1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/net/sunrpc/xprtsock.c
4 *
5 * Client-side transport implementation for sockets.
6 *
7 * TCP callback races fixes (C) 1998 Red Hat
8 * TCP send fixes (C) 1998 Red Hat
9 * TCP NFS related read + write fixes
10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11 *
12 * Rewrite of larges part of the code in order to stabilize TCP stuff.
13 * Fix behaviour when socket buffer is full.
14 * (C) 1999 Trond Myklebust <trond.myklebust@fys.uio.no>
15 *
16 * IP socket transport implementation, (C) 2005 Chuck Lever <cel@netapp.com>
17 *
18 * IPv6 support contributed by Gilles Quillard, Bull Open Source, 2005.
19 * <gilles.quillard@bull.net>
20 */
21
22 #include <linux/types.h>
23 #include <linux/string.h>
24 #include <linux/slab.h>
25 #include <linux/module.h>
26 #include <linux/capability.h>
27 #include <linux/pagemap.h>
28 #include <linux/errno.h>
29 #include <linux/socket.h>
30 #include <linux/in.h>
31 #include <linux/net.h>
32 #include <linux/mm.h>
33 #include <linux/un.h>
34 #include <linux/udp.h>
35 #include <linux/tcp.h>
36 #include <linux/sunrpc/clnt.h>
37 #include <linux/sunrpc/addr.h>
38 #include <linux/sunrpc/sched.h>
39 #include <linux/sunrpc/svcsock.h>
40 #include <linux/sunrpc/xprtsock.h>
41 #include <linux/file.h>
42 #ifdef CONFIG_SUNRPC_BACKCHANNEL
43 #include <linux/sunrpc/bc_xprt.h>
44 #endif
45
46 #include <net/sock.h>
47 #include <net/checksum.h>
48 #include <net/udp.h>
49 #include <net/tcp.h>
50
51 #include <trace/events/sunrpc.h>
52
53 #include "sunrpc.h"
54
55 #define RPC_TCP_READ_CHUNK_SZ (3*512*1024)
56
57 static void xs_close(struct rpc_xprt *xprt);
58 static void xs_tcp_set_socket_timeouts(struct rpc_xprt *xprt,
59 struct socket *sock);
60
61 /*
62 * xprtsock tunables
63 */
64 static unsigned int xprt_udp_slot_table_entries = RPC_DEF_SLOT_TABLE;
65 static unsigned int xprt_tcp_slot_table_entries = RPC_MIN_SLOT_TABLE;
66 static unsigned int xprt_max_tcp_slot_table_entries = RPC_MAX_SLOT_TABLE;
67
68 static unsigned int xprt_min_resvport = RPC_DEF_MIN_RESVPORT;
69 static unsigned int xprt_max_resvport = RPC_DEF_MAX_RESVPORT;
70
71 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
72
73 #define XS_TCP_LINGER_TO (15U * HZ)
74 static unsigned int xs_tcp_fin_timeout __read_mostly = XS_TCP_LINGER_TO;
75
76 /*
77 * We can register our own files under /proc/sys/sunrpc by
78 * calling register_sysctl_table() again. The files in that
79 * directory become the union of all files registered there.
80 *
81 * We simply need to make sure that we don't collide with
82 * someone else's file names!
83 */
84
85 static unsigned int min_slot_table_size = RPC_MIN_SLOT_TABLE;
86 static unsigned int max_slot_table_size = RPC_MAX_SLOT_TABLE;
87 static unsigned int max_tcp_slot_table_limit = RPC_MAX_SLOT_TABLE_LIMIT;
88 static unsigned int xprt_min_resvport_limit = RPC_MIN_RESVPORT;
89 static unsigned int xprt_max_resvport_limit = RPC_MAX_RESVPORT;
90
91 static struct ctl_table_header *sunrpc_table_header;
92
93 /*
94 * FIXME: changing the UDP slot table size should also resize the UDP
95 * socket buffers for existing UDP transports
96 */
97 static struct ctl_table xs_tunables_table[] = {
98 {
99 .procname = "udp_slot_table_entries",
100 .data = &xprt_udp_slot_table_entries,
101 .maxlen = sizeof(unsigned int),
102 .mode = 0644,
103 .proc_handler = proc_dointvec_minmax,
104 .extra1 = &min_slot_table_size,
105 .extra2 = &max_slot_table_size
106 },
107 {
108 .procname = "tcp_slot_table_entries",
109 .data = &xprt_tcp_slot_table_entries,
110 .maxlen = sizeof(unsigned int),
111 .mode = 0644,
112 .proc_handler = proc_dointvec_minmax,
113 .extra1 = &min_slot_table_size,
114 .extra2 = &max_slot_table_size
115 },
116 {
117 .procname = "tcp_max_slot_table_entries",
118 .data = &xprt_max_tcp_slot_table_entries,
119 .maxlen = sizeof(unsigned int),
120 .mode = 0644,
121 .proc_handler = proc_dointvec_minmax,
122 .extra1 = &min_slot_table_size,
123 .extra2 = &max_tcp_slot_table_limit
124 },
125 {
126 .procname = "min_resvport",
127 .data = &xprt_min_resvport,
128 .maxlen = sizeof(unsigned int),
129 .mode = 0644,
130 .proc_handler = proc_dointvec_minmax,
131 .extra1 = &xprt_min_resvport_limit,
132 .extra2 = &xprt_max_resvport_limit
133 },
134 {
135 .procname = "max_resvport",
136 .data = &xprt_max_resvport,
137 .maxlen = sizeof(unsigned int),
138 .mode = 0644,
139 .proc_handler = proc_dointvec_minmax,
140 .extra1 = &xprt_min_resvport_limit,
141 .extra2 = &xprt_max_resvport_limit
142 },
143 {
144 .procname = "tcp_fin_timeout",
145 .data = &xs_tcp_fin_timeout,
146 .maxlen = sizeof(xs_tcp_fin_timeout),
147 .mode = 0644,
148 .proc_handler = proc_dointvec_jiffies,
149 },
150 { },
151 };
152
153 static struct ctl_table sunrpc_table[] = {
154 {
155 .procname = "sunrpc",
156 .mode = 0555,
157 .child = xs_tunables_table
158 },
159 { },
160 };
161
162 #endif
163
164 /*
165 * Wait duration for a reply from the RPC portmapper.
166 */
167 #define XS_BIND_TO (60U * HZ)
168
169 /*
170 * Delay if a UDP socket connect error occurs. This is most likely some
171 * kind of resource problem on the local host.
172 */
173 #define XS_UDP_REEST_TO (2U * HZ)
174
175 /*
176 * The reestablish timeout allows clients to delay for a bit before attempting
177 * to reconnect to a server that just dropped our connection.
178 *
179 * We implement an exponential backoff when trying to reestablish a TCP
180 * transport connection with the server. Some servers like to drop a TCP
181 * connection when they are overworked, so we start with a short timeout and
182 * increase over time if the server is down or not responding.
183 */
184 #define XS_TCP_INIT_REEST_TO (3U * HZ)
185
186 /*
187 * TCP idle timeout; client drops the transport socket if it is idle
188 * for this long. Note that we also timeout UDP sockets to prevent
189 * holding port numbers when there is no RPC traffic.
190 */
191 #define XS_IDLE_DISC_TO (5U * 60 * HZ)
192
193 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
194 # undef RPC_DEBUG_DATA
195 # define RPCDBG_FACILITY RPCDBG_TRANS
196 #endif
197
198 #ifdef RPC_DEBUG_DATA
xs_pktdump(char * msg,u32 * packet,unsigned int count)199 static void xs_pktdump(char *msg, u32 *packet, unsigned int count)
200 {
201 u8 *buf = (u8 *) packet;
202 int j;
203
204 dprintk("RPC: %s\n", msg);
205 for (j = 0; j < count && j < 128; j += 4) {
206 if (!(j & 31)) {
207 if (j)
208 dprintk("\n");
209 dprintk("0x%04x ", j);
210 }
211 dprintk("%02x%02x%02x%02x ",
212 buf[j], buf[j+1], buf[j+2], buf[j+3]);
213 }
214 dprintk("\n");
215 }
216 #else
xs_pktdump(char * msg,u32 * packet,unsigned int count)217 static inline void xs_pktdump(char *msg, u32 *packet, unsigned int count)
218 {
219 /* NOP */
220 }
221 #endif
222
xprt_from_sock(struct sock * sk)223 static inline struct rpc_xprt *xprt_from_sock(struct sock *sk)
224 {
225 return (struct rpc_xprt *) sk->sk_user_data;
226 }
227
xs_addr(struct rpc_xprt * xprt)228 static inline struct sockaddr *xs_addr(struct rpc_xprt *xprt)
229 {
230 return (struct sockaddr *) &xprt->addr;
231 }
232
xs_addr_un(struct rpc_xprt * xprt)233 static inline struct sockaddr_un *xs_addr_un(struct rpc_xprt *xprt)
234 {
235 return (struct sockaddr_un *) &xprt->addr;
236 }
237
xs_addr_in(struct rpc_xprt * xprt)238 static inline struct sockaddr_in *xs_addr_in(struct rpc_xprt *xprt)
239 {
240 return (struct sockaddr_in *) &xprt->addr;
241 }
242
xs_addr_in6(struct rpc_xprt * xprt)243 static inline struct sockaddr_in6 *xs_addr_in6(struct rpc_xprt *xprt)
244 {
245 return (struct sockaddr_in6 *) &xprt->addr;
246 }
247
xs_format_common_peer_addresses(struct rpc_xprt * xprt)248 static void xs_format_common_peer_addresses(struct rpc_xprt *xprt)
249 {
250 struct sockaddr *sap = xs_addr(xprt);
251 struct sockaddr_in6 *sin6;
252 struct sockaddr_in *sin;
253 struct sockaddr_un *sun;
254 char buf[128];
255
256 switch (sap->sa_family) {
257 case AF_LOCAL:
258 sun = xs_addr_un(xprt);
259 strlcpy(buf, sun->sun_path, sizeof(buf));
260 xprt->address_strings[RPC_DISPLAY_ADDR] =
261 kstrdup(buf, GFP_KERNEL);
262 break;
263 case AF_INET:
264 (void)rpc_ntop(sap, buf, sizeof(buf));
265 xprt->address_strings[RPC_DISPLAY_ADDR] =
266 kstrdup(buf, GFP_KERNEL);
267 sin = xs_addr_in(xprt);
268 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
269 break;
270 case AF_INET6:
271 (void)rpc_ntop(sap, buf, sizeof(buf));
272 xprt->address_strings[RPC_DISPLAY_ADDR] =
273 kstrdup(buf, GFP_KERNEL);
274 sin6 = xs_addr_in6(xprt);
275 snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr);
276 break;
277 default:
278 BUG();
279 }
280
281 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
282 }
283
xs_format_common_peer_ports(struct rpc_xprt * xprt)284 static void xs_format_common_peer_ports(struct rpc_xprt *xprt)
285 {
286 struct sockaddr *sap = xs_addr(xprt);
287 char buf[128];
288
289 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
290 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
291
292 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
293 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
294 }
295
xs_format_peer_addresses(struct rpc_xprt * xprt,const char * protocol,const char * netid)296 static void xs_format_peer_addresses(struct rpc_xprt *xprt,
297 const char *protocol,
298 const char *netid)
299 {
300 xprt->address_strings[RPC_DISPLAY_PROTO] = protocol;
301 xprt->address_strings[RPC_DISPLAY_NETID] = netid;
302 xs_format_common_peer_addresses(xprt);
303 xs_format_common_peer_ports(xprt);
304 }
305
xs_update_peer_port(struct rpc_xprt * xprt)306 static void xs_update_peer_port(struct rpc_xprt *xprt)
307 {
308 kfree(xprt->address_strings[RPC_DISPLAY_HEX_PORT]);
309 kfree(xprt->address_strings[RPC_DISPLAY_PORT]);
310
311 xs_format_common_peer_ports(xprt);
312 }
313
xs_free_peer_addresses(struct rpc_xprt * xprt)314 static void xs_free_peer_addresses(struct rpc_xprt *xprt)
315 {
316 unsigned int i;
317
318 for (i = 0; i < RPC_DISPLAY_MAX; i++)
319 switch (i) {
320 case RPC_DISPLAY_PROTO:
321 case RPC_DISPLAY_NETID:
322 continue;
323 default:
324 kfree(xprt->address_strings[i]);
325 }
326 }
327
328 #define XS_SENDMSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL)
329
xs_send_kvec(struct socket * sock,struct sockaddr * addr,int addrlen,struct kvec * vec,unsigned int base,int more)330 static int xs_send_kvec(struct socket *sock, struct sockaddr *addr, int addrlen, struct kvec *vec, unsigned int base, int more)
331 {
332 struct msghdr msg = {
333 .msg_name = addr,
334 .msg_namelen = addrlen,
335 .msg_flags = XS_SENDMSG_FLAGS | (more ? MSG_MORE : 0),
336 };
337 struct kvec iov = {
338 .iov_base = vec->iov_base + base,
339 .iov_len = vec->iov_len - base,
340 };
341
342 if (iov.iov_len != 0)
343 return kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
344 return kernel_sendmsg(sock, &msg, NULL, 0, 0);
345 }
346
xs_send_pagedata(struct socket * sock,struct xdr_buf * xdr,unsigned int base,int more,bool zerocopy,int * sent_p)347 static int xs_send_pagedata(struct socket *sock, struct xdr_buf *xdr, unsigned int base, int more, bool zerocopy, int *sent_p)
348 {
349 ssize_t (*do_sendpage)(struct socket *sock, struct page *page,
350 int offset, size_t size, int flags);
351 struct page **ppage;
352 unsigned int remainder;
353 int err;
354
355 remainder = xdr->page_len - base;
356 base += xdr->page_base;
357 ppage = xdr->pages + (base >> PAGE_SHIFT);
358 base &= ~PAGE_MASK;
359 do_sendpage = sock->ops->sendpage;
360 if (!zerocopy)
361 do_sendpage = sock_no_sendpage;
362 for(;;) {
363 unsigned int len = min_t(unsigned int, PAGE_SIZE - base, remainder);
364 int flags = XS_SENDMSG_FLAGS;
365
366 remainder -= len;
367 if (more)
368 flags |= MSG_MORE;
369 if (remainder != 0)
370 flags |= MSG_SENDPAGE_NOTLAST | MSG_MORE;
371 err = do_sendpage(sock, *ppage, base, len, flags);
372 if (remainder == 0 || err != len)
373 break;
374 *sent_p += err;
375 ppage++;
376 base = 0;
377 }
378 if (err > 0) {
379 *sent_p += err;
380 err = 0;
381 }
382 return err;
383 }
384
385 /**
386 * xs_sendpages - write pages directly to a socket
387 * @sock: socket to send on
388 * @addr: UDP only -- address of destination
389 * @addrlen: UDP only -- length of destination address
390 * @xdr: buffer containing this request
391 * @base: starting position in the buffer
392 * @zerocopy: true if it is safe to use sendpage()
393 * @sent_p: return the total number of bytes successfully queued for sending
394 *
395 */
xs_sendpages(struct socket * sock,struct sockaddr * addr,int addrlen,struct xdr_buf * xdr,unsigned int base,bool zerocopy,int * sent_p)396 static int xs_sendpages(struct socket *sock, struct sockaddr *addr, int addrlen, struct xdr_buf *xdr, unsigned int base, bool zerocopy, int *sent_p)
397 {
398 unsigned int remainder = xdr->len - base;
399 int err = 0;
400 int sent = 0;
401
402 if (unlikely(!sock))
403 return -ENOTSOCK;
404
405 if (base != 0) {
406 addr = NULL;
407 addrlen = 0;
408 }
409
410 if (base < xdr->head[0].iov_len || addr != NULL) {
411 unsigned int len = xdr->head[0].iov_len - base;
412 remainder -= len;
413 err = xs_send_kvec(sock, addr, addrlen, &xdr->head[0], base, remainder != 0);
414 if (remainder == 0 || err != len)
415 goto out;
416 *sent_p += err;
417 base = 0;
418 } else
419 base -= xdr->head[0].iov_len;
420
421 if (base < xdr->page_len) {
422 unsigned int len = xdr->page_len - base;
423 remainder -= len;
424 err = xs_send_pagedata(sock, xdr, base, remainder != 0, zerocopy, &sent);
425 *sent_p += sent;
426 if (remainder == 0 || sent != len)
427 goto out;
428 base = 0;
429 } else
430 base -= xdr->page_len;
431
432 if (base >= xdr->tail[0].iov_len)
433 return 0;
434 err = xs_send_kvec(sock, NULL, 0, &xdr->tail[0], base, 0);
435 out:
436 if (err > 0) {
437 *sent_p += err;
438 err = 0;
439 }
440 return err;
441 }
442
xs_nospace_callback(struct rpc_task * task)443 static void xs_nospace_callback(struct rpc_task *task)
444 {
445 struct sock_xprt *transport = container_of(task->tk_rqstp->rq_xprt, struct sock_xprt, xprt);
446
447 transport->inet->sk_write_pending--;
448 }
449
450 /**
451 * xs_nospace - place task on wait queue if transmit was incomplete
452 * @task: task to put to sleep
453 *
454 */
xs_nospace(struct rpc_task * task)455 static int xs_nospace(struct rpc_task *task)
456 {
457 struct rpc_rqst *req = task->tk_rqstp;
458 struct rpc_xprt *xprt = req->rq_xprt;
459 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
460 struct sock *sk = transport->inet;
461 int ret = -EAGAIN;
462
463 dprintk("RPC: %5u xmit incomplete (%u left of %u)\n",
464 task->tk_pid, req->rq_slen - req->rq_bytes_sent,
465 req->rq_slen);
466
467 /* Protect against races with write_space */
468 spin_lock_bh(&xprt->transport_lock);
469
470 /* Don't race with disconnect */
471 if (xprt_connected(xprt)) {
472 /* wait for more buffer space */
473 sk->sk_write_pending++;
474 xprt_wait_for_buffer_space(task, xs_nospace_callback);
475 } else
476 ret = -ENOTCONN;
477
478 spin_unlock_bh(&xprt->transport_lock);
479
480 /* Race breaker in case memory is freed before above code is called */
481 if (ret == -EAGAIN) {
482 struct socket_wq *wq;
483
484 rcu_read_lock();
485 wq = rcu_dereference(sk->sk_wq);
486 set_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags);
487 rcu_read_unlock();
488
489 sk->sk_write_space(sk);
490 }
491 return ret;
492 }
493
494 /*
495 * Construct a stream transport record marker in @buf.
496 */
xs_encode_stream_record_marker(struct xdr_buf * buf)497 static inline void xs_encode_stream_record_marker(struct xdr_buf *buf)
498 {
499 u32 reclen = buf->len - sizeof(rpc_fraghdr);
500 rpc_fraghdr *base = buf->head[0].iov_base;
501 *base = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | reclen);
502 }
503
504 /**
505 * xs_local_send_request - write an RPC request to an AF_LOCAL socket
506 * @task: RPC task that manages the state of an RPC request
507 *
508 * Return values:
509 * 0: The request has been sent
510 * EAGAIN: The socket was blocked, please call again later to
511 * complete the request
512 * ENOTCONN: Caller needs to invoke connect logic then call again
513 * other: Some other error occured, the request was not sent
514 */
xs_local_send_request(struct rpc_task * task)515 static int xs_local_send_request(struct rpc_task *task)
516 {
517 struct rpc_rqst *req = task->tk_rqstp;
518 struct rpc_xprt *xprt = req->rq_xprt;
519 struct sock_xprt *transport =
520 container_of(xprt, struct sock_xprt, xprt);
521 struct xdr_buf *xdr = &req->rq_snd_buf;
522 int status;
523 int sent = 0;
524
525 xs_encode_stream_record_marker(&req->rq_snd_buf);
526
527 xs_pktdump("packet data:",
528 req->rq_svec->iov_base, req->rq_svec->iov_len);
529
530 req->rq_xtime = ktime_get();
531 status = xs_sendpages(transport->sock, NULL, 0, xdr, req->rq_bytes_sent,
532 true, &sent);
533 dprintk("RPC: %s(%u) = %d\n",
534 __func__, xdr->len - req->rq_bytes_sent, status);
535
536 if (status == -EAGAIN && sock_writeable(transport->inet))
537 status = -ENOBUFS;
538
539 if (likely(sent > 0) || status == 0) {
540 req->rq_bytes_sent += sent;
541 req->rq_xmit_bytes_sent += sent;
542 if (likely(req->rq_bytes_sent >= req->rq_slen)) {
543 req->rq_bytes_sent = 0;
544 return 0;
545 }
546 status = -EAGAIN;
547 }
548
549 switch (status) {
550 case -ENOBUFS:
551 break;
552 case -EAGAIN:
553 status = xs_nospace(task);
554 break;
555 default:
556 dprintk("RPC: sendmsg returned unrecognized error %d\n",
557 -status);
558 /* fall through */
559 case -EPIPE:
560 xprt_force_disconnect(xprt);
561 status = -ENOTCONN;
562 }
563
564 return status;
565 }
566
567 /**
568 * xs_udp_send_request - write an RPC request to a UDP socket
569 * @task: address of RPC task that manages the state of an RPC request
570 *
571 * Return values:
572 * 0: The request has been sent
573 * EAGAIN: The socket was blocked, please call again later to
574 * complete the request
575 * ENOTCONN: Caller needs to invoke connect logic then call again
576 * other: Some other error occurred, the request was not sent
577 */
xs_udp_send_request(struct rpc_task * task)578 static int xs_udp_send_request(struct rpc_task *task)
579 {
580 struct rpc_rqst *req = task->tk_rqstp;
581 struct rpc_xprt *xprt = req->rq_xprt;
582 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
583 struct xdr_buf *xdr = &req->rq_snd_buf;
584 int sent = 0;
585 int status;
586
587 xs_pktdump("packet data:",
588 req->rq_svec->iov_base,
589 req->rq_svec->iov_len);
590
591 if (!xprt_bound(xprt))
592 return -ENOTCONN;
593 req->rq_xtime = ktime_get();
594 status = xs_sendpages(transport->sock, xs_addr(xprt), xprt->addrlen,
595 xdr, req->rq_bytes_sent, true, &sent);
596
597 dprintk("RPC: xs_udp_send_request(%u) = %d\n",
598 xdr->len - req->rq_bytes_sent, status);
599
600 /* firewall is blocking us, don't return -EAGAIN or we end up looping */
601 if (status == -EPERM)
602 goto process_status;
603
604 if (status == -EAGAIN && sock_writeable(transport->inet))
605 status = -ENOBUFS;
606
607 if (sent > 0 || status == 0) {
608 req->rq_xmit_bytes_sent += sent;
609 if (sent >= req->rq_slen)
610 return 0;
611 /* Still some bytes left; set up for a retry later. */
612 status = -EAGAIN;
613 }
614
615 process_status:
616 switch (status) {
617 case -ENOTSOCK:
618 status = -ENOTCONN;
619 /* Should we call xs_close() here? */
620 break;
621 case -EAGAIN:
622 status = xs_nospace(task);
623 break;
624 case -ENETUNREACH:
625 case -ENOBUFS:
626 case -EPIPE:
627 case -ECONNREFUSED:
628 case -EPERM:
629 /* When the server has died, an ICMP port unreachable message
630 * prompts ECONNREFUSED. */
631 break;
632 default:
633 dprintk("RPC: sendmsg returned unrecognized error %d\n",
634 -status);
635 }
636
637 return status;
638 }
639
640 /**
641 * xs_tcp_send_request - write an RPC request to a TCP socket
642 * @task: address of RPC task that manages the state of an RPC request
643 *
644 * Return values:
645 * 0: The request has been sent
646 * EAGAIN: The socket was blocked, please call again later to
647 * complete the request
648 * ENOTCONN: Caller needs to invoke connect logic then call again
649 * other: Some other error occurred, the request was not sent
650 *
651 * XXX: In the case of soft timeouts, should we eventually give up
652 * if sendmsg is not able to make progress?
653 */
xs_tcp_send_request(struct rpc_task * task)654 static int xs_tcp_send_request(struct rpc_task *task)
655 {
656 struct rpc_rqst *req = task->tk_rqstp;
657 struct rpc_xprt *xprt = req->rq_xprt;
658 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
659 struct xdr_buf *xdr = &req->rq_snd_buf;
660 bool zerocopy = true;
661 bool vm_wait = false;
662 int status;
663 int sent;
664
665 xs_encode_stream_record_marker(&req->rq_snd_buf);
666
667 xs_pktdump("packet data:",
668 req->rq_svec->iov_base,
669 req->rq_svec->iov_len);
670 /* Don't use zero copy if this is a resend. If the RPC call
671 * completes while the socket holds a reference to the pages,
672 * then we may end up resending corrupted data.
673 */
674 if (task->tk_flags & RPC_TASK_SENT)
675 zerocopy = false;
676
677 if (test_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state))
678 xs_tcp_set_socket_timeouts(xprt, transport->sock);
679
680 /* Continue transmitting the packet/record. We must be careful
681 * to cope with writespace callbacks arriving _after_ we have
682 * called sendmsg(). */
683 req->rq_xtime = ktime_get();
684 while (1) {
685 sent = 0;
686 status = xs_sendpages(transport->sock, NULL, 0, xdr,
687 req->rq_bytes_sent, zerocopy, &sent);
688
689 dprintk("RPC: xs_tcp_send_request(%u) = %d\n",
690 xdr->len - req->rq_bytes_sent, status);
691
692 /* If we've sent the entire packet, immediately
693 * reset the count of bytes sent. */
694 req->rq_bytes_sent += sent;
695 req->rq_xmit_bytes_sent += sent;
696 if (likely(req->rq_bytes_sent >= req->rq_slen)) {
697 req->rq_bytes_sent = 0;
698 return 0;
699 }
700
701 WARN_ON_ONCE(sent == 0 && status == 0);
702
703 if (status == -EAGAIN ) {
704 /*
705 * Return EAGAIN if we're sure we're hitting the
706 * socket send buffer limits.
707 */
708 if (test_bit(SOCK_NOSPACE, &transport->sock->flags))
709 break;
710 /*
711 * Did we hit a memory allocation failure?
712 */
713 if (sent == 0) {
714 status = -ENOBUFS;
715 if (vm_wait)
716 break;
717 /* Retry, knowing now that we're below the
718 * socket send buffer limit
719 */
720 vm_wait = true;
721 }
722 continue;
723 }
724 if (status < 0)
725 break;
726 vm_wait = false;
727 }
728
729 switch (status) {
730 case -ENOTSOCK:
731 status = -ENOTCONN;
732 /* Should we call xs_close() here? */
733 break;
734 case -EAGAIN:
735 status = xs_nospace(task);
736 break;
737 case -ECONNRESET:
738 case -ECONNREFUSED:
739 case -ENOTCONN:
740 case -EADDRINUSE:
741 case -ENOBUFS:
742 case -EPIPE:
743 break;
744 default:
745 dprintk("RPC: sendmsg returned unrecognized error %d\n",
746 -status);
747 }
748
749 return status;
750 }
751
752 /**
753 * xs_tcp_release_xprt - clean up after a tcp transmission
754 * @xprt: transport
755 * @task: rpc task
756 *
757 * This cleans up if an error causes us to abort the transmission of a request.
758 * In this case, the socket may need to be reset in order to avoid confusing
759 * the server.
760 */
xs_tcp_release_xprt(struct rpc_xprt * xprt,struct rpc_task * task)761 static void xs_tcp_release_xprt(struct rpc_xprt *xprt, struct rpc_task *task)
762 {
763 struct rpc_rqst *req;
764
765 if (task != xprt->snd_task)
766 return;
767 if (task == NULL)
768 goto out_release;
769 req = task->tk_rqstp;
770 if (req == NULL)
771 goto out_release;
772 if (req->rq_bytes_sent == 0)
773 goto out_release;
774 if (req->rq_bytes_sent == req->rq_snd_buf.len)
775 goto out_release;
776 set_bit(XPRT_CLOSE_WAIT, &xprt->state);
777 out_release:
778 xprt_release_xprt(xprt, task);
779 }
780
xs_save_old_callbacks(struct sock_xprt * transport,struct sock * sk)781 static void xs_save_old_callbacks(struct sock_xprt *transport, struct sock *sk)
782 {
783 transport->old_data_ready = sk->sk_data_ready;
784 transport->old_state_change = sk->sk_state_change;
785 transport->old_write_space = sk->sk_write_space;
786 transport->old_error_report = sk->sk_error_report;
787 }
788
xs_restore_old_callbacks(struct sock_xprt * transport,struct sock * sk)789 static void xs_restore_old_callbacks(struct sock_xprt *transport, struct sock *sk)
790 {
791 sk->sk_data_ready = transport->old_data_ready;
792 sk->sk_state_change = transport->old_state_change;
793 sk->sk_write_space = transport->old_write_space;
794 sk->sk_error_report = transport->old_error_report;
795 }
796
xs_sock_reset_state_flags(struct rpc_xprt * xprt)797 static void xs_sock_reset_state_flags(struct rpc_xprt *xprt)
798 {
799 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
800
801 clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state);
802 }
803
xs_sock_reset_connection_flags(struct rpc_xprt * xprt)804 static void xs_sock_reset_connection_flags(struct rpc_xprt *xprt)
805 {
806 smp_mb__before_atomic();
807 clear_bit(XPRT_CLOSE_WAIT, &xprt->state);
808 clear_bit(XPRT_CLOSING, &xprt->state);
809 xs_sock_reset_state_flags(xprt);
810 smp_mb__after_atomic();
811 }
812
813 /**
814 * xs_error_report - callback to handle TCP socket state errors
815 * @sk: socket
816 *
817 * Note: we don't call sock_error() since there may be a rpc_task
818 * using the socket, and so we don't want to clear sk->sk_err.
819 */
xs_error_report(struct sock * sk)820 static void xs_error_report(struct sock *sk)
821 {
822 struct rpc_xprt *xprt;
823 int err;
824
825 read_lock_bh(&sk->sk_callback_lock);
826 if (!(xprt = xprt_from_sock(sk)))
827 goto out;
828
829 err = -sk->sk_err;
830 if (err == 0)
831 goto out;
832 dprintk("RPC: xs_error_report client %p, error=%d...\n",
833 xprt, -err);
834 trace_rpc_socket_error(xprt, sk->sk_socket, err);
835 xprt_wake_pending_tasks(xprt, err);
836 out:
837 read_unlock_bh(&sk->sk_callback_lock);
838 }
839
xs_reset_transport(struct sock_xprt * transport)840 static void xs_reset_transport(struct sock_xprt *transport)
841 {
842 struct socket *sock = transport->sock;
843 struct sock *sk = transport->inet;
844 struct rpc_xprt *xprt = &transport->xprt;
845
846 if (sk == NULL)
847 return;
848 /*
849 * Make sure we're calling this in a context from which it is safe
850 * to call __fput_sync(). In practice that means rpciod and the
851 * system workqueue.
852 */
853 if (!(current->flags & PF_WQ_WORKER)) {
854 WARN_ON_ONCE(1);
855 set_bit(XPRT_CLOSE_WAIT, &xprt->state);
856 return;
857 }
858
859 if (atomic_read(&transport->xprt.swapper))
860 sk_clear_memalloc(sk);
861
862 kernel_sock_shutdown(sock, SHUT_RDWR);
863
864 mutex_lock(&transport->recv_mutex);
865 write_lock_bh(&sk->sk_callback_lock);
866 transport->inet = NULL;
867 transport->sock = NULL;
868
869 sk->sk_user_data = NULL;
870
871 xs_restore_old_callbacks(transport, sk);
872 xprt_clear_connected(xprt);
873 write_unlock_bh(&sk->sk_callback_lock);
874 xs_sock_reset_connection_flags(xprt);
875 mutex_unlock(&transport->recv_mutex);
876
877 trace_rpc_socket_close(xprt, sock);
878 sock_release(sock);
879 }
880
881 /**
882 * xs_close - close a socket
883 * @xprt: transport
884 *
885 * This is used when all requests are complete; ie, no DRC state remains
886 * on the server we want to save.
887 *
888 * The caller _must_ be holding XPRT_LOCKED in order to avoid issues with
889 * xs_reset_transport() zeroing the socket from underneath a writer.
890 */
xs_close(struct rpc_xprt * xprt)891 static void xs_close(struct rpc_xprt *xprt)
892 {
893 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
894
895 dprintk("RPC: xs_close xprt %p\n", xprt);
896
897 xs_reset_transport(transport);
898 xprt->reestablish_timeout = 0;
899
900 xprt_disconnect_done(xprt);
901 }
902
xs_inject_disconnect(struct rpc_xprt * xprt)903 static void xs_inject_disconnect(struct rpc_xprt *xprt)
904 {
905 dprintk("RPC: injecting transport disconnect on xprt=%p\n",
906 xprt);
907 xprt_disconnect_done(xprt);
908 }
909
xs_xprt_free(struct rpc_xprt * xprt)910 static void xs_xprt_free(struct rpc_xprt *xprt)
911 {
912 xs_free_peer_addresses(xprt);
913 xprt_free(xprt);
914 }
915
916 /**
917 * xs_destroy - prepare to shutdown a transport
918 * @xprt: doomed transport
919 *
920 */
xs_destroy(struct rpc_xprt * xprt)921 static void xs_destroy(struct rpc_xprt *xprt)
922 {
923 struct sock_xprt *transport = container_of(xprt,
924 struct sock_xprt, xprt);
925 dprintk("RPC: xs_destroy xprt %p\n", xprt);
926
927 cancel_delayed_work_sync(&transport->connect_worker);
928 xs_close(xprt);
929 cancel_work_sync(&transport->recv_worker);
930 xs_xprt_free(xprt);
931 module_put(THIS_MODULE);
932 }
933
xs_local_copy_to_xdr(struct xdr_buf * xdr,struct sk_buff * skb)934 static int xs_local_copy_to_xdr(struct xdr_buf *xdr, struct sk_buff *skb)
935 {
936 struct xdr_skb_reader desc = {
937 .skb = skb,
938 .offset = sizeof(rpc_fraghdr),
939 .count = skb->len - sizeof(rpc_fraghdr),
940 };
941
942 if (xdr_partial_copy_from_skb(xdr, 0, &desc, xdr_skb_read_bits) < 0)
943 return -1;
944 if (desc.count)
945 return -1;
946 return 0;
947 }
948
949 /**
950 * xs_local_data_read_skb
951 * @xprt: transport
952 * @sk: socket
953 * @skb: skbuff
954 *
955 * Currently this assumes we can read the whole reply in a single gulp.
956 */
xs_local_data_read_skb(struct rpc_xprt * xprt,struct sock * sk,struct sk_buff * skb)957 static void xs_local_data_read_skb(struct rpc_xprt *xprt,
958 struct sock *sk,
959 struct sk_buff *skb)
960 {
961 struct rpc_task *task;
962 struct rpc_rqst *rovr;
963 int repsize, copied;
964 u32 _xid;
965 __be32 *xp;
966
967 repsize = skb->len - sizeof(rpc_fraghdr);
968 if (repsize < 4) {
969 dprintk("RPC: impossible RPC reply size %d\n", repsize);
970 return;
971 }
972
973 /* Copy the XID from the skb... */
974 xp = skb_header_pointer(skb, sizeof(rpc_fraghdr), sizeof(_xid), &_xid);
975 if (xp == NULL)
976 return;
977
978 /* Look up and lock the request corresponding to the given XID */
979 spin_lock(&xprt->recv_lock);
980 rovr = xprt_lookup_rqst(xprt, *xp);
981 if (!rovr)
982 goto out_unlock;
983 xprt_pin_rqst(rovr);
984 spin_unlock(&xprt->recv_lock);
985 task = rovr->rq_task;
986
987 copied = rovr->rq_private_buf.buflen;
988 if (copied > repsize)
989 copied = repsize;
990
991 if (xs_local_copy_to_xdr(&rovr->rq_private_buf, skb)) {
992 dprintk("RPC: sk_buff copy failed\n");
993 spin_lock(&xprt->recv_lock);
994 goto out_unpin;
995 }
996
997 spin_lock(&xprt->recv_lock);
998 xprt_complete_rqst(task, copied);
999 out_unpin:
1000 xprt_unpin_rqst(rovr);
1001 out_unlock:
1002 spin_unlock(&xprt->recv_lock);
1003 }
1004
xs_local_data_receive(struct sock_xprt * transport)1005 static void xs_local_data_receive(struct sock_xprt *transport)
1006 {
1007 struct sk_buff *skb;
1008 struct sock *sk;
1009 int err;
1010
1011 restart:
1012 mutex_lock(&transport->recv_mutex);
1013 sk = transport->inet;
1014 if (sk == NULL)
1015 goto out;
1016 for (;;) {
1017 skb = skb_recv_datagram(sk, 0, 1, &err);
1018 if (skb != NULL) {
1019 xs_local_data_read_skb(&transport->xprt, sk, skb);
1020 skb_free_datagram(sk, skb);
1021 continue;
1022 }
1023 if (!test_and_clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state))
1024 break;
1025 if (need_resched()) {
1026 mutex_unlock(&transport->recv_mutex);
1027 cond_resched();
1028 goto restart;
1029 }
1030 }
1031 out:
1032 mutex_unlock(&transport->recv_mutex);
1033 }
1034
xs_local_data_receive_workfn(struct work_struct * work)1035 static void xs_local_data_receive_workfn(struct work_struct *work)
1036 {
1037 struct sock_xprt *transport =
1038 container_of(work, struct sock_xprt, recv_worker);
1039 xs_local_data_receive(transport);
1040 }
1041
1042 /**
1043 * xs_udp_data_read_skb - receive callback for UDP sockets
1044 * @xprt: transport
1045 * @sk: socket
1046 * @skb: skbuff
1047 *
1048 */
xs_udp_data_read_skb(struct rpc_xprt * xprt,struct sock * sk,struct sk_buff * skb)1049 static void xs_udp_data_read_skb(struct rpc_xprt *xprt,
1050 struct sock *sk,
1051 struct sk_buff *skb)
1052 {
1053 struct rpc_task *task;
1054 struct rpc_rqst *rovr;
1055 int repsize, copied;
1056 u32 _xid;
1057 __be32 *xp;
1058
1059 repsize = skb->len;
1060 if (repsize < 4) {
1061 dprintk("RPC: impossible RPC reply size %d!\n", repsize);
1062 return;
1063 }
1064
1065 /* Copy the XID from the skb... */
1066 xp = skb_header_pointer(skb, 0, sizeof(_xid), &_xid);
1067 if (xp == NULL)
1068 return;
1069
1070 /* Look up and lock the request corresponding to the given XID */
1071 spin_lock(&xprt->recv_lock);
1072 rovr = xprt_lookup_rqst(xprt, *xp);
1073 if (!rovr)
1074 goto out_unlock;
1075 xprt_pin_rqst(rovr);
1076 xprt_update_rtt(rovr->rq_task);
1077 spin_unlock(&xprt->recv_lock);
1078 task = rovr->rq_task;
1079
1080 if ((copied = rovr->rq_private_buf.buflen) > repsize)
1081 copied = repsize;
1082
1083 /* Suck it into the iovec, verify checksum if not done by hw. */
1084 if (csum_partial_copy_to_xdr(&rovr->rq_private_buf, skb)) {
1085 spin_lock(&xprt->recv_lock);
1086 __UDPX_INC_STATS(sk, UDP_MIB_INERRORS);
1087 goto out_unpin;
1088 }
1089
1090
1091 spin_lock_bh(&xprt->transport_lock);
1092 xprt_adjust_cwnd(xprt, task, copied);
1093 spin_unlock_bh(&xprt->transport_lock);
1094 spin_lock(&xprt->recv_lock);
1095 xprt_complete_rqst(task, copied);
1096 __UDPX_INC_STATS(sk, UDP_MIB_INDATAGRAMS);
1097 out_unpin:
1098 xprt_unpin_rqst(rovr);
1099 out_unlock:
1100 spin_unlock(&xprt->recv_lock);
1101 }
1102
xs_udp_data_receive(struct sock_xprt * transport)1103 static void xs_udp_data_receive(struct sock_xprt *transport)
1104 {
1105 struct sk_buff *skb;
1106 struct sock *sk;
1107 int err;
1108
1109 restart:
1110 mutex_lock(&transport->recv_mutex);
1111 sk = transport->inet;
1112 if (sk == NULL)
1113 goto out;
1114 for (;;) {
1115 skb = skb_recv_udp(sk, 0, 1, &err);
1116 if (skb != NULL) {
1117 xs_udp_data_read_skb(&transport->xprt, sk, skb);
1118 consume_skb(skb);
1119 continue;
1120 }
1121 if (!test_and_clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state))
1122 break;
1123 if (need_resched()) {
1124 mutex_unlock(&transport->recv_mutex);
1125 cond_resched();
1126 goto restart;
1127 }
1128 }
1129 out:
1130 mutex_unlock(&transport->recv_mutex);
1131 }
1132
xs_udp_data_receive_workfn(struct work_struct * work)1133 static void xs_udp_data_receive_workfn(struct work_struct *work)
1134 {
1135 struct sock_xprt *transport =
1136 container_of(work, struct sock_xprt, recv_worker);
1137 xs_udp_data_receive(transport);
1138 }
1139
1140 /**
1141 * xs_data_ready - "data ready" callback for UDP sockets
1142 * @sk: socket with data to read
1143 *
1144 */
xs_data_ready(struct sock * sk)1145 static void xs_data_ready(struct sock *sk)
1146 {
1147 struct rpc_xprt *xprt;
1148
1149 read_lock_bh(&sk->sk_callback_lock);
1150 dprintk("RPC: xs_data_ready...\n");
1151 xprt = xprt_from_sock(sk);
1152 if (xprt != NULL) {
1153 struct sock_xprt *transport = container_of(xprt,
1154 struct sock_xprt, xprt);
1155 transport->old_data_ready(sk);
1156 /* Any data means we had a useful conversation, so
1157 * then we don't need to delay the next reconnect
1158 */
1159 if (xprt->reestablish_timeout)
1160 xprt->reestablish_timeout = 0;
1161 if (!test_and_set_bit(XPRT_SOCK_DATA_READY, &transport->sock_state))
1162 queue_work(xprtiod_workqueue, &transport->recv_worker);
1163 }
1164 read_unlock_bh(&sk->sk_callback_lock);
1165 }
1166
1167 /*
1168 * Helper function to force a TCP close if the server is sending
1169 * junk and/or it has put us in CLOSE_WAIT
1170 */
xs_tcp_force_close(struct rpc_xprt * xprt)1171 static void xs_tcp_force_close(struct rpc_xprt *xprt)
1172 {
1173 xprt_force_disconnect(xprt);
1174 }
1175
xs_tcp_read_fraghdr(struct rpc_xprt * xprt,struct xdr_skb_reader * desc)1176 static inline void xs_tcp_read_fraghdr(struct rpc_xprt *xprt, struct xdr_skb_reader *desc)
1177 {
1178 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
1179 size_t len, used;
1180 char *p;
1181
1182 p = ((char *) &transport->tcp_fraghdr) + transport->tcp_offset;
1183 len = sizeof(transport->tcp_fraghdr) - transport->tcp_offset;
1184 used = xdr_skb_read_bits(desc, p, len);
1185 transport->tcp_offset += used;
1186 if (used != len)
1187 return;
1188
1189 transport->tcp_reclen = ntohl(transport->tcp_fraghdr);
1190 if (transport->tcp_reclen & RPC_LAST_STREAM_FRAGMENT)
1191 transport->tcp_flags |= TCP_RCV_LAST_FRAG;
1192 else
1193 transport->tcp_flags &= ~TCP_RCV_LAST_FRAG;
1194 transport->tcp_reclen &= RPC_FRAGMENT_SIZE_MASK;
1195
1196 transport->tcp_flags &= ~TCP_RCV_COPY_FRAGHDR;
1197 transport->tcp_offset = 0;
1198
1199 /* Sanity check of the record length */
1200 if (unlikely(transport->tcp_reclen < 8)) {
1201 dprintk("RPC: invalid TCP record fragment length\n");
1202 xs_tcp_force_close(xprt);
1203 return;
1204 }
1205 dprintk("RPC: reading TCP record fragment of length %d\n",
1206 transport->tcp_reclen);
1207 }
1208
xs_tcp_check_fraghdr(struct sock_xprt * transport)1209 static void xs_tcp_check_fraghdr(struct sock_xprt *transport)
1210 {
1211 if (transport->tcp_offset == transport->tcp_reclen) {
1212 transport->tcp_flags |= TCP_RCV_COPY_FRAGHDR;
1213 transport->tcp_offset = 0;
1214 if (transport->tcp_flags & TCP_RCV_LAST_FRAG) {
1215 transport->tcp_flags &= ~TCP_RCV_COPY_DATA;
1216 transport->tcp_flags |= TCP_RCV_COPY_XID;
1217 transport->tcp_copied = 0;
1218 }
1219 }
1220 }
1221
xs_tcp_read_xid(struct sock_xprt * transport,struct xdr_skb_reader * desc)1222 static inline void xs_tcp_read_xid(struct sock_xprt *transport, struct xdr_skb_reader *desc)
1223 {
1224 size_t len, used;
1225 char *p;
1226
1227 len = sizeof(transport->tcp_xid) - transport->tcp_offset;
1228 dprintk("RPC: reading XID (%zu bytes)\n", len);
1229 p = ((char *) &transport->tcp_xid) + transport->tcp_offset;
1230 used = xdr_skb_read_bits(desc, p, len);
1231 transport->tcp_offset += used;
1232 if (used != len)
1233 return;
1234 transport->tcp_flags &= ~TCP_RCV_COPY_XID;
1235 transport->tcp_flags |= TCP_RCV_READ_CALLDIR;
1236 transport->tcp_copied = 4;
1237 dprintk("RPC: reading %s XID %08x\n",
1238 (transport->tcp_flags & TCP_RPC_REPLY) ? "reply for"
1239 : "request with",
1240 ntohl(transport->tcp_xid));
1241 xs_tcp_check_fraghdr(transport);
1242 }
1243
xs_tcp_read_calldir(struct sock_xprt * transport,struct xdr_skb_reader * desc)1244 static inline void xs_tcp_read_calldir(struct sock_xprt *transport,
1245 struct xdr_skb_reader *desc)
1246 {
1247 size_t len, used;
1248 u32 offset;
1249 char *p;
1250
1251 /*
1252 * We want transport->tcp_offset to be 8 at the end of this routine
1253 * (4 bytes for the xid and 4 bytes for the call/reply flag).
1254 * When this function is called for the first time,
1255 * transport->tcp_offset is 4 (after having already read the xid).
1256 */
1257 offset = transport->tcp_offset - sizeof(transport->tcp_xid);
1258 len = sizeof(transport->tcp_calldir) - offset;
1259 dprintk("RPC: reading CALL/REPLY flag (%zu bytes)\n", len);
1260 p = ((char *) &transport->tcp_calldir) + offset;
1261 used = xdr_skb_read_bits(desc, p, len);
1262 transport->tcp_offset += used;
1263 if (used != len)
1264 return;
1265 transport->tcp_flags &= ~TCP_RCV_READ_CALLDIR;
1266 /*
1267 * We don't yet have the XDR buffer, so we will write the calldir
1268 * out after we get the buffer from the 'struct rpc_rqst'
1269 */
1270 switch (ntohl(transport->tcp_calldir)) {
1271 case RPC_REPLY:
1272 transport->tcp_flags |= TCP_RCV_COPY_CALLDIR;
1273 transport->tcp_flags |= TCP_RCV_COPY_DATA;
1274 transport->tcp_flags |= TCP_RPC_REPLY;
1275 break;
1276 case RPC_CALL:
1277 transport->tcp_flags |= TCP_RCV_COPY_CALLDIR;
1278 transport->tcp_flags |= TCP_RCV_COPY_DATA;
1279 transport->tcp_flags &= ~TCP_RPC_REPLY;
1280 break;
1281 default:
1282 dprintk("RPC: invalid request message type\n");
1283 xs_tcp_force_close(&transport->xprt);
1284 }
1285 xs_tcp_check_fraghdr(transport);
1286 }
1287
xs_tcp_read_common(struct rpc_xprt * xprt,struct xdr_skb_reader * desc,struct rpc_rqst * req)1288 static inline void xs_tcp_read_common(struct rpc_xprt *xprt,
1289 struct xdr_skb_reader *desc,
1290 struct rpc_rqst *req)
1291 {
1292 struct sock_xprt *transport =
1293 container_of(xprt, struct sock_xprt, xprt);
1294 struct xdr_buf *rcvbuf;
1295 size_t len;
1296 ssize_t r;
1297
1298 rcvbuf = &req->rq_private_buf;
1299
1300 if (transport->tcp_flags & TCP_RCV_COPY_CALLDIR) {
1301 /*
1302 * Save the RPC direction in the XDR buffer
1303 */
1304 memcpy(rcvbuf->head[0].iov_base + transport->tcp_copied,
1305 &transport->tcp_calldir,
1306 sizeof(transport->tcp_calldir));
1307 transport->tcp_copied += sizeof(transport->tcp_calldir);
1308 transport->tcp_flags &= ~TCP_RCV_COPY_CALLDIR;
1309 }
1310
1311 len = desc->count;
1312 if (len > transport->tcp_reclen - transport->tcp_offset)
1313 desc->count = transport->tcp_reclen - transport->tcp_offset;
1314 r = xdr_partial_copy_from_skb(rcvbuf, transport->tcp_copied,
1315 desc, xdr_skb_read_bits);
1316
1317 if (desc->count) {
1318 /* Error when copying to the receive buffer,
1319 * usually because we weren't able to allocate
1320 * additional buffer pages. All we can do now
1321 * is turn off TCP_RCV_COPY_DATA, so the request
1322 * will not receive any additional updates,
1323 * and time out.
1324 * Any remaining data from this record will
1325 * be discarded.
1326 */
1327 transport->tcp_flags &= ~TCP_RCV_COPY_DATA;
1328 dprintk("RPC: XID %08x truncated request\n",
1329 ntohl(transport->tcp_xid));
1330 dprintk("RPC: xprt = %p, tcp_copied = %lu, "
1331 "tcp_offset = %u, tcp_reclen = %u\n",
1332 xprt, transport->tcp_copied,
1333 transport->tcp_offset, transport->tcp_reclen);
1334 return;
1335 }
1336
1337 transport->tcp_copied += r;
1338 transport->tcp_offset += r;
1339 desc->count = len - r;
1340
1341 dprintk("RPC: XID %08x read %zd bytes\n",
1342 ntohl(transport->tcp_xid), r);
1343 dprintk("RPC: xprt = %p, tcp_copied = %lu, tcp_offset = %u, "
1344 "tcp_reclen = %u\n", xprt, transport->tcp_copied,
1345 transport->tcp_offset, transport->tcp_reclen);
1346
1347 if (transport->tcp_copied == req->rq_private_buf.buflen)
1348 transport->tcp_flags &= ~TCP_RCV_COPY_DATA;
1349 else if (transport->tcp_offset == transport->tcp_reclen) {
1350 if (transport->tcp_flags & TCP_RCV_LAST_FRAG)
1351 transport->tcp_flags &= ~TCP_RCV_COPY_DATA;
1352 }
1353 }
1354
1355 /*
1356 * Finds the request corresponding to the RPC xid and invokes the common
1357 * tcp read code to read the data.
1358 */
xs_tcp_read_reply(struct rpc_xprt * xprt,struct xdr_skb_reader * desc)1359 static inline int xs_tcp_read_reply(struct rpc_xprt *xprt,
1360 struct xdr_skb_reader *desc)
1361 {
1362 struct sock_xprt *transport =
1363 container_of(xprt, struct sock_xprt, xprt);
1364 struct rpc_rqst *req;
1365
1366 dprintk("RPC: read reply XID %08x\n", ntohl(transport->tcp_xid));
1367
1368 /* Find and lock the request corresponding to this xid */
1369 spin_lock(&xprt->recv_lock);
1370 req = xprt_lookup_rqst(xprt, transport->tcp_xid);
1371 if (!req) {
1372 dprintk("RPC: XID %08x request not found!\n",
1373 ntohl(transport->tcp_xid));
1374 spin_unlock(&xprt->recv_lock);
1375 return -1;
1376 }
1377 xprt_pin_rqst(req);
1378 spin_unlock(&xprt->recv_lock);
1379
1380 xs_tcp_read_common(xprt, desc, req);
1381
1382 spin_lock(&xprt->recv_lock);
1383 if (!(transport->tcp_flags & TCP_RCV_COPY_DATA))
1384 xprt_complete_rqst(req->rq_task, transport->tcp_copied);
1385 xprt_unpin_rqst(req);
1386 spin_unlock(&xprt->recv_lock);
1387 return 0;
1388 }
1389
1390 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1391 /*
1392 * Obtains an rpc_rqst previously allocated and invokes the common
1393 * tcp read code to read the data. The result is placed in the callback
1394 * queue.
1395 * If we're unable to obtain the rpc_rqst we schedule the closing of the
1396 * connection and return -1.
1397 */
xs_tcp_read_callback(struct rpc_xprt * xprt,struct xdr_skb_reader * desc)1398 static int xs_tcp_read_callback(struct rpc_xprt *xprt,
1399 struct xdr_skb_reader *desc)
1400 {
1401 struct sock_xprt *transport =
1402 container_of(xprt, struct sock_xprt, xprt);
1403 struct rpc_rqst *req;
1404
1405 /* Look up the request corresponding to the given XID */
1406 req = xprt_lookup_bc_request(xprt, transport->tcp_xid);
1407 if (req == NULL) {
1408 printk(KERN_WARNING "Callback slot table overflowed\n");
1409 xprt_force_disconnect(xprt);
1410 return -1;
1411 }
1412
1413 dprintk("RPC: read callback XID %08x\n", ntohl(req->rq_xid));
1414 xs_tcp_read_common(xprt, desc, req);
1415
1416 if (!(transport->tcp_flags & TCP_RCV_COPY_DATA))
1417 xprt_complete_bc_request(req, transport->tcp_copied);
1418
1419 return 0;
1420 }
1421
_xs_tcp_read_data(struct rpc_xprt * xprt,struct xdr_skb_reader * desc)1422 static inline int _xs_tcp_read_data(struct rpc_xprt *xprt,
1423 struct xdr_skb_reader *desc)
1424 {
1425 struct sock_xprt *transport =
1426 container_of(xprt, struct sock_xprt, xprt);
1427
1428 return (transport->tcp_flags & TCP_RPC_REPLY) ?
1429 xs_tcp_read_reply(xprt, desc) :
1430 xs_tcp_read_callback(xprt, desc);
1431 }
1432
xs_tcp_bc_up(struct svc_serv * serv,struct net * net)1433 static int xs_tcp_bc_up(struct svc_serv *serv, struct net *net)
1434 {
1435 int ret;
1436
1437 ret = svc_create_xprt(serv, "tcp-bc", net, PF_INET, 0,
1438 SVC_SOCK_ANONYMOUS);
1439 if (ret < 0)
1440 return ret;
1441 return 0;
1442 }
1443
xs_tcp_bc_maxpayload(struct rpc_xprt * xprt)1444 static size_t xs_tcp_bc_maxpayload(struct rpc_xprt *xprt)
1445 {
1446 return PAGE_SIZE;
1447 }
1448 #else
_xs_tcp_read_data(struct rpc_xprt * xprt,struct xdr_skb_reader * desc)1449 static inline int _xs_tcp_read_data(struct rpc_xprt *xprt,
1450 struct xdr_skb_reader *desc)
1451 {
1452 return xs_tcp_read_reply(xprt, desc);
1453 }
1454 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1455
1456 /*
1457 * Read data off the transport. This can be either an RPC_CALL or an
1458 * RPC_REPLY. Relay the processing to helper functions.
1459 */
xs_tcp_read_data(struct rpc_xprt * xprt,struct xdr_skb_reader * desc)1460 static void xs_tcp_read_data(struct rpc_xprt *xprt,
1461 struct xdr_skb_reader *desc)
1462 {
1463 struct sock_xprt *transport =
1464 container_of(xprt, struct sock_xprt, xprt);
1465
1466 if (_xs_tcp_read_data(xprt, desc) == 0)
1467 xs_tcp_check_fraghdr(transport);
1468 else {
1469 /*
1470 * The transport_lock protects the request handling.
1471 * There's no need to hold it to update the tcp_flags.
1472 */
1473 transport->tcp_flags &= ~TCP_RCV_COPY_DATA;
1474 }
1475 }
1476
xs_tcp_read_discard(struct sock_xprt * transport,struct xdr_skb_reader * desc)1477 static inline void xs_tcp_read_discard(struct sock_xprt *transport, struct xdr_skb_reader *desc)
1478 {
1479 size_t len;
1480
1481 len = transport->tcp_reclen - transport->tcp_offset;
1482 if (len > desc->count)
1483 len = desc->count;
1484 desc->count -= len;
1485 desc->offset += len;
1486 transport->tcp_offset += len;
1487 dprintk("RPC: discarded %zu bytes\n", len);
1488 xs_tcp_check_fraghdr(transport);
1489 }
1490
xs_tcp_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)1491 static int xs_tcp_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int offset, size_t len)
1492 {
1493 struct rpc_xprt *xprt = rd_desc->arg.data;
1494 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
1495 struct xdr_skb_reader desc = {
1496 .skb = skb,
1497 .offset = offset,
1498 .count = len,
1499 };
1500 size_t ret;
1501
1502 dprintk("RPC: xs_tcp_data_recv started\n");
1503 do {
1504 trace_xs_tcp_data_recv(transport);
1505 /* Read in a new fragment marker if necessary */
1506 /* Can we ever really expect to get completely empty fragments? */
1507 if (transport->tcp_flags & TCP_RCV_COPY_FRAGHDR) {
1508 xs_tcp_read_fraghdr(xprt, &desc);
1509 continue;
1510 }
1511 /* Read in the xid if necessary */
1512 if (transport->tcp_flags & TCP_RCV_COPY_XID) {
1513 xs_tcp_read_xid(transport, &desc);
1514 continue;
1515 }
1516 /* Read in the call/reply flag */
1517 if (transport->tcp_flags & TCP_RCV_READ_CALLDIR) {
1518 xs_tcp_read_calldir(transport, &desc);
1519 continue;
1520 }
1521 /* Read in the request data */
1522 if (transport->tcp_flags & TCP_RCV_COPY_DATA) {
1523 xs_tcp_read_data(xprt, &desc);
1524 continue;
1525 }
1526 /* Skip over any trailing bytes on short reads */
1527 xs_tcp_read_discard(transport, &desc);
1528 } while (desc.count);
1529 ret = len - desc.count;
1530 if (ret < rd_desc->count)
1531 rd_desc->count -= ret;
1532 else
1533 rd_desc->count = 0;
1534 trace_xs_tcp_data_recv(transport);
1535 dprintk("RPC: xs_tcp_data_recv done\n");
1536 return ret;
1537 }
1538
xs_tcp_data_receive(struct sock_xprt * transport)1539 static void xs_tcp_data_receive(struct sock_xprt *transport)
1540 {
1541 struct rpc_xprt *xprt = &transport->xprt;
1542 struct sock *sk;
1543 read_descriptor_t rd_desc = {
1544 .arg.data = xprt,
1545 };
1546 unsigned long total = 0;
1547 int read = 0;
1548
1549 restart:
1550 mutex_lock(&transport->recv_mutex);
1551 sk = transport->inet;
1552 if (sk == NULL)
1553 goto out;
1554
1555 /* We use rd_desc to pass struct xprt to xs_tcp_data_recv */
1556 for (;;) {
1557 rd_desc.count = RPC_TCP_READ_CHUNK_SZ;
1558 lock_sock(sk);
1559 read = tcp_read_sock(sk, &rd_desc, xs_tcp_data_recv);
1560 if (rd_desc.count != 0 || read < 0) {
1561 clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state);
1562 release_sock(sk);
1563 break;
1564 }
1565 release_sock(sk);
1566 total += read;
1567 if (need_resched()) {
1568 mutex_unlock(&transport->recv_mutex);
1569 cond_resched();
1570 goto restart;
1571 }
1572 }
1573 if (test_bit(XPRT_SOCK_DATA_READY, &transport->sock_state))
1574 queue_work(xprtiod_workqueue, &transport->recv_worker);
1575 out:
1576 mutex_unlock(&transport->recv_mutex);
1577 trace_xs_tcp_data_ready(xprt, read, total);
1578 }
1579
xs_tcp_data_receive_workfn(struct work_struct * work)1580 static void xs_tcp_data_receive_workfn(struct work_struct *work)
1581 {
1582 struct sock_xprt *transport =
1583 container_of(work, struct sock_xprt, recv_worker);
1584 xs_tcp_data_receive(transport);
1585 }
1586
1587 /**
1588 * xs_tcp_state_change - callback to handle TCP socket state changes
1589 * @sk: socket whose state has changed
1590 *
1591 */
xs_tcp_state_change(struct sock * sk)1592 static void xs_tcp_state_change(struct sock *sk)
1593 {
1594 struct rpc_xprt *xprt;
1595 struct sock_xprt *transport;
1596
1597 read_lock_bh(&sk->sk_callback_lock);
1598 if (!(xprt = xprt_from_sock(sk)))
1599 goto out;
1600 dprintk("RPC: xs_tcp_state_change client %p...\n", xprt);
1601 dprintk("RPC: state %x conn %d dead %d zapped %d sk_shutdown %d\n",
1602 sk->sk_state, xprt_connected(xprt),
1603 sock_flag(sk, SOCK_DEAD),
1604 sock_flag(sk, SOCK_ZAPPED),
1605 sk->sk_shutdown);
1606
1607 transport = container_of(xprt, struct sock_xprt, xprt);
1608 trace_rpc_socket_state_change(xprt, sk->sk_socket);
1609 switch (sk->sk_state) {
1610 case TCP_ESTABLISHED:
1611 spin_lock(&xprt->transport_lock);
1612 if (!xprt_test_and_set_connected(xprt)) {
1613
1614 /* Reset TCP record info */
1615 transport->tcp_offset = 0;
1616 transport->tcp_reclen = 0;
1617 transport->tcp_copied = 0;
1618 transport->tcp_flags =
1619 TCP_RCV_COPY_FRAGHDR | TCP_RCV_COPY_XID;
1620 xprt->connect_cookie++;
1621 clear_bit(XPRT_SOCK_CONNECTING, &transport->sock_state);
1622 xprt_clear_connecting(xprt);
1623
1624 xprt->stat.connect_count++;
1625 xprt->stat.connect_time += (long)jiffies -
1626 xprt->stat.connect_start;
1627 xprt_wake_pending_tasks(xprt, -EAGAIN);
1628 }
1629 spin_unlock(&xprt->transport_lock);
1630 break;
1631 case TCP_FIN_WAIT1:
1632 /* The client initiated a shutdown of the socket */
1633 xprt->connect_cookie++;
1634 xprt->reestablish_timeout = 0;
1635 set_bit(XPRT_CLOSING, &xprt->state);
1636 smp_mb__before_atomic();
1637 clear_bit(XPRT_CONNECTED, &xprt->state);
1638 clear_bit(XPRT_CLOSE_WAIT, &xprt->state);
1639 smp_mb__after_atomic();
1640 break;
1641 case TCP_CLOSE_WAIT:
1642 /* The server initiated a shutdown of the socket */
1643 xprt->connect_cookie++;
1644 clear_bit(XPRT_CONNECTED, &xprt->state);
1645 xs_tcp_force_close(xprt);
1646 /* fall through */
1647 case TCP_CLOSING:
1648 /*
1649 * If the server closed down the connection, make sure that
1650 * we back off before reconnecting
1651 */
1652 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO)
1653 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO;
1654 break;
1655 case TCP_LAST_ACK:
1656 set_bit(XPRT_CLOSING, &xprt->state);
1657 smp_mb__before_atomic();
1658 clear_bit(XPRT_CONNECTED, &xprt->state);
1659 smp_mb__after_atomic();
1660 break;
1661 case TCP_CLOSE:
1662 if (test_and_clear_bit(XPRT_SOCK_CONNECTING,
1663 &transport->sock_state))
1664 xprt_clear_connecting(xprt);
1665 clear_bit(XPRT_CLOSING, &xprt->state);
1666 if (sk->sk_err)
1667 xprt_wake_pending_tasks(xprt, -sk->sk_err);
1668 /* Trigger the socket release */
1669 xs_tcp_force_close(xprt);
1670 }
1671 out:
1672 read_unlock_bh(&sk->sk_callback_lock);
1673 }
1674
xs_write_space(struct sock * sk)1675 static void xs_write_space(struct sock *sk)
1676 {
1677 struct socket_wq *wq;
1678 struct rpc_xprt *xprt;
1679
1680 if (!sk->sk_socket)
1681 return;
1682 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1683
1684 if (unlikely(!(xprt = xprt_from_sock(sk))))
1685 return;
1686 rcu_read_lock();
1687 wq = rcu_dereference(sk->sk_wq);
1688 if (!wq || test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags) == 0)
1689 goto out;
1690
1691 xprt_write_space(xprt);
1692 out:
1693 rcu_read_unlock();
1694 }
1695
1696 /**
1697 * xs_udp_write_space - callback invoked when socket buffer space
1698 * becomes available
1699 * @sk: socket whose state has changed
1700 *
1701 * Called when more output buffer space is available for this socket.
1702 * We try not to wake our writers until they can make "significant"
1703 * progress, otherwise we'll waste resources thrashing kernel_sendmsg
1704 * with a bunch of small requests.
1705 */
xs_udp_write_space(struct sock * sk)1706 static void xs_udp_write_space(struct sock *sk)
1707 {
1708 read_lock_bh(&sk->sk_callback_lock);
1709
1710 /* from net/core/sock.c:sock_def_write_space */
1711 if (sock_writeable(sk))
1712 xs_write_space(sk);
1713
1714 read_unlock_bh(&sk->sk_callback_lock);
1715 }
1716
1717 /**
1718 * xs_tcp_write_space - callback invoked when socket buffer space
1719 * becomes available
1720 * @sk: socket whose state has changed
1721 *
1722 * Called when more output buffer space is available for this socket.
1723 * We try not to wake our writers until they can make "significant"
1724 * progress, otherwise we'll waste resources thrashing kernel_sendmsg
1725 * with a bunch of small requests.
1726 */
xs_tcp_write_space(struct sock * sk)1727 static void xs_tcp_write_space(struct sock *sk)
1728 {
1729 read_lock_bh(&sk->sk_callback_lock);
1730
1731 /* from net/core/stream.c:sk_stream_write_space */
1732 if (sk_stream_is_writeable(sk))
1733 xs_write_space(sk);
1734
1735 read_unlock_bh(&sk->sk_callback_lock);
1736 }
1737
xs_udp_do_set_buffer_size(struct rpc_xprt * xprt)1738 static void xs_udp_do_set_buffer_size(struct rpc_xprt *xprt)
1739 {
1740 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
1741 struct sock *sk = transport->inet;
1742
1743 if (transport->rcvsize) {
1744 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
1745 sk->sk_rcvbuf = transport->rcvsize * xprt->max_reqs * 2;
1746 }
1747 if (transport->sndsize) {
1748 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1749 sk->sk_sndbuf = transport->sndsize * xprt->max_reqs * 2;
1750 sk->sk_write_space(sk);
1751 }
1752 }
1753
1754 /**
1755 * xs_udp_set_buffer_size - set send and receive limits
1756 * @xprt: generic transport
1757 * @sndsize: requested size of send buffer, in bytes
1758 * @rcvsize: requested size of receive buffer, in bytes
1759 *
1760 * Set socket send and receive buffer size limits.
1761 */
xs_udp_set_buffer_size(struct rpc_xprt * xprt,size_t sndsize,size_t rcvsize)1762 static void xs_udp_set_buffer_size(struct rpc_xprt *xprt, size_t sndsize, size_t rcvsize)
1763 {
1764 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
1765
1766 transport->sndsize = 0;
1767 if (sndsize)
1768 transport->sndsize = sndsize + 1024;
1769 transport->rcvsize = 0;
1770 if (rcvsize)
1771 transport->rcvsize = rcvsize + 1024;
1772
1773 xs_udp_do_set_buffer_size(xprt);
1774 }
1775
1776 /**
1777 * xs_udp_timer - called when a retransmit timeout occurs on a UDP transport
1778 * @task: task that timed out
1779 *
1780 * Adjust the congestion window after a retransmit timeout has occurred.
1781 */
xs_udp_timer(struct rpc_xprt * xprt,struct rpc_task * task)1782 static void xs_udp_timer(struct rpc_xprt *xprt, struct rpc_task *task)
1783 {
1784 spin_lock_bh(&xprt->transport_lock);
1785 xprt_adjust_cwnd(xprt, task, -ETIMEDOUT);
1786 spin_unlock_bh(&xprt->transport_lock);
1787 }
1788
xs_get_random_port(void)1789 static int xs_get_random_port(void)
1790 {
1791 unsigned short min = xprt_min_resvport, max = xprt_max_resvport;
1792 unsigned short range;
1793 unsigned short rand;
1794
1795 if (max < min)
1796 return -EADDRINUSE;
1797 range = max - min + 1;
1798 rand = (unsigned short) prandom_u32() % range;
1799 return rand + min;
1800 }
1801
1802 /**
1803 * xs_set_reuseaddr_port - set the socket's port and address reuse options
1804 * @sock: socket
1805 *
1806 * Note that this function has to be called on all sockets that share the
1807 * same port, and it must be called before binding.
1808 */
xs_sock_set_reuseport(struct socket * sock)1809 static void xs_sock_set_reuseport(struct socket *sock)
1810 {
1811 int opt = 1;
1812
1813 kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEPORT,
1814 (char *)&opt, sizeof(opt));
1815 }
1816
xs_sock_getport(struct socket * sock)1817 static unsigned short xs_sock_getport(struct socket *sock)
1818 {
1819 struct sockaddr_storage buf;
1820 unsigned short port = 0;
1821
1822 if (kernel_getsockname(sock, (struct sockaddr *)&buf) < 0)
1823 goto out;
1824 switch (buf.ss_family) {
1825 case AF_INET6:
1826 port = ntohs(((struct sockaddr_in6 *)&buf)->sin6_port);
1827 break;
1828 case AF_INET:
1829 port = ntohs(((struct sockaddr_in *)&buf)->sin_port);
1830 }
1831 out:
1832 return port;
1833 }
1834
1835 /**
1836 * xs_set_port - reset the port number in the remote endpoint address
1837 * @xprt: generic transport
1838 * @port: new port number
1839 *
1840 */
xs_set_port(struct rpc_xprt * xprt,unsigned short port)1841 static void xs_set_port(struct rpc_xprt *xprt, unsigned short port)
1842 {
1843 dprintk("RPC: setting port for xprt %p to %u\n", xprt, port);
1844
1845 rpc_set_port(xs_addr(xprt), port);
1846 xs_update_peer_port(xprt);
1847 }
1848
xs_set_srcport(struct sock_xprt * transport,struct socket * sock)1849 static void xs_set_srcport(struct sock_xprt *transport, struct socket *sock)
1850 {
1851 if (transport->srcport == 0)
1852 transport->srcport = xs_sock_getport(sock);
1853 }
1854
xs_get_srcport(struct sock_xprt * transport)1855 static int xs_get_srcport(struct sock_xprt *transport)
1856 {
1857 int port = transport->srcport;
1858
1859 if (port == 0 && transport->xprt.resvport)
1860 port = xs_get_random_port();
1861 return port;
1862 }
1863
xs_next_srcport(struct sock_xprt * transport,unsigned short port)1864 static unsigned short xs_next_srcport(struct sock_xprt *transport, unsigned short port)
1865 {
1866 if (transport->srcport != 0)
1867 transport->srcport = 0;
1868 if (!transport->xprt.resvport)
1869 return 0;
1870 if (port <= xprt_min_resvport || port > xprt_max_resvport)
1871 return xprt_max_resvport;
1872 return --port;
1873 }
xs_bind(struct sock_xprt * transport,struct socket * sock)1874 static int xs_bind(struct sock_xprt *transport, struct socket *sock)
1875 {
1876 struct sockaddr_storage myaddr;
1877 int err, nloop = 0;
1878 int port = xs_get_srcport(transport);
1879 unsigned short last;
1880
1881 /*
1882 * If we are asking for any ephemeral port (i.e. port == 0 &&
1883 * transport->xprt.resvport == 0), don't bind. Let the local
1884 * port selection happen implicitly when the socket is used
1885 * (for example at connect time).
1886 *
1887 * This ensures that we can continue to establish TCP
1888 * connections even when all local ephemeral ports are already
1889 * a part of some TCP connection. This makes no difference
1890 * for UDP sockets, but also doens't harm them.
1891 *
1892 * If we're asking for any reserved port (i.e. port == 0 &&
1893 * transport->xprt.resvport == 1) xs_get_srcport above will
1894 * ensure that port is non-zero and we will bind as needed.
1895 */
1896 if (port <= 0)
1897 return port;
1898
1899 memcpy(&myaddr, &transport->srcaddr, transport->xprt.addrlen);
1900 do {
1901 rpc_set_port((struct sockaddr *)&myaddr, port);
1902 err = kernel_bind(sock, (struct sockaddr *)&myaddr,
1903 transport->xprt.addrlen);
1904 if (err == 0) {
1905 transport->srcport = port;
1906 break;
1907 }
1908 last = port;
1909 port = xs_next_srcport(transport, port);
1910 if (port > last)
1911 nloop++;
1912 } while (err == -EADDRINUSE && nloop != 2);
1913
1914 if (myaddr.ss_family == AF_INET)
1915 dprintk("RPC: %s %pI4:%u: %s (%d)\n", __func__,
1916 &((struct sockaddr_in *)&myaddr)->sin_addr,
1917 port, err ? "failed" : "ok", err);
1918 else
1919 dprintk("RPC: %s %pI6:%u: %s (%d)\n", __func__,
1920 &((struct sockaddr_in6 *)&myaddr)->sin6_addr,
1921 port, err ? "failed" : "ok", err);
1922 return err;
1923 }
1924
1925 /*
1926 * We don't support autobind on AF_LOCAL sockets
1927 */
xs_local_rpcbind(struct rpc_task * task)1928 static void xs_local_rpcbind(struct rpc_task *task)
1929 {
1930 xprt_set_bound(task->tk_xprt);
1931 }
1932
xs_local_set_port(struct rpc_xprt * xprt,unsigned short port)1933 static void xs_local_set_port(struct rpc_xprt *xprt, unsigned short port)
1934 {
1935 }
1936
1937 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1938 static struct lock_class_key xs_key[2];
1939 static struct lock_class_key xs_slock_key[2];
1940
xs_reclassify_socketu(struct socket * sock)1941 static inline void xs_reclassify_socketu(struct socket *sock)
1942 {
1943 struct sock *sk = sock->sk;
1944
1945 sock_lock_init_class_and_name(sk, "slock-AF_LOCAL-RPC",
1946 &xs_slock_key[1], "sk_lock-AF_LOCAL-RPC", &xs_key[1]);
1947 }
1948
xs_reclassify_socket4(struct socket * sock)1949 static inline void xs_reclassify_socket4(struct socket *sock)
1950 {
1951 struct sock *sk = sock->sk;
1952
1953 sock_lock_init_class_and_name(sk, "slock-AF_INET-RPC",
1954 &xs_slock_key[0], "sk_lock-AF_INET-RPC", &xs_key[0]);
1955 }
1956
xs_reclassify_socket6(struct socket * sock)1957 static inline void xs_reclassify_socket6(struct socket *sock)
1958 {
1959 struct sock *sk = sock->sk;
1960
1961 sock_lock_init_class_and_name(sk, "slock-AF_INET6-RPC",
1962 &xs_slock_key[1], "sk_lock-AF_INET6-RPC", &xs_key[1]);
1963 }
1964
xs_reclassify_socket(int family,struct socket * sock)1965 static inline void xs_reclassify_socket(int family, struct socket *sock)
1966 {
1967 if (WARN_ON_ONCE(!sock_allow_reclassification(sock->sk)))
1968 return;
1969
1970 switch (family) {
1971 case AF_LOCAL:
1972 xs_reclassify_socketu(sock);
1973 break;
1974 case AF_INET:
1975 xs_reclassify_socket4(sock);
1976 break;
1977 case AF_INET6:
1978 xs_reclassify_socket6(sock);
1979 break;
1980 }
1981 }
1982 #else
xs_reclassify_socket(int family,struct socket * sock)1983 static inline void xs_reclassify_socket(int family, struct socket *sock)
1984 {
1985 }
1986 #endif
1987
xs_dummy_setup_socket(struct work_struct * work)1988 static void xs_dummy_setup_socket(struct work_struct *work)
1989 {
1990 }
1991
xs_create_sock(struct rpc_xprt * xprt,struct sock_xprt * transport,int family,int type,int protocol,bool reuseport)1992 static struct socket *xs_create_sock(struct rpc_xprt *xprt,
1993 struct sock_xprt *transport, int family, int type,
1994 int protocol, bool reuseport)
1995 {
1996 struct socket *sock;
1997 int err;
1998
1999 err = __sock_create(xprt->xprt_net, family, type, protocol, &sock, 1);
2000 if (err < 0) {
2001 dprintk("RPC: can't create %d transport socket (%d).\n",
2002 protocol, -err);
2003 goto out;
2004 }
2005 xs_reclassify_socket(family, sock);
2006
2007 if (reuseport)
2008 xs_sock_set_reuseport(sock);
2009
2010 err = xs_bind(transport, sock);
2011 if (err) {
2012 sock_release(sock);
2013 goto out;
2014 }
2015
2016 return sock;
2017 out:
2018 return ERR_PTR(err);
2019 }
2020
xs_local_finish_connecting(struct rpc_xprt * xprt,struct socket * sock)2021 static int xs_local_finish_connecting(struct rpc_xprt *xprt,
2022 struct socket *sock)
2023 {
2024 struct sock_xprt *transport = container_of(xprt, struct sock_xprt,
2025 xprt);
2026
2027 if (!transport->inet) {
2028 struct sock *sk = sock->sk;
2029
2030 write_lock_bh(&sk->sk_callback_lock);
2031
2032 xs_save_old_callbacks(transport, sk);
2033
2034 sk->sk_user_data = xprt;
2035 sk->sk_data_ready = xs_data_ready;
2036 sk->sk_write_space = xs_udp_write_space;
2037 sock_set_flag(sk, SOCK_FASYNC);
2038 sk->sk_error_report = xs_error_report;
2039 sk->sk_allocation = GFP_NOIO;
2040
2041 xprt_clear_connected(xprt);
2042
2043 /* Reset to new socket */
2044 transport->sock = sock;
2045 transport->inet = sk;
2046
2047 write_unlock_bh(&sk->sk_callback_lock);
2048 }
2049
2050 /* Tell the socket layer to start connecting... */
2051 return kernel_connect(sock, xs_addr(xprt), xprt->addrlen, 0);
2052 }
2053
2054 /**
2055 * xs_local_setup_socket - create AF_LOCAL socket, connect to a local endpoint
2056 * @transport: socket transport to connect
2057 */
xs_local_setup_socket(struct sock_xprt * transport)2058 static int xs_local_setup_socket(struct sock_xprt *transport)
2059 {
2060 struct rpc_xprt *xprt = &transport->xprt;
2061 struct socket *sock;
2062 int status = -EIO;
2063
2064 status = __sock_create(xprt->xprt_net, AF_LOCAL,
2065 SOCK_STREAM, 0, &sock, 1);
2066 if (status < 0) {
2067 dprintk("RPC: can't create AF_LOCAL "
2068 "transport socket (%d).\n", -status);
2069 goto out;
2070 }
2071 xs_reclassify_socket(AF_LOCAL, sock);
2072
2073 dprintk("RPC: worker connecting xprt %p via AF_LOCAL to %s\n",
2074 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]);
2075
2076 status = xs_local_finish_connecting(xprt, sock);
2077 trace_rpc_socket_connect(xprt, sock, status);
2078 switch (status) {
2079 case 0:
2080 dprintk("RPC: xprt %p connected to %s\n",
2081 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]);
2082 xprt->stat.connect_count++;
2083 xprt->stat.connect_time += (long)jiffies -
2084 xprt->stat.connect_start;
2085 xprt_set_connected(xprt);
2086 case -ENOBUFS:
2087 break;
2088 case -ENOENT:
2089 dprintk("RPC: xprt %p: socket %s does not exist\n",
2090 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]);
2091 break;
2092 case -ECONNREFUSED:
2093 dprintk("RPC: xprt %p: connection refused for %s\n",
2094 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]);
2095 break;
2096 default:
2097 printk(KERN_ERR "%s: unhandled error (%d) connecting to %s\n",
2098 __func__, -status,
2099 xprt->address_strings[RPC_DISPLAY_ADDR]);
2100 }
2101
2102 out:
2103 xprt_clear_connecting(xprt);
2104 xprt_wake_pending_tasks(xprt, status);
2105 return status;
2106 }
2107
xs_local_connect(struct rpc_xprt * xprt,struct rpc_task * task)2108 static void xs_local_connect(struct rpc_xprt *xprt, struct rpc_task *task)
2109 {
2110 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2111 int ret;
2112
2113 if (RPC_IS_ASYNC(task)) {
2114 /*
2115 * We want the AF_LOCAL connect to be resolved in the
2116 * filesystem namespace of the process making the rpc
2117 * call. Thus we connect synchronously.
2118 *
2119 * If we want to support asynchronous AF_LOCAL calls,
2120 * we'll need to figure out how to pass a namespace to
2121 * connect.
2122 */
2123 rpc_exit(task, -ENOTCONN);
2124 return;
2125 }
2126 ret = xs_local_setup_socket(transport);
2127 if (ret && !RPC_IS_SOFTCONN(task))
2128 msleep_interruptible(15000);
2129 }
2130
2131 #if IS_ENABLED(CONFIG_SUNRPC_SWAP)
2132 /*
2133 * Note that this should be called with XPRT_LOCKED held (or when we otherwise
2134 * know that we have exclusive access to the socket), to guard against
2135 * races with xs_reset_transport.
2136 */
xs_set_memalloc(struct rpc_xprt * xprt)2137 static void xs_set_memalloc(struct rpc_xprt *xprt)
2138 {
2139 struct sock_xprt *transport = container_of(xprt, struct sock_xprt,
2140 xprt);
2141
2142 /*
2143 * If there's no sock, then we have nothing to set. The
2144 * reconnecting process will get it for us.
2145 */
2146 if (!transport->inet)
2147 return;
2148 if (atomic_read(&xprt->swapper))
2149 sk_set_memalloc(transport->inet);
2150 }
2151
2152 /**
2153 * xs_enable_swap - Tag this transport as being used for swap.
2154 * @xprt: transport to tag
2155 *
2156 * Take a reference to this transport on behalf of the rpc_clnt, and
2157 * optionally mark it for swapping if it wasn't already.
2158 */
2159 static int
xs_enable_swap(struct rpc_xprt * xprt)2160 xs_enable_swap(struct rpc_xprt *xprt)
2161 {
2162 struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt);
2163
2164 if (atomic_inc_return(&xprt->swapper) != 1)
2165 return 0;
2166 if (wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_KILLABLE))
2167 return -ERESTARTSYS;
2168 if (xs->inet)
2169 sk_set_memalloc(xs->inet);
2170 xprt_release_xprt(xprt, NULL);
2171 return 0;
2172 }
2173
2174 /**
2175 * xs_disable_swap - Untag this transport as being used for swap.
2176 * @xprt: transport to tag
2177 *
2178 * Drop a "swapper" reference to this xprt on behalf of the rpc_clnt. If the
2179 * swapper refcount goes to 0, untag the socket as a memalloc socket.
2180 */
2181 static void
xs_disable_swap(struct rpc_xprt * xprt)2182 xs_disable_swap(struct rpc_xprt *xprt)
2183 {
2184 struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt);
2185
2186 if (!atomic_dec_and_test(&xprt->swapper))
2187 return;
2188 if (wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_KILLABLE))
2189 return;
2190 if (xs->inet)
2191 sk_clear_memalloc(xs->inet);
2192 xprt_release_xprt(xprt, NULL);
2193 }
2194 #else
xs_set_memalloc(struct rpc_xprt * xprt)2195 static void xs_set_memalloc(struct rpc_xprt *xprt)
2196 {
2197 }
2198
2199 static int
xs_enable_swap(struct rpc_xprt * xprt)2200 xs_enable_swap(struct rpc_xprt *xprt)
2201 {
2202 return -EINVAL;
2203 }
2204
2205 static void
xs_disable_swap(struct rpc_xprt * xprt)2206 xs_disable_swap(struct rpc_xprt *xprt)
2207 {
2208 }
2209 #endif
2210
xs_udp_finish_connecting(struct rpc_xprt * xprt,struct socket * sock)2211 static void xs_udp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock)
2212 {
2213 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2214
2215 if (!transport->inet) {
2216 struct sock *sk = sock->sk;
2217
2218 write_lock_bh(&sk->sk_callback_lock);
2219
2220 xs_save_old_callbacks(transport, sk);
2221
2222 sk->sk_user_data = xprt;
2223 sk->sk_data_ready = xs_data_ready;
2224 sk->sk_write_space = xs_udp_write_space;
2225 sock_set_flag(sk, SOCK_FASYNC);
2226 sk->sk_allocation = GFP_NOIO;
2227
2228 xprt_set_connected(xprt);
2229
2230 /* Reset to new socket */
2231 transport->sock = sock;
2232 transport->inet = sk;
2233
2234 xs_set_memalloc(xprt);
2235
2236 write_unlock_bh(&sk->sk_callback_lock);
2237 }
2238 xs_udp_do_set_buffer_size(xprt);
2239
2240 xprt->stat.connect_start = jiffies;
2241 }
2242
xs_udp_setup_socket(struct work_struct * work)2243 static void xs_udp_setup_socket(struct work_struct *work)
2244 {
2245 struct sock_xprt *transport =
2246 container_of(work, struct sock_xprt, connect_worker.work);
2247 struct rpc_xprt *xprt = &transport->xprt;
2248 struct socket *sock;
2249 int status = -EIO;
2250
2251 sock = xs_create_sock(xprt, transport,
2252 xs_addr(xprt)->sa_family, SOCK_DGRAM,
2253 IPPROTO_UDP, false);
2254 if (IS_ERR(sock))
2255 goto out;
2256
2257 dprintk("RPC: worker connecting xprt %p via %s to "
2258 "%s (port %s)\n", xprt,
2259 xprt->address_strings[RPC_DISPLAY_PROTO],
2260 xprt->address_strings[RPC_DISPLAY_ADDR],
2261 xprt->address_strings[RPC_DISPLAY_PORT]);
2262
2263 xs_udp_finish_connecting(xprt, sock);
2264 trace_rpc_socket_connect(xprt, sock, 0);
2265 status = 0;
2266 out:
2267 xprt_clear_connecting(xprt);
2268 xprt_unlock_connect(xprt, transport);
2269 xprt_wake_pending_tasks(xprt, status);
2270 }
2271
2272 /**
2273 * xs_tcp_shutdown - gracefully shut down a TCP socket
2274 * @xprt: transport
2275 *
2276 * Initiates a graceful shutdown of the TCP socket by calling the
2277 * equivalent of shutdown(SHUT_RDWR);
2278 */
xs_tcp_shutdown(struct rpc_xprt * xprt)2279 static void xs_tcp_shutdown(struct rpc_xprt *xprt)
2280 {
2281 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2282 struct socket *sock = transport->sock;
2283 int skst = transport->inet ? transport->inet->sk_state : TCP_CLOSE;
2284
2285 if (sock == NULL)
2286 return;
2287 switch (skst) {
2288 default:
2289 kernel_sock_shutdown(sock, SHUT_RDWR);
2290 trace_rpc_socket_shutdown(xprt, sock);
2291 break;
2292 case TCP_CLOSE:
2293 case TCP_TIME_WAIT:
2294 xs_reset_transport(transport);
2295 }
2296 }
2297
xs_tcp_set_socket_timeouts(struct rpc_xprt * xprt,struct socket * sock)2298 static void xs_tcp_set_socket_timeouts(struct rpc_xprt *xprt,
2299 struct socket *sock)
2300 {
2301 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2302 unsigned int keepidle;
2303 unsigned int keepcnt;
2304 unsigned int opt_on = 1;
2305 unsigned int timeo;
2306
2307 spin_lock_bh(&xprt->transport_lock);
2308 keepidle = DIV_ROUND_UP(xprt->timeout->to_initval, HZ);
2309 keepcnt = xprt->timeout->to_retries + 1;
2310 timeo = jiffies_to_msecs(xprt->timeout->to_initval) *
2311 (xprt->timeout->to_retries + 1);
2312 clear_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state);
2313 spin_unlock_bh(&xprt->transport_lock);
2314
2315 /* TCP Keepalive options */
2316 kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
2317 (char *)&opt_on, sizeof(opt_on));
2318 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPIDLE,
2319 (char *)&keepidle, sizeof(keepidle));
2320 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPINTVL,
2321 (char *)&keepidle, sizeof(keepidle));
2322 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPCNT,
2323 (char *)&keepcnt, sizeof(keepcnt));
2324
2325 /* TCP user timeout (see RFC5482) */
2326 kernel_setsockopt(sock, SOL_TCP, TCP_USER_TIMEOUT,
2327 (char *)&timeo, sizeof(timeo));
2328 }
2329
xs_tcp_set_connect_timeout(struct rpc_xprt * xprt,unsigned long connect_timeout,unsigned long reconnect_timeout)2330 static void xs_tcp_set_connect_timeout(struct rpc_xprt *xprt,
2331 unsigned long connect_timeout,
2332 unsigned long reconnect_timeout)
2333 {
2334 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2335 struct rpc_timeout to;
2336 unsigned long initval;
2337
2338 spin_lock_bh(&xprt->transport_lock);
2339 if (reconnect_timeout < xprt->max_reconnect_timeout)
2340 xprt->max_reconnect_timeout = reconnect_timeout;
2341 if (connect_timeout < xprt->connect_timeout) {
2342 memcpy(&to, xprt->timeout, sizeof(to));
2343 initval = DIV_ROUND_UP(connect_timeout, to.to_retries + 1);
2344 /* Arbitrary lower limit */
2345 if (initval < XS_TCP_INIT_REEST_TO << 1)
2346 initval = XS_TCP_INIT_REEST_TO << 1;
2347 to.to_initval = initval;
2348 to.to_maxval = initval;
2349 memcpy(&transport->tcp_timeout, &to,
2350 sizeof(transport->tcp_timeout));
2351 xprt->timeout = &transport->tcp_timeout;
2352 xprt->connect_timeout = connect_timeout;
2353 }
2354 set_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state);
2355 spin_unlock_bh(&xprt->transport_lock);
2356 }
2357
xs_tcp_finish_connecting(struct rpc_xprt * xprt,struct socket * sock)2358 static int xs_tcp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock)
2359 {
2360 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2361 int ret = -ENOTCONN;
2362
2363 if (!transport->inet) {
2364 struct sock *sk = sock->sk;
2365 unsigned int addr_pref = IPV6_PREFER_SRC_PUBLIC;
2366
2367 /* Avoid temporary address, they are bad for long-lived
2368 * connections such as NFS mounts.
2369 * RFC4941, section 3.6 suggests that:
2370 * Individual applications, which have specific
2371 * knowledge about the normal duration of connections,
2372 * MAY override this as appropriate.
2373 */
2374 kernel_setsockopt(sock, SOL_IPV6, IPV6_ADDR_PREFERENCES,
2375 (char *)&addr_pref, sizeof(addr_pref));
2376
2377 xs_tcp_set_socket_timeouts(xprt, sock);
2378
2379 write_lock_bh(&sk->sk_callback_lock);
2380
2381 xs_save_old_callbacks(transport, sk);
2382
2383 sk->sk_user_data = xprt;
2384 sk->sk_data_ready = xs_data_ready;
2385 sk->sk_state_change = xs_tcp_state_change;
2386 sk->sk_write_space = xs_tcp_write_space;
2387 sock_set_flag(sk, SOCK_FASYNC);
2388 sk->sk_error_report = xs_error_report;
2389 sk->sk_allocation = GFP_NOIO;
2390
2391 /* socket options */
2392 sock_reset_flag(sk, SOCK_LINGER);
2393 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF;
2394
2395 xprt_clear_connected(xprt);
2396
2397 /* Reset to new socket */
2398 transport->sock = sock;
2399 transport->inet = sk;
2400
2401 write_unlock_bh(&sk->sk_callback_lock);
2402 }
2403
2404 if (!xprt_bound(xprt))
2405 goto out;
2406
2407 xs_set_memalloc(xprt);
2408
2409 /* Tell the socket layer to start connecting... */
2410 set_bit(XPRT_SOCK_CONNECTING, &transport->sock_state);
2411 ret = kernel_connect(sock, xs_addr(xprt), xprt->addrlen, O_NONBLOCK);
2412 switch (ret) {
2413 case 0:
2414 xs_set_srcport(transport, sock);
2415 /* fall through */
2416 case -EINPROGRESS:
2417 /* SYN_SENT! */
2418 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO)
2419 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO;
2420 break;
2421 case -EADDRNOTAVAIL:
2422 /* Source port number is unavailable. Try a new one! */
2423 transport->srcport = 0;
2424 }
2425 out:
2426 return ret;
2427 }
2428
2429 /**
2430 * xs_tcp_setup_socket - create a TCP socket and connect to a remote endpoint
2431 *
2432 * Invoked by a work queue tasklet.
2433 */
xs_tcp_setup_socket(struct work_struct * work)2434 static void xs_tcp_setup_socket(struct work_struct *work)
2435 {
2436 struct sock_xprt *transport =
2437 container_of(work, struct sock_xprt, connect_worker.work);
2438 struct socket *sock = transport->sock;
2439 struct rpc_xprt *xprt = &transport->xprt;
2440 int status = -EIO;
2441
2442 if (!sock) {
2443 sock = xs_create_sock(xprt, transport,
2444 xs_addr(xprt)->sa_family, SOCK_STREAM,
2445 IPPROTO_TCP, true);
2446 if (IS_ERR(sock)) {
2447 status = PTR_ERR(sock);
2448 goto out;
2449 }
2450 }
2451
2452 dprintk("RPC: worker connecting xprt %p via %s to "
2453 "%s (port %s)\n", xprt,
2454 xprt->address_strings[RPC_DISPLAY_PROTO],
2455 xprt->address_strings[RPC_DISPLAY_ADDR],
2456 xprt->address_strings[RPC_DISPLAY_PORT]);
2457
2458 status = xs_tcp_finish_connecting(xprt, sock);
2459 trace_rpc_socket_connect(xprt, sock, status);
2460 dprintk("RPC: %p connect status %d connected %d sock state %d\n",
2461 xprt, -status, xprt_connected(xprt),
2462 sock->sk->sk_state);
2463 switch (status) {
2464 default:
2465 printk("%s: connect returned unhandled error %d\n",
2466 __func__, status);
2467 /* fall through */
2468 case -EADDRNOTAVAIL:
2469 /* We're probably in TIME_WAIT. Get rid of existing socket,
2470 * and retry
2471 */
2472 xs_tcp_force_close(xprt);
2473 break;
2474 case 0:
2475 case -EINPROGRESS:
2476 case -EALREADY:
2477 xprt_unlock_connect(xprt, transport);
2478 return;
2479 case -EINVAL:
2480 /* Happens, for instance, if the user specified a link
2481 * local IPv6 address without a scope-id.
2482 */
2483 case -ECONNREFUSED:
2484 case -ECONNRESET:
2485 case -ENETDOWN:
2486 case -ENETUNREACH:
2487 case -EHOSTUNREACH:
2488 case -EADDRINUSE:
2489 case -ENOBUFS:
2490 /*
2491 * xs_tcp_force_close() wakes tasks with -EIO.
2492 * We need to wake them first to ensure the
2493 * correct error code.
2494 */
2495 xprt_wake_pending_tasks(xprt, status);
2496 xs_tcp_force_close(xprt);
2497 goto out;
2498 }
2499 status = -EAGAIN;
2500 out:
2501 xprt_clear_connecting(xprt);
2502 xprt_unlock_connect(xprt, transport);
2503 xprt_wake_pending_tasks(xprt, status);
2504 }
2505
xs_reconnect_delay(const struct rpc_xprt * xprt)2506 static unsigned long xs_reconnect_delay(const struct rpc_xprt *xprt)
2507 {
2508 unsigned long start, now = jiffies;
2509
2510 start = xprt->stat.connect_start + xprt->reestablish_timeout;
2511 if (time_after(start, now))
2512 return start - now;
2513 return 0;
2514 }
2515
xs_reconnect_backoff(struct rpc_xprt * xprt)2516 static void xs_reconnect_backoff(struct rpc_xprt *xprt)
2517 {
2518 xprt->reestablish_timeout <<= 1;
2519 if (xprt->reestablish_timeout > xprt->max_reconnect_timeout)
2520 xprt->reestablish_timeout = xprt->max_reconnect_timeout;
2521 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO)
2522 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO;
2523 }
2524
2525 /**
2526 * xs_connect - connect a socket to a remote endpoint
2527 * @xprt: pointer to transport structure
2528 * @task: address of RPC task that manages state of connect request
2529 *
2530 * TCP: If the remote end dropped the connection, delay reconnecting.
2531 *
2532 * UDP socket connects are synchronous, but we use a work queue anyway
2533 * to guarantee that even unprivileged user processes can set up a
2534 * socket on a privileged port.
2535 *
2536 * If a UDP socket connect fails, the delay behavior here prevents
2537 * retry floods (hard mounts).
2538 */
xs_connect(struct rpc_xprt * xprt,struct rpc_task * task)2539 static void xs_connect(struct rpc_xprt *xprt, struct rpc_task *task)
2540 {
2541 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2542 unsigned long delay = 0;
2543
2544 WARN_ON_ONCE(!xprt_lock_connect(xprt, task, transport));
2545
2546 if (transport->sock != NULL) {
2547 dprintk("RPC: xs_connect delayed xprt %p for %lu "
2548 "seconds\n",
2549 xprt, xprt->reestablish_timeout / HZ);
2550
2551 /* Start by resetting any existing state */
2552 xs_reset_transport(transport);
2553
2554 delay = xs_reconnect_delay(xprt);
2555 xs_reconnect_backoff(xprt);
2556
2557 } else
2558 dprintk("RPC: xs_connect scheduled xprt %p\n", xprt);
2559
2560 queue_delayed_work(xprtiod_workqueue,
2561 &transport->connect_worker,
2562 delay);
2563 }
2564
2565 /**
2566 * xs_local_print_stats - display AF_LOCAL socket-specifc stats
2567 * @xprt: rpc_xprt struct containing statistics
2568 * @seq: output file
2569 *
2570 */
xs_local_print_stats(struct rpc_xprt * xprt,struct seq_file * seq)2571 static void xs_local_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
2572 {
2573 long idle_time = 0;
2574
2575 if (xprt_connected(xprt))
2576 idle_time = (long)(jiffies - xprt->last_used) / HZ;
2577
2578 seq_printf(seq, "\txprt:\tlocal %lu %lu %lu %ld %lu %lu %lu "
2579 "%llu %llu %lu %llu %llu\n",
2580 xprt->stat.bind_count,
2581 xprt->stat.connect_count,
2582 xprt->stat.connect_time,
2583 idle_time,
2584 xprt->stat.sends,
2585 xprt->stat.recvs,
2586 xprt->stat.bad_xids,
2587 xprt->stat.req_u,
2588 xprt->stat.bklog_u,
2589 xprt->stat.max_slots,
2590 xprt->stat.sending_u,
2591 xprt->stat.pending_u);
2592 }
2593
2594 /**
2595 * xs_udp_print_stats - display UDP socket-specifc stats
2596 * @xprt: rpc_xprt struct containing statistics
2597 * @seq: output file
2598 *
2599 */
xs_udp_print_stats(struct rpc_xprt * xprt,struct seq_file * seq)2600 static void xs_udp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
2601 {
2602 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2603
2604 seq_printf(seq, "\txprt:\tudp %u %lu %lu %lu %lu %llu %llu "
2605 "%lu %llu %llu\n",
2606 transport->srcport,
2607 xprt->stat.bind_count,
2608 xprt->stat.sends,
2609 xprt->stat.recvs,
2610 xprt->stat.bad_xids,
2611 xprt->stat.req_u,
2612 xprt->stat.bklog_u,
2613 xprt->stat.max_slots,
2614 xprt->stat.sending_u,
2615 xprt->stat.pending_u);
2616 }
2617
2618 /**
2619 * xs_tcp_print_stats - display TCP socket-specifc stats
2620 * @xprt: rpc_xprt struct containing statistics
2621 * @seq: output file
2622 *
2623 */
xs_tcp_print_stats(struct rpc_xprt * xprt,struct seq_file * seq)2624 static void xs_tcp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
2625 {
2626 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2627 long idle_time = 0;
2628
2629 if (xprt_connected(xprt))
2630 idle_time = (long)(jiffies - xprt->last_used) / HZ;
2631
2632 seq_printf(seq, "\txprt:\ttcp %u %lu %lu %lu %ld %lu %lu %lu "
2633 "%llu %llu %lu %llu %llu\n",
2634 transport->srcport,
2635 xprt->stat.bind_count,
2636 xprt->stat.connect_count,
2637 xprt->stat.connect_time,
2638 idle_time,
2639 xprt->stat.sends,
2640 xprt->stat.recvs,
2641 xprt->stat.bad_xids,
2642 xprt->stat.req_u,
2643 xprt->stat.bklog_u,
2644 xprt->stat.max_slots,
2645 xprt->stat.sending_u,
2646 xprt->stat.pending_u);
2647 }
2648
2649 /*
2650 * Allocate a bunch of pages for a scratch buffer for the rpc code. The reason
2651 * we allocate pages instead doing a kmalloc like rpc_malloc is because we want
2652 * to use the server side send routines.
2653 */
bc_malloc(struct rpc_task * task)2654 static int bc_malloc(struct rpc_task *task)
2655 {
2656 struct rpc_rqst *rqst = task->tk_rqstp;
2657 size_t size = rqst->rq_callsize;
2658 struct page *page;
2659 struct rpc_buffer *buf;
2660
2661 if (size > PAGE_SIZE - sizeof(struct rpc_buffer)) {
2662 WARN_ONCE(1, "xprtsock: large bc buffer request (size %zu)\n",
2663 size);
2664 return -EINVAL;
2665 }
2666
2667 page = alloc_page(GFP_KERNEL);
2668 if (!page)
2669 return -ENOMEM;
2670
2671 buf = page_address(page);
2672 buf->len = PAGE_SIZE;
2673
2674 rqst->rq_buffer = buf->data;
2675 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
2676 return 0;
2677 }
2678
2679 /*
2680 * Free the space allocated in the bc_alloc routine
2681 */
bc_free(struct rpc_task * task)2682 static void bc_free(struct rpc_task *task)
2683 {
2684 void *buffer = task->tk_rqstp->rq_buffer;
2685 struct rpc_buffer *buf;
2686
2687 buf = container_of(buffer, struct rpc_buffer, data);
2688 free_page((unsigned long)buf);
2689 }
2690
2691 /*
2692 * Use the svc_sock to send the callback. Must be called with svsk->sk_mutex
2693 * held. Borrows heavily from svc_tcp_sendto and xs_tcp_send_request.
2694 */
bc_sendto(struct rpc_rqst * req)2695 static int bc_sendto(struct rpc_rqst *req)
2696 {
2697 int len;
2698 struct xdr_buf *xbufp = &req->rq_snd_buf;
2699 struct rpc_xprt *xprt = req->rq_xprt;
2700 struct sock_xprt *transport =
2701 container_of(xprt, struct sock_xprt, xprt);
2702 struct socket *sock = transport->sock;
2703 unsigned long headoff;
2704 unsigned long tailoff;
2705
2706 xs_encode_stream_record_marker(xbufp);
2707
2708 tailoff = (unsigned long)xbufp->tail[0].iov_base & ~PAGE_MASK;
2709 headoff = (unsigned long)xbufp->head[0].iov_base & ~PAGE_MASK;
2710 len = svc_send_common(sock, xbufp,
2711 virt_to_page(xbufp->head[0].iov_base), headoff,
2712 xbufp->tail[0].iov_base, tailoff);
2713
2714 if (len != xbufp->len) {
2715 printk(KERN_NOTICE "Error sending entire callback!\n");
2716 len = -EAGAIN;
2717 }
2718
2719 return len;
2720 }
2721
2722 /*
2723 * The send routine. Borrows from svc_send
2724 */
bc_send_request(struct rpc_task * task)2725 static int bc_send_request(struct rpc_task *task)
2726 {
2727 struct rpc_rqst *req = task->tk_rqstp;
2728 struct svc_xprt *xprt;
2729 int len;
2730
2731 dprintk("sending request with xid: %08x\n", ntohl(req->rq_xid));
2732 /*
2733 * Get the server socket associated with this callback xprt
2734 */
2735 xprt = req->rq_xprt->bc_xprt;
2736
2737 /*
2738 * Grab the mutex to serialize data as the connection is shared
2739 * with the fore channel
2740 */
2741 if (!mutex_trylock(&xprt->xpt_mutex)) {
2742 rpc_sleep_on(&xprt->xpt_bc_pending, task, NULL);
2743 if (!mutex_trylock(&xprt->xpt_mutex))
2744 return -EAGAIN;
2745 rpc_wake_up_queued_task(&xprt->xpt_bc_pending, task);
2746 }
2747 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
2748 len = -ENOTCONN;
2749 else
2750 len = bc_sendto(req);
2751 mutex_unlock(&xprt->xpt_mutex);
2752
2753 if (len > 0)
2754 len = 0;
2755
2756 return len;
2757 }
2758
2759 /*
2760 * The close routine. Since this is client initiated, we do nothing
2761 */
2762
bc_close(struct rpc_xprt * xprt)2763 static void bc_close(struct rpc_xprt *xprt)
2764 {
2765 }
2766
2767 /*
2768 * The xprt destroy routine. Again, because this connection is client
2769 * initiated, we do nothing
2770 */
2771
bc_destroy(struct rpc_xprt * xprt)2772 static void bc_destroy(struct rpc_xprt *xprt)
2773 {
2774 dprintk("RPC: bc_destroy xprt %p\n", xprt);
2775
2776 xs_xprt_free(xprt);
2777 module_put(THIS_MODULE);
2778 }
2779
2780 static const struct rpc_xprt_ops xs_local_ops = {
2781 .reserve_xprt = xprt_reserve_xprt,
2782 .release_xprt = xs_tcp_release_xprt,
2783 .alloc_slot = xprt_alloc_slot,
2784 .free_slot = xprt_free_slot,
2785 .rpcbind = xs_local_rpcbind,
2786 .set_port = xs_local_set_port,
2787 .connect = xs_local_connect,
2788 .buf_alloc = rpc_malloc,
2789 .buf_free = rpc_free,
2790 .send_request = xs_local_send_request,
2791 .set_retrans_timeout = xprt_set_retrans_timeout_def,
2792 .close = xs_close,
2793 .destroy = xs_destroy,
2794 .print_stats = xs_local_print_stats,
2795 .enable_swap = xs_enable_swap,
2796 .disable_swap = xs_disable_swap,
2797 };
2798
2799 static const struct rpc_xprt_ops xs_udp_ops = {
2800 .set_buffer_size = xs_udp_set_buffer_size,
2801 .reserve_xprt = xprt_reserve_xprt_cong,
2802 .release_xprt = xprt_release_xprt_cong,
2803 .alloc_slot = xprt_alloc_slot,
2804 .free_slot = xprt_free_slot,
2805 .rpcbind = rpcb_getport_async,
2806 .set_port = xs_set_port,
2807 .connect = xs_connect,
2808 .buf_alloc = rpc_malloc,
2809 .buf_free = rpc_free,
2810 .send_request = xs_udp_send_request,
2811 .set_retrans_timeout = xprt_set_retrans_timeout_rtt,
2812 .timer = xs_udp_timer,
2813 .release_request = xprt_release_rqst_cong,
2814 .close = xs_close,
2815 .destroy = xs_destroy,
2816 .print_stats = xs_udp_print_stats,
2817 .enable_swap = xs_enable_swap,
2818 .disable_swap = xs_disable_swap,
2819 .inject_disconnect = xs_inject_disconnect,
2820 };
2821
2822 static const struct rpc_xprt_ops xs_tcp_ops = {
2823 .reserve_xprt = xprt_reserve_xprt,
2824 .release_xprt = xs_tcp_release_xprt,
2825 .alloc_slot = xprt_lock_and_alloc_slot,
2826 .free_slot = xprt_free_slot,
2827 .rpcbind = rpcb_getport_async,
2828 .set_port = xs_set_port,
2829 .connect = xs_connect,
2830 .buf_alloc = rpc_malloc,
2831 .buf_free = rpc_free,
2832 .send_request = xs_tcp_send_request,
2833 .set_retrans_timeout = xprt_set_retrans_timeout_def,
2834 .close = xs_tcp_shutdown,
2835 .destroy = xs_destroy,
2836 .set_connect_timeout = xs_tcp_set_connect_timeout,
2837 .print_stats = xs_tcp_print_stats,
2838 .enable_swap = xs_enable_swap,
2839 .disable_swap = xs_disable_swap,
2840 .inject_disconnect = xs_inject_disconnect,
2841 #ifdef CONFIG_SUNRPC_BACKCHANNEL
2842 .bc_setup = xprt_setup_bc,
2843 .bc_up = xs_tcp_bc_up,
2844 .bc_maxpayload = xs_tcp_bc_maxpayload,
2845 .bc_free_rqst = xprt_free_bc_rqst,
2846 .bc_destroy = xprt_destroy_bc,
2847 #endif
2848 };
2849
2850 /*
2851 * The rpc_xprt_ops for the server backchannel
2852 */
2853
2854 static const struct rpc_xprt_ops bc_tcp_ops = {
2855 .reserve_xprt = xprt_reserve_xprt,
2856 .release_xprt = xprt_release_xprt,
2857 .alloc_slot = xprt_alloc_slot,
2858 .free_slot = xprt_free_slot,
2859 .buf_alloc = bc_malloc,
2860 .buf_free = bc_free,
2861 .send_request = bc_send_request,
2862 .set_retrans_timeout = xprt_set_retrans_timeout_def,
2863 .close = bc_close,
2864 .destroy = bc_destroy,
2865 .print_stats = xs_tcp_print_stats,
2866 .enable_swap = xs_enable_swap,
2867 .disable_swap = xs_disable_swap,
2868 .inject_disconnect = xs_inject_disconnect,
2869 };
2870
xs_init_anyaddr(const int family,struct sockaddr * sap)2871 static int xs_init_anyaddr(const int family, struct sockaddr *sap)
2872 {
2873 static const struct sockaddr_in sin = {
2874 .sin_family = AF_INET,
2875 .sin_addr.s_addr = htonl(INADDR_ANY),
2876 };
2877 static const struct sockaddr_in6 sin6 = {
2878 .sin6_family = AF_INET6,
2879 .sin6_addr = IN6ADDR_ANY_INIT,
2880 };
2881
2882 switch (family) {
2883 case AF_LOCAL:
2884 break;
2885 case AF_INET:
2886 memcpy(sap, &sin, sizeof(sin));
2887 break;
2888 case AF_INET6:
2889 memcpy(sap, &sin6, sizeof(sin6));
2890 break;
2891 default:
2892 dprintk("RPC: %s: Bad address family\n", __func__);
2893 return -EAFNOSUPPORT;
2894 }
2895 return 0;
2896 }
2897
xs_setup_xprt(struct xprt_create * args,unsigned int slot_table_size,unsigned int max_slot_table_size)2898 static struct rpc_xprt *xs_setup_xprt(struct xprt_create *args,
2899 unsigned int slot_table_size,
2900 unsigned int max_slot_table_size)
2901 {
2902 struct rpc_xprt *xprt;
2903 struct sock_xprt *new;
2904
2905 if (args->addrlen > sizeof(xprt->addr)) {
2906 dprintk("RPC: xs_setup_xprt: address too large\n");
2907 return ERR_PTR(-EBADF);
2908 }
2909
2910 xprt = xprt_alloc(args->net, sizeof(*new), slot_table_size,
2911 max_slot_table_size);
2912 if (xprt == NULL) {
2913 dprintk("RPC: xs_setup_xprt: couldn't allocate "
2914 "rpc_xprt\n");
2915 return ERR_PTR(-ENOMEM);
2916 }
2917
2918 new = container_of(xprt, struct sock_xprt, xprt);
2919 mutex_init(&new->recv_mutex);
2920 memcpy(&xprt->addr, args->dstaddr, args->addrlen);
2921 xprt->addrlen = args->addrlen;
2922 if (args->srcaddr)
2923 memcpy(&new->srcaddr, args->srcaddr, args->addrlen);
2924 else {
2925 int err;
2926 err = xs_init_anyaddr(args->dstaddr->sa_family,
2927 (struct sockaddr *)&new->srcaddr);
2928 if (err != 0) {
2929 xprt_free(xprt);
2930 return ERR_PTR(err);
2931 }
2932 }
2933
2934 return xprt;
2935 }
2936
2937 static const struct rpc_timeout xs_local_default_timeout = {
2938 .to_initval = 10 * HZ,
2939 .to_maxval = 10 * HZ,
2940 .to_retries = 2,
2941 };
2942
2943 /**
2944 * xs_setup_local - Set up transport to use an AF_LOCAL socket
2945 * @args: rpc transport creation arguments
2946 *
2947 * AF_LOCAL is a "tpi_cots_ord" transport, just like TCP
2948 */
xs_setup_local(struct xprt_create * args)2949 static struct rpc_xprt *xs_setup_local(struct xprt_create *args)
2950 {
2951 struct sockaddr_un *sun = (struct sockaddr_un *)args->dstaddr;
2952 struct sock_xprt *transport;
2953 struct rpc_xprt *xprt;
2954 struct rpc_xprt *ret;
2955
2956 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries,
2957 xprt_max_tcp_slot_table_entries);
2958 if (IS_ERR(xprt))
2959 return xprt;
2960 transport = container_of(xprt, struct sock_xprt, xprt);
2961
2962 xprt->prot = 0;
2963 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32);
2964 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE;
2965
2966 xprt->bind_timeout = XS_BIND_TO;
2967 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO;
2968 xprt->idle_timeout = XS_IDLE_DISC_TO;
2969
2970 xprt->ops = &xs_local_ops;
2971 xprt->timeout = &xs_local_default_timeout;
2972
2973 INIT_WORK(&transport->recv_worker, xs_local_data_receive_workfn);
2974 INIT_DELAYED_WORK(&transport->connect_worker,
2975 xs_dummy_setup_socket);
2976
2977 switch (sun->sun_family) {
2978 case AF_LOCAL:
2979 if (sun->sun_path[0] != '/') {
2980 dprintk("RPC: bad AF_LOCAL address: %s\n",
2981 sun->sun_path);
2982 ret = ERR_PTR(-EINVAL);
2983 goto out_err;
2984 }
2985 xprt_set_bound(xprt);
2986 xs_format_peer_addresses(xprt, "local", RPCBIND_NETID_LOCAL);
2987 ret = ERR_PTR(xs_local_setup_socket(transport));
2988 if (ret)
2989 goto out_err;
2990 break;
2991 default:
2992 ret = ERR_PTR(-EAFNOSUPPORT);
2993 goto out_err;
2994 }
2995
2996 dprintk("RPC: set up xprt to %s via AF_LOCAL\n",
2997 xprt->address_strings[RPC_DISPLAY_ADDR]);
2998
2999 if (try_module_get(THIS_MODULE))
3000 return xprt;
3001 ret = ERR_PTR(-EINVAL);
3002 out_err:
3003 xs_xprt_free(xprt);
3004 return ret;
3005 }
3006
3007 static const struct rpc_timeout xs_udp_default_timeout = {
3008 .to_initval = 5 * HZ,
3009 .to_maxval = 30 * HZ,
3010 .to_increment = 5 * HZ,
3011 .to_retries = 5,
3012 };
3013
3014 /**
3015 * xs_setup_udp - Set up transport to use a UDP socket
3016 * @args: rpc transport creation arguments
3017 *
3018 */
xs_setup_udp(struct xprt_create * args)3019 static struct rpc_xprt *xs_setup_udp(struct xprt_create *args)
3020 {
3021 struct sockaddr *addr = args->dstaddr;
3022 struct rpc_xprt *xprt;
3023 struct sock_xprt *transport;
3024 struct rpc_xprt *ret;
3025
3026 xprt = xs_setup_xprt(args, xprt_udp_slot_table_entries,
3027 xprt_udp_slot_table_entries);
3028 if (IS_ERR(xprt))
3029 return xprt;
3030 transport = container_of(xprt, struct sock_xprt, xprt);
3031
3032 xprt->prot = IPPROTO_UDP;
3033 xprt->tsh_size = 0;
3034 /* XXX: header size can vary due to auth type, IPv6, etc. */
3035 xprt->max_payload = (1U << 16) - (MAX_HEADER << 3);
3036
3037 xprt->bind_timeout = XS_BIND_TO;
3038 xprt->reestablish_timeout = XS_UDP_REEST_TO;
3039 xprt->idle_timeout = XS_IDLE_DISC_TO;
3040
3041 xprt->ops = &xs_udp_ops;
3042
3043 xprt->timeout = &xs_udp_default_timeout;
3044
3045 INIT_WORK(&transport->recv_worker, xs_udp_data_receive_workfn);
3046 INIT_DELAYED_WORK(&transport->connect_worker, xs_udp_setup_socket);
3047
3048 switch (addr->sa_family) {
3049 case AF_INET:
3050 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
3051 xprt_set_bound(xprt);
3052
3053 xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP);
3054 break;
3055 case AF_INET6:
3056 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
3057 xprt_set_bound(xprt);
3058
3059 xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP6);
3060 break;
3061 default:
3062 ret = ERR_PTR(-EAFNOSUPPORT);
3063 goto out_err;
3064 }
3065
3066 if (xprt_bound(xprt))
3067 dprintk("RPC: set up xprt to %s (port %s) via %s\n",
3068 xprt->address_strings[RPC_DISPLAY_ADDR],
3069 xprt->address_strings[RPC_DISPLAY_PORT],
3070 xprt->address_strings[RPC_DISPLAY_PROTO]);
3071 else
3072 dprintk("RPC: set up xprt to %s (autobind) via %s\n",
3073 xprt->address_strings[RPC_DISPLAY_ADDR],
3074 xprt->address_strings[RPC_DISPLAY_PROTO]);
3075
3076 if (try_module_get(THIS_MODULE))
3077 return xprt;
3078 ret = ERR_PTR(-EINVAL);
3079 out_err:
3080 xs_xprt_free(xprt);
3081 return ret;
3082 }
3083
3084 static const struct rpc_timeout xs_tcp_default_timeout = {
3085 .to_initval = 60 * HZ,
3086 .to_maxval = 60 * HZ,
3087 .to_retries = 2,
3088 };
3089
3090 /**
3091 * xs_setup_tcp - Set up transport to use a TCP socket
3092 * @args: rpc transport creation arguments
3093 *
3094 */
xs_setup_tcp(struct xprt_create * args)3095 static struct rpc_xprt *xs_setup_tcp(struct xprt_create *args)
3096 {
3097 struct sockaddr *addr = args->dstaddr;
3098 struct rpc_xprt *xprt;
3099 struct sock_xprt *transport;
3100 struct rpc_xprt *ret;
3101 unsigned int max_slot_table_size = xprt_max_tcp_slot_table_entries;
3102
3103 if (args->flags & XPRT_CREATE_INFINITE_SLOTS)
3104 max_slot_table_size = RPC_MAX_SLOT_TABLE_LIMIT;
3105
3106 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries,
3107 max_slot_table_size);
3108 if (IS_ERR(xprt))
3109 return xprt;
3110 transport = container_of(xprt, struct sock_xprt, xprt);
3111
3112 xprt->prot = IPPROTO_TCP;
3113 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32);
3114 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE;
3115
3116 xprt->bind_timeout = XS_BIND_TO;
3117 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO;
3118 xprt->idle_timeout = XS_IDLE_DISC_TO;
3119
3120 xprt->ops = &xs_tcp_ops;
3121 xprt->timeout = &xs_tcp_default_timeout;
3122
3123 xprt->max_reconnect_timeout = xprt->timeout->to_maxval;
3124 xprt->connect_timeout = xprt->timeout->to_initval *
3125 (xprt->timeout->to_retries + 1);
3126
3127 INIT_WORK(&transport->recv_worker, xs_tcp_data_receive_workfn);
3128 INIT_DELAYED_WORK(&transport->connect_worker, xs_tcp_setup_socket);
3129
3130 switch (addr->sa_family) {
3131 case AF_INET:
3132 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
3133 xprt_set_bound(xprt);
3134
3135 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP);
3136 break;
3137 case AF_INET6:
3138 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
3139 xprt_set_bound(xprt);
3140
3141 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP6);
3142 break;
3143 default:
3144 ret = ERR_PTR(-EAFNOSUPPORT);
3145 goto out_err;
3146 }
3147
3148 if (xprt_bound(xprt))
3149 dprintk("RPC: set up xprt to %s (port %s) via %s\n",
3150 xprt->address_strings[RPC_DISPLAY_ADDR],
3151 xprt->address_strings[RPC_DISPLAY_PORT],
3152 xprt->address_strings[RPC_DISPLAY_PROTO]);
3153 else
3154 dprintk("RPC: set up xprt to %s (autobind) via %s\n",
3155 xprt->address_strings[RPC_DISPLAY_ADDR],
3156 xprt->address_strings[RPC_DISPLAY_PROTO]);
3157
3158 if (try_module_get(THIS_MODULE))
3159 return xprt;
3160 ret = ERR_PTR(-EINVAL);
3161 out_err:
3162 xs_xprt_free(xprt);
3163 return ret;
3164 }
3165
3166 /**
3167 * xs_setup_bc_tcp - Set up transport to use a TCP backchannel socket
3168 * @args: rpc transport creation arguments
3169 *
3170 */
xs_setup_bc_tcp(struct xprt_create * args)3171 static struct rpc_xprt *xs_setup_bc_tcp(struct xprt_create *args)
3172 {
3173 struct sockaddr *addr = args->dstaddr;
3174 struct rpc_xprt *xprt;
3175 struct sock_xprt *transport;
3176 struct svc_sock *bc_sock;
3177 struct rpc_xprt *ret;
3178
3179 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries,
3180 xprt_tcp_slot_table_entries);
3181 if (IS_ERR(xprt))
3182 return xprt;
3183 transport = container_of(xprt, struct sock_xprt, xprt);
3184
3185 xprt->prot = IPPROTO_TCP;
3186 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32);
3187 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE;
3188 xprt->timeout = &xs_tcp_default_timeout;
3189
3190 /* backchannel */
3191 xprt_set_bound(xprt);
3192 xprt->bind_timeout = 0;
3193 xprt->reestablish_timeout = 0;
3194 xprt->idle_timeout = 0;
3195
3196 xprt->ops = &bc_tcp_ops;
3197
3198 switch (addr->sa_family) {
3199 case AF_INET:
3200 xs_format_peer_addresses(xprt, "tcp",
3201 RPCBIND_NETID_TCP);
3202 break;
3203 case AF_INET6:
3204 xs_format_peer_addresses(xprt, "tcp",
3205 RPCBIND_NETID_TCP6);
3206 break;
3207 default:
3208 ret = ERR_PTR(-EAFNOSUPPORT);
3209 goto out_err;
3210 }
3211
3212 dprintk("RPC: set up xprt to %s (port %s) via %s\n",
3213 xprt->address_strings[RPC_DISPLAY_ADDR],
3214 xprt->address_strings[RPC_DISPLAY_PORT],
3215 xprt->address_strings[RPC_DISPLAY_PROTO]);
3216
3217 /*
3218 * Once we've associated a backchannel xprt with a connection,
3219 * we want to keep it around as long as the connection lasts,
3220 * in case we need to start using it for a backchannel again;
3221 * this reference won't be dropped until bc_xprt is destroyed.
3222 */
3223 xprt_get(xprt);
3224 args->bc_xprt->xpt_bc_xprt = xprt;
3225 xprt->bc_xprt = args->bc_xprt;
3226 bc_sock = container_of(args->bc_xprt, struct svc_sock, sk_xprt);
3227 transport->sock = bc_sock->sk_sock;
3228 transport->inet = bc_sock->sk_sk;
3229
3230 /*
3231 * Since we don't want connections for the backchannel, we set
3232 * the xprt status to connected
3233 */
3234 xprt_set_connected(xprt);
3235
3236 if (try_module_get(THIS_MODULE))
3237 return xprt;
3238
3239 args->bc_xprt->xpt_bc_xprt = NULL;
3240 args->bc_xprt->xpt_bc_xps = NULL;
3241 xprt_put(xprt);
3242 ret = ERR_PTR(-EINVAL);
3243 out_err:
3244 xs_xprt_free(xprt);
3245 return ret;
3246 }
3247
3248 static struct xprt_class xs_local_transport = {
3249 .list = LIST_HEAD_INIT(xs_local_transport.list),
3250 .name = "named UNIX socket",
3251 .owner = THIS_MODULE,
3252 .ident = XPRT_TRANSPORT_LOCAL,
3253 .setup = xs_setup_local,
3254 };
3255
3256 static struct xprt_class xs_udp_transport = {
3257 .list = LIST_HEAD_INIT(xs_udp_transport.list),
3258 .name = "udp",
3259 .owner = THIS_MODULE,
3260 .ident = XPRT_TRANSPORT_UDP,
3261 .setup = xs_setup_udp,
3262 };
3263
3264 static struct xprt_class xs_tcp_transport = {
3265 .list = LIST_HEAD_INIT(xs_tcp_transport.list),
3266 .name = "tcp",
3267 .owner = THIS_MODULE,
3268 .ident = XPRT_TRANSPORT_TCP,
3269 .setup = xs_setup_tcp,
3270 };
3271
3272 static struct xprt_class xs_bc_tcp_transport = {
3273 .list = LIST_HEAD_INIT(xs_bc_tcp_transport.list),
3274 .name = "tcp NFSv4.1 backchannel",
3275 .owner = THIS_MODULE,
3276 .ident = XPRT_TRANSPORT_BC_TCP,
3277 .setup = xs_setup_bc_tcp,
3278 };
3279
3280 /**
3281 * init_socket_xprt - set up xprtsock's sysctls, register with RPC client
3282 *
3283 */
init_socket_xprt(void)3284 int init_socket_xprt(void)
3285 {
3286 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
3287 if (!sunrpc_table_header)
3288 sunrpc_table_header = register_sysctl_table(sunrpc_table);
3289 #endif
3290
3291 xprt_register_transport(&xs_local_transport);
3292 xprt_register_transport(&xs_udp_transport);
3293 xprt_register_transport(&xs_tcp_transport);
3294 xprt_register_transport(&xs_bc_tcp_transport);
3295
3296 return 0;
3297 }
3298
3299 /**
3300 * cleanup_socket_xprt - remove xprtsock's sysctls, unregister
3301 *
3302 */
cleanup_socket_xprt(void)3303 void cleanup_socket_xprt(void)
3304 {
3305 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
3306 if (sunrpc_table_header) {
3307 unregister_sysctl_table(sunrpc_table_header);
3308 sunrpc_table_header = NULL;
3309 }
3310 #endif
3311
3312 xprt_unregister_transport(&xs_local_transport);
3313 xprt_unregister_transport(&xs_udp_transport);
3314 xprt_unregister_transport(&xs_tcp_transport);
3315 xprt_unregister_transport(&xs_bc_tcp_transport);
3316 }
3317
param_set_uint_minmax(const char * val,const struct kernel_param * kp,unsigned int min,unsigned int max)3318 static int param_set_uint_minmax(const char *val,
3319 const struct kernel_param *kp,
3320 unsigned int min, unsigned int max)
3321 {
3322 unsigned int num;
3323 int ret;
3324
3325 if (!val)
3326 return -EINVAL;
3327 ret = kstrtouint(val, 0, &num);
3328 if (ret)
3329 return ret;
3330 if (num < min || num > max)
3331 return -EINVAL;
3332 *((unsigned int *)kp->arg) = num;
3333 return 0;
3334 }
3335
param_set_portnr(const char * val,const struct kernel_param * kp)3336 static int param_set_portnr(const char *val, const struct kernel_param *kp)
3337 {
3338 return param_set_uint_minmax(val, kp,
3339 RPC_MIN_RESVPORT,
3340 RPC_MAX_RESVPORT);
3341 }
3342
3343 static const struct kernel_param_ops param_ops_portnr = {
3344 .set = param_set_portnr,
3345 .get = param_get_uint,
3346 };
3347
3348 #define param_check_portnr(name, p) \
3349 __param_check(name, p, unsigned int);
3350
3351 module_param_named(min_resvport, xprt_min_resvport, portnr, 0644);
3352 module_param_named(max_resvport, xprt_max_resvport, portnr, 0644);
3353
param_set_slot_table_size(const char * val,const struct kernel_param * kp)3354 static int param_set_slot_table_size(const char *val,
3355 const struct kernel_param *kp)
3356 {
3357 return param_set_uint_minmax(val, kp,
3358 RPC_MIN_SLOT_TABLE,
3359 RPC_MAX_SLOT_TABLE);
3360 }
3361
3362 static const struct kernel_param_ops param_ops_slot_table_size = {
3363 .set = param_set_slot_table_size,
3364 .get = param_get_uint,
3365 };
3366
3367 #define param_check_slot_table_size(name, p) \
3368 __param_check(name, p, unsigned int);
3369
param_set_max_slot_table_size(const char * val,const struct kernel_param * kp)3370 static int param_set_max_slot_table_size(const char *val,
3371 const struct kernel_param *kp)
3372 {
3373 return param_set_uint_minmax(val, kp,
3374 RPC_MIN_SLOT_TABLE,
3375 RPC_MAX_SLOT_TABLE_LIMIT);
3376 }
3377
3378 static const struct kernel_param_ops param_ops_max_slot_table_size = {
3379 .set = param_set_max_slot_table_size,
3380 .get = param_get_uint,
3381 };
3382
3383 #define param_check_max_slot_table_size(name, p) \
3384 __param_check(name, p, unsigned int);
3385
3386 module_param_named(tcp_slot_table_entries, xprt_tcp_slot_table_entries,
3387 slot_table_size, 0644);
3388 module_param_named(tcp_max_slot_table_entries, xprt_max_tcp_slot_table_entries,
3389 max_slot_table_size, 0644);
3390 module_param_named(udp_slot_table_entries, xprt_udp_slot_table_entries,
3391 slot_table_size, 0644);
3392