• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Inspired by breakpoint overflow test done by
4  * Vince Weaver <vincent.weaver@maine.edu> for perf_event_tests
5  * (git://github.com/deater/perf_event_tests)
6  */
7 
8 /*
9  * Powerpc needs __SANE_USERSPACE_TYPES__ before <linux/types.h> to select
10  * 'int-ll64.h' and avoid compile warnings when printing __u64 with %llu.
11  */
12 #define __SANE_USERSPACE_TYPES__
13 
14 #include <stdlib.h>
15 #include <stdio.h>
16 #include <unistd.h>
17 #include <string.h>
18 #include <sys/ioctl.h>
19 #include <time.h>
20 #include <fcntl.h>
21 #include <signal.h>
22 #include <sys/mman.h>
23 #include <linux/compiler.h>
24 #include <linux/hw_breakpoint.h>
25 
26 #include "tests.h"
27 #include "debug.h"
28 #include "perf.h"
29 #include "cloexec.h"
30 
31 static int fd1;
32 static int fd2;
33 static int fd3;
34 static int overflows;
35 static int overflows_2;
36 
37 volatile long the_var;
38 
39 
40 /*
41  * Use ASM to ensure watchpoint and breakpoint can be triggered
42  * at one instruction.
43  */
44 #if defined (__x86_64__)
45 extern void __test_function(volatile long *ptr);
46 asm (
47 	".pushsection .text;"
48 	".globl __test_function\n"
49 	".type __test_function, @function;"
50 	"__test_function:\n"
51 	"incq (%rdi)\n"
52 	"ret\n"
53 	".popsection\n");
54 #else
__test_function(volatile long * ptr)55 static void __test_function(volatile long *ptr)
56 {
57 	*ptr = 0x1234;
58 }
59 #endif
60 
test_function(void)61 static noinline int test_function(void)
62 {
63 	__test_function(&the_var);
64 	the_var++;
65 	return time(NULL);
66 }
67 
sig_handler_2(int signum __maybe_unused,siginfo_t * oh __maybe_unused,void * uc __maybe_unused)68 static void sig_handler_2(int signum __maybe_unused,
69 			  siginfo_t *oh __maybe_unused,
70 			  void *uc __maybe_unused)
71 {
72 	overflows_2++;
73 	if (overflows_2 > 10) {
74 		ioctl(fd1, PERF_EVENT_IOC_DISABLE, 0);
75 		ioctl(fd2, PERF_EVENT_IOC_DISABLE, 0);
76 		ioctl(fd3, PERF_EVENT_IOC_DISABLE, 0);
77 	}
78 }
79 
sig_handler(int signum __maybe_unused,siginfo_t * oh __maybe_unused,void * uc __maybe_unused)80 static void sig_handler(int signum __maybe_unused,
81 			siginfo_t *oh __maybe_unused,
82 			void *uc __maybe_unused)
83 {
84 	overflows++;
85 
86 	if (overflows > 10) {
87 		/*
88 		 * This should be executed only once during
89 		 * this test, if we are here for the 10th
90 		 * time, consider this the recursive issue.
91 		 *
92 		 * We can get out of here by disable events,
93 		 * so no new SIGIO is delivered.
94 		 */
95 		ioctl(fd1, PERF_EVENT_IOC_DISABLE, 0);
96 		ioctl(fd2, PERF_EVENT_IOC_DISABLE, 0);
97 		ioctl(fd3, PERF_EVENT_IOC_DISABLE, 0);
98 	}
99 }
100 
__event(bool is_x,void * addr,int sig)101 static int __event(bool is_x, void *addr, int sig)
102 {
103 	struct perf_event_attr pe;
104 	int fd;
105 
106 	memset(&pe, 0, sizeof(struct perf_event_attr));
107 	pe.type = PERF_TYPE_BREAKPOINT;
108 	pe.size = sizeof(struct perf_event_attr);
109 
110 	pe.config = 0;
111 	pe.bp_type = is_x ? HW_BREAKPOINT_X : HW_BREAKPOINT_W;
112 	pe.bp_addr = (unsigned long) addr;
113 	pe.bp_len = sizeof(long);
114 
115 	pe.sample_period = 1;
116 	pe.sample_type = PERF_SAMPLE_IP;
117 	pe.wakeup_events = 1;
118 
119 	pe.disabled = 1;
120 	pe.exclude_kernel = 1;
121 	pe.exclude_hv = 1;
122 
123 	fd = sys_perf_event_open(&pe, 0, -1, -1,
124 				 perf_event_open_cloexec_flag());
125 	if (fd < 0) {
126 		pr_debug("failed opening event %llx\n", pe.config);
127 		return TEST_FAIL;
128 	}
129 
130 	fcntl(fd, F_SETFL, O_RDWR|O_NONBLOCK|O_ASYNC);
131 	fcntl(fd, F_SETSIG, sig);
132 	fcntl(fd, F_SETOWN, getpid());
133 
134 	ioctl(fd, PERF_EVENT_IOC_RESET, 0);
135 
136 	return fd;
137 }
138 
bp_event(void * addr,int sig)139 static int bp_event(void *addr, int sig)
140 {
141 	return __event(true, addr, sig);
142 }
143 
wp_event(void * addr,int sig)144 static int wp_event(void *addr, int sig)
145 {
146 	return __event(false, addr, sig);
147 }
148 
bp_count(int fd)149 static long long bp_count(int fd)
150 {
151 	long long count;
152 	int ret;
153 
154 	ret = read(fd, &count, sizeof(long long));
155 	if (ret != sizeof(long long)) {
156 		pr_debug("failed to read: %d\n", ret);
157 		return TEST_FAIL;
158 	}
159 
160 	return count;
161 }
162 
test__bp_signal(struct test * test __maybe_unused,int subtest __maybe_unused)163 int test__bp_signal(struct test *test __maybe_unused, int subtest __maybe_unused)
164 {
165 	struct sigaction sa;
166 	long long count1, count2, count3;
167 
168 	/* setup SIGIO signal handler */
169 	memset(&sa, 0, sizeof(struct sigaction));
170 	sa.sa_sigaction = (void *) sig_handler;
171 	sa.sa_flags = SA_SIGINFO;
172 
173 	if (sigaction(SIGIO, &sa, NULL) < 0) {
174 		pr_debug("failed setting up signal handler\n");
175 		return TEST_FAIL;
176 	}
177 
178 	sa.sa_sigaction = (void *) sig_handler_2;
179 	if (sigaction(SIGUSR1, &sa, NULL) < 0) {
180 		pr_debug("failed setting up signal handler 2\n");
181 		return TEST_FAIL;
182 	}
183 
184 	/*
185 	 * We create following events:
186 	 *
187 	 * fd1 - breakpoint event on __test_function with SIGIO
188 	 *       signal configured. We should get signal
189 	 *       notification each time the breakpoint is hit
190 	 *
191 	 * fd2 - breakpoint event on sig_handler with SIGUSR1
192 	 *       configured. We should get SIGUSR1 each time when
193 	 *       breakpoint is hit
194 	 *
195 	 * fd3 - watchpoint event on __test_function with SIGIO
196 	 *       configured.
197 	 *
198 	 * Following processing should happen:
199 	 *   Exec:               Action:                       Result:
200 	 *   incq (%rdi)       - fd1 event breakpoint hit   -> count1 == 1
201 	 *                     - SIGIO is delivered
202 	 *   sig_handler       - fd2 event breakpoint hit   -> count2 == 1
203 	 *                     - SIGUSR1 is delivered
204 	 *   sig_handler_2                                  -> overflows_2 == 1  (nested signal)
205 	 *   sys_rt_sigreturn  - return from sig_handler_2
206 	 *   overflows++                                    -> overflows = 1
207 	 *   sys_rt_sigreturn  - return from sig_handler
208 	 *   incq (%rdi)       - fd3 event watchpoint hit   -> count3 == 1       (wp and bp in one insn)
209 	 *                     - SIGIO is delivered
210 	 *   sig_handler       - fd2 event breakpoint hit   -> count2 == 2
211 	 *                     - SIGUSR1 is delivered
212 	 *   sig_handler_2                                  -> overflows_2 == 2  (nested signal)
213 	 *   sys_rt_sigreturn  - return from sig_handler_2
214 	 *   overflows++                                    -> overflows = 2
215 	 *   sys_rt_sigreturn  - return from sig_handler
216 	 *   the_var++         - fd3 event watchpoint hit   -> count3 == 2       (standalone watchpoint)
217 	 *                     - SIGIO is delivered
218 	 *   sig_handler       - fd2 event breakpoint hit   -> count2 == 3
219 	 *                     - SIGUSR1 is delivered
220 	 *   sig_handler_2                                  -> overflows_2 == 3  (nested signal)
221 	 *   sys_rt_sigreturn  - return from sig_handler_2
222 	 *   overflows++                                    -> overflows == 3
223 	 *   sys_rt_sigreturn  - return from sig_handler
224 	 *
225 	 * The test case check following error conditions:
226 	 * - we get stuck in signal handler because of debug
227 	 *   exception being triggered receursively due to
228 	 *   the wrong RF EFLAG management
229 	 *
230 	 * - we never trigger the sig_handler breakpoint due
231 	 *   to the rong RF EFLAG management
232 	 *
233 	 */
234 
235 	fd1 = bp_event(__test_function, SIGIO);
236 	fd2 = bp_event(sig_handler, SIGUSR1);
237 	fd3 = wp_event((void *)&the_var, SIGIO);
238 
239 	ioctl(fd1, PERF_EVENT_IOC_ENABLE, 0);
240 	ioctl(fd2, PERF_EVENT_IOC_ENABLE, 0);
241 	ioctl(fd3, PERF_EVENT_IOC_ENABLE, 0);
242 
243 	/*
244 	 * Kick off the test by trigering 'fd1'
245 	 * breakpoint.
246 	 */
247 	test_function();
248 
249 	ioctl(fd1, PERF_EVENT_IOC_DISABLE, 0);
250 	ioctl(fd2, PERF_EVENT_IOC_DISABLE, 0);
251 	ioctl(fd3, PERF_EVENT_IOC_DISABLE, 0);
252 
253 	count1 = bp_count(fd1);
254 	count2 = bp_count(fd2);
255 	count3 = bp_count(fd3);
256 
257 	close(fd1);
258 	close(fd2);
259 	close(fd3);
260 
261 	pr_debug("count1 %lld, count2 %lld, count3 %lld, overflow %d, overflows_2 %d\n",
262 		 count1, count2, count3, overflows, overflows_2);
263 
264 	if (count1 != 1) {
265 		if (count1 == 11)
266 			pr_debug("failed: RF EFLAG recursion issue detected\n");
267 		else
268 			pr_debug("failed: wrong count for bp1%lld\n", count1);
269 	}
270 
271 	if (overflows != 3)
272 		pr_debug("failed: wrong overflow hit\n");
273 
274 	if (overflows_2 != 3)
275 		pr_debug("failed: wrong overflow_2 hit\n");
276 
277 	if (count2 != 3)
278 		pr_debug("failed: wrong count for bp2\n");
279 
280 	if (count3 != 2)
281 		pr_debug("failed: wrong count for bp3\n");
282 
283 	return count1 == 1 && overflows == 3 && count2 == 3 && overflows_2 == 3 && count3 == 2 ?
284 		TEST_OK : TEST_FAIL;
285 }
286 
test__bp_signal_is_supported(void)287 bool test__bp_signal_is_supported(void)
288 {
289 	/*
290 	 * PowerPC and S390 do not support creation of instruction
291 	 * breakpoints using the perf_event interface.
292 	 *
293 	 * ARM requires explicit rounding down of the instruction
294 	 * pointer in Thumb mode, and then requires the single-step
295 	 * to be handled explicitly in the overflow handler to avoid
296 	 * stepping into the SIGIO handler and getting stuck on the
297 	 * breakpointed instruction.
298 	 *
299 	 * Since arm64 has the same issue with arm for the single-step
300 	 * handling, this case also gets suck on the breakpointed
301 	 * instruction.
302 	 *
303 	 * Just disable the test for these architectures until these
304 	 * issues are resolved.
305 	 */
306 #if defined(__powerpc__) || defined(__s390x__) || defined(__arm__) || \
307     defined(__aarch64__)
308 	return false;
309 #else
310 	return true;
311 #endif
312 }
313