1 /* SCTP kernel implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3 *
4 * This file is part of the SCTP kernel implementation
5 *
6 * This SCTP implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This SCTP implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, see
20 * <http://www.gnu.org/licenses/>.
21 *
22 * Please send any bug reports or fixes you make to the
23 * email address(es):
24 * lksctp developers <linux-sctp@vger.kernel.org>
25 *
26 * Written or modified by:
27 * Vlad Yasevich <vladislav.yasevich@hp.com>
28 */
29
30 #include <crypto/hash.h>
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 #include <linux/scatterlist.h>
34 #include <net/sctp/sctp.h>
35 #include <net/sctp/auth.h>
36
37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
38 {
39 /* id 0 is reserved. as all 0 */
40 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
41 },
42 {
43 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
44 .hmac_name = "hmac(sha1)",
45 .hmac_len = SCTP_SHA1_SIG_SIZE,
46 },
47 {
48 /* id 2 is reserved as well */
49 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
50 },
51 #if IS_ENABLED(CONFIG_CRYPTO_SHA256)
52 {
53 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
54 .hmac_name = "hmac(sha256)",
55 .hmac_len = SCTP_SHA256_SIG_SIZE,
56 }
57 #endif
58 };
59
60
sctp_auth_key_put(struct sctp_auth_bytes * key)61 void sctp_auth_key_put(struct sctp_auth_bytes *key)
62 {
63 if (!key)
64 return;
65
66 if (refcount_dec_and_test(&key->refcnt)) {
67 kzfree(key);
68 SCTP_DBG_OBJCNT_DEC(keys);
69 }
70 }
71
72 /* Create a new key structure of a given length */
sctp_auth_create_key(__u32 key_len,gfp_t gfp)73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
74 {
75 struct sctp_auth_bytes *key;
76
77 /* Verify that we are not going to overflow INT_MAX */
78 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
79 return NULL;
80
81 /* Allocate the shared key */
82 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83 if (!key)
84 return NULL;
85
86 key->len = key_len;
87 refcount_set(&key->refcnt, 1);
88 SCTP_DBG_OBJCNT_INC(keys);
89
90 return key;
91 }
92
93 /* Create a new shared key container with a give key id */
sctp_auth_shkey_create(__u16 key_id,gfp_t gfp)94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
95 {
96 struct sctp_shared_key *new;
97
98 /* Allocate the shared key container */
99 new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100 if (!new)
101 return NULL;
102
103 INIT_LIST_HEAD(&new->key_list);
104 refcount_set(&new->refcnt, 1);
105 new->key_id = key_id;
106
107 return new;
108 }
109
110 /* Free the shared key structure */
sctp_auth_shkey_destroy(struct sctp_shared_key * sh_key)111 static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key)
112 {
113 BUG_ON(!list_empty(&sh_key->key_list));
114 sctp_auth_key_put(sh_key->key);
115 sh_key->key = NULL;
116 kfree(sh_key);
117 }
118
sctp_auth_shkey_release(struct sctp_shared_key * sh_key)119 void sctp_auth_shkey_release(struct sctp_shared_key *sh_key)
120 {
121 if (refcount_dec_and_test(&sh_key->refcnt))
122 sctp_auth_shkey_destroy(sh_key);
123 }
124
sctp_auth_shkey_hold(struct sctp_shared_key * sh_key)125 void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key)
126 {
127 refcount_inc(&sh_key->refcnt);
128 }
129
130 /* Destroy the entire key list. This is done during the
131 * associon and endpoint free process.
132 */
sctp_auth_destroy_keys(struct list_head * keys)133 void sctp_auth_destroy_keys(struct list_head *keys)
134 {
135 struct sctp_shared_key *ep_key;
136 struct sctp_shared_key *tmp;
137
138 if (list_empty(keys))
139 return;
140
141 key_for_each_safe(ep_key, tmp, keys) {
142 list_del_init(&ep_key->key_list);
143 sctp_auth_shkey_release(ep_key);
144 }
145 }
146
147 /* Compare two byte vectors as numbers. Return values
148 * are:
149 * 0 - vectors are equal
150 * < 0 - vector 1 is smaller than vector2
151 * > 0 - vector 1 is greater than vector2
152 *
153 * Algorithm is:
154 * This is performed by selecting the numerically smaller key vector...
155 * If the key vectors are equal as numbers but differ in length ...
156 * the shorter vector is considered smaller
157 *
158 * Examples (with small values):
159 * 000123456789 > 123456789 (first number is longer)
160 * 000123456789 < 234567891 (second number is larger numerically)
161 * 123456789 > 2345678 (first number is both larger & longer)
162 */
sctp_auth_compare_vectors(struct sctp_auth_bytes * vector1,struct sctp_auth_bytes * vector2)163 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
164 struct sctp_auth_bytes *vector2)
165 {
166 int diff;
167 int i;
168 const __u8 *longer;
169
170 diff = vector1->len - vector2->len;
171 if (diff) {
172 longer = (diff > 0) ? vector1->data : vector2->data;
173
174 /* Check to see if the longer number is
175 * lead-zero padded. If it is not, it
176 * is automatically larger numerically.
177 */
178 for (i = 0; i < abs(diff); i++) {
179 if (longer[i] != 0)
180 return diff;
181 }
182 }
183
184 /* lengths are the same, compare numbers */
185 return memcmp(vector1->data, vector2->data, vector1->len);
186 }
187
188 /*
189 * Create a key vector as described in SCTP-AUTH, Section 6.1
190 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
191 * parameter sent by each endpoint are concatenated as byte vectors.
192 * These parameters include the parameter type, parameter length, and
193 * the parameter value, but padding is omitted; all padding MUST be
194 * removed from this concatenation before proceeding with further
195 * computation of keys. Parameters which were not sent are simply
196 * omitted from the concatenation process. The resulting two vectors
197 * are called the two key vectors.
198 */
sctp_auth_make_key_vector(struct sctp_random_param * random,struct sctp_chunks_param * chunks,struct sctp_hmac_algo_param * hmacs,gfp_t gfp)199 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
200 struct sctp_random_param *random,
201 struct sctp_chunks_param *chunks,
202 struct sctp_hmac_algo_param *hmacs,
203 gfp_t gfp)
204 {
205 struct sctp_auth_bytes *new;
206 __u32 len;
207 __u32 offset = 0;
208 __u16 random_len, hmacs_len, chunks_len = 0;
209
210 random_len = ntohs(random->param_hdr.length);
211 hmacs_len = ntohs(hmacs->param_hdr.length);
212 if (chunks)
213 chunks_len = ntohs(chunks->param_hdr.length);
214
215 len = random_len + hmacs_len + chunks_len;
216
217 new = sctp_auth_create_key(len, gfp);
218 if (!new)
219 return NULL;
220
221 memcpy(new->data, random, random_len);
222 offset += random_len;
223
224 if (chunks) {
225 memcpy(new->data + offset, chunks, chunks_len);
226 offset += chunks_len;
227 }
228
229 memcpy(new->data + offset, hmacs, hmacs_len);
230
231 return new;
232 }
233
234
235 /* Make a key vector based on our local parameters */
sctp_auth_make_local_vector(const struct sctp_association * asoc,gfp_t gfp)236 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
237 const struct sctp_association *asoc,
238 gfp_t gfp)
239 {
240 return sctp_auth_make_key_vector(
241 (struct sctp_random_param *)asoc->c.auth_random,
242 (struct sctp_chunks_param *)asoc->c.auth_chunks,
243 (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
244 }
245
246 /* Make a key vector based on peer's parameters */
sctp_auth_make_peer_vector(const struct sctp_association * asoc,gfp_t gfp)247 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
248 const struct sctp_association *asoc,
249 gfp_t gfp)
250 {
251 return sctp_auth_make_key_vector(asoc->peer.peer_random,
252 asoc->peer.peer_chunks,
253 asoc->peer.peer_hmacs,
254 gfp);
255 }
256
257
258 /* Set the value of the association shared key base on the parameters
259 * given. The algorithm is:
260 * From the endpoint pair shared keys and the key vectors the
261 * association shared keys are computed. This is performed by selecting
262 * the numerically smaller key vector and concatenating it to the
263 * endpoint pair shared key, and then concatenating the numerically
264 * larger key vector to that. The result of the concatenation is the
265 * association shared key.
266 */
sctp_auth_asoc_set_secret(struct sctp_shared_key * ep_key,struct sctp_auth_bytes * first_vector,struct sctp_auth_bytes * last_vector,gfp_t gfp)267 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
268 struct sctp_shared_key *ep_key,
269 struct sctp_auth_bytes *first_vector,
270 struct sctp_auth_bytes *last_vector,
271 gfp_t gfp)
272 {
273 struct sctp_auth_bytes *secret;
274 __u32 offset = 0;
275 __u32 auth_len;
276
277 auth_len = first_vector->len + last_vector->len;
278 if (ep_key->key)
279 auth_len += ep_key->key->len;
280
281 secret = sctp_auth_create_key(auth_len, gfp);
282 if (!secret)
283 return NULL;
284
285 if (ep_key->key) {
286 memcpy(secret->data, ep_key->key->data, ep_key->key->len);
287 offset += ep_key->key->len;
288 }
289
290 memcpy(secret->data + offset, first_vector->data, first_vector->len);
291 offset += first_vector->len;
292
293 memcpy(secret->data + offset, last_vector->data, last_vector->len);
294
295 return secret;
296 }
297
298 /* Create an association shared key. Follow the algorithm
299 * described in SCTP-AUTH, Section 6.1
300 */
sctp_auth_asoc_create_secret(const struct sctp_association * asoc,struct sctp_shared_key * ep_key,gfp_t gfp)301 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
302 const struct sctp_association *asoc,
303 struct sctp_shared_key *ep_key,
304 gfp_t gfp)
305 {
306 struct sctp_auth_bytes *local_key_vector;
307 struct sctp_auth_bytes *peer_key_vector;
308 struct sctp_auth_bytes *first_vector,
309 *last_vector;
310 struct sctp_auth_bytes *secret = NULL;
311 int cmp;
312
313
314 /* Now we need to build the key vectors
315 * SCTP-AUTH , Section 6.1
316 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
317 * parameter sent by each endpoint are concatenated as byte vectors.
318 * These parameters include the parameter type, parameter length, and
319 * the parameter value, but padding is omitted; all padding MUST be
320 * removed from this concatenation before proceeding with further
321 * computation of keys. Parameters which were not sent are simply
322 * omitted from the concatenation process. The resulting two vectors
323 * are called the two key vectors.
324 */
325
326 local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
327 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
328
329 if (!peer_key_vector || !local_key_vector)
330 goto out;
331
332 /* Figure out the order in which the key_vectors will be
333 * added to the endpoint shared key.
334 * SCTP-AUTH, Section 6.1:
335 * This is performed by selecting the numerically smaller key
336 * vector and concatenating it to the endpoint pair shared
337 * key, and then concatenating the numerically larger key
338 * vector to that. If the key vectors are equal as numbers
339 * but differ in length, then the concatenation order is the
340 * endpoint shared key, followed by the shorter key vector,
341 * followed by the longer key vector. Otherwise, the key
342 * vectors are identical, and may be concatenated to the
343 * endpoint pair key in any order.
344 */
345 cmp = sctp_auth_compare_vectors(local_key_vector,
346 peer_key_vector);
347 if (cmp < 0) {
348 first_vector = local_key_vector;
349 last_vector = peer_key_vector;
350 } else {
351 first_vector = peer_key_vector;
352 last_vector = local_key_vector;
353 }
354
355 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
356 gfp);
357 out:
358 sctp_auth_key_put(local_key_vector);
359 sctp_auth_key_put(peer_key_vector);
360
361 return secret;
362 }
363
364 /*
365 * Populate the association overlay list with the list
366 * from the endpoint.
367 */
sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint * ep,struct sctp_association * asoc,gfp_t gfp)368 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
369 struct sctp_association *asoc,
370 gfp_t gfp)
371 {
372 struct sctp_shared_key *sh_key;
373 struct sctp_shared_key *new;
374
375 BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
376
377 key_for_each(sh_key, &ep->endpoint_shared_keys) {
378 new = sctp_auth_shkey_create(sh_key->key_id, gfp);
379 if (!new)
380 goto nomem;
381
382 new->key = sh_key->key;
383 sctp_auth_key_hold(new->key);
384 list_add(&new->key_list, &asoc->endpoint_shared_keys);
385 }
386
387 return 0;
388
389 nomem:
390 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
391 return -ENOMEM;
392 }
393
394
395 /* Public interface to create the association shared key.
396 * See code above for the algorithm.
397 */
sctp_auth_asoc_init_active_key(struct sctp_association * asoc,gfp_t gfp)398 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
399 {
400 struct sctp_auth_bytes *secret;
401 struct sctp_shared_key *ep_key;
402 struct sctp_chunk *chunk;
403
404 /* If we don't support AUTH, or peer is not capable
405 * we don't need to do anything.
406 */
407 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
408 return 0;
409
410 /* If the key_id is non-zero and we couldn't find an
411 * endpoint pair shared key, we can't compute the
412 * secret.
413 * For key_id 0, endpoint pair shared key is a NULL key.
414 */
415 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
416 BUG_ON(!ep_key);
417
418 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
419 if (!secret)
420 return -ENOMEM;
421
422 sctp_auth_key_put(asoc->asoc_shared_key);
423 asoc->asoc_shared_key = secret;
424 asoc->shkey = ep_key;
425
426 /* Update send queue in case any chunk already in there now
427 * needs authenticating
428 */
429 list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
430 if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) {
431 chunk->auth = 1;
432 if (!chunk->shkey) {
433 chunk->shkey = asoc->shkey;
434 sctp_auth_shkey_hold(chunk->shkey);
435 }
436 }
437 }
438
439 return 0;
440 }
441
442
443 /* Find the endpoint pair shared key based on the key_id */
sctp_auth_get_shkey(const struct sctp_association * asoc,__u16 key_id)444 struct sctp_shared_key *sctp_auth_get_shkey(
445 const struct sctp_association *asoc,
446 __u16 key_id)
447 {
448 struct sctp_shared_key *key;
449
450 /* First search associations set of endpoint pair shared keys */
451 key_for_each(key, &asoc->endpoint_shared_keys) {
452 if (key->key_id == key_id) {
453 if (!key->deactivated)
454 return key;
455 break;
456 }
457 }
458
459 return NULL;
460 }
461
462 /*
463 * Initialize all the possible digest transforms that we can use. Right now
464 * now, the supported digests are SHA1 and SHA256. We do this here once
465 * because of the restrictiong that transforms may only be allocated in
466 * user context. This forces us to pre-allocated all possible transforms
467 * at the endpoint init time.
468 */
sctp_auth_init_hmacs(struct sctp_endpoint * ep,gfp_t gfp)469 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
470 {
471 struct crypto_shash *tfm = NULL;
472 __u16 id;
473
474 /* If AUTH extension is disabled, we are done */
475 if (!ep->auth_enable) {
476 ep->auth_hmacs = NULL;
477 return 0;
478 }
479
480 /* If the transforms are already allocated, we are done */
481 if (ep->auth_hmacs)
482 return 0;
483
484 /* Allocated the array of pointers to transorms */
485 ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS,
486 sizeof(struct crypto_shash *),
487 gfp);
488 if (!ep->auth_hmacs)
489 return -ENOMEM;
490
491 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
492
493 /* See is we support the id. Supported IDs have name and
494 * length fields set, so that we can allocated and use
495 * them. We can safely just check for name, for without the
496 * name, we can't allocate the TFM.
497 */
498 if (!sctp_hmac_list[id].hmac_name)
499 continue;
500
501 /* If this TFM has been allocated, we are all set */
502 if (ep->auth_hmacs[id])
503 continue;
504
505 /* Allocate the ID */
506 tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
507 if (IS_ERR(tfm))
508 goto out_err;
509
510 ep->auth_hmacs[id] = tfm;
511 }
512
513 return 0;
514
515 out_err:
516 /* Clean up any successful allocations */
517 sctp_auth_destroy_hmacs(ep->auth_hmacs);
518 ep->auth_hmacs = NULL;
519 return -ENOMEM;
520 }
521
522 /* Destroy the hmac tfm array */
sctp_auth_destroy_hmacs(struct crypto_shash * auth_hmacs[])523 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
524 {
525 int i;
526
527 if (!auth_hmacs)
528 return;
529
530 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
531 crypto_free_shash(auth_hmacs[i]);
532 }
533 kfree(auth_hmacs);
534 }
535
536
sctp_auth_get_hmac(__u16 hmac_id)537 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
538 {
539 return &sctp_hmac_list[hmac_id];
540 }
541
542 /* Get an hmac description information that we can use to build
543 * the AUTH chunk
544 */
sctp_auth_asoc_get_hmac(const struct sctp_association * asoc)545 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
546 {
547 struct sctp_hmac_algo_param *hmacs;
548 __u16 n_elt;
549 __u16 id = 0;
550 int i;
551
552 /* If we have a default entry, use it */
553 if (asoc->default_hmac_id)
554 return &sctp_hmac_list[asoc->default_hmac_id];
555
556 /* Since we do not have a default entry, find the first entry
557 * we support and return that. Do not cache that id.
558 */
559 hmacs = asoc->peer.peer_hmacs;
560 if (!hmacs)
561 return NULL;
562
563 n_elt = (ntohs(hmacs->param_hdr.length) -
564 sizeof(struct sctp_paramhdr)) >> 1;
565 for (i = 0; i < n_elt; i++) {
566 id = ntohs(hmacs->hmac_ids[i]);
567
568 /* Check the id is in the supported range. And
569 * see if we support the id. Supported IDs have name and
570 * length fields set, so that we can allocate and use
571 * them. We can safely just check for name, for without the
572 * name, we can't allocate the TFM.
573 */
574 if (id > SCTP_AUTH_HMAC_ID_MAX ||
575 !sctp_hmac_list[id].hmac_name) {
576 id = 0;
577 continue;
578 }
579
580 break;
581 }
582
583 if (id == 0)
584 return NULL;
585
586 return &sctp_hmac_list[id];
587 }
588
__sctp_auth_find_hmacid(__be16 * hmacs,int n_elts,__be16 hmac_id)589 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
590 {
591 int found = 0;
592 int i;
593
594 for (i = 0; i < n_elts; i++) {
595 if (hmac_id == hmacs[i]) {
596 found = 1;
597 break;
598 }
599 }
600
601 return found;
602 }
603
604 /* See if the HMAC_ID is one that we claim as supported */
sctp_auth_asoc_verify_hmac_id(const struct sctp_association * asoc,__be16 hmac_id)605 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
606 __be16 hmac_id)
607 {
608 struct sctp_hmac_algo_param *hmacs;
609 __u16 n_elt;
610
611 if (!asoc)
612 return 0;
613
614 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
615 n_elt = (ntohs(hmacs->param_hdr.length) -
616 sizeof(struct sctp_paramhdr)) >> 1;
617
618 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
619 }
620
621
622 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
623 * Section 6.1:
624 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
625 * algorithm it supports.
626 */
sctp_auth_asoc_set_default_hmac(struct sctp_association * asoc,struct sctp_hmac_algo_param * hmacs)627 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
628 struct sctp_hmac_algo_param *hmacs)
629 {
630 struct sctp_endpoint *ep;
631 __u16 id;
632 int i;
633 int n_params;
634
635 /* if the default id is already set, use it */
636 if (asoc->default_hmac_id)
637 return;
638
639 n_params = (ntohs(hmacs->param_hdr.length) -
640 sizeof(struct sctp_paramhdr)) >> 1;
641 ep = asoc->ep;
642 for (i = 0; i < n_params; i++) {
643 id = ntohs(hmacs->hmac_ids[i]);
644
645 /* Check the id is in the supported range */
646 if (id > SCTP_AUTH_HMAC_ID_MAX)
647 continue;
648
649 /* If this TFM has been allocated, use this id */
650 if (ep->auth_hmacs[id]) {
651 asoc->default_hmac_id = id;
652 break;
653 }
654 }
655 }
656
657
658 /* Check to see if the given chunk is supposed to be authenticated */
__sctp_auth_cid(enum sctp_cid chunk,struct sctp_chunks_param * param)659 static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
660 {
661 unsigned short len;
662 int found = 0;
663 int i;
664
665 if (!param || param->param_hdr.length == 0)
666 return 0;
667
668 len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
669
670 /* SCTP-AUTH, Section 3.2
671 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
672 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
673 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
674 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
675 */
676 for (i = 0; !found && i < len; i++) {
677 switch (param->chunks[i]) {
678 case SCTP_CID_INIT:
679 case SCTP_CID_INIT_ACK:
680 case SCTP_CID_SHUTDOWN_COMPLETE:
681 case SCTP_CID_AUTH:
682 break;
683
684 default:
685 if (param->chunks[i] == chunk)
686 found = 1;
687 break;
688 }
689 }
690
691 return found;
692 }
693
694 /* Check if peer requested that this chunk is authenticated */
sctp_auth_send_cid(enum sctp_cid chunk,const struct sctp_association * asoc)695 int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
696 {
697 if (!asoc)
698 return 0;
699
700 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
701 return 0;
702
703 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
704 }
705
706 /* Check if we requested that peer authenticate this chunk. */
sctp_auth_recv_cid(enum sctp_cid chunk,const struct sctp_association * asoc)707 int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
708 {
709 if (!asoc)
710 return 0;
711
712 if (!asoc->ep->auth_enable)
713 return 0;
714
715 return __sctp_auth_cid(chunk,
716 (struct sctp_chunks_param *)asoc->c.auth_chunks);
717 }
718
719 /* SCTP-AUTH: Section 6.2:
720 * The sender MUST calculate the MAC as described in RFC2104 [2] using
721 * the hash function H as described by the MAC Identifier and the shared
722 * association key K based on the endpoint pair shared key described by
723 * the shared key identifier. The 'data' used for the computation of
724 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
725 * zero (as shown in Figure 6) followed by all chunks that are placed
726 * after the AUTH chunk in the SCTP packet.
727 */
sctp_auth_calculate_hmac(const struct sctp_association * asoc,struct sk_buff * skb,struct sctp_auth_chunk * auth,struct sctp_shared_key * ep_key,gfp_t gfp)728 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
729 struct sk_buff *skb, struct sctp_auth_chunk *auth,
730 struct sctp_shared_key *ep_key, gfp_t gfp)
731 {
732 struct sctp_auth_bytes *asoc_key;
733 struct crypto_shash *tfm;
734 __u16 key_id, hmac_id;
735 unsigned char *end;
736 int free_key = 0;
737 __u8 *digest;
738
739 /* Extract the info we need:
740 * - hmac id
741 * - key id
742 */
743 key_id = ntohs(auth->auth_hdr.shkey_id);
744 hmac_id = ntohs(auth->auth_hdr.hmac_id);
745
746 if (key_id == asoc->active_key_id)
747 asoc_key = asoc->asoc_shared_key;
748 else {
749 /* ep_key can't be NULL here */
750 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
751 if (!asoc_key)
752 return;
753
754 free_key = 1;
755 }
756
757 /* set up scatter list */
758 end = skb_tail_pointer(skb);
759
760 tfm = asoc->ep->auth_hmacs[hmac_id];
761
762 digest = auth->auth_hdr.hmac;
763 if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
764 goto free;
765
766 {
767 SHASH_DESC_ON_STACK(desc, tfm);
768
769 desc->tfm = tfm;
770 desc->flags = 0;
771 crypto_shash_digest(desc, (u8 *)auth,
772 end - (unsigned char *)auth, digest);
773 shash_desc_zero(desc);
774 }
775
776 free:
777 if (free_key)
778 sctp_auth_key_put(asoc_key);
779 }
780
781 /* API Helpers */
782
783 /* Add a chunk to the endpoint authenticated chunk list */
sctp_auth_ep_add_chunkid(struct sctp_endpoint * ep,__u8 chunk_id)784 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
785 {
786 struct sctp_chunks_param *p = ep->auth_chunk_list;
787 __u16 nchunks;
788 __u16 param_len;
789
790 /* If this chunk is already specified, we are done */
791 if (__sctp_auth_cid(chunk_id, p))
792 return 0;
793
794 /* Check if we can add this chunk to the array */
795 param_len = ntohs(p->param_hdr.length);
796 nchunks = param_len - sizeof(struct sctp_paramhdr);
797 if (nchunks == SCTP_NUM_CHUNK_TYPES)
798 return -EINVAL;
799
800 p->chunks[nchunks] = chunk_id;
801 p->param_hdr.length = htons(param_len + 1);
802 return 0;
803 }
804
805 /* Add hmac identifires to the endpoint list of supported hmac ids */
sctp_auth_ep_set_hmacs(struct sctp_endpoint * ep,struct sctp_hmacalgo * hmacs)806 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
807 struct sctp_hmacalgo *hmacs)
808 {
809 int has_sha1 = 0;
810 __u16 id;
811 int i;
812
813 /* Scan the list looking for unsupported id. Also make sure that
814 * SHA1 is specified.
815 */
816 for (i = 0; i < hmacs->shmac_num_idents; i++) {
817 id = hmacs->shmac_idents[i];
818
819 if (id > SCTP_AUTH_HMAC_ID_MAX)
820 return -EOPNOTSUPP;
821
822 if (SCTP_AUTH_HMAC_ID_SHA1 == id)
823 has_sha1 = 1;
824
825 if (!sctp_hmac_list[id].hmac_name)
826 return -EOPNOTSUPP;
827 }
828
829 if (!has_sha1)
830 return -EINVAL;
831
832 for (i = 0; i < hmacs->shmac_num_idents; i++)
833 ep->auth_hmacs_list->hmac_ids[i] =
834 htons(hmacs->shmac_idents[i]);
835 ep->auth_hmacs_list->param_hdr.length =
836 htons(sizeof(struct sctp_paramhdr) +
837 hmacs->shmac_num_idents * sizeof(__u16));
838 return 0;
839 }
840
841 /* Set a new shared key on either endpoint or association. If the
842 * the key with a same ID already exists, replace the key (remove the
843 * old key and add a new one).
844 */
sctp_auth_set_key(struct sctp_endpoint * ep,struct sctp_association * asoc,struct sctp_authkey * auth_key)845 int sctp_auth_set_key(struct sctp_endpoint *ep,
846 struct sctp_association *asoc,
847 struct sctp_authkey *auth_key)
848 {
849 struct sctp_shared_key *cur_key, *shkey;
850 struct sctp_auth_bytes *key;
851 struct list_head *sh_keys;
852 int replace = 0;
853
854 /* Try to find the given key id to see if
855 * we are doing a replace, or adding a new key
856 */
857 if (asoc)
858 sh_keys = &asoc->endpoint_shared_keys;
859 else
860 sh_keys = &ep->endpoint_shared_keys;
861
862 key_for_each(shkey, sh_keys) {
863 if (shkey->key_id == auth_key->sca_keynumber) {
864 replace = 1;
865 break;
866 }
867 }
868
869 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL);
870 if (!cur_key)
871 return -ENOMEM;
872
873 /* Create a new key data based on the info passed in */
874 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
875 if (!key) {
876 kfree(cur_key);
877 return -ENOMEM;
878 }
879
880 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
881 cur_key->key = key;
882
883 if (replace) {
884 list_del_init(&shkey->key_list);
885 sctp_auth_shkey_release(shkey);
886 }
887 list_add(&cur_key->key_list, sh_keys);
888
889 return 0;
890 }
891
sctp_auth_set_active_key(struct sctp_endpoint * ep,struct sctp_association * asoc,__u16 key_id)892 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
893 struct sctp_association *asoc,
894 __u16 key_id)
895 {
896 struct sctp_shared_key *key;
897 struct list_head *sh_keys;
898 int found = 0;
899
900 /* The key identifier MUST correst to an existing key */
901 if (asoc)
902 sh_keys = &asoc->endpoint_shared_keys;
903 else
904 sh_keys = &ep->endpoint_shared_keys;
905
906 key_for_each(key, sh_keys) {
907 if (key->key_id == key_id) {
908 found = 1;
909 break;
910 }
911 }
912
913 if (!found || key->deactivated)
914 return -EINVAL;
915
916 if (asoc) {
917 asoc->active_key_id = key_id;
918 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
919 } else
920 ep->active_key_id = key_id;
921
922 return 0;
923 }
924
sctp_auth_del_key_id(struct sctp_endpoint * ep,struct sctp_association * asoc,__u16 key_id)925 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
926 struct sctp_association *asoc,
927 __u16 key_id)
928 {
929 struct sctp_shared_key *key;
930 struct list_head *sh_keys;
931 int found = 0;
932
933 /* The key identifier MUST NOT be the current active key
934 * The key identifier MUST correst to an existing key
935 */
936 if (asoc) {
937 if (asoc->active_key_id == key_id)
938 return -EINVAL;
939
940 sh_keys = &asoc->endpoint_shared_keys;
941 } else {
942 if (ep->active_key_id == key_id)
943 return -EINVAL;
944
945 sh_keys = &ep->endpoint_shared_keys;
946 }
947
948 key_for_each(key, sh_keys) {
949 if (key->key_id == key_id) {
950 found = 1;
951 break;
952 }
953 }
954
955 if (!found)
956 return -EINVAL;
957
958 /* Delete the shared key */
959 list_del_init(&key->key_list);
960 sctp_auth_shkey_release(key);
961
962 return 0;
963 }
964
sctp_auth_deact_key_id(struct sctp_endpoint * ep,struct sctp_association * asoc,__u16 key_id)965 int sctp_auth_deact_key_id(struct sctp_endpoint *ep,
966 struct sctp_association *asoc, __u16 key_id)
967 {
968 struct sctp_shared_key *key;
969 struct list_head *sh_keys;
970 int found = 0;
971
972 /* The key identifier MUST NOT be the current active key
973 * The key identifier MUST correst to an existing key
974 */
975 if (asoc) {
976 if (asoc->active_key_id == key_id)
977 return -EINVAL;
978
979 sh_keys = &asoc->endpoint_shared_keys;
980 } else {
981 if (ep->active_key_id == key_id)
982 return -EINVAL;
983
984 sh_keys = &ep->endpoint_shared_keys;
985 }
986
987 key_for_each(key, sh_keys) {
988 if (key->key_id == key_id) {
989 found = 1;
990 break;
991 }
992 }
993
994 if (!found)
995 return -EINVAL;
996
997 /* refcnt == 1 and !list_empty mean it's not being used anywhere
998 * and deactivated will be set, so it's time to notify userland
999 * that this shkey can be freed.
1000 */
1001 if (asoc && !list_empty(&key->key_list) &&
1002 refcount_read(&key->refcnt) == 1) {
1003 struct sctp_ulpevent *ev;
1004
1005 ev = sctp_ulpevent_make_authkey(asoc, key->key_id,
1006 SCTP_AUTH_FREE_KEY, GFP_KERNEL);
1007 if (ev)
1008 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1009 }
1010
1011 key->deactivated = 1;
1012
1013 return 0;
1014 }
1015