• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, see
27  * <http://www.gnu.org/licenses/>.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson <karl@athena.chicago.il.us>
36  *    Xingang Guo <xingang.guo@intel.com>
37  *    Jon Grimm <jgrimm@us.ibm.com>
38  *    Hui Huang <hui.huang@nokia.com>
39  *    Daisy Chang <daisyc@us.ibm.com>
40  *    Sridhar Samudrala <sri@us.ibm.com>
41  *    Ardelle Fan <ardelle.fan@intel.com>
42  */
43 
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 #include <linux/rhashtable.h>
60 
61 /* Forward declarations for internal helpers. */
62 static int sctp_rcv_ootb(struct sk_buff *);
63 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
64 				      struct sk_buff *skb,
65 				      const union sctp_addr *paddr,
66 				      const union sctp_addr *laddr,
67 				      struct sctp_transport **transportp);
68 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
69 						const union sctp_addr *laddr);
70 static struct sctp_association *__sctp_lookup_association(
71 					struct net *net,
72 					const union sctp_addr *local,
73 					const union sctp_addr *peer,
74 					struct sctp_transport **pt);
75 
76 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
77 
78 
79 /* Calculate the SCTP checksum of an SCTP packet.  */
sctp_rcv_checksum(struct net * net,struct sk_buff * skb)80 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
81 {
82 	struct sctphdr *sh = sctp_hdr(skb);
83 	__le32 cmp = sh->checksum;
84 	__le32 val = sctp_compute_cksum(skb, 0);
85 
86 	if (val != cmp) {
87 		/* CRC failure, dump it. */
88 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
89 		return -1;
90 	}
91 	return 0;
92 }
93 
94 /*
95  * This is the routine which IP calls when receiving an SCTP packet.
96  */
sctp_rcv(struct sk_buff * skb)97 int sctp_rcv(struct sk_buff *skb)
98 {
99 	struct sock *sk;
100 	struct sctp_association *asoc;
101 	struct sctp_endpoint *ep = NULL;
102 	struct sctp_ep_common *rcvr;
103 	struct sctp_transport *transport = NULL;
104 	struct sctp_chunk *chunk;
105 	union sctp_addr src;
106 	union sctp_addr dest;
107 	int family;
108 	struct sctp_af *af;
109 	struct net *net = dev_net(skb->dev);
110 	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
111 
112 	if (skb->pkt_type != PACKET_HOST)
113 		goto discard_it;
114 
115 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
116 
117 	/* If packet is too small to contain a single chunk, let's not
118 	 * waste time on it anymore.
119 	 */
120 	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
121 		       skb_transport_offset(skb))
122 		goto discard_it;
123 
124 	/* If the packet is fragmented and we need to do crc checking,
125 	 * it's better to just linearize it otherwise crc computing
126 	 * takes longer.
127 	 */
128 	if ((!is_gso && skb_linearize(skb)) ||
129 	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
130 		goto discard_it;
131 
132 	/* Pull up the IP header. */
133 	__skb_pull(skb, skb_transport_offset(skb));
134 
135 	skb->csum_valid = 0; /* Previous value not applicable */
136 	if (skb_csum_unnecessary(skb))
137 		__skb_decr_checksum_unnecessary(skb);
138 	else if (!sctp_checksum_disable &&
139 		 !is_gso &&
140 		 sctp_rcv_checksum(net, skb) < 0)
141 		goto discard_it;
142 	skb->csum_valid = 1;
143 
144 	__skb_pull(skb, sizeof(struct sctphdr));
145 
146 	family = ipver2af(ip_hdr(skb)->version);
147 	af = sctp_get_af_specific(family);
148 	if (unlikely(!af))
149 		goto discard_it;
150 	SCTP_INPUT_CB(skb)->af = af;
151 
152 	/* Initialize local addresses for lookups. */
153 	af->from_skb(&src, skb, 1);
154 	af->from_skb(&dest, skb, 0);
155 
156 	/* If the packet is to or from a non-unicast address,
157 	 * silently discard the packet.
158 	 *
159 	 * This is not clearly defined in the RFC except in section
160 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
161 	 * Transmission Protocol" 2.1, "It is important to note that the
162 	 * IP address of an SCTP transport address must be a routable
163 	 * unicast address.  In other words, IP multicast addresses and
164 	 * IP broadcast addresses cannot be used in an SCTP transport
165 	 * address."
166 	 */
167 	if (!af->addr_valid(&src, NULL, skb) ||
168 	    !af->addr_valid(&dest, NULL, skb))
169 		goto discard_it;
170 
171 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
172 
173 	if (!asoc)
174 		ep = __sctp_rcv_lookup_endpoint(net, &dest);
175 
176 	/* Retrieve the common input handling substructure. */
177 	rcvr = asoc ? &asoc->base : &ep->base;
178 	sk = rcvr->sk;
179 
180 	/*
181 	 * If a frame arrives on an interface and the receiving socket is
182 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
183 	 */
184 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
185 		if (transport) {
186 			sctp_transport_put(transport);
187 			asoc = NULL;
188 			transport = NULL;
189 		} else {
190 			sctp_endpoint_put(ep);
191 			ep = NULL;
192 		}
193 		sk = net->sctp.ctl_sock;
194 		ep = sctp_sk(sk)->ep;
195 		sctp_endpoint_hold(ep);
196 		rcvr = &ep->base;
197 	}
198 
199 	/*
200 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
201 	 * An SCTP packet is called an "out of the blue" (OOTB)
202 	 * packet if it is correctly formed, i.e., passed the
203 	 * receiver's checksum check, but the receiver is not
204 	 * able to identify the association to which this
205 	 * packet belongs.
206 	 */
207 	if (!asoc) {
208 		if (sctp_rcv_ootb(skb)) {
209 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
210 			goto discard_release;
211 		}
212 	}
213 
214 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
215 		goto discard_release;
216 	nf_reset(skb);
217 
218 	if (sk_filter(sk, skb))
219 		goto discard_release;
220 
221 	/* Create an SCTP packet structure. */
222 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
223 	if (!chunk)
224 		goto discard_release;
225 	SCTP_INPUT_CB(skb)->chunk = chunk;
226 
227 	/* Remember what endpoint is to handle this packet. */
228 	chunk->rcvr = rcvr;
229 
230 	/* Remember the SCTP header. */
231 	chunk->sctp_hdr = sctp_hdr(skb);
232 
233 	/* Set the source and destination addresses of the incoming chunk.  */
234 	sctp_init_addrs(chunk, &src, &dest);
235 
236 	/* Remember where we came from.  */
237 	chunk->transport = transport;
238 
239 	/* Acquire access to the sock lock. Note: We are safe from other
240 	 * bottom halves on this lock, but a user may be in the lock too,
241 	 * so check if it is busy.
242 	 */
243 	bh_lock_sock(sk);
244 
245 	if (sk != rcvr->sk) {
246 		/* Our cached sk is different from the rcvr->sk.  This is
247 		 * because migrate()/accept() may have moved the association
248 		 * to a new socket and released all the sockets.  So now we
249 		 * are holding a lock on the old socket while the user may
250 		 * be doing something with the new socket.  Switch our veiw
251 		 * of the current sk.
252 		 */
253 		bh_unlock_sock(sk);
254 		sk = rcvr->sk;
255 		bh_lock_sock(sk);
256 	}
257 
258 	if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
259 		if (sctp_add_backlog(sk, skb)) {
260 			bh_unlock_sock(sk);
261 			sctp_chunk_free(chunk);
262 			skb = NULL; /* sctp_chunk_free already freed the skb */
263 			goto discard_release;
264 		}
265 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
266 	} else {
267 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
268 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
269 	}
270 
271 	bh_unlock_sock(sk);
272 
273 	/* Release the asoc/ep ref we took in the lookup calls. */
274 	if (transport)
275 		sctp_transport_put(transport);
276 	else
277 		sctp_endpoint_put(ep);
278 
279 	return 0;
280 
281 discard_it:
282 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
283 	kfree_skb(skb);
284 	return 0;
285 
286 discard_release:
287 	/* Release the asoc/ep ref we took in the lookup calls. */
288 	if (transport)
289 		sctp_transport_put(transport);
290 	else
291 		sctp_endpoint_put(ep);
292 
293 	goto discard_it;
294 }
295 
296 /* Process the backlog queue of the socket.  Every skb on
297  * the backlog holds a ref on an association or endpoint.
298  * We hold this ref throughout the state machine to make
299  * sure that the structure we need is still around.
300  */
sctp_backlog_rcv(struct sock * sk,struct sk_buff * skb)301 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
302 {
303 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
304 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
305 	struct sctp_transport *t = chunk->transport;
306 	struct sctp_ep_common *rcvr = NULL;
307 	int backloged = 0;
308 
309 	rcvr = chunk->rcvr;
310 
311 	/* If the rcvr is dead then the association or endpoint
312 	 * has been deleted and we can safely drop the chunk
313 	 * and refs that we are holding.
314 	 */
315 	if (rcvr->dead) {
316 		sctp_chunk_free(chunk);
317 		goto done;
318 	}
319 
320 	if (unlikely(rcvr->sk != sk)) {
321 		/* In this case, the association moved from one socket to
322 		 * another.  We are currently sitting on the backlog of the
323 		 * old socket, so we need to move.
324 		 * However, since we are here in the process context we
325 		 * need to take make sure that the user doesn't own
326 		 * the new socket when we process the packet.
327 		 * If the new socket is user-owned, queue the chunk to the
328 		 * backlog of the new socket without dropping any refs.
329 		 * Otherwise, we can safely push the chunk on the inqueue.
330 		 */
331 
332 		sk = rcvr->sk;
333 		local_bh_disable();
334 		bh_lock_sock(sk);
335 
336 		if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
337 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
338 				sctp_chunk_free(chunk);
339 			else
340 				backloged = 1;
341 		} else
342 			sctp_inq_push(inqueue, chunk);
343 
344 		bh_unlock_sock(sk);
345 		local_bh_enable();
346 
347 		/* If the chunk was backloged again, don't drop refs */
348 		if (backloged)
349 			return 0;
350 	} else {
351 		if (!sctp_newsk_ready(sk)) {
352 			if (!sk_add_backlog(sk, skb, sk->sk_rcvbuf))
353 				return 0;
354 			sctp_chunk_free(chunk);
355 		} else {
356 			sctp_inq_push(inqueue, chunk);
357 		}
358 	}
359 
360 done:
361 	/* Release the refs we took in sctp_add_backlog */
362 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
363 		sctp_transport_put(t);
364 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
365 		sctp_endpoint_put(sctp_ep(rcvr));
366 	else
367 		BUG();
368 
369 	return 0;
370 }
371 
sctp_add_backlog(struct sock * sk,struct sk_buff * skb)372 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
373 {
374 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
375 	struct sctp_transport *t = chunk->transport;
376 	struct sctp_ep_common *rcvr = chunk->rcvr;
377 	int ret;
378 
379 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
380 	if (!ret) {
381 		/* Hold the assoc/ep while hanging on the backlog queue.
382 		 * This way, we know structures we need will not disappear
383 		 * from us
384 		 */
385 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
386 			sctp_transport_hold(t);
387 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
388 			sctp_endpoint_hold(sctp_ep(rcvr));
389 		else
390 			BUG();
391 	}
392 	return ret;
393 
394 }
395 
396 /* Handle icmp frag needed error. */
sctp_icmp_frag_needed(struct sock * sk,struct sctp_association * asoc,struct sctp_transport * t,__u32 pmtu)397 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
398 			   struct sctp_transport *t, __u32 pmtu)
399 {
400 	if (!t || (t->pathmtu <= pmtu))
401 		return;
402 
403 	if (sock_owned_by_user(sk)) {
404 		atomic_set(&t->mtu_info, pmtu);
405 		asoc->pmtu_pending = 1;
406 		t->pmtu_pending = 1;
407 		return;
408 	}
409 
410 	if (!(t->param_flags & SPP_PMTUD_ENABLE))
411 		/* We can't allow retransmitting in such case, as the
412 		 * retransmission would be sized just as before, and thus we
413 		 * would get another icmp, and retransmit again.
414 		 */
415 		return;
416 
417 	/* Update transports view of the MTU. Return if no update was needed.
418 	 * If an update wasn't needed/possible, it also doesn't make sense to
419 	 * try to retransmit now.
420 	 */
421 	if (!sctp_transport_update_pmtu(t, pmtu))
422 		return;
423 
424 	/* Update association pmtu. */
425 	sctp_assoc_sync_pmtu(asoc);
426 
427 	/* Retransmit with the new pmtu setting. */
428 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
429 }
430 
sctp_icmp_redirect(struct sock * sk,struct sctp_transport * t,struct sk_buff * skb)431 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
432 			struct sk_buff *skb)
433 {
434 	struct dst_entry *dst;
435 
436 	if (sock_owned_by_user(sk) || !t)
437 		return;
438 	dst = sctp_transport_dst_check(t);
439 	if (dst)
440 		dst->ops->redirect(dst, sk, skb);
441 }
442 
443 /*
444  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
445  *
446  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
447  *        or a "Protocol Unreachable" treat this message as an abort
448  *        with the T bit set.
449  *
450  * This function sends an event to the state machine, which will abort the
451  * association.
452  *
453  */
sctp_icmp_proto_unreachable(struct sock * sk,struct sctp_association * asoc,struct sctp_transport * t)454 void sctp_icmp_proto_unreachable(struct sock *sk,
455 			   struct sctp_association *asoc,
456 			   struct sctp_transport *t)
457 {
458 	if (sock_owned_by_user(sk)) {
459 		if (timer_pending(&t->proto_unreach_timer))
460 			return;
461 		else {
462 			if (!mod_timer(&t->proto_unreach_timer,
463 						jiffies + (HZ/20)))
464 				sctp_association_hold(asoc);
465 		}
466 	} else {
467 		struct net *net = sock_net(sk);
468 
469 		pr_debug("%s: unrecognized next header type "
470 			 "encountered!\n", __func__);
471 
472 		if (del_timer(&t->proto_unreach_timer))
473 			sctp_association_put(asoc);
474 
475 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
476 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
477 			   asoc->state, asoc->ep, asoc, t,
478 			   GFP_ATOMIC);
479 	}
480 }
481 
482 /* Common lookup code for icmp/icmpv6 error handler. */
sctp_err_lookup(struct net * net,int family,struct sk_buff * skb,struct sctphdr * sctphdr,struct sctp_association ** app,struct sctp_transport ** tpp)483 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
484 			     struct sctphdr *sctphdr,
485 			     struct sctp_association **app,
486 			     struct sctp_transport **tpp)
487 {
488 	struct sctp_init_chunk *chunkhdr, _chunkhdr;
489 	union sctp_addr saddr;
490 	union sctp_addr daddr;
491 	struct sctp_af *af;
492 	struct sock *sk = NULL;
493 	struct sctp_association *asoc;
494 	struct sctp_transport *transport = NULL;
495 	__u32 vtag = ntohl(sctphdr->vtag);
496 
497 	*app = NULL; *tpp = NULL;
498 
499 	af = sctp_get_af_specific(family);
500 	if (unlikely(!af)) {
501 		return NULL;
502 	}
503 
504 	/* Initialize local addresses for lookups. */
505 	af->from_skb(&saddr, skb, 1);
506 	af->from_skb(&daddr, skb, 0);
507 
508 	/* Look for an association that matches the incoming ICMP error
509 	 * packet.
510 	 */
511 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
512 	if (!asoc)
513 		return NULL;
514 
515 	sk = asoc->base.sk;
516 
517 	/* RFC 4960, Appendix C. ICMP Handling
518 	 *
519 	 * ICMP6) An implementation MUST validate that the Verification Tag
520 	 * contained in the ICMP message matches the Verification Tag of
521 	 * the peer.  If the Verification Tag is not 0 and does NOT
522 	 * match, discard the ICMP message.  If it is 0 and the ICMP
523 	 * message contains enough bytes to verify that the chunk type is
524 	 * an INIT chunk and that the Initiate Tag matches the tag of the
525 	 * peer, continue with ICMP7.  If the ICMP message is too short
526 	 * or the chunk type or the Initiate Tag does not match, silently
527 	 * discard the packet.
528 	 */
529 	if (vtag == 0) {
530 		/* chunk header + first 4 octects of init header */
531 		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
532 					      sizeof(struct sctphdr),
533 					      sizeof(struct sctp_chunkhdr) +
534 					      sizeof(__be32), &_chunkhdr);
535 		if (!chunkhdr ||
536 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
537 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
538 			goto out;
539 
540 	} else if (vtag != asoc->c.peer_vtag) {
541 		goto out;
542 	}
543 
544 	bh_lock_sock(sk);
545 
546 	/* If too many ICMPs get dropped on busy
547 	 * servers this needs to be solved differently.
548 	 */
549 	if (sock_owned_by_user(sk))
550 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
551 
552 	*app = asoc;
553 	*tpp = transport;
554 	return sk;
555 
556 out:
557 	sctp_transport_put(transport);
558 	return NULL;
559 }
560 
561 /* Common cleanup code for icmp/icmpv6 error handler. */
sctp_err_finish(struct sock * sk,struct sctp_transport * t)562 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
563 {
564 	bh_unlock_sock(sk);
565 	sctp_transport_put(t);
566 }
567 
568 /*
569  * This routine is called by the ICMP module when it gets some
570  * sort of error condition.  If err < 0 then the socket should
571  * be closed and the error returned to the user.  If err > 0
572  * it's just the icmp type << 8 | icmp code.  After adjustment
573  * header points to the first 8 bytes of the sctp header.  We need
574  * to find the appropriate port.
575  *
576  * The locking strategy used here is very "optimistic". When
577  * someone else accesses the socket the ICMP is just dropped
578  * and for some paths there is no check at all.
579  * A more general error queue to queue errors for later handling
580  * is probably better.
581  *
582  */
sctp_v4_err(struct sk_buff * skb,__u32 info)583 void sctp_v4_err(struct sk_buff *skb, __u32 info)
584 {
585 	const struct iphdr *iph = (const struct iphdr *)skb->data;
586 	const int ihlen = iph->ihl * 4;
587 	const int type = icmp_hdr(skb)->type;
588 	const int code = icmp_hdr(skb)->code;
589 	struct sock *sk;
590 	struct sctp_association *asoc = NULL;
591 	struct sctp_transport *transport;
592 	struct inet_sock *inet;
593 	__u16 saveip, savesctp;
594 	int err;
595 	struct net *net = dev_net(skb->dev);
596 
597 	/* Fix up skb to look at the embedded net header. */
598 	saveip = skb->network_header;
599 	savesctp = skb->transport_header;
600 	skb_reset_network_header(skb);
601 	skb_set_transport_header(skb, ihlen);
602 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
603 	/* Put back, the original values. */
604 	skb->network_header = saveip;
605 	skb->transport_header = savesctp;
606 	if (!sk) {
607 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
608 		return;
609 	}
610 	/* Warning:  The sock lock is held.  Remember to call
611 	 * sctp_err_finish!
612 	 */
613 
614 	switch (type) {
615 	case ICMP_PARAMETERPROB:
616 		err = EPROTO;
617 		break;
618 	case ICMP_DEST_UNREACH:
619 		if (code > NR_ICMP_UNREACH)
620 			goto out_unlock;
621 
622 		/* PMTU discovery (RFC1191) */
623 		if (ICMP_FRAG_NEEDED == code) {
624 			sctp_icmp_frag_needed(sk, asoc, transport,
625 					      SCTP_TRUNC4(info));
626 			goto out_unlock;
627 		} else {
628 			if (ICMP_PROT_UNREACH == code) {
629 				sctp_icmp_proto_unreachable(sk, asoc,
630 							    transport);
631 				goto out_unlock;
632 			}
633 		}
634 		err = icmp_err_convert[code].errno;
635 		break;
636 	case ICMP_TIME_EXCEEDED:
637 		/* Ignore any time exceeded errors due to fragment reassembly
638 		 * timeouts.
639 		 */
640 		if (ICMP_EXC_FRAGTIME == code)
641 			goto out_unlock;
642 
643 		err = EHOSTUNREACH;
644 		break;
645 	case ICMP_REDIRECT:
646 		sctp_icmp_redirect(sk, transport, skb);
647 		/* Fall through to out_unlock. */
648 	default:
649 		goto out_unlock;
650 	}
651 
652 	inet = inet_sk(sk);
653 	if (!sock_owned_by_user(sk) && inet->recverr) {
654 		sk->sk_err = err;
655 		sk->sk_error_report(sk);
656 	} else {  /* Only an error on timeout */
657 		sk->sk_err_soft = err;
658 	}
659 
660 out_unlock:
661 	sctp_err_finish(sk, transport);
662 }
663 
664 /*
665  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
666  *
667  * This function scans all the chunks in the OOTB packet to determine if
668  * the packet should be discarded right away.  If a response might be needed
669  * for this packet, or, if further processing is possible, the packet will
670  * be queued to a proper inqueue for the next phase of handling.
671  *
672  * Output:
673  * Return 0 - If further processing is needed.
674  * Return 1 - If the packet can be discarded right away.
675  */
sctp_rcv_ootb(struct sk_buff * skb)676 static int sctp_rcv_ootb(struct sk_buff *skb)
677 {
678 	struct sctp_chunkhdr *ch, _ch;
679 	int ch_end, offset = 0;
680 
681 	/* Scan through all the chunks in the packet.  */
682 	do {
683 		/* Make sure we have at least the header there */
684 		if (offset + sizeof(_ch) > skb->len)
685 			break;
686 
687 		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
688 
689 		/* Break out if chunk length is less then minimal. */
690 		if (ntohs(ch->length) < sizeof(_ch))
691 			break;
692 
693 		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
694 		if (ch_end > skb->len)
695 			break;
696 
697 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
698 		 * receiver MUST silently discard the OOTB packet and take no
699 		 * further action.
700 		 */
701 		if (SCTP_CID_ABORT == ch->type)
702 			goto discard;
703 
704 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
705 		 * chunk, the receiver should silently discard the packet
706 		 * and take no further action.
707 		 */
708 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
709 			goto discard;
710 
711 		/* RFC 4460, 2.11.2
712 		 * This will discard packets with INIT chunk bundled as
713 		 * subsequent chunks in the packet.  When INIT is first,
714 		 * the normal INIT processing will discard the chunk.
715 		 */
716 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
717 			goto discard;
718 
719 		offset = ch_end;
720 	} while (ch_end < skb->len);
721 
722 	return 0;
723 
724 discard:
725 	return 1;
726 }
727 
728 /* Insert endpoint into the hash table.  */
__sctp_hash_endpoint(struct sctp_endpoint * ep)729 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
730 {
731 	struct net *net = sock_net(ep->base.sk);
732 	struct sctp_ep_common *epb;
733 	struct sctp_hashbucket *head;
734 
735 	epb = &ep->base;
736 
737 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
738 	head = &sctp_ep_hashtable[epb->hashent];
739 
740 	write_lock(&head->lock);
741 	hlist_add_head(&epb->node, &head->chain);
742 	write_unlock(&head->lock);
743 }
744 
745 /* Add an endpoint to the hash. Local BH-safe. */
sctp_hash_endpoint(struct sctp_endpoint * ep)746 void sctp_hash_endpoint(struct sctp_endpoint *ep)
747 {
748 	local_bh_disable();
749 	__sctp_hash_endpoint(ep);
750 	local_bh_enable();
751 }
752 
753 /* Remove endpoint from the hash table.  */
__sctp_unhash_endpoint(struct sctp_endpoint * ep)754 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
755 {
756 	struct net *net = sock_net(ep->base.sk);
757 	struct sctp_hashbucket *head;
758 	struct sctp_ep_common *epb;
759 
760 	epb = &ep->base;
761 
762 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
763 
764 	head = &sctp_ep_hashtable[epb->hashent];
765 
766 	write_lock(&head->lock);
767 	hlist_del_init(&epb->node);
768 	write_unlock(&head->lock);
769 }
770 
771 /* Remove endpoint from the hash.  Local BH-safe. */
sctp_unhash_endpoint(struct sctp_endpoint * ep)772 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
773 {
774 	local_bh_disable();
775 	__sctp_unhash_endpoint(ep);
776 	local_bh_enable();
777 }
778 
779 /* Look up an endpoint. */
__sctp_rcv_lookup_endpoint(struct net * net,const union sctp_addr * laddr)780 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
781 						const union sctp_addr *laddr)
782 {
783 	struct sctp_hashbucket *head;
784 	struct sctp_ep_common *epb;
785 	struct sctp_endpoint *ep;
786 	int hash;
787 
788 	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
789 	head = &sctp_ep_hashtable[hash];
790 	read_lock(&head->lock);
791 	sctp_for_each_hentry(epb, &head->chain) {
792 		ep = sctp_ep(epb);
793 		if (sctp_endpoint_is_match(ep, net, laddr))
794 			goto hit;
795 	}
796 
797 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
798 
799 hit:
800 	sctp_endpoint_hold(ep);
801 	read_unlock(&head->lock);
802 	return ep;
803 }
804 
805 /* rhashtable for transport */
806 struct sctp_hash_cmp_arg {
807 	const union sctp_addr	*paddr;
808 	const struct net	*net;
809 	__be16			lport;
810 };
811 
sctp_hash_cmp(struct rhashtable_compare_arg * arg,const void * ptr)812 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
813 				const void *ptr)
814 {
815 	struct sctp_transport *t = (struct sctp_transport *)ptr;
816 	const struct sctp_hash_cmp_arg *x = arg->key;
817 	int err = 1;
818 
819 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
820 		return err;
821 	if (!sctp_transport_hold(t))
822 		return err;
823 
824 	if (!net_eq(t->asoc->base.net, x->net))
825 		goto out;
826 	if (x->lport != htons(t->asoc->base.bind_addr.port))
827 		goto out;
828 
829 	err = 0;
830 out:
831 	sctp_transport_put(t);
832 	return err;
833 }
834 
sctp_hash_obj(const void * data,u32 len,u32 seed)835 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
836 {
837 	const struct sctp_transport *t = data;
838 	const union sctp_addr *paddr = &t->ipaddr;
839 	const struct net *net = t->asoc->base.net;
840 	__be16 lport = htons(t->asoc->base.bind_addr.port);
841 	__u32 addr;
842 
843 	if (paddr->sa.sa_family == AF_INET6)
844 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
845 	else
846 		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
847 
848 	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
849 			     (__force __u32)lport, net_hash_mix(net), seed);
850 }
851 
sctp_hash_key(const void * data,u32 len,u32 seed)852 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
853 {
854 	const struct sctp_hash_cmp_arg *x = data;
855 	const union sctp_addr *paddr = x->paddr;
856 	const struct net *net = x->net;
857 	__be16 lport = x->lport;
858 	__u32 addr;
859 
860 	if (paddr->sa.sa_family == AF_INET6)
861 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
862 	else
863 		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
864 
865 	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
866 			     (__force __u32)lport, net_hash_mix(net), seed);
867 }
868 
869 static const struct rhashtable_params sctp_hash_params = {
870 	.head_offset		= offsetof(struct sctp_transport, node),
871 	.hashfn			= sctp_hash_key,
872 	.obj_hashfn		= sctp_hash_obj,
873 	.obj_cmpfn		= sctp_hash_cmp,
874 	.automatic_shrinking	= true,
875 };
876 
sctp_transport_hashtable_init(void)877 int sctp_transport_hashtable_init(void)
878 {
879 	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
880 }
881 
sctp_transport_hashtable_destroy(void)882 void sctp_transport_hashtable_destroy(void)
883 {
884 	rhltable_destroy(&sctp_transport_hashtable);
885 }
886 
sctp_hash_transport(struct sctp_transport * t)887 int sctp_hash_transport(struct sctp_transport *t)
888 {
889 	struct sctp_transport *transport;
890 	struct rhlist_head *tmp, *list;
891 	struct sctp_hash_cmp_arg arg;
892 	int err;
893 
894 	if (t->asoc->temp)
895 		return 0;
896 
897 	arg.net   = sock_net(t->asoc->base.sk);
898 	arg.paddr = &t->ipaddr;
899 	arg.lport = htons(t->asoc->base.bind_addr.port);
900 
901 	rcu_read_lock();
902 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
903 			       sctp_hash_params);
904 
905 	rhl_for_each_entry_rcu(transport, tmp, list, node)
906 		if (transport->asoc->ep == t->asoc->ep) {
907 			rcu_read_unlock();
908 			return -EEXIST;
909 		}
910 	rcu_read_unlock();
911 
912 	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
913 				  &t->node, sctp_hash_params);
914 	if (err)
915 		pr_err_once("insert transport fail, errno %d\n", err);
916 
917 	return err;
918 }
919 
sctp_unhash_transport(struct sctp_transport * t)920 void sctp_unhash_transport(struct sctp_transport *t)
921 {
922 	if (t->asoc->temp)
923 		return;
924 
925 	rhltable_remove(&sctp_transport_hashtable, &t->node,
926 			sctp_hash_params);
927 }
928 
929 /* return a transport with holding it */
sctp_addrs_lookup_transport(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr)930 struct sctp_transport *sctp_addrs_lookup_transport(
931 				struct net *net,
932 				const union sctp_addr *laddr,
933 				const union sctp_addr *paddr)
934 {
935 	struct rhlist_head *tmp, *list;
936 	struct sctp_transport *t;
937 	struct sctp_hash_cmp_arg arg = {
938 		.paddr = paddr,
939 		.net   = net,
940 		.lport = laddr->v4.sin_port,
941 	};
942 
943 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
944 			       sctp_hash_params);
945 
946 	rhl_for_each_entry_rcu(t, tmp, list, node) {
947 		if (!sctp_transport_hold(t))
948 			continue;
949 
950 		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
951 					 laddr, sctp_sk(t->asoc->base.sk)))
952 			return t;
953 		sctp_transport_put(t);
954 	}
955 
956 	return NULL;
957 }
958 
959 /* return a transport without holding it, as it's only used under sock lock */
sctp_epaddr_lookup_transport(const struct sctp_endpoint * ep,const union sctp_addr * paddr)960 struct sctp_transport *sctp_epaddr_lookup_transport(
961 				const struct sctp_endpoint *ep,
962 				const union sctp_addr *paddr)
963 {
964 	struct net *net = sock_net(ep->base.sk);
965 	struct rhlist_head *tmp, *list;
966 	struct sctp_transport *t;
967 	struct sctp_hash_cmp_arg arg = {
968 		.paddr = paddr,
969 		.net   = net,
970 		.lport = htons(ep->base.bind_addr.port),
971 	};
972 
973 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
974 			       sctp_hash_params);
975 
976 	rhl_for_each_entry_rcu(t, tmp, list, node)
977 		if (ep == t->asoc->ep)
978 			return t;
979 
980 	return NULL;
981 }
982 
983 /* Look up an association. */
__sctp_lookup_association(struct net * net,const union sctp_addr * local,const union sctp_addr * peer,struct sctp_transport ** pt)984 static struct sctp_association *__sctp_lookup_association(
985 					struct net *net,
986 					const union sctp_addr *local,
987 					const union sctp_addr *peer,
988 					struct sctp_transport **pt)
989 {
990 	struct sctp_transport *t;
991 	struct sctp_association *asoc = NULL;
992 
993 	t = sctp_addrs_lookup_transport(net, local, peer);
994 	if (!t)
995 		goto out;
996 
997 	asoc = t->asoc;
998 	*pt = t;
999 
1000 out:
1001 	return asoc;
1002 }
1003 
1004 /* Look up an association. protected by RCU read lock */
1005 static
sctp_lookup_association(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr,struct sctp_transport ** transportp)1006 struct sctp_association *sctp_lookup_association(struct net *net,
1007 						 const union sctp_addr *laddr,
1008 						 const union sctp_addr *paddr,
1009 						 struct sctp_transport **transportp)
1010 {
1011 	struct sctp_association *asoc;
1012 
1013 	rcu_read_lock();
1014 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1015 	rcu_read_unlock();
1016 
1017 	return asoc;
1018 }
1019 
1020 /* Is there an association matching the given local and peer addresses? */
sctp_has_association(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr)1021 bool sctp_has_association(struct net *net,
1022 			  const union sctp_addr *laddr,
1023 			  const union sctp_addr *paddr)
1024 {
1025 	struct sctp_transport *transport;
1026 
1027 	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1028 		sctp_transport_put(transport);
1029 		return true;
1030 	}
1031 
1032 	return false;
1033 }
1034 
1035 /*
1036  * SCTP Implementors Guide, 2.18 Handling of address
1037  * parameters within the INIT or INIT-ACK.
1038  *
1039  * D) When searching for a matching TCB upon reception of an INIT
1040  *    or INIT-ACK chunk the receiver SHOULD use not only the
1041  *    source address of the packet (containing the INIT or
1042  *    INIT-ACK) but the receiver SHOULD also use all valid
1043  *    address parameters contained within the chunk.
1044  *
1045  * 2.18.3 Solution description
1046  *
1047  * This new text clearly specifies to an implementor the need
1048  * to look within the INIT or INIT-ACK. Any implementation that
1049  * does not do this, may not be able to establish associations
1050  * in certain circumstances.
1051  *
1052  */
__sctp_rcv_init_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1053 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1054 	struct sk_buff *skb,
1055 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1056 {
1057 	struct sctp_association *asoc;
1058 	union sctp_addr addr;
1059 	union sctp_addr *paddr = &addr;
1060 	struct sctphdr *sh = sctp_hdr(skb);
1061 	union sctp_params params;
1062 	struct sctp_init_chunk *init;
1063 	struct sctp_af *af;
1064 
1065 	/*
1066 	 * This code will NOT touch anything inside the chunk--it is
1067 	 * strictly READ-ONLY.
1068 	 *
1069 	 * RFC 2960 3  SCTP packet Format
1070 	 *
1071 	 * Multiple chunks can be bundled into one SCTP packet up to
1072 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1073 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1074 	 * other chunk in a packet.  See Section 6.10 for more details
1075 	 * on chunk bundling.
1076 	 */
1077 
1078 	/* Find the start of the TLVs and the end of the chunk.  This is
1079 	 * the region we search for address parameters.
1080 	 */
1081 	init = (struct sctp_init_chunk *)skb->data;
1082 
1083 	/* Walk the parameters looking for embedded addresses. */
1084 	sctp_walk_params(params, init, init_hdr.params) {
1085 
1086 		/* Note: Ignoring hostname addresses. */
1087 		af = sctp_get_af_specific(param_type2af(params.p->type));
1088 		if (!af)
1089 			continue;
1090 
1091 		if (!af->from_addr_param(paddr, params.addr, sh->source, 0))
1092 			continue;
1093 
1094 		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1095 		if (asoc)
1096 			return asoc;
1097 	}
1098 
1099 	return NULL;
1100 }
1101 
1102 /* ADD-IP, Section 5.2
1103  * When an endpoint receives an ASCONF Chunk from the remote peer
1104  * special procedures may be needed to identify the association the
1105  * ASCONF Chunk is associated with. To properly find the association
1106  * the following procedures SHOULD be followed:
1107  *
1108  * D2) If the association is not found, use the address found in the
1109  * Address Parameter TLV combined with the port number found in the
1110  * SCTP common header. If found proceed to rule D4.
1111  *
1112  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1113  * address found in the ASCONF Address Parameter TLV of each of the
1114  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1115  */
__sctp_rcv_asconf_lookup(struct net * net,struct sctp_chunkhdr * ch,const union sctp_addr * laddr,__be16 peer_port,struct sctp_transport ** transportp)1116 static struct sctp_association *__sctp_rcv_asconf_lookup(
1117 					struct net *net,
1118 					struct sctp_chunkhdr *ch,
1119 					const union sctp_addr *laddr,
1120 					__be16 peer_port,
1121 					struct sctp_transport **transportp)
1122 {
1123 	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1124 	struct sctp_af *af;
1125 	union sctp_addr_param *param;
1126 	union sctp_addr paddr;
1127 
1128 	if (ntohs(ch->length) < sizeof(*asconf) + sizeof(struct sctp_paramhdr))
1129 		return NULL;
1130 
1131 	/* Skip over the ADDIP header and find the Address parameter */
1132 	param = (union sctp_addr_param *)(asconf + 1);
1133 
1134 	af = sctp_get_af_specific(param_type2af(param->p.type));
1135 	if (unlikely(!af))
1136 		return NULL;
1137 
1138 	if (!af->from_addr_param(&paddr, param, peer_port, 0))
1139 		return NULL;
1140 
1141 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1142 }
1143 
1144 
1145 /* SCTP-AUTH, Section 6.3:
1146 *    If the receiver does not find a STCB for a packet containing an AUTH
1147 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1148 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1149 *    association.
1150 *
1151 * This means that any chunks that can help us identify the association need
1152 * to be looked at to find this association.
1153 */
__sctp_rcv_walk_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1154 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1155 				      struct sk_buff *skb,
1156 				      const union sctp_addr *laddr,
1157 				      struct sctp_transport **transportp)
1158 {
1159 	struct sctp_association *asoc = NULL;
1160 	struct sctp_chunkhdr *ch;
1161 	int have_auth = 0;
1162 	unsigned int chunk_num = 1;
1163 	__u8 *ch_end;
1164 
1165 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1166 	 * to help us find the association.
1167 	 */
1168 	ch = (struct sctp_chunkhdr *)skb->data;
1169 	do {
1170 		/* Break out if chunk length is less then minimal. */
1171 		if (ntohs(ch->length) < sizeof(*ch))
1172 			break;
1173 
1174 		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1175 		if (ch_end > skb_tail_pointer(skb))
1176 			break;
1177 
1178 		switch (ch->type) {
1179 		case SCTP_CID_AUTH:
1180 			have_auth = chunk_num;
1181 			break;
1182 
1183 		case SCTP_CID_COOKIE_ECHO:
1184 			/* If a packet arrives containing an AUTH chunk as
1185 			 * a first chunk, a COOKIE-ECHO chunk as the second
1186 			 * chunk, and possibly more chunks after them, and
1187 			 * the receiver does not have an STCB for that
1188 			 * packet, then authentication is based on
1189 			 * the contents of the COOKIE- ECHO chunk.
1190 			 */
1191 			if (have_auth == 1 && chunk_num == 2)
1192 				return NULL;
1193 			break;
1194 
1195 		case SCTP_CID_ASCONF:
1196 			if (have_auth || net->sctp.addip_noauth)
1197 				asoc = __sctp_rcv_asconf_lookup(
1198 						net, ch, laddr,
1199 						sctp_hdr(skb)->source,
1200 						transportp);
1201 		default:
1202 			break;
1203 		}
1204 
1205 		if (asoc)
1206 			break;
1207 
1208 		ch = (struct sctp_chunkhdr *)ch_end;
1209 		chunk_num++;
1210 	} while (ch_end + sizeof(*ch) < skb_tail_pointer(skb));
1211 
1212 	return asoc;
1213 }
1214 
1215 /*
1216  * There are circumstances when we need to look inside the SCTP packet
1217  * for information to help us find the association.   Examples
1218  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1219  * chunks.
1220  */
__sctp_rcv_lookup_harder(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1221 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1222 				      struct sk_buff *skb,
1223 				      const union sctp_addr *laddr,
1224 				      struct sctp_transport **transportp)
1225 {
1226 	struct sctp_chunkhdr *ch;
1227 
1228 	/* We do not allow GSO frames here as we need to linearize and
1229 	 * then cannot guarantee frame boundaries. This shouldn't be an
1230 	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1231 	 * those cannot be on GSO-style anyway.
1232 	 */
1233 	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1234 		return NULL;
1235 
1236 	ch = (struct sctp_chunkhdr *)skb->data;
1237 
1238 	/* The code below will attempt to walk the chunk and extract
1239 	 * parameter information.  Before we do that, we need to verify
1240 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1241 	 * walk off the end.
1242 	 */
1243 	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1244 		return NULL;
1245 
1246 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1247 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1248 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1249 
1250 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1251 }
1252 
1253 /* Lookup an association for an inbound skb. */
__sctp_rcv_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * paddr,const union sctp_addr * laddr,struct sctp_transport ** transportp)1254 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1255 				      struct sk_buff *skb,
1256 				      const union sctp_addr *paddr,
1257 				      const union sctp_addr *laddr,
1258 				      struct sctp_transport **transportp)
1259 {
1260 	struct sctp_association *asoc;
1261 
1262 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1263 	if (asoc)
1264 		goto out;
1265 
1266 	/* Further lookup for INIT/INIT-ACK packets.
1267 	 * SCTP Implementors Guide, 2.18 Handling of address
1268 	 * parameters within the INIT or INIT-ACK.
1269 	 */
1270 	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1271 	if (asoc)
1272 		goto out;
1273 
1274 	if (paddr->sa.sa_family == AF_INET)
1275 		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1276 			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1277 			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1278 	else
1279 		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1280 			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1281 			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1282 
1283 out:
1284 	return asoc;
1285 }
1286