• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35 
36 #include "pcm_local.h"
37 
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
47 
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49 			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
50 
51 /*
52  * fill ring buffer with silence
53  * runtime->silence_start: starting pointer to silence area
54  * runtime->silence_filled: size filled with silence
55  * runtime->silence_threshold: threshold from application
56  * runtime->silence_size: maximal size from application
57  *
58  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
59  */
snd_pcm_playback_silence(struct snd_pcm_substream * substream,snd_pcm_uframes_t new_hw_ptr)60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
61 {
62 	struct snd_pcm_runtime *runtime = substream->runtime;
63 	snd_pcm_uframes_t frames, ofs, transfer;
64 	int err;
65 
66 	if (runtime->silence_size < runtime->boundary) {
67 		snd_pcm_sframes_t noise_dist, n;
68 		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69 		if (runtime->silence_start != appl_ptr) {
70 			n = appl_ptr - runtime->silence_start;
71 			if (n < 0)
72 				n += runtime->boundary;
73 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74 				runtime->silence_filled -= n;
75 			else
76 				runtime->silence_filled = 0;
77 			runtime->silence_start = appl_ptr;
78 		}
79 		if (runtime->silence_filled >= runtime->buffer_size)
80 			return;
81 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83 			return;
84 		frames = runtime->silence_threshold - noise_dist;
85 		if (frames > runtime->silence_size)
86 			frames = runtime->silence_size;
87 	} else {
88 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
89 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90 			if (avail > runtime->buffer_size)
91 				avail = runtime->buffer_size;
92 			runtime->silence_filled = avail > 0 ? avail : 0;
93 			runtime->silence_start = (runtime->status->hw_ptr +
94 						  runtime->silence_filled) %
95 						 runtime->boundary;
96 		} else {
97 			ofs = runtime->status->hw_ptr;
98 			frames = new_hw_ptr - ofs;
99 			if ((snd_pcm_sframes_t)frames < 0)
100 				frames += runtime->boundary;
101 			runtime->silence_filled -= frames;
102 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103 				runtime->silence_filled = 0;
104 				runtime->silence_start = new_hw_ptr;
105 			} else {
106 				runtime->silence_start = ofs;
107 			}
108 		}
109 		frames = runtime->buffer_size - runtime->silence_filled;
110 	}
111 	if (snd_BUG_ON(frames > runtime->buffer_size))
112 		return;
113 	if (frames == 0)
114 		return;
115 	ofs = runtime->silence_start % runtime->buffer_size;
116 	while (frames > 0) {
117 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118 		err = fill_silence_frames(substream, ofs, transfer);
119 		snd_BUG_ON(err < 0);
120 		runtime->silence_filled += transfer;
121 		frames -= transfer;
122 		ofs = 0;
123 	}
124 }
125 
126 #ifdef CONFIG_SND_DEBUG
snd_pcm_debug_name(struct snd_pcm_substream * substream,char * name,size_t len)127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128 			   char *name, size_t len)
129 {
130 	snprintf(name, len, "pcmC%dD%d%c:%d",
131 		 substream->pcm->card->number,
132 		 substream->pcm->device,
133 		 substream->stream ? 'c' : 'p',
134 		 substream->number);
135 }
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
138 
139 #define XRUN_DEBUG_BASIC	(1<<0)
140 #define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
142 
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
144 
145 #define xrun_debug(substream, mask) \
146 			((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask)	0
149 #endif
150 
151 #define dump_stack_on_xrun(substream) do {			\
152 		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
153 			dump_stack();				\
154 	} while (0)
155 
156 /* call with stream lock held */
__snd_pcm_xrun(struct snd_pcm_substream * substream)157 void __snd_pcm_xrun(struct snd_pcm_substream *substream)
158 {
159 	struct snd_pcm_runtime *runtime = substream->runtime;
160 
161 	trace_xrun(substream);
162 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
163 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
164 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
165 	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
166 		char name[16];
167 		snd_pcm_debug_name(substream, name, sizeof(name));
168 		pcm_warn(substream->pcm, "XRUN: %s\n", name);
169 		dump_stack_on_xrun(substream);
170 	}
171 }
172 
173 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
174 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
175 	do {								\
176 		trace_hw_ptr_error(substream, reason);	\
177 		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
178 			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
179 					   (in_interrupt) ? 'Q' : 'P', ##args);	\
180 			dump_stack_on_xrun(substream);			\
181 		}							\
182 	} while (0)
183 
184 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
185 
186 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
187 
188 #endif
189 
snd_pcm_update_state(struct snd_pcm_substream * substream,struct snd_pcm_runtime * runtime)190 int snd_pcm_update_state(struct snd_pcm_substream *substream,
191 			 struct snd_pcm_runtime *runtime)
192 {
193 	snd_pcm_uframes_t avail;
194 
195 	avail = snd_pcm_avail(substream);
196 	if (avail > runtime->avail_max)
197 		runtime->avail_max = avail;
198 	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
199 		if (avail >= runtime->buffer_size) {
200 			snd_pcm_drain_done(substream);
201 			return -EPIPE;
202 		}
203 	} else {
204 		if (avail >= runtime->stop_threshold) {
205 			__snd_pcm_xrun(substream);
206 			return -EPIPE;
207 		}
208 	}
209 	if (runtime->twake) {
210 		if (avail >= runtime->twake)
211 			wake_up(&runtime->tsleep);
212 	} else if (avail >= runtime->control->avail_min)
213 		wake_up(&runtime->sleep);
214 	return 0;
215 }
216 
update_audio_tstamp(struct snd_pcm_substream * substream,struct timespec * curr_tstamp,struct timespec * audio_tstamp)217 static void update_audio_tstamp(struct snd_pcm_substream *substream,
218 				struct timespec *curr_tstamp,
219 				struct timespec *audio_tstamp)
220 {
221 	struct snd_pcm_runtime *runtime = substream->runtime;
222 	u64 audio_frames, audio_nsecs;
223 	struct timespec driver_tstamp;
224 
225 	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
226 		return;
227 
228 	if (!(substream->ops->get_time_info) ||
229 		(runtime->audio_tstamp_report.actual_type ==
230 			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
231 
232 		/*
233 		 * provide audio timestamp derived from pointer position
234 		 * add delay only if requested
235 		 */
236 
237 		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
238 
239 		if (runtime->audio_tstamp_config.report_delay) {
240 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
241 				audio_frames -=  runtime->delay;
242 			else
243 				audio_frames +=  runtime->delay;
244 		}
245 		audio_nsecs = div_u64(audio_frames * 1000000000LL,
246 				runtime->rate);
247 		*audio_tstamp = ns_to_timespec(audio_nsecs);
248 	}
249 	if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
250 		runtime->status->audio_tstamp = *audio_tstamp;
251 		runtime->status->tstamp = *curr_tstamp;
252 	}
253 
254 	/*
255 	 * re-take a driver timestamp to let apps detect if the reference tstamp
256 	 * read by low-level hardware was provided with a delay
257 	 */
258 	snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
259 	runtime->driver_tstamp = driver_tstamp;
260 }
261 
snd_pcm_update_hw_ptr0(struct snd_pcm_substream * substream,unsigned int in_interrupt)262 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
263 				  unsigned int in_interrupt)
264 {
265 	struct snd_pcm_runtime *runtime = substream->runtime;
266 	snd_pcm_uframes_t pos;
267 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
268 	snd_pcm_sframes_t hdelta, delta;
269 	unsigned long jdelta;
270 	unsigned long curr_jiffies;
271 	struct timespec curr_tstamp;
272 	struct timespec audio_tstamp;
273 	int crossed_boundary = 0;
274 
275 	old_hw_ptr = runtime->status->hw_ptr;
276 
277 	/*
278 	 * group pointer, time and jiffies reads to allow for more
279 	 * accurate correlations/corrections.
280 	 * The values are stored at the end of this routine after
281 	 * corrections for hw_ptr position
282 	 */
283 	pos = substream->ops->pointer(substream);
284 	curr_jiffies = jiffies;
285 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
286 		if ((substream->ops->get_time_info) &&
287 			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
288 			substream->ops->get_time_info(substream, &curr_tstamp,
289 						&audio_tstamp,
290 						&runtime->audio_tstamp_config,
291 						&runtime->audio_tstamp_report);
292 
293 			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
294 			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
295 				snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
296 		} else
297 			snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
298 	}
299 
300 	if (pos == SNDRV_PCM_POS_XRUN) {
301 		__snd_pcm_xrun(substream);
302 		return -EPIPE;
303 	}
304 	if (pos >= runtime->buffer_size) {
305 		if (printk_ratelimit()) {
306 			char name[16];
307 			snd_pcm_debug_name(substream, name, sizeof(name));
308 			pcm_err(substream->pcm,
309 				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
310 				name, pos, runtime->buffer_size,
311 				runtime->period_size);
312 		}
313 		pos = 0;
314 	}
315 	pos -= pos % runtime->min_align;
316 	trace_hwptr(substream, pos, in_interrupt);
317 	hw_base = runtime->hw_ptr_base;
318 	new_hw_ptr = hw_base + pos;
319 	if (in_interrupt) {
320 		/* we know that one period was processed */
321 		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
322 		delta = runtime->hw_ptr_interrupt + runtime->period_size;
323 		if (delta > new_hw_ptr) {
324 			/* check for double acknowledged interrupts */
325 			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
326 			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
327 				hw_base += runtime->buffer_size;
328 				if (hw_base >= runtime->boundary) {
329 					hw_base = 0;
330 					crossed_boundary++;
331 				}
332 				new_hw_ptr = hw_base + pos;
333 				goto __delta;
334 			}
335 		}
336 	}
337 	/* new_hw_ptr might be lower than old_hw_ptr in case when */
338 	/* pointer crosses the end of the ring buffer */
339 	if (new_hw_ptr < old_hw_ptr) {
340 		hw_base += runtime->buffer_size;
341 		if (hw_base >= runtime->boundary) {
342 			hw_base = 0;
343 			crossed_boundary++;
344 		}
345 		new_hw_ptr = hw_base + pos;
346 	}
347       __delta:
348 	delta = new_hw_ptr - old_hw_ptr;
349 	if (delta < 0)
350 		delta += runtime->boundary;
351 
352 	if (runtime->no_period_wakeup) {
353 		snd_pcm_sframes_t xrun_threshold;
354 		/*
355 		 * Without regular period interrupts, we have to check
356 		 * the elapsed time to detect xruns.
357 		 */
358 		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
359 		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
360 			goto no_delta_check;
361 		hdelta = jdelta - delta * HZ / runtime->rate;
362 		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
363 		while (hdelta > xrun_threshold) {
364 			delta += runtime->buffer_size;
365 			hw_base += runtime->buffer_size;
366 			if (hw_base >= runtime->boundary) {
367 				hw_base = 0;
368 				crossed_boundary++;
369 			}
370 			new_hw_ptr = hw_base + pos;
371 			hdelta -= runtime->hw_ptr_buffer_jiffies;
372 		}
373 		goto no_delta_check;
374 	}
375 
376 	/* something must be really wrong */
377 	if (delta >= runtime->buffer_size + runtime->period_size) {
378 		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
379 			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
380 			     substream->stream, (long)pos,
381 			     (long)new_hw_ptr, (long)old_hw_ptr);
382 		return 0;
383 	}
384 
385 	/* Do jiffies check only in xrun_debug mode */
386 	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
387 		goto no_jiffies_check;
388 
389 	/* Skip the jiffies check for hardwares with BATCH flag.
390 	 * Such hardware usually just increases the position at each IRQ,
391 	 * thus it can't give any strange position.
392 	 */
393 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
394 		goto no_jiffies_check;
395 	hdelta = delta;
396 	if (hdelta < runtime->delay)
397 		goto no_jiffies_check;
398 	hdelta -= runtime->delay;
399 	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
400 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
401 		delta = jdelta /
402 			(((runtime->period_size * HZ) / runtime->rate)
403 								+ HZ/100);
404 		/* move new_hw_ptr according jiffies not pos variable */
405 		new_hw_ptr = old_hw_ptr;
406 		hw_base = delta;
407 		/* use loop to avoid checks for delta overflows */
408 		/* the delta value is small or zero in most cases */
409 		while (delta > 0) {
410 			new_hw_ptr += runtime->period_size;
411 			if (new_hw_ptr >= runtime->boundary) {
412 				new_hw_ptr -= runtime->boundary;
413 				crossed_boundary--;
414 			}
415 			delta--;
416 		}
417 		/* align hw_base to buffer_size */
418 		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
419 			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
420 			     (long)pos, (long)hdelta,
421 			     (long)runtime->period_size, jdelta,
422 			     ((hdelta * HZ) / runtime->rate), hw_base,
423 			     (unsigned long)old_hw_ptr,
424 			     (unsigned long)new_hw_ptr);
425 		/* reset values to proper state */
426 		delta = 0;
427 		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
428 	}
429  no_jiffies_check:
430 	if (delta > runtime->period_size + runtime->period_size / 2) {
431 		hw_ptr_error(substream, in_interrupt,
432 			     "Lost interrupts?",
433 			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
434 			     substream->stream, (long)delta,
435 			     (long)new_hw_ptr,
436 			     (long)old_hw_ptr);
437 	}
438 
439  no_delta_check:
440 	if (runtime->status->hw_ptr == new_hw_ptr) {
441 		runtime->hw_ptr_jiffies = curr_jiffies;
442 		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
443 		return 0;
444 	}
445 
446 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
447 	    runtime->silence_size > 0)
448 		snd_pcm_playback_silence(substream, new_hw_ptr);
449 
450 	if (in_interrupt) {
451 		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
452 		if (delta < 0)
453 			delta += runtime->boundary;
454 		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
455 		runtime->hw_ptr_interrupt += delta;
456 		if (runtime->hw_ptr_interrupt >= runtime->boundary)
457 			runtime->hw_ptr_interrupt -= runtime->boundary;
458 	}
459 	runtime->hw_ptr_base = hw_base;
460 	runtime->status->hw_ptr = new_hw_ptr;
461 	runtime->hw_ptr_jiffies = curr_jiffies;
462 	if (crossed_boundary) {
463 		snd_BUG_ON(crossed_boundary != 1);
464 		runtime->hw_ptr_wrap += runtime->boundary;
465 	}
466 
467 	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
468 
469 	return snd_pcm_update_state(substream, runtime);
470 }
471 
472 /* CAUTION: call it with irq disabled */
snd_pcm_update_hw_ptr(struct snd_pcm_substream * substream)473 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
474 {
475 	return snd_pcm_update_hw_ptr0(substream, 0);
476 }
477 
478 /**
479  * snd_pcm_set_ops - set the PCM operators
480  * @pcm: the pcm instance
481  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
482  * @ops: the operator table
483  *
484  * Sets the given PCM operators to the pcm instance.
485  */
snd_pcm_set_ops(struct snd_pcm * pcm,int direction,const struct snd_pcm_ops * ops)486 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
487 		     const struct snd_pcm_ops *ops)
488 {
489 	struct snd_pcm_str *stream = &pcm->streams[direction];
490 	struct snd_pcm_substream *substream;
491 
492 	for (substream = stream->substream; substream != NULL; substream = substream->next)
493 		substream->ops = ops;
494 }
495 EXPORT_SYMBOL(snd_pcm_set_ops);
496 
497 /**
498  * snd_pcm_sync - set the PCM sync id
499  * @substream: the pcm substream
500  *
501  * Sets the PCM sync identifier for the card.
502  */
snd_pcm_set_sync(struct snd_pcm_substream * substream)503 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
504 {
505 	struct snd_pcm_runtime *runtime = substream->runtime;
506 
507 	runtime->sync.id32[0] = substream->pcm->card->number;
508 	runtime->sync.id32[1] = -1;
509 	runtime->sync.id32[2] = -1;
510 	runtime->sync.id32[3] = -1;
511 }
512 EXPORT_SYMBOL(snd_pcm_set_sync);
513 
514 /*
515  *  Standard ioctl routine
516  */
517 
div32(unsigned int a,unsigned int b,unsigned int * r)518 static inline unsigned int div32(unsigned int a, unsigned int b,
519 				 unsigned int *r)
520 {
521 	if (b == 0) {
522 		*r = 0;
523 		return UINT_MAX;
524 	}
525 	*r = a % b;
526 	return a / b;
527 }
528 
div_down(unsigned int a,unsigned int b)529 static inline unsigned int div_down(unsigned int a, unsigned int b)
530 {
531 	if (b == 0)
532 		return UINT_MAX;
533 	return a / b;
534 }
535 
div_up(unsigned int a,unsigned int b)536 static inline unsigned int div_up(unsigned int a, unsigned int b)
537 {
538 	unsigned int r;
539 	unsigned int q;
540 	if (b == 0)
541 		return UINT_MAX;
542 	q = div32(a, b, &r);
543 	if (r)
544 		++q;
545 	return q;
546 }
547 
mul(unsigned int a,unsigned int b)548 static inline unsigned int mul(unsigned int a, unsigned int b)
549 {
550 	if (a == 0)
551 		return 0;
552 	if (div_down(UINT_MAX, a) < b)
553 		return UINT_MAX;
554 	return a * b;
555 }
556 
muldiv32(unsigned int a,unsigned int b,unsigned int c,unsigned int * r)557 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
558 				    unsigned int c, unsigned int *r)
559 {
560 	u_int64_t n = (u_int64_t) a * b;
561 	if (c == 0) {
562 		*r = 0;
563 		return UINT_MAX;
564 	}
565 	n = div_u64_rem(n, c, r);
566 	if (n >= UINT_MAX) {
567 		*r = 0;
568 		return UINT_MAX;
569 	}
570 	return n;
571 }
572 
573 /**
574  * snd_interval_refine - refine the interval value of configurator
575  * @i: the interval value to refine
576  * @v: the interval value to refer to
577  *
578  * Refines the interval value with the reference value.
579  * The interval is changed to the range satisfying both intervals.
580  * The interval status (min, max, integer, etc.) are evaluated.
581  *
582  * Return: Positive if the value is changed, zero if it's not changed, or a
583  * negative error code.
584  */
snd_interval_refine(struct snd_interval * i,const struct snd_interval * v)585 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
586 {
587 	int changed = 0;
588 	if (snd_BUG_ON(snd_interval_empty(i)))
589 		return -EINVAL;
590 	if (i->min < v->min) {
591 		i->min = v->min;
592 		i->openmin = v->openmin;
593 		changed = 1;
594 	} else if (i->min == v->min && !i->openmin && v->openmin) {
595 		i->openmin = 1;
596 		changed = 1;
597 	}
598 	if (i->max > v->max) {
599 		i->max = v->max;
600 		i->openmax = v->openmax;
601 		changed = 1;
602 	} else if (i->max == v->max && !i->openmax && v->openmax) {
603 		i->openmax = 1;
604 		changed = 1;
605 	}
606 	if (!i->integer && v->integer) {
607 		i->integer = 1;
608 		changed = 1;
609 	}
610 	if (i->integer) {
611 		if (i->openmin) {
612 			i->min++;
613 			i->openmin = 0;
614 		}
615 		if (i->openmax) {
616 			i->max--;
617 			i->openmax = 0;
618 		}
619 	} else if (!i->openmin && !i->openmax && i->min == i->max)
620 		i->integer = 1;
621 	if (snd_interval_checkempty(i)) {
622 		snd_interval_none(i);
623 		return -EINVAL;
624 	}
625 	return changed;
626 }
627 EXPORT_SYMBOL(snd_interval_refine);
628 
snd_interval_refine_first(struct snd_interval * i)629 static int snd_interval_refine_first(struct snd_interval *i)
630 {
631 	const unsigned int last_max = i->max;
632 
633 	if (snd_BUG_ON(snd_interval_empty(i)))
634 		return -EINVAL;
635 	if (snd_interval_single(i))
636 		return 0;
637 	i->max = i->min;
638 	if (i->openmin)
639 		i->max++;
640 	/* only exclude max value if also excluded before refine */
641 	i->openmax = (i->openmax && i->max >= last_max);
642 	return 1;
643 }
644 
snd_interval_refine_last(struct snd_interval * i)645 static int snd_interval_refine_last(struct snd_interval *i)
646 {
647 	const unsigned int last_min = i->min;
648 
649 	if (snd_BUG_ON(snd_interval_empty(i)))
650 		return -EINVAL;
651 	if (snd_interval_single(i))
652 		return 0;
653 	i->min = i->max;
654 	if (i->openmax)
655 		i->min--;
656 	/* only exclude min value if also excluded before refine */
657 	i->openmin = (i->openmin && i->min <= last_min);
658 	return 1;
659 }
660 
snd_interval_mul(const struct snd_interval * a,const struct snd_interval * b,struct snd_interval * c)661 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
662 {
663 	if (a->empty || b->empty) {
664 		snd_interval_none(c);
665 		return;
666 	}
667 	c->empty = 0;
668 	c->min = mul(a->min, b->min);
669 	c->openmin = (a->openmin || b->openmin);
670 	c->max = mul(a->max,  b->max);
671 	c->openmax = (a->openmax || b->openmax);
672 	c->integer = (a->integer && b->integer);
673 }
674 
675 /**
676  * snd_interval_div - refine the interval value with division
677  * @a: dividend
678  * @b: divisor
679  * @c: quotient
680  *
681  * c = a / b
682  *
683  * Returns non-zero if the value is changed, zero if not changed.
684  */
snd_interval_div(const struct snd_interval * a,const struct snd_interval * b,struct snd_interval * c)685 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
686 {
687 	unsigned int r;
688 	if (a->empty || b->empty) {
689 		snd_interval_none(c);
690 		return;
691 	}
692 	c->empty = 0;
693 	c->min = div32(a->min, b->max, &r);
694 	c->openmin = (r || a->openmin || b->openmax);
695 	if (b->min > 0) {
696 		c->max = div32(a->max, b->min, &r);
697 		if (r) {
698 			c->max++;
699 			c->openmax = 1;
700 		} else
701 			c->openmax = (a->openmax || b->openmin);
702 	} else {
703 		c->max = UINT_MAX;
704 		c->openmax = 0;
705 	}
706 	c->integer = 0;
707 }
708 
709 /**
710  * snd_interval_muldivk - refine the interval value
711  * @a: dividend 1
712  * @b: dividend 2
713  * @k: divisor (as integer)
714  * @c: result
715   *
716  * c = a * b / k
717  *
718  * Returns non-zero if the value is changed, zero if not changed.
719  */
snd_interval_muldivk(const struct snd_interval * a,const struct snd_interval * b,unsigned int k,struct snd_interval * c)720 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
721 		      unsigned int k, struct snd_interval *c)
722 {
723 	unsigned int r;
724 	if (a->empty || b->empty) {
725 		snd_interval_none(c);
726 		return;
727 	}
728 	c->empty = 0;
729 	c->min = muldiv32(a->min, b->min, k, &r);
730 	c->openmin = (r || a->openmin || b->openmin);
731 	c->max = muldiv32(a->max, b->max, k, &r);
732 	if (r) {
733 		c->max++;
734 		c->openmax = 1;
735 	} else
736 		c->openmax = (a->openmax || b->openmax);
737 	c->integer = 0;
738 }
739 
740 /**
741  * snd_interval_mulkdiv - refine the interval value
742  * @a: dividend 1
743  * @k: dividend 2 (as integer)
744  * @b: divisor
745  * @c: result
746  *
747  * c = a * k / b
748  *
749  * Returns non-zero if the value is changed, zero if not changed.
750  */
snd_interval_mulkdiv(const struct snd_interval * a,unsigned int k,const struct snd_interval * b,struct snd_interval * c)751 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
752 		      const struct snd_interval *b, struct snd_interval *c)
753 {
754 	unsigned int r;
755 	if (a->empty || b->empty) {
756 		snd_interval_none(c);
757 		return;
758 	}
759 	c->empty = 0;
760 	c->min = muldiv32(a->min, k, b->max, &r);
761 	c->openmin = (r || a->openmin || b->openmax);
762 	if (b->min > 0) {
763 		c->max = muldiv32(a->max, k, b->min, &r);
764 		if (r) {
765 			c->max++;
766 			c->openmax = 1;
767 		} else
768 			c->openmax = (a->openmax || b->openmin);
769 	} else {
770 		c->max = UINT_MAX;
771 		c->openmax = 0;
772 	}
773 	c->integer = 0;
774 }
775 
776 /* ---- */
777 
778 
779 /**
780  * snd_interval_ratnum - refine the interval value
781  * @i: interval to refine
782  * @rats_count: number of ratnum_t
783  * @rats: ratnum_t array
784  * @nump: pointer to store the resultant numerator
785  * @denp: pointer to store the resultant denominator
786  *
787  * Return: Positive if the value is changed, zero if it's not changed, or a
788  * negative error code.
789  */
snd_interval_ratnum(struct snd_interval * i,unsigned int rats_count,const struct snd_ratnum * rats,unsigned int * nump,unsigned int * denp)790 int snd_interval_ratnum(struct snd_interval *i,
791 			unsigned int rats_count, const struct snd_ratnum *rats,
792 			unsigned int *nump, unsigned int *denp)
793 {
794 	unsigned int best_num, best_den;
795 	int best_diff;
796 	unsigned int k;
797 	struct snd_interval t;
798 	int err;
799 	unsigned int result_num, result_den;
800 	int result_diff;
801 
802 	best_num = best_den = best_diff = 0;
803 	for (k = 0; k < rats_count; ++k) {
804 		unsigned int num = rats[k].num;
805 		unsigned int den;
806 		unsigned int q = i->min;
807 		int diff;
808 		if (q == 0)
809 			q = 1;
810 		den = div_up(num, q);
811 		if (den < rats[k].den_min)
812 			continue;
813 		if (den > rats[k].den_max)
814 			den = rats[k].den_max;
815 		else {
816 			unsigned int r;
817 			r = (den - rats[k].den_min) % rats[k].den_step;
818 			if (r != 0)
819 				den -= r;
820 		}
821 		diff = num - q * den;
822 		if (diff < 0)
823 			diff = -diff;
824 		if (best_num == 0 ||
825 		    diff * best_den < best_diff * den) {
826 			best_diff = diff;
827 			best_den = den;
828 			best_num = num;
829 		}
830 	}
831 	if (best_den == 0) {
832 		i->empty = 1;
833 		return -EINVAL;
834 	}
835 	t.min = div_down(best_num, best_den);
836 	t.openmin = !!(best_num % best_den);
837 
838 	result_num = best_num;
839 	result_diff = best_diff;
840 	result_den = best_den;
841 	best_num = best_den = best_diff = 0;
842 	for (k = 0; k < rats_count; ++k) {
843 		unsigned int num = rats[k].num;
844 		unsigned int den;
845 		unsigned int q = i->max;
846 		int diff;
847 		if (q == 0) {
848 			i->empty = 1;
849 			return -EINVAL;
850 		}
851 		den = div_down(num, q);
852 		if (den > rats[k].den_max)
853 			continue;
854 		if (den < rats[k].den_min)
855 			den = rats[k].den_min;
856 		else {
857 			unsigned int r;
858 			r = (den - rats[k].den_min) % rats[k].den_step;
859 			if (r != 0)
860 				den += rats[k].den_step - r;
861 		}
862 		diff = q * den - num;
863 		if (diff < 0)
864 			diff = -diff;
865 		if (best_num == 0 ||
866 		    diff * best_den < best_diff * den) {
867 			best_diff = diff;
868 			best_den = den;
869 			best_num = num;
870 		}
871 	}
872 	if (best_den == 0) {
873 		i->empty = 1;
874 		return -EINVAL;
875 	}
876 	t.max = div_up(best_num, best_den);
877 	t.openmax = !!(best_num % best_den);
878 	t.integer = 0;
879 	err = snd_interval_refine(i, &t);
880 	if (err < 0)
881 		return err;
882 
883 	if (snd_interval_single(i)) {
884 		if (best_diff * result_den < result_diff * best_den) {
885 			result_num = best_num;
886 			result_den = best_den;
887 		}
888 		if (nump)
889 			*nump = result_num;
890 		if (denp)
891 			*denp = result_den;
892 	}
893 	return err;
894 }
895 EXPORT_SYMBOL(snd_interval_ratnum);
896 
897 /**
898  * snd_interval_ratden - refine the interval value
899  * @i: interval to refine
900  * @rats_count: number of struct ratden
901  * @rats: struct ratden array
902  * @nump: pointer to store the resultant numerator
903  * @denp: pointer to store the resultant denominator
904  *
905  * Return: Positive if the value is changed, zero if it's not changed, or a
906  * negative error code.
907  */
snd_interval_ratden(struct snd_interval * i,unsigned int rats_count,const struct snd_ratden * rats,unsigned int * nump,unsigned int * denp)908 static int snd_interval_ratden(struct snd_interval *i,
909 			       unsigned int rats_count,
910 			       const struct snd_ratden *rats,
911 			       unsigned int *nump, unsigned int *denp)
912 {
913 	unsigned int best_num, best_diff, best_den;
914 	unsigned int k;
915 	struct snd_interval t;
916 	int err;
917 
918 	best_num = best_den = best_diff = 0;
919 	for (k = 0; k < rats_count; ++k) {
920 		unsigned int num;
921 		unsigned int den = rats[k].den;
922 		unsigned int q = i->min;
923 		int diff;
924 		num = mul(q, den);
925 		if (num > rats[k].num_max)
926 			continue;
927 		if (num < rats[k].num_min)
928 			num = rats[k].num_max;
929 		else {
930 			unsigned int r;
931 			r = (num - rats[k].num_min) % rats[k].num_step;
932 			if (r != 0)
933 				num += rats[k].num_step - r;
934 		}
935 		diff = num - q * den;
936 		if (best_num == 0 ||
937 		    diff * best_den < best_diff * den) {
938 			best_diff = diff;
939 			best_den = den;
940 			best_num = num;
941 		}
942 	}
943 	if (best_den == 0) {
944 		i->empty = 1;
945 		return -EINVAL;
946 	}
947 	t.min = div_down(best_num, best_den);
948 	t.openmin = !!(best_num % best_den);
949 
950 	best_num = best_den = best_diff = 0;
951 	for (k = 0; k < rats_count; ++k) {
952 		unsigned int num;
953 		unsigned int den = rats[k].den;
954 		unsigned int q = i->max;
955 		int diff;
956 		num = mul(q, den);
957 		if (num < rats[k].num_min)
958 			continue;
959 		if (num > rats[k].num_max)
960 			num = rats[k].num_max;
961 		else {
962 			unsigned int r;
963 			r = (num - rats[k].num_min) % rats[k].num_step;
964 			if (r != 0)
965 				num -= r;
966 		}
967 		diff = q * den - num;
968 		if (best_num == 0 ||
969 		    diff * best_den < best_diff * den) {
970 			best_diff = diff;
971 			best_den = den;
972 			best_num = num;
973 		}
974 	}
975 	if (best_den == 0) {
976 		i->empty = 1;
977 		return -EINVAL;
978 	}
979 	t.max = div_up(best_num, best_den);
980 	t.openmax = !!(best_num % best_den);
981 	t.integer = 0;
982 	err = snd_interval_refine(i, &t);
983 	if (err < 0)
984 		return err;
985 
986 	if (snd_interval_single(i)) {
987 		if (nump)
988 			*nump = best_num;
989 		if (denp)
990 			*denp = best_den;
991 	}
992 	return err;
993 }
994 
995 /**
996  * snd_interval_list - refine the interval value from the list
997  * @i: the interval value to refine
998  * @count: the number of elements in the list
999  * @list: the value list
1000  * @mask: the bit-mask to evaluate
1001  *
1002  * Refines the interval value from the list.
1003  * When mask is non-zero, only the elements corresponding to bit 1 are
1004  * evaluated.
1005  *
1006  * Return: Positive if the value is changed, zero if it's not changed, or a
1007  * negative error code.
1008  */
snd_interval_list(struct snd_interval * i,unsigned int count,const unsigned int * list,unsigned int mask)1009 int snd_interval_list(struct snd_interval *i, unsigned int count,
1010 		      const unsigned int *list, unsigned int mask)
1011 {
1012         unsigned int k;
1013 	struct snd_interval list_range;
1014 
1015 	if (!count) {
1016 		i->empty = 1;
1017 		return -EINVAL;
1018 	}
1019 	snd_interval_any(&list_range);
1020 	list_range.min = UINT_MAX;
1021 	list_range.max = 0;
1022         for (k = 0; k < count; k++) {
1023 		if (mask && !(mask & (1 << k)))
1024 			continue;
1025 		if (!snd_interval_test(i, list[k]))
1026 			continue;
1027 		list_range.min = min(list_range.min, list[k]);
1028 		list_range.max = max(list_range.max, list[k]);
1029         }
1030 	return snd_interval_refine(i, &list_range);
1031 }
1032 EXPORT_SYMBOL(snd_interval_list);
1033 
1034 /**
1035  * snd_interval_ranges - refine the interval value from the list of ranges
1036  * @i: the interval value to refine
1037  * @count: the number of elements in the list of ranges
1038  * @ranges: the ranges list
1039  * @mask: the bit-mask to evaluate
1040  *
1041  * Refines the interval value from the list of ranges.
1042  * When mask is non-zero, only the elements corresponding to bit 1 are
1043  * evaluated.
1044  *
1045  * Return: Positive if the value is changed, zero if it's not changed, or a
1046  * negative error code.
1047  */
snd_interval_ranges(struct snd_interval * i,unsigned int count,const struct snd_interval * ranges,unsigned int mask)1048 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1049 			const struct snd_interval *ranges, unsigned int mask)
1050 {
1051 	unsigned int k;
1052 	struct snd_interval range_union;
1053 	struct snd_interval range;
1054 
1055 	if (!count) {
1056 		snd_interval_none(i);
1057 		return -EINVAL;
1058 	}
1059 	snd_interval_any(&range_union);
1060 	range_union.min = UINT_MAX;
1061 	range_union.max = 0;
1062 	for (k = 0; k < count; k++) {
1063 		if (mask && !(mask & (1 << k)))
1064 			continue;
1065 		snd_interval_copy(&range, &ranges[k]);
1066 		if (snd_interval_refine(&range, i) < 0)
1067 			continue;
1068 		if (snd_interval_empty(&range))
1069 			continue;
1070 
1071 		if (range.min < range_union.min) {
1072 			range_union.min = range.min;
1073 			range_union.openmin = 1;
1074 		}
1075 		if (range.min == range_union.min && !range.openmin)
1076 			range_union.openmin = 0;
1077 		if (range.max > range_union.max) {
1078 			range_union.max = range.max;
1079 			range_union.openmax = 1;
1080 		}
1081 		if (range.max == range_union.max && !range.openmax)
1082 			range_union.openmax = 0;
1083 	}
1084 	return snd_interval_refine(i, &range_union);
1085 }
1086 EXPORT_SYMBOL(snd_interval_ranges);
1087 
snd_interval_step(struct snd_interval * i,unsigned int step)1088 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1089 {
1090 	unsigned int n;
1091 	int changed = 0;
1092 	n = i->min % step;
1093 	if (n != 0 || i->openmin) {
1094 		i->min += step - n;
1095 		i->openmin = 0;
1096 		changed = 1;
1097 	}
1098 	n = i->max % step;
1099 	if (n != 0 || i->openmax) {
1100 		i->max -= n;
1101 		i->openmax = 0;
1102 		changed = 1;
1103 	}
1104 	if (snd_interval_checkempty(i)) {
1105 		i->empty = 1;
1106 		return -EINVAL;
1107 	}
1108 	return changed;
1109 }
1110 
1111 /* Info constraints helpers */
1112 
1113 /**
1114  * snd_pcm_hw_rule_add - add the hw-constraint rule
1115  * @runtime: the pcm runtime instance
1116  * @cond: condition bits
1117  * @var: the variable to evaluate
1118  * @func: the evaluation function
1119  * @private: the private data pointer passed to function
1120  * @dep: the dependent variables
1121  *
1122  * Return: Zero if successful, or a negative error code on failure.
1123  */
snd_pcm_hw_rule_add(struct snd_pcm_runtime * runtime,unsigned int cond,int var,snd_pcm_hw_rule_func_t func,void * private,int dep,...)1124 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1125 			int var,
1126 			snd_pcm_hw_rule_func_t func, void *private,
1127 			int dep, ...)
1128 {
1129 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1130 	struct snd_pcm_hw_rule *c;
1131 	unsigned int k;
1132 	va_list args;
1133 	va_start(args, dep);
1134 	if (constrs->rules_num >= constrs->rules_all) {
1135 		struct snd_pcm_hw_rule *new;
1136 		unsigned int new_rules = constrs->rules_all + 16;
1137 		new = krealloc(constrs->rules, new_rules * sizeof(*c),
1138 			       GFP_KERNEL);
1139 		if (!new) {
1140 			va_end(args);
1141 			return -ENOMEM;
1142 		}
1143 		constrs->rules = new;
1144 		constrs->rules_all = new_rules;
1145 	}
1146 	c = &constrs->rules[constrs->rules_num];
1147 	c->cond = cond;
1148 	c->func = func;
1149 	c->var = var;
1150 	c->private = private;
1151 	k = 0;
1152 	while (1) {
1153 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1154 			va_end(args);
1155 			return -EINVAL;
1156 		}
1157 		c->deps[k++] = dep;
1158 		if (dep < 0)
1159 			break;
1160 		dep = va_arg(args, int);
1161 	}
1162 	constrs->rules_num++;
1163 	va_end(args);
1164 	return 0;
1165 }
1166 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1167 
1168 /**
1169  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1170  * @runtime: PCM runtime instance
1171  * @var: hw_params variable to apply the mask
1172  * @mask: the bitmap mask
1173  *
1174  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1175  *
1176  * Return: Zero if successful, or a negative error code on failure.
1177  */
snd_pcm_hw_constraint_mask(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,u_int32_t mask)1178 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1179 			       u_int32_t mask)
1180 {
1181 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1182 	struct snd_mask *maskp = constrs_mask(constrs, var);
1183 	*maskp->bits &= mask;
1184 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1185 	if (*maskp->bits == 0)
1186 		return -EINVAL;
1187 	return 0;
1188 }
1189 
1190 /**
1191  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1192  * @runtime: PCM runtime instance
1193  * @var: hw_params variable to apply the mask
1194  * @mask: the 64bit bitmap mask
1195  *
1196  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1197  *
1198  * Return: Zero if successful, or a negative error code on failure.
1199  */
snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,u_int64_t mask)1200 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1201 				 u_int64_t mask)
1202 {
1203 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1204 	struct snd_mask *maskp = constrs_mask(constrs, var);
1205 	maskp->bits[0] &= (u_int32_t)mask;
1206 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1207 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1208 	if (! maskp->bits[0] && ! maskp->bits[1])
1209 		return -EINVAL;
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1213 
1214 /**
1215  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1216  * @runtime: PCM runtime instance
1217  * @var: hw_params variable to apply the integer constraint
1218  *
1219  * Apply the constraint of integer to an interval parameter.
1220  *
1221  * Return: Positive if the value is changed, zero if it's not changed, or a
1222  * negative error code.
1223  */
snd_pcm_hw_constraint_integer(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var)1224 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1225 {
1226 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1227 	return snd_interval_setinteger(constrs_interval(constrs, var));
1228 }
1229 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1230 
1231 /**
1232  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1233  * @runtime: PCM runtime instance
1234  * @var: hw_params variable to apply the range
1235  * @min: the minimal value
1236  * @max: the maximal value
1237  *
1238  * Apply the min/max range constraint to an interval parameter.
1239  *
1240  * Return: Positive if the value is changed, zero if it's not changed, or a
1241  * negative error code.
1242  */
snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,unsigned int min,unsigned int max)1243 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1244 				 unsigned int min, unsigned int max)
1245 {
1246 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1247 	struct snd_interval t;
1248 	t.min = min;
1249 	t.max = max;
1250 	t.openmin = t.openmax = 0;
1251 	t.integer = 0;
1252 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1253 }
1254 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1255 
snd_pcm_hw_rule_list(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1256 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1257 				struct snd_pcm_hw_rule *rule)
1258 {
1259 	struct snd_pcm_hw_constraint_list *list = rule->private;
1260 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1261 }
1262 
1263 
1264 /**
1265  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1266  * @runtime: PCM runtime instance
1267  * @cond: condition bits
1268  * @var: hw_params variable to apply the list constraint
1269  * @l: list
1270  *
1271  * Apply the list of constraints to an interval parameter.
1272  *
1273  * Return: Zero if successful, or a negative error code on failure.
1274  */
snd_pcm_hw_constraint_list(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,const struct snd_pcm_hw_constraint_list * l)1275 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1276 			       unsigned int cond,
1277 			       snd_pcm_hw_param_t var,
1278 			       const struct snd_pcm_hw_constraint_list *l)
1279 {
1280 	return snd_pcm_hw_rule_add(runtime, cond, var,
1281 				   snd_pcm_hw_rule_list, (void *)l,
1282 				   var, -1);
1283 }
1284 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1285 
snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1286 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1287 				  struct snd_pcm_hw_rule *rule)
1288 {
1289 	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1290 	return snd_interval_ranges(hw_param_interval(params, rule->var),
1291 				   r->count, r->ranges, r->mask);
1292 }
1293 
1294 
1295 /**
1296  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1297  * @runtime: PCM runtime instance
1298  * @cond: condition bits
1299  * @var: hw_params variable to apply the list of range constraints
1300  * @r: ranges
1301  *
1302  * Apply the list of range constraints to an interval parameter.
1303  *
1304  * Return: Zero if successful, or a negative error code on failure.
1305  */
snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,const struct snd_pcm_hw_constraint_ranges * r)1306 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1307 				 unsigned int cond,
1308 				 snd_pcm_hw_param_t var,
1309 				 const struct snd_pcm_hw_constraint_ranges *r)
1310 {
1311 	return snd_pcm_hw_rule_add(runtime, cond, var,
1312 				   snd_pcm_hw_rule_ranges, (void *)r,
1313 				   var, -1);
1314 }
1315 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1316 
snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1317 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1318 				   struct snd_pcm_hw_rule *rule)
1319 {
1320 	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1321 	unsigned int num = 0, den = 0;
1322 	int err;
1323 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1324 				  r->nrats, r->rats, &num, &den);
1325 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1326 		params->rate_num = num;
1327 		params->rate_den = den;
1328 	}
1329 	return err;
1330 }
1331 
1332 /**
1333  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1334  * @runtime: PCM runtime instance
1335  * @cond: condition bits
1336  * @var: hw_params variable to apply the ratnums constraint
1337  * @r: struct snd_ratnums constriants
1338  *
1339  * Return: Zero if successful, or a negative error code on failure.
1340  */
snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,const struct snd_pcm_hw_constraint_ratnums * r)1341 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1342 				  unsigned int cond,
1343 				  snd_pcm_hw_param_t var,
1344 				  const struct snd_pcm_hw_constraint_ratnums *r)
1345 {
1346 	return snd_pcm_hw_rule_add(runtime, cond, var,
1347 				   snd_pcm_hw_rule_ratnums, (void *)r,
1348 				   var, -1);
1349 }
1350 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1351 
snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1352 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1353 				   struct snd_pcm_hw_rule *rule)
1354 {
1355 	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1356 	unsigned int num = 0, den = 0;
1357 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1358 				  r->nrats, r->rats, &num, &den);
1359 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1360 		params->rate_num = num;
1361 		params->rate_den = den;
1362 	}
1363 	return err;
1364 }
1365 
1366 /**
1367  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1368  * @runtime: PCM runtime instance
1369  * @cond: condition bits
1370  * @var: hw_params variable to apply the ratdens constraint
1371  * @r: struct snd_ratdens constriants
1372  *
1373  * Return: Zero if successful, or a negative error code on failure.
1374  */
snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,const struct snd_pcm_hw_constraint_ratdens * r)1375 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1376 				  unsigned int cond,
1377 				  snd_pcm_hw_param_t var,
1378 				  const struct snd_pcm_hw_constraint_ratdens *r)
1379 {
1380 	return snd_pcm_hw_rule_add(runtime, cond, var,
1381 				   snd_pcm_hw_rule_ratdens, (void *)r,
1382 				   var, -1);
1383 }
1384 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1385 
snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1386 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1387 				  struct snd_pcm_hw_rule *rule)
1388 {
1389 	unsigned int l = (unsigned long) rule->private;
1390 	int width = l & 0xffff;
1391 	unsigned int msbits = l >> 16;
1392 	const struct snd_interval *i =
1393 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1394 
1395 	if (!snd_interval_single(i))
1396 		return 0;
1397 
1398 	if ((snd_interval_value(i) == width) ||
1399 	    (width == 0 && snd_interval_value(i) > msbits))
1400 		params->msbits = min_not_zero(params->msbits, msbits);
1401 
1402 	return 0;
1403 }
1404 
1405 /**
1406  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1407  * @runtime: PCM runtime instance
1408  * @cond: condition bits
1409  * @width: sample bits width
1410  * @msbits: msbits width
1411  *
1412  * This constraint will set the number of most significant bits (msbits) if a
1413  * sample format with the specified width has been select. If width is set to 0
1414  * the msbits will be set for any sample format with a width larger than the
1415  * specified msbits.
1416  *
1417  * Return: Zero if successful, or a negative error code on failure.
1418  */
snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime * runtime,unsigned int cond,unsigned int width,unsigned int msbits)1419 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1420 				 unsigned int cond,
1421 				 unsigned int width,
1422 				 unsigned int msbits)
1423 {
1424 	unsigned long l = (msbits << 16) | width;
1425 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1426 				    snd_pcm_hw_rule_msbits,
1427 				    (void*) l,
1428 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1429 }
1430 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1431 
snd_pcm_hw_rule_step(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1432 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1433 				struct snd_pcm_hw_rule *rule)
1434 {
1435 	unsigned long step = (unsigned long) rule->private;
1436 	return snd_interval_step(hw_param_interval(params, rule->var), step);
1437 }
1438 
1439 /**
1440  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1441  * @runtime: PCM runtime instance
1442  * @cond: condition bits
1443  * @var: hw_params variable to apply the step constraint
1444  * @step: step size
1445  *
1446  * Return: Zero if successful, or a negative error code on failure.
1447  */
snd_pcm_hw_constraint_step(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,unsigned long step)1448 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1449 			       unsigned int cond,
1450 			       snd_pcm_hw_param_t var,
1451 			       unsigned long step)
1452 {
1453 	return snd_pcm_hw_rule_add(runtime, cond, var,
1454 				   snd_pcm_hw_rule_step, (void *) step,
1455 				   var, -1);
1456 }
1457 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1458 
snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1459 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1460 {
1461 	static unsigned int pow2_sizes[] = {
1462 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1463 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1464 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1465 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1466 	};
1467 	return snd_interval_list(hw_param_interval(params, rule->var),
1468 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1469 }
1470 
1471 /**
1472  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1473  * @runtime: PCM runtime instance
1474  * @cond: condition bits
1475  * @var: hw_params variable to apply the power-of-2 constraint
1476  *
1477  * Return: Zero if successful, or a negative error code on failure.
1478  */
snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var)1479 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1480 			       unsigned int cond,
1481 			       snd_pcm_hw_param_t var)
1482 {
1483 	return snd_pcm_hw_rule_add(runtime, cond, var,
1484 				   snd_pcm_hw_rule_pow2, NULL,
1485 				   var, -1);
1486 }
1487 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1488 
snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1489 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1490 					   struct snd_pcm_hw_rule *rule)
1491 {
1492 	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1493 	struct snd_interval *rate;
1494 
1495 	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1496 	return snd_interval_list(rate, 1, &base_rate, 0);
1497 }
1498 
1499 /**
1500  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1501  * @runtime: PCM runtime instance
1502  * @base_rate: the rate at which the hardware does not resample
1503  *
1504  * Return: Zero if successful, or a negative error code on failure.
1505  */
snd_pcm_hw_rule_noresample(struct snd_pcm_runtime * runtime,unsigned int base_rate)1506 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1507 			       unsigned int base_rate)
1508 {
1509 	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1510 				   SNDRV_PCM_HW_PARAM_RATE,
1511 				   snd_pcm_hw_rule_noresample_func,
1512 				   (void *)(uintptr_t)base_rate,
1513 				   SNDRV_PCM_HW_PARAM_RATE, -1);
1514 }
1515 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1516 
_snd_pcm_hw_param_any(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1517 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1518 				  snd_pcm_hw_param_t var)
1519 {
1520 	if (hw_is_mask(var)) {
1521 		snd_mask_any(hw_param_mask(params, var));
1522 		params->cmask |= 1 << var;
1523 		params->rmask |= 1 << var;
1524 		return;
1525 	}
1526 	if (hw_is_interval(var)) {
1527 		snd_interval_any(hw_param_interval(params, var));
1528 		params->cmask |= 1 << var;
1529 		params->rmask |= 1 << var;
1530 		return;
1531 	}
1532 	snd_BUG();
1533 }
1534 
_snd_pcm_hw_params_any(struct snd_pcm_hw_params * params)1535 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1536 {
1537 	unsigned int k;
1538 	memset(params, 0, sizeof(*params));
1539 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1540 		_snd_pcm_hw_param_any(params, k);
1541 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1542 		_snd_pcm_hw_param_any(params, k);
1543 	params->info = ~0U;
1544 }
1545 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1546 
1547 /**
1548  * snd_pcm_hw_param_value - return @params field @var value
1549  * @params: the hw_params instance
1550  * @var: parameter to retrieve
1551  * @dir: pointer to the direction (-1,0,1) or %NULL
1552  *
1553  * Return: The value for field @var if it's fixed in configuration space
1554  * defined by @params. -%EINVAL otherwise.
1555  */
snd_pcm_hw_param_value(const struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1556 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1557 			   snd_pcm_hw_param_t var, int *dir)
1558 {
1559 	if (hw_is_mask(var)) {
1560 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1561 		if (!snd_mask_single(mask))
1562 			return -EINVAL;
1563 		if (dir)
1564 			*dir = 0;
1565 		return snd_mask_value(mask);
1566 	}
1567 	if (hw_is_interval(var)) {
1568 		const struct snd_interval *i = hw_param_interval_c(params, var);
1569 		if (!snd_interval_single(i))
1570 			return -EINVAL;
1571 		if (dir)
1572 			*dir = i->openmin;
1573 		return snd_interval_value(i);
1574 	}
1575 	return -EINVAL;
1576 }
1577 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1578 
_snd_pcm_hw_param_setempty(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1579 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1580 				snd_pcm_hw_param_t var)
1581 {
1582 	if (hw_is_mask(var)) {
1583 		snd_mask_none(hw_param_mask(params, var));
1584 		params->cmask |= 1 << var;
1585 		params->rmask |= 1 << var;
1586 	} else if (hw_is_interval(var)) {
1587 		snd_interval_none(hw_param_interval(params, var));
1588 		params->cmask |= 1 << var;
1589 		params->rmask |= 1 << var;
1590 	} else {
1591 		snd_BUG();
1592 	}
1593 }
1594 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1595 
_snd_pcm_hw_param_first(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1596 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1597 				   snd_pcm_hw_param_t var)
1598 {
1599 	int changed;
1600 	if (hw_is_mask(var))
1601 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1602 	else if (hw_is_interval(var))
1603 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1604 	else
1605 		return -EINVAL;
1606 	if (changed > 0) {
1607 		params->cmask |= 1 << var;
1608 		params->rmask |= 1 << var;
1609 	}
1610 	return changed;
1611 }
1612 
1613 
1614 /**
1615  * snd_pcm_hw_param_first - refine config space and return minimum value
1616  * @pcm: PCM instance
1617  * @params: the hw_params instance
1618  * @var: parameter to retrieve
1619  * @dir: pointer to the direction (-1,0,1) or %NULL
1620  *
1621  * Inside configuration space defined by @params remove from @var all
1622  * values > minimum. Reduce configuration space accordingly.
1623  *
1624  * Return: The minimum, or a negative error code on failure.
1625  */
snd_pcm_hw_param_first(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1626 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1627 			   struct snd_pcm_hw_params *params,
1628 			   snd_pcm_hw_param_t var, int *dir)
1629 {
1630 	int changed = _snd_pcm_hw_param_first(params, var);
1631 	if (changed < 0)
1632 		return changed;
1633 	if (params->rmask) {
1634 		int err = snd_pcm_hw_refine(pcm, params);
1635 		if (err < 0)
1636 			return err;
1637 	}
1638 	return snd_pcm_hw_param_value(params, var, dir);
1639 }
1640 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1641 
_snd_pcm_hw_param_last(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1643 				  snd_pcm_hw_param_t var)
1644 {
1645 	int changed;
1646 	if (hw_is_mask(var))
1647 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1648 	else if (hw_is_interval(var))
1649 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1650 	else
1651 		return -EINVAL;
1652 	if (changed > 0) {
1653 		params->cmask |= 1 << var;
1654 		params->rmask |= 1 << var;
1655 	}
1656 	return changed;
1657 }
1658 
1659 
1660 /**
1661  * snd_pcm_hw_param_last - refine config space and return maximum value
1662  * @pcm: PCM instance
1663  * @params: the hw_params instance
1664  * @var: parameter to retrieve
1665  * @dir: pointer to the direction (-1,0,1) or %NULL
1666  *
1667  * Inside configuration space defined by @params remove from @var all
1668  * values < maximum. Reduce configuration space accordingly.
1669  *
1670  * Return: The maximum, or a negative error code on failure.
1671  */
snd_pcm_hw_param_last(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1672 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1673 			  struct snd_pcm_hw_params *params,
1674 			  snd_pcm_hw_param_t var, int *dir)
1675 {
1676 	int changed = _snd_pcm_hw_param_last(params, var);
1677 	if (changed < 0)
1678 		return changed;
1679 	if (params->rmask) {
1680 		int err = snd_pcm_hw_refine(pcm, params);
1681 		if (err < 0)
1682 			return err;
1683 	}
1684 	return snd_pcm_hw_param_value(params, var, dir);
1685 }
1686 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1687 
snd_pcm_lib_ioctl_reset(struct snd_pcm_substream * substream,void * arg)1688 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1689 				   void *arg)
1690 {
1691 	struct snd_pcm_runtime *runtime = substream->runtime;
1692 	unsigned long flags;
1693 	snd_pcm_stream_lock_irqsave(substream, flags);
1694 	if (snd_pcm_running(substream) &&
1695 	    snd_pcm_update_hw_ptr(substream) >= 0)
1696 		runtime->status->hw_ptr %= runtime->buffer_size;
1697 	else {
1698 		runtime->status->hw_ptr = 0;
1699 		runtime->hw_ptr_wrap = 0;
1700 	}
1701 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1702 	return 0;
1703 }
1704 
snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream * substream,void * arg)1705 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1706 					  void *arg)
1707 {
1708 	struct snd_pcm_channel_info *info = arg;
1709 	struct snd_pcm_runtime *runtime = substream->runtime;
1710 	int width;
1711 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1712 		info->offset = -1;
1713 		return 0;
1714 	}
1715 	width = snd_pcm_format_physical_width(runtime->format);
1716 	if (width < 0)
1717 		return width;
1718 	info->offset = 0;
1719 	switch (runtime->access) {
1720 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1721 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1722 		info->first = info->channel * width;
1723 		info->step = runtime->channels * width;
1724 		break;
1725 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1726 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1727 	{
1728 		size_t size = runtime->dma_bytes / runtime->channels;
1729 		info->first = info->channel * size * 8;
1730 		info->step = width;
1731 		break;
1732 	}
1733 	default:
1734 		snd_BUG();
1735 		break;
1736 	}
1737 	return 0;
1738 }
1739 
snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream * substream,void * arg)1740 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1741 				       void *arg)
1742 {
1743 	struct snd_pcm_hw_params *params = arg;
1744 	snd_pcm_format_t format;
1745 	int channels;
1746 	ssize_t frame_size;
1747 
1748 	params->fifo_size = substream->runtime->hw.fifo_size;
1749 	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1750 		format = params_format(params);
1751 		channels = params_channels(params);
1752 		frame_size = snd_pcm_format_size(format, channels);
1753 		if (frame_size > 0)
1754 			params->fifo_size /= (unsigned)frame_size;
1755 	}
1756 	return 0;
1757 }
1758 
1759 /**
1760  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1761  * @substream: the pcm substream instance
1762  * @cmd: ioctl command
1763  * @arg: ioctl argument
1764  *
1765  * Processes the generic ioctl commands for PCM.
1766  * Can be passed as the ioctl callback for PCM ops.
1767  *
1768  * Return: Zero if successful, or a negative error code on failure.
1769  */
snd_pcm_lib_ioctl(struct snd_pcm_substream * substream,unsigned int cmd,void * arg)1770 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1771 		      unsigned int cmd, void *arg)
1772 {
1773 	switch (cmd) {
1774 	case SNDRV_PCM_IOCTL1_RESET:
1775 		return snd_pcm_lib_ioctl_reset(substream, arg);
1776 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1777 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1778 	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1779 		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1780 	}
1781 	return -ENXIO;
1782 }
1783 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1784 
1785 /**
1786  * snd_pcm_period_elapsed - update the pcm status for the next period
1787  * @substream: the pcm substream instance
1788  *
1789  * This function is called from the interrupt handler when the
1790  * PCM has processed the period size.  It will update the current
1791  * pointer, wake up sleepers, etc.
1792  *
1793  * Even if more than one periods have elapsed since the last call, you
1794  * have to call this only once.
1795  */
snd_pcm_period_elapsed(struct snd_pcm_substream * substream)1796 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1797 {
1798 	struct snd_pcm_runtime *runtime;
1799 	unsigned long flags;
1800 
1801 	if (snd_BUG_ON(!substream))
1802 		return;
1803 
1804 	snd_pcm_stream_lock_irqsave(substream, flags);
1805 	if (PCM_RUNTIME_CHECK(substream))
1806 		goto _unlock;
1807 	runtime = substream->runtime;
1808 
1809 	if (!snd_pcm_running(substream) ||
1810 	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1811 		goto _end;
1812 
1813 #ifdef CONFIG_SND_PCM_TIMER
1814 	if (substream->timer_running)
1815 		snd_timer_interrupt(substream->timer, 1);
1816 #endif
1817  _end:
1818 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1819  _unlock:
1820 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1821 }
1822 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1823 
1824 /*
1825  * Wait until avail_min data becomes available
1826  * Returns a negative error code if any error occurs during operation.
1827  * The available space is stored on availp.  When err = 0 and avail = 0
1828  * on the capture stream, it indicates the stream is in DRAINING state.
1829  */
wait_for_avail(struct snd_pcm_substream * substream,snd_pcm_uframes_t * availp)1830 static int wait_for_avail(struct snd_pcm_substream *substream,
1831 			      snd_pcm_uframes_t *availp)
1832 {
1833 	struct snd_pcm_runtime *runtime = substream->runtime;
1834 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1835 	wait_queue_entry_t wait;
1836 	int err = 0;
1837 	snd_pcm_uframes_t avail = 0;
1838 	long wait_time, tout;
1839 
1840 	init_waitqueue_entry(&wait, current);
1841 	set_current_state(TASK_INTERRUPTIBLE);
1842 	add_wait_queue(&runtime->tsleep, &wait);
1843 
1844 	if (runtime->no_period_wakeup)
1845 		wait_time = MAX_SCHEDULE_TIMEOUT;
1846 	else {
1847 		/* use wait time from substream if available */
1848 		if (substream->wait_time) {
1849 			wait_time = substream->wait_time;
1850 		} else {
1851 			wait_time = 10;
1852 
1853 			if (runtime->rate) {
1854 				long t = runtime->period_size * 2 /
1855 					 runtime->rate;
1856 				wait_time = max(t, wait_time);
1857 			}
1858 			wait_time = msecs_to_jiffies(wait_time * 1000);
1859 		}
1860 	}
1861 
1862 	for (;;) {
1863 		if (signal_pending(current)) {
1864 			err = -ERESTARTSYS;
1865 			break;
1866 		}
1867 
1868 		/*
1869 		 * We need to check if space became available already
1870 		 * (and thus the wakeup happened already) first to close
1871 		 * the race of space already having become available.
1872 		 * This check must happen after been added to the waitqueue
1873 		 * and having current state be INTERRUPTIBLE.
1874 		 */
1875 		avail = snd_pcm_avail(substream);
1876 		if (avail >= runtime->twake)
1877 			break;
1878 		snd_pcm_stream_unlock_irq(substream);
1879 
1880 		tout = schedule_timeout(wait_time);
1881 
1882 		snd_pcm_stream_lock_irq(substream);
1883 		set_current_state(TASK_INTERRUPTIBLE);
1884 		switch (runtime->status->state) {
1885 		case SNDRV_PCM_STATE_SUSPENDED:
1886 			err = -ESTRPIPE;
1887 			goto _endloop;
1888 		case SNDRV_PCM_STATE_XRUN:
1889 			err = -EPIPE;
1890 			goto _endloop;
1891 		case SNDRV_PCM_STATE_DRAINING:
1892 			if (is_playback)
1893 				err = -EPIPE;
1894 			else
1895 				avail = 0; /* indicate draining */
1896 			goto _endloop;
1897 		case SNDRV_PCM_STATE_OPEN:
1898 		case SNDRV_PCM_STATE_SETUP:
1899 		case SNDRV_PCM_STATE_DISCONNECTED:
1900 			err = -EBADFD;
1901 			goto _endloop;
1902 		case SNDRV_PCM_STATE_PAUSED:
1903 			continue;
1904 		}
1905 		if (!tout) {
1906 			pcm_dbg(substream->pcm,
1907 				"%s write error (DMA or IRQ trouble?)\n",
1908 				is_playback ? "playback" : "capture");
1909 			err = -EIO;
1910 			break;
1911 		}
1912 	}
1913  _endloop:
1914 	set_current_state(TASK_RUNNING);
1915 	remove_wait_queue(&runtime->tsleep, &wait);
1916 	*availp = avail;
1917 	return err;
1918 }
1919 
1920 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1921 			      int channel, unsigned long hwoff,
1922 			      void *buf, unsigned long bytes);
1923 
1924 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1925 			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1926 
1927 /* calculate the target DMA-buffer position to be written/read */
get_dma_ptr(struct snd_pcm_runtime * runtime,int channel,unsigned long hwoff)1928 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1929 			   int channel, unsigned long hwoff)
1930 {
1931 	return runtime->dma_area + hwoff +
1932 		channel * (runtime->dma_bytes / runtime->channels);
1933 }
1934 
1935 /* default copy_user ops for write; used for both interleaved and non- modes */
default_write_copy(struct snd_pcm_substream * substream,int channel,unsigned long hwoff,void * buf,unsigned long bytes)1936 static int default_write_copy(struct snd_pcm_substream *substream,
1937 			      int channel, unsigned long hwoff,
1938 			      void *buf, unsigned long bytes)
1939 {
1940 	if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1941 			   (void __user *)buf, bytes))
1942 		return -EFAULT;
1943 	return 0;
1944 }
1945 
1946 /* default copy_kernel ops for write */
default_write_copy_kernel(struct snd_pcm_substream * substream,int channel,unsigned long hwoff,void * buf,unsigned long bytes)1947 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1948 				     int channel, unsigned long hwoff,
1949 				     void *buf, unsigned long bytes)
1950 {
1951 	memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1952 	return 0;
1953 }
1954 
1955 /* fill silence instead of copy data; called as a transfer helper
1956  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1957  * a NULL buffer is passed
1958  */
fill_silence(struct snd_pcm_substream * substream,int channel,unsigned long hwoff,void * buf,unsigned long bytes)1959 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1960 			unsigned long hwoff, void *buf, unsigned long bytes)
1961 {
1962 	struct snd_pcm_runtime *runtime = substream->runtime;
1963 
1964 	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1965 		return 0;
1966 	if (substream->ops->fill_silence)
1967 		return substream->ops->fill_silence(substream, channel,
1968 						    hwoff, bytes);
1969 
1970 	snd_pcm_format_set_silence(runtime->format,
1971 				   get_dma_ptr(runtime, channel, hwoff),
1972 				   bytes_to_samples(runtime, bytes));
1973 	return 0;
1974 }
1975 
1976 /* default copy_user ops for read; used for both interleaved and non- modes */
default_read_copy(struct snd_pcm_substream * substream,int channel,unsigned long hwoff,void * buf,unsigned long bytes)1977 static int default_read_copy(struct snd_pcm_substream *substream,
1978 			     int channel, unsigned long hwoff,
1979 			     void *buf, unsigned long bytes)
1980 {
1981 	if (copy_to_user((void __user *)buf,
1982 			 get_dma_ptr(substream->runtime, channel, hwoff),
1983 			 bytes))
1984 		return -EFAULT;
1985 	return 0;
1986 }
1987 
1988 /* default copy_kernel ops for read */
default_read_copy_kernel(struct snd_pcm_substream * substream,int channel,unsigned long hwoff,void * buf,unsigned long bytes)1989 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1990 				    int channel, unsigned long hwoff,
1991 				    void *buf, unsigned long bytes)
1992 {
1993 	memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1994 	return 0;
1995 }
1996 
1997 /* call transfer function with the converted pointers and sizes;
1998  * for interleaved mode, it's one shot for all samples
1999  */
interleaved_copy(struct snd_pcm_substream * substream,snd_pcm_uframes_t hwoff,void * data,snd_pcm_uframes_t off,snd_pcm_uframes_t frames,pcm_transfer_f transfer)2000 static int interleaved_copy(struct snd_pcm_substream *substream,
2001 			    snd_pcm_uframes_t hwoff, void *data,
2002 			    snd_pcm_uframes_t off,
2003 			    snd_pcm_uframes_t frames,
2004 			    pcm_transfer_f transfer)
2005 {
2006 	struct snd_pcm_runtime *runtime = substream->runtime;
2007 
2008 	/* convert to bytes */
2009 	hwoff = frames_to_bytes(runtime, hwoff);
2010 	off = frames_to_bytes(runtime, off);
2011 	frames = frames_to_bytes(runtime, frames);
2012 	return transfer(substream, 0, hwoff, data + off, frames);
2013 }
2014 
2015 /* call transfer function with the converted pointers and sizes for each
2016  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2017  */
noninterleaved_copy(struct snd_pcm_substream * substream,snd_pcm_uframes_t hwoff,void * data,snd_pcm_uframes_t off,snd_pcm_uframes_t frames,pcm_transfer_f transfer)2018 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2019 			       snd_pcm_uframes_t hwoff, void *data,
2020 			       snd_pcm_uframes_t off,
2021 			       snd_pcm_uframes_t frames,
2022 			       pcm_transfer_f transfer)
2023 {
2024 	struct snd_pcm_runtime *runtime = substream->runtime;
2025 	int channels = runtime->channels;
2026 	void **bufs = data;
2027 	int c, err;
2028 
2029 	/* convert to bytes; note that it's not frames_to_bytes() here.
2030 	 * in non-interleaved mode, we copy for each channel, thus
2031 	 * each copy is n_samples bytes x channels = whole frames.
2032 	 */
2033 	off = samples_to_bytes(runtime, off);
2034 	frames = samples_to_bytes(runtime, frames);
2035 	hwoff = samples_to_bytes(runtime, hwoff);
2036 	for (c = 0; c < channels; ++c, ++bufs) {
2037 		if (!data || !*bufs)
2038 			err = fill_silence(substream, c, hwoff, NULL, frames);
2039 		else
2040 			err = transfer(substream, c, hwoff, *bufs + off,
2041 				       frames);
2042 		if (err < 0)
2043 			return err;
2044 	}
2045 	return 0;
2046 }
2047 
2048 /* fill silence on the given buffer position;
2049  * called from snd_pcm_playback_silence()
2050  */
fill_silence_frames(struct snd_pcm_substream * substream,snd_pcm_uframes_t off,snd_pcm_uframes_t frames)2051 static int fill_silence_frames(struct snd_pcm_substream *substream,
2052 			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2053 {
2054 	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2055 	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2056 		return interleaved_copy(substream, off, NULL, 0, frames,
2057 					fill_silence);
2058 	else
2059 		return noninterleaved_copy(substream, off, NULL, 0, frames,
2060 					   fill_silence);
2061 }
2062 
2063 /* sanity-check for read/write methods */
pcm_sanity_check(struct snd_pcm_substream * substream)2064 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2065 {
2066 	struct snd_pcm_runtime *runtime;
2067 	if (PCM_RUNTIME_CHECK(substream))
2068 		return -ENXIO;
2069 	runtime = substream->runtime;
2070 	if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2071 		return -EINVAL;
2072 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2073 		return -EBADFD;
2074 	return 0;
2075 }
2076 
pcm_accessible_state(struct snd_pcm_runtime * runtime)2077 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2078 {
2079 	switch (runtime->status->state) {
2080 	case SNDRV_PCM_STATE_PREPARED:
2081 	case SNDRV_PCM_STATE_RUNNING:
2082 	case SNDRV_PCM_STATE_PAUSED:
2083 		return 0;
2084 	case SNDRV_PCM_STATE_XRUN:
2085 		return -EPIPE;
2086 	case SNDRV_PCM_STATE_SUSPENDED:
2087 		return -ESTRPIPE;
2088 	default:
2089 		return -EBADFD;
2090 	}
2091 }
2092 
2093 /* update to the given appl_ptr and call ack callback if needed;
2094  * when an error is returned, take back to the original value
2095  */
pcm_lib_apply_appl_ptr(struct snd_pcm_substream * substream,snd_pcm_uframes_t appl_ptr)2096 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2097 			   snd_pcm_uframes_t appl_ptr)
2098 {
2099 	struct snd_pcm_runtime *runtime = substream->runtime;
2100 	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2101 	int ret;
2102 
2103 	if (old_appl_ptr == appl_ptr)
2104 		return 0;
2105 
2106 	runtime->control->appl_ptr = appl_ptr;
2107 	if (substream->ops->ack) {
2108 		ret = substream->ops->ack(substream);
2109 		if (ret < 0) {
2110 			runtime->control->appl_ptr = old_appl_ptr;
2111 			return ret;
2112 		}
2113 	}
2114 
2115 	trace_applptr(substream, old_appl_ptr, appl_ptr);
2116 
2117 	return 0;
2118 }
2119 
2120 /* the common loop for read/write data */
__snd_pcm_lib_xfer(struct snd_pcm_substream * substream,void * data,bool interleaved,snd_pcm_uframes_t size,bool in_kernel)2121 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2122 				     void *data, bool interleaved,
2123 				     snd_pcm_uframes_t size, bool in_kernel)
2124 {
2125 	struct snd_pcm_runtime *runtime = substream->runtime;
2126 	snd_pcm_uframes_t xfer = 0;
2127 	snd_pcm_uframes_t offset = 0;
2128 	snd_pcm_uframes_t avail;
2129 	pcm_copy_f writer;
2130 	pcm_transfer_f transfer;
2131 	bool nonblock;
2132 	bool is_playback;
2133 	int err;
2134 
2135 	err = pcm_sanity_check(substream);
2136 	if (err < 0)
2137 		return err;
2138 
2139 	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2140 	if (interleaved) {
2141 		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2142 		    runtime->channels > 1)
2143 			return -EINVAL;
2144 		writer = interleaved_copy;
2145 	} else {
2146 		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2147 			return -EINVAL;
2148 		writer = noninterleaved_copy;
2149 	}
2150 
2151 	if (!data) {
2152 		if (is_playback)
2153 			transfer = fill_silence;
2154 		else
2155 			return -EINVAL;
2156 	} else if (in_kernel) {
2157 		if (substream->ops->copy_kernel)
2158 			transfer = substream->ops->copy_kernel;
2159 		else
2160 			transfer = is_playback ?
2161 				default_write_copy_kernel : default_read_copy_kernel;
2162 	} else {
2163 		if (substream->ops->copy_user)
2164 			transfer = (pcm_transfer_f)substream->ops->copy_user;
2165 		else
2166 			transfer = is_playback ?
2167 				default_write_copy : default_read_copy;
2168 	}
2169 
2170 	if (size == 0)
2171 		return 0;
2172 
2173 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2174 
2175 	snd_pcm_stream_lock_irq(substream);
2176 	err = pcm_accessible_state(runtime);
2177 	if (err < 0)
2178 		goto _end_unlock;
2179 
2180 	if (!is_playback &&
2181 	    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2182 	    size >= runtime->start_threshold) {
2183 		err = snd_pcm_start(substream);
2184 		if (err < 0)
2185 			goto _end_unlock;
2186 	}
2187 
2188 	runtime->twake = runtime->control->avail_min ? : 1;
2189 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2190 		snd_pcm_update_hw_ptr(substream);
2191 	avail = snd_pcm_avail(substream);
2192 	while (size > 0) {
2193 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2194 		snd_pcm_uframes_t cont;
2195 		if (!avail) {
2196 			if (!is_playback &&
2197 			    runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2198 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2199 				goto _end_unlock;
2200 			}
2201 			if (nonblock) {
2202 				err = -EAGAIN;
2203 				goto _end_unlock;
2204 			}
2205 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2206 					runtime->control->avail_min ? : 1);
2207 			err = wait_for_avail(substream, &avail);
2208 			if (err < 0)
2209 				goto _end_unlock;
2210 			if (!avail)
2211 				continue; /* draining */
2212 		}
2213 		frames = size > avail ? avail : size;
2214 		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2215 		appl_ofs = appl_ptr % runtime->buffer_size;
2216 		cont = runtime->buffer_size - appl_ofs;
2217 		if (frames > cont)
2218 			frames = cont;
2219 		if (snd_BUG_ON(!frames)) {
2220 			runtime->twake = 0;
2221 			snd_pcm_stream_unlock_irq(substream);
2222 			return -EINVAL;
2223 		}
2224 		snd_pcm_stream_unlock_irq(substream);
2225 		err = writer(substream, appl_ofs, data, offset, frames,
2226 			     transfer);
2227 		snd_pcm_stream_lock_irq(substream);
2228 		if (err < 0)
2229 			goto _end_unlock;
2230 		err = pcm_accessible_state(runtime);
2231 		if (err < 0)
2232 			goto _end_unlock;
2233 		appl_ptr += frames;
2234 		if (appl_ptr >= runtime->boundary)
2235 			appl_ptr -= runtime->boundary;
2236 		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2237 		if (err < 0)
2238 			goto _end_unlock;
2239 
2240 		offset += frames;
2241 		size -= frames;
2242 		xfer += frames;
2243 		avail -= frames;
2244 		if (is_playback &&
2245 		    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2246 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2247 			err = snd_pcm_start(substream);
2248 			if (err < 0)
2249 				goto _end_unlock;
2250 		}
2251 	}
2252  _end_unlock:
2253 	runtime->twake = 0;
2254 	if (xfer > 0 && err >= 0)
2255 		snd_pcm_update_state(substream, runtime);
2256 	snd_pcm_stream_unlock_irq(substream);
2257 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2258 }
2259 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2260 
2261 /*
2262  * standard channel mapping helpers
2263  */
2264 
2265 /* default channel maps for multi-channel playbacks, up to 8 channels */
2266 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2267 	{ .channels = 1,
2268 	  .map = { SNDRV_CHMAP_MONO } },
2269 	{ .channels = 2,
2270 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2271 	{ .channels = 4,
2272 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2273 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2274 	{ .channels = 6,
2275 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2276 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2277 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2278 	{ .channels = 8,
2279 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2280 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2281 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2282 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2283 	{ }
2284 };
2285 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2286 
2287 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2288 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2289 	{ .channels = 1,
2290 	  .map = { SNDRV_CHMAP_MONO } },
2291 	{ .channels = 2,
2292 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2293 	{ .channels = 4,
2294 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2295 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2296 	{ .channels = 6,
2297 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2298 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2299 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2300 	{ .channels = 8,
2301 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2302 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2303 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2304 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2305 	{ }
2306 };
2307 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2308 
valid_chmap_channels(const struct snd_pcm_chmap * info,int ch)2309 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2310 {
2311 	if (ch > info->max_channels)
2312 		return false;
2313 	return !info->channel_mask || (info->channel_mask & (1U << ch));
2314 }
2315 
pcm_chmap_ctl_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2316 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2317 			      struct snd_ctl_elem_info *uinfo)
2318 {
2319 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2320 
2321 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2322 	uinfo->count = 0;
2323 	uinfo->count = info->max_channels;
2324 	uinfo->value.integer.min = 0;
2325 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2326 	return 0;
2327 }
2328 
2329 /* get callback for channel map ctl element
2330  * stores the channel position firstly matching with the current channels
2331  */
pcm_chmap_ctl_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2332 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2333 			     struct snd_ctl_elem_value *ucontrol)
2334 {
2335 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2336 	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2337 	struct snd_pcm_substream *substream;
2338 	const struct snd_pcm_chmap_elem *map;
2339 
2340 	if (!info->chmap)
2341 		return -EINVAL;
2342 	substream = snd_pcm_chmap_substream(info, idx);
2343 	if (!substream)
2344 		return -ENODEV;
2345 	memset(ucontrol->value.integer.value, 0,
2346 	       sizeof(ucontrol->value.integer.value));
2347 	if (!substream->runtime)
2348 		return 0; /* no channels set */
2349 	for (map = info->chmap; map->channels; map++) {
2350 		int i;
2351 		if (map->channels == substream->runtime->channels &&
2352 		    valid_chmap_channels(info, map->channels)) {
2353 			for (i = 0; i < map->channels; i++)
2354 				ucontrol->value.integer.value[i] = map->map[i];
2355 			return 0;
2356 		}
2357 	}
2358 	return -EINVAL;
2359 }
2360 
2361 /* tlv callback for channel map ctl element
2362  * expands the pre-defined channel maps in a form of TLV
2363  */
pcm_chmap_ctl_tlv(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)2364 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2365 			     unsigned int size, unsigned int __user *tlv)
2366 {
2367 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2368 	const struct snd_pcm_chmap_elem *map;
2369 	unsigned int __user *dst;
2370 	int c, count = 0;
2371 
2372 	if (!info->chmap)
2373 		return -EINVAL;
2374 	if (size < 8)
2375 		return -ENOMEM;
2376 	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2377 		return -EFAULT;
2378 	size -= 8;
2379 	dst = tlv + 2;
2380 	for (map = info->chmap; map->channels; map++) {
2381 		int chs_bytes = map->channels * 4;
2382 		if (!valid_chmap_channels(info, map->channels))
2383 			continue;
2384 		if (size < 8)
2385 			return -ENOMEM;
2386 		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2387 		    put_user(chs_bytes, dst + 1))
2388 			return -EFAULT;
2389 		dst += 2;
2390 		size -= 8;
2391 		count += 8;
2392 		if (size < chs_bytes)
2393 			return -ENOMEM;
2394 		size -= chs_bytes;
2395 		count += chs_bytes;
2396 		for (c = 0; c < map->channels; c++) {
2397 			if (put_user(map->map[c], dst))
2398 				return -EFAULT;
2399 			dst++;
2400 		}
2401 	}
2402 	if (put_user(count, tlv + 1))
2403 		return -EFAULT;
2404 	return 0;
2405 }
2406 
pcm_chmap_ctl_private_free(struct snd_kcontrol * kcontrol)2407 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2408 {
2409 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2410 	info->pcm->streams[info->stream].chmap_kctl = NULL;
2411 	kfree(info);
2412 }
2413 
2414 /**
2415  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2416  * @pcm: the assigned PCM instance
2417  * @stream: stream direction
2418  * @chmap: channel map elements (for query)
2419  * @max_channels: the max number of channels for the stream
2420  * @private_value: the value passed to each kcontrol's private_value field
2421  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2422  *
2423  * Create channel-mapping control elements assigned to the given PCM stream(s).
2424  * Return: Zero if successful, or a negative error value.
2425  */
snd_pcm_add_chmap_ctls(struct snd_pcm * pcm,int stream,const struct snd_pcm_chmap_elem * chmap,int max_channels,unsigned long private_value,struct snd_pcm_chmap ** info_ret)2426 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2427 			   const struct snd_pcm_chmap_elem *chmap,
2428 			   int max_channels,
2429 			   unsigned long private_value,
2430 			   struct snd_pcm_chmap **info_ret)
2431 {
2432 	struct snd_pcm_chmap *info;
2433 	struct snd_kcontrol_new knew = {
2434 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2435 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2436 			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2437 			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2438 		.info = pcm_chmap_ctl_info,
2439 		.get = pcm_chmap_ctl_get,
2440 		.tlv.c = pcm_chmap_ctl_tlv,
2441 	};
2442 	int err;
2443 
2444 	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2445 		return -EBUSY;
2446 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2447 	if (!info)
2448 		return -ENOMEM;
2449 	info->pcm = pcm;
2450 	info->stream = stream;
2451 	info->chmap = chmap;
2452 	info->max_channels = max_channels;
2453 	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2454 		knew.name = "Playback Channel Map";
2455 	else
2456 		knew.name = "Capture Channel Map";
2457 	knew.device = pcm->device;
2458 	knew.count = pcm->streams[stream].substream_count;
2459 	knew.private_value = private_value;
2460 	info->kctl = snd_ctl_new1(&knew, info);
2461 	if (!info->kctl) {
2462 		kfree(info);
2463 		return -ENOMEM;
2464 	}
2465 	info->kctl->private_free = pcm_chmap_ctl_private_free;
2466 	err = snd_ctl_add(pcm->card, info->kctl);
2467 	if (err < 0)
2468 		return err;
2469 	pcm->streams[stream].chmap_kctl = info->kctl;
2470 	if (info_ret)
2471 		*info_ret = info;
2472 	return 0;
2473 }
2474 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2475