1 /*
2 * Copyright (c) 2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <linux/static_key.h>
20 #include <net/ip.h>
21 #include <net/genetlink.h>
22 #include <net/netfilter/nf_conntrack_core.h>
23 #include <net/netfilter/nf_conntrack_count.h>
24 #include <net/netfilter/nf_conntrack_helper.h>
25 #include <net/netfilter/nf_conntrack_labels.h>
26 #include <net/netfilter/nf_conntrack_seqadj.h>
27 #include <net/netfilter/nf_conntrack_zones.h>
28 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
29 #include <net/ipv6_frag.h>
30
31 #ifdef CONFIG_NF_NAT_NEEDED
32 #include <linux/netfilter/nf_nat.h>
33 #include <net/netfilter/nf_nat_core.h>
34 #include <net/netfilter/nf_nat_l3proto.h>
35 #endif
36
37 #include "datapath.h"
38 #include "conntrack.h"
39 #include "flow.h"
40 #include "flow_netlink.h"
41
42 struct ovs_ct_len_tbl {
43 int maxlen;
44 int minlen;
45 };
46
47 /* Metadata mark for masked write to conntrack mark */
48 struct md_mark {
49 u32 value;
50 u32 mask;
51 };
52
53 /* Metadata label for masked write to conntrack label. */
54 struct md_labels {
55 struct ovs_key_ct_labels value;
56 struct ovs_key_ct_labels mask;
57 };
58
59 enum ovs_ct_nat {
60 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
61 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
62 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
63 };
64
65 /* Conntrack action context for execution. */
66 struct ovs_conntrack_info {
67 struct nf_conntrack_helper *helper;
68 struct nf_conntrack_zone zone;
69 struct nf_conn *ct;
70 u8 commit : 1;
71 u8 nat : 3; /* enum ovs_ct_nat */
72 u8 force : 1;
73 u8 have_eventmask : 1;
74 u16 family;
75 u32 eventmask; /* Mask of 1 << IPCT_*. */
76 struct md_mark mark;
77 struct md_labels labels;
78 #ifdef CONFIG_NF_NAT_NEEDED
79 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */
80 #endif
81 };
82
83 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
84 #define OVS_CT_LIMIT_UNLIMITED 0
85 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
86 #define CT_LIMIT_HASH_BUCKETS 512
87 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
88
89 struct ovs_ct_limit {
90 /* Elements in ovs_ct_limit_info->limits hash table */
91 struct hlist_node hlist_node;
92 struct rcu_head rcu;
93 u16 zone;
94 u32 limit;
95 };
96
97 struct ovs_ct_limit_info {
98 u32 default_limit;
99 struct hlist_head *limits;
100 struct nf_conncount_data *data;
101 };
102
103 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
104 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
105 };
106 #endif
107
108 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
109
110 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
111
key_to_nfproto(const struct sw_flow_key * key)112 static u16 key_to_nfproto(const struct sw_flow_key *key)
113 {
114 switch (ntohs(key->eth.type)) {
115 case ETH_P_IP:
116 return NFPROTO_IPV4;
117 case ETH_P_IPV6:
118 return NFPROTO_IPV6;
119 default:
120 return NFPROTO_UNSPEC;
121 }
122 }
123
124 /* Map SKB connection state into the values used by flow definition. */
ovs_ct_get_state(enum ip_conntrack_info ctinfo)125 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
126 {
127 u8 ct_state = OVS_CS_F_TRACKED;
128
129 switch (ctinfo) {
130 case IP_CT_ESTABLISHED_REPLY:
131 case IP_CT_RELATED_REPLY:
132 ct_state |= OVS_CS_F_REPLY_DIR;
133 break;
134 default:
135 break;
136 }
137
138 switch (ctinfo) {
139 case IP_CT_ESTABLISHED:
140 case IP_CT_ESTABLISHED_REPLY:
141 ct_state |= OVS_CS_F_ESTABLISHED;
142 break;
143 case IP_CT_RELATED:
144 case IP_CT_RELATED_REPLY:
145 ct_state |= OVS_CS_F_RELATED;
146 break;
147 case IP_CT_NEW:
148 ct_state |= OVS_CS_F_NEW;
149 break;
150 default:
151 break;
152 }
153
154 return ct_state;
155 }
156
ovs_ct_get_mark(const struct nf_conn * ct)157 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
158 {
159 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
160 return ct ? ct->mark : 0;
161 #else
162 return 0;
163 #endif
164 }
165
166 /* Guard against conntrack labels max size shrinking below 128 bits. */
167 #if NF_CT_LABELS_MAX_SIZE < 16
168 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
169 #endif
170
ovs_ct_get_labels(const struct nf_conn * ct,struct ovs_key_ct_labels * labels)171 static void ovs_ct_get_labels(const struct nf_conn *ct,
172 struct ovs_key_ct_labels *labels)
173 {
174 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
175
176 if (cl)
177 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
178 else
179 memset(labels, 0, OVS_CT_LABELS_LEN);
180 }
181
__ovs_ct_update_key_orig_tp(struct sw_flow_key * key,const struct nf_conntrack_tuple * orig,u8 icmp_proto)182 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
183 const struct nf_conntrack_tuple *orig,
184 u8 icmp_proto)
185 {
186 key->ct_orig_proto = orig->dst.protonum;
187 if (orig->dst.protonum == icmp_proto) {
188 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
189 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
190 } else {
191 key->ct.orig_tp.src = orig->src.u.all;
192 key->ct.orig_tp.dst = orig->dst.u.all;
193 }
194 }
195
__ovs_ct_update_key(struct sw_flow_key * key,u8 state,const struct nf_conntrack_zone * zone,const struct nf_conn * ct)196 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
197 const struct nf_conntrack_zone *zone,
198 const struct nf_conn *ct)
199 {
200 key->ct_state = state;
201 key->ct_zone = zone->id;
202 key->ct.mark = ovs_ct_get_mark(ct);
203 ovs_ct_get_labels(ct, &key->ct.labels);
204
205 if (ct) {
206 const struct nf_conntrack_tuple *orig;
207
208 /* Use the master if we have one. */
209 if (ct->master)
210 ct = ct->master;
211 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
212
213 /* IP version must match with the master connection. */
214 if (key->eth.type == htons(ETH_P_IP) &&
215 nf_ct_l3num(ct) == NFPROTO_IPV4) {
216 key->ipv4.ct_orig.src = orig->src.u3.ip;
217 key->ipv4.ct_orig.dst = orig->dst.u3.ip;
218 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
219 return;
220 } else if (key->eth.type == htons(ETH_P_IPV6) &&
221 !sw_flow_key_is_nd(key) &&
222 nf_ct_l3num(ct) == NFPROTO_IPV6) {
223 key->ipv6.ct_orig.src = orig->src.u3.in6;
224 key->ipv6.ct_orig.dst = orig->dst.u3.in6;
225 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
226 return;
227 }
228 }
229 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
230 * original direction key fields.
231 */
232 key->ct_orig_proto = 0;
233 }
234
235 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has
236 * previously sent the packet to conntrack via the ct action. If
237 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
238 * initialized from the connection status.
239 */
ovs_ct_update_key(const struct sk_buff * skb,const struct ovs_conntrack_info * info,struct sw_flow_key * key,bool post_ct,bool keep_nat_flags)240 static void ovs_ct_update_key(const struct sk_buff *skb,
241 const struct ovs_conntrack_info *info,
242 struct sw_flow_key *key, bool post_ct,
243 bool keep_nat_flags)
244 {
245 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
246 enum ip_conntrack_info ctinfo;
247 struct nf_conn *ct;
248 u8 state = 0;
249
250 ct = nf_ct_get(skb, &ctinfo);
251 if (ct) {
252 state = ovs_ct_get_state(ctinfo);
253 /* All unconfirmed entries are NEW connections. */
254 if (!nf_ct_is_confirmed(ct))
255 state |= OVS_CS_F_NEW;
256 /* OVS persists the related flag for the duration of the
257 * connection.
258 */
259 if (ct->master)
260 state |= OVS_CS_F_RELATED;
261 if (keep_nat_flags) {
262 state |= key->ct_state & OVS_CS_F_NAT_MASK;
263 } else {
264 if (ct->status & IPS_SRC_NAT)
265 state |= OVS_CS_F_SRC_NAT;
266 if (ct->status & IPS_DST_NAT)
267 state |= OVS_CS_F_DST_NAT;
268 }
269 zone = nf_ct_zone(ct);
270 } else if (post_ct) {
271 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
272 if (info)
273 zone = &info->zone;
274 }
275 __ovs_ct_update_key(key, state, zone, ct);
276 }
277
278 /* This is called to initialize CT key fields possibly coming in from the local
279 * stack.
280 */
ovs_ct_fill_key(const struct sk_buff * skb,struct sw_flow_key * key)281 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
282 {
283 ovs_ct_update_key(skb, NULL, key, false, false);
284 }
285
ovs_ct_put_key(const struct sw_flow_key * swkey,const struct sw_flow_key * output,struct sk_buff * skb)286 int ovs_ct_put_key(const struct sw_flow_key *swkey,
287 const struct sw_flow_key *output, struct sk_buff *skb)
288 {
289 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
290 return -EMSGSIZE;
291
292 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
293 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
294 return -EMSGSIZE;
295
296 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
297 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
298 return -EMSGSIZE;
299
300 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
301 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
302 &output->ct.labels))
303 return -EMSGSIZE;
304
305 if (swkey->ct_orig_proto) {
306 if (swkey->eth.type == htons(ETH_P_IP)) {
307 struct ovs_key_ct_tuple_ipv4 orig;
308
309 memset(&orig, 0, sizeof(orig));
310 orig.ipv4_src = output->ipv4.ct_orig.src;
311 orig.ipv4_dst = output->ipv4.ct_orig.dst;
312 orig.src_port = output->ct.orig_tp.src;
313 orig.dst_port = output->ct.orig_tp.dst;
314 orig.ipv4_proto = output->ct_orig_proto;
315
316 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
317 sizeof(orig), &orig))
318 return -EMSGSIZE;
319 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
320 struct ovs_key_ct_tuple_ipv6 orig;
321
322 memset(&orig, 0, sizeof(orig));
323 memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
324 sizeof(orig.ipv6_src));
325 memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
326 sizeof(orig.ipv6_dst));
327 orig.src_port = output->ct.orig_tp.src;
328 orig.dst_port = output->ct.orig_tp.dst;
329 orig.ipv6_proto = output->ct_orig_proto;
330
331 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
332 sizeof(orig), &orig))
333 return -EMSGSIZE;
334 }
335 }
336
337 return 0;
338 }
339
ovs_ct_set_mark(struct nf_conn * ct,struct sw_flow_key * key,u32 ct_mark,u32 mask)340 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
341 u32 ct_mark, u32 mask)
342 {
343 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
344 u32 new_mark;
345
346 new_mark = ct_mark | (ct->mark & ~(mask));
347 if (ct->mark != new_mark) {
348 ct->mark = new_mark;
349 if (nf_ct_is_confirmed(ct))
350 nf_conntrack_event_cache(IPCT_MARK, ct);
351 key->ct.mark = new_mark;
352 }
353
354 return 0;
355 #else
356 return -ENOTSUPP;
357 #endif
358 }
359
ovs_ct_get_conn_labels(struct nf_conn * ct)360 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
361 {
362 struct nf_conn_labels *cl;
363
364 cl = nf_ct_labels_find(ct);
365 if (!cl) {
366 nf_ct_labels_ext_add(ct);
367 cl = nf_ct_labels_find(ct);
368 }
369
370 return cl;
371 }
372
373 /* Initialize labels for a new, yet to be committed conntrack entry. Note that
374 * since the new connection is not yet confirmed, and thus no-one else has
375 * access to it's labels, we simply write them over.
376 */
ovs_ct_init_labels(struct nf_conn * ct,struct sw_flow_key * key,const struct ovs_key_ct_labels * labels,const struct ovs_key_ct_labels * mask)377 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
378 const struct ovs_key_ct_labels *labels,
379 const struct ovs_key_ct_labels *mask)
380 {
381 struct nf_conn_labels *cl, *master_cl;
382 bool have_mask = labels_nonzero(mask);
383
384 /* Inherit master's labels to the related connection? */
385 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
386
387 if (!master_cl && !have_mask)
388 return 0; /* Nothing to do. */
389
390 cl = ovs_ct_get_conn_labels(ct);
391 if (!cl)
392 return -ENOSPC;
393
394 /* Inherit the master's labels, if any. */
395 if (master_cl)
396 *cl = *master_cl;
397
398 if (have_mask) {
399 u32 *dst = (u32 *)cl->bits;
400 int i;
401
402 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
403 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
404 (labels->ct_labels_32[i]
405 & mask->ct_labels_32[i]);
406 }
407
408 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
409 * IPCT_LABEL bit is set in the event cache.
410 */
411 nf_conntrack_event_cache(IPCT_LABEL, ct);
412
413 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
414
415 return 0;
416 }
417
ovs_ct_set_labels(struct nf_conn * ct,struct sw_flow_key * key,const struct ovs_key_ct_labels * labels,const struct ovs_key_ct_labels * mask)418 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
419 const struct ovs_key_ct_labels *labels,
420 const struct ovs_key_ct_labels *mask)
421 {
422 struct nf_conn_labels *cl;
423 int err;
424
425 cl = ovs_ct_get_conn_labels(ct);
426 if (!cl)
427 return -ENOSPC;
428
429 err = nf_connlabels_replace(ct, labels->ct_labels_32,
430 mask->ct_labels_32,
431 OVS_CT_LABELS_LEN_32);
432 if (err)
433 return err;
434
435 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
436
437 return 0;
438 }
439
440 /* 'skb' should already be pulled to nh_ofs. */
ovs_ct_helper(struct sk_buff * skb,u16 proto)441 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
442 {
443 const struct nf_conntrack_helper *helper;
444 const struct nf_conn_help *help;
445 enum ip_conntrack_info ctinfo;
446 unsigned int protoff;
447 struct nf_conn *ct;
448 int err;
449
450 ct = nf_ct_get(skb, &ctinfo);
451 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
452 return NF_ACCEPT;
453
454 help = nfct_help(ct);
455 if (!help)
456 return NF_ACCEPT;
457
458 helper = rcu_dereference(help->helper);
459 if (!helper)
460 return NF_ACCEPT;
461
462 switch (proto) {
463 case NFPROTO_IPV4:
464 protoff = ip_hdrlen(skb);
465 break;
466 case NFPROTO_IPV6: {
467 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
468 __be16 frag_off;
469 int ofs;
470
471 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
472 &frag_off);
473 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
474 pr_debug("proto header not found\n");
475 return NF_ACCEPT;
476 }
477 protoff = ofs;
478 break;
479 }
480 default:
481 WARN_ONCE(1, "helper invoked on non-IP family!");
482 return NF_DROP;
483 }
484
485 err = helper->help(skb, protoff, ct, ctinfo);
486 if (err != NF_ACCEPT)
487 return err;
488
489 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
490 * FTP with NAT) adusting the TCP payload size when mangling IP
491 * addresses and/or port numbers in the text-based control connection.
492 */
493 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
494 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
495 return NF_DROP;
496 return NF_ACCEPT;
497 }
498
499 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
500 * value if 'skb' is freed.
501 */
handle_fragments(struct net * net,struct sw_flow_key * key,u16 zone,struct sk_buff * skb)502 static int handle_fragments(struct net *net, struct sw_flow_key *key,
503 u16 zone, struct sk_buff *skb)
504 {
505 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
506 int err;
507
508 if (key->eth.type == htons(ETH_P_IP)) {
509 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
510
511 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
512 err = ip_defrag(net, skb, user);
513 if (err)
514 return err;
515
516 ovs_cb.mru = IPCB(skb)->frag_max_size;
517 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
518 } else if (key->eth.type == htons(ETH_P_IPV6)) {
519 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
520
521 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
522 err = nf_ct_frag6_gather(net, skb, user);
523 if (err) {
524 if (err != -EINPROGRESS)
525 kfree_skb(skb);
526 return err;
527 }
528
529 key->ip.proto = ipv6_hdr(skb)->nexthdr;
530 ovs_cb.mru = IP6CB(skb)->frag_max_size;
531 #endif
532 } else {
533 kfree_skb(skb);
534 return -EPFNOSUPPORT;
535 }
536
537 key->ip.frag = OVS_FRAG_TYPE_NONE;
538 skb_clear_hash(skb);
539 skb->ignore_df = 1;
540 *OVS_CB(skb) = ovs_cb;
541
542 return 0;
543 }
544
545 static struct nf_conntrack_expect *
ovs_ct_expect_find(struct net * net,const struct nf_conntrack_zone * zone,u16 proto,const struct sk_buff * skb)546 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
547 u16 proto, const struct sk_buff *skb)
548 {
549 struct nf_conntrack_tuple tuple;
550 struct nf_conntrack_expect *exp;
551
552 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
553 return NULL;
554
555 exp = __nf_ct_expect_find(net, zone, &tuple);
556 if (exp) {
557 struct nf_conntrack_tuple_hash *h;
558
559 /* Delete existing conntrack entry, if it clashes with the
560 * expectation. This can happen since conntrack ALGs do not
561 * check for clashes between (new) expectations and existing
562 * conntrack entries. nf_conntrack_in() will check the
563 * expectations only if a conntrack entry can not be found,
564 * which can lead to OVS finding the expectation (here) in the
565 * init direction, but which will not be removed by the
566 * nf_conntrack_in() call, if a matching conntrack entry is
567 * found instead. In this case all init direction packets
568 * would be reported as new related packets, while reply
569 * direction packets would be reported as un-related
570 * established packets.
571 */
572 h = nf_conntrack_find_get(net, zone, &tuple);
573 if (h) {
574 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
575
576 nf_ct_delete(ct, 0, 0);
577 nf_conntrack_put(&ct->ct_general);
578 }
579 }
580
581 return exp;
582 }
583
584 /* This replicates logic from nf_conntrack_core.c that is not exported. */
585 static enum ip_conntrack_info
ovs_ct_get_info(const struct nf_conntrack_tuple_hash * h)586 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
587 {
588 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
589
590 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
591 return IP_CT_ESTABLISHED_REPLY;
592 /* Once we've had two way comms, always ESTABLISHED. */
593 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
594 return IP_CT_ESTABLISHED;
595 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
596 return IP_CT_RELATED;
597 return IP_CT_NEW;
598 }
599
600 /* Find an existing connection which this packet belongs to without
601 * re-attributing statistics or modifying the connection state. This allows an
602 * skb->_nfct lost due to an upcall to be recovered during actions execution.
603 *
604 * Must be called with rcu_read_lock.
605 *
606 * On success, populates skb->_nfct and returns the connection. Returns NULL
607 * if there is no existing entry.
608 */
609 static struct nf_conn *
ovs_ct_find_existing(struct net * net,const struct nf_conntrack_zone * zone,u8 l3num,struct sk_buff * skb,bool natted)610 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
611 u8 l3num, struct sk_buff *skb, bool natted)
612 {
613 struct nf_conntrack_tuple tuple;
614 struct nf_conntrack_tuple_hash *h;
615 struct nf_conn *ct;
616
617 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
618 net, &tuple)) {
619 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
620 return NULL;
621 }
622
623 /* Must invert the tuple if skb has been transformed by NAT. */
624 if (natted) {
625 struct nf_conntrack_tuple inverse;
626
627 if (!nf_ct_invert_tuplepr(&inverse, &tuple)) {
628 pr_debug("ovs_ct_find_existing: Inversion failed!\n");
629 return NULL;
630 }
631 tuple = inverse;
632 }
633
634 /* look for tuple match */
635 h = nf_conntrack_find_get(net, zone, &tuple);
636 if (!h)
637 return NULL; /* Not found. */
638
639 ct = nf_ct_tuplehash_to_ctrack(h);
640
641 /* Inverted packet tuple matches the reverse direction conntrack tuple,
642 * select the other tuplehash to get the right 'ctinfo' bits for this
643 * packet.
644 */
645 if (natted)
646 h = &ct->tuplehash[!h->tuple.dst.dir];
647
648 nf_ct_set(skb, ct, ovs_ct_get_info(h));
649 return ct;
650 }
651
652 static
ovs_ct_executed(struct net * net,const struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb,bool * ct_executed)653 struct nf_conn *ovs_ct_executed(struct net *net,
654 const struct sw_flow_key *key,
655 const struct ovs_conntrack_info *info,
656 struct sk_buff *skb,
657 bool *ct_executed)
658 {
659 struct nf_conn *ct = NULL;
660
661 /* If no ct, check if we have evidence that an existing conntrack entry
662 * might be found for this skb. This happens when we lose a skb->_nfct
663 * due to an upcall, or if the direction is being forced. If the
664 * connection was not confirmed, it is not cached and needs to be run
665 * through conntrack again.
666 */
667 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
668 !(key->ct_state & OVS_CS_F_INVALID) &&
669 (key->ct_zone == info->zone.id);
670
671 if (*ct_executed || (!key->ct_state && info->force)) {
672 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
673 !!(key->ct_state &
674 OVS_CS_F_NAT_MASK));
675 }
676
677 return ct;
678 }
679
680 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
skb_nfct_cached(struct net * net,const struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)681 static bool skb_nfct_cached(struct net *net,
682 const struct sw_flow_key *key,
683 const struct ovs_conntrack_info *info,
684 struct sk_buff *skb)
685 {
686 enum ip_conntrack_info ctinfo;
687 struct nf_conn *ct;
688 bool ct_executed = true;
689
690 ct = nf_ct_get(skb, &ctinfo);
691 if (!ct)
692 ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
693
694 if (ct)
695 nf_ct_get(skb, &ctinfo);
696 else
697 return false;
698
699 if (!net_eq(net, read_pnet(&ct->ct_net)))
700 return false;
701 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
702 return false;
703 if (info->helper) {
704 struct nf_conn_help *help;
705
706 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
707 if (help && rcu_access_pointer(help->helper) != info->helper)
708 return false;
709 }
710 /* Force conntrack entry direction to the current packet? */
711 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
712 /* Delete the conntrack entry if confirmed, else just release
713 * the reference.
714 */
715 if (nf_ct_is_confirmed(ct))
716 nf_ct_delete(ct, 0, 0);
717
718 nf_conntrack_put(&ct->ct_general);
719 nf_ct_set(skb, NULL, 0);
720 return false;
721 }
722
723 return ct_executed;
724 }
725
726 #ifdef CONFIG_NF_NAT_NEEDED
727 /* Modelled after nf_nat_ipv[46]_fn().
728 * range is only used for new, uninitialized NAT state.
729 * Returns either NF_ACCEPT or NF_DROP.
730 */
ovs_ct_nat_execute(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_nat_range2 * range,enum nf_nat_manip_type maniptype)731 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
732 enum ip_conntrack_info ctinfo,
733 const struct nf_nat_range2 *range,
734 enum nf_nat_manip_type maniptype)
735 {
736 int hooknum, nh_off, err = NF_ACCEPT;
737
738 nh_off = skb_network_offset(skb);
739 skb_pull_rcsum(skb, nh_off);
740
741 /* See HOOK2MANIP(). */
742 if (maniptype == NF_NAT_MANIP_SRC)
743 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
744 else
745 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
746
747 switch (ctinfo) {
748 case IP_CT_RELATED:
749 case IP_CT_RELATED_REPLY:
750 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
751 skb->protocol == htons(ETH_P_IP) &&
752 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
753 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
754 hooknum))
755 err = NF_DROP;
756 goto push;
757 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
758 skb->protocol == htons(ETH_P_IPV6)) {
759 __be16 frag_off;
760 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
761 int hdrlen = ipv6_skip_exthdr(skb,
762 sizeof(struct ipv6hdr),
763 &nexthdr, &frag_off);
764
765 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
766 if (!nf_nat_icmpv6_reply_translation(skb, ct,
767 ctinfo,
768 hooknum,
769 hdrlen))
770 err = NF_DROP;
771 goto push;
772 }
773 }
774 /* Non-ICMP, fall thru to initialize if needed. */
775 /* fall through */
776 case IP_CT_NEW:
777 /* Seen it before? This can happen for loopback, retrans,
778 * or local packets.
779 */
780 if (!nf_nat_initialized(ct, maniptype)) {
781 /* Initialize according to the NAT action. */
782 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
783 /* Action is set up to establish a new
784 * mapping.
785 */
786 ? nf_nat_setup_info(ct, range, maniptype)
787 : nf_nat_alloc_null_binding(ct, hooknum);
788 if (err != NF_ACCEPT)
789 goto push;
790 }
791 break;
792
793 case IP_CT_ESTABLISHED:
794 case IP_CT_ESTABLISHED_REPLY:
795 break;
796
797 default:
798 err = NF_DROP;
799 goto push;
800 }
801
802 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
803 push:
804 skb_push(skb, nh_off);
805 skb_postpush_rcsum(skb, skb->data, nh_off);
806
807 return err;
808 }
809
ovs_nat_update_key(struct sw_flow_key * key,const struct sk_buff * skb,enum nf_nat_manip_type maniptype)810 static void ovs_nat_update_key(struct sw_flow_key *key,
811 const struct sk_buff *skb,
812 enum nf_nat_manip_type maniptype)
813 {
814 if (maniptype == NF_NAT_MANIP_SRC) {
815 __be16 src;
816
817 key->ct_state |= OVS_CS_F_SRC_NAT;
818 if (key->eth.type == htons(ETH_P_IP))
819 key->ipv4.addr.src = ip_hdr(skb)->saddr;
820 else if (key->eth.type == htons(ETH_P_IPV6))
821 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
822 sizeof(key->ipv6.addr.src));
823 else
824 return;
825
826 if (key->ip.proto == IPPROTO_UDP)
827 src = udp_hdr(skb)->source;
828 else if (key->ip.proto == IPPROTO_TCP)
829 src = tcp_hdr(skb)->source;
830 else if (key->ip.proto == IPPROTO_SCTP)
831 src = sctp_hdr(skb)->source;
832 else
833 return;
834
835 key->tp.src = src;
836 } else {
837 __be16 dst;
838
839 key->ct_state |= OVS_CS_F_DST_NAT;
840 if (key->eth.type == htons(ETH_P_IP))
841 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
842 else if (key->eth.type == htons(ETH_P_IPV6))
843 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
844 sizeof(key->ipv6.addr.dst));
845 else
846 return;
847
848 if (key->ip.proto == IPPROTO_UDP)
849 dst = udp_hdr(skb)->dest;
850 else if (key->ip.proto == IPPROTO_TCP)
851 dst = tcp_hdr(skb)->dest;
852 else if (key->ip.proto == IPPROTO_SCTP)
853 dst = sctp_hdr(skb)->dest;
854 else
855 return;
856
857 key->tp.dst = dst;
858 }
859 }
860
861 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
ovs_ct_nat(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)862 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
863 const struct ovs_conntrack_info *info,
864 struct sk_buff *skb, struct nf_conn *ct,
865 enum ip_conntrack_info ctinfo)
866 {
867 enum nf_nat_manip_type maniptype;
868 int err;
869
870 /* Add NAT extension if not confirmed yet. */
871 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
872 return NF_ACCEPT; /* Can't NAT. */
873
874 /* Determine NAT type.
875 * Check if the NAT type can be deduced from the tracked connection.
876 * Make sure new expected connections (IP_CT_RELATED) are NATted only
877 * when committing.
878 */
879 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
880 ct->status & IPS_NAT_MASK &&
881 (ctinfo != IP_CT_RELATED || info->commit)) {
882 /* NAT an established or related connection like before. */
883 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
884 /* This is the REPLY direction for a connection
885 * for which NAT was applied in the forward
886 * direction. Do the reverse NAT.
887 */
888 maniptype = ct->status & IPS_SRC_NAT
889 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
890 else
891 maniptype = ct->status & IPS_SRC_NAT
892 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
893 } else if (info->nat & OVS_CT_SRC_NAT) {
894 maniptype = NF_NAT_MANIP_SRC;
895 } else if (info->nat & OVS_CT_DST_NAT) {
896 maniptype = NF_NAT_MANIP_DST;
897 } else {
898 return NF_ACCEPT; /* Connection is not NATed. */
899 }
900 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
901
902 if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) {
903 if (ct->status & IPS_SRC_NAT) {
904 if (maniptype == NF_NAT_MANIP_SRC)
905 maniptype = NF_NAT_MANIP_DST;
906 else
907 maniptype = NF_NAT_MANIP_SRC;
908
909 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range,
910 maniptype);
911 } else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) {
912 err = ovs_ct_nat_execute(skb, ct, ctinfo, NULL,
913 NF_NAT_MANIP_SRC);
914 }
915 }
916
917 /* Mark NAT done if successful and update the flow key. */
918 if (err == NF_ACCEPT)
919 ovs_nat_update_key(key, skb, maniptype);
920
921 return err;
922 }
923 #else /* !CONFIG_NF_NAT_NEEDED */
ovs_ct_nat(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)924 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
925 const struct ovs_conntrack_info *info,
926 struct sk_buff *skb, struct nf_conn *ct,
927 enum ip_conntrack_info ctinfo)
928 {
929 return NF_ACCEPT;
930 }
931 #endif
932
933 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
934 * not done already. Update key with new CT state after passing the packet
935 * through conntrack.
936 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
937 * set to NULL and 0 will be returned.
938 */
__ovs_ct_lookup(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)939 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
940 const struct ovs_conntrack_info *info,
941 struct sk_buff *skb)
942 {
943 /* If we are recirculating packets to match on conntrack fields and
944 * committing with a separate conntrack action, then we don't need to
945 * actually run the packet through conntrack twice unless it's for a
946 * different zone.
947 */
948 bool cached = skb_nfct_cached(net, key, info, skb);
949 enum ip_conntrack_info ctinfo;
950 struct nf_conn *ct;
951
952 if (!cached) {
953 struct nf_conn *tmpl = info->ct;
954 int err;
955
956 /* Associate skb with specified zone. */
957 if (tmpl) {
958 if (skb_nfct(skb))
959 nf_conntrack_put(skb_nfct(skb));
960 nf_conntrack_get(&tmpl->ct_general);
961 nf_ct_set(skb, tmpl, IP_CT_NEW);
962 }
963
964 err = nf_conntrack_in(net, info->family,
965 NF_INET_PRE_ROUTING, skb);
966 if (err != NF_ACCEPT)
967 return -ENOENT;
968
969 /* Clear CT state NAT flags to mark that we have not yet done
970 * NAT after the nf_conntrack_in() call. We can actually clear
971 * the whole state, as it will be re-initialized below.
972 */
973 key->ct_state = 0;
974
975 /* Update the key, but keep the NAT flags. */
976 ovs_ct_update_key(skb, info, key, true, true);
977 }
978
979 ct = nf_ct_get(skb, &ctinfo);
980 if (ct) {
981 /* Packets starting a new connection must be NATted before the
982 * helper, so that the helper knows about the NAT. We enforce
983 * this by delaying both NAT and helper calls for unconfirmed
984 * connections until the committing CT action. For later
985 * packets NAT and Helper may be called in either order.
986 *
987 * NAT will be done only if the CT action has NAT, and only
988 * once per packet (per zone), as guarded by the NAT bits in
989 * the key->ct_state.
990 */
991 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
992 (nf_ct_is_confirmed(ct) || info->commit) &&
993 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
994 return -EINVAL;
995 }
996
997 /* Userspace may decide to perform a ct lookup without a helper
998 * specified followed by a (recirculate and) commit with one.
999 * Therefore, for unconfirmed connections which we will commit,
1000 * we need to attach the helper here.
1001 */
1002 if (!nf_ct_is_confirmed(ct) && info->commit &&
1003 info->helper && !nfct_help(ct)) {
1004 int err = __nf_ct_try_assign_helper(ct, info->ct,
1005 GFP_ATOMIC);
1006 if (err)
1007 return err;
1008 }
1009
1010 /* Call the helper only if:
1011 * - nf_conntrack_in() was executed above ("!cached") for a
1012 * confirmed connection, or
1013 * - When committing an unconfirmed connection.
1014 */
1015 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
1016 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1017 return -EINVAL;
1018 }
1019 }
1020
1021 return 0;
1022 }
1023
1024 /* Lookup connection and read fields into key. */
ovs_ct_lookup(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)1025 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1026 const struct ovs_conntrack_info *info,
1027 struct sk_buff *skb)
1028 {
1029 struct nf_conntrack_expect *exp;
1030
1031 /* If we pass an expected packet through nf_conntrack_in() the
1032 * expectation is typically removed, but the packet could still be
1033 * lost in upcall processing. To prevent this from happening we
1034 * perform an explicit expectation lookup. Expected connections are
1035 * always new, and will be passed through conntrack only when they are
1036 * committed, as it is OK to remove the expectation at that time.
1037 */
1038 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1039 if (exp) {
1040 u8 state;
1041
1042 /* NOTE: New connections are NATted and Helped only when
1043 * committed, so we are not calling into NAT here.
1044 */
1045 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1046 __ovs_ct_update_key(key, state, &info->zone, exp->master);
1047 } else {
1048 struct nf_conn *ct;
1049 int err;
1050
1051 err = __ovs_ct_lookup(net, key, info, skb);
1052 if (err)
1053 return err;
1054
1055 ct = (struct nf_conn *)skb_nfct(skb);
1056 if (ct)
1057 nf_ct_deliver_cached_events(ct);
1058 }
1059
1060 return 0;
1061 }
1062
labels_nonzero(const struct ovs_key_ct_labels * labels)1063 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1064 {
1065 size_t i;
1066
1067 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1068 if (labels->ct_labels_32[i])
1069 return true;
1070
1071 return false;
1072 }
1073
1074 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
ct_limit_hash_bucket(const struct ovs_ct_limit_info * info,u16 zone)1075 static struct hlist_head *ct_limit_hash_bucket(
1076 const struct ovs_ct_limit_info *info, u16 zone)
1077 {
1078 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1079 }
1080
1081 /* Call with ovs_mutex */
ct_limit_set(const struct ovs_ct_limit_info * info,struct ovs_ct_limit * new_ct_limit)1082 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1083 struct ovs_ct_limit *new_ct_limit)
1084 {
1085 struct ovs_ct_limit *ct_limit;
1086 struct hlist_head *head;
1087
1088 head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1089 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1090 if (ct_limit->zone == new_ct_limit->zone) {
1091 hlist_replace_rcu(&ct_limit->hlist_node,
1092 &new_ct_limit->hlist_node);
1093 kfree_rcu(ct_limit, rcu);
1094 return;
1095 }
1096 }
1097
1098 hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1099 }
1100
1101 /* Call with ovs_mutex */
ct_limit_del(const struct ovs_ct_limit_info * info,u16 zone)1102 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1103 {
1104 struct ovs_ct_limit *ct_limit;
1105 struct hlist_head *head;
1106 struct hlist_node *n;
1107
1108 head = ct_limit_hash_bucket(info, zone);
1109 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1110 if (ct_limit->zone == zone) {
1111 hlist_del_rcu(&ct_limit->hlist_node);
1112 kfree_rcu(ct_limit, rcu);
1113 return;
1114 }
1115 }
1116 }
1117
1118 /* Call with RCU read lock */
ct_limit_get(const struct ovs_ct_limit_info * info,u16 zone)1119 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1120 {
1121 struct ovs_ct_limit *ct_limit;
1122 struct hlist_head *head;
1123
1124 head = ct_limit_hash_bucket(info, zone);
1125 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1126 if (ct_limit->zone == zone)
1127 return ct_limit->limit;
1128 }
1129
1130 return info->default_limit;
1131 }
1132
ovs_ct_check_limit(struct net * net,const struct ovs_conntrack_info * info,const struct nf_conntrack_tuple * tuple)1133 static int ovs_ct_check_limit(struct net *net,
1134 const struct ovs_conntrack_info *info,
1135 const struct nf_conntrack_tuple *tuple)
1136 {
1137 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1138 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1139 u32 per_zone_limit, connections;
1140 u32 conncount_key;
1141
1142 conncount_key = info->zone.id;
1143
1144 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1145 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1146 return 0;
1147
1148 connections = nf_conncount_count(net, ct_limit_info->data,
1149 &conncount_key, tuple, &info->zone);
1150 if (connections > per_zone_limit)
1151 return -ENOMEM;
1152
1153 return 0;
1154 }
1155 #endif
1156
1157 /* Lookup connection and confirm if unconfirmed. */
ovs_ct_commit(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)1158 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1159 const struct ovs_conntrack_info *info,
1160 struct sk_buff *skb)
1161 {
1162 enum ip_conntrack_info ctinfo;
1163 struct nf_conn *ct;
1164 int err;
1165
1166 err = __ovs_ct_lookup(net, key, info, skb);
1167 if (err)
1168 return err;
1169
1170 /* The connection could be invalid, in which case this is a no-op.*/
1171 ct = nf_ct_get(skb, &ctinfo);
1172 if (!ct)
1173 return 0;
1174
1175 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1176 if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1177 if (!nf_ct_is_confirmed(ct)) {
1178 err = ovs_ct_check_limit(net, info,
1179 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1180 if (err) {
1181 net_warn_ratelimited("openvswitch: zone: %u "
1182 "execeeds conntrack limit\n",
1183 info->zone.id);
1184 return err;
1185 }
1186 }
1187 }
1188 #endif
1189
1190 /* Set the conntrack event mask if given. NEW and DELETE events have
1191 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1192 * typically would receive many kinds of updates. Setting the event
1193 * mask allows those events to be filtered. The set event mask will
1194 * remain in effect for the lifetime of the connection unless changed
1195 * by a further CT action with both the commit flag and the eventmask
1196 * option. */
1197 if (info->have_eventmask) {
1198 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1199
1200 if (cache)
1201 cache->ctmask = info->eventmask;
1202 }
1203
1204 /* Apply changes before confirming the connection so that the initial
1205 * conntrack NEW netlink event carries the values given in the CT
1206 * action.
1207 */
1208 if (info->mark.mask) {
1209 err = ovs_ct_set_mark(ct, key, info->mark.value,
1210 info->mark.mask);
1211 if (err)
1212 return err;
1213 }
1214 if (!nf_ct_is_confirmed(ct)) {
1215 err = ovs_ct_init_labels(ct, key, &info->labels.value,
1216 &info->labels.mask);
1217 if (err)
1218 return err;
1219 } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1220 labels_nonzero(&info->labels.mask)) {
1221 err = ovs_ct_set_labels(ct, key, &info->labels.value,
1222 &info->labels.mask);
1223 if (err)
1224 return err;
1225 }
1226 /* This will take care of sending queued events even if the connection
1227 * is already confirmed.
1228 */
1229 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1230 return -EINVAL;
1231
1232 return 0;
1233 }
1234
1235 /* Trim the skb to the length specified by the IP/IPv6 header,
1236 * removing any trailing lower-layer padding. This prepares the skb
1237 * for higher-layer processing that assumes skb->len excludes padding
1238 * (such as nf_ip_checksum). The caller needs to pull the skb to the
1239 * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1240 */
ovs_skb_network_trim(struct sk_buff * skb)1241 static int ovs_skb_network_trim(struct sk_buff *skb)
1242 {
1243 unsigned int len;
1244 int err;
1245
1246 switch (skb->protocol) {
1247 case htons(ETH_P_IP):
1248 len = ntohs(ip_hdr(skb)->tot_len);
1249 break;
1250 case htons(ETH_P_IPV6):
1251 len = sizeof(struct ipv6hdr)
1252 + ntohs(ipv6_hdr(skb)->payload_len);
1253 break;
1254 default:
1255 len = skb->len;
1256 }
1257
1258 err = pskb_trim_rcsum(skb, len);
1259 if (err)
1260 kfree_skb(skb);
1261
1262 return err;
1263 }
1264
1265 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1266 * value if 'skb' is freed.
1267 */
ovs_ct_execute(struct net * net,struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_conntrack_info * info)1268 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1269 struct sw_flow_key *key,
1270 const struct ovs_conntrack_info *info)
1271 {
1272 int nh_ofs;
1273 int err;
1274
1275 /* The conntrack module expects to be working at L3. */
1276 nh_ofs = skb_network_offset(skb);
1277 skb_pull_rcsum(skb, nh_ofs);
1278
1279 err = ovs_skb_network_trim(skb);
1280 if (err)
1281 return err;
1282
1283 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1284 err = handle_fragments(net, key, info->zone.id, skb);
1285 if (err)
1286 return err;
1287 }
1288
1289 if (info->commit)
1290 err = ovs_ct_commit(net, key, info, skb);
1291 else
1292 err = ovs_ct_lookup(net, key, info, skb);
1293
1294 skb_push(skb, nh_ofs);
1295 skb_postpush_rcsum(skb, skb->data, nh_ofs);
1296 if (err)
1297 kfree_skb(skb);
1298 return err;
1299 }
1300
ovs_ct_clear(struct sk_buff * skb,struct sw_flow_key * key)1301 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1302 {
1303 if (skb_nfct(skb)) {
1304 nf_conntrack_put(skb_nfct(skb));
1305 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1306 ovs_ct_fill_key(skb, key);
1307 }
1308
1309 return 0;
1310 }
1311
ovs_ct_add_helper(struct ovs_conntrack_info * info,const char * name,const struct sw_flow_key * key,bool log)1312 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1313 const struct sw_flow_key *key, bool log)
1314 {
1315 struct nf_conntrack_helper *helper;
1316 struct nf_conn_help *help;
1317
1318 helper = nf_conntrack_helper_try_module_get(name, info->family,
1319 key->ip.proto);
1320 if (!helper) {
1321 OVS_NLERR(log, "Unknown helper \"%s\"", name);
1322 return -EINVAL;
1323 }
1324
1325 help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1326 if (!help) {
1327 nf_conntrack_helper_put(helper);
1328 return -ENOMEM;
1329 }
1330
1331 rcu_assign_pointer(help->helper, helper);
1332 info->helper = helper;
1333
1334 if (info->nat)
1335 request_module("ip_nat_%s", name);
1336
1337 return 0;
1338 }
1339
1340 #ifdef CONFIG_NF_NAT_NEEDED
parse_nat(const struct nlattr * attr,struct ovs_conntrack_info * info,bool log)1341 static int parse_nat(const struct nlattr *attr,
1342 struct ovs_conntrack_info *info, bool log)
1343 {
1344 struct nlattr *a;
1345 int rem;
1346 bool have_ip_max = false;
1347 bool have_proto_max = false;
1348 bool ip_vers = (info->family == NFPROTO_IPV6);
1349
1350 nla_for_each_nested(a, attr, rem) {
1351 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1352 [OVS_NAT_ATTR_SRC] = {0, 0},
1353 [OVS_NAT_ATTR_DST] = {0, 0},
1354 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1355 sizeof(struct in6_addr)},
1356 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1357 sizeof(struct in6_addr)},
1358 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1359 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1360 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1361 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1362 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1363 };
1364 int type = nla_type(a);
1365
1366 if (type > OVS_NAT_ATTR_MAX) {
1367 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1368 type, OVS_NAT_ATTR_MAX);
1369 return -EINVAL;
1370 }
1371
1372 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1373 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1374 type, nla_len(a),
1375 ovs_nat_attr_lens[type][ip_vers]);
1376 return -EINVAL;
1377 }
1378
1379 switch (type) {
1380 case OVS_NAT_ATTR_SRC:
1381 case OVS_NAT_ATTR_DST:
1382 if (info->nat) {
1383 OVS_NLERR(log, "Only one type of NAT may be specified");
1384 return -ERANGE;
1385 }
1386 info->nat |= OVS_CT_NAT;
1387 info->nat |= ((type == OVS_NAT_ATTR_SRC)
1388 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1389 break;
1390
1391 case OVS_NAT_ATTR_IP_MIN:
1392 nla_memcpy(&info->range.min_addr, a,
1393 sizeof(info->range.min_addr));
1394 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1395 break;
1396
1397 case OVS_NAT_ATTR_IP_MAX:
1398 have_ip_max = true;
1399 nla_memcpy(&info->range.max_addr, a,
1400 sizeof(info->range.max_addr));
1401 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1402 break;
1403
1404 case OVS_NAT_ATTR_PROTO_MIN:
1405 info->range.min_proto.all = htons(nla_get_u16(a));
1406 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1407 break;
1408
1409 case OVS_NAT_ATTR_PROTO_MAX:
1410 have_proto_max = true;
1411 info->range.max_proto.all = htons(nla_get_u16(a));
1412 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1413 break;
1414
1415 case OVS_NAT_ATTR_PERSISTENT:
1416 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1417 break;
1418
1419 case OVS_NAT_ATTR_PROTO_HASH:
1420 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1421 break;
1422
1423 case OVS_NAT_ATTR_PROTO_RANDOM:
1424 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1425 break;
1426
1427 default:
1428 OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1429 return -EINVAL;
1430 }
1431 }
1432
1433 if (rem > 0) {
1434 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1435 return -EINVAL;
1436 }
1437 if (!info->nat) {
1438 /* Do not allow flags if no type is given. */
1439 if (info->range.flags) {
1440 OVS_NLERR(log,
1441 "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1442 );
1443 return -EINVAL;
1444 }
1445 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1446 } else if (!info->commit) {
1447 OVS_NLERR(log,
1448 "NAT attributes may be specified only when CT COMMIT flag is also specified."
1449 );
1450 return -EINVAL;
1451 }
1452 /* Allow missing IP_MAX. */
1453 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1454 memcpy(&info->range.max_addr, &info->range.min_addr,
1455 sizeof(info->range.max_addr));
1456 }
1457 /* Allow missing PROTO_MAX. */
1458 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1459 !have_proto_max) {
1460 info->range.max_proto.all = info->range.min_proto.all;
1461 }
1462 return 0;
1463 }
1464 #endif
1465
1466 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1467 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1468 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 },
1469 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1470 .maxlen = sizeof(u16) },
1471 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1472 .maxlen = sizeof(struct md_mark) },
1473 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1474 .maxlen = sizeof(struct md_labels) },
1475 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1476 .maxlen = NF_CT_HELPER_NAME_LEN },
1477 #ifdef CONFIG_NF_NAT_NEEDED
1478 /* NAT length is checked when parsing the nested attributes. */
1479 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1480 #endif
1481 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32),
1482 .maxlen = sizeof(u32) },
1483 };
1484
parse_ct(const struct nlattr * attr,struct ovs_conntrack_info * info,const char ** helper,bool log)1485 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1486 const char **helper, bool log)
1487 {
1488 struct nlattr *a;
1489 int rem;
1490
1491 nla_for_each_nested(a, attr, rem) {
1492 int type = nla_type(a);
1493 int maxlen;
1494 int minlen;
1495
1496 if (type > OVS_CT_ATTR_MAX) {
1497 OVS_NLERR(log,
1498 "Unknown conntrack attr (type=%d, max=%d)",
1499 type, OVS_CT_ATTR_MAX);
1500 return -EINVAL;
1501 }
1502
1503 maxlen = ovs_ct_attr_lens[type].maxlen;
1504 minlen = ovs_ct_attr_lens[type].minlen;
1505 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1506 OVS_NLERR(log,
1507 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1508 type, nla_len(a), maxlen);
1509 return -EINVAL;
1510 }
1511
1512 switch (type) {
1513 case OVS_CT_ATTR_FORCE_COMMIT:
1514 info->force = true;
1515 /* fall through. */
1516 case OVS_CT_ATTR_COMMIT:
1517 info->commit = true;
1518 break;
1519 #ifdef CONFIG_NF_CONNTRACK_ZONES
1520 case OVS_CT_ATTR_ZONE:
1521 info->zone.id = nla_get_u16(a);
1522 break;
1523 #endif
1524 #ifdef CONFIG_NF_CONNTRACK_MARK
1525 case OVS_CT_ATTR_MARK: {
1526 struct md_mark *mark = nla_data(a);
1527
1528 if (!mark->mask) {
1529 OVS_NLERR(log, "ct_mark mask cannot be 0");
1530 return -EINVAL;
1531 }
1532 info->mark = *mark;
1533 break;
1534 }
1535 #endif
1536 #ifdef CONFIG_NF_CONNTRACK_LABELS
1537 case OVS_CT_ATTR_LABELS: {
1538 struct md_labels *labels = nla_data(a);
1539
1540 if (!labels_nonzero(&labels->mask)) {
1541 OVS_NLERR(log, "ct_labels mask cannot be 0");
1542 return -EINVAL;
1543 }
1544 info->labels = *labels;
1545 break;
1546 }
1547 #endif
1548 case OVS_CT_ATTR_HELPER:
1549 *helper = nla_data(a);
1550 if (!memchr(*helper, '\0', nla_len(a))) {
1551 OVS_NLERR(log, "Invalid conntrack helper");
1552 return -EINVAL;
1553 }
1554 break;
1555 #ifdef CONFIG_NF_NAT_NEEDED
1556 case OVS_CT_ATTR_NAT: {
1557 int err = parse_nat(a, info, log);
1558
1559 if (err)
1560 return err;
1561 break;
1562 }
1563 #endif
1564 case OVS_CT_ATTR_EVENTMASK:
1565 info->have_eventmask = true;
1566 info->eventmask = nla_get_u32(a);
1567 break;
1568
1569 default:
1570 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1571 type);
1572 return -EINVAL;
1573 }
1574 }
1575
1576 #ifdef CONFIG_NF_CONNTRACK_MARK
1577 if (!info->commit && info->mark.mask) {
1578 OVS_NLERR(log,
1579 "Setting conntrack mark requires 'commit' flag.");
1580 return -EINVAL;
1581 }
1582 #endif
1583 #ifdef CONFIG_NF_CONNTRACK_LABELS
1584 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1585 OVS_NLERR(log,
1586 "Setting conntrack labels requires 'commit' flag.");
1587 return -EINVAL;
1588 }
1589 #endif
1590 if (rem > 0) {
1591 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1592 return -EINVAL;
1593 }
1594
1595 return 0;
1596 }
1597
ovs_ct_verify(struct net * net,enum ovs_key_attr attr)1598 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1599 {
1600 if (attr == OVS_KEY_ATTR_CT_STATE)
1601 return true;
1602 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1603 attr == OVS_KEY_ATTR_CT_ZONE)
1604 return true;
1605 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1606 attr == OVS_KEY_ATTR_CT_MARK)
1607 return true;
1608 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1609 attr == OVS_KEY_ATTR_CT_LABELS) {
1610 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1611
1612 return ovs_net->xt_label;
1613 }
1614
1615 return false;
1616 }
1617
ovs_ct_copy_action(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,bool log)1618 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1619 const struct sw_flow_key *key,
1620 struct sw_flow_actions **sfa, bool log)
1621 {
1622 struct ovs_conntrack_info ct_info;
1623 const char *helper = NULL;
1624 u16 family;
1625 int err;
1626
1627 family = key_to_nfproto(key);
1628 if (family == NFPROTO_UNSPEC) {
1629 OVS_NLERR(log, "ct family unspecified");
1630 return -EINVAL;
1631 }
1632
1633 memset(&ct_info, 0, sizeof(ct_info));
1634 ct_info.family = family;
1635
1636 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1637 NF_CT_DEFAULT_ZONE_DIR, 0);
1638
1639 err = parse_ct(attr, &ct_info, &helper, log);
1640 if (err)
1641 return err;
1642
1643 /* Set up template for tracking connections in specific zones. */
1644 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1645 if (!ct_info.ct) {
1646 OVS_NLERR(log, "Failed to allocate conntrack template");
1647 return -ENOMEM;
1648 }
1649 if (helper) {
1650 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1651 if (err)
1652 goto err_free_ct;
1653 }
1654
1655 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1656 sizeof(ct_info), log);
1657 if (err)
1658 goto err_free_ct;
1659
1660 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1661 nf_conntrack_get(&ct_info.ct->ct_general);
1662 return 0;
1663 err_free_ct:
1664 __ovs_ct_free_action(&ct_info);
1665 return err;
1666 }
1667
1668 #ifdef CONFIG_NF_NAT_NEEDED
ovs_ct_nat_to_attr(const struct ovs_conntrack_info * info,struct sk_buff * skb)1669 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1670 struct sk_buff *skb)
1671 {
1672 struct nlattr *start;
1673
1674 start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1675 if (!start)
1676 return false;
1677
1678 if (info->nat & OVS_CT_SRC_NAT) {
1679 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1680 return false;
1681 } else if (info->nat & OVS_CT_DST_NAT) {
1682 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1683 return false;
1684 } else {
1685 goto out;
1686 }
1687
1688 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1689 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1690 info->family == NFPROTO_IPV4) {
1691 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1692 info->range.min_addr.ip) ||
1693 (info->range.max_addr.ip
1694 != info->range.min_addr.ip &&
1695 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1696 info->range.max_addr.ip))))
1697 return false;
1698 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1699 info->family == NFPROTO_IPV6) {
1700 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1701 &info->range.min_addr.in6) ||
1702 (memcmp(&info->range.max_addr.in6,
1703 &info->range.min_addr.in6,
1704 sizeof(info->range.max_addr.in6)) &&
1705 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1706 &info->range.max_addr.in6))))
1707 return false;
1708 } else {
1709 return false;
1710 }
1711 }
1712 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1713 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1714 ntohs(info->range.min_proto.all)) ||
1715 (info->range.max_proto.all != info->range.min_proto.all &&
1716 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1717 ntohs(info->range.max_proto.all)))))
1718 return false;
1719
1720 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1721 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1722 return false;
1723 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1724 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1725 return false;
1726 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1727 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1728 return false;
1729 out:
1730 nla_nest_end(skb, start);
1731
1732 return true;
1733 }
1734 #endif
1735
ovs_ct_action_to_attr(const struct ovs_conntrack_info * ct_info,struct sk_buff * skb)1736 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1737 struct sk_buff *skb)
1738 {
1739 struct nlattr *start;
1740
1741 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1742 if (!start)
1743 return -EMSGSIZE;
1744
1745 if (ct_info->commit && nla_put_flag(skb, ct_info->force
1746 ? OVS_CT_ATTR_FORCE_COMMIT
1747 : OVS_CT_ATTR_COMMIT))
1748 return -EMSGSIZE;
1749 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1750 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1751 return -EMSGSIZE;
1752 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1753 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1754 &ct_info->mark))
1755 return -EMSGSIZE;
1756 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1757 labels_nonzero(&ct_info->labels.mask) &&
1758 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1759 &ct_info->labels))
1760 return -EMSGSIZE;
1761 if (ct_info->helper) {
1762 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1763 ct_info->helper->name))
1764 return -EMSGSIZE;
1765 }
1766 if (ct_info->have_eventmask &&
1767 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1768 return -EMSGSIZE;
1769
1770 #ifdef CONFIG_NF_NAT_NEEDED
1771 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1772 return -EMSGSIZE;
1773 #endif
1774 nla_nest_end(skb, start);
1775
1776 return 0;
1777 }
1778
ovs_ct_free_action(const struct nlattr * a)1779 void ovs_ct_free_action(const struct nlattr *a)
1780 {
1781 struct ovs_conntrack_info *ct_info = nla_data(a);
1782
1783 __ovs_ct_free_action(ct_info);
1784 }
1785
__ovs_ct_free_action(struct ovs_conntrack_info * ct_info)1786 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1787 {
1788 if (ct_info->helper)
1789 nf_conntrack_helper_put(ct_info->helper);
1790 if (ct_info->ct)
1791 nf_ct_tmpl_free(ct_info->ct);
1792 }
1793
1794 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
ovs_ct_limit_init(struct net * net,struct ovs_net * ovs_net)1795 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1796 {
1797 int i, err;
1798
1799 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1800 GFP_KERNEL);
1801 if (!ovs_net->ct_limit_info)
1802 return -ENOMEM;
1803
1804 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1805 ovs_net->ct_limit_info->limits =
1806 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1807 GFP_KERNEL);
1808 if (!ovs_net->ct_limit_info->limits) {
1809 kfree(ovs_net->ct_limit_info);
1810 return -ENOMEM;
1811 }
1812
1813 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1814 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1815
1816 ovs_net->ct_limit_info->data =
1817 nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1818
1819 if (IS_ERR(ovs_net->ct_limit_info->data)) {
1820 err = PTR_ERR(ovs_net->ct_limit_info->data);
1821 kfree(ovs_net->ct_limit_info->limits);
1822 kfree(ovs_net->ct_limit_info);
1823 pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1824 return err;
1825 }
1826 return 0;
1827 }
1828
ovs_ct_limit_exit(struct net * net,struct ovs_net * ovs_net)1829 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1830 {
1831 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1832 int i;
1833
1834 nf_conncount_destroy(net, NFPROTO_INET, info->data);
1835 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1836 struct hlist_head *head = &info->limits[i];
1837 struct ovs_ct_limit *ct_limit;
1838
1839 hlist_for_each_entry_rcu(ct_limit, head, hlist_node)
1840 kfree_rcu(ct_limit, rcu);
1841 }
1842 kfree(ovs_net->ct_limit_info->limits);
1843 kfree(ovs_net->ct_limit_info);
1844 }
1845
1846 static struct sk_buff *
ovs_ct_limit_cmd_reply_start(struct genl_info * info,u8 cmd,struct ovs_header ** ovs_reply_header)1847 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1848 struct ovs_header **ovs_reply_header)
1849 {
1850 struct ovs_header *ovs_header = info->userhdr;
1851 struct sk_buff *skb;
1852
1853 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1854 if (!skb)
1855 return ERR_PTR(-ENOMEM);
1856
1857 *ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1858 info->snd_seq,
1859 &dp_ct_limit_genl_family, 0, cmd);
1860
1861 if (!*ovs_reply_header) {
1862 nlmsg_free(skb);
1863 return ERR_PTR(-EMSGSIZE);
1864 }
1865 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1866
1867 return skb;
1868 }
1869
check_zone_id(int zone_id,u16 * pzone)1870 static bool check_zone_id(int zone_id, u16 *pzone)
1871 {
1872 if (zone_id >= 0 && zone_id <= 65535) {
1873 *pzone = (u16)zone_id;
1874 return true;
1875 }
1876 return false;
1877 }
1878
ovs_ct_limit_set_zone_limit(struct nlattr * nla_zone_limit,struct ovs_ct_limit_info * info)1879 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1880 struct ovs_ct_limit_info *info)
1881 {
1882 struct ovs_zone_limit *zone_limit;
1883 int rem;
1884 u16 zone;
1885
1886 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1887 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1888
1889 while (rem >= sizeof(*zone_limit)) {
1890 if (unlikely(zone_limit->zone_id ==
1891 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1892 ovs_lock();
1893 info->default_limit = zone_limit->limit;
1894 ovs_unlock();
1895 } else if (unlikely(!check_zone_id(
1896 zone_limit->zone_id, &zone))) {
1897 OVS_NLERR(true, "zone id is out of range");
1898 } else {
1899 struct ovs_ct_limit *ct_limit;
1900
1901 ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1902 if (!ct_limit)
1903 return -ENOMEM;
1904
1905 ct_limit->zone = zone;
1906 ct_limit->limit = zone_limit->limit;
1907
1908 ovs_lock();
1909 ct_limit_set(info, ct_limit);
1910 ovs_unlock();
1911 }
1912 rem -= NLA_ALIGN(sizeof(*zone_limit));
1913 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1914 NLA_ALIGN(sizeof(*zone_limit)));
1915 }
1916
1917 if (rem)
1918 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1919
1920 return 0;
1921 }
1922
ovs_ct_limit_del_zone_limit(struct nlattr * nla_zone_limit,struct ovs_ct_limit_info * info)1923 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1924 struct ovs_ct_limit_info *info)
1925 {
1926 struct ovs_zone_limit *zone_limit;
1927 int rem;
1928 u16 zone;
1929
1930 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1931 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1932
1933 while (rem >= sizeof(*zone_limit)) {
1934 if (unlikely(zone_limit->zone_id ==
1935 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1936 ovs_lock();
1937 info->default_limit = OVS_CT_LIMIT_DEFAULT;
1938 ovs_unlock();
1939 } else if (unlikely(!check_zone_id(
1940 zone_limit->zone_id, &zone))) {
1941 OVS_NLERR(true, "zone id is out of range");
1942 } else {
1943 ovs_lock();
1944 ct_limit_del(info, zone);
1945 ovs_unlock();
1946 }
1947 rem -= NLA_ALIGN(sizeof(*zone_limit));
1948 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1949 NLA_ALIGN(sizeof(*zone_limit)));
1950 }
1951
1952 if (rem)
1953 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
1954
1955 return 0;
1956 }
1957
ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info * info,struct sk_buff * reply)1958 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
1959 struct sk_buff *reply)
1960 {
1961 struct ovs_zone_limit zone_limit;
1962 int err;
1963
1964 zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
1965 zone_limit.limit = info->default_limit;
1966 err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1967 if (err)
1968 return err;
1969
1970 return 0;
1971 }
1972
__ovs_ct_limit_get_zone_limit(struct net * net,struct nf_conncount_data * data,u16 zone_id,u32 limit,struct sk_buff * reply)1973 static int __ovs_ct_limit_get_zone_limit(struct net *net,
1974 struct nf_conncount_data *data,
1975 u16 zone_id, u32 limit,
1976 struct sk_buff *reply)
1977 {
1978 struct nf_conntrack_zone ct_zone;
1979 struct ovs_zone_limit zone_limit;
1980 u32 conncount_key = zone_id;
1981
1982 zone_limit.zone_id = zone_id;
1983 zone_limit.limit = limit;
1984 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
1985
1986 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
1987 &ct_zone);
1988 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1989 }
1990
ovs_ct_limit_get_zone_limit(struct net * net,struct nlattr * nla_zone_limit,struct ovs_ct_limit_info * info,struct sk_buff * reply)1991 static int ovs_ct_limit_get_zone_limit(struct net *net,
1992 struct nlattr *nla_zone_limit,
1993 struct ovs_ct_limit_info *info,
1994 struct sk_buff *reply)
1995 {
1996 struct ovs_zone_limit *zone_limit;
1997 int rem, err;
1998 u32 limit;
1999 u16 zone;
2000
2001 rem = NLA_ALIGN(nla_len(nla_zone_limit));
2002 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2003
2004 while (rem >= sizeof(*zone_limit)) {
2005 if (unlikely(zone_limit->zone_id ==
2006 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2007 err = ovs_ct_limit_get_default_limit(info, reply);
2008 if (err)
2009 return err;
2010 } else if (unlikely(!check_zone_id(zone_limit->zone_id,
2011 &zone))) {
2012 OVS_NLERR(true, "zone id is out of range");
2013 } else {
2014 rcu_read_lock();
2015 limit = ct_limit_get(info, zone);
2016 rcu_read_unlock();
2017
2018 err = __ovs_ct_limit_get_zone_limit(
2019 net, info->data, zone, limit, reply);
2020 if (err)
2021 return err;
2022 }
2023 rem -= NLA_ALIGN(sizeof(*zone_limit));
2024 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2025 NLA_ALIGN(sizeof(*zone_limit)));
2026 }
2027
2028 if (rem)
2029 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2030
2031 return 0;
2032 }
2033
ovs_ct_limit_get_all_zone_limit(struct net * net,struct ovs_ct_limit_info * info,struct sk_buff * reply)2034 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2035 struct ovs_ct_limit_info *info,
2036 struct sk_buff *reply)
2037 {
2038 struct ovs_ct_limit *ct_limit;
2039 struct hlist_head *head;
2040 int i, err = 0;
2041
2042 err = ovs_ct_limit_get_default_limit(info, reply);
2043 if (err)
2044 return err;
2045
2046 rcu_read_lock();
2047 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2048 head = &info->limits[i];
2049 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2050 err = __ovs_ct_limit_get_zone_limit(net, info->data,
2051 ct_limit->zone, ct_limit->limit, reply);
2052 if (err)
2053 goto exit_err;
2054 }
2055 }
2056
2057 exit_err:
2058 rcu_read_unlock();
2059 return err;
2060 }
2061
ovs_ct_limit_cmd_set(struct sk_buff * skb,struct genl_info * info)2062 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2063 {
2064 struct nlattr **a = info->attrs;
2065 struct sk_buff *reply;
2066 struct ovs_header *ovs_reply_header;
2067 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2068 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2069 int err;
2070
2071 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2072 &ovs_reply_header);
2073 if (IS_ERR(reply))
2074 return PTR_ERR(reply);
2075
2076 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2077 err = -EINVAL;
2078 goto exit_err;
2079 }
2080
2081 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2082 ct_limit_info);
2083 if (err)
2084 goto exit_err;
2085
2086 static_branch_enable(&ovs_ct_limit_enabled);
2087
2088 genlmsg_end(reply, ovs_reply_header);
2089 return genlmsg_reply(reply, info);
2090
2091 exit_err:
2092 nlmsg_free(reply);
2093 return err;
2094 }
2095
ovs_ct_limit_cmd_del(struct sk_buff * skb,struct genl_info * info)2096 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2097 {
2098 struct nlattr **a = info->attrs;
2099 struct sk_buff *reply;
2100 struct ovs_header *ovs_reply_header;
2101 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2102 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2103 int err;
2104
2105 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2106 &ovs_reply_header);
2107 if (IS_ERR(reply))
2108 return PTR_ERR(reply);
2109
2110 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2111 err = -EINVAL;
2112 goto exit_err;
2113 }
2114
2115 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2116 ct_limit_info);
2117 if (err)
2118 goto exit_err;
2119
2120 genlmsg_end(reply, ovs_reply_header);
2121 return genlmsg_reply(reply, info);
2122
2123 exit_err:
2124 nlmsg_free(reply);
2125 return err;
2126 }
2127
ovs_ct_limit_cmd_get(struct sk_buff * skb,struct genl_info * info)2128 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2129 {
2130 struct nlattr **a = info->attrs;
2131 struct nlattr *nla_reply;
2132 struct sk_buff *reply;
2133 struct ovs_header *ovs_reply_header;
2134 struct net *net = sock_net(skb->sk);
2135 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2136 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2137 int err;
2138
2139 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2140 &ovs_reply_header);
2141 if (IS_ERR(reply))
2142 return PTR_ERR(reply);
2143
2144 nla_reply = nla_nest_start(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2145
2146 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2147 err = ovs_ct_limit_get_zone_limit(
2148 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2149 reply);
2150 if (err)
2151 goto exit_err;
2152 } else {
2153 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2154 reply);
2155 if (err)
2156 goto exit_err;
2157 }
2158
2159 nla_nest_end(reply, nla_reply);
2160 genlmsg_end(reply, ovs_reply_header);
2161 return genlmsg_reply(reply, info);
2162
2163 exit_err:
2164 nlmsg_free(reply);
2165 return err;
2166 }
2167
2168 static struct genl_ops ct_limit_genl_ops[] = {
2169 { .cmd = OVS_CT_LIMIT_CMD_SET,
2170 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2171 * privilege. */
2172 .policy = ct_limit_policy,
2173 .doit = ovs_ct_limit_cmd_set,
2174 },
2175 { .cmd = OVS_CT_LIMIT_CMD_DEL,
2176 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2177 * privilege. */
2178 .policy = ct_limit_policy,
2179 .doit = ovs_ct_limit_cmd_del,
2180 },
2181 { .cmd = OVS_CT_LIMIT_CMD_GET,
2182 .flags = 0, /* OK for unprivileged users. */
2183 .policy = ct_limit_policy,
2184 .doit = ovs_ct_limit_cmd_get,
2185 },
2186 };
2187
2188 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2189 .name = OVS_CT_LIMIT_MCGROUP,
2190 };
2191
2192 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2193 .hdrsize = sizeof(struct ovs_header),
2194 .name = OVS_CT_LIMIT_FAMILY,
2195 .version = OVS_CT_LIMIT_VERSION,
2196 .maxattr = OVS_CT_LIMIT_ATTR_MAX,
2197 .netnsok = true,
2198 .parallel_ops = true,
2199 .ops = ct_limit_genl_ops,
2200 .n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2201 .mcgrps = &ovs_ct_limit_multicast_group,
2202 .n_mcgrps = 1,
2203 .module = THIS_MODULE,
2204 };
2205 #endif
2206
ovs_ct_init(struct net * net)2207 int ovs_ct_init(struct net *net)
2208 {
2209 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2210 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2211
2212 if (nf_connlabels_get(net, n_bits - 1)) {
2213 ovs_net->xt_label = false;
2214 OVS_NLERR(true, "Failed to set connlabel length");
2215 } else {
2216 ovs_net->xt_label = true;
2217 }
2218
2219 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2220 return ovs_ct_limit_init(net, ovs_net);
2221 #else
2222 return 0;
2223 #endif
2224 }
2225
ovs_ct_exit(struct net * net)2226 void ovs_ct_exit(struct net *net)
2227 {
2228 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2229
2230 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2231 ovs_ct_limit_exit(net, ovs_net);
2232 #endif
2233
2234 if (ovs_net->xt_label)
2235 nf_connlabels_put(net);
2236 }
2237