• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/string_helpers.h>
24 #include <linux/uaccess.h>
25 #include <linux/poll.h>
26 #include <linux/seq_file.h>
27 #include <linux/proc_fs.h>
28 #include <linux/net.h>
29 #include <linux/workqueue.h>
30 #include <linux/mutex.h>
31 #include <linux/pagemap.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include "netns.h"
38 
39 #define	 RPCDBG_FACILITY RPCDBG_CACHE
40 
41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
43 
cache_init(struct cache_head * h,struct cache_detail * detail)44 static void cache_init(struct cache_head *h, struct cache_detail *detail)
45 {
46 	time_t now = seconds_since_boot();
47 	INIT_HLIST_NODE(&h->cache_list);
48 	h->flags = 0;
49 	kref_init(&h->ref);
50 	h->expiry_time = now + CACHE_NEW_EXPIRY;
51 	if (now <= detail->flush_time)
52 		/* ensure it isn't already expired */
53 		now = detail->flush_time + 1;
54 	h->last_refresh = now;
55 }
56 
57 static void cache_fresh_unlocked(struct cache_head *head,
58 				struct cache_detail *detail);
59 
sunrpc_cache_lookup(struct cache_detail * detail,struct cache_head * key,int hash)60 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
61 				       struct cache_head *key, int hash)
62 {
63 	struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL;
64 	struct hlist_head *head;
65 
66 	head = &detail->hash_table[hash];
67 
68 	read_lock(&detail->hash_lock);
69 
70 	hlist_for_each_entry(tmp, head, cache_list) {
71 		if (detail->match(tmp, key)) {
72 			if (cache_is_expired(detail, tmp))
73 				/* This entry is expired, we will discard it. */
74 				break;
75 			cache_get(tmp);
76 			read_unlock(&detail->hash_lock);
77 			return tmp;
78 		}
79 	}
80 	read_unlock(&detail->hash_lock);
81 	/* Didn't find anything, insert an empty entry */
82 
83 	new = detail->alloc();
84 	if (!new)
85 		return NULL;
86 	/* must fully initialise 'new', else
87 	 * we might get lose if we need to
88 	 * cache_put it soon.
89 	 */
90 	cache_init(new, detail);
91 	detail->init(new, key);
92 
93 	write_lock(&detail->hash_lock);
94 
95 	/* check if entry appeared while we slept */
96 	hlist_for_each_entry(tmp, head, cache_list) {
97 		if (detail->match(tmp, key)) {
98 			if (cache_is_expired(detail, tmp)) {
99 				hlist_del_init(&tmp->cache_list);
100 				detail->entries --;
101 				freeme = tmp;
102 				break;
103 			}
104 			cache_get(tmp);
105 			write_unlock(&detail->hash_lock);
106 			cache_put(new, detail);
107 			return tmp;
108 		}
109 	}
110 
111 	hlist_add_head(&new->cache_list, head);
112 	detail->entries++;
113 	cache_get(new);
114 	write_unlock(&detail->hash_lock);
115 
116 	if (freeme) {
117 		cache_fresh_unlocked(freeme, detail);
118 		cache_put(freeme, detail);
119 	}
120 	return new;
121 }
122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123 
124 
125 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126 
cache_fresh_locked(struct cache_head * head,time_t expiry,struct cache_detail * detail)127 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
128 			       struct cache_detail *detail)
129 {
130 	time_t now = seconds_since_boot();
131 	if (now <= detail->flush_time)
132 		/* ensure it isn't immediately treated as expired */
133 		now = detail->flush_time + 1;
134 	head->expiry_time = expiry;
135 	head->last_refresh = now;
136 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
137 	set_bit(CACHE_VALID, &head->flags);
138 }
139 
cache_fresh_unlocked(struct cache_head * head,struct cache_detail * detail)140 static void cache_fresh_unlocked(struct cache_head *head,
141 				 struct cache_detail *detail)
142 {
143 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
144 		cache_revisit_request(head);
145 		cache_dequeue(detail, head);
146 	}
147 }
148 
sunrpc_cache_update(struct cache_detail * detail,struct cache_head * new,struct cache_head * old,int hash)149 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
150 				       struct cache_head *new, struct cache_head *old, int hash)
151 {
152 	/* The 'old' entry is to be replaced by 'new'.
153 	 * If 'old' is not VALID, we update it directly,
154 	 * otherwise we need to replace it
155 	 */
156 	struct cache_head *tmp;
157 
158 	if (!test_bit(CACHE_VALID, &old->flags)) {
159 		write_lock(&detail->hash_lock);
160 		if (!test_bit(CACHE_VALID, &old->flags)) {
161 			if (test_bit(CACHE_NEGATIVE, &new->flags))
162 				set_bit(CACHE_NEGATIVE, &old->flags);
163 			else
164 				detail->update(old, new);
165 			cache_fresh_locked(old, new->expiry_time, detail);
166 			write_unlock(&detail->hash_lock);
167 			cache_fresh_unlocked(old, detail);
168 			return old;
169 		}
170 		write_unlock(&detail->hash_lock);
171 	}
172 	/* We need to insert a new entry */
173 	tmp = detail->alloc();
174 	if (!tmp) {
175 		cache_put(old, detail);
176 		return NULL;
177 	}
178 	cache_init(tmp, detail);
179 	detail->init(tmp, old);
180 
181 	write_lock(&detail->hash_lock);
182 	if (test_bit(CACHE_NEGATIVE, &new->flags))
183 		set_bit(CACHE_NEGATIVE, &tmp->flags);
184 	else
185 		detail->update(tmp, new);
186 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
187 	detail->entries++;
188 	cache_get(tmp);
189 	cache_fresh_locked(tmp, new->expiry_time, detail);
190 	cache_fresh_locked(old, 0, detail);
191 	write_unlock(&detail->hash_lock);
192 	cache_fresh_unlocked(tmp, detail);
193 	cache_fresh_unlocked(old, detail);
194 	cache_put(old, detail);
195 	return tmp;
196 }
197 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
198 
cache_make_upcall(struct cache_detail * cd,struct cache_head * h)199 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
200 {
201 	if (cd->cache_upcall)
202 		return cd->cache_upcall(cd, h);
203 	return sunrpc_cache_pipe_upcall(cd, h);
204 }
205 
cache_is_valid(struct cache_head * h)206 static inline int cache_is_valid(struct cache_head *h)
207 {
208 	if (!test_bit(CACHE_VALID, &h->flags))
209 		return -EAGAIN;
210 	else {
211 		/* entry is valid */
212 		if (test_bit(CACHE_NEGATIVE, &h->flags))
213 			return -ENOENT;
214 		else {
215 			/*
216 			 * In combination with write barrier in
217 			 * sunrpc_cache_update, ensures that anyone
218 			 * using the cache entry after this sees the
219 			 * updated contents:
220 			 */
221 			smp_rmb();
222 			return 0;
223 		}
224 	}
225 }
226 
try_to_negate_entry(struct cache_detail * detail,struct cache_head * h)227 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
228 {
229 	int rv;
230 
231 	write_lock(&detail->hash_lock);
232 	rv = cache_is_valid(h);
233 	if (rv == -EAGAIN) {
234 		set_bit(CACHE_NEGATIVE, &h->flags);
235 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
236 				   detail);
237 		rv = -ENOENT;
238 	}
239 	write_unlock(&detail->hash_lock);
240 	cache_fresh_unlocked(h, detail);
241 	return rv;
242 }
243 
244 /*
245  * This is the generic cache management routine for all
246  * the authentication caches.
247  * It checks the currency of a cache item and will (later)
248  * initiate an upcall to fill it if needed.
249  *
250  *
251  * Returns 0 if the cache_head can be used, or cache_puts it and returns
252  * -EAGAIN if upcall is pending and request has been queued
253  * -ETIMEDOUT if upcall failed or request could not be queue or
254  *           upcall completed but item is still invalid (implying that
255  *           the cache item has been replaced with a newer one).
256  * -ENOENT if cache entry was negative
257  */
cache_check(struct cache_detail * detail,struct cache_head * h,struct cache_req * rqstp)258 int cache_check(struct cache_detail *detail,
259 		    struct cache_head *h, struct cache_req *rqstp)
260 {
261 	int rv;
262 	long refresh_age, age;
263 
264 	/* First decide return status as best we can */
265 	rv = cache_is_valid(h);
266 
267 	/* now see if we want to start an upcall */
268 	refresh_age = (h->expiry_time - h->last_refresh);
269 	age = seconds_since_boot() - h->last_refresh;
270 
271 	if (rqstp == NULL) {
272 		if (rv == -EAGAIN)
273 			rv = -ENOENT;
274 	} else if (rv == -EAGAIN ||
275 		   (h->expiry_time != 0 && age > refresh_age/2)) {
276 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
277 				refresh_age, age);
278 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
279 			switch (cache_make_upcall(detail, h)) {
280 			case -EINVAL:
281 				rv = try_to_negate_entry(detail, h);
282 				break;
283 			case -EAGAIN:
284 				cache_fresh_unlocked(h, detail);
285 				break;
286 			}
287 		}
288 	}
289 
290 	if (rv == -EAGAIN) {
291 		if (!cache_defer_req(rqstp, h)) {
292 			/*
293 			 * Request was not deferred; handle it as best
294 			 * we can ourselves:
295 			 */
296 			rv = cache_is_valid(h);
297 			if (rv == -EAGAIN)
298 				rv = -ETIMEDOUT;
299 		}
300 	}
301 	if (rv)
302 		cache_put(h, detail);
303 	return rv;
304 }
305 EXPORT_SYMBOL_GPL(cache_check);
306 
307 /*
308  * caches need to be periodically cleaned.
309  * For this we maintain a list of cache_detail and
310  * a current pointer into that list and into the table
311  * for that entry.
312  *
313  * Each time cache_clean is called it finds the next non-empty entry
314  * in the current table and walks the list in that entry
315  * looking for entries that can be removed.
316  *
317  * An entry gets removed if:
318  * - The expiry is before current time
319  * - The last_refresh time is before the flush_time for that cache
320  *
321  * later we might drop old entries with non-NEVER expiry if that table
322  * is getting 'full' for some definition of 'full'
323  *
324  * The question of "how often to scan a table" is an interesting one
325  * and is answered in part by the use of the "nextcheck" field in the
326  * cache_detail.
327  * When a scan of a table begins, the nextcheck field is set to a time
328  * that is well into the future.
329  * While scanning, if an expiry time is found that is earlier than the
330  * current nextcheck time, nextcheck is set to that expiry time.
331  * If the flush_time is ever set to a time earlier than the nextcheck
332  * time, the nextcheck time is then set to that flush_time.
333  *
334  * A table is then only scanned if the current time is at least
335  * the nextcheck time.
336  *
337  */
338 
339 static LIST_HEAD(cache_list);
340 static DEFINE_SPINLOCK(cache_list_lock);
341 static struct cache_detail *current_detail;
342 static int current_index;
343 
344 static void do_cache_clean(struct work_struct *work);
345 static struct delayed_work cache_cleaner;
346 
sunrpc_init_cache_detail(struct cache_detail * cd)347 void sunrpc_init_cache_detail(struct cache_detail *cd)
348 {
349 	rwlock_init(&cd->hash_lock);
350 	INIT_LIST_HEAD(&cd->queue);
351 	spin_lock(&cache_list_lock);
352 	cd->nextcheck = 0;
353 	cd->entries = 0;
354 	atomic_set(&cd->readers, 0);
355 	cd->last_close = 0;
356 	cd->last_warn = -1;
357 	list_add(&cd->others, &cache_list);
358 	spin_unlock(&cache_list_lock);
359 
360 	/* start the cleaning process */
361 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
362 }
363 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
364 
sunrpc_destroy_cache_detail(struct cache_detail * cd)365 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
366 {
367 	cache_purge(cd);
368 	spin_lock(&cache_list_lock);
369 	write_lock(&cd->hash_lock);
370 	if (current_detail == cd)
371 		current_detail = NULL;
372 	list_del_init(&cd->others);
373 	write_unlock(&cd->hash_lock);
374 	spin_unlock(&cache_list_lock);
375 	if (list_empty(&cache_list)) {
376 		/* module must be being unloaded so its safe to kill the worker */
377 		cancel_delayed_work_sync(&cache_cleaner);
378 	}
379 }
380 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
381 
382 /* clean cache tries to find something to clean
383  * and cleans it.
384  * It returns 1 if it cleaned something,
385  *            0 if it didn't find anything this time
386  *           -1 if it fell off the end of the list.
387  */
cache_clean(void)388 static int cache_clean(void)
389 {
390 	int rv = 0;
391 	struct list_head *next;
392 
393 	spin_lock(&cache_list_lock);
394 
395 	/* find a suitable table if we don't already have one */
396 	while (current_detail == NULL ||
397 	    current_index >= current_detail->hash_size) {
398 		if (current_detail)
399 			next = current_detail->others.next;
400 		else
401 			next = cache_list.next;
402 		if (next == &cache_list) {
403 			current_detail = NULL;
404 			spin_unlock(&cache_list_lock);
405 			return -1;
406 		}
407 		current_detail = list_entry(next, struct cache_detail, others);
408 		if (current_detail->nextcheck > seconds_since_boot())
409 			current_index = current_detail->hash_size;
410 		else {
411 			current_index = 0;
412 			current_detail->nextcheck = seconds_since_boot()+30*60;
413 		}
414 	}
415 
416 	/* find a non-empty bucket in the table */
417 	while (current_detail &&
418 	       current_index < current_detail->hash_size &&
419 	       hlist_empty(&current_detail->hash_table[current_index]))
420 		current_index++;
421 
422 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
423 
424 	if (current_detail && current_index < current_detail->hash_size) {
425 		struct cache_head *ch = NULL;
426 		struct cache_detail *d;
427 		struct hlist_head *head;
428 		struct hlist_node *tmp;
429 
430 		write_lock(&current_detail->hash_lock);
431 
432 		/* Ok, now to clean this strand */
433 
434 		head = &current_detail->hash_table[current_index];
435 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
436 			if (current_detail->nextcheck > ch->expiry_time)
437 				current_detail->nextcheck = ch->expiry_time+1;
438 			if (!cache_is_expired(current_detail, ch))
439 				continue;
440 
441 			hlist_del_init(&ch->cache_list);
442 			current_detail->entries--;
443 			rv = 1;
444 			break;
445 		}
446 
447 		write_unlock(&current_detail->hash_lock);
448 		d = current_detail;
449 		if (!ch)
450 			current_index ++;
451 		spin_unlock(&cache_list_lock);
452 		if (ch) {
453 			set_bit(CACHE_CLEANED, &ch->flags);
454 			cache_fresh_unlocked(ch, d);
455 			cache_put(ch, d);
456 		}
457 	} else
458 		spin_unlock(&cache_list_lock);
459 
460 	return rv;
461 }
462 
463 /*
464  * We want to regularly clean the cache, so we need to schedule some work ...
465  */
do_cache_clean(struct work_struct * work)466 static void do_cache_clean(struct work_struct *work)
467 {
468 	int delay = 5;
469 	if (cache_clean() == -1)
470 		delay = round_jiffies_relative(30*HZ);
471 
472 	if (list_empty(&cache_list))
473 		delay = 0;
474 
475 	if (delay)
476 		queue_delayed_work(system_power_efficient_wq,
477 				   &cache_cleaner, delay);
478 }
479 
480 
481 /*
482  * Clean all caches promptly.  This just calls cache_clean
483  * repeatedly until we are sure that every cache has had a chance to
484  * be fully cleaned
485  */
cache_flush(void)486 void cache_flush(void)
487 {
488 	while (cache_clean() != -1)
489 		cond_resched();
490 	while (cache_clean() != -1)
491 		cond_resched();
492 }
493 EXPORT_SYMBOL_GPL(cache_flush);
494 
cache_purge(struct cache_detail * detail)495 void cache_purge(struct cache_detail *detail)
496 {
497 	struct cache_head *ch = NULL;
498 	struct hlist_head *head = NULL;
499 	struct hlist_node *tmp = NULL;
500 	int i = 0;
501 
502 	write_lock(&detail->hash_lock);
503 	if (!detail->entries) {
504 		write_unlock(&detail->hash_lock);
505 		return;
506 	}
507 
508 	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
509 	for (i = 0; i < detail->hash_size; i++) {
510 		head = &detail->hash_table[i];
511 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
512 			hlist_del_init(&ch->cache_list);
513 			detail->entries--;
514 
515 			set_bit(CACHE_CLEANED, &ch->flags);
516 			write_unlock(&detail->hash_lock);
517 			cache_fresh_unlocked(ch, detail);
518 			cache_put(ch, detail);
519 			write_lock(&detail->hash_lock);
520 		}
521 	}
522 	write_unlock(&detail->hash_lock);
523 }
524 EXPORT_SYMBOL_GPL(cache_purge);
525 
526 
527 /*
528  * Deferral and Revisiting of Requests.
529  *
530  * If a cache lookup finds a pending entry, we
531  * need to defer the request and revisit it later.
532  * All deferred requests are stored in a hash table,
533  * indexed by "struct cache_head *".
534  * As it may be wasteful to store a whole request
535  * structure, we allow the request to provide a
536  * deferred form, which must contain a
537  * 'struct cache_deferred_req'
538  * This cache_deferred_req contains a method to allow
539  * it to be revisited when cache info is available
540  */
541 
542 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
543 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
544 
545 #define	DFR_MAX	300	/* ??? */
546 
547 static DEFINE_SPINLOCK(cache_defer_lock);
548 static LIST_HEAD(cache_defer_list);
549 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
550 static int cache_defer_cnt;
551 
__unhash_deferred_req(struct cache_deferred_req * dreq)552 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
553 {
554 	hlist_del_init(&dreq->hash);
555 	if (!list_empty(&dreq->recent)) {
556 		list_del_init(&dreq->recent);
557 		cache_defer_cnt--;
558 	}
559 }
560 
__hash_deferred_req(struct cache_deferred_req * dreq,struct cache_head * item)561 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
562 {
563 	int hash = DFR_HASH(item);
564 
565 	INIT_LIST_HEAD(&dreq->recent);
566 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
567 }
568 
setup_deferral(struct cache_deferred_req * dreq,struct cache_head * item,int count_me)569 static void setup_deferral(struct cache_deferred_req *dreq,
570 			   struct cache_head *item,
571 			   int count_me)
572 {
573 
574 	dreq->item = item;
575 
576 	spin_lock(&cache_defer_lock);
577 
578 	__hash_deferred_req(dreq, item);
579 
580 	if (count_me) {
581 		cache_defer_cnt++;
582 		list_add(&dreq->recent, &cache_defer_list);
583 	}
584 
585 	spin_unlock(&cache_defer_lock);
586 
587 }
588 
589 struct thread_deferred_req {
590 	struct cache_deferred_req handle;
591 	struct completion completion;
592 };
593 
cache_restart_thread(struct cache_deferred_req * dreq,int too_many)594 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
595 {
596 	struct thread_deferred_req *dr =
597 		container_of(dreq, struct thread_deferred_req, handle);
598 	complete(&dr->completion);
599 }
600 
cache_wait_req(struct cache_req * req,struct cache_head * item)601 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
602 {
603 	struct thread_deferred_req sleeper;
604 	struct cache_deferred_req *dreq = &sleeper.handle;
605 
606 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
607 	dreq->revisit = cache_restart_thread;
608 
609 	setup_deferral(dreq, item, 0);
610 
611 	if (!test_bit(CACHE_PENDING, &item->flags) ||
612 	    wait_for_completion_interruptible_timeout(
613 		    &sleeper.completion, req->thread_wait) <= 0) {
614 		/* The completion wasn't completed, so we need
615 		 * to clean up
616 		 */
617 		spin_lock(&cache_defer_lock);
618 		if (!hlist_unhashed(&sleeper.handle.hash)) {
619 			__unhash_deferred_req(&sleeper.handle);
620 			spin_unlock(&cache_defer_lock);
621 		} else {
622 			/* cache_revisit_request already removed
623 			 * this from the hash table, but hasn't
624 			 * called ->revisit yet.  It will very soon
625 			 * and we need to wait for it.
626 			 */
627 			spin_unlock(&cache_defer_lock);
628 			wait_for_completion(&sleeper.completion);
629 		}
630 	}
631 }
632 
cache_limit_defers(void)633 static void cache_limit_defers(void)
634 {
635 	/* Make sure we haven't exceed the limit of allowed deferred
636 	 * requests.
637 	 */
638 	struct cache_deferred_req *discard = NULL;
639 
640 	if (cache_defer_cnt <= DFR_MAX)
641 		return;
642 
643 	spin_lock(&cache_defer_lock);
644 
645 	/* Consider removing either the first or the last */
646 	if (cache_defer_cnt > DFR_MAX) {
647 		if (prandom_u32() & 1)
648 			discard = list_entry(cache_defer_list.next,
649 					     struct cache_deferred_req, recent);
650 		else
651 			discard = list_entry(cache_defer_list.prev,
652 					     struct cache_deferred_req, recent);
653 		__unhash_deferred_req(discard);
654 	}
655 	spin_unlock(&cache_defer_lock);
656 	if (discard)
657 		discard->revisit(discard, 1);
658 }
659 
660 /* Return true if and only if a deferred request is queued. */
cache_defer_req(struct cache_req * req,struct cache_head * item)661 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
662 {
663 	struct cache_deferred_req *dreq;
664 
665 	if (req->thread_wait) {
666 		cache_wait_req(req, item);
667 		if (!test_bit(CACHE_PENDING, &item->flags))
668 			return false;
669 	}
670 	dreq = req->defer(req);
671 	if (dreq == NULL)
672 		return false;
673 	setup_deferral(dreq, item, 1);
674 	if (!test_bit(CACHE_PENDING, &item->flags))
675 		/* Bit could have been cleared before we managed to
676 		 * set up the deferral, so need to revisit just in case
677 		 */
678 		cache_revisit_request(item);
679 
680 	cache_limit_defers();
681 	return true;
682 }
683 
cache_revisit_request(struct cache_head * item)684 static void cache_revisit_request(struct cache_head *item)
685 {
686 	struct cache_deferred_req *dreq;
687 	struct list_head pending;
688 	struct hlist_node *tmp;
689 	int hash = DFR_HASH(item);
690 
691 	INIT_LIST_HEAD(&pending);
692 	spin_lock(&cache_defer_lock);
693 
694 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
695 		if (dreq->item == item) {
696 			__unhash_deferred_req(dreq);
697 			list_add(&dreq->recent, &pending);
698 		}
699 
700 	spin_unlock(&cache_defer_lock);
701 
702 	while (!list_empty(&pending)) {
703 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
704 		list_del_init(&dreq->recent);
705 		dreq->revisit(dreq, 0);
706 	}
707 }
708 
cache_clean_deferred(void * owner)709 void cache_clean_deferred(void *owner)
710 {
711 	struct cache_deferred_req *dreq, *tmp;
712 	struct list_head pending;
713 
714 
715 	INIT_LIST_HEAD(&pending);
716 	spin_lock(&cache_defer_lock);
717 
718 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
719 		if (dreq->owner == owner) {
720 			__unhash_deferred_req(dreq);
721 			list_add(&dreq->recent, &pending);
722 		}
723 	}
724 	spin_unlock(&cache_defer_lock);
725 
726 	while (!list_empty(&pending)) {
727 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
728 		list_del_init(&dreq->recent);
729 		dreq->revisit(dreq, 1);
730 	}
731 }
732 
733 /*
734  * communicate with user-space
735  *
736  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
737  * On read, you get a full request, or block.
738  * On write, an update request is processed.
739  * Poll works if anything to read, and always allows write.
740  *
741  * Implemented by linked list of requests.  Each open file has
742  * a ->private that also exists in this list.  New requests are added
743  * to the end and may wakeup and preceding readers.
744  * New readers are added to the head.  If, on read, an item is found with
745  * CACHE_UPCALLING clear, we free it from the list.
746  *
747  */
748 
749 static DEFINE_SPINLOCK(queue_lock);
750 static DEFINE_MUTEX(queue_io_mutex);
751 
752 struct cache_queue {
753 	struct list_head	list;
754 	int			reader;	/* if 0, then request */
755 };
756 struct cache_request {
757 	struct cache_queue	q;
758 	struct cache_head	*item;
759 	char			* buf;
760 	int			len;
761 	int			readers;
762 };
763 struct cache_reader {
764 	struct cache_queue	q;
765 	int			offset;	/* if non-0, we have a refcnt on next request */
766 };
767 
cache_request(struct cache_detail * detail,struct cache_request * crq)768 static int cache_request(struct cache_detail *detail,
769 			       struct cache_request *crq)
770 {
771 	char *bp = crq->buf;
772 	int len = PAGE_SIZE;
773 
774 	detail->cache_request(detail, crq->item, &bp, &len);
775 	if (len < 0)
776 		return -EAGAIN;
777 	return PAGE_SIZE - len;
778 }
779 
cache_read(struct file * filp,char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)780 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
781 			  loff_t *ppos, struct cache_detail *cd)
782 {
783 	struct cache_reader *rp = filp->private_data;
784 	struct cache_request *rq;
785 	struct inode *inode = file_inode(filp);
786 	int err;
787 
788 	if (count == 0)
789 		return 0;
790 
791 	inode_lock(inode); /* protect against multiple concurrent
792 			      * readers on this file */
793  again:
794 	spin_lock(&queue_lock);
795 	/* need to find next request */
796 	while (rp->q.list.next != &cd->queue &&
797 	       list_entry(rp->q.list.next, struct cache_queue, list)
798 	       ->reader) {
799 		struct list_head *next = rp->q.list.next;
800 		list_move(&rp->q.list, next);
801 	}
802 	if (rp->q.list.next == &cd->queue) {
803 		spin_unlock(&queue_lock);
804 		inode_unlock(inode);
805 		WARN_ON_ONCE(rp->offset);
806 		return 0;
807 	}
808 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
809 	WARN_ON_ONCE(rq->q.reader);
810 	if (rp->offset == 0)
811 		rq->readers++;
812 	spin_unlock(&queue_lock);
813 
814 	if (rq->len == 0) {
815 		err = cache_request(cd, rq);
816 		if (err < 0)
817 			goto out;
818 		rq->len = err;
819 	}
820 
821 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
822 		err = -EAGAIN;
823 		spin_lock(&queue_lock);
824 		list_move(&rp->q.list, &rq->q.list);
825 		spin_unlock(&queue_lock);
826 	} else {
827 		if (rp->offset + count > rq->len)
828 			count = rq->len - rp->offset;
829 		err = -EFAULT;
830 		if (copy_to_user(buf, rq->buf + rp->offset, count))
831 			goto out;
832 		rp->offset += count;
833 		if (rp->offset >= rq->len) {
834 			rp->offset = 0;
835 			spin_lock(&queue_lock);
836 			list_move(&rp->q.list, &rq->q.list);
837 			spin_unlock(&queue_lock);
838 		}
839 		err = 0;
840 	}
841  out:
842 	if (rp->offset == 0) {
843 		/* need to release rq */
844 		spin_lock(&queue_lock);
845 		rq->readers--;
846 		if (rq->readers == 0 &&
847 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
848 			list_del(&rq->q.list);
849 			spin_unlock(&queue_lock);
850 			cache_put(rq->item, cd);
851 			kfree(rq->buf);
852 			kfree(rq);
853 		} else
854 			spin_unlock(&queue_lock);
855 	}
856 	if (err == -EAGAIN)
857 		goto again;
858 	inode_unlock(inode);
859 	return err ? err :  count;
860 }
861 
cache_do_downcall(char * kaddr,const char __user * buf,size_t count,struct cache_detail * cd)862 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
863 				 size_t count, struct cache_detail *cd)
864 {
865 	ssize_t ret;
866 
867 	if (count == 0)
868 		return -EINVAL;
869 	if (copy_from_user(kaddr, buf, count))
870 		return -EFAULT;
871 	kaddr[count] = '\0';
872 	ret = cd->cache_parse(cd, kaddr, count);
873 	if (!ret)
874 		ret = count;
875 	return ret;
876 }
877 
cache_slow_downcall(const char __user * buf,size_t count,struct cache_detail * cd)878 static ssize_t cache_slow_downcall(const char __user *buf,
879 				   size_t count, struct cache_detail *cd)
880 {
881 	static char write_buf[8192]; /* protected by queue_io_mutex */
882 	ssize_t ret = -EINVAL;
883 
884 	if (count >= sizeof(write_buf))
885 		goto out;
886 	mutex_lock(&queue_io_mutex);
887 	ret = cache_do_downcall(write_buf, buf, count, cd);
888 	mutex_unlock(&queue_io_mutex);
889 out:
890 	return ret;
891 }
892 
cache_downcall(struct address_space * mapping,const char __user * buf,size_t count,struct cache_detail * cd)893 static ssize_t cache_downcall(struct address_space *mapping,
894 			      const char __user *buf,
895 			      size_t count, struct cache_detail *cd)
896 {
897 	struct page *page;
898 	char *kaddr;
899 	ssize_t ret = -ENOMEM;
900 
901 	if (count >= PAGE_SIZE)
902 		goto out_slow;
903 
904 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
905 	if (!page)
906 		goto out_slow;
907 
908 	kaddr = kmap(page);
909 	ret = cache_do_downcall(kaddr, buf, count, cd);
910 	kunmap(page);
911 	unlock_page(page);
912 	put_page(page);
913 	return ret;
914 out_slow:
915 	return cache_slow_downcall(buf, count, cd);
916 }
917 
cache_write(struct file * filp,const char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)918 static ssize_t cache_write(struct file *filp, const char __user *buf,
919 			   size_t count, loff_t *ppos,
920 			   struct cache_detail *cd)
921 {
922 	struct address_space *mapping = filp->f_mapping;
923 	struct inode *inode = file_inode(filp);
924 	ssize_t ret = -EINVAL;
925 
926 	if (!cd->cache_parse)
927 		goto out;
928 
929 	inode_lock(inode);
930 	ret = cache_downcall(mapping, buf, count, cd);
931 	inode_unlock(inode);
932 out:
933 	return ret;
934 }
935 
936 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
937 
cache_poll(struct file * filp,poll_table * wait,struct cache_detail * cd)938 static __poll_t cache_poll(struct file *filp, poll_table *wait,
939 			       struct cache_detail *cd)
940 {
941 	__poll_t mask;
942 	struct cache_reader *rp = filp->private_data;
943 	struct cache_queue *cq;
944 
945 	poll_wait(filp, &queue_wait, wait);
946 
947 	/* alway allow write */
948 	mask = EPOLLOUT | EPOLLWRNORM;
949 
950 	if (!rp)
951 		return mask;
952 
953 	spin_lock(&queue_lock);
954 
955 	for (cq= &rp->q; &cq->list != &cd->queue;
956 	     cq = list_entry(cq->list.next, struct cache_queue, list))
957 		if (!cq->reader) {
958 			mask |= EPOLLIN | EPOLLRDNORM;
959 			break;
960 		}
961 	spin_unlock(&queue_lock);
962 	return mask;
963 }
964 
cache_ioctl(struct inode * ino,struct file * filp,unsigned int cmd,unsigned long arg,struct cache_detail * cd)965 static int cache_ioctl(struct inode *ino, struct file *filp,
966 		       unsigned int cmd, unsigned long arg,
967 		       struct cache_detail *cd)
968 {
969 	int len = 0;
970 	struct cache_reader *rp = filp->private_data;
971 	struct cache_queue *cq;
972 
973 	if (cmd != FIONREAD || !rp)
974 		return -EINVAL;
975 
976 	spin_lock(&queue_lock);
977 
978 	/* only find the length remaining in current request,
979 	 * or the length of the next request
980 	 */
981 	for (cq= &rp->q; &cq->list != &cd->queue;
982 	     cq = list_entry(cq->list.next, struct cache_queue, list))
983 		if (!cq->reader) {
984 			struct cache_request *cr =
985 				container_of(cq, struct cache_request, q);
986 			len = cr->len - rp->offset;
987 			break;
988 		}
989 	spin_unlock(&queue_lock);
990 
991 	return put_user(len, (int __user *)arg);
992 }
993 
cache_open(struct inode * inode,struct file * filp,struct cache_detail * cd)994 static int cache_open(struct inode *inode, struct file *filp,
995 		      struct cache_detail *cd)
996 {
997 	struct cache_reader *rp = NULL;
998 
999 	if (!cd || !try_module_get(cd->owner))
1000 		return -EACCES;
1001 	nonseekable_open(inode, filp);
1002 	if (filp->f_mode & FMODE_READ) {
1003 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1004 		if (!rp) {
1005 			module_put(cd->owner);
1006 			return -ENOMEM;
1007 		}
1008 		rp->offset = 0;
1009 		rp->q.reader = 1;
1010 		atomic_inc(&cd->readers);
1011 		spin_lock(&queue_lock);
1012 		list_add(&rp->q.list, &cd->queue);
1013 		spin_unlock(&queue_lock);
1014 	}
1015 	filp->private_data = rp;
1016 	return 0;
1017 }
1018 
cache_release(struct inode * inode,struct file * filp,struct cache_detail * cd)1019 static int cache_release(struct inode *inode, struct file *filp,
1020 			 struct cache_detail *cd)
1021 {
1022 	struct cache_reader *rp = filp->private_data;
1023 
1024 	if (rp) {
1025 		spin_lock(&queue_lock);
1026 		if (rp->offset) {
1027 			struct cache_queue *cq;
1028 			for (cq= &rp->q; &cq->list != &cd->queue;
1029 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1030 				if (!cq->reader) {
1031 					container_of(cq, struct cache_request, q)
1032 						->readers--;
1033 					break;
1034 				}
1035 			rp->offset = 0;
1036 		}
1037 		list_del(&rp->q.list);
1038 		spin_unlock(&queue_lock);
1039 
1040 		filp->private_data = NULL;
1041 		kfree(rp);
1042 
1043 		cd->last_close = seconds_since_boot();
1044 		atomic_dec(&cd->readers);
1045 	}
1046 	module_put(cd->owner);
1047 	return 0;
1048 }
1049 
1050 
1051 
cache_dequeue(struct cache_detail * detail,struct cache_head * ch)1052 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1053 {
1054 	struct cache_queue *cq, *tmp;
1055 	struct cache_request *cr;
1056 	struct list_head dequeued;
1057 
1058 	INIT_LIST_HEAD(&dequeued);
1059 	spin_lock(&queue_lock);
1060 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1061 		if (!cq->reader) {
1062 			cr = container_of(cq, struct cache_request, q);
1063 			if (cr->item != ch)
1064 				continue;
1065 			if (test_bit(CACHE_PENDING, &ch->flags))
1066 				/* Lost a race and it is pending again */
1067 				break;
1068 			if (cr->readers != 0)
1069 				continue;
1070 			list_move(&cr->q.list, &dequeued);
1071 		}
1072 	spin_unlock(&queue_lock);
1073 	while (!list_empty(&dequeued)) {
1074 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1075 		list_del(&cr->q.list);
1076 		cache_put(cr->item, detail);
1077 		kfree(cr->buf);
1078 		kfree(cr);
1079 	}
1080 }
1081 
1082 /*
1083  * Support routines for text-based upcalls.
1084  * Fields are separated by spaces.
1085  * Fields are either mangled to quote space tab newline slosh with slosh
1086  * or a hexified with a leading \x
1087  * Record is terminated with newline.
1088  *
1089  */
1090 
qword_add(char ** bpp,int * lp,char * str)1091 void qword_add(char **bpp, int *lp, char *str)
1092 {
1093 	char *bp = *bpp;
1094 	int len = *lp;
1095 	int ret;
1096 
1097 	if (len < 0) return;
1098 
1099 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1100 	if (ret >= len) {
1101 		bp += len;
1102 		len = -1;
1103 	} else {
1104 		bp += ret;
1105 		len -= ret;
1106 		*bp++ = ' ';
1107 		len--;
1108 	}
1109 	*bpp = bp;
1110 	*lp = len;
1111 }
1112 EXPORT_SYMBOL_GPL(qword_add);
1113 
qword_addhex(char ** bpp,int * lp,char * buf,int blen)1114 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1115 {
1116 	char *bp = *bpp;
1117 	int len = *lp;
1118 
1119 	if (len < 0) return;
1120 
1121 	if (len > 2) {
1122 		*bp++ = '\\';
1123 		*bp++ = 'x';
1124 		len -= 2;
1125 		while (blen && len >= 2) {
1126 			bp = hex_byte_pack(bp, *buf++);
1127 			len -= 2;
1128 			blen--;
1129 		}
1130 	}
1131 	if (blen || len<1) len = -1;
1132 	else {
1133 		*bp++ = ' ';
1134 		len--;
1135 	}
1136 	*bpp = bp;
1137 	*lp = len;
1138 }
1139 EXPORT_SYMBOL_GPL(qword_addhex);
1140 
warn_no_listener(struct cache_detail * detail)1141 static void warn_no_listener(struct cache_detail *detail)
1142 {
1143 	if (detail->last_warn != detail->last_close) {
1144 		detail->last_warn = detail->last_close;
1145 		if (detail->warn_no_listener)
1146 			detail->warn_no_listener(detail, detail->last_close != 0);
1147 	}
1148 }
1149 
cache_listeners_exist(struct cache_detail * detail)1150 static bool cache_listeners_exist(struct cache_detail *detail)
1151 {
1152 	if (atomic_read(&detail->readers))
1153 		return true;
1154 	if (detail->last_close == 0)
1155 		/* This cache was never opened */
1156 		return false;
1157 	if (detail->last_close < seconds_since_boot() - 30)
1158 		/*
1159 		 * We allow for the possibility that someone might
1160 		 * restart a userspace daemon without restarting the
1161 		 * server; but after 30 seconds, we give up.
1162 		 */
1163 		 return false;
1164 	return true;
1165 }
1166 
1167 /*
1168  * register an upcall request to user-space and queue it up for read() by the
1169  * upcall daemon.
1170  *
1171  * Each request is at most one page long.
1172  */
sunrpc_cache_pipe_upcall(struct cache_detail * detail,struct cache_head * h)1173 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1174 {
1175 
1176 	char *buf;
1177 	struct cache_request *crq;
1178 	int ret = 0;
1179 
1180 	if (!detail->cache_request)
1181 		return -EINVAL;
1182 
1183 	if (!cache_listeners_exist(detail)) {
1184 		warn_no_listener(detail);
1185 		return -EINVAL;
1186 	}
1187 	if (test_bit(CACHE_CLEANED, &h->flags))
1188 		/* Too late to make an upcall */
1189 		return -EAGAIN;
1190 
1191 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1192 	if (!buf)
1193 		return -EAGAIN;
1194 
1195 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1196 	if (!crq) {
1197 		kfree(buf);
1198 		return -EAGAIN;
1199 	}
1200 
1201 	crq->q.reader = 0;
1202 	crq->buf = buf;
1203 	crq->len = 0;
1204 	crq->readers = 0;
1205 	spin_lock(&queue_lock);
1206 	if (test_bit(CACHE_PENDING, &h->flags)) {
1207 		crq->item = cache_get(h);
1208 		list_add_tail(&crq->q.list, &detail->queue);
1209 	} else
1210 		/* Lost a race, no longer PENDING, so don't enqueue */
1211 		ret = -EAGAIN;
1212 	spin_unlock(&queue_lock);
1213 	wake_up(&queue_wait);
1214 	if (ret == -EAGAIN) {
1215 		kfree(buf);
1216 		kfree(crq);
1217 	}
1218 	return ret;
1219 }
1220 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1221 
1222 /*
1223  * parse a message from user-space and pass it
1224  * to an appropriate cache
1225  * Messages are, like requests, separated into fields by
1226  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1227  *
1228  * Message is
1229  *   reply cachename expiry key ... content....
1230  *
1231  * key and content are both parsed by cache
1232  */
1233 
qword_get(char ** bpp,char * dest,int bufsize)1234 int qword_get(char **bpp, char *dest, int bufsize)
1235 {
1236 	/* return bytes copied, or -1 on error */
1237 	char *bp = *bpp;
1238 	int len = 0;
1239 
1240 	while (*bp == ' ') bp++;
1241 
1242 	if (bp[0] == '\\' && bp[1] == 'x') {
1243 		/* HEX STRING */
1244 		bp += 2;
1245 		while (len < bufsize - 1) {
1246 			int h, l;
1247 
1248 			h = hex_to_bin(bp[0]);
1249 			if (h < 0)
1250 				break;
1251 
1252 			l = hex_to_bin(bp[1]);
1253 			if (l < 0)
1254 				break;
1255 
1256 			*dest++ = (h << 4) | l;
1257 			bp += 2;
1258 			len++;
1259 		}
1260 	} else {
1261 		/* text with \nnn octal quoting */
1262 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1263 			if (*bp == '\\' &&
1264 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1265 			    isodigit(bp[2]) &&
1266 			    isodigit(bp[3])) {
1267 				int byte = (*++bp -'0');
1268 				bp++;
1269 				byte = (byte << 3) | (*bp++ - '0');
1270 				byte = (byte << 3) | (*bp++ - '0');
1271 				*dest++ = byte;
1272 				len++;
1273 			} else {
1274 				*dest++ = *bp++;
1275 				len++;
1276 			}
1277 		}
1278 	}
1279 
1280 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1281 		return -1;
1282 	while (*bp == ' ') bp++;
1283 	*bpp = bp;
1284 	*dest = '\0';
1285 	return len;
1286 }
1287 EXPORT_SYMBOL_GPL(qword_get);
1288 
1289 
1290 /*
1291  * support /proc/net/rpc/$CACHENAME/content
1292  * as a seqfile.
1293  * We call ->cache_show passing NULL for the item to
1294  * get a header, then pass each real item in the cache
1295  */
1296 
cache_seq_start(struct seq_file * m,loff_t * pos)1297 void *cache_seq_start(struct seq_file *m, loff_t *pos)
1298 	__acquires(cd->hash_lock)
1299 {
1300 	loff_t n = *pos;
1301 	unsigned int hash, entry;
1302 	struct cache_head *ch;
1303 	struct cache_detail *cd = m->private;
1304 
1305 	read_lock(&cd->hash_lock);
1306 	if (!n--)
1307 		return SEQ_START_TOKEN;
1308 	hash = n >> 32;
1309 	entry = n & ((1LL<<32) - 1);
1310 
1311 	hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list)
1312 		if (!entry--)
1313 			return ch;
1314 	n &= ~((1LL<<32) - 1);
1315 	do {
1316 		hash++;
1317 		n += 1LL<<32;
1318 	} while(hash < cd->hash_size &&
1319 		hlist_empty(&cd->hash_table[hash]));
1320 	if (hash >= cd->hash_size)
1321 		return NULL;
1322 	*pos = n+1;
1323 	return hlist_entry_safe(cd->hash_table[hash].first,
1324 				struct cache_head, cache_list);
1325 }
1326 EXPORT_SYMBOL_GPL(cache_seq_start);
1327 
cache_seq_next(struct seq_file * m,void * p,loff_t * pos)1328 void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1329 {
1330 	struct cache_head *ch = p;
1331 	int hash = (*pos >> 32);
1332 	struct cache_detail *cd = m->private;
1333 
1334 	if (p == SEQ_START_TOKEN)
1335 		hash = 0;
1336 	else if (ch->cache_list.next == NULL) {
1337 		hash++;
1338 		*pos += 1LL<<32;
1339 	} else {
1340 		++*pos;
1341 		return hlist_entry_safe(ch->cache_list.next,
1342 					struct cache_head, cache_list);
1343 	}
1344 	*pos &= ~((1LL<<32) - 1);
1345 	while (hash < cd->hash_size &&
1346 	       hlist_empty(&cd->hash_table[hash])) {
1347 		hash++;
1348 		*pos += 1LL<<32;
1349 	}
1350 	if (hash >= cd->hash_size)
1351 		return NULL;
1352 	++*pos;
1353 	return hlist_entry_safe(cd->hash_table[hash].first,
1354 				struct cache_head, cache_list);
1355 }
1356 EXPORT_SYMBOL_GPL(cache_seq_next);
1357 
cache_seq_stop(struct seq_file * m,void * p)1358 void cache_seq_stop(struct seq_file *m, void *p)
1359 	__releases(cd->hash_lock)
1360 {
1361 	struct cache_detail *cd = m->private;
1362 	read_unlock(&cd->hash_lock);
1363 }
1364 EXPORT_SYMBOL_GPL(cache_seq_stop);
1365 
c_show(struct seq_file * m,void * p)1366 static int c_show(struct seq_file *m, void *p)
1367 {
1368 	struct cache_head *cp = p;
1369 	struct cache_detail *cd = m->private;
1370 
1371 	if (p == SEQ_START_TOKEN)
1372 		return cd->cache_show(m, cd, NULL);
1373 
1374 	ifdebug(CACHE)
1375 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1376 			   convert_to_wallclock(cp->expiry_time),
1377 			   kref_read(&cp->ref), cp->flags);
1378 	cache_get(cp);
1379 	if (cache_check(cd, cp, NULL))
1380 		/* cache_check does a cache_put on failure */
1381 		seq_printf(m, "# ");
1382 	else {
1383 		if (cache_is_expired(cd, cp))
1384 			seq_printf(m, "# ");
1385 		cache_put(cp, cd);
1386 	}
1387 
1388 	return cd->cache_show(m, cd, cp);
1389 }
1390 
1391 static const struct seq_operations cache_content_op = {
1392 	.start	= cache_seq_start,
1393 	.next	= cache_seq_next,
1394 	.stop	= cache_seq_stop,
1395 	.show	= c_show,
1396 };
1397 
content_open(struct inode * inode,struct file * file,struct cache_detail * cd)1398 static int content_open(struct inode *inode, struct file *file,
1399 			struct cache_detail *cd)
1400 {
1401 	struct seq_file *seq;
1402 	int err;
1403 
1404 	if (!cd || !try_module_get(cd->owner))
1405 		return -EACCES;
1406 
1407 	err = seq_open(file, &cache_content_op);
1408 	if (err) {
1409 		module_put(cd->owner);
1410 		return err;
1411 	}
1412 
1413 	seq = file->private_data;
1414 	seq->private = cd;
1415 	return 0;
1416 }
1417 
content_release(struct inode * inode,struct file * file,struct cache_detail * cd)1418 static int content_release(struct inode *inode, struct file *file,
1419 		struct cache_detail *cd)
1420 {
1421 	int ret = seq_release(inode, file);
1422 	module_put(cd->owner);
1423 	return ret;
1424 }
1425 
open_flush(struct inode * inode,struct file * file,struct cache_detail * cd)1426 static int open_flush(struct inode *inode, struct file *file,
1427 			struct cache_detail *cd)
1428 {
1429 	if (!cd || !try_module_get(cd->owner))
1430 		return -EACCES;
1431 	return nonseekable_open(inode, file);
1432 }
1433 
release_flush(struct inode * inode,struct file * file,struct cache_detail * cd)1434 static int release_flush(struct inode *inode, struct file *file,
1435 			struct cache_detail *cd)
1436 {
1437 	module_put(cd->owner);
1438 	return 0;
1439 }
1440 
read_flush(struct file * file,char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)1441 static ssize_t read_flush(struct file *file, char __user *buf,
1442 			  size_t count, loff_t *ppos,
1443 			  struct cache_detail *cd)
1444 {
1445 	char tbuf[22];
1446 	size_t len;
1447 
1448 	len = snprintf(tbuf, sizeof(tbuf), "%lu\n",
1449 			convert_to_wallclock(cd->flush_time));
1450 	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1451 }
1452 
write_flush(struct file * file,const char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)1453 static ssize_t write_flush(struct file *file, const char __user *buf,
1454 			   size_t count, loff_t *ppos,
1455 			   struct cache_detail *cd)
1456 {
1457 	char tbuf[20];
1458 	char *ep;
1459 	time_t now;
1460 
1461 	if (*ppos || count > sizeof(tbuf)-1)
1462 		return -EINVAL;
1463 	if (copy_from_user(tbuf, buf, count))
1464 		return -EFAULT;
1465 	tbuf[count] = 0;
1466 	simple_strtoul(tbuf, &ep, 0);
1467 	if (*ep && *ep != '\n')
1468 		return -EINVAL;
1469 	/* Note that while we check that 'buf' holds a valid number,
1470 	 * we always ignore the value and just flush everything.
1471 	 * Making use of the number leads to races.
1472 	 */
1473 
1474 	now = seconds_since_boot();
1475 	/* Always flush everything, so behave like cache_purge()
1476 	 * Do this by advancing flush_time to the current time,
1477 	 * or by one second if it has already reached the current time.
1478 	 * Newly added cache entries will always have ->last_refresh greater
1479 	 * that ->flush_time, so they don't get flushed prematurely.
1480 	 */
1481 
1482 	if (cd->flush_time >= now)
1483 		now = cd->flush_time + 1;
1484 
1485 	cd->flush_time = now;
1486 	cd->nextcheck = now;
1487 	cache_flush();
1488 
1489 	*ppos += count;
1490 	return count;
1491 }
1492 
cache_read_procfs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1493 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1494 				 size_t count, loff_t *ppos)
1495 {
1496 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1497 
1498 	return cache_read(filp, buf, count, ppos, cd);
1499 }
1500 
cache_write_procfs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1501 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1502 				  size_t count, loff_t *ppos)
1503 {
1504 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1505 
1506 	return cache_write(filp, buf, count, ppos, cd);
1507 }
1508 
cache_poll_procfs(struct file * filp,poll_table * wait)1509 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1510 {
1511 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1512 
1513 	return cache_poll(filp, wait, cd);
1514 }
1515 
cache_ioctl_procfs(struct file * filp,unsigned int cmd,unsigned long arg)1516 static long cache_ioctl_procfs(struct file *filp,
1517 			       unsigned int cmd, unsigned long arg)
1518 {
1519 	struct inode *inode = file_inode(filp);
1520 	struct cache_detail *cd = PDE_DATA(inode);
1521 
1522 	return cache_ioctl(inode, filp, cmd, arg, cd);
1523 }
1524 
cache_open_procfs(struct inode * inode,struct file * filp)1525 static int cache_open_procfs(struct inode *inode, struct file *filp)
1526 {
1527 	struct cache_detail *cd = PDE_DATA(inode);
1528 
1529 	return cache_open(inode, filp, cd);
1530 }
1531 
cache_release_procfs(struct inode * inode,struct file * filp)1532 static int cache_release_procfs(struct inode *inode, struct file *filp)
1533 {
1534 	struct cache_detail *cd = PDE_DATA(inode);
1535 
1536 	return cache_release(inode, filp, cd);
1537 }
1538 
1539 static const struct file_operations cache_file_operations_procfs = {
1540 	.owner		= THIS_MODULE,
1541 	.llseek		= no_llseek,
1542 	.read		= cache_read_procfs,
1543 	.write		= cache_write_procfs,
1544 	.poll		= cache_poll_procfs,
1545 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1546 	.open		= cache_open_procfs,
1547 	.release	= cache_release_procfs,
1548 };
1549 
content_open_procfs(struct inode * inode,struct file * filp)1550 static int content_open_procfs(struct inode *inode, struct file *filp)
1551 {
1552 	struct cache_detail *cd = PDE_DATA(inode);
1553 
1554 	return content_open(inode, filp, cd);
1555 }
1556 
content_release_procfs(struct inode * inode,struct file * filp)1557 static int content_release_procfs(struct inode *inode, struct file *filp)
1558 {
1559 	struct cache_detail *cd = PDE_DATA(inode);
1560 
1561 	return content_release(inode, filp, cd);
1562 }
1563 
1564 static const struct file_operations content_file_operations_procfs = {
1565 	.open		= content_open_procfs,
1566 	.read		= seq_read,
1567 	.llseek		= seq_lseek,
1568 	.release	= content_release_procfs,
1569 };
1570 
open_flush_procfs(struct inode * inode,struct file * filp)1571 static int open_flush_procfs(struct inode *inode, struct file *filp)
1572 {
1573 	struct cache_detail *cd = PDE_DATA(inode);
1574 
1575 	return open_flush(inode, filp, cd);
1576 }
1577 
release_flush_procfs(struct inode * inode,struct file * filp)1578 static int release_flush_procfs(struct inode *inode, struct file *filp)
1579 {
1580 	struct cache_detail *cd = PDE_DATA(inode);
1581 
1582 	return release_flush(inode, filp, cd);
1583 }
1584 
read_flush_procfs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1585 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1586 			    size_t count, loff_t *ppos)
1587 {
1588 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1589 
1590 	return read_flush(filp, buf, count, ppos, cd);
1591 }
1592 
write_flush_procfs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1593 static ssize_t write_flush_procfs(struct file *filp,
1594 				  const char __user *buf,
1595 				  size_t count, loff_t *ppos)
1596 {
1597 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1598 
1599 	return write_flush(filp, buf, count, ppos, cd);
1600 }
1601 
1602 static const struct file_operations cache_flush_operations_procfs = {
1603 	.open		= open_flush_procfs,
1604 	.read		= read_flush_procfs,
1605 	.write		= write_flush_procfs,
1606 	.release	= release_flush_procfs,
1607 	.llseek		= no_llseek,
1608 };
1609 
remove_cache_proc_entries(struct cache_detail * cd)1610 static void remove_cache_proc_entries(struct cache_detail *cd)
1611 {
1612 	if (cd->procfs) {
1613 		proc_remove(cd->procfs);
1614 		cd->procfs = NULL;
1615 	}
1616 }
1617 
1618 #ifdef CONFIG_PROC_FS
create_cache_proc_entries(struct cache_detail * cd,struct net * net)1619 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1620 {
1621 	struct proc_dir_entry *p;
1622 	struct sunrpc_net *sn;
1623 
1624 	sn = net_generic(net, sunrpc_net_id);
1625 	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1626 	if (cd->procfs == NULL)
1627 		goto out_nomem;
1628 
1629 	p = proc_create_data("flush", S_IFREG | 0600,
1630 			     cd->procfs, &cache_flush_operations_procfs, cd);
1631 	if (p == NULL)
1632 		goto out_nomem;
1633 
1634 	if (cd->cache_request || cd->cache_parse) {
1635 		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1636 				     &cache_file_operations_procfs, cd);
1637 		if (p == NULL)
1638 			goto out_nomem;
1639 	}
1640 	if (cd->cache_show) {
1641 		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1642 				     &content_file_operations_procfs, cd);
1643 		if (p == NULL)
1644 			goto out_nomem;
1645 	}
1646 	return 0;
1647 out_nomem:
1648 	remove_cache_proc_entries(cd);
1649 	return -ENOMEM;
1650 }
1651 #else /* CONFIG_PROC_FS */
create_cache_proc_entries(struct cache_detail * cd,struct net * net)1652 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1653 {
1654 	return 0;
1655 }
1656 #endif
1657 
cache_initialize(void)1658 void __init cache_initialize(void)
1659 {
1660 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1661 }
1662 
cache_register_net(struct cache_detail * cd,struct net * net)1663 int cache_register_net(struct cache_detail *cd, struct net *net)
1664 {
1665 	int ret;
1666 
1667 	sunrpc_init_cache_detail(cd);
1668 	ret = create_cache_proc_entries(cd, net);
1669 	if (ret)
1670 		sunrpc_destroy_cache_detail(cd);
1671 	return ret;
1672 }
1673 EXPORT_SYMBOL_GPL(cache_register_net);
1674 
cache_unregister_net(struct cache_detail * cd,struct net * net)1675 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1676 {
1677 	remove_cache_proc_entries(cd);
1678 	sunrpc_destroy_cache_detail(cd);
1679 }
1680 EXPORT_SYMBOL_GPL(cache_unregister_net);
1681 
cache_create_net(const struct cache_detail * tmpl,struct net * net)1682 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1683 {
1684 	struct cache_detail *cd;
1685 	int i;
1686 
1687 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1688 	if (cd == NULL)
1689 		return ERR_PTR(-ENOMEM);
1690 
1691 	cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1692 				 GFP_KERNEL);
1693 	if (cd->hash_table == NULL) {
1694 		kfree(cd);
1695 		return ERR_PTR(-ENOMEM);
1696 	}
1697 
1698 	for (i = 0; i < cd->hash_size; i++)
1699 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1700 	cd->net = net;
1701 	return cd;
1702 }
1703 EXPORT_SYMBOL_GPL(cache_create_net);
1704 
cache_destroy_net(struct cache_detail * cd,struct net * net)1705 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1706 {
1707 	kfree(cd->hash_table);
1708 	kfree(cd);
1709 }
1710 EXPORT_SYMBOL_GPL(cache_destroy_net);
1711 
cache_read_pipefs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1712 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1713 				 size_t count, loff_t *ppos)
1714 {
1715 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1716 
1717 	return cache_read(filp, buf, count, ppos, cd);
1718 }
1719 
cache_write_pipefs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1720 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1721 				  size_t count, loff_t *ppos)
1722 {
1723 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1724 
1725 	return cache_write(filp, buf, count, ppos, cd);
1726 }
1727 
cache_poll_pipefs(struct file * filp,poll_table * wait)1728 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1729 {
1730 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1731 
1732 	return cache_poll(filp, wait, cd);
1733 }
1734 
cache_ioctl_pipefs(struct file * filp,unsigned int cmd,unsigned long arg)1735 static long cache_ioctl_pipefs(struct file *filp,
1736 			      unsigned int cmd, unsigned long arg)
1737 {
1738 	struct inode *inode = file_inode(filp);
1739 	struct cache_detail *cd = RPC_I(inode)->private;
1740 
1741 	return cache_ioctl(inode, filp, cmd, arg, cd);
1742 }
1743 
cache_open_pipefs(struct inode * inode,struct file * filp)1744 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1745 {
1746 	struct cache_detail *cd = RPC_I(inode)->private;
1747 
1748 	return cache_open(inode, filp, cd);
1749 }
1750 
cache_release_pipefs(struct inode * inode,struct file * filp)1751 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1752 {
1753 	struct cache_detail *cd = RPC_I(inode)->private;
1754 
1755 	return cache_release(inode, filp, cd);
1756 }
1757 
1758 const struct file_operations cache_file_operations_pipefs = {
1759 	.owner		= THIS_MODULE,
1760 	.llseek		= no_llseek,
1761 	.read		= cache_read_pipefs,
1762 	.write		= cache_write_pipefs,
1763 	.poll		= cache_poll_pipefs,
1764 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1765 	.open		= cache_open_pipefs,
1766 	.release	= cache_release_pipefs,
1767 };
1768 
content_open_pipefs(struct inode * inode,struct file * filp)1769 static int content_open_pipefs(struct inode *inode, struct file *filp)
1770 {
1771 	struct cache_detail *cd = RPC_I(inode)->private;
1772 
1773 	return content_open(inode, filp, cd);
1774 }
1775 
content_release_pipefs(struct inode * inode,struct file * filp)1776 static int content_release_pipefs(struct inode *inode, struct file *filp)
1777 {
1778 	struct cache_detail *cd = RPC_I(inode)->private;
1779 
1780 	return content_release(inode, filp, cd);
1781 }
1782 
1783 const struct file_operations content_file_operations_pipefs = {
1784 	.open		= content_open_pipefs,
1785 	.read		= seq_read,
1786 	.llseek		= seq_lseek,
1787 	.release	= content_release_pipefs,
1788 };
1789 
open_flush_pipefs(struct inode * inode,struct file * filp)1790 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1791 {
1792 	struct cache_detail *cd = RPC_I(inode)->private;
1793 
1794 	return open_flush(inode, filp, cd);
1795 }
1796 
release_flush_pipefs(struct inode * inode,struct file * filp)1797 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1798 {
1799 	struct cache_detail *cd = RPC_I(inode)->private;
1800 
1801 	return release_flush(inode, filp, cd);
1802 }
1803 
read_flush_pipefs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1804 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1805 			    size_t count, loff_t *ppos)
1806 {
1807 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1808 
1809 	return read_flush(filp, buf, count, ppos, cd);
1810 }
1811 
write_flush_pipefs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1812 static ssize_t write_flush_pipefs(struct file *filp,
1813 				  const char __user *buf,
1814 				  size_t count, loff_t *ppos)
1815 {
1816 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1817 
1818 	return write_flush(filp, buf, count, ppos, cd);
1819 }
1820 
1821 const struct file_operations cache_flush_operations_pipefs = {
1822 	.open		= open_flush_pipefs,
1823 	.read		= read_flush_pipefs,
1824 	.write		= write_flush_pipefs,
1825 	.release	= release_flush_pipefs,
1826 	.llseek		= no_llseek,
1827 };
1828 
sunrpc_cache_register_pipefs(struct dentry * parent,const char * name,umode_t umode,struct cache_detail * cd)1829 int sunrpc_cache_register_pipefs(struct dentry *parent,
1830 				 const char *name, umode_t umode,
1831 				 struct cache_detail *cd)
1832 {
1833 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1834 	if (IS_ERR(dir))
1835 		return PTR_ERR(dir);
1836 	cd->pipefs = dir;
1837 	return 0;
1838 }
1839 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1840 
sunrpc_cache_unregister_pipefs(struct cache_detail * cd)1841 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1842 {
1843 	if (cd->pipefs) {
1844 		rpc_remove_cache_dir(cd->pipefs);
1845 		cd->pipefs = NULL;
1846 	}
1847 }
1848 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1849 
sunrpc_cache_unhash(struct cache_detail * cd,struct cache_head * h)1850 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1851 {
1852 	write_lock(&cd->hash_lock);
1853 	if (!hlist_unhashed(&h->cache_list)){
1854 		hlist_del_init(&h->cache_list);
1855 		cd->entries--;
1856 		write_unlock(&cd->hash_lock);
1857 		cache_put(h, cd);
1858 	} else
1859 		write_unlock(&cd->hash_lock);
1860 }
1861 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1862