• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SCTP kernel implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel implementation
5  *
6  * This SCTP implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This SCTP implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  *                 ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING.  If not, see
20  * <http://www.gnu.org/licenses/>.
21  *
22  * Please send any bug reports or fixes you make to the
23  * email address(es):
24  *    lksctp developers <linux-sctp@vger.kernel.org>
25  *
26  * Written or modified by:
27  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
28  */
29 
30 #include <crypto/hash.h>
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 #include <linux/scatterlist.h>
34 #include <net/sctp/sctp.h>
35 #include <net/sctp/auth.h>
36 
37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
38 	{
39 		/* id 0 is reserved.  as all 0 */
40 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
41 	},
42 	{
43 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
44 		.hmac_name = "hmac(sha1)",
45 		.hmac_len = SCTP_SHA1_SIG_SIZE,
46 	},
47 	{
48 		/* id 2 is reserved as well */
49 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
50 	},
51 #if IS_ENABLED(CONFIG_CRYPTO_SHA256)
52 	{
53 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
54 		.hmac_name = "hmac(sha256)",
55 		.hmac_len = SCTP_SHA256_SIG_SIZE,
56 	}
57 #endif
58 };
59 
60 
sctp_auth_key_put(struct sctp_auth_bytes * key)61 void sctp_auth_key_put(struct sctp_auth_bytes *key)
62 {
63 	if (!key)
64 		return;
65 
66 	if (refcount_dec_and_test(&key->refcnt)) {
67 		kzfree(key);
68 		SCTP_DBG_OBJCNT_DEC(keys);
69 	}
70 }
71 
72 /* Create a new key structure of a given length */
sctp_auth_create_key(__u32 key_len,gfp_t gfp)73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
74 {
75 	struct sctp_auth_bytes *key;
76 
77 	/* Verify that we are not going to overflow INT_MAX */
78 	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
79 		return NULL;
80 
81 	/* Allocate the shared key */
82 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83 	if (!key)
84 		return NULL;
85 
86 	key->len = key_len;
87 	refcount_set(&key->refcnt, 1);
88 	SCTP_DBG_OBJCNT_INC(keys);
89 
90 	return key;
91 }
92 
93 /* Create a new shared key container with a give key id */
sctp_auth_shkey_create(__u16 key_id,gfp_t gfp)94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
95 {
96 	struct sctp_shared_key *new;
97 
98 	/* Allocate the shared key container */
99 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100 	if (!new)
101 		return NULL;
102 
103 	INIT_LIST_HEAD(&new->key_list);
104 	refcount_set(&new->refcnt, 1);
105 	new->key_id = key_id;
106 
107 	return new;
108 }
109 
110 /* Free the shared key structure */
sctp_auth_shkey_destroy(struct sctp_shared_key * sh_key)111 static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key)
112 {
113 	BUG_ON(!list_empty(&sh_key->key_list));
114 	sctp_auth_key_put(sh_key->key);
115 	sh_key->key = NULL;
116 	kfree(sh_key);
117 }
118 
sctp_auth_shkey_release(struct sctp_shared_key * sh_key)119 void sctp_auth_shkey_release(struct sctp_shared_key *sh_key)
120 {
121 	if (refcount_dec_and_test(&sh_key->refcnt))
122 		sctp_auth_shkey_destroy(sh_key);
123 }
124 
sctp_auth_shkey_hold(struct sctp_shared_key * sh_key)125 void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key)
126 {
127 	refcount_inc(&sh_key->refcnt);
128 }
129 
130 /* Destroy the entire key list.  This is done during the
131  * associon and endpoint free process.
132  */
sctp_auth_destroy_keys(struct list_head * keys)133 void sctp_auth_destroy_keys(struct list_head *keys)
134 {
135 	struct sctp_shared_key *ep_key;
136 	struct sctp_shared_key *tmp;
137 
138 	if (list_empty(keys))
139 		return;
140 
141 	key_for_each_safe(ep_key, tmp, keys) {
142 		list_del_init(&ep_key->key_list);
143 		sctp_auth_shkey_release(ep_key);
144 	}
145 }
146 
147 /* Compare two byte vectors as numbers.  Return values
148  * are:
149  * 	  0 - vectors are equal
150  * 	< 0 - vector 1 is smaller than vector2
151  * 	> 0 - vector 1 is greater than vector2
152  *
153  * Algorithm is:
154  * 	This is performed by selecting the numerically smaller key vector...
155  *	If the key vectors are equal as numbers but differ in length ...
156  *	the shorter vector is considered smaller
157  *
158  * Examples (with small values):
159  * 	000123456789 > 123456789 (first number is longer)
160  * 	000123456789 < 234567891 (second number is larger numerically)
161  * 	123456789 > 2345678 	 (first number is both larger & longer)
162  */
sctp_auth_compare_vectors(struct sctp_auth_bytes * vector1,struct sctp_auth_bytes * vector2)163 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
164 			      struct sctp_auth_bytes *vector2)
165 {
166 	int diff;
167 	int i;
168 	const __u8 *longer;
169 
170 	diff = vector1->len - vector2->len;
171 	if (diff) {
172 		longer = (diff > 0) ? vector1->data : vector2->data;
173 
174 		/* Check to see if the longer number is
175 		 * lead-zero padded.  If it is not, it
176 		 * is automatically larger numerically.
177 		 */
178 		for (i = 0; i < abs(diff); i++) {
179 			if (longer[i] != 0)
180 				return diff;
181 		}
182 	}
183 
184 	/* lengths are the same, compare numbers */
185 	return memcmp(vector1->data, vector2->data, vector1->len);
186 }
187 
188 /*
189  * Create a key vector as described in SCTP-AUTH, Section 6.1
190  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
191  *    parameter sent by each endpoint are concatenated as byte vectors.
192  *    These parameters include the parameter type, parameter length, and
193  *    the parameter value, but padding is omitted; all padding MUST be
194  *    removed from this concatenation before proceeding with further
195  *    computation of keys.  Parameters which were not sent are simply
196  *    omitted from the concatenation process.  The resulting two vectors
197  *    are called the two key vectors.
198  */
sctp_auth_make_key_vector(struct sctp_random_param * random,struct sctp_chunks_param * chunks,struct sctp_hmac_algo_param * hmacs,gfp_t gfp)199 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
200 			struct sctp_random_param *random,
201 			struct sctp_chunks_param *chunks,
202 			struct sctp_hmac_algo_param *hmacs,
203 			gfp_t gfp)
204 {
205 	struct sctp_auth_bytes *new;
206 	__u32	len;
207 	__u32	offset = 0;
208 	__u16	random_len, hmacs_len, chunks_len = 0;
209 
210 	random_len = ntohs(random->param_hdr.length);
211 	hmacs_len = ntohs(hmacs->param_hdr.length);
212 	if (chunks)
213 		chunks_len = ntohs(chunks->param_hdr.length);
214 
215 	len = random_len + hmacs_len + chunks_len;
216 
217 	new = sctp_auth_create_key(len, gfp);
218 	if (!new)
219 		return NULL;
220 
221 	memcpy(new->data, random, random_len);
222 	offset += random_len;
223 
224 	if (chunks) {
225 		memcpy(new->data + offset, chunks, chunks_len);
226 		offset += chunks_len;
227 	}
228 
229 	memcpy(new->data + offset, hmacs, hmacs_len);
230 
231 	return new;
232 }
233 
234 
235 /* Make a key vector based on our local parameters */
sctp_auth_make_local_vector(const struct sctp_association * asoc,gfp_t gfp)236 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
237 				    const struct sctp_association *asoc,
238 				    gfp_t gfp)
239 {
240 	return sctp_auth_make_key_vector(
241 			(struct sctp_random_param *)asoc->c.auth_random,
242 			(struct sctp_chunks_param *)asoc->c.auth_chunks,
243 			(struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
244 }
245 
246 /* Make a key vector based on peer's parameters */
sctp_auth_make_peer_vector(const struct sctp_association * asoc,gfp_t gfp)247 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
248 				    const struct sctp_association *asoc,
249 				    gfp_t gfp)
250 {
251 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
252 					 asoc->peer.peer_chunks,
253 					 asoc->peer.peer_hmacs,
254 					 gfp);
255 }
256 
257 
258 /* Set the value of the association shared key base on the parameters
259  * given.  The algorithm is:
260  *    From the endpoint pair shared keys and the key vectors the
261  *    association shared keys are computed.  This is performed by selecting
262  *    the numerically smaller key vector and concatenating it to the
263  *    endpoint pair shared key, and then concatenating the numerically
264  *    larger key vector to that.  The result of the concatenation is the
265  *    association shared key.
266  */
sctp_auth_asoc_set_secret(struct sctp_shared_key * ep_key,struct sctp_auth_bytes * first_vector,struct sctp_auth_bytes * last_vector,gfp_t gfp)267 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
268 			struct sctp_shared_key *ep_key,
269 			struct sctp_auth_bytes *first_vector,
270 			struct sctp_auth_bytes *last_vector,
271 			gfp_t gfp)
272 {
273 	struct sctp_auth_bytes *secret;
274 	__u32 offset = 0;
275 	__u32 auth_len;
276 
277 	auth_len = first_vector->len + last_vector->len;
278 	if (ep_key->key)
279 		auth_len += ep_key->key->len;
280 
281 	secret = sctp_auth_create_key(auth_len, gfp);
282 	if (!secret)
283 		return NULL;
284 
285 	if (ep_key->key) {
286 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
287 		offset += ep_key->key->len;
288 	}
289 
290 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
291 	offset += first_vector->len;
292 
293 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
294 
295 	return secret;
296 }
297 
298 /* Create an association shared key.  Follow the algorithm
299  * described in SCTP-AUTH, Section 6.1
300  */
sctp_auth_asoc_create_secret(const struct sctp_association * asoc,struct sctp_shared_key * ep_key,gfp_t gfp)301 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
302 				 const struct sctp_association *asoc,
303 				 struct sctp_shared_key *ep_key,
304 				 gfp_t gfp)
305 {
306 	struct sctp_auth_bytes *local_key_vector;
307 	struct sctp_auth_bytes *peer_key_vector;
308 	struct sctp_auth_bytes	*first_vector,
309 				*last_vector;
310 	struct sctp_auth_bytes	*secret = NULL;
311 	int	cmp;
312 
313 
314 	/* Now we need to build the key vectors
315 	 * SCTP-AUTH , Section 6.1
316 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
317 	 *    parameter sent by each endpoint are concatenated as byte vectors.
318 	 *    These parameters include the parameter type, parameter length, and
319 	 *    the parameter value, but padding is omitted; all padding MUST be
320 	 *    removed from this concatenation before proceeding with further
321 	 *    computation of keys.  Parameters which were not sent are simply
322 	 *    omitted from the concatenation process.  The resulting two vectors
323 	 *    are called the two key vectors.
324 	 */
325 
326 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
327 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
328 
329 	if (!peer_key_vector || !local_key_vector)
330 		goto out;
331 
332 	/* Figure out the order in which the key_vectors will be
333 	 * added to the endpoint shared key.
334 	 * SCTP-AUTH, Section 6.1:
335 	 *   This is performed by selecting the numerically smaller key
336 	 *   vector and concatenating it to the endpoint pair shared
337 	 *   key, and then concatenating the numerically larger key
338 	 *   vector to that.  If the key vectors are equal as numbers
339 	 *   but differ in length, then the concatenation order is the
340 	 *   endpoint shared key, followed by the shorter key vector,
341 	 *   followed by the longer key vector.  Otherwise, the key
342 	 *   vectors are identical, and may be concatenated to the
343 	 *   endpoint pair key in any order.
344 	 */
345 	cmp = sctp_auth_compare_vectors(local_key_vector,
346 					peer_key_vector);
347 	if (cmp < 0) {
348 		first_vector = local_key_vector;
349 		last_vector = peer_key_vector;
350 	} else {
351 		first_vector = peer_key_vector;
352 		last_vector = local_key_vector;
353 	}
354 
355 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
356 					    gfp);
357 out:
358 	sctp_auth_key_put(local_key_vector);
359 	sctp_auth_key_put(peer_key_vector);
360 
361 	return secret;
362 }
363 
364 /*
365  * Populate the association overlay list with the list
366  * from the endpoint.
367  */
sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint * ep,struct sctp_association * asoc,gfp_t gfp)368 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
369 				struct sctp_association *asoc,
370 				gfp_t gfp)
371 {
372 	struct sctp_shared_key *sh_key;
373 	struct sctp_shared_key *new;
374 
375 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
376 
377 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
378 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
379 		if (!new)
380 			goto nomem;
381 
382 		new->key = sh_key->key;
383 		sctp_auth_key_hold(new->key);
384 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
385 	}
386 
387 	return 0;
388 
389 nomem:
390 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
391 	return -ENOMEM;
392 }
393 
394 
395 /* Public interface to create the association shared key.
396  * See code above for the algorithm.
397  */
sctp_auth_asoc_init_active_key(struct sctp_association * asoc,gfp_t gfp)398 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
399 {
400 	struct sctp_auth_bytes	*secret;
401 	struct sctp_shared_key *ep_key;
402 	struct sctp_chunk *chunk;
403 
404 	/* If we don't support AUTH, or peer is not capable
405 	 * we don't need to do anything.
406 	 */
407 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
408 		return 0;
409 
410 	/* If the key_id is non-zero and we couldn't find an
411 	 * endpoint pair shared key, we can't compute the
412 	 * secret.
413 	 * For key_id 0, endpoint pair shared key is a NULL key.
414 	 */
415 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
416 	BUG_ON(!ep_key);
417 
418 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
419 	if (!secret)
420 		return -ENOMEM;
421 
422 	sctp_auth_key_put(asoc->asoc_shared_key);
423 	asoc->asoc_shared_key = secret;
424 	asoc->shkey = ep_key;
425 
426 	/* Update send queue in case any chunk already in there now
427 	 * needs authenticating
428 	 */
429 	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
430 		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) {
431 			chunk->auth = 1;
432 			if (!chunk->shkey) {
433 				chunk->shkey = asoc->shkey;
434 				sctp_auth_shkey_hold(chunk->shkey);
435 			}
436 		}
437 	}
438 
439 	return 0;
440 }
441 
442 
443 /* Find the endpoint pair shared key based on the key_id */
sctp_auth_get_shkey(const struct sctp_association * asoc,__u16 key_id)444 struct sctp_shared_key *sctp_auth_get_shkey(
445 				const struct sctp_association *asoc,
446 				__u16 key_id)
447 {
448 	struct sctp_shared_key *key;
449 
450 	/* First search associations set of endpoint pair shared keys */
451 	key_for_each(key, &asoc->endpoint_shared_keys) {
452 		if (key->key_id == key_id) {
453 			if (!key->deactivated)
454 				return key;
455 			break;
456 		}
457 	}
458 
459 	return NULL;
460 }
461 
462 /*
463  * Initialize all the possible digest transforms that we can use.  Right now
464  * now, the supported digests are SHA1 and SHA256.  We do this here once
465  * because of the restrictiong that transforms may only be allocated in
466  * user context.  This forces us to pre-allocated all possible transforms
467  * at the endpoint init time.
468  */
sctp_auth_init_hmacs(struct sctp_endpoint * ep,gfp_t gfp)469 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
470 {
471 	struct crypto_shash *tfm = NULL;
472 	__u16   id;
473 
474 	/* If AUTH extension is disabled, we are done */
475 	if (!ep->auth_enable) {
476 		ep->auth_hmacs = NULL;
477 		return 0;
478 	}
479 
480 	/* If the transforms are already allocated, we are done */
481 	if (ep->auth_hmacs)
482 		return 0;
483 
484 	/* Allocated the array of pointers to transorms */
485 	ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS,
486 				 sizeof(struct crypto_shash *),
487 				 gfp);
488 	if (!ep->auth_hmacs)
489 		return -ENOMEM;
490 
491 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
492 
493 		/* See is we support the id.  Supported IDs have name and
494 		 * length fields set, so that we can allocated and use
495 		 * them.  We can safely just check for name, for without the
496 		 * name, we can't allocate the TFM.
497 		 */
498 		if (!sctp_hmac_list[id].hmac_name)
499 			continue;
500 
501 		/* If this TFM has been allocated, we are all set */
502 		if (ep->auth_hmacs[id])
503 			continue;
504 
505 		/* Allocate the ID */
506 		tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
507 		if (IS_ERR(tfm))
508 			goto out_err;
509 
510 		ep->auth_hmacs[id] = tfm;
511 	}
512 
513 	return 0;
514 
515 out_err:
516 	/* Clean up any successful allocations */
517 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
518 	ep->auth_hmacs = NULL;
519 	return -ENOMEM;
520 }
521 
522 /* Destroy the hmac tfm array */
sctp_auth_destroy_hmacs(struct crypto_shash * auth_hmacs[])523 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
524 {
525 	int i;
526 
527 	if (!auth_hmacs)
528 		return;
529 
530 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
531 		crypto_free_shash(auth_hmacs[i]);
532 	}
533 	kfree(auth_hmacs);
534 }
535 
536 
sctp_auth_get_hmac(__u16 hmac_id)537 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
538 {
539 	return &sctp_hmac_list[hmac_id];
540 }
541 
542 /* Get an hmac description information that we can use to build
543  * the AUTH chunk
544  */
sctp_auth_asoc_get_hmac(const struct sctp_association * asoc)545 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
546 {
547 	struct sctp_hmac_algo_param *hmacs;
548 	__u16 n_elt;
549 	__u16 id = 0;
550 	int i;
551 
552 	/* If we have a default entry, use it */
553 	if (asoc->default_hmac_id)
554 		return &sctp_hmac_list[asoc->default_hmac_id];
555 
556 	/* Since we do not have a default entry, find the first entry
557 	 * we support and return that.  Do not cache that id.
558 	 */
559 	hmacs = asoc->peer.peer_hmacs;
560 	if (!hmacs)
561 		return NULL;
562 
563 	n_elt = (ntohs(hmacs->param_hdr.length) -
564 		 sizeof(struct sctp_paramhdr)) >> 1;
565 	for (i = 0; i < n_elt; i++) {
566 		id = ntohs(hmacs->hmac_ids[i]);
567 
568 		/* Check the id is in the supported range. And
569 		 * see if we support the id.  Supported IDs have name and
570 		 * length fields set, so that we can allocate and use
571 		 * them.  We can safely just check for name, for without the
572 		 * name, we can't allocate the TFM.
573 		 */
574 		if (id > SCTP_AUTH_HMAC_ID_MAX ||
575 		    !sctp_hmac_list[id].hmac_name) {
576 			id = 0;
577 			continue;
578 		}
579 
580 		break;
581 	}
582 
583 	if (id == 0)
584 		return NULL;
585 
586 	return &sctp_hmac_list[id];
587 }
588 
__sctp_auth_find_hmacid(__be16 * hmacs,int n_elts,__be16 hmac_id)589 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
590 {
591 	int  found = 0;
592 	int  i;
593 
594 	for (i = 0; i < n_elts; i++) {
595 		if (hmac_id == hmacs[i]) {
596 			found = 1;
597 			break;
598 		}
599 	}
600 
601 	return found;
602 }
603 
604 /* See if the HMAC_ID is one that we claim as supported */
sctp_auth_asoc_verify_hmac_id(const struct sctp_association * asoc,__be16 hmac_id)605 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
606 				    __be16 hmac_id)
607 {
608 	struct sctp_hmac_algo_param *hmacs;
609 	__u16 n_elt;
610 
611 	if (!asoc)
612 		return 0;
613 
614 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
615 	n_elt = (ntohs(hmacs->param_hdr.length) -
616 		 sizeof(struct sctp_paramhdr)) >> 1;
617 
618 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
619 }
620 
621 
622 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
623  * Section 6.1:
624  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
625  *   algorithm it supports.
626  */
sctp_auth_asoc_set_default_hmac(struct sctp_association * asoc,struct sctp_hmac_algo_param * hmacs)627 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
628 				     struct sctp_hmac_algo_param *hmacs)
629 {
630 	struct sctp_endpoint *ep;
631 	__u16   id;
632 	int	i;
633 	int	n_params;
634 
635 	/* if the default id is already set, use it */
636 	if (asoc->default_hmac_id)
637 		return;
638 
639 	n_params = (ntohs(hmacs->param_hdr.length) -
640 		    sizeof(struct sctp_paramhdr)) >> 1;
641 	ep = asoc->ep;
642 	for (i = 0; i < n_params; i++) {
643 		id = ntohs(hmacs->hmac_ids[i]);
644 
645 		/* Check the id is in the supported range */
646 		if (id > SCTP_AUTH_HMAC_ID_MAX)
647 			continue;
648 
649 		/* If this TFM has been allocated, use this id */
650 		if (ep->auth_hmacs[id]) {
651 			asoc->default_hmac_id = id;
652 			break;
653 		}
654 	}
655 }
656 
657 
658 /* Check to see if the given chunk is supposed to be authenticated */
__sctp_auth_cid(enum sctp_cid chunk,struct sctp_chunks_param * param)659 static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
660 {
661 	unsigned short len;
662 	int found = 0;
663 	int i;
664 
665 	if (!param || param->param_hdr.length == 0)
666 		return 0;
667 
668 	len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
669 
670 	/* SCTP-AUTH, Section 3.2
671 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
672 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
673 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
674 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
675 	 */
676 	for (i = 0; !found && i < len; i++) {
677 		switch (param->chunks[i]) {
678 		case SCTP_CID_INIT:
679 		case SCTP_CID_INIT_ACK:
680 		case SCTP_CID_SHUTDOWN_COMPLETE:
681 		case SCTP_CID_AUTH:
682 			break;
683 
684 		default:
685 			if (param->chunks[i] == chunk)
686 				found = 1;
687 			break;
688 		}
689 	}
690 
691 	return found;
692 }
693 
694 /* Check if peer requested that this chunk is authenticated */
sctp_auth_send_cid(enum sctp_cid chunk,const struct sctp_association * asoc)695 int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
696 {
697 	if (!asoc)
698 		return 0;
699 
700 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
701 		return 0;
702 
703 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
704 }
705 
706 /* Check if we requested that peer authenticate this chunk. */
sctp_auth_recv_cid(enum sctp_cid chunk,const struct sctp_association * asoc)707 int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
708 {
709 	if (!asoc)
710 		return 0;
711 
712 	if (!asoc->ep->auth_enable)
713 		return 0;
714 
715 	return __sctp_auth_cid(chunk,
716 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
717 }
718 
719 /* SCTP-AUTH: Section 6.2:
720  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
721  *    the hash function H as described by the MAC Identifier and the shared
722  *    association key K based on the endpoint pair shared key described by
723  *    the shared key identifier.  The 'data' used for the computation of
724  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
725  *    zero (as shown in Figure 6) followed by all chunks that are placed
726  *    after the AUTH chunk in the SCTP packet.
727  */
sctp_auth_calculate_hmac(const struct sctp_association * asoc,struct sk_buff * skb,struct sctp_auth_chunk * auth,struct sctp_shared_key * ep_key,gfp_t gfp)728 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
729 			      struct sk_buff *skb, struct sctp_auth_chunk *auth,
730 			      struct sctp_shared_key *ep_key, gfp_t gfp)
731 {
732 	struct sctp_auth_bytes *asoc_key;
733 	struct crypto_shash *tfm;
734 	__u16 key_id, hmac_id;
735 	unsigned char *end;
736 	int free_key = 0;
737 	__u8 *digest;
738 
739 	/* Extract the info we need:
740 	 * - hmac id
741 	 * - key id
742 	 */
743 	key_id = ntohs(auth->auth_hdr.shkey_id);
744 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
745 
746 	if (key_id == asoc->active_key_id)
747 		asoc_key = asoc->asoc_shared_key;
748 	else {
749 		/* ep_key can't be NULL here */
750 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
751 		if (!asoc_key)
752 			return;
753 
754 		free_key = 1;
755 	}
756 
757 	/* set up scatter list */
758 	end = skb_tail_pointer(skb);
759 
760 	tfm = asoc->ep->auth_hmacs[hmac_id];
761 
762 	digest = auth->auth_hdr.hmac;
763 	if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
764 		goto free;
765 
766 	{
767 		SHASH_DESC_ON_STACK(desc, tfm);
768 
769 		desc->tfm = tfm;
770 		desc->flags = 0;
771 		crypto_shash_digest(desc, (u8 *)auth,
772 				    end - (unsigned char *)auth, digest);
773 		shash_desc_zero(desc);
774 	}
775 
776 free:
777 	if (free_key)
778 		sctp_auth_key_put(asoc_key);
779 }
780 
781 /* API Helpers */
782 
783 /* Add a chunk to the endpoint authenticated chunk list */
sctp_auth_ep_add_chunkid(struct sctp_endpoint * ep,__u8 chunk_id)784 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
785 {
786 	struct sctp_chunks_param *p = ep->auth_chunk_list;
787 	__u16 nchunks;
788 	__u16 param_len;
789 
790 	/* If this chunk is already specified, we are done */
791 	if (__sctp_auth_cid(chunk_id, p))
792 		return 0;
793 
794 	/* Check if we can add this chunk to the array */
795 	param_len = ntohs(p->param_hdr.length);
796 	nchunks = param_len - sizeof(struct sctp_paramhdr);
797 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
798 		return -EINVAL;
799 
800 	p->chunks[nchunks] = chunk_id;
801 	p->param_hdr.length = htons(param_len + 1);
802 	return 0;
803 }
804 
805 /* Add hmac identifires to the endpoint list of supported hmac ids */
sctp_auth_ep_set_hmacs(struct sctp_endpoint * ep,struct sctp_hmacalgo * hmacs)806 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
807 			   struct sctp_hmacalgo *hmacs)
808 {
809 	int has_sha1 = 0;
810 	__u16 id;
811 	int i;
812 
813 	/* Scan the list looking for unsupported id.  Also make sure that
814 	 * SHA1 is specified.
815 	 */
816 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
817 		id = hmacs->shmac_idents[i];
818 
819 		if (id > SCTP_AUTH_HMAC_ID_MAX)
820 			return -EOPNOTSUPP;
821 
822 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
823 			has_sha1 = 1;
824 
825 		if (!sctp_hmac_list[id].hmac_name)
826 			return -EOPNOTSUPP;
827 	}
828 
829 	if (!has_sha1)
830 		return -EINVAL;
831 
832 	for (i = 0; i < hmacs->shmac_num_idents; i++)
833 		ep->auth_hmacs_list->hmac_ids[i] =
834 				htons(hmacs->shmac_idents[i]);
835 	ep->auth_hmacs_list->param_hdr.length =
836 			htons(sizeof(struct sctp_paramhdr) +
837 			hmacs->shmac_num_idents * sizeof(__u16));
838 	return 0;
839 }
840 
841 /* Set a new shared key on either endpoint or association.  If the
842  * the key with a same ID already exists, replace the key (remove the
843  * old key and add a new one).
844  */
sctp_auth_set_key(struct sctp_endpoint * ep,struct sctp_association * asoc,struct sctp_authkey * auth_key)845 int sctp_auth_set_key(struct sctp_endpoint *ep,
846 		      struct sctp_association *asoc,
847 		      struct sctp_authkey *auth_key)
848 {
849 	struct sctp_shared_key *cur_key, *shkey;
850 	struct sctp_auth_bytes *key;
851 	struct list_head *sh_keys;
852 	int replace = 0;
853 
854 	/* Try to find the given key id to see if
855 	 * we are doing a replace, or adding a new key
856 	 */
857 	if (asoc)
858 		sh_keys = &asoc->endpoint_shared_keys;
859 	else
860 		sh_keys = &ep->endpoint_shared_keys;
861 
862 	key_for_each(shkey, sh_keys) {
863 		if (shkey->key_id == auth_key->sca_keynumber) {
864 			replace = 1;
865 			break;
866 		}
867 	}
868 
869 	cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL);
870 	if (!cur_key)
871 		return -ENOMEM;
872 
873 	/* Create a new key data based on the info passed in */
874 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
875 	if (!key) {
876 		kfree(cur_key);
877 		return -ENOMEM;
878 	}
879 
880 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
881 	cur_key->key = key;
882 
883 	if (replace) {
884 		list_del_init(&shkey->key_list);
885 		sctp_auth_shkey_release(shkey);
886 	}
887 	list_add(&cur_key->key_list, sh_keys);
888 
889 	return 0;
890 }
891 
sctp_auth_set_active_key(struct sctp_endpoint * ep,struct sctp_association * asoc,__u16 key_id)892 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
893 			     struct sctp_association *asoc,
894 			     __u16  key_id)
895 {
896 	struct sctp_shared_key *key;
897 	struct list_head *sh_keys;
898 	int found = 0;
899 
900 	/* The key identifier MUST correst to an existing key */
901 	if (asoc)
902 		sh_keys = &asoc->endpoint_shared_keys;
903 	else
904 		sh_keys = &ep->endpoint_shared_keys;
905 
906 	key_for_each(key, sh_keys) {
907 		if (key->key_id == key_id) {
908 			found = 1;
909 			break;
910 		}
911 	}
912 
913 	if (!found || key->deactivated)
914 		return -EINVAL;
915 
916 	if (asoc) {
917 		asoc->active_key_id = key_id;
918 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
919 	} else
920 		ep->active_key_id = key_id;
921 
922 	return 0;
923 }
924 
sctp_auth_del_key_id(struct sctp_endpoint * ep,struct sctp_association * asoc,__u16 key_id)925 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
926 			 struct sctp_association *asoc,
927 			 __u16  key_id)
928 {
929 	struct sctp_shared_key *key;
930 	struct list_head *sh_keys;
931 	int found = 0;
932 
933 	/* The key identifier MUST NOT be the current active key
934 	 * The key identifier MUST correst to an existing key
935 	 */
936 	if (asoc) {
937 		if (asoc->active_key_id == key_id)
938 			return -EINVAL;
939 
940 		sh_keys = &asoc->endpoint_shared_keys;
941 	} else {
942 		if (ep->active_key_id == key_id)
943 			return -EINVAL;
944 
945 		sh_keys = &ep->endpoint_shared_keys;
946 	}
947 
948 	key_for_each(key, sh_keys) {
949 		if (key->key_id == key_id) {
950 			found = 1;
951 			break;
952 		}
953 	}
954 
955 	if (!found)
956 		return -EINVAL;
957 
958 	/* Delete the shared key */
959 	list_del_init(&key->key_list);
960 	sctp_auth_shkey_release(key);
961 
962 	return 0;
963 }
964 
sctp_auth_deact_key_id(struct sctp_endpoint * ep,struct sctp_association * asoc,__u16 key_id)965 int sctp_auth_deact_key_id(struct sctp_endpoint *ep,
966 			   struct sctp_association *asoc, __u16  key_id)
967 {
968 	struct sctp_shared_key *key;
969 	struct list_head *sh_keys;
970 	int found = 0;
971 
972 	/* The key identifier MUST NOT be the current active key
973 	 * The key identifier MUST correst to an existing key
974 	 */
975 	if (asoc) {
976 		if (asoc->active_key_id == key_id)
977 			return -EINVAL;
978 
979 		sh_keys = &asoc->endpoint_shared_keys;
980 	} else {
981 		if (ep->active_key_id == key_id)
982 			return -EINVAL;
983 
984 		sh_keys = &ep->endpoint_shared_keys;
985 	}
986 
987 	key_for_each(key, sh_keys) {
988 		if (key->key_id == key_id) {
989 			found = 1;
990 			break;
991 		}
992 	}
993 
994 	if (!found)
995 		return -EINVAL;
996 
997 	/* refcnt == 1 and !list_empty mean it's not being used anywhere
998 	 * and deactivated will be set, so it's time to notify userland
999 	 * that this shkey can be freed.
1000 	 */
1001 	if (asoc && !list_empty(&key->key_list) &&
1002 	    refcount_read(&key->refcnt) == 1) {
1003 		struct sctp_ulpevent *ev;
1004 
1005 		ev = sctp_ulpevent_make_authkey(asoc, key->key_id,
1006 						SCTP_AUTH_FREE_KEY, GFP_KERNEL);
1007 		if (ev)
1008 			asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1009 	}
1010 
1011 	key->deactivated = 1;
1012 
1013 	return 0;
1014 }
1015