1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2015-2018 Linaro Limited.
4 *
5 * Author: Tor Jeremiassen <tor@ti.com>
6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7 */
8
9 #include <linux/bitops.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/types.h>
14
15 #include <stdlib.h>
16
17 #include "auxtrace.h"
18 #include "color.h"
19 #include "cs-etm.h"
20 #include "cs-etm-decoder/cs-etm-decoder.h"
21 #include "debug.h"
22 #include "evlist.h"
23 #include "intlist.h"
24 #include "machine.h"
25 #include "map.h"
26 #include "perf.h"
27 #include "thread.h"
28 #include "thread_map.h"
29 #include "thread-stack.h"
30 #include "util.h"
31
32 #define MAX_TIMESTAMP (~0ULL)
33
34 /*
35 * A64 instructions are always 4 bytes
36 *
37 * Only A64 is supported, so can use this constant for converting between
38 * addresses and instruction counts, calculting offsets etc
39 */
40 #define A64_INSTR_SIZE 4
41
42 struct cs_etm_auxtrace {
43 struct auxtrace auxtrace;
44 struct auxtrace_queues queues;
45 struct auxtrace_heap heap;
46 struct itrace_synth_opts synth_opts;
47 struct perf_session *session;
48 struct machine *machine;
49 struct thread *unknown_thread;
50
51 u8 timeless_decoding;
52 u8 snapshot_mode;
53 u8 data_queued;
54 u8 sample_branches;
55 u8 sample_instructions;
56
57 int num_cpu;
58 u32 auxtrace_type;
59 u64 branches_sample_type;
60 u64 branches_id;
61 u64 instructions_sample_type;
62 u64 instructions_sample_period;
63 u64 instructions_id;
64 u64 **metadata;
65 u64 kernel_start;
66 unsigned int pmu_type;
67 };
68
69 struct cs_etm_queue {
70 struct cs_etm_auxtrace *etm;
71 struct thread *thread;
72 struct cs_etm_decoder *decoder;
73 struct auxtrace_buffer *buffer;
74 const struct cs_etm_state *state;
75 union perf_event *event_buf;
76 unsigned int queue_nr;
77 pid_t pid, tid;
78 int cpu;
79 u64 time;
80 u64 timestamp;
81 u64 offset;
82 u64 period_instructions;
83 struct branch_stack *last_branch;
84 struct branch_stack *last_branch_rb;
85 size_t last_branch_pos;
86 struct cs_etm_packet *prev_packet;
87 struct cs_etm_packet *packet;
88 };
89
90 /* RB tree for quick conversion between traceID and metadata pointers */
91 static struct intlist *traceid_list;
92
93 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
94 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
95 pid_t tid, u64 time_);
96
cs_etm__packet_dump(const char * pkt_string)97 static void cs_etm__packet_dump(const char *pkt_string)
98 {
99 const char *color = PERF_COLOR_BLUE;
100 int len = strlen(pkt_string);
101
102 if (len && (pkt_string[len-1] == '\n'))
103 color_fprintf(stdout, color, " %s", pkt_string);
104 else
105 color_fprintf(stdout, color, " %s\n", pkt_string);
106
107 fflush(stdout);
108 }
109
cs_etm__dump_event(struct cs_etm_auxtrace * etm,struct auxtrace_buffer * buffer)110 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
111 struct auxtrace_buffer *buffer)
112 {
113 int i, ret;
114 const char *color = PERF_COLOR_BLUE;
115 struct cs_etm_decoder_params d_params;
116 struct cs_etm_trace_params *t_params;
117 struct cs_etm_decoder *decoder;
118 size_t buffer_used = 0;
119
120 fprintf(stdout, "\n");
121 color_fprintf(stdout, color,
122 ". ... CoreSight ETM Trace data: size %zu bytes\n",
123 buffer->size);
124
125 /* Use metadata to fill in trace parameters for trace decoder */
126 t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
127 for (i = 0; i < etm->num_cpu; i++) {
128 t_params[i].protocol = CS_ETM_PROTO_ETMV4i;
129 t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0];
130 t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1];
131 t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2];
132 t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8];
133 t_params[i].etmv4.reg_configr =
134 etm->metadata[i][CS_ETMV4_TRCCONFIGR];
135 t_params[i].etmv4.reg_traceidr =
136 etm->metadata[i][CS_ETMV4_TRCTRACEIDR];
137 }
138
139 /* Set decoder parameters to simply print the trace packets */
140 d_params.packet_printer = cs_etm__packet_dump;
141 d_params.operation = CS_ETM_OPERATION_PRINT;
142 d_params.formatted = true;
143 d_params.fsyncs = false;
144 d_params.hsyncs = false;
145 d_params.frame_aligned = true;
146
147 decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
148
149 zfree(&t_params);
150
151 if (!decoder)
152 return;
153 do {
154 size_t consumed;
155
156 ret = cs_etm_decoder__process_data_block(
157 decoder, buffer->offset,
158 &((u8 *)buffer->data)[buffer_used],
159 buffer->size - buffer_used, &consumed);
160 if (ret)
161 break;
162
163 buffer_used += consumed;
164 } while (buffer_used < buffer->size);
165
166 cs_etm_decoder__free(decoder);
167 }
168
cs_etm__flush_events(struct perf_session * session,struct perf_tool * tool)169 static int cs_etm__flush_events(struct perf_session *session,
170 struct perf_tool *tool)
171 {
172 int ret;
173 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
174 struct cs_etm_auxtrace,
175 auxtrace);
176 if (dump_trace)
177 return 0;
178
179 if (!tool->ordered_events)
180 return -EINVAL;
181
182 if (!etm->timeless_decoding)
183 return -EINVAL;
184
185 ret = cs_etm__update_queues(etm);
186
187 if (ret < 0)
188 return ret;
189
190 return cs_etm__process_timeless_queues(etm, -1, MAX_TIMESTAMP - 1);
191 }
192
cs_etm__free_queue(void * priv)193 static void cs_etm__free_queue(void *priv)
194 {
195 struct cs_etm_queue *etmq = priv;
196
197 if (!etmq)
198 return;
199
200 thread__zput(etmq->thread);
201 cs_etm_decoder__free(etmq->decoder);
202 zfree(&etmq->event_buf);
203 zfree(&etmq->last_branch);
204 zfree(&etmq->last_branch_rb);
205 zfree(&etmq->prev_packet);
206 zfree(&etmq->packet);
207 free(etmq);
208 }
209
cs_etm__free_events(struct perf_session * session)210 static void cs_etm__free_events(struct perf_session *session)
211 {
212 unsigned int i;
213 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
214 struct cs_etm_auxtrace,
215 auxtrace);
216 struct auxtrace_queues *queues = &aux->queues;
217
218 for (i = 0; i < queues->nr_queues; i++) {
219 cs_etm__free_queue(queues->queue_array[i].priv);
220 queues->queue_array[i].priv = NULL;
221 }
222
223 auxtrace_queues__free(queues);
224 }
225
cs_etm__free(struct perf_session * session)226 static void cs_etm__free(struct perf_session *session)
227 {
228 int i;
229 struct int_node *inode, *tmp;
230 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
231 struct cs_etm_auxtrace,
232 auxtrace);
233 cs_etm__free_events(session);
234 session->auxtrace = NULL;
235
236 /* First remove all traceID/CPU# nodes for the RB tree */
237 intlist__for_each_entry_safe(inode, tmp, traceid_list)
238 intlist__remove(traceid_list, inode);
239 /* Then the RB tree itself */
240 intlist__delete(traceid_list);
241
242 for (i = 0; i < aux->num_cpu; i++)
243 zfree(&aux->metadata[i]);
244
245 thread__zput(aux->unknown_thread);
246 zfree(&aux->metadata);
247 zfree(&aux);
248 }
249
cs_etm__cpu_mode(struct cs_etm_queue * etmq,u64 address)250 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
251 {
252 struct machine *machine;
253
254 machine = etmq->etm->machine;
255
256 if (address >= etmq->etm->kernel_start) {
257 if (machine__is_host(machine))
258 return PERF_RECORD_MISC_KERNEL;
259 else
260 return PERF_RECORD_MISC_GUEST_KERNEL;
261 } else {
262 if (machine__is_host(machine))
263 return PERF_RECORD_MISC_USER;
264 else if (perf_guest)
265 return PERF_RECORD_MISC_GUEST_USER;
266 else
267 return PERF_RECORD_MISC_HYPERVISOR;
268 }
269 }
270
cs_etm__mem_access(struct cs_etm_queue * etmq,u64 address,size_t size,u8 * buffer)271 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u64 address,
272 size_t size, u8 *buffer)
273 {
274 u8 cpumode;
275 u64 offset;
276 int len;
277 struct thread *thread;
278 struct machine *machine;
279 struct addr_location al;
280
281 if (!etmq)
282 return -1;
283
284 machine = etmq->etm->machine;
285 cpumode = cs_etm__cpu_mode(etmq, address);
286
287 thread = etmq->thread;
288 if (!thread) {
289 if (cpumode != PERF_RECORD_MISC_KERNEL)
290 return -EINVAL;
291 thread = etmq->etm->unknown_thread;
292 }
293
294 if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
295 return 0;
296
297 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
298 dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
299 return 0;
300
301 offset = al.map->map_ip(al.map, address);
302
303 map__load(al.map);
304
305 len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
306
307 if (len <= 0)
308 return 0;
309
310 return len;
311 }
312
cs_etm__alloc_queue(struct cs_etm_auxtrace * etm,unsigned int queue_nr)313 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
314 unsigned int queue_nr)
315 {
316 int i;
317 struct cs_etm_decoder_params d_params;
318 struct cs_etm_trace_params *t_params;
319 struct cs_etm_queue *etmq;
320 size_t szp = sizeof(struct cs_etm_packet);
321
322 etmq = zalloc(sizeof(*etmq));
323 if (!etmq)
324 return NULL;
325
326 etmq->packet = zalloc(szp);
327 if (!etmq->packet)
328 goto out_free;
329
330 if (etm->synth_opts.last_branch || etm->sample_branches) {
331 etmq->prev_packet = zalloc(szp);
332 if (!etmq->prev_packet)
333 goto out_free;
334 }
335
336 if (etm->synth_opts.last_branch) {
337 size_t sz = sizeof(struct branch_stack);
338
339 sz += etm->synth_opts.last_branch_sz *
340 sizeof(struct branch_entry);
341 etmq->last_branch = zalloc(sz);
342 if (!etmq->last_branch)
343 goto out_free;
344 etmq->last_branch_rb = zalloc(sz);
345 if (!etmq->last_branch_rb)
346 goto out_free;
347 }
348
349 etmq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
350 if (!etmq->event_buf)
351 goto out_free;
352
353 etmq->etm = etm;
354 etmq->queue_nr = queue_nr;
355 etmq->pid = -1;
356 etmq->tid = -1;
357 etmq->cpu = -1;
358
359 /* Use metadata to fill in trace parameters for trace decoder */
360 t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
361
362 if (!t_params)
363 goto out_free;
364
365 for (i = 0; i < etm->num_cpu; i++) {
366 t_params[i].protocol = CS_ETM_PROTO_ETMV4i;
367 t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0];
368 t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1];
369 t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2];
370 t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8];
371 t_params[i].etmv4.reg_configr =
372 etm->metadata[i][CS_ETMV4_TRCCONFIGR];
373 t_params[i].etmv4.reg_traceidr =
374 etm->metadata[i][CS_ETMV4_TRCTRACEIDR];
375 }
376
377 /* Set decoder parameters to simply print the trace packets */
378 d_params.packet_printer = cs_etm__packet_dump;
379 d_params.operation = CS_ETM_OPERATION_DECODE;
380 d_params.formatted = true;
381 d_params.fsyncs = false;
382 d_params.hsyncs = false;
383 d_params.frame_aligned = true;
384 d_params.data = etmq;
385
386 etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
387
388 zfree(&t_params);
389
390 if (!etmq->decoder)
391 goto out_free;
392
393 /*
394 * Register a function to handle all memory accesses required by
395 * the trace decoder library.
396 */
397 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
398 0x0L, ((u64) -1L),
399 cs_etm__mem_access))
400 goto out_free_decoder;
401
402 etmq->offset = 0;
403 etmq->period_instructions = 0;
404
405 return etmq;
406
407 out_free_decoder:
408 cs_etm_decoder__free(etmq->decoder);
409 out_free:
410 zfree(&etmq->event_buf);
411 zfree(&etmq->last_branch);
412 zfree(&etmq->last_branch_rb);
413 zfree(&etmq->prev_packet);
414 zfree(&etmq->packet);
415 free(etmq);
416
417 return NULL;
418 }
419
cs_etm__setup_queue(struct cs_etm_auxtrace * etm,struct auxtrace_queue * queue,unsigned int queue_nr)420 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
421 struct auxtrace_queue *queue,
422 unsigned int queue_nr)
423 {
424 struct cs_etm_queue *etmq = queue->priv;
425
426 if (list_empty(&queue->head) || etmq)
427 return 0;
428
429 etmq = cs_etm__alloc_queue(etm, queue_nr);
430
431 if (!etmq)
432 return -ENOMEM;
433
434 queue->priv = etmq;
435
436 if (queue->cpu != -1)
437 etmq->cpu = queue->cpu;
438
439 etmq->tid = queue->tid;
440
441 return 0;
442 }
443
cs_etm__setup_queues(struct cs_etm_auxtrace * etm)444 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
445 {
446 unsigned int i;
447 int ret;
448
449 for (i = 0; i < etm->queues.nr_queues; i++) {
450 ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
451 if (ret)
452 return ret;
453 }
454
455 return 0;
456 }
457
cs_etm__update_queues(struct cs_etm_auxtrace * etm)458 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
459 {
460 if (etm->queues.new_data) {
461 etm->queues.new_data = false;
462 return cs_etm__setup_queues(etm);
463 }
464
465 return 0;
466 }
467
cs_etm__copy_last_branch_rb(struct cs_etm_queue * etmq)468 static inline void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq)
469 {
470 struct branch_stack *bs_src = etmq->last_branch_rb;
471 struct branch_stack *bs_dst = etmq->last_branch;
472 size_t nr = 0;
473
474 /*
475 * Set the number of records before early exit: ->nr is used to
476 * determine how many branches to copy from ->entries.
477 */
478 bs_dst->nr = bs_src->nr;
479
480 /*
481 * Early exit when there is nothing to copy.
482 */
483 if (!bs_src->nr)
484 return;
485
486 /*
487 * As bs_src->entries is a circular buffer, we need to copy from it in
488 * two steps. First, copy the branches from the most recently inserted
489 * branch ->last_branch_pos until the end of bs_src->entries buffer.
490 */
491 nr = etmq->etm->synth_opts.last_branch_sz - etmq->last_branch_pos;
492 memcpy(&bs_dst->entries[0],
493 &bs_src->entries[etmq->last_branch_pos],
494 sizeof(struct branch_entry) * nr);
495
496 /*
497 * If we wrapped around at least once, the branches from the beginning
498 * of the bs_src->entries buffer and until the ->last_branch_pos element
499 * are older valid branches: copy them over. The total number of
500 * branches copied over will be equal to the number of branches asked by
501 * the user in last_branch_sz.
502 */
503 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
504 memcpy(&bs_dst->entries[nr],
505 &bs_src->entries[0],
506 sizeof(struct branch_entry) * etmq->last_branch_pos);
507 }
508 }
509
cs_etm__reset_last_branch_rb(struct cs_etm_queue * etmq)510 static inline void cs_etm__reset_last_branch_rb(struct cs_etm_queue *etmq)
511 {
512 etmq->last_branch_pos = 0;
513 etmq->last_branch_rb->nr = 0;
514 }
515
cs_etm__last_executed_instr(struct cs_etm_packet * packet)516 static inline u64 cs_etm__last_executed_instr(struct cs_etm_packet *packet)
517 {
518 /* Returns 0 for the CS_ETM_TRACE_ON packet */
519 if (packet->sample_type == CS_ETM_TRACE_ON)
520 return 0;
521
522 /*
523 * The packet records the execution range with an exclusive end address
524 *
525 * A64 instructions are constant size, so the last executed
526 * instruction is A64_INSTR_SIZE before the end address
527 * Will need to do instruction level decode for T32 instructions as
528 * they can be variable size (not yet supported).
529 */
530 return packet->end_addr - A64_INSTR_SIZE;
531 }
532
cs_etm__first_executed_instr(struct cs_etm_packet * packet)533 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
534 {
535 /* Returns 0 for the CS_ETM_TRACE_ON packet */
536 if (packet->sample_type == CS_ETM_TRACE_ON)
537 return 0;
538
539 return packet->start_addr;
540 }
541
cs_etm__instr_count(const struct cs_etm_packet * packet)542 static inline u64 cs_etm__instr_count(const struct cs_etm_packet *packet)
543 {
544 /*
545 * Only A64 instructions are currently supported, so can get
546 * instruction count by dividing.
547 * Will need to do instruction level decode for T32 instructions as
548 * they can be variable size (not yet supported).
549 */
550 return (packet->end_addr - packet->start_addr) / A64_INSTR_SIZE;
551 }
552
cs_etm__instr_addr(const struct cs_etm_packet * packet,u64 offset)553 static inline u64 cs_etm__instr_addr(const struct cs_etm_packet *packet,
554 u64 offset)
555 {
556 /*
557 * Only A64 instructions are currently supported, so can get
558 * instruction address by muliplying.
559 * Will need to do instruction level decode for T32 instructions as
560 * they can be variable size (not yet supported).
561 */
562 return packet->start_addr + offset * A64_INSTR_SIZE;
563 }
564
cs_etm__update_last_branch_rb(struct cs_etm_queue * etmq)565 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq)
566 {
567 struct branch_stack *bs = etmq->last_branch_rb;
568 struct branch_entry *be;
569
570 /*
571 * The branches are recorded in a circular buffer in reverse
572 * chronological order: we start recording from the last element of the
573 * buffer down. After writing the first element of the stack, move the
574 * insert position back to the end of the buffer.
575 */
576 if (!etmq->last_branch_pos)
577 etmq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
578
579 etmq->last_branch_pos -= 1;
580
581 be = &bs->entries[etmq->last_branch_pos];
582 be->from = cs_etm__last_executed_instr(etmq->prev_packet);
583 be->to = cs_etm__first_executed_instr(etmq->packet);
584 /* No support for mispredict */
585 be->flags.mispred = 0;
586 be->flags.predicted = 1;
587
588 /*
589 * Increment bs->nr until reaching the number of last branches asked by
590 * the user on the command line.
591 */
592 if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
593 bs->nr += 1;
594 }
595
cs_etm__inject_event(union perf_event * event,struct perf_sample * sample,u64 type)596 static int cs_etm__inject_event(union perf_event *event,
597 struct perf_sample *sample, u64 type)
598 {
599 event->header.size = perf_event__sample_event_size(sample, type, 0);
600 return perf_event__synthesize_sample(event, type, 0, sample);
601 }
602
603
604 static int
cs_etm__get_trace(struct cs_etm_buffer * buff,struct cs_etm_queue * etmq)605 cs_etm__get_trace(struct cs_etm_buffer *buff, struct cs_etm_queue *etmq)
606 {
607 struct auxtrace_buffer *aux_buffer = etmq->buffer;
608 struct auxtrace_buffer *old_buffer = aux_buffer;
609 struct auxtrace_queue *queue;
610
611 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
612
613 aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
614
615 /* If no more data, drop the previous auxtrace_buffer and return */
616 if (!aux_buffer) {
617 if (old_buffer)
618 auxtrace_buffer__drop_data(old_buffer);
619 buff->len = 0;
620 return 0;
621 }
622
623 etmq->buffer = aux_buffer;
624
625 /* If the aux_buffer doesn't have data associated, try to load it */
626 if (!aux_buffer->data) {
627 /* get the file desc associated with the perf data file */
628 int fd = perf_data__fd(etmq->etm->session->data);
629
630 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
631 if (!aux_buffer->data)
632 return -ENOMEM;
633 }
634
635 /* If valid, drop the previous buffer */
636 if (old_buffer)
637 auxtrace_buffer__drop_data(old_buffer);
638
639 buff->offset = aux_buffer->offset;
640 buff->len = aux_buffer->size;
641 buff->buf = aux_buffer->data;
642
643 buff->ref_timestamp = aux_buffer->reference;
644
645 return buff->len;
646 }
647
cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace * etm,struct auxtrace_queue * queue)648 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
649 struct auxtrace_queue *queue)
650 {
651 struct cs_etm_queue *etmq = queue->priv;
652
653 /* CPU-wide tracing isn't supported yet */
654 if (queue->tid == -1)
655 return;
656
657 if ((!etmq->thread) && (etmq->tid != -1))
658 etmq->thread = machine__find_thread(etm->machine, -1,
659 etmq->tid);
660
661 if (etmq->thread) {
662 etmq->pid = etmq->thread->pid_;
663 if (queue->cpu == -1)
664 etmq->cpu = etmq->thread->cpu;
665 }
666 }
667
cs_etm__synth_instruction_sample(struct cs_etm_queue * etmq,u64 addr,u64 period)668 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
669 u64 addr, u64 period)
670 {
671 int ret = 0;
672 struct cs_etm_auxtrace *etm = etmq->etm;
673 union perf_event *event = etmq->event_buf;
674 struct perf_sample sample = {.ip = 0,};
675
676 event->sample.header.type = PERF_RECORD_SAMPLE;
677 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
678 event->sample.header.size = sizeof(struct perf_event_header);
679
680 sample.ip = addr;
681 sample.pid = etmq->pid;
682 sample.tid = etmq->tid;
683 sample.id = etmq->etm->instructions_id;
684 sample.stream_id = etmq->etm->instructions_id;
685 sample.period = period;
686 sample.cpu = etmq->packet->cpu;
687 sample.flags = 0;
688 sample.insn_len = 1;
689 sample.cpumode = event->sample.header.misc;
690
691 if (etm->synth_opts.last_branch) {
692 cs_etm__copy_last_branch_rb(etmq);
693 sample.branch_stack = etmq->last_branch;
694 }
695
696 if (etm->synth_opts.inject) {
697 ret = cs_etm__inject_event(event, &sample,
698 etm->instructions_sample_type);
699 if (ret)
700 return ret;
701 }
702
703 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
704
705 if (ret)
706 pr_err(
707 "CS ETM Trace: failed to deliver instruction event, error %d\n",
708 ret);
709
710 if (etm->synth_opts.last_branch)
711 cs_etm__reset_last_branch_rb(etmq);
712
713 return ret;
714 }
715
716 /*
717 * The cs etm packet encodes an instruction range between a branch target
718 * and the next taken branch. Generate sample accordingly.
719 */
cs_etm__synth_branch_sample(struct cs_etm_queue * etmq)720 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq)
721 {
722 int ret = 0;
723 struct cs_etm_auxtrace *etm = etmq->etm;
724 struct perf_sample sample = {.ip = 0,};
725 union perf_event *event = etmq->event_buf;
726 struct dummy_branch_stack {
727 u64 nr;
728 struct branch_entry entries;
729 } dummy_bs;
730 u64 ip;
731
732 ip = cs_etm__last_executed_instr(etmq->prev_packet);
733
734 event->sample.header.type = PERF_RECORD_SAMPLE;
735 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
736 event->sample.header.size = sizeof(struct perf_event_header);
737
738 sample.ip = ip;
739 sample.pid = etmq->pid;
740 sample.tid = etmq->tid;
741 sample.addr = cs_etm__first_executed_instr(etmq->packet);
742 sample.id = etmq->etm->branches_id;
743 sample.stream_id = etmq->etm->branches_id;
744 sample.period = 1;
745 sample.cpu = etmq->packet->cpu;
746 sample.flags = 0;
747 sample.cpumode = event->sample.header.misc;
748
749 /*
750 * perf report cannot handle events without a branch stack
751 */
752 if (etm->synth_opts.last_branch) {
753 dummy_bs = (struct dummy_branch_stack){
754 .nr = 1,
755 .entries = {
756 .from = sample.ip,
757 .to = sample.addr,
758 },
759 };
760 sample.branch_stack = (struct branch_stack *)&dummy_bs;
761 }
762
763 if (etm->synth_opts.inject) {
764 ret = cs_etm__inject_event(event, &sample,
765 etm->branches_sample_type);
766 if (ret)
767 return ret;
768 }
769
770 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
771
772 if (ret)
773 pr_err(
774 "CS ETM Trace: failed to deliver instruction event, error %d\n",
775 ret);
776
777 return ret;
778 }
779
780 struct cs_etm_synth {
781 struct perf_tool dummy_tool;
782 struct perf_session *session;
783 };
784
cs_etm__event_synth(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)785 static int cs_etm__event_synth(struct perf_tool *tool,
786 union perf_event *event,
787 struct perf_sample *sample __maybe_unused,
788 struct machine *machine __maybe_unused)
789 {
790 struct cs_etm_synth *cs_etm_synth =
791 container_of(tool, struct cs_etm_synth, dummy_tool);
792
793 return perf_session__deliver_synth_event(cs_etm_synth->session,
794 event, NULL);
795 }
796
cs_etm__synth_event(struct perf_session * session,struct perf_event_attr * attr,u64 id)797 static int cs_etm__synth_event(struct perf_session *session,
798 struct perf_event_attr *attr, u64 id)
799 {
800 struct cs_etm_synth cs_etm_synth;
801
802 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
803 cs_etm_synth.session = session;
804
805 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
806 &id, cs_etm__event_synth);
807 }
808
cs_etm__synth_events(struct cs_etm_auxtrace * etm,struct perf_session * session)809 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
810 struct perf_session *session)
811 {
812 struct perf_evlist *evlist = session->evlist;
813 struct perf_evsel *evsel;
814 struct perf_event_attr attr;
815 bool found = false;
816 u64 id;
817 int err;
818
819 evlist__for_each_entry(evlist, evsel) {
820 if (evsel->attr.type == etm->pmu_type) {
821 found = true;
822 break;
823 }
824 }
825
826 if (!found) {
827 pr_debug("No selected events with CoreSight Trace data\n");
828 return 0;
829 }
830
831 memset(&attr, 0, sizeof(struct perf_event_attr));
832 attr.size = sizeof(struct perf_event_attr);
833 attr.type = PERF_TYPE_HARDWARE;
834 attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
835 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
836 PERF_SAMPLE_PERIOD;
837 if (etm->timeless_decoding)
838 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
839 else
840 attr.sample_type |= PERF_SAMPLE_TIME;
841
842 attr.exclude_user = evsel->attr.exclude_user;
843 attr.exclude_kernel = evsel->attr.exclude_kernel;
844 attr.exclude_hv = evsel->attr.exclude_hv;
845 attr.exclude_host = evsel->attr.exclude_host;
846 attr.exclude_guest = evsel->attr.exclude_guest;
847 attr.sample_id_all = evsel->attr.sample_id_all;
848 attr.read_format = evsel->attr.read_format;
849
850 /* create new id val to be a fixed offset from evsel id */
851 id = evsel->id[0] + 1000000000;
852
853 if (!id)
854 id = 1;
855
856 if (etm->synth_opts.branches) {
857 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
858 attr.sample_period = 1;
859 attr.sample_type |= PERF_SAMPLE_ADDR;
860 err = cs_etm__synth_event(session, &attr, id);
861 if (err)
862 return err;
863 etm->sample_branches = true;
864 etm->branches_sample_type = attr.sample_type;
865 etm->branches_id = id;
866 id += 1;
867 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
868 }
869
870 if (etm->synth_opts.last_branch)
871 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
872
873 if (etm->synth_opts.instructions) {
874 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
875 attr.sample_period = etm->synth_opts.period;
876 etm->instructions_sample_period = attr.sample_period;
877 err = cs_etm__synth_event(session, &attr, id);
878 if (err)
879 return err;
880 etm->sample_instructions = true;
881 etm->instructions_sample_type = attr.sample_type;
882 etm->instructions_id = id;
883 id += 1;
884 }
885
886 return 0;
887 }
888
cs_etm__sample(struct cs_etm_queue * etmq)889 static int cs_etm__sample(struct cs_etm_queue *etmq)
890 {
891 struct cs_etm_auxtrace *etm = etmq->etm;
892 struct cs_etm_packet *tmp;
893 int ret;
894 u64 instrs_executed;
895
896 instrs_executed = cs_etm__instr_count(etmq->packet);
897 etmq->period_instructions += instrs_executed;
898
899 /*
900 * Record a branch when the last instruction in
901 * PREV_PACKET is a branch.
902 */
903 if (etm->synth_opts.last_branch &&
904 etmq->prev_packet &&
905 etmq->prev_packet->sample_type == CS_ETM_RANGE &&
906 etmq->prev_packet->last_instr_taken_branch)
907 cs_etm__update_last_branch_rb(etmq);
908
909 if (etm->sample_instructions &&
910 etmq->period_instructions >= etm->instructions_sample_period) {
911 /*
912 * Emit instruction sample periodically
913 * TODO: allow period to be defined in cycles and clock time
914 */
915
916 /* Get number of instructions executed after the sample point */
917 u64 instrs_over = etmq->period_instructions -
918 etm->instructions_sample_period;
919
920 /*
921 * Calculate the address of the sampled instruction (-1 as
922 * sample is reported as though instruction has just been
923 * executed, but PC has not advanced to next instruction)
924 */
925 u64 offset = (instrs_executed - instrs_over - 1);
926 u64 addr = cs_etm__instr_addr(etmq->packet, offset);
927
928 ret = cs_etm__synth_instruction_sample(
929 etmq, addr, etm->instructions_sample_period);
930 if (ret)
931 return ret;
932
933 /* Carry remaining instructions into next sample period */
934 etmq->period_instructions = instrs_over;
935 }
936
937 if (etm->sample_branches && etmq->prev_packet) {
938 bool generate_sample = false;
939
940 /* Generate sample for tracing on packet */
941 if (etmq->prev_packet->sample_type == CS_ETM_TRACE_ON)
942 generate_sample = true;
943
944 /* Generate sample for branch taken packet */
945 if (etmq->prev_packet->sample_type == CS_ETM_RANGE &&
946 etmq->prev_packet->last_instr_taken_branch)
947 generate_sample = true;
948
949 if (generate_sample) {
950 ret = cs_etm__synth_branch_sample(etmq);
951 if (ret)
952 return ret;
953 }
954 }
955
956 if (etm->sample_branches || etm->synth_opts.last_branch) {
957 /*
958 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
959 * the next incoming packet.
960 */
961 tmp = etmq->packet;
962 etmq->packet = etmq->prev_packet;
963 etmq->prev_packet = tmp;
964 }
965
966 return 0;
967 }
968
cs_etm__flush(struct cs_etm_queue * etmq)969 static int cs_etm__flush(struct cs_etm_queue *etmq)
970 {
971 int err = 0;
972 struct cs_etm_auxtrace *etm = etmq->etm;
973 struct cs_etm_packet *tmp;
974
975 if (!etmq->prev_packet)
976 return 0;
977
978 /* Handle start tracing packet */
979 if (etmq->prev_packet->sample_type == CS_ETM_EMPTY)
980 goto swap_packet;
981
982 if (etmq->etm->synth_opts.last_branch &&
983 etmq->prev_packet->sample_type == CS_ETM_RANGE) {
984 /*
985 * Generate a last branch event for the branches left in the
986 * circular buffer at the end of the trace.
987 *
988 * Use the address of the end of the last reported execution
989 * range
990 */
991 u64 addr = cs_etm__last_executed_instr(etmq->prev_packet);
992
993 err = cs_etm__synth_instruction_sample(
994 etmq, addr,
995 etmq->period_instructions);
996 if (err)
997 return err;
998
999 etmq->period_instructions = 0;
1000
1001 }
1002
1003 if (etm->sample_branches &&
1004 etmq->prev_packet->sample_type == CS_ETM_RANGE) {
1005 err = cs_etm__synth_branch_sample(etmq);
1006 if (err)
1007 return err;
1008 }
1009
1010 swap_packet:
1011 if (etm->sample_branches || etm->synth_opts.last_branch) {
1012 /*
1013 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1014 * the next incoming packet.
1015 */
1016 tmp = etmq->packet;
1017 etmq->packet = etmq->prev_packet;
1018 etmq->prev_packet = tmp;
1019 }
1020
1021 return err;
1022 }
1023
cs_etm__run_decoder(struct cs_etm_queue * etmq)1024 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
1025 {
1026 struct cs_etm_auxtrace *etm = etmq->etm;
1027 struct cs_etm_buffer buffer;
1028 size_t buffer_used, processed;
1029 int err = 0;
1030
1031 if (!etm->kernel_start)
1032 etm->kernel_start = machine__kernel_start(etm->machine);
1033
1034 /* Go through each buffer in the queue and decode them one by one */
1035 while (1) {
1036 buffer_used = 0;
1037 memset(&buffer, 0, sizeof(buffer));
1038 err = cs_etm__get_trace(&buffer, etmq);
1039 if (err <= 0)
1040 return err;
1041 /*
1042 * We cannot assume consecutive blocks in the data file are
1043 * contiguous, reset the decoder to force re-sync.
1044 */
1045 err = cs_etm_decoder__reset(etmq->decoder);
1046 if (err != 0)
1047 return err;
1048
1049 /* Run trace decoder until buffer consumed or end of trace */
1050 do {
1051 processed = 0;
1052 err = cs_etm_decoder__process_data_block(
1053 etmq->decoder,
1054 etmq->offset,
1055 &buffer.buf[buffer_used],
1056 buffer.len - buffer_used,
1057 &processed);
1058 if (err)
1059 return err;
1060
1061 etmq->offset += processed;
1062 buffer_used += processed;
1063
1064 /* Process each packet in this chunk */
1065 while (1) {
1066 err = cs_etm_decoder__get_packet(etmq->decoder,
1067 etmq->packet);
1068 if (err <= 0)
1069 /*
1070 * Stop processing this chunk on
1071 * end of data or error
1072 */
1073 break;
1074
1075 switch (etmq->packet->sample_type) {
1076 case CS_ETM_RANGE:
1077 /*
1078 * If the packet contains an instruction
1079 * range, generate instruction sequence
1080 * events.
1081 */
1082 cs_etm__sample(etmq);
1083 break;
1084 case CS_ETM_TRACE_ON:
1085 /*
1086 * Discontinuity in trace, flush
1087 * previous branch stack
1088 */
1089 cs_etm__flush(etmq);
1090 break;
1091 case CS_ETM_EMPTY:
1092 /*
1093 * Should not receive empty packet,
1094 * report error.
1095 */
1096 pr_err("CS ETM Trace: empty packet\n");
1097 return -EINVAL;
1098 default:
1099 break;
1100 }
1101 }
1102 } while (buffer.len > buffer_used);
1103
1104 if (err == 0)
1105 /* Flush any remaining branch stack entries */
1106 err = cs_etm__flush(etmq);
1107 }
1108
1109 return err;
1110 }
1111
cs_etm__process_timeless_queues(struct cs_etm_auxtrace * etm,pid_t tid,u64 time_)1112 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
1113 pid_t tid, u64 time_)
1114 {
1115 unsigned int i;
1116 struct auxtrace_queues *queues = &etm->queues;
1117
1118 for (i = 0; i < queues->nr_queues; i++) {
1119 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
1120 struct cs_etm_queue *etmq = queue->priv;
1121
1122 if (etmq && ((tid == -1) || (etmq->tid == tid))) {
1123 etmq->time = time_;
1124 cs_etm__set_pid_tid_cpu(etm, queue);
1125 cs_etm__run_decoder(etmq);
1126 }
1127 }
1128
1129 return 0;
1130 }
1131
cs_etm__process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)1132 static int cs_etm__process_event(struct perf_session *session,
1133 union perf_event *event,
1134 struct perf_sample *sample,
1135 struct perf_tool *tool)
1136 {
1137 int err = 0;
1138 u64 timestamp;
1139 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
1140 struct cs_etm_auxtrace,
1141 auxtrace);
1142
1143 if (dump_trace)
1144 return 0;
1145
1146 if (!tool->ordered_events) {
1147 pr_err("CoreSight ETM Trace requires ordered events\n");
1148 return -EINVAL;
1149 }
1150
1151 if (!etm->timeless_decoding)
1152 return -EINVAL;
1153
1154 if (sample->time && (sample->time != (u64) -1))
1155 timestamp = sample->time;
1156 else
1157 timestamp = 0;
1158
1159 if (timestamp || etm->timeless_decoding) {
1160 err = cs_etm__update_queues(etm);
1161 if (err)
1162 return err;
1163 }
1164
1165 if (event->header.type == PERF_RECORD_EXIT)
1166 return cs_etm__process_timeless_queues(etm,
1167 event->fork.tid,
1168 sample->time);
1169
1170 return 0;
1171 }
1172
cs_etm__process_auxtrace_event(struct perf_session * session,union perf_event * event,struct perf_tool * tool __maybe_unused)1173 static int cs_etm__process_auxtrace_event(struct perf_session *session,
1174 union perf_event *event,
1175 struct perf_tool *tool __maybe_unused)
1176 {
1177 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
1178 struct cs_etm_auxtrace,
1179 auxtrace);
1180 if (!etm->data_queued) {
1181 struct auxtrace_buffer *buffer;
1182 off_t data_offset;
1183 int fd = perf_data__fd(session->data);
1184 bool is_pipe = perf_data__is_pipe(session->data);
1185 int err;
1186
1187 if (is_pipe)
1188 data_offset = 0;
1189 else {
1190 data_offset = lseek(fd, 0, SEEK_CUR);
1191 if (data_offset == -1)
1192 return -errno;
1193 }
1194
1195 err = auxtrace_queues__add_event(&etm->queues, session,
1196 event, data_offset, &buffer);
1197 if (err)
1198 return err;
1199
1200 if (dump_trace)
1201 if (auxtrace_buffer__get_data(buffer, fd)) {
1202 cs_etm__dump_event(etm, buffer);
1203 auxtrace_buffer__put_data(buffer);
1204 }
1205 }
1206
1207 return 0;
1208 }
1209
cs_etm__is_timeless_decoding(struct cs_etm_auxtrace * etm)1210 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
1211 {
1212 struct perf_evsel *evsel;
1213 struct perf_evlist *evlist = etm->session->evlist;
1214 bool timeless_decoding = true;
1215
1216 /*
1217 * Circle through the list of event and complain if we find one
1218 * with the time bit set.
1219 */
1220 evlist__for_each_entry(evlist, evsel) {
1221 if ((evsel->attr.sample_type & PERF_SAMPLE_TIME))
1222 timeless_decoding = false;
1223 }
1224
1225 return timeless_decoding;
1226 }
1227
1228 static const char * const cs_etm_global_header_fmts[] = {
1229 [CS_HEADER_VERSION_0] = " Header version %llx\n",
1230 [CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n",
1231 [CS_ETM_SNAPSHOT] = " Snapshot %llx\n",
1232 };
1233
1234 static const char * const cs_etm_priv_fmts[] = {
1235 [CS_ETM_MAGIC] = " Magic number %llx\n",
1236 [CS_ETM_CPU] = " CPU %lld\n",
1237 [CS_ETM_ETMCR] = " ETMCR %llx\n",
1238 [CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n",
1239 [CS_ETM_ETMCCER] = " ETMCCER %llx\n",
1240 [CS_ETM_ETMIDR] = " ETMIDR %llx\n",
1241 };
1242
1243 static const char * const cs_etmv4_priv_fmts[] = {
1244 [CS_ETM_MAGIC] = " Magic number %llx\n",
1245 [CS_ETM_CPU] = " CPU %lld\n",
1246 [CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n",
1247 [CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n",
1248 [CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n",
1249 [CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n",
1250 [CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n",
1251 [CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n",
1252 [CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n",
1253 };
1254
cs_etm__print_auxtrace_info(u64 * val,int num)1255 static void cs_etm__print_auxtrace_info(u64 *val, int num)
1256 {
1257 int i, j, cpu = 0;
1258
1259 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
1260 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
1261
1262 for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
1263 if (val[i] == __perf_cs_etmv3_magic)
1264 for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
1265 fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
1266 else if (val[i] == __perf_cs_etmv4_magic)
1267 for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
1268 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
1269 else
1270 /* failure.. return */
1271 return;
1272 }
1273 }
1274
cs_etm__process_auxtrace_info(union perf_event * event,struct perf_session * session)1275 int cs_etm__process_auxtrace_info(union perf_event *event,
1276 struct perf_session *session)
1277 {
1278 struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
1279 struct cs_etm_auxtrace *etm = NULL;
1280 struct int_node *inode;
1281 unsigned int pmu_type;
1282 int event_header_size = sizeof(struct perf_event_header);
1283 int info_header_size;
1284 int total_size = auxtrace_info->header.size;
1285 int priv_size = 0;
1286 int num_cpu;
1287 int err = 0, idx = -1;
1288 int i, j, k;
1289 u64 *ptr, *hdr = NULL;
1290 u64 **metadata = NULL;
1291
1292 /*
1293 * sizeof(auxtrace_info_event::type) +
1294 * sizeof(auxtrace_info_event::reserved) == 8
1295 */
1296 info_header_size = 8;
1297
1298 if (total_size < (event_header_size + info_header_size))
1299 return -EINVAL;
1300
1301 priv_size = total_size - event_header_size - info_header_size;
1302
1303 /* First the global part */
1304 ptr = (u64 *) auxtrace_info->priv;
1305
1306 /* Look for version '0' of the header */
1307 if (ptr[0] != 0)
1308 return -EINVAL;
1309
1310 hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
1311 if (!hdr)
1312 return -ENOMEM;
1313
1314 /* Extract header information - see cs-etm.h for format */
1315 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
1316 hdr[i] = ptr[i];
1317 num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
1318 pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
1319 0xffffffff);
1320
1321 /*
1322 * Create an RB tree for traceID-CPU# tuple. Since the conversion has
1323 * to be made for each packet that gets decoded, optimizing access in
1324 * anything other than a sequential array is worth doing.
1325 */
1326 traceid_list = intlist__new(NULL);
1327 if (!traceid_list) {
1328 err = -ENOMEM;
1329 goto err_free_hdr;
1330 }
1331
1332 metadata = zalloc(sizeof(*metadata) * num_cpu);
1333 if (!metadata) {
1334 err = -ENOMEM;
1335 goto err_free_traceid_list;
1336 }
1337
1338 /*
1339 * The metadata is stored in the auxtrace_info section and encodes
1340 * the configuration of the ARM embedded trace macrocell which is
1341 * required by the trace decoder to properly decode the trace due
1342 * to its highly compressed nature.
1343 */
1344 for (j = 0; j < num_cpu; j++) {
1345 if (ptr[i] == __perf_cs_etmv3_magic) {
1346 metadata[j] = zalloc(sizeof(*metadata[j]) *
1347 CS_ETM_PRIV_MAX);
1348 if (!metadata[j]) {
1349 err = -ENOMEM;
1350 goto err_free_metadata;
1351 }
1352 for (k = 0; k < CS_ETM_PRIV_MAX; k++)
1353 metadata[j][k] = ptr[i + k];
1354
1355 /* The traceID is our handle */
1356 idx = metadata[j][CS_ETM_ETMTRACEIDR];
1357 i += CS_ETM_PRIV_MAX;
1358 } else if (ptr[i] == __perf_cs_etmv4_magic) {
1359 metadata[j] = zalloc(sizeof(*metadata[j]) *
1360 CS_ETMV4_PRIV_MAX);
1361 if (!metadata[j]) {
1362 err = -ENOMEM;
1363 goto err_free_metadata;
1364 }
1365 for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
1366 metadata[j][k] = ptr[i + k];
1367
1368 /* The traceID is our handle */
1369 idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
1370 i += CS_ETMV4_PRIV_MAX;
1371 }
1372
1373 /* Get an RB node for this CPU */
1374 inode = intlist__findnew(traceid_list, idx);
1375
1376 /* Something went wrong, no need to continue */
1377 if (!inode) {
1378 err = PTR_ERR(inode);
1379 goto err_free_metadata;
1380 }
1381
1382 /*
1383 * The node for that CPU should not be taken.
1384 * Back out if that's the case.
1385 */
1386 if (inode->priv) {
1387 err = -EINVAL;
1388 goto err_free_metadata;
1389 }
1390 /* All good, associate the traceID with the CPU# */
1391 inode->priv = &metadata[j][CS_ETM_CPU];
1392 }
1393
1394 /*
1395 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
1396 * CS_ETMV4_PRIV_MAX mark how many double words are in the
1397 * global metadata, and each cpu's metadata respectively.
1398 * The following tests if the correct number of double words was
1399 * present in the auxtrace info section.
1400 */
1401 if (i * 8 != priv_size) {
1402 err = -EINVAL;
1403 goto err_free_metadata;
1404 }
1405
1406 etm = zalloc(sizeof(*etm));
1407
1408 if (!etm) {
1409 err = -ENOMEM;
1410 goto err_free_metadata;
1411 }
1412
1413 err = auxtrace_queues__init(&etm->queues);
1414 if (err)
1415 goto err_free_etm;
1416
1417 etm->session = session;
1418 etm->machine = &session->machines.host;
1419
1420 etm->num_cpu = num_cpu;
1421 etm->pmu_type = pmu_type;
1422 etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
1423 etm->metadata = metadata;
1424 etm->auxtrace_type = auxtrace_info->type;
1425 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
1426
1427 etm->auxtrace.process_event = cs_etm__process_event;
1428 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
1429 etm->auxtrace.flush_events = cs_etm__flush_events;
1430 etm->auxtrace.free_events = cs_etm__free_events;
1431 etm->auxtrace.free = cs_etm__free;
1432 session->auxtrace = &etm->auxtrace;
1433
1434 etm->unknown_thread = thread__new(999999999, 999999999);
1435 if (!etm->unknown_thread)
1436 goto err_free_queues;
1437
1438 /*
1439 * Initialize list node so that at thread__zput() we can avoid
1440 * segmentation fault at list_del_init().
1441 */
1442 INIT_LIST_HEAD(&etm->unknown_thread->node);
1443
1444 err = thread__set_comm(etm->unknown_thread, "unknown", 0);
1445 if (err)
1446 goto err_delete_thread;
1447
1448 if (thread__init_map_groups(etm->unknown_thread, etm->machine))
1449 goto err_delete_thread;
1450
1451 if (dump_trace) {
1452 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
1453 return 0;
1454 }
1455
1456 if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
1457 etm->synth_opts = *session->itrace_synth_opts;
1458 } else {
1459 itrace_synth_opts__set_default(&etm->synth_opts);
1460 etm->synth_opts.callchain = false;
1461 }
1462
1463 err = cs_etm__synth_events(etm, session);
1464 if (err)
1465 goto err_delete_thread;
1466
1467 err = auxtrace_queues__process_index(&etm->queues, session);
1468 if (err)
1469 goto err_delete_thread;
1470
1471 etm->data_queued = etm->queues.populated;
1472
1473 return 0;
1474
1475 err_delete_thread:
1476 thread__zput(etm->unknown_thread);
1477 err_free_queues:
1478 auxtrace_queues__free(&etm->queues);
1479 session->auxtrace = NULL;
1480 err_free_etm:
1481 zfree(&etm);
1482 err_free_metadata:
1483 /* No need to check @metadata[j], free(NULL) is supported */
1484 for (j = 0; j < num_cpu; j++)
1485 free(metadata[j]);
1486 zfree(&metadata);
1487 err_free_traceid_list:
1488 intlist__delete(traceid_list);
1489 err_free_hdr:
1490 zfree(&hdr);
1491
1492 return -EINVAL;
1493 }
1494