset(&opts, 0, sizeof(opts));
3241 #ifdef CONFIG_SYN_COOKIES
3242 if (unlikely(req->cookie_ts))
3243 skb->skb_mstamp = cookie_init_timestamp(req);
3244 else
3245 #endif
3246 skb->skb_mstamp = tcp_clock_us();
3247
3248 #ifdef CONFIG_TCP_MD5SIG
3249 rcu_read_lock();
3250 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3251 #endif
3252 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3253 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3254 foc, synack_type) + sizeof(*th);
3255
3256 skb_push(skb, tcp_header_size);
3257 skb_reset_transport_header(skb);
3258
3259 th = (struct tcphdr *)skb->data;
3260 memset(th, 0, sizeof(struct tcphdr));
3261 th->syn = 1;
3262 th->ack = 1;
3263 tcp_ecn_make_synack(req, th);
3264 th->source = htons(ireq->ir_num);
3265 th->dest = ireq->ir_rmt_port;
3266 skb->mark = ireq->ir_mark;
3267 skb->ip_summed = CHECKSUM_PARTIAL;
3268 th->seq = htonl(tcp_rsk(req)->snt_isn);
3269 /* XXX data is queued and acked as is. No buffer/window check */
3270 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3271
3272 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3273 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3274 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3275 th->doff = (tcp_header_size >> 2);
3276 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3277
3278 #ifdef CONFIG_TCP_MD5SIG
3279 /* Okay, we have all we need - do the md5 hash if needed */
3280 if (md5)
3281 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3282 md5, req_to_sk(req), skb);
3283 rcu_read_unlock();
3284 #endif
3285
3286 /* Do not fool tcpdump (if any), clean our debris */
3287 skb->tstamp = 0;
3288 return skb;
3289 }
3290 EXPORT_SYMBOL(tcp_make_synack);
3291
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3292 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3293 {
3294 struct inet_connection_sock *icsk = inet_csk(sk);
3295 const struct tcp_congestion_ops *ca;
3296 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3297
3298 if (ca_key == TCP_CA_UNSPEC)
3299 return;
3300
3301 rcu_read_lock();
3302 ca = tcp_ca_find_key(ca_key);
3303 if (likely(ca && try_module_get(ca->owner))) {
3304 module_put(icsk->icsk_ca_ops->owner);
3305 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3306 icsk->icsk_ca_ops = ca;
3307 }
3308 rcu_read_unlock();
3309 }
3310
3311 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3312 static void tcp_connect_init(struct sock *sk)
3313 {
3314 const struct dst_entry *dst = __sk_dst_get(sk);
3315 struct tcp_sock *tp = tcp_sk(sk);
3316 __u8 rcv_wscale;
3317 u32 rcv_wnd;
3318
3319 /* We'll fix this up when we get a response from the other end.
3320 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3321 */
3322 tp->tcp_header_len = sizeof(struct tcphdr);
3323 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3324 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3325
3326 #ifdef CONFIG_TCP_MD5SIG
3327 if (tp->af_specific->md5_lookup(sk, sk))
3328 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3329 #endif
3330
3331 /* If user gave his TCP_MAXSEG, record it to clamp */
3332 if (tp->rx_opt.user_mss)
3333 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3334 tp->max_window = 0;
3335 tcp_mtup_init(sk);
3336 tcp_sync_mss(sk, dst_mtu(dst));
3337
3338 tcp_ca_dst_init(sk, dst);
3339
3340 if (!tp->window_clamp)
3341 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3342 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3343
3344 tcp_initialize_rcv_mss(sk);
3345
3346 /* limit the window selection if the user enforce a smaller rx buffer */
3347 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3348 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3349 tp->window_clamp = tcp_full_space(sk);
3350
3351 rcv_wnd = tcp_rwnd_init_bpf(sk);
3352 if (rcv_wnd == 0)
3353 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3354
3355 tcp_select_initial_window(sk, tcp_full_space(sk),
3356 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3357 &tp->rcv_wnd,
3358 &tp->window_clamp,
3359 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3360 &rcv_wscale,
3361 rcv_wnd);
3362
3363 tp->rx_opt.rcv_wscale = rcv_wscale;
3364 tp->rcv_ssthresh = tp->rcv_wnd;
3365
3366 sk->sk_err = 0;
3367 sock_reset_flag(sk, SOCK_DONE);
3368 tp->snd_wnd = 0;
3369 tcp_init_wl(tp, 0);
3370 tcp_write_queue_purge(sk);
3371 tp->snd_una = tp->write_seq;
3372 tp->snd_sml = tp->write_seq;
3373 tp->snd_up = tp->write_seq;
3374 tp->snd_nxt = tp->write_seq;
3375
3376 if (likely(!tp->repair))
3377 tp->rcv_nxt = 0;
3378 else
3379 tp->rcv_tstamp = tcp_jiffies32;
3380 tp->rcv_wup = tp->rcv_nxt;
3381 tp->copied_seq = tp->rcv_nxt;
3382
3383 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3384 inet_csk(sk)->icsk_retransmits = 0;
3385 tcp_clear_retrans(tp);
3386 }
3387
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3388 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3389 {
3390 struct tcp_sock *tp = tcp_sk(sk);
3391 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3392
3393 tcb->end_seq += skb->len;
3394 __skb_header_release(skb);
3395 sk->sk_wmem_queued += skb->truesize;
3396 sk_mem_charge(sk, skb->truesize);
3397 tp->write_seq = tcb->end_seq;
3398 tp->packets_out += tcp_skb_pcount(skb);
3399 }
3400
3401 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3402 * queue a data-only packet after the regular SYN, such that regular SYNs
3403 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3404 * only the SYN sequence, the data are retransmitted in the first ACK.
3405 * If cookie is not cached or other error occurs, falls back to send a
3406 * regular SYN with Fast Open cookie request option.
3407 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3408 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3409 {
3410 struct tcp_sock *tp = tcp_sk(sk);
3411 struct tcp_fastopen_request *fo = tp->fastopen_req;
3412 int space, err = 0;
3413 struct sk_buff *syn_data;
3414
3415 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3416 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3417 goto fallback;
3418
3419 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3420 * user-MSS. Reserve maximum option space for middleboxes that add
3421 * private TCP options. The cost is reduced data space in SYN :(
3422 */
3423 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3424
3425 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3426 MAX_TCP_OPTION_SPACE;
3427
3428 space = min_t(size_t, space, fo->size);
3429
3430 /* limit to order-0 allocations */
3431 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3432
3433 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3434 if (!syn_data)
3435 goto fallback;
3436 syn_data->ip_summed = CHECKSUM_PARTIAL;
3437 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3438 if (space) {
3439 int copied = copy_from_iter(skb_put(syn_data, space), space,
3440 &fo->data->msg_iter);
3441 if (unlikely(!copied)) {
3442 tcp_skb_tsorted_anchor_cleanup(syn_data);
3443 kfree_skb(syn_data);
3444 goto fallback;
3445 }
3446 if (copied != space) {
3447 skb_trim(syn_data, copied);
3448 space = copied;
3449 }
3450 }
3451 /* No more data pending in inet_wait_for_connect() */
3452 if (space == fo->size)
3453 fo->data = NULL;
3454 fo->copied = space;
3455
3456 tcp_connect_queue_skb(sk, syn_data);
3457 if (syn_data->len)
3458 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3459
3460 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3461
3462 syn->skb_mstamp = syn_data->skb_mstamp;
3463
3464 /* Now full SYN+DATA was cloned and sent (or not),
3465 * remove the SYN from the original skb (syn_data)
3466 * we keep in write queue in case of a retransmit, as we
3467 * also have the SYN packet (with no data) in the same queue.
3468 */
3469 TCP_SKB_CB(syn_data)->seq++;
3470 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3471 if (!err) {
3472 tp->syn_data = (fo->copied > 0);
3473 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3474 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3475 goto done;
3476 }
3477
3478 /* data was not sent, put it in write_queue */
3479 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3480 tp->packets_out -= tcp_skb_pcount(syn_data);
3481
3482 fallback:
3483 /* Send a regular SYN with Fast Open cookie request option */
3484 if (fo->cookie.len > 0)
3485 fo->cookie.len = 0;
3486 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3487 if (err)
3488 tp->syn_fastopen = 0;
3489 done:
3490 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3491 return err;
3492 }
3493
3494 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3495 int tcp_connect(struct sock *sk)
3496 {
3497 struct tcp_sock *tp = tcp_sk(sk);
3498 struct sk_buff *buff;
3499 int err;
3500
3501 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3502
3503 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3504 return -EHOSTUNREACH; /* Routing failure or similar. */
3505
3506 tcp_connect_init(sk);
3507
3508 if (unlikely(tp->repair)) {
3509 tcp_finish_connect(sk, NULL);
3510 return 0;
3511 }
3512
3513 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3514 if (unlikely(!buff))
3515 return -ENOBUFS;
3516
3517 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3518 tcp_mstamp_refresh(tp);
3519 tp->retrans_stamp = tcp_time_stamp(tp);
3520 tcp_connect_queue_skb(sk, buff);
3521 tcp_ecn_send_syn(sk, buff);
3522 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3523
3524 /* Send off SYN; include data in Fast Open. */
3525 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3526 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3527 if (err == -ECONNREFUSED)
3528 return err;
3529
3530 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3531 * in order to make this packet get counted in tcpOutSegs.
3532 */
3533 tp->snd_nxt = tp->write_seq;
3534 tp->pushed_seq = tp->write_seq;
3535 buff = tcp_send_head(sk);
3536 if (unlikely(buff)) {
3537 tp->snd_nxt = TCP_SKB_CB(buff)->seq;
3538 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3539 }
3540 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3541
3542 /* Timer for repeating the SYN until an answer. */
3543 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3544 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3545 return 0;
3546 }
3547 EXPORT_SYMBOL(tcp_connect);
3548
3549 /* Send out a delayed ack, the caller does the policy checking
3550 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3551 * for details.
3552 */
tcp_send_delayed_ack(struct sock * sk)3553 void tcp_send_delayed_ack(struct sock *sk)
3554 {
3555 struct inet_connection_sock *icsk = inet_csk(sk);
3556 int ato = icsk->icsk_ack.ato;
3557 unsigned long timeout;
3558
3559 if (ato > TCP_DELACK_MIN) {
3560 const struct tcp_sock *tp = tcp_sk(sk);
3561 int max_ato = HZ / 2;
3562
3563 if (icsk->icsk_ack.pingpong ||
3564 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3565 max_ato = TCP_DELACK_MAX;
3566
3567 /* Slow path, intersegment interval is "high". */
3568
3569 /* If some rtt estimate is known, use it to bound delayed ack.
3570 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3571 * directly.
3572 */
3573 if (tp->srtt_us) {
3574 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3575 TCP_DELACK_MIN);
3576
3577 if (rtt < max_ato)
3578 max_ato = rtt;
3579 }
3580
3581 ato = min(ato, max_ato);
3582 }
3583
3584 /* Stay within the limit we were given */
3585 timeout = jiffies + ato;
3586
3587 /* Use new timeout only if there wasn't a older one earlier. */
3588 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3589 /* If delack timer was blocked or is about to expire,
3590 * send ACK now.
3591 */
3592 if (icsk->icsk_ack.blocked ||
3593 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3594 tcp_send_ack(sk);
3595 return;
3596 }
3597
3598 if (!time_before(timeout, icsk->icsk_ack.timeout))
3599 timeout = icsk->icsk_ack.timeout;
3600 }
3601 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3602 icsk->icsk_ack.timeout = timeout;
3603 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3604 }
3605
3606 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3607 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3608 {
3609 struct sk_buff *buff;
3610
3611 /* If we have been reset, we may not send again. */
3612 if (sk->sk_state == TCP_CLOSE)
3613 return;
3614
3615 /* We are not putting this on the write queue, so
3616 * tcp_transmit_skb() will set the ownership to this
3617 * sock.
3618 */
3619 buff = alloc_skb(MAX_TCP_HEADER,
3620 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3621 if (unlikely(!buff)) {
3622 inet_csk_schedule_ack(sk);
3623 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3624 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3625 TCP_DELACK_MAX, TCP_RTO_MAX);
3626 return;
3627 }
3628
3629 /* Reserve space for headers and prepare control bits. */
3630 skb_reserve(buff, MAX_TCP_HEADER);
3631 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3632
3633 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3634 * too much.
3635 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3636 */
3637 skb_set_tcp_pure_ack(buff);
3638
3639 /* Send it off, this clears delayed acks for us. */
3640 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3641 }
3642 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3643
tcp_send_ack(struct sock * sk)3644 void tcp_send_ack(struct sock *sk)
3645 {
3646 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3647 }
3648
3649 /* This routine sends a packet with an out of date sequence
3650 * number. It assumes the other end will try to ack it.
3651 *
3652 * Question: what should we make while urgent mode?
3653 * 4.4BSD forces sending single byte of data. We cannot send
3654 * out of window data, because we have SND.NXT==SND.MAX...
3655 *
3656 * Current solution: to send TWO zero-length segments in urgent mode:
3657 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3658 * out-of-date with SND.UNA-1 to probe window.
3659 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)3660 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3661 {
3662 struct tcp_sock *tp = tcp_sk(sk);
3663 struct sk_buff *skb;
3664
3665 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3666 skb = alloc_skb(MAX_TCP_HEADER,
3667 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3668 if (!skb)
3669 return -1;
3670
3671 /* Reserve space for headers and set control bits. */
3672 skb_reserve(skb, MAX_TCP_HEADER);
3673 /* Use a previous sequence. This should cause the other
3674 * end to send an ack. Don't queue or clone SKB, just
3675 * send it.
3676 */
3677 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3678 NET_INC_STATS(sock_net(sk), mib);
3679 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3680 }
3681
3682 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)3683 void tcp_send_window_probe(struct sock *sk)
3684 {
3685 if (sk->sk_state == TCP_ESTABLISHED) {
3686 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3687 tcp_mstamp_refresh(tcp_sk(sk));
3688 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3689 }
3690 }
3691
3692 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)3693 int tcp_write_wakeup(struct sock *sk, int mib)
3694 {
3695 struct tcp_sock *tp = tcp_sk(sk);
3696 struct sk_buff *skb;
3697
3698 if (sk->sk_state == TCP_CLOSE)
3699 return -1;
3700
3701 skb = tcp_send_head(sk);
3702 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3703 int err;
3704 unsigned int mss = tcp_current_mss(sk);
3705 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3706
3707 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3708 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3709
3710 /* We are probing the opening of a window
3711 * but the window size is != 0
3712 * must have been a result SWS avoidance ( sender )
3713 */
3714 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3715 skb->len > mss) {
3716 seg_size = min(seg_size, mss);
3717 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3718 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3719 skb, seg_size, mss, GFP_ATOMIC))
3720 return -1;
3721 } else if (!tcp_skb_pcount(skb))
3722 tcp_set_skb_tso_segs(skb, mss);
3723
3724 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3725 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3726 if (!err)
3727 tcp_event_new_data_sent(sk, skb);
3728 return err;
3729 } else {
3730 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3731 tcp_xmit_probe_skb(sk, 1, mib);
3732 return tcp_xmit_probe_skb(sk, 0, mib);
3733 }
3734 }
3735
3736 /* A window probe timeout has occurred. If window is not closed send
3737 * a partial packet else a zero probe.
3738 */
tcp_send_probe0(struct sock * sk)3739 void tcp_send_probe0(struct sock *sk)
3740 {
3741 struct inet_connection_sock *icsk = inet_csk(sk);
3742 struct tcp_sock *tp = tcp_sk(sk);
3743 struct net *net = sock_net(sk);
3744 unsigned long probe_max;
3745 int err;
3746
3747 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3748
3749 if (tp->packets_out || tcp_write_queue_empty(sk)) {
3750 /* Cancel probe timer, if it is not required. */
3751 icsk->icsk_probes_out = 0;
3752 icsk->icsk_backoff = 0;
3753 return;
3754 }
3755
3756 if (err <= 0) {
3757 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3758 icsk->icsk_backoff++;
3759 icsk->icsk_probes_out++;
3760 probe_max = TCP_RTO_MAX;
3761 } else {
3762 /* If packet was not sent due to local congestion,
3763 * do not backoff and do not remember icsk_probes_out.
3764 * Let local senders to fight for local resources.
3765 *
3766 * Use accumulated backoff yet.
3767 */
3768 if (!icsk->icsk_probes_out)
3769 icsk->icsk_probes_out = 1;
3770 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3771 }
3772 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3773 tcp_probe0_when(sk, probe_max),
3774 TCP_RTO_MAX);
3775 }
3776
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)3777 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3778 {
3779 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3780 struct flowi fl;
3781 int res;
3782
3783 tcp_rsk(req)->txhash = net_tx_rndhash();
3784 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3785 if (!res) {
3786 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3787 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3788 if (unlikely(tcp_passive_fastopen(sk)))
3789 tcp_sk(sk)->total_retrans++;
3790 trace_tcp_retransmit_synack(sk, req);
3791 }
3792 return res;
3793 }
3794 EXPORT_SYMBOL(tcp_rtx_synack);
3795