• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  */
9 #include <linux/export.h>
10 #include <linux/bitops.h>
11 #include <linux/etherdevice.h>
12 #include <linux/slab.h>
13 #include <net/cfg80211.h>
14 #include <net/ip.h>
15 #include <net/dsfield.h>
16 #include <linux/if_vlan.h>
17 #include <linux/mpls.h>
18 #include <linux/gcd.h>
19 #include "core.h"
20 #include "rdev-ops.h"
21 
22 
23 struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)24 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
25 			    u32 basic_rates, int bitrate)
26 {
27 	struct ieee80211_rate *result = &sband->bitrates[0];
28 	int i;
29 
30 	for (i = 0; i < sband->n_bitrates; i++) {
31 		if (!(basic_rates & BIT(i)))
32 			continue;
33 		if (sband->bitrates[i].bitrate > bitrate)
34 			continue;
35 		result = &sband->bitrates[i];
36 	}
37 
38 	return result;
39 }
40 EXPORT_SYMBOL(ieee80211_get_response_rate);
41 
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)42 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
43 			      enum nl80211_bss_scan_width scan_width)
44 {
45 	struct ieee80211_rate *bitrates;
46 	u32 mandatory_rates = 0;
47 	enum ieee80211_rate_flags mandatory_flag;
48 	int i;
49 
50 	if (WARN_ON(!sband))
51 		return 1;
52 
53 	if (sband->band == NL80211_BAND_2GHZ) {
54 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
55 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
56 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
57 		else
58 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
59 	} else {
60 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
61 	}
62 
63 	bitrates = sband->bitrates;
64 	for (i = 0; i < sband->n_bitrates; i++)
65 		if (bitrates[i].flags & mandatory_flag)
66 			mandatory_rates |= BIT(i);
67 	return mandatory_rates;
68 }
69 EXPORT_SYMBOL(ieee80211_mandatory_rates);
70 
ieee80211_channel_to_frequency(int chan,enum nl80211_band band)71 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
72 {
73 	/* see 802.11 17.3.8.3.2 and Annex J
74 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
75 	if (chan <= 0)
76 		return 0; /* not supported */
77 	switch (band) {
78 	case NL80211_BAND_2GHZ:
79 		if (chan == 14)
80 			return 2484;
81 		else if (chan < 14)
82 			return 2407 + chan * 5;
83 		break;
84 	case NL80211_BAND_5GHZ:
85 		if (chan >= 182 && chan <= 196)
86 			return 4000 + chan * 5;
87 		else
88 			return 5000 + chan * 5;
89 		break;
90 	case NL80211_BAND_60GHZ:
91 		if (chan < 5)
92 			return 56160 + chan * 2160;
93 		break;
94 	default:
95 		;
96 	}
97 	return 0; /* not supported */
98 }
99 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
100 
ieee80211_frequency_to_channel(int freq)101 int ieee80211_frequency_to_channel(int freq)
102 {
103 	/* see 802.11 17.3.8.3.2 and Annex J */
104 	if (freq == 2484)
105 		return 14;
106 	else if (freq < 2484)
107 		return (freq - 2407) / 5;
108 	else if (freq >= 4910 && freq <= 4980)
109 		return (freq - 4000) / 5;
110 	else if (freq <= 45000) /* DMG band lower limit */
111 		return (freq - 5000) / 5;
112 	else if (freq >= 58320 && freq <= 64800)
113 		return (freq - 56160) / 2160;
114 	else
115 		return 0;
116 }
117 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
118 
ieee80211_get_channel(struct wiphy * wiphy,int freq)119 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
120 {
121 	enum nl80211_band band;
122 	struct ieee80211_supported_band *sband;
123 	int i;
124 
125 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
126 		sband = wiphy->bands[band];
127 
128 		if (!sband)
129 			continue;
130 
131 		for (i = 0; i < sband->n_channels; i++) {
132 			if (sband->channels[i].center_freq == freq)
133 				return &sband->channels[i];
134 		}
135 	}
136 
137 	return NULL;
138 }
139 EXPORT_SYMBOL(ieee80211_get_channel);
140 
set_mandatory_flags_band(struct ieee80211_supported_band * sband)141 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
142 {
143 	int i, want;
144 
145 	switch (sband->band) {
146 	case NL80211_BAND_5GHZ:
147 		want = 3;
148 		for (i = 0; i < sband->n_bitrates; i++) {
149 			if (sband->bitrates[i].bitrate == 60 ||
150 			    sband->bitrates[i].bitrate == 120 ||
151 			    sband->bitrates[i].bitrate == 240) {
152 				sband->bitrates[i].flags |=
153 					IEEE80211_RATE_MANDATORY_A;
154 				want--;
155 			}
156 		}
157 		WARN_ON(want);
158 		break;
159 	case NL80211_BAND_2GHZ:
160 		want = 7;
161 		for (i = 0; i < sband->n_bitrates; i++) {
162 			switch (sband->bitrates[i].bitrate) {
163 			case 10:
164 			case 20:
165 			case 55:
166 			case 110:
167 				sband->bitrates[i].flags |=
168 					IEEE80211_RATE_MANDATORY_B |
169 					IEEE80211_RATE_MANDATORY_G;
170 				want--;
171 				break;
172 			case 60:
173 			case 120:
174 			case 240:
175 				sband->bitrates[i].flags |=
176 					IEEE80211_RATE_MANDATORY_G;
177 				want--;
178 				/* fall through */
179 			default:
180 				sband->bitrates[i].flags |=
181 					IEEE80211_RATE_ERP_G;
182 				break;
183 			}
184 		}
185 		WARN_ON(want != 0 && want != 3);
186 		break;
187 	case NL80211_BAND_60GHZ:
188 		/* check for mandatory HT MCS 1..4 */
189 		WARN_ON(!sband->ht_cap.ht_supported);
190 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
191 		break;
192 	case NUM_NL80211_BANDS:
193 	default:
194 		WARN_ON(1);
195 		break;
196 	}
197 }
198 
ieee80211_set_bitrate_flags(struct wiphy * wiphy)199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 	enum nl80211_band band;
202 
203 	for (band = 0; band < NUM_NL80211_BANDS; band++)
204 		if (wiphy->bands[band])
205 			set_mandatory_flags_band(wiphy->bands[band]);
206 }
207 
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 	int i;
211 	for (i = 0; i < wiphy->n_cipher_suites; i++)
212 		if (cipher == wiphy->cipher_suites[i])
213 			return true;
214 	return false;
215 }
216 
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 				   struct key_params *params, int key_idx,
219 				   bool pairwise, const u8 *mac_addr)
220 {
221 	if (key_idx < 0 || key_idx > 5)
222 		return -EINVAL;
223 
224 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 		return -EINVAL;
226 
227 	if (pairwise && !mac_addr)
228 		return -EINVAL;
229 
230 	switch (params->cipher) {
231 	case WLAN_CIPHER_SUITE_TKIP:
232 	case WLAN_CIPHER_SUITE_CCMP:
233 	case WLAN_CIPHER_SUITE_CCMP_256:
234 	case WLAN_CIPHER_SUITE_GCMP:
235 	case WLAN_CIPHER_SUITE_GCMP_256:
236 		/* Disallow pairwise keys with non-zero index unless it's WEP
237 		 * or a vendor specific cipher (because current deployments use
238 		 * pairwise WEP keys with non-zero indices and for vendor
239 		 * specific ciphers this should be validated in the driver or
240 		 * hardware level - but 802.11i clearly specifies to use zero)
241 		 */
242 		if (pairwise && key_idx)
243 			return -EINVAL;
244 		break;
245 	case WLAN_CIPHER_SUITE_AES_CMAC:
246 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 		/* Disallow BIP (group-only) cipher as pairwise cipher */
250 		if (pairwise)
251 			return -EINVAL;
252 		if (key_idx < 4)
253 			return -EINVAL;
254 		break;
255 	case WLAN_CIPHER_SUITE_WEP40:
256 	case WLAN_CIPHER_SUITE_WEP104:
257 		if (key_idx > 3)
258 			return -EINVAL;
259 	default:
260 		break;
261 	}
262 
263 	switch (params->cipher) {
264 	case WLAN_CIPHER_SUITE_WEP40:
265 		if (params->key_len != WLAN_KEY_LEN_WEP40)
266 			return -EINVAL;
267 		break;
268 	case WLAN_CIPHER_SUITE_TKIP:
269 		if (params->key_len != WLAN_KEY_LEN_TKIP)
270 			return -EINVAL;
271 		break;
272 	case WLAN_CIPHER_SUITE_CCMP:
273 		if (params->key_len != WLAN_KEY_LEN_CCMP)
274 			return -EINVAL;
275 		break;
276 	case WLAN_CIPHER_SUITE_CCMP_256:
277 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278 			return -EINVAL;
279 		break;
280 	case WLAN_CIPHER_SUITE_GCMP:
281 		if (params->key_len != WLAN_KEY_LEN_GCMP)
282 			return -EINVAL;
283 		break;
284 	case WLAN_CIPHER_SUITE_GCMP_256:
285 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286 			return -EINVAL;
287 		break;
288 	case WLAN_CIPHER_SUITE_WEP104:
289 		if (params->key_len != WLAN_KEY_LEN_WEP104)
290 			return -EINVAL;
291 		break;
292 	case WLAN_CIPHER_SUITE_AES_CMAC:
293 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294 			return -EINVAL;
295 		break;
296 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298 			return -EINVAL;
299 		break;
300 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302 			return -EINVAL;
303 		break;
304 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306 			return -EINVAL;
307 		break;
308 	default:
309 		/*
310 		 * We don't know anything about this algorithm,
311 		 * allow using it -- but the driver must check
312 		 * all parameters! We still check below whether
313 		 * or not the driver supports this algorithm,
314 		 * of course.
315 		 */
316 		break;
317 	}
318 
319 	if (params->seq) {
320 		switch (params->cipher) {
321 		case WLAN_CIPHER_SUITE_WEP40:
322 		case WLAN_CIPHER_SUITE_WEP104:
323 			/* These ciphers do not use key sequence */
324 			return -EINVAL;
325 		case WLAN_CIPHER_SUITE_TKIP:
326 		case WLAN_CIPHER_SUITE_CCMP:
327 		case WLAN_CIPHER_SUITE_CCMP_256:
328 		case WLAN_CIPHER_SUITE_GCMP:
329 		case WLAN_CIPHER_SUITE_GCMP_256:
330 		case WLAN_CIPHER_SUITE_AES_CMAC:
331 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334 			if (params->seq_len != 6)
335 				return -EINVAL;
336 			break;
337 		}
338 	}
339 
340 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341 		return -EINVAL;
342 
343 	return 0;
344 }
345 
ieee80211_hdrlen(__le16 fc)346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348 	unsigned int hdrlen = 24;
349 
350 	if (ieee80211_is_data(fc)) {
351 		if (ieee80211_has_a4(fc))
352 			hdrlen = 30;
353 		if (ieee80211_is_data_qos(fc)) {
354 			hdrlen += IEEE80211_QOS_CTL_LEN;
355 			if (ieee80211_has_order(fc))
356 				hdrlen += IEEE80211_HT_CTL_LEN;
357 		}
358 		goto out;
359 	}
360 
361 	if (ieee80211_is_mgmt(fc)) {
362 		if (ieee80211_has_order(fc))
363 			hdrlen += IEEE80211_HT_CTL_LEN;
364 		goto out;
365 	}
366 
367 	if (ieee80211_is_ctl(fc)) {
368 		/*
369 		 * ACK and CTS are 10 bytes, all others 16. To see how
370 		 * to get this condition consider
371 		 *   subtype mask:   0b0000000011110000 (0x00F0)
372 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
373 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
374 		 *   bits that matter:         ^^^      (0x00E0)
375 		 *   value of those: 0b0000000011000000 (0x00C0)
376 		 */
377 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378 			hdrlen = 10;
379 		else
380 			hdrlen = 16;
381 	}
382 out:
383 	return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386 
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389 	const struct ieee80211_hdr *hdr =
390 			(const struct ieee80211_hdr *)skb->data;
391 	unsigned int hdrlen;
392 
393 	if (unlikely(skb->len < 10))
394 		return 0;
395 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
396 	if (unlikely(hdrlen > skb->len))
397 		return 0;
398 	return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401 
__ieee80211_get_mesh_hdrlen(u8 flags)402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404 	int ae = flags & MESH_FLAGS_AE;
405 	/* 802.11-2012, 8.2.4.7.3 */
406 	switch (ae) {
407 	default:
408 	case 0:
409 		return 6;
410 	case MESH_FLAGS_AE_A4:
411 		return 12;
412 	case MESH_FLAGS_AE_A5_A6:
413 		return 18;
414 	}
415 }
416 
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422 
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset)423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424 				  const u8 *addr, enum nl80211_iftype iftype,
425 				  u8 data_offset)
426 {
427 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
428 	struct {
429 		u8 hdr[ETH_ALEN] __aligned(2);
430 		__be16 proto;
431 	} payload;
432 	struct ethhdr tmp;
433 	u16 hdrlen;
434 	u8 mesh_flags = 0;
435 
436 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
437 		return -1;
438 
439 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
440 	if (skb->len < hdrlen + 8)
441 		return -1;
442 
443 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
444 	 * header
445 	 * IEEE 802.11 address fields:
446 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
447 	 *   0     0   DA    SA    BSSID n/a
448 	 *   0     1   DA    BSSID SA    n/a
449 	 *   1     0   BSSID SA    DA    n/a
450 	 *   1     1   RA    TA    DA    SA
451 	 */
452 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
453 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
454 
455 	if (iftype == NL80211_IFTYPE_MESH_POINT)
456 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
457 
458 	mesh_flags &= MESH_FLAGS_AE;
459 
460 	switch (hdr->frame_control &
461 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
462 	case cpu_to_le16(IEEE80211_FCTL_TODS):
463 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
464 			     iftype != NL80211_IFTYPE_AP_VLAN &&
465 			     iftype != NL80211_IFTYPE_P2P_GO))
466 			return -1;
467 		break;
468 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
469 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
470 			     iftype != NL80211_IFTYPE_MESH_POINT &&
471 			     iftype != NL80211_IFTYPE_AP_VLAN &&
472 			     iftype != NL80211_IFTYPE_STATION))
473 			return -1;
474 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
475 			if (mesh_flags == MESH_FLAGS_AE_A4)
476 				return -1;
477 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
478 				skb_copy_bits(skb, hdrlen +
479 					offsetof(struct ieee80211s_hdr, eaddr1),
480 					tmp.h_dest, 2 * ETH_ALEN);
481 			}
482 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
483 		}
484 		break;
485 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
486 		if ((iftype != NL80211_IFTYPE_STATION &&
487 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
488 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
489 		    (is_multicast_ether_addr(tmp.h_dest) &&
490 		     ether_addr_equal(tmp.h_source, addr)))
491 			return -1;
492 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
493 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
494 				return -1;
495 			if (mesh_flags == MESH_FLAGS_AE_A4)
496 				skb_copy_bits(skb, hdrlen +
497 					offsetof(struct ieee80211s_hdr, eaddr1),
498 					tmp.h_source, ETH_ALEN);
499 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
500 		}
501 		break;
502 	case cpu_to_le16(0):
503 		if (iftype != NL80211_IFTYPE_ADHOC &&
504 		    iftype != NL80211_IFTYPE_STATION &&
505 		    iftype != NL80211_IFTYPE_OCB)
506 				return -1;
507 		break;
508 	}
509 
510 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
511 	tmp.h_proto = payload.proto;
512 
513 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
514 		    tmp.h_proto != htons(ETH_P_AARP) &&
515 		    tmp.h_proto != htons(ETH_P_IPX)) ||
516 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
517 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
518 		 * replace EtherType */
519 		hdrlen += ETH_ALEN + 2;
520 	else
521 		tmp.h_proto = htons(skb->len - hdrlen);
522 
523 	pskb_pull(skb, hdrlen);
524 
525 	if (!ehdr)
526 		ehdr = skb_push(skb, sizeof(struct ethhdr));
527 	memcpy(ehdr, &tmp, sizeof(tmp));
528 
529 	return 0;
530 }
531 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
532 
533 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)534 __frame_add_frag(struct sk_buff *skb, struct page *page,
535 		 void *ptr, int len, int size)
536 {
537 	struct skb_shared_info *sh = skb_shinfo(skb);
538 	int page_offset;
539 
540 	get_page(page);
541 	page_offset = ptr - page_address(page);
542 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
543 }
544 
545 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)546 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
547 			    int offset, int len)
548 {
549 	struct skb_shared_info *sh = skb_shinfo(skb);
550 	const skb_frag_t *frag = &sh->frags[0];
551 	struct page *frag_page;
552 	void *frag_ptr;
553 	int frag_len, frag_size;
554 	int head_size = skb->len - skb->data_len;
555 	int cur_len;
556 
557 	frag_page = virt_to_head_page(skb->head);
558 	frag_ptr = skb->data;
559 	frag_size = head_size;
560 
561 	while (offset >= frag_size) {
562 		offset -= frag_size;
563 		frag_page = skb_frag_page(frag);
564 		frag_ptr = skb_frag_address(frag);
565 		frag_size = skb_frag_size(frag);
566 		frag++;
567 	}
568 
569 	frag_ptr += offset;
570 	frag_len = frag_size - offset;
571 
572 	cur_len = min(len, frag_len);
573 
574 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
575 	len -= cur_len;
576 
577 	while (len > 0) {
578 		frag_len = skb_frag_size(frag);
579 		cur_len = min(len, frag_len);
580 		__frame_add_frag(frame, skb_frag_page(frag),
581 				 skb_frag_address(frag), cur_len, frag_len);
582 		len -= cur_len;
583 		frag++;
584 	}
585 }
586 
587 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)588 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
589 		       int offset, int len, bool reuse_frag)
590 {
591 	struct sk_buff *frame;
592 	int cur_len = len;
593 
594 	if (skb->len - offset < len)
595 		return NULL;
596 
597 	/*
598 	 * When reusing framents, copy some data to the head to simplify
599 	 * ethernet header handling and speed up protocol header processing
600 	 * in the stack later.
601 	 */
602 	if (reuse_frag)
603 		cur_len = min_t(int, len, 32);
604 
605 	/*
606 	 * Allocate and reserve two bytes more for payload
607 	 * alignment since sizeof(struct ethhdr) is 14.
608 	 */
609 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
610 	if (!frame)
611 		return NULL;
612 
613 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
614 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
615 
616 	len -= cur_len;
617 	if (!len)
618 		return frame;
619 
620 	offset += cur_len;
621 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
622 
623 	return frame;
624 }
625 
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)626 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
627 			      const u8 *addr, enum nl80211_iftype iftype,
628 			      const unsigned int extra_headroom,
629 			      const u8 *check_da, const u8 *check_sa)
630 {
631 	unsigned int hlen = ALIGN(extra_headroom, 4);
632 	struct sk_buff *frame = NULL;
633 	u16 ethertype;
634 	u8 *payload;
635 	int offset = 0, remaining;
636 	struct ethhdr eth;
637 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
638 	bool reuse_skb = false;
639 	bool last = false;
640 
641 	while (!last) {
642 		unsigned int subframe_len;
643 		int len;
644 		u8 padding;
645 
646 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
647 		len = ntohs(eth.h_proto);
648 		subframe_len = sizeof(struct ethhdr) + len;
649 		padding = (4 - subframe_len) & 0x3;
650 
651 		/* the last MSDU has no padding */
652 		remaining = skb->len - offset;
653 		if (subframe_len > remaining)
654 			goto purge;
655 		/* mitigate A-MSDU aggregation injection attacks */
656 		if (ether_addr_equal(eth.h_dest, rfc1042_header))
657 			goto purge;
658 
659 		offset += sizeof(struct ethhdr);
660 		last = remaining <= subframe_len + padding;
661 
662 		/* FIXME: should we really accept multicast DA? */
663 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
664 		     !ether_addr_equal(check_da, eth.h_dest)) ||
665 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
666 			offset += len + padding;
667 			continue;
668 		}
669 
670 		/* reuse skb for the last subframe */
671 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
672 			skb_pull(skb, offset);
673 			frame = skb;
674 			reuse_skb = true;
675 		} else {
676 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
677 						       reuse_frag);
678 			if (!frame)
679 				goto purge;
680 
681 			offset += len + padding;
682 		}
683 
684 		skb_reset_network_header(frame);
685 		frame->dev = skb->dev;
686 		frame->priority = skb->priority;
687 
688 		payload = frame->data;
689 		ethertype = (payload[6] << 8) | payload[7];
690 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
691 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
692 			   ether_addr_equal(payload, bridge_tunnel_header))) {
693 			eth.h_proto = htons(ethertype);
694 			skb_pull(frame, ETH_ALEN + 2);
695 		}
696 
697 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
698 		__skb_queue_tail(list, frame);
699 	}
700 
701 	if (!reuse_skb)
702 		dev_kfree_skb(skb);
703 
704 	return;
705 
706  purge:
707 	__skb_queue_purge(list);
708 	dev_kfree_skb(skb);
709 }
710 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
711 
712 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)713 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
714 				    struct cfg80211_qos_map *qos_map)
715 {
716 	unsigned int dscp;
717 	unsigned char vlan_priority;
718 
719 	/* skb->priority values from 256->263 are magic values to
720 	 * directly indicate a specific 802.1d priority.  This is used
721 	 * to allow 802.1d priority to be passed directly in from VLAN
722 	 * tags, etc.
723 	 */
724 	if (skb->priority >= 256 && skb->priority <= 263)
725 		return skb->priority - 256;
726 
727 	if (skb_vlan_tag_present(skb)) {
728 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
729 			>> VLAN_PRIO_SHIFT;
730 		if (vlan_priority > 0)
731 			return vlan_priority;
732 	}
733 
734 	switch (skb->protocol) {
735 	case htons(ETH_P_IP):
736 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
737 		break;
738 	case htons(ETH_P_IPV6):
739 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
740 		break;
741 	case htons(ETH_P_MPLS_UC):
742 	case htons(ETH_P_MPLS_MC): {
743 		struct mpls_label mpls_tmp, *mpls;
744 
745 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
746 					  sizeof(*mpls), &mpls_tmp);
747 		if (!mpls)
748 			return 0;
749 
750 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
751 			>> MPLS_LS_TC_SHIFT;
752 	}
753 	case htons(ETH_P_80221):
754 		/* 802.21 is always network control traffic */
755 		return 7;
756 	default:
757 		return 0;
758 	}
759 
760 	if (qos_map) {
761 		unsigned int i, tmp_dscp = dscp >> 2;
762 
763 		for (i = 0; i < qos_map->num_des; i++) {
764 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
765 				return qos_map->dscp_exception[i].up;
766 		}
767 
768 		for (i = 0; i < 8; i++) {
769 			if (tmp_dscp >= qos_map->up[i].low &&
770 			    tmp_dscp <= qos_map->up[i].high)
771 				return i;
772 		}
773 	}
774 
775 	return dscp >> 5;
776 }
777 EXPORT_SYMBOL(cfg80211_classify8021d);
778 
ieee80211_bss_get_ie(struct cfg80211_bss * bss,u8 ie)779 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
780 {
781 	const struct cfg80211_bss_ies *ies;
782 
783 	ies = rcu_dereference(bss->ies);
784 	if (!ies)
785 		return NULL;
786 
787 	return cfg80211_find_ie(ie, ies->data, ies->len);
788 }
789 EXPORT_SYMBOL(ieee80211_bss_get_ie);
790 
cfg80211_upload_connect_keys(struct wireless_dev * wdev)791 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
792 {
793 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
794 	struct net_device *dev = wdev->netdev;
795 	int i;
796 
797 	if (!wdev->connect_keys)
798 		return;
799 
800 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
801 		if (!wdev->connect_keys->params[i].cipher)
802 			continue;
803 		if (rdev_add_key(rdev, dev, i, false, NULL,
804 				 &wdev->connect_keys->params[i])) {
805 			netdev_err(dev, "failed to set key %d\n", i);
806 			continue;
807 		}
808 		if (wdev->connect_keys->def == i &&
809 		    rdev_set_default_key(rdev, dev, i, true, true)) {
810 			netdev_err(dev, "failed to set defkey %d\n", i);
811 			continue;
812 		}
813 	}
814 
815 	kzfree(wdev->connect_keys);
816 	wdev->connect_keys = NULL;
817 }
818 
cfg80211_process_wdev_events(struct wireless_dev * wdev)819 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
820 {
821 	struct cfg80211_event *ev;
822 	unsigned long flags;
823 
824 	spin_lock_irqsave(&wdev->event_lock, flags);
825 	while (!list_empty(&wdev->event_list)) {
826 		ev = list_first_entry(&wdev->event_list,
827 				      struct cfg80211_event, list);
828 		list_del(&ev->list);
829 		spin_unlock_irqrestore(&wdev->event_lock, flags);
830 
831 		wdev_lock(wdev);
832 		switch (ev->type) {
833 		case EVENT_CONNECT_RESULT:
834 			__cfg80211_connect_result(
835 				wdev->netdev,
836 				&ev->cr,
837 				ev->cr.status == WLAN_STATUS_SUCCESS);
838 			break;
839 		case EVENT_ROAMED:
840 			__cfg80211_roamed(wdev, &ev->rm);
841 			break;
842 		case EVENT_DISCONNECTED:
843 			__cfg80211_disconnected(wdev->netdev,
844 						ev->dc.ie, ev->dc.ie_len,
845 						ev->dc.reason,
846 						!ev->dc.locally_generated);
847 			break;
848 		case EVENT_IBSS_JOINED:
849 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
850 					       ev->ij.channel);
851 			break;
852 		case EVENT_STOPPED:
853 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
854 			break;
855 		case EVENT_PORT_AUTHORIZED:
856 			__cfg80211_port_authorized(wdev, ev->pa.bssid);
857 			break;
858 		}
859 		wdev_unlock(wdev);
860 
861 		kfree(ev);
862 
863 		spin_lock_irqsave(&wdev->event_lock, flags);
864 	}
865 	spin_unlock_irqrestore(&wdev->event_lock, flags);
866 }
867 
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)868 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
869 {
870 	struct wireless_dev *wdev;
871 
872 	ASSERT_RTNL();
873 
874 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
875 		cfg80211_process_wdev_events(wdev);
876 }
877 
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)878 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
879 			  struct net_device *dev, enum nl80211_iftype ntype,
880 			  struct vif_params *params)
881 {
882 	int err;
883 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
884 
885 	ASSERT_RTNL();
886 
887 	/* don't support changing VLANs, you just re-create them */
888 	if (otype == NL80211_IFTYPE_AP_VLAN)
889 		return -EOPNOTSUPP;
890 
891 	/* cannot change into P2P device or NAN */
892 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
893 	    ntype == NL80211_IFTYPE_NAN)
894 		return -EOPNOTSUPP;
895 
896 	if (!rdev->ops->change_virtual_intf ||
897 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
898 		return -EOPNOTSUPP;
899 
900 	/* if it's part of a bridge, reject changing type to station/ibss */
901 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
902 	    (ntype == NL80211_IFTYPE_ADHOC ||
903 	     ntype == NL80211_IFTYPE_STATION ||
904 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
905 		return -EBUSY;
906 
907 	if (ntype != otype) {
908 		dev->ieee80211_ptr->use_4addr = false;
909 		dev->ieee80211_ptr->mesh_id_up_len = 0;
910 		wdev_lock(dev->ieee80211_ptr);
911 		rdev_set_qos_map(rdev, dev, NULL);
912 		wdev_unlock(dev->ieee80211_ptr);
913 
914 		switch (otype) {
915 		case NL80211_IFTYPE_AP:
916 			cfg80211_stop_ap(rdev, dev, true);
917 			break;
918 		case NL80211_IFTYPE_ADHOC:
919 			cfg80211_leave_ibss(rdev, dev, false);
920 			break;
921 		case NL80211_IFTYPE_STATION:
922 		case NL80211_IFTYPE_P2P_CLIENT:
923 			wdev_lock(dev->ieee80211_ptr);
924 			cfg80211_disconnect(rdev, dev,
925 					    WLAN_REASON_DEAUTH_LEAVING, true);
926 			wdev_unlock(dev->ieee80211_ptr);
927 			break;
928 		case NL80211_IFTYPE_MESH_POINT:
929 			/* mesh should be handled? */
930 			break;
931 		default:
932 			break;
933 		}
934 
935 		cfg80211_process_rdev_events(rdev);
936 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
937 	}
938 
939 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
940 
941 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
942 
943 	if (!err && params && params->use_4addr != -1)
944 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
945 
946 	if (!err) {
947 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
948 		switch (ntype) {
949 		case NL80211_IFTYPE_STATION:
950 			if (dev->ieee80211_ptr->use_4addr)
951 				break;
952 			/* fall through */
953 		case NL80211_IFTYPE_OCB:
954 		case NL80211_IFTYPE_P2P_CLIENT:
955 		case NL80211_IFTYPE_ADHOC:
956 			dev->priv_flags |= IFF_DONT_BRIDGE;
957 			break;
958 		case NL80211_IFTYPE_P2P_GO:
959 		case NL80211_IFTYPE_AP:
960 		case NL80211_IFTYPE_AP_VLAN:
961 		case NL80211_IFTYPE_WDS:
962 		case NL80211_IFTYPE_MESH_POINT:
963 			/* bridging OK */
964 			break;
965 		case NL80211_IFTYPE_MONITOR:
966 			/* monitor can't bridge anyway */
967 			break;
968 		case NL80211_IFTYPE_UNSPECIFIED:
969 		case NUM_NL80211_IFTYPES:
970 			/* not happening */
971 			break;
972 		case NL80211_IFTYPE_P2P_DEVICE:
973 		case NL80211_IFTYPE_NAN:
974 			WARN_ON(1);
975 			break;
976 		}
977 	}
978 
979 	if (!err && ntype != otype && netif_running(dev)) {
980 		cfg80211_update_iface_num(rdev, ntype, 1);
981 		cfg80211_update_iface_num(rdev, otype, -1);
982 	}
983 
984 	return err;
985 }
986 
cfg80211_calculate_bitrate_ht(struct rate_info * rate)987 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
988 {
989 	int modulation, streams, bitrate;
990 
991 	/* the formula below does only work for MCS values smaller than 32 */
992 	if (WARN_ON_ONCE(rate->mcs >= 32))
993 		return 0;
994 
995 	modulation = rate->mcs & 7;
996 	streams = (rate->mcs >> 3) + 1;
997 
998 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
999 
1000 	if (modulation < 4)
1001 		bitrate *= (modulation + 1);
1002 	else if (modulation == 4)
1003 		bitrate *= (modulation + 2);
1004 	else
1005 		bitrate *= (modulation + 3);
1006 
1007 	bitrate *= streams;
1008 
1009 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1010 		bitrate = (bitrate / 9) * 10;
1011 
1012 	/* do NOT round down here */
1013 	return (bitrate + 50000) / 100000;
1014 }
1015 
cfg80211_calculate_bitrate_60g(struct rate_info * rate)1016 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1017 {
1018 	static const u32 __mcs2bitrate[] = {
1019 		/* control PHY */
1020 		[0] =   275,
1021 		/* SC PHY */
1022 		[1] =  3850,
1023 		[2] =  7700,
1024 		[3] =  9625,
1025 		[4] = 11550,
1026 		[5] = 12512, /* 1251.25 mbps */
1027 		[6] = 15400,
1028 		[7] = 19250,
1029 		[8] = 23100,
1030 		[9] = 25025,
1031 		[10] = 30800,
1032 		[11] = 38500,
1033 		[12] = 46200,
1034 		/* OFDM PHY */
1035 		[13] =  6930,
1036 		[14] =  8662, /* 866.25 mbps */
1037 		[15] = 13860,
1038 		[16] = 17325,
1039 		[17] = 20790,
1040 		[18] = 27720,
1041 		[19] = 34650,
1042 		[20] = 41580,
1043 		[21] = 45045,
1044 		[22] = 51975,
1045 		[23] = 62370,
1046 		[24] = 67568, /* 6756.75 mbps */
1047 		/* LP-SC PHY */
1048 		[25] =  6260,
1049 		[26] =  8340,
1050 		[27] = 11120,
1051 		[28] = 12510,
1052 		[29] = 16680,
1053 		[30] = 22240,
1054 		[31] = 25030,
1055 	};
1056 
1057 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1058 		return 0;
1059 
1060 	return __mcs2bitrate[rate->mcs];
1061 }
1062 
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1063 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1064 {
1065 	static const u32 base[4][10] = {
1066 		{   6500000,
1067 		   13000000,
1068 		   19500000,
1069 		   26000000,
1070 		   39000000,
1071 		   52000000,
1072 		   58500000,
1073 		   65000000,
1074 		   78000000,
1075 		/* not in the spec, but some devices use this: */
1076 		   86500000,
1077 		},
1078 		{  13500000,
1079 		   27000000,
1080 		   40500000,
1081 		   54000000,
1082 		   81000000,
1083 		  108000000,
1084 		  121500000,
1085 		  135000000,
1086 		  162000000,
1087 		  180000000,
1088 		},
1089 		{  29300000,
1090 		   58500000,
1091 		   87800000,
1092 		  117000000,
1093 		  175500000,
1094 		  234000000,
1095 		  263300000,
1096 		  292500000,
1097 		  351000000,
1098 		  390000000,
1099 		},
1100 		{  58500000,
1101 		  117000000,
1102 		  175500000,
1103 		  234000000,
1104 		  351000000,
1105 		  468000000,
1106 		  526500000,
1107 		  585000000,
1108 		  702000000,
1109 		  780000000,
1110 		},
1111 	};
1112 	u32 bitrate;
1113 	int idx;
1114 
1115 	if (rate->mcs > 9)
1116 		goto warn;
1117 
1118 	switch (rate->bw) {
1119 	case RATE_INFO_BW_160:
1120 		idx = 3;
1121 		break;
1122 	case RATE_INFO_BW_80:
1123 		idx = 2;
1124 		break;
1125 	case RATE_INFO_BW_40:
1126 		idx = 1;
1127 		break;
1128 	case RATE_INFO_BW_5:
1129 	case RATE_INFO_BW_10:
1130 	default:
1131 		goto warn;
1132 	case RATE_INFO_BW_20:
1133 		idx = 0;
1134 	}
1135 
1136 	bitrate = base[idx][rate->mcs];
1137 	bitrate *= rate->nss;
1138 
1139 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1140 		bitrate = (bitrate / 9) * 10;
1141 
1142 	/* do NOT round down here */
1143 	return (bitrate + 50000) / 100000;
1144  warn:
1145 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1146 		  rate->bw, rate->mcs, rate->nss);
1147 	return 0;
1148 }
1149 
cfg80211_calculate_bitrate_he(struct rate_info * rate)1150 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1151 {
1152 #define SCALE 2048
1153 	u16 mcs_divisors[12] = {
1154 		34133, /* 16.666666... */
1155 		17067, /*  8.333333... */
1156 		11378, /*  5.555555... */
1157 		 8533, /*  4.166666... */
1158 		 5689, /*  2.777777... */
1159 		 4267, /*  2.083333... */
1160 		 3923, /*  1.851851... */
1161 		 3413, /*  1.666666... */
1162 		 2844, /*  1.388888... */
1163 		 2560, /*  1.250000... */
1164 		 2276, /*  1.111111... */
1165 		 2048, /*  1.000000... */
1166 	};
1167 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1168 	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1169 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1170 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1171 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1172 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1173 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1174 	u64 tmp;
1175 	u32 result;
1176 
1177 	if (WARN_ON_ONCE(rate->mcs > 11))
1178 		return 0;
1179 
1180 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1181 		return 0;
1182 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1183 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1184 		return 0;
1185 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1186 		return 0;
1187 
1188 	if (rate->bw == RATE_INFO_BW_160)
1189 		result = rates_160M[rate->he_gi];
1190 	else if (rate->bw == RATE_INFO_BW_80 ||
1191 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1192 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1193 		result = rates_969[rate->he_gi];
1194 	else if (rate->bw == RATE_INFO_BW_40 ||
1195 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1196 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1197 		result = rates_484[rate->he_gi];
1198 	else if (rate->bw == RATE_INFO_BW_20 ||
1199 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1200 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1201 		result = rates_242[rate->he_gi];
1202 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1203 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1204 		result = rates_106[rate->he_gi];
1205 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1206 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1207 		result = rates_52[rate->he_gi];
1208 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1209 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1210 		result = rates_26[rate->he_gi];
1211 	else if (WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1212 		      rate->bw, rate->he_ru_alloc))
1213 		return 0;
1214 
1215 	/* now scale to the appropriate MCS */
1216 	tmp = result;
1217 	tmp *= SCALE;
1218 	do_div(tmp, mcs_divisors[rate->mcs]);
1219 	result = tmp;
1220 
1221 	/* and take NSS, DCM into account */
1222 	result = (result * rate->nss) / 8;
1223 	if (rate->he_dcm)
1224 		result /= 2;
1225 
1226 	return result / 10000;
1227 }
1228 
cfg80211_calculate_bitrate(struct rate_info * rate)1229 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1230 {
1231 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1232 		return cfg80211_calculate_bitrate_ht(rate);
1233 	if (rate->flags & RATE_INFO_FLAGS_60G)
1234 		return cfg80211_calculate_bitrate_60g(rate);
1235 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1236 		return cfg80211_calculate_bitrate_vht(rate);
1237 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1238 		return cfg80211_calculate_bitrate_he(rate);
1239 
1240 	return rate->legacy;
1241 }
1242 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1243 
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1244 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1245 			  enum ieee80211_p2p_attr_id attr,
1246 			  u8 *buf, unsigned int bufsize)
1247 {
1248 	u8 *out = buf;
1249 	u16 attr_remaining = 0;
1250 	bool desired_attr = false;
1251 	u16 desired_len = 0;
1252 
1253 	while (len > 0) {
1254 		unsigned int iedatalen;
1255 		unsigned int copy;
1256 		const u8 *iedata;
1257 
1258 		if (len < 2)
1259 			return -EILSEQ;
1260 		iedatalen = ies[1];
1261 		if (iedatalen + 2 > len)
1262 			return -EILSEQ;
1263 
1264 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1265 			goto cont;
1266 
1267 		if (iedatalen < 4)
1268 			goto cont;
1269 
1270 		iedata = ies + 2;
1271 
1272 		/* check WFA OUI, P2P subtype */
1273 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1274 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1275 			goto cont;
1276 
1277 		iedatalen -= 4;
1278 		iedata += 4;
1279 
1280 		/* check attribute continuation into this IE */
1281 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1282 		if (copy && desired_attr) {
1283 			desired_len += copy;
1284 			if (out) {
1285 				memcpy(out, iedata, min(bufsize, copy));
1286 				out += min(bufsize, copy);
1287 				bufsize -= min(bufsize, copy);
1288 			}
1289 
1290 
1291 			if (copy == attr_remaining)
1292 				return desired_len;
1293 		}
1294 
1295 		attr_remaining -= copy;
1296 		if (attr_remaining)
1297 			goto cont;
1298 
1299 		iedatalen -= copy;
1300 		iedata += copy;
1301 
1302 		while (iedatalen > 0) {
1303 			u16 attr_len;
1304 
1305 			/* P2P attribute ID & size must fit */
1306 			if (iedatalen < 3)
1307 				return -EILSEQ;
1308 			desired_attr = iedata[0] == attr;
1309 			attr_len = get_unaligned_le16(iedata + 1);
1310 			iedatalen -= 3;
1311 			iedata += 3;
1312 
1313 			copy = min_t(unsigned int, attr_len, iedatalen);
1314 
1315 			if (desired_attr) {
1316 				desired_len += copy;
1317 				if (out) {
1318 					memcpy(out, iedata, min(bufsize, copy));
1319 					out += min(bufsize, copy);
1320 					bufsize -= min(bufsize, copy);
1321 				}
1322 
1323 				if (copy == attr_len)
1324 					return desired_len;
1325 			}
1326 
1327 			iedata += copy;
1328 			iedatalen -= copy;
1329 			attr_remaining = attr_len - copy;
1330 		}
1331 
1332  cont:
1333 		len -= ies[1] + 2;
1334 		ies += ies[1] + 2;
1335 	}
1336 
1337 	if (attr_remaining && desired_attr)
1338 		return -EILSEQ;
1339 
1340 	return -ENOENT;
1341 }
1342 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1343 
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1344 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1345 {
1346 	int i;
1347 
1348 	/* Make sure array values are legal */
1349 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1350 		return false;
1351 
1352 	i = 0;
1353 	while (i < n_ids) {
1354 		if (ids[i] == WLAN_EID_EXTENSION) {
1355 			if (id_ext && (ids[i + 1] == id))
1356 				return true;
1357 
1358 			i += 2;
1359 			continue;
1360 		}
1361 
1362 		if (ids[i] == id && !id_ext)
1363 			return true;
1364 
1365 		i++;
1366 	}
1367 	return false;
1368 }
1369 
skip_ie(const u8 * ies,size_t ielen,size_t pos)1370 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1371 {
1372 	/* we assume a validly formed IEs buffer */
1373 	u8 len = ies[pos + 1];
1374 
1375 	pos += 2 + len;
1376 
1377 	/* the IE itself must have 255 bytes for fragments to follow */
1378 	if (len < 255)
1379 		return pos;
1380 
1381 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1382 		len = ies[pos + 1];
1383 		pos += 2 + len;
1384 	}
1385 
1386 	return pos;
1387 }
1388 
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1389 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1390 			      const u8 *ids, int n_ids,
1391 			      const u8 *after_ric, int n_after_ric,
1392 			      size_t offset)
1393 {
1394 	size_t pos = offset;
1395 
1396 	while (pos < ielen) {
1397 		u8 ext = 0;
1398 
1399 		if (ies[pos] == WLAN_EID_EXTENSION)
1400 			ext = 2;
1401 		if ((pos + ext) >= ielen)
1402 			break;
1403 
1404 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1405 					  ies[pos] == WLAN_EID_EXTENSION))
1406 			break;
1407 
1408 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1409 			pos = skip_ie(ies, ielen, pos);
1410 
1411 			while (pos < ielen) {
1412 				if (ies[pos] == WLAN_EID_EXTENSION)
1413 					ext = 2;
1414 				else
1415 					ext = 0;
1416 
1417 				if ((pos + ext) >= ielen)
1418 					break;
1419 
1420 				if (!ieee80211_id_in_list(after_ric,
1421 							  n_after_ric,
1422 							  ies[pos + ext],
1423 							  ext == 2))
1424 					pos = skip_ie(ies, ielen, pos);
1425 				else
1426 					break;
1427 			}
1428 		} else {
1429 			pos = skip_ie(ies, ielen, pos);
1430 		}
1431 	}
1432 
1433 	return pos;
1434 }
1435 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1436 
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1437 bool ieee80211_operating_class_to_band(u8 operating_class,
1438 				       enum nl80211_band *band)
1439 {
1440 	switch (operating_class) {
1441 	case 112:
1442 	case 115 ... 127:
1443 	case 128 ... 130:
1444 		*band = NL80211_BAND_5GHZ;
1445 		return true;
1446 	case 81:
1447 	case 82:
1448 	case 83:
1449 	case 84:
1450 		*band = NL80211_BAND_2GHZ;
1451 		return true;
1452 	case 180:
1453 		*band = NL80211_BAND_60GHZ;
1454 		return true;
1455 	}
1456 
1457 	return false;
1458 }
1459 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1460 
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1461 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1462 					  u8 *op_class)
1463 {
1464 	u8 vht_opclass;
1465 	u32 freq = chandef->center_freq1;
1466 
1467 	if (freq >= 2412 && freq <= 2472) {
1468 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1469 			return false;
1470 
1471 		/* 2.407 GHz, channels 1..13 */
1472 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1473 			if (freq > chandef->chan->center_freq)
1474 				*op_class = 83; /* HT40+ */
1475 			else
1476 				*op_class = 84; /* HT40- */
1477 		} else {
1478 			*op_class = 81;
1479 		}
1480 
1481 		return true;
1482 	}
1483 
1484 	if (freq == 2484) {
1485 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1486 			return false;
1487 
1488 		*op_class = 82; /* channel 14 */
1489 		return true;
1490 	}
1491 
1492 	switch (chandef->width) {
1493 	case NL80211_CHAN_WIDTH_80:
1494 		vht_opclass = 128;
1495 		break;
1496 	case NL80211_CHAN_WIDTH_160:
1497 		vht_opclass = 129;
1498 		break;
1499 	case NL80211_CHAN_WIDTH_80P80:
1500 		vht_opclass = 130;
1501 		break;
1502 	case NL80211_CHAN_WIDTH_10:
1503 	case NL80211_CHAN_WIDTH_5:
1504 		return false; /* unsupported for now */
1505 	default:
1506 		vht_opclass = 0;
1507 		break;
1508 	}
1509 
1510 	/* 5 GHz, channels 36..48 */
1511 	if (freq >= 5180 && freq <= 5240) {
1512 		if (vht_opclass) {
1513 			*op_class = vht_opclass;
1514 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1515 			if (freq > chandef->chan->center_freq)
1516 				*op_class = 116;
1517 			else
1518 				*op_class = 117;
1519 		} else {
1520 			*op_class = 115;
1521 		}
1522 
1523 		return true;
1524 	}
1525 
1526 	/* 5 GHz, channels 52..64 */
1527 	if (freq >= 5260 && freq <= 5320) {
1528 		if (vht_opclass) {
1529 			*op_class = vht_opclass;
1530 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1531 			if (freq > chandef->chan->center_freq)
1532 				*op_class = 119;
1533 			else
1534 				*op_class = 120;
1535 		} else {
1536 			*op_class = 118;
1537 		}
1538 
1539 		return true;
1540 	}
1541 
1542 	/* 5 GHz, channels 100..144 */
1543 	if (freq >= 5500 && freq <= 5720) {
1544 		if (vht_opclass) {
1545 			*op_class = vht_opclass;
1546 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1547 			if (freq > chandef->chan->center_freq)
1548 				*op_class = 122;
1549 			else
1550 				*op_class = 123;
1551 		} else {
1552 			*op_class = 121;
1553 		}
1554 
1555 		return true;
1556 	}
1557 
1558 	/* 5 GHz, channels 149..169 */
1559 	if (freq >= 5745 && freq <= 5845) {
1560 		if (vht_opclass) {
1561 			*op_class = vht_opclass;
1562 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1563 			if (freq > chandef->chan->center_freq)
1564 				*op_class = 126;
1565 			else
1566 				*op_class = 127;
1567 		} else if (freq <= 5805) {
1568 			*op_class = 124;
1569 		} else {
1570 			*op_class = 125;
1571 		}
1572 
1573 		return true;
1574 	}
1575 
1576 	/* 56.16 GHz, channel 1..4 */
1577 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1578 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1579 			return false;
1580 
1581 		*op_class = 180;
1582 		return true;
1583 	}
1584 
1585 	/* not supported yet */
1586 	return false;
1587 }
1588 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1589 
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)1590 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1591 				       u32 *beacon_int_gcd,
1592 				       bool *beacon_int_different)
1593 {
1594 	struct wireless_dev *wdev;
1595 
1596 	*beacon_int_gcd = 0;
1597 	*beacon_int_different = false;
1598 
1599 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1600 		if (!wdev->beacon_interval)
1601 			continue;
1602 
1603 		if (!*beacon_int_gcd) {
1604 			*beacon_int_gcd = wdev->beacon_interval;
1605 			continue;
1606 		}
1607 
1608 		if (wdev->beacon_interval == *beacon_int_gcd)
1609 			continue;
1610 
1611 		*beacon_int_different = true;
1612 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1613 	}
1614 
1615 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1616 		if (*beacon_int_gcd)
1617 			*beacon_int_different = true;
1618 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1619 	}
1620 }
1621 
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)1622 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1623 				 enum nl80211_iftype iftype, u32 beacon_int)
1624 {
1625 	/*
1626 	 * This is just a basic pre-condition check; if interface combinations
1627 	 * are possible the driver must already be checking those with a call
1628 	 * to cfg80211_check_combinations(), in which case we'll validate more
1629 	 * through the cfg80211_calculate_bi_data() call and code in
1630 	 * cfg80211_iter_combinations().
1631 	 */
1632 
1633 	if (beacon_int < 10 || beacon_int > 10000)
1634 		return -EINVAL;
1635 
1636 	return 0;
1637 }
1638 
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)1639 int cfg80211_iter_combinations(struct wiphy *wiphy,
1640 			       struct iface_combination_params *params,
1641 			       void (*iter)(const struct ieee80211_iface_combination *c,
1642 					    void *data),
1643 			       void *data)
1644 {
1645 	const struct ieee80211_regdomain *regdom;
1646 	enum nl80211_dfs_regions region = 0;
1647 	int i, j, iftype;
1648 	int num_interfaces = 0;
1649 	u32 used_iftypes = 0;
1650 	u32 beacon_int_gcd;
1651 	bool beacon_int_different;
1652 
1653 	/*
1654 	 * This is a bit strange, since the iteration used to rely only on
1655 	 * the data given by the driver, but here it now relies on context,
1656 	 * in form of the currently operating interfaces.
1657 	 * This is OK for all current users, and saves us from having to
1658 	 * push the GCD calculations into all the drivers.
1659 	 * In the future, this should probably rely more on data that's in
1660 	 * cfg80211 already - the only thing not would appear to be any new
1661 	 * interfaces (while being brought up) and channel/radar data.
1662 	 */
1663 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1664 				   &beacon_int_gcd, &beacon_int_different);
1665 
1666 	if (params->radar_detect) {
1667 		rcu_read_lock();
1668 		regdom = rcu_dereference(cfg80211_regdomain);
1669 		if (regdom)
1670 			region = regdom->dfs_region;
1671 		rcu_read_unlock();
1672 	}
1673 
1674 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1675 		num_interfaces += params->iftype_num[iftype];
1676 		if (params->iftype_num[iftype] > 0 &&
1677 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1678 			used_iftypes |= BIT(iftype);
1679 	}
1680 
1681 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1682 		const struct ieee80211_iface_combination *c;
1683 		struct ieee80211_iface_limit *limits;
1684 		u32 all_iftypes = 0;
1685 
1686 		c = &wiphy->iface_combinations[i];
1687 
1688 		if (num_interfaces > c->max_interfaces)
1689 			continue;
1690 		if (params->num_different_channels > c->num_different_channels)
1691 			continue;
1692 
1693 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1694 				 GFP_KERNEL);
1695 		if (!limits)
1696 			return -ENOMEM;
1697 
1698 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1699 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1700 				continue;
1701 			for (j = 0; j < c->n_limits; j++) {
1702 				all_iftypes |= limits[j].types;
1703 				if (!(limits[j].types & BIT(iftype)))
1704 					continue;
1705 				if (limits[j].max < params->iftype_num[iftype])
1706 					goto cont;
1707 				limits[j].max -= params->iftype_num[iftype];
1708 			}
1709 		}
1710 
1711 		if (params->radar_detect !=
1712 			(c->radar_detect_widths & params->radar_detect))
1713 			goto cont;
1714 
1715 		if (params->radar_detect && c->radar_detect_regions &&
1716 		    !(c->radar_detect_regions & BIT(region)))
1717 			goto cont;
1718 
1719 		/* Finally check that all iftypes that we're currently
1720 		 * using are actually part of this combination. If they
1721 		 * aren't then we can't use this combination and have
1722 		 * to continue to the next.
1723 		 */
1724 		if ((all_iftypes & used_iftypes) != used_iftypes)
1725 			goto cont;
1726 
1727 		if (beacon_int_gcd) {
1728 			if (c->beacon_int_min_gcd &&
1729 			    beacon_int_gcd < c->beacon_int_min_gcd)
1730 				goto cont;
1731 			if (!c->beacon_int_min_gcd && beacon_int_different)
1732 				goto cont;
1733 		}
1734 
1735 		/* This combination covered all interface types and
1736 		 * supported the requested numbers, so we're good.
1737 		 */
1738 
1739 		(*iter)(c, data);
1740  cont:
1741 		kfree(limits);
1742 	}
1743 
1744 	return 0;
1745 }
1746 EXPORT_SYMBOL(cfg80211_iter_combinations);
1747 
1748 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)1749 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1750 			  void *data)
1751 {
1752 	int *num = data;
1753 	(*num)++;
1754 }
1755 
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)1756 int cfg80211_check_combinations(struct wiphy *wiphy,
1757 				struct iface_combination_params *params)
1758 {
1759 	int err, num = 0;
1760 
1761 	err = cfg80211_iter_combinations(wiphy, params,
1762 					 cfg80211_iter_sum_ifcombs, &num);
1763 	if (err)
1764 		return err;
1765 	if (num == 0)
1766 		return -EBUSY;
1767 
1768 	return 0;
1769 }
1770 EXPORT_SYMBOL(cfg80211_check_combinations);
1771 
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1772 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1773 			   const u8 *rates, unsigned int n_rates,
1774 			   u32 *mask)
1775 {
1776 	int i, j;
1777 
1778 	if (!sband)
1779 		return -EINVAL;
1780 
1781 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1782 		return -EINVAL;
1783 
1784 	*mask = 0;
1785 
1786 	for (i = 0; i < n_rates; i++) {
1787 		int rate = (rates[i] & 0x7f) * 5;
1788 		bool found = false;
1789 
1790 		for (j = 0; j < sband->n_bitrates; j++) {
1791 			if (sband->bitrates[j].bitrate == rate) {
1792 				found = true;
1793 				*mask |= BIT(j);
1794 				break;
1795 			}
1796 		}
1797 		if (!found)
1798 			return -EINVAL;
1799 	}
1800 
1801 	/*
1802 	 * mask must have at least one bit set here since we
1803 	 * didn't accept a 0-length rates array nor allowed
1804 	 * entries in the array that didn't exist
1805 	 */
1806 
1807 	return 0;
1808 }
1809 
ieee80211_get_num_supported_channels(struct wiphy * wiphy)1810 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1811 {
1812 	enum nl80211_band band;
1813 	unsigned int n_channels = 0;
1814 
1815 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1816 		if (wiphy->bands[band])
1817 			n_channels += wiphy->bands[band]->n_channels;
1818 
1819 	return n_channels;
1820 }
1821 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1822 
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)1823 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1824 			 struct station_info *sinfo)
1825 {
1826 	struct cfg80211_registered_device *rdev;
1827 	struct wireless_dev *wdev;
1828 
1829 	wdev = dev->ieee80211_ptr;
1830 	if (!wdev)
1831 		return -EOPNOTSUPP;
1832 
1833 	rdev = wiphy_to_rdev(wdev->wiphy);
1834 	if (!rdev->ops->get_station)
1835 		return -EOPNOTSUPP;
1836 
1837 	memset(sinfo, 0, sizeof(*sinfo));
1838 
1839 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1840 }
1841 EXPORT_SYMBOL(cfg80211_get_station);
1842 
cfg80211_free_nan_func(struct cfg80211_nan_func * f)1843 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1844 {
1845 	int i;
1846 
1847 	if (!f)
1848 		return;
1849 
1850 	kfree(f->serv_spec_info);
1851 	kfree(f->srf_bf);
1852 	kfree(f->srf_macs);
1853 	for (i = 0; i < f->num_rx_filters; i++)
1854 		kfree(f->rx_filters[i].filter);
1855 
1856 	for (i = 0; i < f->num_tx_filters; i++)
1857 		kfree(f->tx_filters[i].filter);
1858 
1859 	kfree(f->rx_filters);
1860 	kfree(f->tx_filters);
1861 	kfree(f);
1862 }
1863 EXPORT_SYMBOL(cfg80211_free_nan_func);
1864 
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)1865 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1866 				u32 center_freq_khz, u32 bw_khz)
1867 {
1868 	u32 start_freq_khz, end_freq_khz;
1869 
1870 	start_freq_khz = center_freq_khz - (bw_khz / 2);
1871 	end_freq_khz = center_freq_khz + (bw_khz / 2);
1872 
1873 	if (start_freq_khz >= freq_range->start_freq_khz &&
1874 	    end_freq_khz <= freq_range->end_freq_khz)
1875 		return true;
1876 
1877 	return false;
1878 }
1879 
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)1880 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1881 {
1882 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1883 				sizeof(*(sinfo->pertid)),
1884 				gfp);
1885 	if (!sinfo->pertid)
1886 		return -ENOMEM;
1887 
1888 	return 0;
1889 }
1890 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1891 
1892 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1893 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1894 const unsigned char rfc1042_header[] __aligned(2) =
1895 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1896 EXPORT_SYMBOL(rfc1042_header);
1897 
1898 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1899 const unsigned char bridge_tunnel_header[] __aligned(2) =
1900 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1901 EXPORT_SYMBOL(bridge_tunnel_header);
1902 
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)1903 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
1904 			     bool is_4addr, u8 check_swif)
1905 
1906 {
1907 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
1908 
1909 	switch (check_swif) {
1910 	case 0:
1911 		if (is_vlan && is_4addr)
1912 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
1913 		return wiphy->interface_modes & BIT(iftype);
1914 	case 1:
1915 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
1916 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
1917 		return wiphy->software_iftypes & BIT(iftype);
1918 	default:
1919 		break;
1920 	}
1921 
1922 	return false;
1923 }
1924 EXPORT_SYMBOL(cfg80211_iftype_allowed);
1925 
1926 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1927 struct iapp_layer2_update {
1928 	u8 da[ETH_ALEN];	/* broadcast */
1929 	u8 sa[ETH_ALEN];	/* STA addr */
1930 	__be16 len;		/* 6 */
1931 	u8 dsap;		/* 0 */
1932 	u8 ssap;		/* 0 */
1933 	u8 control;
1934 	u8 xid_info[3];
1935 } __packed;
1936 
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)1937 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1938 {
1939 	struct iapp_layer2_update *msg;
1940 	struct sk_buff *skb;
1941 
1942 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
1943 	 * bridge devices */
1944 
1945 	skb = dev_alloc_skb(sizeof(*msg));
1946 	if (!skb)
1947 		return;
1948 	msg = skb_put(skb, sizeof(*msg));
1949 
1950 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
1951 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
1952 
1953 	eth_broadcast_addr(msg->da);
1954 	ether_addr_copy(msg->sa, addr);
1955 	msg->len = htons(6);
1956 	msg->dsap = 0;
1957 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
1958 	msg->control = 0xaf;	/* XID response lsb.1111F101.
1959 				 * F=0 (no poll command; unsolicited frame) */
1960 	msg->xid_info[0] = 0x81;	/* XID format identifier */
1961 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
1962 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
1963 
1964 	skb->dev = dev;
1965 	skb->protocol = eth_type_trans(skb, dev);
1966 	memset(skb->cb, 0, sizeof(skb->cb));
1967 	netif_rx_ni(skb);
1968 }
1969 EXPORT_SYMBOL(cfg80211_send_layer2_update);
1970