• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21 
22 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
23 
24 static unsigned int svc_rpc_per_connection_limit __read_mostly;
25 module_param(svc_rpc_per_connection_limit, uint, 0644);
26 
27 
28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29 static int svc_deferred_recv(struct svc_rqst *rqstp);
30 static struct cache_deferred_req *svc_defer(struct cache_req *req);
31 static void svc_age_temp_xprts(struct timer_list *t);
32 static void svc_delete_xprt(struct svc_xprt *xprt);
33 
34 /* apparently the "standard" is that clients close
35  * idle connections after 5 minutes, servers after
36  * 6 minutes
37  *   http://www.connectathon.org/talks96/nfstcp.pdf
38  */
39 static int svc_conn_age_period = 6*60;
40 
41 /* List of registered transport classes */
42 static DEFINE_SPINLOCK(svc_xprt_class_lock);
43 static LIST_HEAD(svc_xprt_class_list);
44 
45 /* SMP locking strategy:
46  *
47  *	svc_pool->sp_lock protects most of the fields of that pool.
48  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49  *	when both need to be taken (rare), svc_serv->sv_lock is first.
50  *	The "service mutex" protects svc_serv->sv_nrthread.
51  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
52  *             and the ->sk_info_authunix cache.
53  *
54  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55  *	enqueued multiply. During normal transport processing this bit
56  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57  *	Providers should not manipulate this bit directly.
58  *
59  *	Some flags can be set to certain values at any time
60  *	providing that certain rules are followed:
61  *
62  *	XPT_CONN, XPT_DATA:
63  *		- Can be set or cleared at any time.
64  *		- After a set, svc_xprt_enqueue must be called to enqueue
65  *		  the transport for processing.
66  *		- After a clear, the transport must be read/accepted.
67  *		  If this succeeds, it must be set again.
68  *	XPT_CLOSE:
69  *		- Can set at any time. It is never cleared.
70  *      XPT_DEAD:
71  *		- Can only be set while XPT_BUSY is held which ensures
72  *		  that no other thread will be using the transport or will
73  *		  try to set XPT_DEAD.
74  */
svc_reg_xprt_class(struct svc_xprt_class * xcl)75 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
76 {
77 	struct svc_xprt_class *cl;
78 	int res = -EEXIST;
79 
80 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
81 
82 	INIT_LIST_HEAD(&xcl->xcl_list);
83 	spin_lock(&svc_xprt_class_lock);
84 	/* Make sure there isn't already a class with the same name */
85 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 			goto out;
88 	}
89 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 	res = 0;
91 out:
92 	spin_unlock(&svc_xprt_class_lock);
93 	return res;
94 }
95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
96 
svc_unreg_xprt_class(struct svc_xprt_class * xcl)97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
98 {
99 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 	spin_lock(&svc_xprt_class_lock);
101 	list_del_init(&xcl->xcl_list);
102 	spin_unlock(&svc_xprt_class_lock);
103 }
104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
105 
106 /**
107  * svc_print_xprts - Format the transport list for printing
108  * @buf: target buffer for formatted address
109  * @maxlen: length of target buffer
110  *
111  * Fills in @buf with a string containing a list of transport names, each name
112  * terminated with '\n'. If the buffer is too small, some entries may be
113  * missing, but it is guaranteed that all lines in the output buffer are
114  * complete.
115  *
116  * Returns positive length of the filled-in string.
117  */
svc_print_xprts(char * buf,int maxlen)118 int svc_print_xprts(char *buf, int maxlen)
119 {
120 	struct svc_xprt_class *xcl;
121 	char tmpstr[80];
122 	int len = 0;
123 	buf[0] = '\0';
124 
125 	spin_lock(&svc_xprt_class_lock);
126 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
127 		int slen;
128 
129 		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
130 				xcl->xcl_name, xcl->xcl_max_payload);
131 		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
132 			break;
133 		len += slen;
134 		strcat(buf, tmpstr);
135 	}
136 	spin_unlock(&svc_xprt_class_lock);
137 
138 	return len;
139 }
140 
svc_xprt_free(struct kref * kref)141 static void svc_xprt_free(struct kref *kref)
142 {
143 	struct svc_xprt *xprt =
144 		container_of(kref, struct svc_xprt, xpt_ref);
145 	struct module *owner = xprt->xpt_class->xcl_owner;
146 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
147 		svcauth_unix_info_release(xprt);
148 	put_net(xprt->xpt_net);
149 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
150 	if (xprt->xpt_bc_xprt)
151 		xprt_put(xprt->xpt_bc_xprt);
152 	if (xprt->xpt_bc_xps)
153 		xprt_switch_put(xprt->xpt_bc_xps);
154 	xprt->xpt_ops->xpo_free(xprt);
155 	module_put(owner);
156 }
157 
svc_xprt_put(struct svc_xprt * xprt)158 void svc_xprt_put(struct svc_xprt *xprt)
159 {
160 	kref_put(&xprt->xpt_ref, svc_xprt_free);
161 }
162 EXPORT_SYMBOL_GPL(svc_xprt_put);
163 
164 /*
165  * Called by transport drivers to initialize the transport independent
166  * portion of the transport instance.
167  */
svc_xprt_init(struct net * net,struct svc_xprt_class * xcl,struct svc_xprt * xprt,struct svc_serv * serv)168 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
169 		   struct svc_xprt *xprt, struct svc_serv *serv)
170 {
171 	memset(xprt, 0, sizeof(*xprt));
172 	xprt->xpt_class = xcl;
173 	xprt->xpt_ops = xcl->xcl_ops;
174 	kref_init(&xprt->xpt_ref);
175 	xprt->xpt_server = serv;
176 	INIT_LIST_HEAD(&xprt->xpt_list);
177 	INIT_LIST_HEAD(&xprt->xpt_ready);
178 	INIT_LIST_HEAD(&xprt->xpt_deferred);
179 	INIT_LIST_HEAD(&xprt->xpt_users);
180 	mutex_init(&xprt->xpt_mutex);
181 	spin_lock_init(&xprt->xpt_lock);
182 	set_bit(XPT_BUSY, &xprt->xpt_flags);
183 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
184 	xprt->xpt_net = get_net(net);
185 	strcpy(xprt->xpt_remotebuf, "uninitialized");
186 }
187 EXPORT_SYMBOL_GPL(svc_xprt_init);
188 
__svc_xpo_create(struct svc_xprt_class * xcl,struct svc_serv * serv,struct net * net,const int family,const unsigned short port,int flags)189 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
190 					 struct svc_serv *serv,
191 					 struct net *net,
192 					 const int family,
193 					 const unsigned short port,
194 					 int flags)
195 {
196 	struct sockaddr_in sin = {
197 		.sin_family		= AF_INET,
198 		.sin_addr.s_addr	= htonl(INADDR_ANY),
199 		.sin_port		= htons(port),
200 	};
201 #if IS_ENABLED(CONFIG_IPV6)
202 	struct sockaddr_in6 sin6 = {
203 		.sin6_family		= AF_INET6,
204 		.sin6_addr		= IN6ADDR_ANY_INIT,
205 		.sin6_port		= htons(port),
206 	};
207 #endif
208 	struct sockaddr *sap;
209 	size_t len;
210 
211 	switch (family) {
212 	case PF_INET:
213 		sap = (struct sockaddr *)&sin;
214 		len = sizeof(sin);
215 		break;
216 #if IS_ENABLED(CONFIG_IPV6)
217 	case PF_INET6:
218 		sap = (struct sockaddr *)&sin6;
219 		len = sizeof(sin6);
220 		break;
221 #endif
222 	default:
223 		return ERR_PTR(-EAFNOSUPPORT);
224 	}
225 
226 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
227 }
228 
229 /*
230  * svc_xprt_received conditionally queues the transport for processing
231  * by another thread. The caller must hold the XPT_BUSY bit and must
232  * not thereafter touch transport data.
233  *
234  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
235  * insufficient) data.
236  */
svc_xprt_received(struct svc_xprt * xprt)237 static void svc_xprt_received(struct svc_xprt *xprt)
238 {
239 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
240 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
241 		return;
242 	}
243 
244 	/* As soon as we clear busy, the xprt could be closed and
245 	 * 'put', so we need a reference to call svc_enqueue_xprt with:
246 	 */
247 	svc_xprt_get(xprt);
248 	smp_mb__before_atomic();
249 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
250 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
251 	svc_xprt_put(xprt);
252 }
253 
svc_add_new_perm_xprt(struct svc_serv * serv,struct svc_xprt * new)254 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
255 {
256 	clear_bit(XPT_TEMP, &new->xpt_flags);
257 	spin_lock_bh(&serv->sv_lock);
258 	list_add(&new->xpt_list, &serv->sv_permsocks);
259 	spin_unlock_bh(&serv->sv_lock);
260 	svc_xprt_received(new);
261 }
262 
_svc_create_xprt(struct svc_serv * serv,const char * xprt_name,struct net * net,const int family,const unsigned short port,int flags)263 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
264 			    struct net *net, const int family,
265 			    const unsigned short port, int flags)
266 {
267 	struct svc_xprt_class *xcl;
268 
269 	spin_lock(&svc_xprt_class_lock);
270 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
271 		struct svc_xprt *newxprt;
272 		unsigned short newport;
273 
274 		if (strcmp(xprt_name, xcl->xcl_name))
275 			continue;
276 
277 		if (!try_module_get(xcl->xcl_owner))
278 			goto err;
279 
280 		spin_unlock(&svc_xprt_class_lock);
281 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
282 		if (IS_ERR(newxprt)) {
283 			module_put(xcl->xcl_owner);
284 			return PTR_ERR(newxprt);
285 		}
286 		svc_add_new_perm_xprt(serv, newxprt);
287 		newport = svc_xprt_local_port(newxprt);
288 		return newport;
289 	}
290  err:
291 	spin_unlock(&svc_xprt_class_lock);
292 	/* This errno is exposed to user space.  Provide a reasonable
293 	 * perror msg for a bad transport. */
294 	return -EPROTONOSUPPORT;
295 }
296 
svc_create_xprt(struct svc_serv * serv,const char * xprt_name,struct net * net,const int family,const unsigned short port,int flags)297 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
298 		    struct net *net, const int family,
299 		    const unsigned short port, int flags)
300 {
301 	int err;
302 
303 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
304 	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
305 	if (err == -EPROTONOSUPPORT) {
306 		request_module("svc%s", xprt_name);
307 		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
308 	}
309 	if (err)
310 		dprintk("svc: transport %s not found, err %d\n",
311 			xprt_name, err);
312 	return err;
313 }
314 EXPORT_SYMBOL_GPL(svc_create_xprt);
315 
316 /*
317  * Copy the local and remote xprt addresses to the rqstp structure
318  */
svc_xprt_copy_addrs(struct svc_rqst * rqstp,struct svc_xprt * xprt)319 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
320 {
321 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
322 	rqstp->rq_addrlen = xprt->xpt_remotelen;
323 
324 	/*
325 	 * Destination address in request is needed for binding the
326 	 * source address in RPC replies/callbacks later.
327 	 */
328 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
329 	rqstp->rq_daddrlen = xprt->xpt_locallen;
330 }
331 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
332 
333 /**
334  * svc_print_addr - Format rq_addr field for printing
335  * @rqstp: svc_rqst struct containing address to print
336  * @buf: target buffer for formatted address
337  * @len: length of target buffer
338  *
339  */
svc_print_addr(struct svc_rqst * rqstp,char * buf,size_t len)340 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
341 {
342 	return __svc_print_addr(svc_addr(rqstp), buf, len);
343 }
344 EXPORT_SYMBOL_GPL(svc_print_addr);
345 
svc_xprt_slots_in_range(struct svc_xprt * xprt)346 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
347 {
348 	unsigned int limit = svc_rpc_per_connection_limit;
349 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
350 
351 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
352 }
353 
svc_xprt_reserve_slot(struct svc_rqst * rqstp,struct svc_xprt * xprt)354 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
355 {
356 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
357 		if (!svc_xprt_slots_in_range(xprt))
358 			return false;
359 		atomic_inc(&xprt->xpt_nr_rqsts);
360 		set_bit(RQ_DATA, &rqstp->rq_flags);
361 	}
362 	return true;
363 }
364 
svc_xprt_release_slot(struct svc_rqst * rqstp)365 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
366 {
367 	struct svc_xprt	*xprt = rqstp->rq_xprt;
368 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
369 		atomic_dec(&xprt->xpt_nr_rqsts);
370 		svc_xprt_enqueue(xprt);
371 	}
372 }
373 
svc_xprt_has_something_to_do(struct svc_xprt * xprt)374 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
375 {
376 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
377 		return true;
378 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
379 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
380 		    svc_xprt_slots_in_range(xprt))
381 			return true;
382 		trace_svc_xprt_no_write_space(xprt);
383 		return false;
384 	}
385 	return false;
386 }
387 
svc_xprt_do_enqueue(struct svc_xprt * xprt)388 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
389 {
390 	struct svc_pool *pool;
391 	struct svc_rqst	*rqstp = NULL;
392 	int cpu;
393 
394 	if (!svc_xprt_has_something_to_do(xprt))
395 		return;
396 
397 	/* Mark transport as busy. It will remain in this state until
398 	 * the provider calls svc_xprt_received. We update XPT_BUSY
399 	 * atomically because it also guards against trying to enqueue
400 	 * the transport twice.
401 	 */
402 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
403 		return;
404 
405 	cpu = get_cpu();
406 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
407 
408 	atomic_long_inc(&pool->sp_stats.packets);
409 
410 	spin_lock_bh(&pool->sp_lock);
411 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
412 	pool->sp_stats.sockets_queued++;
413 	spin_unlock_bh(&pool->sp_lock);
414 
415 	/* find a thread for this xprt */
416 	rcu_read_lock();
417 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
418 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
419 			continue;
420 		atomic_long_inc(&pool->sp_stats.threads_woken);
421 		rqstp->rq_qtime = ktime_get();
422 		wake_up_process(rqstp->rq_task);
423 		goto out_unlock;
424 	}
425 	set_bit(SP_CONGESTED, &pool->sp_flags);
426 	rqstp = NULL;
427 out_unlock:
428 	rcu_read_unlock();
429 	put_cpu();
430 	trace_svc_xprt_do_enqueue(xprt, rqstp);
431 }
432 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
433 
434 /*
435  * Queue up a transport with data pending. If there are idle nfsd
436  * processes, wake 'em up.
437  *
438  */
svc_xprt_enqueue(struct svc_xprt * xprt)439 void svc_xprt_enqueue(struct svc_xprt *xprt)
440 {
441 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
442 		return;
443 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
444 }
445 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
446 
447 /*
448  * Dequeue the first transport, if there is one.
449  */
svc_xprt_dequeue(struct svc_pool * pool)450 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
451 {
452 	struct svc_xprt	*xprt = NULL;
453 
454 	if (list_empty(&pool->sp_sockets))
455 		goto out;
456 
457 	spin_lock_bh(&pool->sp_lock);
458 	if (likely(!list_empty(&pool->sp_sockets))) {
459 		xprt = list_first_entry(&pool->sp_sockets,
460 					struct svc_xprt, xpt_ready);
461 		list_del_init(&xprt->xpt_ready);
462 		svc_xprt_get(xprt);
463 	}
464 	spin_unlock_bh(&pool->sp_lock);
465 out:
466 	return xprt;
467 }
468 
469 /**
470  * svc_reserve - change the space reserved for the reply to a request.
471  * @rqstp:  The request in question
472  * @space: new max space to reserve
473  *
474  * Each request reserves some space on the output queue of the transport
475  * to make sure the reply fits.  This function reduces that reserved
476  * space to be the amount of space used already, plus @space.
477  *
478  */
svc_reserve(struct svc_rqst * rqstp,int space)479 void svc_reserve(struct svc_rqst *rqstp, int space)
480 {
481 	struct svc_xprt *xprt = rqstp->rq_xprt;
482 
483 	space += rqstp->rq_res.head[0].iov_len;
484 
485 	if (xprt && space < rqstp->rq_reserved) {
486 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
487 		rqstp->rq_reserved = space;
488 
489 		svc_xprt_enqueue(xprt);
490 	}
491 }
492 EXPORT_SYMBOL_GPL(svc_reserve);
493 
svc_xprt_release(struct svc_rqst * rqstp)494 static void svc_xprt_release(struct svc_rqst *rqstp)
495 {
496 	struct svc_xprt	*xprt = rqstp->rq_xprt;
497 
498 	xprt->xpt_ops->xpo_release_rqst(rqstp);
499 
500 	kfree(rqstp->rq_deferred);
501 	rqstp->rq_deferred = NULL;
502 
503 	svc_free_res_pages(rqstp);
504 	rqstp->rq_res.page_len = 0;
505 	rqstp->rq_res.page_base = 0;
506 
507 	/* Reset response buffer and release
508 	 * the reservation.
509 	 * But first, check that enough space was reserved
510 	 * for the reply, otherwise we have a bug!
511 	 */
512 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
513 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
514 		       rqstp->rq_reserved,
515 		       rqstp->rq_res.len);
516 
517 	rqstp->rq_res.head[0].iov_len = 0;
518 	svc_reserve(rqstp, 0);
519 	svc_xprt_release_slot(rqstp);
520 	rqstp->rq_xprt = NULL;
521 	svc_xprt_put(xprt);
522 }
523 
524 /*
525  * Some svc_serv's will have occasional work to do, even when a xprt is not
526  * waiting to be serviced. This function is there to "kick" a task in one of
527  * those services so that it can wake up and do that work. Note that we only
528  * bother with pool 0 as we don't need to wake up more than one thread for
529  * this purpose.
530  */
svc_wake_up(struct svc_serv * serv)531 void svc_wake_up(struct svc_serv *serv)
532 {
533 	struct svc_rqst	*rqstp;
534 	struct svc_pool *pool;
535 
536 	pool = &serv->sv_pools[0];
537 
538 	rcu_read_lock();
539 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
540 		/* skip any that aren't queued */
541 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
542 			continue;
543 		rcu_read_unlock();
544 		wake_up_process(rqstp->rq_task);
545 		trace_svc_wake_up(rqstp->rq_task->pid);
546 		return;
547 	}
548 	rcu_read_unlock();
549 
550 	/* No free entries available */
551 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
552 	smp_wmb();
553 	trace_svc_wake_up(0);
554 }
555 EXPORT_SYMBOL_GPL(svc_wake_up);
556 
svc_port_is_privileged(struct sockaddr * sin)557 int svc_port_is_privileged(struct sockaddr *sin)
558 {
559 	switch (sin->sa_family) {
560 	case AF_INET:
561 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
562 			< PROT_SOCK;
563 	case AF_INET6:
564 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
565 			< PROT_SOCK;
566 	default:
567 		return 0;
568 	}
569 }
570 
571 /*
572  * Make sure that we don't have too many active connections. If we have,
573  * something must be dropped. It's not clear what will happen if we allow
574  * "too many" connections, but when dealing with network-facing software,
575  * we have to code defensively. Here we do that by imposing hard limits.
576  *
577  * There's no point in trying to do random drop here for DoS
578  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
579  * attacker can easily beat that.
580  *
581  * The only somewhat efficient mechanism would be if drop old
582  * connections from the same IP first. But right now we don't even
583  * record the client IP in svc_sock.
584  *
585  * single-threaded services that expect a lot of clients will probably
586  * need to set sv_maxconn to override the default value which is based
587  * on the number of threads
588  */
svc_check_conn_limits(struct svc_serv * serv)589 static void svc_check_conn_limits(struct svc_serv *serv)
590 {
591 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
592 				(serv->sv_nrthreads+3) * 20;
593 
594 	if (serv->sv_tmpcnt > limit) {
595 		struct svc_xprt *xprt = NULL;
596 		spin_lock_bh(&serv->sv_lock);
597 		if (!list_empty(&serv->sv_tempsocks)) {
598 			/* Try to help the admin */
599 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
600 					       serv->sv_name, serv->sv_maxconn ?
601 					       "max number of connections" :
602 					       "number of threads");
603 			/*
604 			 * Always select the oldest connection. It's not fair,
605 			 * but so is life
606 			 */
607 			xprt = list_entry(serv->sv_tempsocks.prev,
608 					  struct svc_xprt,
609 					  xpt_list);
610 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
611 			svc_xprt_get(xprt);
612 		}
613 		spin_unlock_bh(&serv->sv_lock);
614 
615 		if (xprt) {
616 			svc_xprt_enqueue(xprt);
617 			svc_xprt_put(xprt);
618 		}
619 	}
620 }
621 
svc_alloc_arg(struct svc_rqst * rqstp)622 static int svc_alloc_arg(struct svc_rqst *rqstp)
623 {
624 	struct svc_serv *serv = rqstp->rq_server;
625 	struct xdr_buf *arg;
626 	int pages;
627 	int i;
628 
629 	/* now allocate needed pages.  If we get a failure, sleep briefly */
630 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
631 	if (pages > RPCSVC_MAXPAGES) {
632 		pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
633 			     pages, RPCSVC_MAXPAGES);
634 		/* use as many pages as possible */
635 		pages = RPCSVC_MAXPAGES;
636 	}
637 	for (i = 0; i < pages ; i++)
638 		while (rqstp->rq_pages[i] == NULL) {
639 			struct page *p = alloc_page(GFP_KERNEL);
640 			if (!p) {
641 				set_current_state(TASK_INTERRUPTIBLE);
642 				if (signalled() || kthread_should_stop()) {
643 					set_current_state(TASK_RUNNING);
644 					return -EINTR;
645 				}
646 				schedule_timeout(msecs_to_jiffies(500));
647 			}
648 			rqstp->rq_pages[i] = p;
649 		}
650 	rqstp->rq_page_end = &rqstp->rq_pages[i];
651 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
652 
653 	/* Make arg->head point to first page and arg->pages point to rest */
654 	arg = &rqstp->rq_arg;
655 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
656 	arg->head[0].iov_len = PAGE_SIZE;
657 	arg->pages = rqstp->rq_pages + 1;
658 	arg->page_base = 0;
659 	/* save at least one page for response */
660 	arg->page_len = (pages-2)*PAGE_SIZE;
661 	arg->len = (pages-1)*PAGE_SIZE;
662 	arg->tail[0].iov_len = 0;
663 	return 0;
664 }
665 
666 static bool
rqst_should_sleep(struct svc_rqst * rqstp)667 rqst_should_sleep(struct svc_rqst *rqstp)
668 {
669 	struct svc_pool		*pool = rqstp->rq_pool;
670 
671 	/* did someone call svc_wake_up? */
672 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
673 		return false;
674 
675 	/* was a socket queued? */
676 	if (!list_empty(&pool->sp_sockets))
677 		return false;
678 
679 	/* are we shutting down? */
680 	if (signalled() || kthread_should_stop())
681 		return false;
682 
683 	/* are we freezing? */
684 	if (freezing(current))
685 		return false;
686 
687 	return true;
688 }
689 
svc_get_next_xprt(struct svc_rqst * rqstp,long timeout)690 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
691 {
692 	struct svc_pool		*pool = rqstp->rq_pool;
693 	long			time_left = 0;
694 
695 	/* rq_xprt should be clear on entry */
696 	WARN_ON_ONCE(rqstp->rq_xprt);
697 
698 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
699 	if (rqstp->rq_xprt)
700 		goto out_found;
701 
702 	/*
703 	 * We have to be able to interrupt this wait
704 	 * to bring down the daemons ...
705 	 */
706 	set_current_state(TASK_INTERRUPTIBLE);
707 	smp_mb__before_atomic();
708 	clear_bit(SP_CONGESTED, &pool->sp_flags);
709 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
710 	smp_mb__after_atomic();
711 
712 	if (likely(rqst_should_sleep(rqstp)))
713 		time_left = schedule_timeout(timeout);
714 	else
715 		__set_current_state(TASK_RUNNING);
716 
717 	try_to_freeze();
718 
719 	set_bit(RQ_BUSY, &rqstp->rq_flags);
720 	smp_mb__after_atomic();
721 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
722 	if (rqstp->rq_xprt)
723 		goto out_found;
724 
725 	if (!time_left)
726 		atomic_long_inc(&pool->sp_stats.threads_timedout);
727 
728 	if (signalled() || kthread_should_stop())
729 		return ERR_PTR(-EINTR);
730 	return ERR_PTR(-EAGAIN);
731 out_found:
732 	/* Normally we will wait up to 5 seconds for any required
733 	 * cache information to be provided.
734 	 */
735 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
736 		rqstp->rq_chandle.thread_wait = 5*HZ;
737 	else
738 		rqstp->rq_chandle.thread_wait = 1*HZ;
739 	trace_svc_xprt_dequeue(rqstp);
740 	return rqstp->rq_xprt;
741 }
742 
svc_add_new_temp_xprt(struct svc_serv * serv,struct svc_xprt * newxpt)743 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
744 {
745 	spin_lock_bh(&serv->sv_lock);
746 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
747 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
748 	serv->sv_tmpcnt++;
749 	if (serv->sv_temptimer.function == NULL) {
750 		/* setup timer to age temp transports */
751 		serv->sv_temptimer.function = svc_age_temp_xprts;
752 		mod_timer(&serv->sv_temptimer,
753 			  jiffies + svc_conn_age_period * HZ);
754 	}
755 	spin_unlock_bh(&serv->sv_lock);
756 	svc_xprt_received(newxpt);
757 }
758 
svc_handle_xprt(struct svc_rqst * rqstp,struct svc_xprt * xprt)759 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
760 {
761 	struct svc_serv *serv = rqstp->rq_server;
762 	int len = 0;
763 
764 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
765 		dprintk("svc_recv: found XPT_CLOSE\n");
766 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
767 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
768 		svc_delete_xprt(xprt);
769 		/* Leave XPT_BUSY set on the dead xprt: */
770 		goto out;
771 	}
772 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
773 		struct svc_xprt *newxpt;
774 		/*
775 		 * We know this module_get will succeed because the
776 		 * listener holds a reference too
777 		 */
778 		__module_get(xprt->xpt_class->xcl_owner);
779 		svc_check_conn_limits(xprt->xpt_server);
780 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
781 		if (newxpt)
782 			svc_add_new_temp_xprt(serv, newxpt);
783 		else
784 			module_put(xprt->xpt_class->xcl_owner);
785 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
786 		/* XPT_DATA|XPT_DEFERRED case: */
787 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
788 			rqstp, rqstp->rq_pool->sp_id, xprt,
789 			kref_read(&xprt->xpt_ref));
790 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
791 		if (rqstp->rq_deferred)
792 			len = svc_deferred_recv(rqstp);
793 		else
794 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
795 		rqstp->rq_stime = ktime_get();
796 		rqstp->rq_reserved = serv->sv_max_mesg;
797 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
798 	}
799 	/* clear XPT_BUSY: */
800 	svc_xprt_received(xprt);
801 out:
802 	trace_svc_handle_xprt(xprt, len);
803 	return len;
804 }
805 
806 /*
807  * Receive the next request on any transport.  This code is carefully
808  * organised not to touch any cachelines in the shared svc_serv
809  * structure, only cachelines in the local svc_pool.
810  */
svc_recv(struct svc_rqst * rqstp,long timeout)811 int svc_recv(struct svc_rqst *rqstp, long timeout)
812 {
813 	struct svc_xprt		*xprt = NULL;
814 	struct svc_serv		*serv = rqstp->rq_server;
815 	int			len, err;
816 
817 	dprintk("svc: server %p waiting for data (to = %ld)\n",
818 		rqstp, timeout);
819 
820 	if (rqstp->rq_xprt)
821 		printk(KERN_ERR
822 			"svc_recv: service %p, transport not NULL!\n",
823 			 rqstp);
824 
825 	err = svc_alloc_arg(rqstp);
826 	if (err)
827 		goto out;
828 
829 	try_to_freeze();
830 	cond_resched();
831 	err = -EINTR;
832 	if (signalled() || kthread_should_stop())
833 		goto out;
834 
835 	xprt = svc_get_next_xprt(rqstp, timeout);
836 	if (IS_ERR(xprt)) {
837 		err = PTR_ERR(xprt);
838 		goto out;
839 	}
840 
841 	len = svc_handle_xprt(rqstp, xprt);
842 
843 	/* No data, incomplete (TCP) read, or accept() */
844 	err = -EAGAIN;
845 	if (len <= 0)
846 		goto out_release;
847 
848 	clear_bit(XPT_OLD, &xprt->xpt_flags);
849 
850 	xprt->xpt_ops->xpo_secure_port(rqstp);
851 	rqstp->rq_chandle.defer = svc_defer;
852 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
853 
854 	if (serv->sv_stats)
855 		serv->sv_stats->netcnt++;
856 	trace_svc_recv(rqstp, len);
857 	return len;
858 out_release:
859 	rqstp->rq_res.len = 0;
860 	svc_xprt_release(rqstp);
861 out:
862 	return err;
863 }
864 EXPORT_SYMBOL_GPL(svc_recv);
865 
866 /*
867  * Drop request
868  */
svc_drop(struct svc_rqst * rqstp)869 void svc_drop(struct svc_rqst *rqstp)
870 {
871 	trace_svc_drop(rqstp);
872 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
873 	svc_xprt_release(rqstp);
874 }
875 EXPORT_SYMBOL_GPL(svc_drop);
876 
877 /*
878  * Return reply to client.
879  */
svc_send(struct svc_rqst * rqstp)880 int svc_send(struct svc_rqst *rqstp)
881 {
882 	struct svc_xprt	*xprt;
883 	int		len = -EFAULT;
884 	struct xdr_buf	*xb;
885 
886 	xprt = rqstp->rq_xprt;
887 	if (!xprt)
888 		goto out;
889 
890 	/* calculate over-all length */
891 	xb = &rqstp->rq_res;
892 	xb->len = xb->head[0].iov_len +
893 		xb->page_len +
894 		xb->tail[0].iov_len;
895 
896 	/* Grab mutex to serialize outgoing data. */
897 	mutex_lock(&xprt->xpt_mutex);
898 	trace_svc_stats_latency(rqstp);
899 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
900 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
901 		len = -ENOTCONN;
902 	else
903 		len = xprt->xpt_ops->xpo_sendto(rqstp);
904 	mutex_unlock(&xprt->xpt_mutex);
905 	rpc_wake_up(&xprt->xpt_bc_pending);
906 	trace_svc_send(rqstp, len);
907 	svc_xprt_release(rqstp);
908 
909 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
910 		len = 0;
911 out:
912 	return len;
913 }
914 
915 /*
916  * Timer function to close old temporary transports, using
917  * a mark-and-sweep algorithm.
918  */
svc_age_temp_xprts(struct timer_list * t)919 static void svc_age_temp_xprts(struct timer_list *t)
920 {
921 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
922 	struct svc_xprt *xprt;
923 	struct list_head *le, *next;
924 
925 	dprintk("svc_age_temp_xprts\n");
926 
927 	if (!spin_trylock_bh(&serv->sv_lock)) {
928 		/* busy, try again 1 sec later */
929 		dprintk("svc_age_temp_xprts: busy\n");
930 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
931 		return;
932 	}
933 
934 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
935 		xprt = list_entry(le, struct svc_xprt, xpt_list);
936 
937 		/* First time through, just mark it OLD. Second time
938 		 * through, close it. */
939 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
940 			continue;
941 		if (kref_read(&xprt->xpt_ref) > 1 ||
942 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
943 			continue;
944 		list_del_init(le);
945 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
946 		dprintk("queuing xprt %p for closing\n", xprt);
947 
948 		/* a thread will dequeue and close it soon */
949 		svc_xprt_enqueue(xprt);
950 	}
951 	spin_unlock_bh(&serv->sv_lock);
952 
953 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
954 }
955 
956 /* Close temporary transports whose xpt_local matches server_addr immediately
957  * instead of waiting for them to be picked up by the timer.
958  *
959  * This is meant to be called from a notifier_block that runs when an ip
960  * address is deleted.
961  */
svc_age_temp_xprts_now(struct svc_serv * serv,struct sockaddr * server_addr)962 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
963 {
964 	struct svc_xprt *xprt;
965 	struct list_head *le, *next;
966 	LIST_HEAD(to_be_closed);
967 
968 	spin_lock_bh(&serv->sv_lock);
969 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
970 		xprt = list_entry(le, struct svc_xprt, xpt_list);
971 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
972 				&xprt->xpt_local)) {
973 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
974 			list_move(le, &to_be_closed);
975 		}
976 	}
977 	spin_unlock_bh(&serv->sv_lock);
978 
979 	while (!list_empty(&to_be_closed)) {
980 		le = to_be_closed.next;
981 		list_del_init(le);
982 		xprt = list_entry(le, struct svc_xprt, xpt_list);
983 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
984 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
985 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
986 				xprt);
987 		svc_xprt_enqueue(xprt);
988 	}
989 }
990 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
991 
call_xpt_users(struct svc_xprt * xprt)992 static void call_xpt_users(struct svc_xprt *xprt)
993 {
994 	struct svc_xpt_user *u;
995 
996 	spin_lock(&xprt->xpt_lock);
997 	while (!list_empty(&xprt->xpt_users)) {
998 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
999 		list_del_init(&u->list);
1000 		u->callback(u);
1001 	}
1002 	spin_unlock(&xprt->xpt_lock);
1003 }
1004 
1005 /*
1006  * Remove a dead transport
1007  */
svc_delete_xprt(struct svc_xprt * xprt)1008 static void svc_delete_xprt(struct svc_xprt *xprt)
1009 {
1010 	struct svc_serv	*serv = xprt->xpt_server;
1011 	struct svc_deferred_req *dr;
1012 
1013 	/* Only do this once */
1014 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1015 		BUG();
1016 
1017 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1018 	xprt->xpt_ops->xpo_detach(xprt);
1019 
1020 	spin_lock_bh(&serv->sv_lock);
1021 	list_del_init(&xprt->xpt_list);
1022 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1023 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1024 		serv->sv_tmpcnt--;
1025 	spin_unlock_bh(&serv->sv_lock);
1026 
1027 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1028 		kfree(dr);
1029 
1030 	call_xpt_users(xprt);
1031 	svc_xprt_put(xprt);
1032 }
1033 
svc_close_xprt(struct svc_xprt * xprt)1034 void svc_close_xprt(struct svc_xprt *xprt)
1035 {
1036 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1037 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1038 		/* someone else will have to effect the close */
1039 		return;
1040 	/*
1041 	 * We expect svc_close_xprt() to work even when no threads are
1042 	 * running (e.g., while configuring the server before starting
1043 	 * any threads), so if the transport isn't busy, we delete
1044 	 * it ourself:
1045 	 */
1046 	svc_delete_xprt(xprt);
1047 }
1048 EXPORT_SYMBOL_GPL(svc_close_xprt);
1049 
svc_close_list(struct svc_serv * serv,struct list_head * xprt_list,struct net * net)1050 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1051 {
1052 	struct svc_xprt *xprt;
1053 	int ret = 0;
1054 
1055 	spin_lock(&serv->sv_lock);
1056 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1057 		if (xprt->xpt_net != net)
1058 			continue;
1059 		ret++;
1060 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1061 		svc_xprt_enqueue(xprt);
1062 	}
1063 	spin_unlock(&serv->sv_lock);
1064 	return ret;
1065 }
1066 
svc_dequeue_net(struct svc_serv * serv,struct net * net)1067 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1068 {
1069 	struct svc_pool *pool;
1070 	struct svc_xprt *xprt;
1071 	struct svc_xprt *tmp;
1072 	int i;
1073 
1074 	for (i = 0; i < serv->sv_nrpools; i++) {
1075 		pool = &serv->sv_pools[i];
1076 
1077 		spin_lock_bh(&pool->sp_lock);
1078 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1079 			if (xprt->xpt_net != net)
1080 				continue;
1081 			list_del_init(&xprt->xpt_ready);
1082 			spin_unlock_bh(&pool->sp_lock);
1083 			return xprt;
1084 		}
1085 		spin_unlock_bh(&pool->sp_lock);
1086 	}
1087 	return NULL;
1088 }
1089 
svc_clean_up_xprts(struct svc_serv * serv,struct net * net)1090 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1091 {
1092 	struct svc_xprt *xprt;
1093 
1094 	while ((xprt = svc_dequeue_net(serv, net))) {
1095 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1096 		svc_delete_xprt(xprt);
1097 	}
1098 }
1099 
1100 /*
1101  * Server threads may still be running (especially in the case where the
1102  * service is still running in other network namespaces).
1103  *
1104  * So we shut down sockets the same way we would on a running server, by
1105  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1106  * the close.  In the case there are no such other threads,
1107  * threads running, svc_clean_up_xprts() does a simple version of a
1108  * server's main event loop, and in the case where there are other
1109  * threads, we may need to wait a little while and then check again to
1110  * see if they're done.
1111  */
svc_close_net(struct svc_serv * serv,struct net * net)1112 void svc_close_net(struct svc_serv *serv, struct net *net)
1113 {
1114 	int delay = 0;
1115 
1116 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1117 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1118 
1119 		svc_clean_up_xprts(serv, net);
1120 		msleep(delay++);
1121 	}
1122 }
1123 
1124 /*
1125  * Handle defer and revisit of requests
1126  */
1127 
svc_revisit(struct cache_deferred_req * dreq,int too_many)1128 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1129 {
1130 	struct svc_deferred_req *dr =
1131 		container_of(dreq, struct svc_deferred_req, handle);
1132 	struct svc_xprt *xprt = dr->xprt;
1133 
1134 	spin_lock(&xprt->xpt_lock);
1135 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1136 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1137 		spin_unlock(&xprt->xpt_lock);
1138 		dprintk("revisit canceled\n");
1139 		svc_xprt_put(xprt);
1140 		trace_svc_drop_deferred(dr);
1141 		kfree(dr);
1142 		return;
1143 	}
1144 	dprintk("revisit queued\n");
1145 	dr->xprt = NULL;
1146 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1147 	spin_unlock(&xprt->xpt_lock);
1148 	svc_xprt_enqueue(xprt);
1149 	svc_xprt_put(xprt);
1150 }
1151 
1152 /*
1153  * Save the request off for later processing. The request buffer looks
1154  * like this:
1155  *
1156  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1157  *
1158  * This code can only handle requests that consist of an xprt-header
1159  * and rpc-header.
1160  */
svc_defer(struct cache_req * req)1161 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1162 {
1163 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1164 	struct svc_deferred_req *dr;
1165 
1166 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1167 		return NULL; /* if more than a page, give up FIXME */
1168 	if (rqstp->rq_deferred) {
1169 		dr = rqstp->rq_deferred;
1170 		rqstp->rq_deferred = NULL;
1171 	} else {
1172 		size_t skip;
1173 		size_t size;
1174 		/* FIXME maybe discard if size too large */
1175 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1176 		dr = kmalloc(size, GFP_KERNEL);
1177 		if (dr == NULL)
1178 			return NULL;
1179 
1180 		dr->handle.owner = rqstp->rq_server;
1181 		dr->prot = rqstp->rq_prot;
1182 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1183 		dr->addrlen = rqstp->rq_addrlen;
1184 		dr->daddr = rqstp->rq_daddr;
1185 		dr->argslen = rqstp->rq_arg.len >> 2;
1186 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1187 
1188 		/* back up head to the start of the buffer and copy */
1189 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1190 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1191 		       dr->argslen << 2);
1192 	}
1193 	svc_xprt_get(rqstp->rq_xprt);
1194 	dr->xprt = rqstp->rq_xprt;
1195 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1196 
1197 	dr->handle.revisit = svc_revisit;
1198 	trace_svc_defer(rqstp);
1199 	return &dr->handle;
1200 }
1201 
1202 /*
1203  * recv data from a deferred request into an active one
1204  */
svc_deferred_recv(struct svc_rqst * rqstp)1205 static int svc_deferred_recv(struct svc_rqst *rqstp)
1206 {
1207 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1208 
1209 	/* setup iov_base past transport header */
1210 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1211 	/* The iov_len does not include the transport header bytes */
1212 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1213 	rqstp->rq_arg.page_len = 0;
1214 	/* The rq_arg.len includes the transport header bytes */
1215 	rqstp->rq_arg.len     = dr->argslen<<2;
1216 	rqstp->rq_prot        = dr->prot;
1217 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1218 	rqstp->rq_addrlen     = dr->addrlen;
1219 	/* Save off transport header len in case we get deferred again */
1220 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1221 	rqstp->rq_daddr       = dr->daddr;
1222 	rqstp->rq_respages    = rqstp->rq_pages;
1223 	return (dr->argslen<<2) - dr->xprt_hlen;
1224 }
1225 
1226 
svc_deferred_dequeue(struct svc_xprt * xprt)1227 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1228 {
1229 	struct svc_deferred_req *dr = NULL;
1230 
1231 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1232 		return NULL;
1233 	spin_lock(&xprt->xpt_lock);
1234 	if (!list_empty(&xprt->xpt_deferred)) {
1235 		dr = list_entry(xprt->xpt_deferred.next,
1236 				struct svc_deferred_req,
1237 				handle.recent);
1238 		list_del_init(&dr->handle.recent);
1239 		trace_svc_revisit_deferred(dr);
1240 	} else
1241 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1242 	spin_unlock(&xprt->xpt_lock);
1243 	return dr;
1244 }
1245 
1246 /**
1247  * svc_find_xprt - find an RPC transport instance
1248  * @serv: pointer to svc_serv to search
1249  * @xcl_name: C string containing transport's class name
1250  * @net: owner net pointer
1251  * @af: Address family of transport's local address
1252  * @port: transport's IP port number
1253  *
1254  * Return the transport instance pointer for the endpoint accepting
1255  * connections/peer traffic from the specified transport class,
1256  * address family and port.
1257  *
1258  * Specifying 0 for the address family or port is effectively a
1259  * wild-card, and will result in matching the first transport in the
1260  * service's list that has a matching class name.
1261  */
svc_find_xprt(struct svc_serv * serv,const char * xcl_name,struct net * net,const sa_family_t af,const unsigned short port)1262 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1263 			       struct net *net, const sa_family_t af,
1264 			       const unsigned short port)
1265 {
1266 	struct svc_xprt *xprt;
1267 	struct svc_xprt *found = NULL;
1268 
1269 	/* Sanity check the args */
1270 	if (serv == NULL || xcl_name == NULL)
1271 		return found;
1272 
1273 	spin_lock_bh(&serv->sv_lock);
1274 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1275 		if (xprt->xpt_net != net)
1276 			continue;
1277 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1278 			continue;
1279 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1280 			continue;
1281 		if (port != 0 && port != svc_xprt_local_port(xprt))
1282 			continue;
1283 		found = xprt;
1284 		svc_xprt_get(xprt);
1285 		break;
1286 	}
1287 	spin_unlock_bh(&serv->sv_lock);
1288 	return found;
1289 }
1290 EXPORT_SYMBOL_GPL(svc_find_xprt);
1291 
svc_one_xprt_name(const struct svc_xprt * xprt,char * pos,int remaining)1292 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1293 			     char *pos, int remaining)
1294 {
1295 	int len;
1296 
1297 	len = snprintf(pos, remaining, "%s %u\n",
1298 			xprt->xpt_class->xcl_name,
1299 			svc_xprt_local_port(xprt));
1300 	if (len >= remaining)
1301 		return -ENAMETOOLONG;
1302 	return len;
1303 }
1304 
1305 /**
1306  * svc_xprt_names - format a buffer with a list of transport names
1307  * @serv: pointer to an RPC service
1308  * @buf: pointer to a buffer to be filled in
1309  * @buflen: length of buffer to be filled in
1310  *
1311  * Fills in @buf with a string containing a list of transport names,
1312  * each name terminated with '\n'.
1313  *
1314  * Returns positive length of the filled-in string on success; otherwise
1315  * a negative errno value is returned if an error occurs.
1316  */
svc_xprt_names(struct svc_serv * serv,char * buf,const int buflen)1317 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1318 {
1319 	struct svc_xprt *xprt;
1320 	int len, totlen;
1321 	char *pos;
1322 
1323 	/* Sanity check args */
1324 	if (!serv)
1325 		return 0;
1326 
1327 	spin_lock_bh(&serv->sv_lock);
1328 
1329 	pos = buf;
1330 	totlen = 0;
1331 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1332 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1333 		if (len < 0) {
1334 			*buf = '\0';
1335 			totlen = len;
1336 		}
1337 		if (len <= 0)
1338 			break;
1339 
1340 		pos += len;
1341 		totlen += len;
1342 	}
1343 
1344 	spin_unlock_bh(&serv->sv_lock);
1345 	return totlen;
1346 }
1347 EXPORT_SYMBOL_GPL(svc_xprt_names);
1348 
1349 
1350 /*----------------------------------------------------------------------------*/
1351 
svc_pool_stats_start(struct seq_file * m,loff_t * pos)1352 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1353 {
1354 	unsigned int pidx = (unsigned int)*pos;
1355 	struct svc_serv *serv = m->private;
1356 
1357 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1358 
1359 	if (!pidx)
1360 		return SEQ_START_TOKEN;
1361 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1362 }
1363 
svc_pool_stats_next(struct seq_file * m,void * p,loff_t * pos)1364 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1365 {
1366 	struct svc_pool *pool = p;
1367 	struct svc_serv *serv = m->private;
1368 
1369 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1370 
1371 	if (p == SEQ_START_TOKEN) {
1372 		pool = &serv->sv_pools[0];
1373 	} else {
1374 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1375 		if (pidx < serv->sv_nrpools-1)
1376 			pool = &serv->sv_pools[pidx+1];
1377 		else
1378 			pool = NULL;
1379 	}
1380 	++*pos;
1381 	return pool;
1382 }
1383 
svc_pool_stats_stop(struct seq_file * m,void * p)1384 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1385 {
1386 }
1387 
svc_pool_stats_show(struct seq_file * m,void * p)1388 static int svc_pool_stats_show(struct seq_file *m, void *p)
1389 {
1390 	struct svc_pool *pool = p;
1391 
1392 	if (p == SEQ_START_TOKEN) {
1393 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1394 		return 0;
1395 	}
1396 
1397 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1398 		pool->sp_id,
1399 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1400 		pool->sp_stats.sockets_queued,
1401 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1402 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1403 
1404 	return 0;
1405 }
1406 
1407 static const struct seq_operations svc_pool_stats_seq_ops = {
1408 	.start	= svc_pool_stats_start,
1409 	.next	= svc_pool_stats_next,
1410 	.stop	= svc_pool_stats_stop,
1411 	.show	= svc_pool_stats_show,
1412 };
1413 
svc_pool_stats_open(struct svc_serv * serv,struct file * file)1414 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1415 {
1416 	int err;
1417 
1418 	err = seq_open(file, &svc_pool_stats_seq_ops);
1419 	if (!err)
1420 		((struct seq_file *) file->private_data)->private = serv;
1421 	return err;
1422 }
1423 EXPORT_SYMBOL(svc_pool_stats_open);
1424 
1425 /*----------------------------------------------------------------------------*/
1426