• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2015 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <linux/static_key.h>
20 #include <net/ip.h>
21 #include <net/genetlink.h>
22 #include <net/netfilter/nf_conntrack_core.h>
23 #include <net/netfilter/nf_conntrack_count.h>
24 #include <net/netfilter/nf_conntrack_helper.h>
25 #include <net/netfilter/nf_conntrack_labels.h>
26 #include <net/netfilter/nf_conntrack_seqadj.h>
27 #include <net/netfilter/nf_conntrack_zones.h>
28 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
29 #include <net/ipv6_frag.h>
30 
31 #ifdef CONFIG_NF_NAT_NEEDED
32 #include <linux/netfilter/nf_nat.h>
33 #include <net/netfilter/nf_nat_core.h>
34 #include <net/netfilter/nf_nat_l3proto.h>
35 #endif
36 
37 #include "datapath.h"
38 #include "conntrack.h"
39 #include "flow.h"
40 #include "flow_netlink.h"
41 
42 struct ovs_ct_len_tbl {
43 	int maxlen;
44 	int minlen;
45 };
46 
47 /* Metadata mark for masked write to conntrack mark */
48 struct md_mark {
49 	u32 value;
50 	u32 mask;
51 };
52 
53 /* Metadata label for masked write to conntrack label. */
54 struct md_labels {
55 	struct ovs_key_ct_labels value;
56 	struct ovs_key_ct_labels mask;
57 };
58 
59 enum ovs_ct_nat {
60 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
61 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
62 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
63 };
64 
65 /* Conntrack action context for execution. */
66 struct ovs_conntrack_info {
67 	struct nf_conntrack_helper *helper;
68 	struct nf_conntrack_zone zone;
69 	struct nf_conn *ct;
70 	u8 commit : 1;
71 	u8 nat : 3;                 /* enum ovs_ct_nat */
72 	u8 force : 1;
73 	u8 have_eventmask : 1;
74 	u16 family;
75 	u32 eventmask;              /* Mask of 1 << IPCT_*. */
76 	struct md_mark mark;
77 	struct md_labels labels;
78 #ifdef CONFIG_NF_NAT_NEEDED
79 	struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
80 #endif
81 };
82 
83 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
84 #define OVS_CT_LIMIT_UNLIMITED	0
85 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
86 #define CT_LIMIT_HASH_BUCKETS 512
87 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
88 
89 struct ovs_ct_limit {
90 	/* Elements in ovs_ct_limit_info->limits hash table */
91 	struct hlist_node hlist_node;
92 	struct rcu_head rcu;
93 	u16 zone;
94 	u32 limit;
95 };
96 
97 struct ovs_ct_limit_info {
98 	u32 default_limit;
99 	struct hlist_head *limits;
100 	struct nf_conncount_data *data;
101 };
102 
103 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
104 	[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
105 };
106 #endif
107 
108 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
109 
110 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
111 
key_to_nfproto(const struct sw_flow_key * key)112 static u16 key_to_nfproto(const struct sw_flow_key *key)
113 {
114 	switch (ntohs(key->eth.type)) {
115 	case ETH_P_IP:
116 		return NFPROTO_IPV4;
117 	case ETH_P_IPV6:
118 		return NFPROTO_IPV6;
119 	default:
120 		return NFPROTO_UNSPEC;
121 	}
122 }
123 
124 /* Map SKB connection state into the values used by flow definition. */
ovs_ct_get_state(enum ip_conntrack_info ctinfo)125 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
126 {
127 	u8 ct_state = OVS_CS_F_TRACKED;
128 
129 	switch (ctinfo) {
130 	case IP_CT_ESTABLISHED_REPLY:
131 	case IP_CT_RELATED_REPLY:
132 		ct_state |= OVS_CS_F_REPLY_DIR;
133 		break;
134 	default:
135 		break;
136 	}
137 
138 	switch (ctinfo) {
139 	case IP_CT_ESTABLISHED:
140 	case IP_CT_ESTABLISHED_REPLY:
141 		ct_state |= OVS_CS_F_ESTABLISHED;
142 		break;
143 	case IP_CT_RELATED:
144 	case IP_CT_RELATED_REPLY:
145 		ct_state |= OVS_CS_F_RELATED;
146 		break;
147 	case IP_CT_NEW:
148 		ct_state |= OVS_CS_F_NEW;
149 		break;
150 	default:
151 		break;
152 	}
153 
154 	return ct_state;
155 }
156 
ovs_ct_get_mark(const struct nf_conn * ct)157 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
158 {
159 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
160 	return ct ? ct->mark : 0;
161 #else
162 	return 0;
163 #endif
164 }
165 
166 /* Guard against conntrack labels max size shrinking below 128 bits. */
167 #if NF_CT_LABELS_MAX_SIZE < 16
168 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
169 #endif
170 
ovs_ct_get_labels(const struct nf_conn * ct,struct ovs_key_ct_labels * labels)171 static void ovs_ct_get_labels(const struct nf_conn *ct,
172 			      struct ovs_key_ct_labels *labels)
173 {
174 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
175 
176 	if (cl)
177 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
178 	else
179 		memset(labels, 0, OVS_CT_LABELS_LEN);
180 }
181 
__ovs_ct_update_key_orig_tp(struct sw_flow_key * key,const struct nf_conntrack_tuple * orig,u8 icmp_proto)182 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
183 					const struct nf_conntrack_tuple *orig,
184 					u8 icmp_proto)
185 {
186 	key->ct_orig_proto = orig->dst.protonum;
187 	if (orig->dst.protonum == icmp_proto) {
188 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
189 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
190 	} else {
191 		key->ct.orig_tp.src = orig->src.u.all;
192 		key->ct.orig_tp.dst = orig->dst.u.all;
193 	}
194 }
195 
__ovs_ct_update_key(struct sw_flow_key * key,u8 state,const struct nf_conntrack_zone * zone,const struct nf_conn * ct)196 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
197 				const struct nf_conntrack_zone *zone,
198 				const struct nf_conn *ct)
199 {
200 	key->ct_state = state;
201 	key->ct_zone = zone->id;
202 	key->ct.mark = ovs_ct_get_mark(ct);
203 	ovs_ct_get_labels(ct, &key->ct.labels);
204 
205 	if (ct) {
206 		const struct nf_conntrack_tuple *orig;
207 
208 		/* Use the master if we have one. */
209 		if (ct->master)
210 			ct = ct->master;
211 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
212 
213 		/* IP version must match with the master connection. */
214 		if (key->eth.type == htons(ETH_P_IP) &&
215 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
216 			key->ipv4.ct_orig.src = orig->src.u3.ip;
217 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
218 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
219 			return;
220 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
221 			   !sw_flow_key_is_nd(key) &&
222 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
223 			key->ipv6.ct_orig.src = orig->src.u3.in6;
224 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
225 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
226 			return;
227 		}
228 	}
229 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
230 	 * original direction key fields.
231 	 */
232 	key->ct_orig_proto = 0;
233 }
234 
235 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
236  * previously sent the packet to conntrack via the ct action.  If
237  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
238  * initialized from the connection status.
239  */
ovs_ct_update_key(const struct sk_buff * skb,const struct ovs_conntrack_info * info,struct sw_flow_key * key,bool post_ct,bool keep_nat_flags)240 static void ovs_ct_update_key(const struct sk_buff *skb,
241 			      const struct ovs_conntrack_info *info,
242 			      struct sw_flow_key *key, bool post_ct,
243 			      bool keep_nat_flags)
244 {
245 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
246 	enum ip_conntrack_info ctinfo;
247 	struct nf_conn *ct;
248 	u8 state = 0;
249 
250 	ct = nf_ct_get(skb, &ctinfo);
251 	if (ct) {
252 		state = ovs_ct_get_state(ctinfo);
253 		/* All unconfirmed entries are NEW connections. */
254 		if (!nf_ct_is_confirmed(ct))
255 			state |= OVS_CS_F_NEW;
256 		/* OVS persists the related flag for the duration of the
257 		 * connection.
258 		 */
259 		if (ct->master)
260 			state |= OVS_CS_F_RELATED;
261 		if (keep_nat_flags) {
262 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
263 		} else {
264 			if (ct->status & IPS_SRC_NAT)
265 				state |= OVS_CS_F_SRC_NAT;
266 			if (ct->status & IPS_DST_NAT)
267 				state |= OVS_CS_F_DST_NAT;
268 		}
269 		zone = nf_ct_zone(ct);
270 	} else if (post_ct) {
271 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
272 		if (info)
273 			zone = &info->zone;
274 	}
275 	__ovs_ct_update_key(key, state, zone, ct);
276 }
277 
278 /* This is called to initialize CT key fields possibly coming in from the local
279  * stack.
280  */
ovs_ct_fill_key(const struct sk_buff * skb,struct sw_flow_key * key)281 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
282 {
283 	ovs_ct_update_key(skb, NULL, key, false, false);
284 }
285 
ovs_ct_put_key(const struct sw_flow_key * swkey,const struct sw_flow_key * output,struct sk_buff * skb)286 int ovs_ct_put_key(const struct sw_flow_key *swkey,
287 		   const struct sw_flow_key *output, struct sk_buff *skb)
288 {
289 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
290 		return -EMSGSIZE;
291 
292 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
293 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
294 		return -EMSGSIZE;
295 
296 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
297 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
298 		return -EMSGSIZE;
299 
300 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
301 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
302 		    &output->ct.labels))
303 		return -EMSGSIZE;
304 
305 	if (swkey->ct_orig_proto) {
306 		if (swkey->eth.type == htons(ETH_P_IP)) {
307 			struct ovs_key_ct_tuple_ipv4 orig;
308 
309 			memset(&orig, 0, sizeof(orig));
310 			orig.ipv4_src = output->ipv4.ct_orig.src;
311 			orig.ipv4_dst = output->ipv4.ct_orig.dst;
312 			orig.src_port = output->ct.orig_tp.src;
313 			orig.dst_port = output->ct.orig_tp.dst;
314 			orig.ipv4_proto = output->ct_orig_proto;
315 
316 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
317 				    sizeof(orig), &orig))
318 				return -EMSGSIZE;
319 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
320 			struct ovs_key_ct_tuple_ipv6 orig;
321 
322 			memset(&orig, 0, sizeof(orig));
323 			memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
324 			       sizeof(orig.ipv6_src));
325 			memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
326 			       sizeof(orig.ipv6_dst));
327 			orig.src_port = output->ct.orig_tp.src;
328 			orig.dst_port = output->ct.orig_tp.dst;
329 			orig.ipv6_proto = output->ct_orig_proto;
330 
331 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
332 				    sizeof(orig), &orig))
333 				return -EMSGSIZE;
334 		}
335 	}
336 
337 	return 0;
338 }
339 
ovs_ct_set_mark(struct nf_conn * ct,struct sw_flow_key * key,u32 ct_mark,u32 mask)340 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
341 			   u32 ct_mark, u32 mask)
342 {
343 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
344 	u32 new_mark;
345 
346 	new_mark = ct_mark | (ct->mark & ~(mask));
347 	if (ct->mark != new_mark) {
348 		ct->mark = new_mark;
349 		if (nf_ct_is_confirmed(ct))
350 			nf_conntrack_event_cache(IPCT_MARK, ct);
351 		key->ct.mark = new_mark;
352 	}
353 
354 	return 0;
355 #else
356 	return -ENOTSUPP;
357 #endif
358 }
359 
ovs_ct_get_conn_labels(struct nf_conn * ct)360 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
361 {
362 	struct nf_conn_labels *cl;
363 
364 	cl = nf_ct_labels_find(ct);
365 	if (!cl) {
366 		nf_ct_labels_ext_add(ct);
367 		cl = nf_ct_labels_find(ct);
368 	}
369 
370 	return cl;
371 }
372 
373 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
374  * since the new connection is not yet confirmed, and thus no-one else has
375  * access to it's labels, we simply write them over.
376  */
ovs_ct_init_labels(struct nf_conn * ct,struct sw_flow_key * key,const struct ovs_key_ct_labels * labels,const struct ovs_key_ct_labels * mask)377 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
378 			      const struct ovs_key_ct_labels *labels,
379 			      const struct ovs_key_ct_labels *mask)
380 {
381 	struct nf_conn_labels *cl, *master_cl;
382 	bool have_mask = labels_nonzero(mask);
383 
384 	/* Inherit master's labels to the related connection? */
385 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
386 
387 	if (!master_cl && !have_mask)
388 		return 0;   /* Nothing to do. */
389 
390 	cl = ovs_ct_get_conn_labels(ct);
391 	if (!cl)
392 		return -ENOSPC;
393 
394 	/* Inherit the master's labels, if any. */
395 	if (master_cl)
396 		*cl = *master_cl;
397 
398 	if (have_mask) {
399 		u32 *dst = (u32 *)cl->bits;
400 		int i;
401 
402 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
403 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
404 				(labels->ct_labels_32[i]
405 				 & mask->ct_labels_32[i]);
406 	}
407 
408 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
409 	 * IPCT_LABEL bit is set in the event cache.
410 	 */
411 	nf_conntrack_event_cache(IPCT_LABEL, ct);
412 
413 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
414 
415 	return 0;
416 }
417 
ovs_ct_set_labels(struct nf_conn * ct,struct sw_flow_key * key,const struct ovs_key_ct_labels * labels,const struct ovs_key_ct_labels * mask)418 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
419 			     const struct ovs_key_ct_labels *labels,
420 			     const struct ovs_key_ct_labels *mask)
421 {
422 	struct nf_conn_labels *cl;
423 	int err;
424 
425 	cl = ovs_ct_get_conn_labels(ct);
426 	if (!cl)
427 		return -ENOSPC;
428 
429 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
430 				    mask->ct_labels_32,
431 				    OVS_CT_LABELS_LEN_32);
432 	if (err)
433 		return err;
434 
435 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
436 
437 	return 0;
438 }
439 
440 /* 'skb' should already be pulled to nh_ofs. */
ovs_ct_helper(struct sk_buff * skb,u16 proto)441 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
442 {
443 	const struct nf_conntrack_helper *helper;
444 	const struct nf_conn_help *help;
445 	enum ip_conntrack_info ctinfo;
446 	unsigned int protoff;
447 	struct nf_conn *ct;
448 	int err;
449 
450 	ct = nf_ct_get(skb, &ctinfo);
451 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
452 		return NF_ACCEPT;
453 
454 	help = nfct_help(ct);
455 	if (!help)
456 		return NF_ACCEPT;
457 
458 	helper = rcu_dereference(help->helper);
459 	if (!helper)
460 		return NF_ACCEPT;
461 
462 	switch (proto) {
463 	case NFPROTO_IPV4:
464 		protoff = ip_hdrlen(skb);
465 		break;
466 	case NFPROTO_IPV6: {
467 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
468 		__be16 frag_off;
469 		int ofs;
470 
471 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
472 				       &frag_off);
473 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
474 			pr_debug("proto header not found\n");
475 			return NF_ACCEPT;
476 		}
477 		protoff = ofs;
478 		break;
479 	}
480 	default:
481 		WARN_ONCE(1, "helper invoked on non-IP family!");
482 		return NF_DROP;
483 	}
484 
485 	err = helper->help(skb, protoff, ct, ctinfo);
486 	if (err != NF_ACCEPT)
487 		return err;
488 
489 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
490 	 * FTP with NAT) adusting the TCP payload size when mangling IP
491 	 * addresses and/or port numbers in the text-based control connection.
492 	 */
493 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
494 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
495 		return NF_DROP;
496 	return NF_ACCEPT;
497 }
498 
499 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
500  * value if 'skb' is freed.
501  */
handle_fragments(struct net * net,struct sw_flow_key * key,u16 zone,struct sk_buff * skb)502 static int handle_fragments(struct net *net, struct sw_flow_key *key,
503 			    u16 zone, struct sk_buff *skb)
504 {
505 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
506 	int err;
507 
508 	if (key->eth.type == htons(ETH_P_IP)) {
509 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
510 
511 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
512 		err = ip_defrag(net, skb, user);
513 		if (err)
514 			return err;
515 
516 		ovs_cb.mru = IPCB(skb)->frag_max_size;
517 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
518 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
519 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
520 
521 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
522 		err = nf_ct_frag6_gather(net, skb, user);
523 		if (err) {
524 			if (err != -EINPROGRESS)
525 				kfree_skb(skb);
526 			return err;
527 		}
528 
529 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
530 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
531 #endif
532 	} else {
533 		kfree_skb(skb);
534 		return -EPFNOSUPPORT;
535 	}
536 
537 	key->ip.frag = OVS_FRAG_TYPE_NONE;
538 	skb_clear_hash(skb);
539 	skb->ignore_df = 1;
540 	*OVS_CB(skb) = ovs_cb;
541 
542 	return 0;
543 }
544 
545 static struct nf_conntrack_expect *
ovs_ct_expect_find(struct net * net,const struct nf_conntrack_zone * zone,u16 proto,const struct sk_buff * skb)546 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
547 		   u16 proto, const struct sk_buff *skb)
548 {
549 	struct nf_conntrack_tuple tuple;
550 	struct nf_conntrack_expect *exp;
551 
552 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
553 		return NULL;
554 
555 	exp = __nf_ct_expect_find(net, zone, &tuple);
556 	if (exp) {
557 		struct nf_conntrack_tuple_hash *h;
558 
559 		/* Delete existing conntrack entry, if it clashes with the
560 		 * expectation.  This can happen since conntrack ALGs do not
561 		 * check for clashes between (new) expectations and existing
562 		 * conntrack entries.  nf_conntrack_in() will check the
563 		 * expectations only if a conntrack entry can not be found,
564 		 * which can lead to OVS finding the expectation (here) in the
565 		 * init direction, but which will not be removed by the
566 		 * nf_conntrack_in() call, if a matching conntrack entry is
567 		 * found instead.  In this case all init direction packets
568 		 * would be reported as new related packets, while reply
569 		 * direction packets would be reported as un-related
570 		 * established packets.
571 		 */
572 		h = nf_conntrack_find_get(net, zone, &tuple);
573 		if (h) {
574 			struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
575 
576 			nf_ct_delete(ct, 0, 0);
577 			nf_conntrack_put(&ct->ct_general);
578 		}
579 	}
580 
581 	return exp;
582 }
583 
584 /* This replicates logic from nf_conntrack_core.c that is not exported. */
585 static enum ip_conntrack_info
ovs_ct_get_info(const struct nf_conntrack_tuple_hash * h)586 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
587 {
588 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
589 
590 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
591 		return IP_CT_ESTABLISHED_REPLY;
592 	/* Once we've had two way comms, always ESTABLISHED. */
593 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
594 		return IP_CT_ESTABLISHED;
595 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
596 		return IP_CT_RELATED;
597 	return IP_CT_NEW;
598 }
599 
600 /* Find an existing connection which this packet belongs to without
601  * re-attributing statistics or modifying the connection state.  This allows an
602  * skb->_nfct lost due to an upcall to be recovered during actions execution.
603  *
604  * Must be called with rcu_read_lock.
605  *
606  * On success, populates skb->_nfct and returns the connection.  Returns NULL
607  * if there is no existing entry.
608  */
609 static struct nf_conn *
ovs_ct_find_existing(struct net * net,const struct nf_conntrack_zone * zone,u8 l3num,struct sk_buff * skb,bool natted)610 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
611 		     u8 l3num, struct sk_buff *skb, bool natted)
612 {
613 	struct nf_conntrack_tuple tuple;
614 	struct nf_conntrack_tuple_hash *h;
615 	struct nf_conn *ct;
616 
617 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
618 			       net, &tuple)) {
619 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
620 		return NULL;
621 	}
622 
623 	/* Must invert the tuple if skb has been transformed by NAT. */
624 	if (natted) {
625 		struct nf_conntrack_tuple inverse;
626 
627 		if (!nf_ct_invert_tuplepr(&inverse, &tuple)) {
628 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
629 			return NULL;
630 		}
631 		tuple = inverse;
632 	}
633 
634 	/* look for tuple match */
635 	h = nf_conntrack_find_get(net, zone, &tuple);
636 	if (!h)
637 		return NULL;   /* Not found. */
638 
639 	ct = nf_ct_tuplehash_to_ctrack(h);
640 
641 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
642 	 * select the other tuplehash to get the right 'ctinfo' bits for this
643 	 * packet.
644 	 */
645 	if (natted)
646 		h = &ct->tuplehash[!h->tuple.dst.dir];
647 
648 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
649 	return ct;
650 }
651 
652 static
ovs_ct_executed(struct net * net,const struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb,bool * ct_executed)653 struct nf_conn *ovs_ct_executed(struct net *net,
654 				const struct sw_flow_key *key,
655 				const struct ovs_conntrack_info *info,
656 				struct sk_buff *skb,
657 				bool *ct_executed)
658 {
659 	struct nf_conn *ct = NULL;
660 
661 	/* If no ct, check if we have evidence that an existing conntrack entry
662 	 * might be found for this skb.  This happens when we lose a skb->_nfct
663 	 * due to an upcall, or if the direction is being forced.  If the
664 	 * connection was not confirmed, it is not cached and needs to be run
665 	 * through conntrack again.
666 	 */
667 	*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
668 		       !(key->ct_state & OVS_CS_F_INVALID) &&
669 		       (key->ct_zone == info->zone.id);
670 
671 	if (*ct_executed || (!key->ct_state && info->force)) {
672 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
673 					  !!(key->ct_state &
674 					  OVS_CS_F_NAT_MASK));
675 	}
676 
677 	return ct;
678 }
679 
680 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
skb_nfct_cached(struct net * net,const struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)681 static bool skb_nfct_cached(struct net *net,
682 			    const struct sw_flow_key *key,
683 			    const struct ovs_conntrack_info *info,
684 			    struct sk_buff *skb)
685 {
686 	enum ip_conntrack_info ctinfo;
687 	struct nf_conn *ct;
688 	bool ct_executed = true;
689 
690 	ct = nf_ct_get(skb, &ctinfo);
691 	if (!ct)
692 		ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
693 
694 	if (ct)
695 		nf_ct_get(skb, &ctinfo);
696 	else
697 		return false;
698 
699 	if (!net_eq(net, read_pnet(&ct->ct_net)))
700 		return false;
701 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
702 		return false;
703 	if (info->helper) {
704 		struct nf_conn_help *help;
705 
706 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
707 		if (help && rcu_access_pointer(help->helper) != info->helper)
708 			return false;
709 	}
710 	/* Force conntrack entry direction to the current packet? */
711 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
712 		/* Delete the conntrack entry if confirmed, else just release
713 		 * the reference.
714 		 */
715 		if (nf_ct_is_confirmed(ct))
716 			nf_ct_delete(ct, 0, 0);
717 
718 		nf_conntrack_put(&ct->ct_general);
719 		nf_ct_set(skb, NULL, 0);
720 		return false;
721 	}
722 
723 	return ct_executed;
724 }
725 
726 #ifdef CONFIG_NF_NAT_NEEDED
727 /* Modelled after nf_nat_ipv[46]_fn().
728  * range is only used for new, uninitialized NAT state.
729  * Returns either NF_ACCEPT or NF_DROP.
730  */
ovs_ct_nat_execute(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_nat_range2 * range,enum nf_nat_manip_type maniptype)731 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
732 			      enum ip_conntrack_info ctinfo,
733 			      const struct nf_nat_range2 *range,
734 			      enum nf_nat_manip_type maniptype)
735 {
736 	int hooknum, nh_off, err = NF_ACCEPT;
737 
738 	nh_off = skb_network_offset(skb);
739 	skb_pull_rcsum(skb, nh_off);
740 
741 	/* See HOOK2MANIP(). */
742 	if (maniptype == NF_NAT_MANIP_SRC)
743 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
744 	else
745 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
746 
747 	switch (ctinfo) {
748 	case IP_CT_RELATED:
749 	case IP_CT_RELATED_REPLY:
750 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
751 		    skb->protocol == htons(ETH_P_IP) &&
752 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
753 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
754 							   hooknum))
755 				err = NF_DROP;
756 			goto push;
757 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
758 			   skb->protocol == htons(ETH_P_IPV6)) {
759 			__be16 frag_off;
760 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
761 			int hdrlen = ipv6_skip_exthdr(skb,
762 						      sizeof(struct ipv6hdr),
763 						      &nexthdr, &frag_off);
764 
765 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
766 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
767 								     ctinfo,
768 								     hooknum,
769 								     hdrlen))
770 					err = NF_DROP;
771 				goto push;
772 			}
773 		}
774 		/* Non-ICMP, fall thru to initialize if needed. */
775 		/* fall through */
776 	case IP_CT_NEW:
777 		/* Seen it before?  This can happen for loopback, retrans,
778 		 * or local packets.
779 		 */
780 		if (!nf_nat_initialized(ct, maniptype)) {
781 			/* Initialize according to the NAT action. */
782 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
783 				/* Action is set up to establish a new
784 				 * mapping.
785 				 */
786 				? nf_nat_setup_info(ct, range, maniptype)
787 				: nf_nat_alloc_null_binding(ct, hooknum);
788 			if (err != NF_ACCEPT)
789 				goto push;
790 		}
791 		break;
792 
793 	case IP_CT_ESTABLISHED:
794 	case IP_CT_ESTABLISHED_REPLY:
795 		break;
796 
797 	default:
798 		err = NF_DROP;
799 		goto push;
800 	}
801 
802 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
803 push:
804 	skb_push(skb, nh_off);
805 	skb_postpush_rcsum(skb, skb->data, nh_off);
806 
807 	return err;
808 }
809 
ovs_nat_update_key(struct sw_flow_key * key,const struct sk_buff * skb,enum nf_nat_manip_type maniptype)810 static void ovs_nat_update_key(struct sw_flow_key *key,
811 			       const struct sk_buff *skb,
812 			       enum nf_nat_manip_type maniptype)
813 {
814 	if (maniptype == NF_NAT_MANIP_SRC) {
815 		__be16 src;
816 
817 		key->ct_state |= OVS_CS_F_SRC_NAT;
818 		if (key->eth.type == htons(ETH_P_IP))
819 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
820 		else if (key->eth.type == htons(ETH_P_IPV6))
821 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
822 			       sizeof(key->ipv6.addr.src));
823 		else
824 			return;
825 
826 		if (key->ip.proto == IPPROTO_UDP)
827 			src = udp_hdr(skb)->source;
828 		else if (key->ip.proto == IPPROTO_TCP)
829 			src = tcp_hdr(skb)->source;
830 		else if (key->ip.proto == IPPROTO_SCTP)
831 			src = sctp_hdr(skb)->source;
832 		else
833 			return;
834 
835 		key->tp.src = src;
836 	} else {
837 		__be16 dst;
838 
839 		key->ct_state |= OVS_CS_F_DST_NAT;
840 		if (key->eth.type == htons(ETH_P_IP))
841 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
842 		else if (key->eth.type == htons(ETH_P_IPV6))
843 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
844 			       sizeof(key->ipv6.addr.dst));
845 		else
846 			return;
847 
848 		if (key->ip.proto == IPPROTO_UDP)
849 			dst = udp_hdr(skb)->dest;
850 		else if (key->ip.proto == IPPROTO_TCP)
851 			dst = tcp_hdr(skb)->dest;
852 		else if (key->ip.proto == IPPROTO_SCTP)
853 			dst = sctp_hdr(skb)->dest;
854 		else
855 			return;
856 
857 		key->tp.dst = dst;
858 	}
859 }
860 
861 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
ovs_ct_nat(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)862 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
863 		      const struct ovs_conntrack_info *info,
864 		      struct sk_buff *skb, struct nf_conn *ct,
865 		      enum ip_conntrack_info ctinfo)
866 {
867 	enum nf_nat_manip_type maniptype;
868 	int err;
869 
870 	/* Add NAT extension if not confirmed yet. */
871 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
872 		return NF_ACCEPT;   /* Can't NAT. */
873 
874 	/* Determine NAT type.
875 	 * Check if the NAT type can be deduced from the tracked connection.
876 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
877 	 * when committing.
878 	 */
879 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
880 	    ct->status & IPS_NAT_MASK &&
881 	    (ctinfo != IP_CT_RELATED || info->commit)) {
882 		/* NAT an established or related connection like before. */
883 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
884 			/* This is the REPLY direction for a connection
885 			 * for which NAT was applied in the forward
886 			 * direction.  Do the reverse NAT.
887 			 */
888 			maniptype = ct->status & IPS_SRC_NAT
889 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
890 		else
891 			maniptype = ct->status & IPS_SRC_NAT
892 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
893 	} else if (info->nat & OVS_CT_SRC_NAT) {
894 		maniptype = NF_NAT_MANIP_SRC;
895 	} else if (info->nat & OVS_CT_DST_NAT) {
896 		maniptype = NF_NAT_MANIP_DST;
897 	} else {
898 		return NF_ACCEPT; /* Connection is not NATed. */
899 	}
900 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
901 
902 	if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) {
903 		if (ct->status & IPS_SRC_NAT) {
904 			if (maniptype == NF_NAT_MANIP_SRC)
905 				maniptype = NF_NAT_MANIP_DST;
906 			else
907 				maniptype = NF_NAT_MANIP_SRC;
908 
909 			err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range,
910 						 maniptype);
911 		} else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) {
912 			err = ovs_ct_nat_execute(skb, ct, ctinfo, NULL,
913 						 NF_NAT_MANIP_SRC);
914 		}
915 	}
916 
917 	/* Mark NAT done if successful and update the flow key. */
918 	if (err == NF_ACCEPT)
919 		ovs_nat_update_key(key, skb, maniptype);
920 
921 	return err;
922 }
923 #else /* !CONFIG_NF_NAT_NEEDED */
ovs_ct_nat(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)924 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
925 		      const struct ovs_conntrack_info *info,
926 		      struct sk_buff *skb, struct nf_conn *ct,
927 		      enum ip_conntrack_info ctinfo)
928 {
929 	return NF_ACCEPT;
930 }
931 #endif
932 
933 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
934  * not done already.  Update key with new CT state after passing the packet
935  * through conntrack.
936  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
937  * set to NULL and 0 will be returned.
938  */
__ovs_ct_lookup(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)939 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
940 			   const struct ovs_conntrack_info *info,
941 			   struct sk_buff *skb)
942 {
943 	/* If we are recirculating packets to match on conntrack fields and
944 	 * committing with a separate conntrack action,  then we don't need to
945 	 * actually run the packet through conntrack twice unless it's for a
946 	 * different zone.
947 	 */
948 	bool cached = skb_nfct_cached(net, key, info, skb);
949 	enum ip_conntrack_info ctinfo;
950 	struct nf_conn *ct;
951 
952 	if (!cached) {
953 		struct nf_conn *tmpl = info->ct;
954 		int err;
955 
956 		/* Associate skb with specified zone. */
957 		if (tmpl) {
958 			if (skb_nfct(skb))
959 				nf_conntrack_put(skb_nfct(skb));
960 			nf_conntrack_get(&tmpl->ct_general);
961 			nf_ct_set(skb, tmpl, IP_CT_NEW);
962 		}
963 
964 		err = nf_conntrack_in(net, info->family,
965 				      NF_INET_PRE_ROUTING, skb);
966 		if (err != NF_ACCEPT)
967 			return -ENOENT;
968 
969 		/* Clear CT state NAT flags to mark that we have not yet done
970 		 * NAT after the nf_conntrack_in() call.  We can actually clear
971 		 * the whole state, as it will be re-initialized below.
972 		 */
973 		key->ct_state = 0;
974 
975 		/* Update the key, but keep the NAT flags. */
976 		ovs_ct_update_key(skb, info, key, true, true);
977 	}
978 
979 	ct = nf_ct_get(skb, &ctinfo);
980 	if (ct) {
981 		/* Packets starting a new connection must be NATted before the
982 		 * helper, so that the helper knows about the NAT.  We enforce
983 		 * this by delaying both NAT and helper calls for unconfirmed
984 		 * connections until the committing CT action.  For later
985 		 * packets NAT and Helper may be called in either order.
986 		 *
987 		 * NAT will be done only if the CT action has NAT, and only
988 		 * once per packet (per zone), as guarded by the NAT bits in
989 		 * the key->ct_state.
990 		 */
991 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
992 		    (nf_ct_is_confirmed(ct) || info->commit) &&
993 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
994 			return -EINVAL;
995 		}
996 
997 		/* Userspace may decide to perform a ct lookup without a helper
998 		 * specified followed by a (recirculate and) commit with one.
999 		 * Therefore, for unconfirmed connections which we will commit,
1000 		 * we need to attach the helper here.
1001 		 */
1002 		if (!nf_ct_is_confirmed(ct) && info->commit &&
1003 		    info->helper && !nfct_help(ct)) {
1004 			int err = __nf_ct_try_assign_helper(ct, info->ct,
1005 							    GFP_ATOMIC);
1006 			if (err)
1007 				return err;
1008 		}
1009 
1010 		/* Call the helper only if:
1011 		 * - nf_conntrack_in() was executed above ("!cached") for a
1012 		 *   confirmed connection, or
1013 		 * - When committing an unconfirmed connection.
1014 		 */
1015 		if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
1016 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1017 			return -EINVAL;
1018 		}
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 /* Lookup connection and read fields into key. */
ovs_ct_lookup(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)1025 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1026 			 const struct ovs_conntrack_info *info,
1027 			 struct sk_buff *skb)
1028 {
1029 	struct nf_conntrack_expect *exp;
1030 
1031 	/* If we pass an expected packet through nf_conntrack_in() the
1032 	 * expectation is typically removed, but the packet could still be
1033 	 * lost in upcall processing.  To prevent this from happening we
1034 	 * perform an explicit expectation lookup.  Expected connections are
1035 	 * always new, and will be passed through conntrack only when they are
1036 	 * committed, as it is OK to remove the expectation at that time.
1037 	 */
1038 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1039 	if (exp) {
1040 		u8 state;
1041 
1042 		/* NOTE: New connections are NATted and Helped only when
1043 		 * committed, so we are not calling into NAT here.
1044 		 */
1045 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1046 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
1047 	} else {
1048 		struct nf_conn *ct;
1049 		int err;
1050 
1051 		err = __ovs_ct_lookup(net, key, info, skb);
1052 		if (err)
1053 			return err;
1054 
1055 		ct = (struct nf_conn *)skb_nfct(skb);
1056 		if (ct)
1057 			nf_ct_deliver_cached_events(ct);
1058 	}
1059 
1060 	return 0;
1061 }
1062 
labels_nonzero(const struct ovs_key_ct_labels * labels)1063 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1064 {
1065 	size_t i;
1066 
1067 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1068 		if (labels->ct_labels_32[i])
1069 			return true;
1070 
1071 	return false;
1072 }
1073 
1074 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
ct_limit_hash_bucket(const struct ovs_ct_limit_info * info,u16 zone)1075 static struct hlist_head *ct_limit_hash_bucket(
1076 	const struct ovs_ct_limit_info *info, u16 zone)
1077 {
1078 	return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1079 }
1080 
1081 /* Call with ovs_mutex */
ct_limit_set(const struct ovs_ct_limit_info * info,struct ovs_ct_limit * new_ct_limit)1082 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1083 			 struct ovs_ct_limit *new_ct_limit)
1084 {
1085 	struct ovs_ct_limit *ct_limit;
1086 	struct hlist_head *head;
1087 
1088 	head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1089 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1090 		if (ct_limit->zone == new_ct_limit->zone) {
1091 			hlist_replace_rcu(&ct_limit->hlist_node,
1092 					  &new_ct_limit->hlist_node);
1093 			kfree_rcu(ct_limit, rcu);
1094 			return;
1095 		}
1096 	}
1097 
1098 	hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1099 }
1100 
1101 /* Call with ovs_mutex */
ct_limit_del(const struct ovs_ct_limit_info * info,u16 zone)1102 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1103 {
1104 	struct ovs_ct_limit *ct_limit;
1105 	struct hlist_head *head;
1106 	struct hlist_node *n;
1107 
1108 	head = ct_limit_hash_bucket(info, zone);
1109 	hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1110 		if (ct_limit->zone == zone) {
1111 			hlist_del_rcu(&ct_limit->hlist_node);
1112 			kfree_rcu(ct_limit, rcu);
1113 			return;
1114 		}
1115 	}
1116 }
1117 
1118 /* Call with RCU read lock */
ct_limit_get(const struct ovs_ct_limit_info * info,u16 zone)1119 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1120 {
1121 	struct ovs_ct_limit *ct_limit;
1122 	struct hlist_head *head;
1123 
1124 	head = ct_limit_hash_bucket(info, zone);
1125 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1126 		if (ct_limit->zone == zone)
1127 			return ct_limit->limit;
1128 	}
1129 
1130 	return info->default_limit;
1131 }
1132 
ovs_ct_check_limit(struct net * net,const struct ovs_conntrack_info * info,const struct nf_conntrack_tuple * tuple)1133 static int ovs_ct_check_limit(struct net *net,
1134 			      const struct ovs_conntrack_info *info,
1135 			      const struct nf_conntrack_tuple *tuple)
1136 {
1137 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1138 	const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1139 	u32 per_zone_limit, connections;
1140 	u32 conncount_key;
1141 
1142 	conncount_key = info->zone.id;
1143 
1144 	per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1145 	if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1146 		return 0;
1147 
1148 	connections = nf_conncount_count(net, ct_limit_info->data,
1149 					 &conncount_key, tuple, &info->zone);
1150 	if (connections > per_zone_limit)
1151 		return -ENOMEM;
1152 
1153 	return 0;
1154 }
1155 #endif
1156 
1157 /* Lookup connection and confirm if unconfirmed. */
ovs_ct_commit(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)1158 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1159 			 const struct ovs_conntrack_info *info,
1160 			 struct sk_buff *skb)
1161 {
1162 	enum ip_conntrack_info ctinfo;
1163 	struct nf_conn *ct;
1164 	int err;
1165 
1166 	err = __ovs_ct_lookup(net, key, info, skb);
1167 	if (err)
1168 		return err;
1169 
1170 	/* The connection could be invalid, in which case this is a no-op.*/
1171 	ct = nf_ct_get(skb, &ctinfo);
1172 	if (!ct)
1173 		return 0;
1174 
1175 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1176 	if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1177 		if (!nf_ct_is_confirmed(ct)) {
1178 			err = ovs_ct_check_limit(net, info,
1179 				&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1180 			if (err) {
1181 				net_warn_ratelimited("openvswitch: zone: %u "
1182 					"execeeds conntrack limit\n",
1183 					info->zone.id);
1184 				return err;
1185 			}
1186 		}
1187 	}
1188 #endif
1189 
1190 	/* Set the conntrack event mask if given.  NEW and DELETE events have
1191 	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1192 	 * typically would receive many kinds of updates.  Setting the event
1193 	 * mask allows those events to be filtered.  The set event mask will
1194 	 * remain in effect for the lifetime of the connection unless changed
1195 	 * by a further CT action with both the commit flag and the eventmask
1196 	 * option. */
1197 	if (info->have_eventmask) {
1198 		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1199 
1200 		if (cache)
1201 			cache->ctmask = info->eventmask;
1202 	}
1203 
1204 	/* Apply changes before confirming the connection so that the initial
1205 	 * conntrack NEW netlink event carries the values given in the CT
1206 	 * action.
1207 	 */
1208 	if (info->mark.mask) {
1209 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1210 				      info->mark.mask);
1211 		if (err)
1212 			return err;
1213 	}
1214 	if (!nf_ct_is_confirmed(ct)) {
1215 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1216 					 &info->labels.mask);
1217 		if (err)
1218 			return err;
1219 	} else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1220 		   labels_nonzero(&info->labels.mask)) {
1221 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1222 					&info->labels.mask);
1223 		if (err)
1224 			return err;
1225 	}
1226 	/* This will take care of sending queued events even if the connection
1227 	 * is already confirmed.
1228 	 */
1229 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1230 		return -EINVAL;
1231 
1232 	return 0;
1233 }
1234 
1235 /* Trim the skb to the length specified by the IP/IPv6 header,
1236  * removing any trailing lower-layer padding. This prepares the skb
1237  * for higher-layer processing that assumes skb->len excludes padding
1238  * (such as nf_ip_checksum). The caller needs to pull the skb to the
1239  * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1240  */
ovs_skb_network_trim(struct sk_buff * skb)1241 static int ovs_skb_network_trim(struct sk_buff *skb)
1242 {
1243 	unsigned int len;
1244 	int err;
1245 
1246 	switch (skb->protocol) {
1247 	case htons(ETH_P_IP):
1248 		len = ntohs(ip_hdr(skb)->tot_len);
1249 		break;
1250 	case htons(ETH_P_IPV6):
1251 		len = sizeof(struct ipv6hdr)
1252 			+ ntohs(ipv6_hdr(skb)->payload_len);
1253 		break;
1254 	default:
1255 		len = skb->len;
1256 	}
1257 
1258 	err = pskb_trim_rcsum(skb, len);
1259 	if (err)
1260 		kfree_skb(skb);
1261 
1262 	return err;
1263 }
1264 
1265 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1266  * value if 'skb' is freed.
1267  */
ovs_ct_execute(struct net * net,struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_conntrack_info * info)1268 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1269 		   struct sw_flow_key *key,
1270 		   const struct ovs_conntrack_info *info)
1271 {
1272 	int nh_ofs;
1273 	int err;
1274 
1275 	/* The conntrack module expects to be working at L3. */
1276 	nh_ofs = skb_network_offset(skb);
1277 	skb_pull_rcsum(skb, nh_ofs);
1278 
1279 	err = ovs_skb_network_trim(skb);
1280 	if (err)
1281 		return err;
1282 
1283 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1284 		err = handle_fragments(net, key, info->zone.id, skb);
1285 		if (err)
1286 			return err;
1287 	}
1288 
1289 	if (info->commit)
1290 		err = ovs_ct_commit(net, key, info, skb);
1291 	else
1292 		err = ovs_ct_lookup(net, key, info, skb);
1293 
1294 	skb_push(skb, nh_ofs);
1295 	skb_postpush_rcsum(skb, skb->data, nh_ofs);
1296 	if (err)
1297 		kfree_skb(skb);
1298 	return err;
1299 }
1300 
ovs_ct_clear(struct sk_buff * skb,struct sw_flow_key * key)1301 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1302 {
1303 	if (skb_nfct(skb)) {
1304 		nf_conntrack_put(skb_nfct(skb));
1305 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1306 		ovs_ct_fill_key(skb, key);
1307 	}
1308 
1309 	return 0;
1310 }
1311 
ovs_ct_add_helper(struct ovs_conntrack_info * info,const char * name,const struct sw_flow_key * key,bool log)1312 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1313 			     const struct sw_flow_key *key, bool log)
1314 {
1315 	struct nf_conntrack_helper *helper;
1316 	struct nf_conn_help *help;
1317 
1318 	helper = nf_conntrack_helper_try_module_get(name, info->family,
1319 						    key->ip.proto);
1320 	if (!helper) {
1321 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1322 		return -EINVAL;
1323 	}
1324 
1325 	help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1326 	if (!help) {
1327 		nf_conntrack_helper_put(helper);
1328 		return -ENOMEM;
1329 	}
1330 
1331 	rcu_assign_pointer(help->helper, helper);
1332 	info->helper = helper;
1333 
1334 	if (info->nat)
1335 		request_module("ip_nat_%s", name);
1336 
1337 	return 0;
1338 }
1339 
1340 #ifdef CONFIG_NF_NAT_NEEDED
parse_nat(const struct nlattr * attr,struct ovs_conntrack_info * info,bool log)1341 static int parse_nat(const struct nlattr *attr,
1342 		     struct ovs_conntrack_info *info, bool log)
1343 {
1344 	struct nlattr *a;
1345 	int rem;
1346 	bool have_ip_max = false;
1347 	bool have_proto_max = false;
1348 	bool ip_vers = (info->family == NFPROTO_IPV6);
1349 
1350 	nla_for_each_nested(a, attr, rem) {
1351 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1352 			[OVS_NAT_ATTR_SRC] = {0, 0},
1353 			[OVS_NAT_ATTR_DST] = {0, 0},
1354 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1355 						 sizeof(struct in6_addr)},
1356 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1357 						 sizeof(struct in6_addr)},
1358 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1359 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1360 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1361 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1362 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1363 		};
1364 		int type = nla_type(a);
1365 
1366 		if (type > OVS_NAT_ATTR_MAX) {
1367 			OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1368 				  type, OVS_NAT_ATTR_MAX);
1369 			return -EINVAL;
1370 		}
1371 
1372 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1373 			OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1374 				  type, nla_len(a),
1375 				  ovs_nat_attr_lens[type][ip_vers]);
1376 			return -EINVAL;
1377 		}
1378 
1379 		switch (type) {
1380 		case OVS_NAT_ATTR_SRC:
1381 		case OVS_NAT_ATTR_DST:
1382 			if (info->nat) {
1383 				OVS_NLERR(log, "Only one type of NAT may be specified");
1384 				return -ERANGE;
1385 			}
1386 			info->nat |= OVS_CT_NAT;
1387 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1388 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1389 			break;
1390 
1391 		case OVS_NAT_ATTR_IP_MIN:
1392 			nla_memcpy(&info->range.min_addr, a,
1393 				   sizeof(info->range.min_addr));
1394 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1395 			break;
1396 
1397 		case OVS_NAT_ATTR_IP_MAX:
1398 			have_ip_max = true;
1399 			nla_memcpy(&info->range.max_addr, a,
1400 				   sizeof(info->range.max_addr));
1401 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1402 			break;
1403 
1404 		case OVS_NAT_ATTR_PROTO_MIN:
1405 			info->range.min_proto.all = htons(nla_get_u16(a));
1406 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1407 			break;
1408 
1409 		case OVS_NAT_ATTR_PROTO_MAX:
1410 			have_proto_max = true;
1411 			info->range.max_proto.all = htons(nla_get_u16(a));
1412 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1413 			break;
1414 
1415 		case OVS_NAT_ATTR_PERSISTENT:
1416 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1417 			break;
1418 
1419 		case OVS_NAT_ATTR_PROTO_HASH:
1420 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1421 			break;
1422 
1423 		case OVS_NAT_ATTR_PROTO_RANDOM:
1424 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1425 			break;
1426 
1427 		default:
1428 			OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1429 			return -EINVAL;
1430 		}
1431 	}
1432 
1433 	if (rem > 0) {
1434 		OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1435 		return -EINVAL;
1436 	}
1437 	if (!info->nat) {
1438 		/* Do not allow flags if no type is given. */
1439 		if (info->range.flags) {
1440 			OVS_NLERR(log,
1441 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1442 				  );
1443 			return -EINVAL;
1444 		}
1445 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1446 	} else if (!info->commit) {
1447 		OVS_NLERR(log,
1448 			  "NAT attributes may be specified only when CT COMMIT flag is also specified."
1449 			  );
1450 		return -EINVAL;
1451 	}
1452 	/* Allow missing IP_MAX. */
1453 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1454 		memcpy(&info->range.max_addr, &info->range.min_addr,
1455 		       sizeof(info->range.max_addr));
1456 	}
1457 	/* Allow missing PROTO_MAX. */
1458 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1459 	    !have_proto_max) {
1460 		info->range.max_proto.all = info->range.min_proto.all;
1461 	}
1462 	return 0;
1463 }
1464 #endif
1465 
1466 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1467 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1468 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1469 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1470 				    .maxlen = sizeof(u16) },
1471 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1472 				    .maxlen = sizeof(struct md_mark) },
1473 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1474 				    .maxlen = sizeof(struct md_labels) },
1475 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1476 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1477 #ifdef CONFIG_NF_NAT_NEEDED
1478 	/* NAT length is checked when parsing the nested attributes. */
1479 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1480 #endif
1481 	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1482 				    .maxlen = sizeof(u32) },
1483 };
1484 
parse_ct(const struct nlattr * attr,struct ovs_conntrack_info * info,const char ** helper,bool log)1485 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1486 		    const char **helper, bool log)
1487 {
1488 	struct nlattr *a;
1489 	int rem;
1490 
1491 	nla_for_each_nested(a, attr, rem) {
1492 		int type = nla_type(a);
1493 		int maxlen;
1494 		int minlen;
1495 
1496 		if (type > OVS_CT_ATTR_MAX) {
1497 			OVS_NLERR(log,
1498 				  "Unknown conntrack attr (type=%d, max=%d)",
1499 				  type, OVS_CT_ATTR_MAX);
1500 			return -EINVAL;
1501 		}
1502 
1503 		maxlen = ovs_ct_attr_lens[type].maxlen;
1504 		minlen = ovs_ct_attr_lens[type].minlen;
1505 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1506 			OVS_NLERR(log,
1507 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1508 				  type, nla_len(a), maxlen);
1509 			return -EINVAL;
1510 		}
1511 
1512 		switch (type) {
1513 		case OVS_CT_ATTR_FORCE_COMMIT:
1514 			info->force = true;
1515 			/* fall through. */
1516 		case OVS_CT_ATTR_COMMIT:
1517 			info->commit = true;
1518 			break;
1519 #ifdef CONFIG_NF_CONNTRACK_ZONES
1520 		case OVS_CT_ATTR_ZONE:
1521 			info->zone.id = nla_get_u16(a);
1522 			break;
1523 #endif
1524 #ifdef CONFIG_NF_CONNTRACK_MARK
1525 		case OVS_CT_ATTR_MARK: {
1526 			struct md_mark *mark = nla_data(a);
1527 
1528 			if (!mark->mask) {
1529 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1530 				return -EINVAL;
1531 			}
1532 			info->mark = *mark;
1533 			break;
1534 		}
1535 #endif
1536 #ifdef CONFIG_NF_CONNTRACK_LABELS
1537 		case OVS_CT_ATTR_LABELS: {
1538 			struct md_labels *labels = nla_data(a);
1539 
1540 			if (!labels_nonzero(&labels->mask)) {
1541 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1542 				return -EINVAL;
1543 			}
1544 			info->labels = *labels;
1545 			break;
1546 		}
1547 #endif
1548 		case OVS_CT_ATTR_HELPER:
1549 			*helper = nla_data(a);
1550 			if (!memchr(*helper, '\0', nla_len(a))) {
1551 				OVS_NLERR(log, "Invalid conntrack helper");
1552 				return -EINVAL;
1553 			}
1554 			break;
1555 #ifdef CONFIG_NF_NAT_NEEDED
1556 		case OVS_CT_ATTR_NAT: {
1557 			int err = parse_nat(a, info, log);
1558 
1559 			if (err)
1560 				return err;
1561 			break;
1562 		}
1563 #endif
1564 		case OVS_CT_ATTR_EVENTMASK:
1565 			info->have_eventmask = true;
1566 			info->eventmask = nla_get_u32(a);
1567 			break;
1568 
1569 		default:
1570 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1571 				  type);
1572 			return -EINVAL;
1573 		}
1574 	}
1575 
1576 #ifdef CONFIG_NF_CONNTRACK_MARK
1577 	if (!info->commit && info->mark.mask) {
1578 		OVS_NLERR(log,
1579 			  "Setting conntrack mark requires 'commit' flag.");
1580 		return -EINVAL;
1581 	}
1582 #endif
1583 #ifdef CONFIG_NF_CONNTRACK_LABELS
1584 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1585 		OVS_NLERR(log,
1586 			  "Setting conntrack labels requires 'commit' flag.");
1587 		return -EINVAL;
1588 	}
1589 #endif
1590 	if (rem > 0) {
1591 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1592 		return -EINVAL;
1593 	}
1594 
1595 	return 0;
1596 }
1597 
ovs_ct_verify(struct net * net,enum ovs_key_attr attr)1598 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1599 {
1600 	if (attr == OVS_KEY_ATTR_CT_STATE)
1601 		return true;
1602 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1603 	    attr == OVS_KEY_ATTR_CT_ZONE)
1604 		return true;
1605 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1606 	    attr == OVS_KEY_ATTR_CT_MARK)
1607 		return true;
1608 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1609 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1610 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1611 
1612 		return ovs_net->xt_label;
1613 	}
1614 
1615 	return false;
1616 }
1617 
ovs_ct_copy_action(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,bool log)1618 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1619 		       const struct sw_flow_key *key,
1620 		       struct sw_flow_actions **sfa,  bool log)
1621 {
1622 	struct ovs_conntrack_info ct_info;
1623 	const char *helper = NULL;
1624 	u16 family;
1625 	int err;
1626 
1627 	family = key_to_nfproto(key);
1628 	if (family == NFPROTO_UNSPEC) {
1629 		OVS_NLERR(log, "ct family unspecified");
1630 		return -EINVAL;
1631 	}
1632 
1633 	memset(&ct_info, 0, sizeof(ct_info));
1634 	ct_info.family = family;
1635 
1636 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1637 			NF_CT_DEFAULT_ZONE_DIR, 0);
1638 
1639 	err = parse_ct(attr, &ct_info, &helper, log);
1640 	if (err)
1641 		return err;
1642 
1643 	/* Set up template for tracking connections in specific zones. */
1644 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1645 	if (!ct_info.ct) {
1646 		OVS_NLERR(log, "Failed to allocate conntrack template");
1647 		return -ENOMEM;
1648 	}
1649 	if (helper) {
1650 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1651 		if (err)
1652 			goto err_free_ct;
1653 	}
1654 
1655 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1656 				 sizeof(ct_info), log);
1657 	if (err)
1658 		goto err_free_ct;
1659 
1660 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1661 	nf_conntrack_get(&ct_info.ct->ct_general);
1662 	return 0;
1663 err_free_ct:
1664 	__ovs_ct_free_action(&ct_info);
1665 	return err;
1666 }
1667 
1668 #ifdef CONFIG_NF_NAT_NEEDED
ovs_ct_nat_to_attr(const struct ovs_conntrack_info * info,struct sk_buff * skb)1669 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1670 			       struct sk_buff *skb)
1671 {
1672 	struct nlattr *start;
1673 
1674 	start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1675 	if (!start)
1676 		return false;
1677 
1678 	if (info->nat & OVS_CT_SRC_NAT) {
1679 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1680 			return false;
1681 	} else if (info->nat & OVS_CT_DST_NAT) {
1682 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1683 			return false;
1684 	} else {
1685 		goto out;
1686 	}
1687 
1688 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1689 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1690 		    info->family == NFPROTO_IPV4) {
1691 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1692 					    info->range.min_addr.ip) ||
1693 			    (info->range.max_addr.ip
1694 			     != info->range.min_addr.ip &&
1695 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1696 					      info->range.max_addr.ip))))
1697 				return false;
1698 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1699 			   info->family == NFPROTO_IPV6) {
1700 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1701 					     &info->range.min_addr.in6) ||
1702 			    (memcmp(&info->range.max_addr.in6,
1703 				    &info->range.min_addr.in6,
1704 				    sizeof(info->range.max_addr.in6)) &&
1705 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1706 					       &info->range.max_addr.in6))))
1707 				return false;
1708 		} else {
1709 			return false;
1710 		}
1711 	}
1712 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1713 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1714 			 ntohs(info->range.min_proto.all)) ||
1715 	     (info->range.max_proto.all != info->range.min_proto.all &&
1716 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1717 			  ntohs(info->range.max_proto.all)))))
1718 		return false;
1719 
1720 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1721 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1722 		return false;
1723 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1724 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1725 		return false;
1726 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1727 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1728 		return false;
1729 out:
1730 	nla_nest_end(skb, start);
1731 
1732 	return true;
1733 }
1734 #endif
1735 
ovs_ct_action_to_attr(const struct ovs_conntrack_info * ct_info,struct sk_buff * skb)1736 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1737 			  struct sk_buff *skb)
1738 {
1739 	struct nlattr *start;
1740 
1741 	start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1742 	if (!start)
1743 		return -EMSGSIZE;
1744 
1745 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1746 					    ? OVS_CT_ATTR_FORCE_COMMIT
1747 					    : OVS_CT_ATTR_COMMIT))
1748 		return -EMSGSIZE;
1749 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1750 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1751 		return -EMSGSIZE;
1752 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1753 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1754 		    &ct_info->mark))
1755 		return -EMSGSIZE;
1756 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1757 	    labels_nonzero(&ct_info->labels.mask) &&
1758 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1759 		    &ct_info->labels))
1760 		return -EMSGSIZE;
1761 	if (ct_info->helper) {
1762 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1763 				   ct_info->helper->name))
1764 			return -EMSGSIZE;
1765 	}
1766 	if (ct_info->have_eventmask &&
1767 	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1768 		return -EMSGSIZE;
1769 
1770 #ifdef CONFIG_NF_NAT_NEEDED
1771 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1772 		return -EMSGSIZE;
1773 #endif
1774 	nla_nest_end(skb, start);
1775 
1776 	return 0;
1777 }
1778 
ovs_ct_free_action(const struct nlattr * a)1779 void ovs_ct_free_action(const struct nlattr *a)
1780 {
1781 	struct ovs_conntrack_info *ct_info = nla_data(a);
1782 
1783 	__ovs_ct_free_action(ct_info);
1784 }
1785 
__ovs_ct_free_action(struct ovs_conntrack_info * ct_info)1786 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1787 {
1788 	if (ct_info->helper)
1789 		nf_conntrack_helper_put(ct_info->helper);
1790 	if (ct_info->ct)
1791 		nf_ct_tmpl_free(ct_info->ct);
1792 }
1793 
1794 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
ovs_ct_limit_init(struct net * net,struct ovs_net * ovs_net)1795 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1796 {
1797 	int i, err;
1798 
1799 	ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1800 					 GFP_KERNEL);
1801 	if (!ovs_net->ct_limit_info)
1802 		return -ENOMEM;
1803 
1804 	ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1805 	ovs_net->ct_limit_info->limits =
1806 		kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1807 			      GFP_KERNEL);
1808 	if (!ovs_net->ct_limit_info->limits) {
1809 		kfree(ovs_net->ct_limit_info);
1810 		return -ENOMEM;
1811 	}
1812 
1813 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1814 		INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1815 
1816 	ovs_net->ct_limit_info->data =
1817 		nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1818 
1819 	if (IS_ERR(ovs_net->ct_limit_info->data)) {
1820 		err = PTR_ERR(ovs_net->ct_limit_info->data);
1821 		kfree(ovs_net->ct_limit_info->limits);
1822 		kfree(ovs_net->ct_limit_info);
1823 		pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1824 		return err;
1825 	}
1826 	return 0;
1827 }
1828 
ovs_ct_limit_exit(struct net * net,struct ovs_net * ovs_net)1829 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1830 {
1831 	const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1832 	int i;
1833 
1834 	nf_conncount_destroy(net, NFPROTO_INET, info->data);
1835 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1836 		struct hlist_head *head = &info->limits[i];
1837 		struct ovs_ct_limit *ct_limit;
1838 
1839 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node)
1840 			kfree_rcu(ct_limit, rcu);
1841 	}
1842 	kfree(ovs_net->ct_limit_info->limits);
1843 	kfree(ovs_net->ct_limit_info);
1844 }
1845 
1846 static struct sk_buff *
ovs_ct_limit_cmd_reply_start(struct genl_info * info,u8 cmd,struct ovs_header ** ovs_reply_header)1847 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1848 			     struct ovs_header **ovs_reply_header)
1849 {
1850 	struct ovs_header *ovs_header = info->userhdr;
1851 	struct sk_buff *skb;
1852 
1853 	skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1854 	if (!skb)
1855 		return ERR_PTR(-ENOMEM);
1856 
1857 	*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1858 					info->snd_seq,
1859 					&dp_ct_limit_genl_family, 0, cmd);
1860 
1861 	if (!*ovs_reply_header) {
1862 		nlmsg_free(skb);
1863 		return ERR_PTR(-EMSGSIZE);
1864 	}
1865 	(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1866 
1867 	return skb;
1868 }
1869 
check_zone_id(int zone_id,u16 * pzone)1870 static bool check_zone_id(int zone_id, u16 *pzone)
1871 {
1872 	if (zone_id >= 0 && zone_id <= 65535) {
1873 		*pzone = (u16)zone_id;
1874 		return true;
1875 	}
1876 	return false;
1877 }
1878 
ovs_ct_limit_set_zone_limit(struct nlattr * nla_zone_limit,struct ovs_ct_limit_info * info)1879 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1880 				       struct ovs_ct_limit_info *info)
1881 {
1882 	struct ovs_zone_limit *zone_limit;
1883 	int rem;
1884 	u16 zone;
1885 
1886 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1887 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1888 
1889 	while (rem >= sizeof(*zone_limit)) {
1890 		if (unlikely(zone_limit->zone_id ==
1891 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1892 			ovs_lock();
1893 			info->default_limit = zone_limit->limit;
1894 			ovs_unlock();
1895 		} else if (unlikely(!check_zone_id(
1896 				zone_limit->zone_id, &zone))) {
1897 			OVS_NLERR(true, "zone id is out of range");
1898 		} else {
1899 			struct ovs_ct_limit *ct_limit;
1900 
1901 			ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1902 			if (!ct_limit)
1903 				return -ENOMEM;
1904 
1905 			ct_limit->zone = zone;
1906 			ct_limit->limit = zone_limit->limit;
1907 
1908 			ovs_lock();
1909 			ct_limit_set(info, ct_limit);
1910 			ovs_unlock();
1911 		}
1912 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1913 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1914 				NLA_ALIGN(sizeof(*zone_limit)));
1915 	}
1916 
1917 	if (rem)
1918 		OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1919 
1920 	return 0;
1921 }
1922 
ovs_ct_limit_del_zone_limit(struct nlattr * nla_zone_limit,struct ovs_ct_limit_info * info)1923 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1924 				       struct ovs_ct_limit_info *info)
1925 {
1926 	struct ovs_zone_limit *zone_limit;
1927 	int rem;
1928 	u16 zone;
1929 
1930 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1931 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1932 
1933 	while (rem >= sizeof(*zone_limit)) {
1934 		if (unlikely(zone_limit->zone_id ==
1935 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1936 			ovs_lock();
1937 			info->default_limit = OVS_CT_LIMIT_DEFAULT;
1938 			ovs_unlock();
1939 		} else if (unlikely(!check_zone_id(
1940 				zone_limit->zone_id, &zone))) {
1941 			OVS_NLERR(true, "zone id is out of range");
1942 		} else {
1943 			ovs_lock();
1944 			ct_limit_del(info, zone);
1945 			ovs_unlock();
1946 		}
1947 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1948 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1949 				NLA_ALIGN(sizeof(*zone_limit)));
1950 	}
1951 
1952 	if (rem)
1953 		OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
1954 
1955 	return 0;
1956 }
1957 
ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info * info,struct sk_buff * reply)1958 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
1959 					  struct sk_buff *reply)
1960 {
1961 	struct ovs_zone_limit zone_limit;
1962 	int err;
1963 
1964 	zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
1965 	zone_limit.limit = info->default_limit;
1966 	err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1967 	if (err)
1968 		return err;
1969 
1970 	return 0;
1971 }
1972 
__ovs_ct_limit_get_zone_limit(struct net * net,struct nf_conncount_data * data,u16 zone_id,u32 limit,struct sk_buff * reply)1973 static int __ovs_ct_limit_get_zone_limit(struct net *net,
1974 					 struct nf_conncount_data *data,
1975 					 u16 zone_id, u32 limit,
1976 					 struct sk_buff *reply)
1977 {
1978 	struct nf_conntrack_zone ct_zone;
1979 	struct ovs_zone_limit zone_limit;
1980 	u32 conncount_key = zone_id;
1981 
1982 	zone_limit.zone_id = zone_id;
1983 	zone_limit.limit = limit;
1984 	nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
1985 
1986 	zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
1987 					      &ct_zone);
1988 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1989 }
1990 
ovs_ct_limit_get_zone_limit(struct net * net,struct nlattr * nla_zone_limit,struct ovs_ct_limit_info * info,struct sk_buff * reply)1991 static int ovs_ct_limit_get_zone_limit(struct net *net,
1992 				       struct nlattr *nla_zone_limit,
1993 				       struct ovs_ct_limit_info *info,
1994 				       struct sk_buff *reply)
1995 {
1996 	struct ovs_zone_limit *zone_limit;
1997 	int rem, err;
1998 	u32 limit;
1999 	u16 zone;
2000 
2001 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
2002 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2003 
2004 	while (rem >= sizeof(*zone_limit)) {
2005 		if (unlikely(zone_limit->zone_id ==
2006 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2007 			err = ovs_ct_limit_get_default_limit(info, reply);
2008 			if (err)
2009 				return err;
2010 		} else if (unlikely(!check_zone_id(zone_limit->zone_id,
2011 							&zone))) {
2012 			OVS_NLERR(true, "zone id is out of range");
2013 		} else {
2014 			rcu_read_lock();
2015 			limit = ct_limit_get(info, zone);
2016 			rcu_read_unlock();
2017 
2018 			err = __ovs_ct_limit_get_zone_limit(
2019 				net, info->data, zone, limit, reply);
2020 			if (err)
2021 				return err;
2022 		}
2023 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2024 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2025 				NLA_ALIGN(sizeof(*zone_limit)));
2026 	}
2027 
2028 	if (rem)
2029 		OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2030 
2031 	return 0;
2032 }
2033 
ovs_ct_limit_get_all_zone_limit(struct net * net,struct ovs_ct_limit_info * info,struct sk_buff * reply)2034 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2035 					   struct ovs_ct_limit_info *info,
2036 					   struct sk_buff *reply)
2037 {
2038 	struct ovs_ct_limit *ct_limit;
2039 	struct hlist_head *head;
2040 	int i, err = 0;
2041 
2042 	err = ovs_ct_limit_get_default_limit(info, reply);
2043 	if (err)
2044 		return err;
2045 
2046 	rcu_read_lock();
2047 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2048 		head = &info->limits[i];
2049 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2050 			err = __ovs_ct_limit_get_zone_limit(net, info->data,
2051 				ct_limit->zone, ct_limit->limit, reply);
2052 			if (err)
2053 				goto exit_err;
2054 		}
2055 	}
2056 
2057 exit_err:
2058 	rcu_read_unlock();
2059 	return err;
2060 }
2061 
ovs_ct_limit_cmd_set(struct sk_buff * skb,struct genl_info * info)2062 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2063 {
2064 	struct nlattr **a = info->attrs;
2065 	struct sk_buff *reply;
2066 	struct ovs_header *ovs_reply_header;
2067 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2068 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2069 	int err;
2070 
2071 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2072 					     &ovs_reply_header);
2073 	if (IS_ERR(reply))
2074 		return PTR_ERR(reply);
2075 
2076 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2077 		err = -EINVAL;
2078 		goto exit_err;
2079 	}
2080 
2081 	err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2082 					  ct_limit_info);
2083 	if (err)
2084 		goto exit_err;
2085 
2086 	static_branch_enable(&ovs_ct_limit_enabled);
2087 
2088 	genlmsg_end(reply, ovs_reply_header);
2089 	return genlmsg_reply(reply, info);
2090 
2091 exit_err:
2092 	nlmsg_free(reply);
2093 	return err;
2094 }
2095 
ovs_ct_limit_cmd_del(struct sk_buff * skb,struct genl_info * info)2096 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2097 {
2098 	struct nlattr **a = info->attrs;
2099 	struct sk_buff *reply;
2100 	struct ovs_header *ovs_reply_header;
2101 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2102 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2103 	int err;
2104 
2105 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2106 					     &ovs_reply_header);
2107 	if (IS_ERR(reply))
2108 		return PTR_ERR(reply);
2109 
2110 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2111 		err = -EINVAL;
2112 		goto exit_err;
2113 	}
2114 
2115 	err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2116 					  ct_limit_info);
2117 	if (err)
2118 		goto exit_err;
2119 
2120 	genlmsg_end(reply, ovs_reply_header);
2121 	return genlmsg_reply(reply, info);
2122 
2123 exit_err:
2124 	nlmsg_free(reply);
2125 	return err;
2126 }
2127 
ovs_ct_limit_cmd_get(struct sk_buff * skb,struct genl_info * info)2128 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2129 {
2130 	struct nlattr **a = info->attrs;
2131 	struct nlattr *nla_reply;
2132 	struct sk_buff *reply;
2133 	struct ovs_header *ovs_reply_header;
2134 	struct net *net = sock_net(skb->sk);
2135 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2136 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2137 	int err;
2138 
2139 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2140 					     &ovs_reply_header);
2141 	if (IS_ERR(reply))
2142 		return PTR_ERR(reply);
2143 
2144 	nla_reply = nla_nest_start(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2145 
2146 	if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2147 		err = ovs_ct_limit_get_zone_limit(
2148 			net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2149 			reply);
2150 		if (err)
2151 			goto exit_err;
2152 	} else {
2153 		err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2154 						      reply);
2155 		if (err)
2156 			goto exit_err;
2157 	}
2158 
2159 	nla_nest_end(reply, nla_reply);
2160 	genlmsg_end(reply, ovs_reply_header);
2161 	return genlmsg_reply(reply, info);
2162 
2163 exit_err:
2164 	nlmsg_free(reply);
2165 	return err;
2166 }
2167 
2168 static struct genl_ops ct_limit_genl_ops[] = {
2169 	{ .cmd = OVS_CT_LIMIT_CMD_SET,
2170 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2171 					   * privilege. */
2172 		.policy = ct_limit_policy,
2173 		.doit = ovs_ct_limit_cmd_set,
2174 	},
2175 	{ .cmd = OVS_CT_LIMIT_CMD_DEL,
2176 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2177 					   * privilege. */
2178 		.policy = ct_limit_policy,
2179 		.doit = ovs_ct_limit_cmd_del,
2180 	},
2181 	{ .cmd = OVS_CT_LIMIT_CMD_GET,
2182 		.flags = 0,		  /* OK for unprivileged users. */
2183 		.policy = ct_limit_policy,
2184 		.doit = ovs_ct_limit_cmd_get,
2185 	},
2186 };
2187 
2188 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2189 	.name = OVS_CT_LIMIT_MCGROUP,
2190 };
2191 
2192 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2193 	.hdrsize = sizeof(struct ovs_header),
2194 	.name = OVS_CT_LIMIT_FAMILY,
2195 	.version = OVS_CT_LIMIT_VERSION,
2196 	.maxattr = OVS_CT_LIMIT_ATTR_MAX,
2197 	.netnsok = true,
2198 	.parallel_ops = true,
2199 	.ops = ct_limit_genl_ops,
2200 	.n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2201 	.mcgrps = &ovs_ct_limit_multicast_group,
2202 	.n_mcgrps = 1,
2203 	.module = THIS_MODULE,
2204 };
2205 #endif
2206 
ovs_ct_init(struct net * net)2207 int ovs_ct_init(struct net *net)
2208 {
2209 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2210 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2211 
2212 	if (nf_connlabels_get(net, n_bits - 1)) {
2213 		ovs_net->xt_label = false;
2214 		OVS_NLERR(true, "Failed to set connlabel length");
2215 	} else {
2216 		ovs_net->xt_label = true;
2217 	}
2218 
2219 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2220 	return ovs_ct_limit_init(net, ovs_net);
2221 #else
2222 	return 0;
2223 #endif
2224 }
2225 
ovs_ct_exit(struct net * net)2226 void ovs_ct_exit(struct net *net)
2227 {
2228 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2229 
2230 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2231 	ovs_ct_limit_exit(net, ovs_net);
2232 #endif
2233 
2234 	if (ovs_net->xt_label)
2235 		nf_connlabels_put(net);
2236 }
2237