• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/types.h>
14 
15 #include <stdlib.h>
16 
17 #include "auxtrace.h"
18 #include "color.h"
19 #include "cs-etm.h"
20 #include "cs-etm-decoder/cs-etm-decoder.h"
21 #include "debug.h"
22 #include "evlist.h"
23 #include "intlist.h"
24 #include "machine.h"
25 #include "map.h"
26 #include "perf.h"
27 #include "thread.h"
28 #include "thread_map.h"
29 #include "thread-stack.h"
30 #include "util.h"
31 
32 #define MAX_TIMESTAMP (~0ULL)
33 
34 /*
35  * A64 instructions are always 4 bytes
36  *
37  * Only A64 is supported, so can use this constant for converting between
38  * addresses and instruction counts, calculting offsets etc
39  */
40 #define A64_INSTR_SIZE 4
41 
42 struct cs_etm_auxtrace {
43 	struct auxtrace auxtrace;
44 	struct auxtrace_queues queues;
45 	struct auxtrace_heap heap;
46 	struct itrace_synth_opts synth_opts;
47 	struct perf_session *session;
48 	struct machine *machine;
49 	struct thread *unknown_thread;
50 
51 	u8 timeless_decoding;
52 	u8 snapshot_mode;
53 	u8 data_queued;
54 	u8 sample_branches;
55 	u8 sample_instructions;
56 
57 	int num_cpu;
58 	u32 auxtrace_type;
59 	u64 branches_sample_type;
60 	u64 branches_id;
61 	u64 instructions_sample_type;
62 	u64 instructions_sample_period;
63 	u64 instructions_id;
64 	u64 **metadata;
65 	u64 kernel_start;
66 	unsigned int pmu_type;
67 };
68 
69 struct cs_etm_queue {
70 	struct cs_etm_auxtrace *etm;
71 	struct thread *thread;
72 	struct cs_etm_decoder *decoder;
73 	struct auxtrace_buffer *buffer;
74 	const struct cs_etm_state *state;
75 	union perf_event *event_buf;
76 	unsigned int queue_nr;
77 	pid_t pid, tid;
78 	int cpu;
79 	u64 time;
80 	u64 timestamp;
81 	u64 offset;
82 	u64 period_instructions;
83 	struct branch_stack *last_branch;
84 	struct branch_stack *last_branch_rb;
85 	size_t last_branch_pos;
86 	struct cs_etm_packet *prev_packet;
87 	struct cs_etm_packet *packet;
88 };
89 
90 /* RB tree for quick conversion between traceID and metadata pointers */
91 static struct intlist *traceid_list;
92 
93 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
94 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
95 					   pid_t tid, u64 time_);
96 
cs_etm__packet_dump(const char * pkt_string)97 static void cs_etm__packet_dump(const char *pkt_string)
98 {
99 	const char *color = PERF_COLOR_BLUE;
100 	int len = strlen(pkt_string);
101 
102 	if (len && (pkt_string[len-1] == '\n'))
103 		color_fprintf(stdout, color, "	%s", pkt_string);
104 	else
105 		color_fprintf(stdout, color, "	%s\n", pkt_string);
106 
107 	fflush(stdout);
108 }
109 
cs_etm__dump_event(struct cs_etm_auxtrace * etm,struct auxtrace_buffer * buffer)110 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
111 			       struct auxtrace_buffer *buffer)
112 {
113 	int i, ret;
114 	const char *color = PERF_COLOR_BLUE;
115 	struct cs_etm_decoder_params d_params;
116 	struct cs_etm_trace_params *t_params;
117 	struct cs_etm_decoder *decoder;
118 	size_t buffer_used = 0;
119 
120 	fprintf(stdout, "\n");
121 	color_fprintf(stdout, color,
122 		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
123 		     buffer->size);
124 
125 	/* Use metadata to fill in trace parameters for trace decoder */
126 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
127 	for (i = 0; i < etm->num_cpu; i++) {
128 		t_params[i].protocol = CS_ETM_PROTO_ETMV4i;
129 		t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0];
130 		t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1];
131 		t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2];
132 		t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8];
133 		t_params[i].etmv4.reg_configr =
134 					etm->metadata[i][CS_ETMV4_TRCCONFIGR];
135 		t_params[i].etmv4.reg_traceidr =
136 					etm->metadata[i][CS_ETMV4_TRCTRACEIDR];
137 	}
138 
139 	/* Set decoder parameters to simply print the trace packets */
140 	d_params.packet_printer = cs_etm__packet_dump;
141 	d_params.operation = CS_ETM_OPERATION_PRINT;
142 	d_params.formatted = true;
143 	d_params.fsyncs = false;
144 	d_params.hsyncs = false;
145 	d_params.frame_aligned = true;
146 
147 	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
148 
149 	zfree(&t_params);
150 
151 	if (!decoder)
152 		return;
153 	do {
154 		size_t consumed;
155 
156 		ret = cs_etm_decoder__process_data_block(
157 				decoder, buffer->offset,
158 				&((u8 *)buffer->data)[buffer_used],
159 				buffer->size - buffer_used, &consumed);
160 		if (ret)
161 			break;
162 
163 		buffer_used += consumed;
164 	} while (buffer_used < buffer->size);
165 
166 	cs_etm_decoder__free(decoder);
167 }
168 
cs_etm__flush_events(struct perf_session * session,struct perf_tool * tool)169 static int cs_etm__flush_events(struct perf_session *session,
170 				struct perf_tool *tool)
171 {
172 	int ret;
173 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
174 						   struct cs_etm_auxtrace,
175 						   auxtrace);
176 	if (dump_trace)
177 		return 0;
178 
179 	if (!tool->ordered_events)
180 		return -EINVAL;
181 
182 	if (!etm->timeless_decoding)
183 		return -EINVAL;
184 
185 	ret = cs_etm__update_queues(etm);
186 
187 	if (ret < 0)
188 		return ret;
189 
190 	return cs_etm__process_timeless_queues(etm, -1, MAX_TIMESTAMP - 1);
191 }
192 
cs_etm__free_queue(void * priv)193 static void cs_etm__free_queue(void *priv)
194 {
195 	struct cs_etm_queue *etmq = priv;
196 
197 	if (!etmq)
198 		return;
199 
200 	thread__zput(etmq->thread);
201 	cs_etm_decoder__free(etmq->decoder);
202 	zfree(&etmq->event_buf);
203 	zfree(&etmq->last_branch);
204 	zfree(&etmq->last_branch_rb);
205 	zfree(&etmq->prev_packet);
206 	zfree(&etmq->packet);
207 	free(etmq);
208 }
209 
cs_etm__free_events(struct perf_session * session)210 static void cs_etm__free_events(struct perf_session *session)
211 {
212 	unsigned int i;
213 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
214 						   struct cs_etm_auxtrace,
215 						   auxtrace);
216 	struct auxtrace_queues *queues = &aux->queues;
217 
218 	for (i = 0; i < queues->nr_queues; i++) {
219 		cs_etm__free_queue(queues->queue_array[i].priv);
220 		queues->queue_array[i].priv = NULL;
221 	}
222 
223 	auxtrace_queues__free(queues);
224 }
225 
cs_etm__free(struct perf_session * session)226 static void cs_etm__free(struct perf_session *session)
227 {
228 	int i;
229 	struct int_node *inode, *tmp;
230 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
231 						   struct cs_etm_auxtrace,
232 						   auxtrace);
233 	cs_etm__free_events(session);
234 	session->auxtrace = NULL;
235 
236 	/* First remove all traceID/CPU# nodes for the RB tree */
237 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
238 		intlist__remove(traceid_list, inode);
239 	/* Then the RB tree itself */
240 	intlist__delete(traceid_list);
241 
242 	for (i = 0; i < aux->num_cpu; i++)
243 		zfree(&aux->metadata[i]);
244 
245 	thread__zput(aux->unknown_thread);
246 	zfree(&aux->metadata);
247 	zfree(&aux);
248 }
249 
cs_etm__cpu_mode(struct cs_etm_queue * etmq,u64 address)250 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
251 {
252 	struct machine *machine;
253 
254 	machine = etmq->etm->machine;
255 
256 	if (address >= etmq->etm->kernel_start) {
257 		if (machine__is_host(machine))
258 			return PERF_RECORD_MISC_KERNEL;
259 		else
260 			return PERF_RECORD_MISC_GUEST_KERNEL;
261 	} else {
262 		if (machine__is_host(machine))
263 			return PERF_RECORD_MISC_USER;
264 		else if (perf_guest)
265 			return PERF_RECORD_MISC_GUEST_USER;
266 		else
267 			return PERF_RECORD_MISC_HYPERVISOR;
268 	}
269 }
270 
cs_etm__mem_access(struct cs_etm_queue * etmq,u64 address,size_t size,u8 * buffer)271 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u64 address,
272 			      size_t size, u8 *buffer)
273 {
274 	u8  cpumode;
275 	u64 offset;
276 	int len;
277 	struct	 thread *thread;
278 	struct	 machine *machine;
279 	struct	 addr_location al;
280 
281 	if (!etmq)
282 		return -1;
283 
284 	machine = etmq->etm->machine;
285 	cpumode = cs_etm__cpu_mode(etmq, address);
286 
287 	thread = etmq->thread;
288 	if (!thread) {
289 		if (cpumode != PERF_RECORD_MISC_KERNEL)
290 			return -EINVAL;
291 		thread = etmq->etm->unknown_thread;
292 	}
293 
294 	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
295 		return 0;
296 
297 	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
298 	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
299 		return 0;
300 
301 	offset = al.map->map_ip(al.map, address);
302 
303 	map__load(al.map);
304 
305 	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
306 
307 	if (len <= 0)
308 		return 0;
309 
310 	return len;
311 }
312 
cs_etm__alloc_queue(struct cs_etm_auxtrace * etm,unsigned int queue_nr)313 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
314 						unsigned int queue_nr)
315 {
316 	int i;
317 	struct cs_etm_decoder_params d_params;
318 	struct cs_etm_trace_params  *t_params;
319 	struct cs_etm_queue *etmq;
320 	size_t szp = sizeof(struct cs_etm_packet);
321 
322 	etmq = zalloc(sizeof(*etmq));
323 	if (!etmq)
324 		return NULL;
325 
326 	etmq->packet = zalloc(szp);
327 	if (!etmq->packet)
328 		goto out_free;
329 
330 	if (etm->synth_opts.last_branch || etm->sample_branches) {
331 		etmq->prev_packet = zalloc(szp);
332 		if (!etmq->prev_packet)
333 			goto out_free;
334 	}
335 
336 	if (etm->synth_opts.last_branch) {
337 		size_t sz = sizeof(struct branch_stack);
338 
339 		sz += etm->synth_opts.last_branch_sz *
340 		      sizeof(struct branch_entry);
341 		etmq->last_branch = zalloc(sz);
342 		if (!etmq->last_branch)
343 			goto out_free;
344 		etmq->last_branch_rb = zalloc(sz);
345 		if (!etmq->last_branch_rb)
346 			goto out_free;
347 	}
348 
349 	etmq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
350 	if (!etmq->event_buf)
351 		goto out_free;
352 
353 	etmq->etm = etm;
354 	etmq->queue_nr = queue_nr;
355 	etmq->pid = -1;
356 	etmq->tid = -1;
357 	etmq->cpu = -1;
358 
359 	/* Use metadata to fill in trace parameters for trace decoder */
360 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
361 
362 	if (!t_params)
363 		goto out_free;
364 
365 	for (i = 0; i < etm->num_cpu; i++) {
366 		t_params[i].protocol = CS_ETM_PROTO_ETMV4i;
367 		t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0];
368 		t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1];
369 		t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2];
370 		t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8];
371 		t_params[i].etmv4.reg_configr =
372 					etm->metadata[i][CS_ETMV4_TRCCONFIGR];
373 		t_params[i].etmv4.reg_traceidr =
374 					etm->metadata[i][CS_ETMV4_TRCTRACEIDR];
375 	}
376 
377 	/* Set decoder parameters to simply print the trace packets */
378 	d_params.packet_printer = cs_etm__packet_dump;
379 	d_params.operation = CS_ETM_OPERATION_DECODE;
380 	d_params.formatted = true;
381 	d_params.fsyncs = false;
382 	d_params.hsyncs = false;
383 	d_params.frame_aligned = true;
384 	d_params.data = etmq;
385 
386 	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
387 
388 	zfree(&t_params);
389 
390 	if (!etmq->decoder)
391 		goto out_free;
392 
393 	/*
394 	 * Register a function to handle all memory accesses required by
395 	 * the trace decoder library.
396 	 */
397 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
398 					      0x0L, ((u64) -1L),
399 					      cs_etm__mem_access))
400 		goto out_free_decoder;
401 
402 	etmq->offset = 0;
403 	etmq->period_instructions = 0;
404 
405 	return etmq;
406 
407 out_free_decoder:
408 	cs_etm_decoder__free(etmq->decoder);
409 out_free:
410 	zfree(&etmq->event_buf);
411 	zfree(&etmq->last_branch);
412 	zfree(&etmq->last_branch_rb);
413 	zfree(&etmq->prev_packet);
414 	zfree(&etmq->packet);
415 	free(etmq);
416 
417 	return NULL;
418 }
419 
cs_etm__setup_queue(struct cs_etm_auxtrace * etm,struct auxtrace_queue * queue,unsigned int queue_nr)420 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
421 			       struct auxtrace_queue *queue,
422 			       unsigned int queue_nr)
423 {
424 	struct cs_etm_queue *etmq = queue->priv;
425 
426 	if (list_empty(&queue->head) || etmq)
427 		return 0;
428 
429 	etmq = cs_etm__alloc_queue(etm, queue_nr);
430 
431 	if (!etmq)
432 		return -ENOMEM;
433 
434 	queue->priv = etmq;
435 
436 	if (queue->cpu != -1)
437 		etmq->cpu = queue->cpu;
438 
439 	etmq->tid = queue->tid;
440 
441 	return 0;
442 }
443 
cs_etm__setup_queues(struct cs_etm_auxtrace * etm)444 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
445 {
446 	unsigned int i;
447 	int ret;
448 
449 	for (i = 0; i < etm->queues.nr_queues; i++) {
450 		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
451 		if (ret)
452 			return ret;
453 	}
454 
455 	return 0;
456 }
457 
cs_etm__update_queues(struct cs_etm_auxtrace * etm)458 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
459 {
460 	if (etm->queues.new_data) {
461 		etm->queues.new_data = false;
462 		return cs_etm__setup_queues(etm);
463 	}
464 
465 	return 0;
466 }
467 
cs_etm__copy_last_branch_rb(struct cs_etm_queue * etmq)468 static inline void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq)
469 {
470 	struct branch_stack *bs_src = etmq->last_branch_rb;
471 	struct branch_stack *bs_dst = etmq->last_branch;
472 	size_t nr = 0;
473 
474 	/*
475 	 * Set the number of records before early exit: ->nr is used to
476 	 * determine how many branches to copy from ->entries.
477 	 */
478 	bs_dst->nr = bs_src->nr;
479 
480 	/*
481 	 * Early exit when there is nothing to copy.
482 	 */
483 	if (!bs_src->nr)
484 		return;
485 
486 	/*
487 	 * As bs_src->entries is a circular buffer, we need to copy from it in
488 	 * two steps.  First, copy the branches from the most recently inserted
489 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
490 	 */
491 	nr = etmq->etm->synth_opts.last_branch_sz - etmq->last_branch_pos;
492 	memcpy(&bs_dst->entries[0],
493 	       &bs_src->entries[etmq->last_branch_pos],
494 	       sizeof(struct branch_entry) * nr);
495 
496 	/*
497 	 * If we wrapped around at least once, the branches from the beginning
498 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
499 	 * are older valid branches: copy them over.  The total number of
500 	 * branches copied over will be equal to the number of branches asked by
501 	 * the user in last_branch_sz.
502 	 */
503 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
504 		memcpy(&bs_dst->entries[nr],
505 		       &bs_src->entries[0],
506 		       sizeof(struct branch_entry) * etmq->last_branch_pos);
507 	}
508 }
509 
cs_etm__reset_last_branch_rb(struct cs_etm_queue * etmq)510 static inline void cs_etm__reset_last_branch_rb(struct cs_etm_queue *etmq)
511 {
512 	etmq->last_branch_pos = 0;
513 	etmq->last_branch_rb->nr = 0;
514 }
515 
cs_etm__last_executed_instr(struct cs_etm_packet * packet)516 static inline u64 cs_etm__last_executed_instr(struct cs_etm_packet *packet)
517 {
518 	/* Returns 0 for the CS_ETM_TRACE_ON packet */
519 	if (packet->sample_type == CS_ETM_TRACE_ON)
520 		return 0;
521 
522 	/*
523 	 * The packet records the execution range with an exclusive end address
524 	 *
525 	 * A64 instructions are constant size, so the last executed
526 	 * instruction is A64_INSTR_SIZE before the end address
527 	 * Will need to do instruction level decode for T32 instructions as
528 	 * they can be variable size (not yet supported).
529 	 */
530 	return packet->end_addr - A64_INSTR_SIZE;
531 }
532 
cs_etm__first_executed_instr(struct cs_etm_packet * packet)533 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
534 {
535 	/* Returns 0 for the CS_ETM_TRACE_ON packet */
536 	if (packet->sample_type == CS_ETM_TRACE_ON)
537 		return 0;
538 
539 	return packet->start_addr;
540 }
541 
cs_etm__instr_count(const struct cs_etm_packet * packet)542 static inline u64 cs_etm__instr_count(const struct cs_etm_packet *packet)
543 {
544 	/*
545 	 * Only A64 instructions are currently supported, so can get
546 	 * instruction count by dividing.
547 	 * Will need to do instruction level decode for T32 instructions as
548 	 * they can be variable size (not yet supported).
549 	 */
550 	return (packet->end_addr - packet->start_addr) / A64_INSTR_SIZE;
551 }
552 
cs_etm__instr_addr(const struct cs_etm_packet * packet,u64 offset)553 static inline u64 cs_etm__instr_addr(const struct cs_etm_packet *packet,
554 				     u64 offset)
555 {
556 	/*
557 	 * Only A64 instructions are currently supported, so can get
558 	 * instruction address by muliplying.
559 	 * Will need to do instruction level decode for T32 instructions as
560 	 * they can be variable size (not yet supported).
561 	 */
562 	return packet->start_addr + offset * A64_INSTR_SIZE;
563 }
564 
cs_etm__update_last_branch_rb(struct cs_etm_queue * etmq)565 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq)
566 {
567 	struct branch_stack *bs = etmq->last_branch_rb;
568 	struct branch_entry *be;
569 
570 	/*
571 	 * The branches are recorded in a circular buffer in reverse
572 	 * chronological order: we start recording from the last element of the
573 	 * buffer down.  After writing the first element of the stack, move the
574 	 * insert position back to the end of the buffer.
575 	 */
576 	if (!etmq->last_branch_pos)
577 		etmq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
578 
579 	etmq->last_branch_pos -= 1;
580 
581 	be       = &bs->entries[etmq->last_branch_pos];
582 	be->from = cs_etm__last_executed_instr(etmq->prev_packet);
583 	be->to	 = cs_etm__first_executed_instr(etmq->packet);
584 	/* No support for mispredict */
585 	be->flags.mispred = 0;
586 	be->flags.predicted = 1;
587 
588 	/*
589 	 * Increment bs->nr until reaching the number of last branches asked by
590 	 * the user on the command line.
591 	 */
592 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
593 		bs->nr += 1;
594 }
595 
cs_etm__inject_event(union perf_event * event,struct perf_sample * sample,u64 type)596 static int cs_etm__inject_event(union perf_event *event,
597 			       struct perf_sample *sample, u64 type)
598 {
599 	event->header.size = perf_event__sample_event_size(sample, type, 0);
600 	return perf_event__synthesize_sample(event, type, 0, sample);
601 }
602 
603 
604 static int
cs_etm__get_trace(struct cs_etm_buffer * buff,struct cs_etm_queue * etmq)605 cs_etm__get_trace(struct cs_etm_buffer *buff, struct cs_etm_queue *etmq)
606 {
607 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
608 	struct auxtrace_buffer *old_buffer = aux_buffer;
609 	struct auxtrace_queue *queue;
610 
611 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
612 
613 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
614 
615 	/* If no more data, drop the previous auxtrace_buffer and return */
616 	if (!aux_buffer) {
617 		if (old_buffer)
618 			auxtrace_buffer__drop_data(old_buffer);
619 		buff->len = 0;
620 		return 0;
621 	}
622 
623 	etmq->buffer = aux_buffer;
624 
625 	/* If the aux_buffer doesn't have data associated, try to load it */
626 	if (!aux_buffer->data) {
627 		/* get the file desc associated with the perf data file */
628 		int fd = perf_data__fd(etmq->etm->session->data);
629 
630 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
631 		if (!aux_buffer->data)
632 			return -ENOMEM;
633 	}
634 
635 	/* If valid, drop the previous buffer */
636 	if (old_buffer)
637 		auxtrace_buffer__drop_data(old_buffer);
638 
639 	buff->offset = aux_buffer->offset;
640 	buff->len = aux_buffer->size;
641 	buff->buf = aux_buffer->data;
642 
643 	buff->ref_timestamp = aux_buffer->reference;
644 
645 	return buff->len;
646 }
647 
cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace * etm,struct auxtrace_queue * queue)648 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
649 				    struct auxtrace_queue *queue)
650 {
651 	struct cs_etm_queue *etmq = queue->priv;
652 
653 	/* CPU-wide tracing isn't supported yet */
654 	if (queue->tid == -1)
655 		return;
656 
657 	if ((!etmq->thread) && (etmq->tid != -1))
658 		etmq->thread = machine__find_thread(etm->machine, -1,
659 						    etmq->tid);
660 
661 	if (etmq->thread) {
662 		etmq->pid = etmq->thread->pid_;
663 		if (queue->cpu == -1)
664 			etmq->cpu = etmq->thread->cpu;
665 	}
666 }
667 
cs_etm__synth_instruction_sample(struct cs_etm_queue * etmq,u64 addr,u64 period)668 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
669 					    u64 addr, u64 period)
670 {
671 	int ret = 0;
672 	struct cs_etm_auxtrace *etm = etmq->etm;
673 	union perf_event *event = etmq->event_buf;
674 	struct perf_sample sample = {.ip = 0,};
675 
676 	event->sample.header.type = PERF_RECORD_SAMPLE;
677 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
678 	event->sample.header.size = sizeof(struct perf_event_header);
679 
680 	sample.ip = addr;
681 	sample.pid = etmq->pid;
682 	sample.tid = etmq->tid;
683 	sample.id = etmq->etm->instructions_id;
684 	sample.stream_id = etmq->etm->instructions_id;
685 	sample.period = period;
686 	sample.cpu = etmq->packet->cpu;
687 	sample.flags = 0;
688 	sample.insn_len = 1;
689 	sample.cpumode = event->sample.header.misc;
690 
691 	if (etm->synth_opts.last_branch) {
692 		cs_etm__copy_last_branch_rb(etmq);
693 		sample.branch_stack = etmq->last_branch;
694 	}
695 
696 	if (etm->synth_opts.inject) {
697 		ret = cs_etm__inject_event(event, &sample,
698 					   etm->instructions_sample_type);
699 		if (ret)
700 			return ret;
701 	}
702 
703 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
704 
705 	if (ret)
706 		pr_err(
707 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
708 			ret);
709 
710 	if (etm->synth_opts.last_branch)
711 		cs_etm__reset_last_branch_rb(etmq);
712 
713 	return ret;
714 }
715 
716 /*
717  * The cs etm packet encodes an instruction range between a branch target
718  * and the next taken branch. Generate sample accordingly.
719  */
cs_etm__synth_branch_sample(struct cs_etm_queue * etmq)720 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq)
721 {
722 	int ret = 0;
723 	struct cs_etm_auxtrace *etm = etmq->etm;
724 	struct perf_sample sample = {.ip = 0,};
725 	union perf_event *event = etmq->event_buf;
726 	struct dummy_branch_stack {
727 		u64			nr;
728 		struct branch_entry	entries;
729 	} dummy_bs;
730 	u64 ip;
731 
732 	ip = cs_etm__last_executed_instr(etmq->prev_packet);
733 
734 	event->sample.header.type = PERF_RECORD_SAMPLE;
735 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
736 	event->sample.header.size = sizeof(struct perf_event_header);
737 
738 	sample.ip = ip;
739 	sample.pid = etmq->pid;
740 	sample.tid = etmq->tid;
741 	sample.addr = cs_etm__first_executed_instr(etmq->packet);
742 	sample.id = etmq->etm->branches_id;
743 	sample.stream_id = etmq->etm->branches_id;
744 	sample.period = 1;
745 	sample.cpu = etmq->packet->cpu;
746 	sample.flags = 0;
747 	sample.cpumode = event->sample.header.misc;
748 
749 	/*
750 	 * perf report cannot handle events without a branch stack
751 	 */
752 	if (etm->synth_opts.last_branch) {
753 		dummy_bs = (struct dummy_branch_stack){
754 			.nr = 1,
755 			.entries = {
756 				.from = sample.ip,
757 				.to = sample.addr,
758 			},
759 		};
760 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
761 	}
762 
763 	if (etm->synth_opts.inject) {
764 		ret = cs_etm__inject_event(event, &sample,
765 					   etm->branches_sample_type);
766 		if (ret)
767 			return ret;
768 	}
769 
770 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
771 
772 	if (ret)
773 		pr_err(
774 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
775 		ret);
776 
777 	return ret;
778 }
779 
780 struct cs_etm_synth {
781 	struct perf_tool dummy_tool;
782 	struct perf_session *session;
783 };
784 
cs_etm__event_synth(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)785 static int cs_etm__event_synth(struct perf_tool *tool,
786 			       union perf_event *event,
787 			       struct perf_sample *sample __maybe_unused,
788 			       struct machine *machine __maybe_unused)
789 {
790 	struct cs_etm_synth *cs_etm_synth =
791 		      container_of(tool, struct cs_etm_synth, dummy_tool);
792 
793 	return perf_session__deliver_synth_event(cs_etm_synth->session,
794 						 event, NULL);
795 }
796 
cs_etm__synth_event(struct perf_session * session,struct perf_event_attr * attr,u64 id)797 static int cs_etm__synth_event(struct perf_session *session,
798 			       struct perf_event_attr *attr, u64 id)
799 {
800 	struct cs_etm_synth cs_etm_synth;
801 
802 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
803 	cs_etm_synth.session = session;
804 
805 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
806 					   &id, cs_etm__event_synth);
807 }
808 
cs_etm__synth_events(struct cs_etm_auxtrace * etm,struct perf_session * session)809 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
810 				struct perf_session *session)
811 {
812 	struct perf_evlist *evlist = session->evlist;
813 	struct perf_evsel *evsel;
814 	struct perf_event_attr attr;
815 	bool found = false;
816 	u64 id;
817 	int err;
818 
819 	evlist__for_each_entry(evlist, evsel) {
820 		if (evsel->attr.type == etm->pmu_type) {
821 			found = true;
822 			break;
823 		}
824 	}
825 
826 	if (!found) {
827 		pr_debug("No selected events with CoreSight Trace data\n");
828 		return 0;
829 	}
830 
831 	memset(&attr, 0, sizeof(struct perf_event_attr));
832 	attr.size = sizeof(struct perf_event_attr);
833 	attr.type = PERF_TYPE_HARDWARE;
834 	attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
835 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
836 			    PERF_SAMPLE_PERIOD;
837 	if (etm->timeless_decoding)
838 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
839 	else
840 		attr.sample_type |= PERF_SAMPLE_TIME;
841 
842 	attr.exclude_user = evsel->attr.exclude_user;
843 	attr.exclude_kernel = evsel->attr.exclude_kernel;
844 	attr.exclude_hv = evsel->attr.exclude_hv;
845 	attr.exclude_host = evsel->attr.exclude_host;
846 	attr.exclude_guest = evsel->attr.exclude_guest;
847 	attr.sample_id_all = evsel->attr.sample_id_all;
848 	attr.read_format = evsel->attr.read_format;
849 
850 	/* create new id val to be a fixed offset from evsel id */
851 	id = evsel->id[0] + 1000000000;
852 
853 	if (!id)
854 		id = 1;
855 
856 	if (etm->synth_opts.branches) {
857 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
858 		attr.sample_period = 1;
859 		attr.sample_type |= PERF_SAMPLE_ADDR;
860 		err = cs_etm__synth_event(session, &attr, id);
861 		if (err)
862 			return err;
863 		etm->sample_branches = true;
864 		etm->branches_sample_type = attr.sample_type;
865 		etm->branches_id = id;
866 		id += 1;
867 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
868 	}
869 
870 	if (etm->synth_opts.last_branch)
871 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
872 
873 	if (etm->synth_opts.instructions) {
874 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
875 		attr.sample_period = etm->synth_opts.period;
876 		etm->instructions_sample_period = attr.sample_period;
877 		err = cs_etm__synth_event(session, &attr, id);
878 		if (err)
879 			return err;
880 		etm->sample_instructions = true;
881 		etm->instructions_sample_type = attr.sample_type;
882 		etm->instructions_id = id;
883 		id += 1;
884 	}
885 
886 	return 0;
887 }
888 
cs_etm__sample(struct cs_etm_queue * etmq)889 static int cs_etm__sample(struct cs_etm_queue *etmq)
890 {
891 	struct cs_etm_auxtrace *etm = etmq->etm;
892 	struct cs_etm_packet *tmp;
893 	int ret;
894 	u64 instrs_executed;
895 
896 	instrs_executed = cs_etm__instr_count(etmq->packet);
897 	etmq->period_instructions += instrs_executed;
898 
899 	/*
900 	 * Record a branch when the last instruction in
901 	 * PREV_PACKET is a branch.
902 	 */
903 	if (etm->synth_opts.last_branch &&
904 	    etmq->prev_packet &&
905 	    etmq->prev_packet->sample_type == CS_ETM_RANGE &&
906 	    etmq->prev_packet->last_instr_taken_branch)
907 		cs_etm__update_last_branch_rb(etmq);
908 
909 	if (etm->sample_instructions &&
910 	    etmq->period_instructions >= etm->instructions_sample_period) {
911 		/*
912 		 * Emit instruction sample periodically
913 		 * TODO: allow period to be defined in cycles and clock time
914 		 */
915 
916 		/* Get number of instructions executed after the sample point */
917 		u64 instrs_over = etmq->period_instructions -
918 			etm->instructions_sample_period;
919 
920 		/*
921 		 * Calculate the address of the sampled instruction (-1 as
922 		 * sample is reported as though instruction has just been
923 		 * executed, but PC has not advanced to next instruction)
924 		 */
925 		u64 offset = (instrs_executed - instrs_over - 1);
926 		u64 addr = cs_etm__instr_addr(etmq->packet, offset);
927 
928 		ret = cs_etm__synth_instruction_sample(
929 			etmq, addr, etm->instructions_sample_period);
930 		if (ret)
931 			return ret;
932 
933 		/* Carry remaining instructions into next sample period */
934 		etmq->period_instructions = instrs_over;
935 	}
936 
937 	if (etm->sample_branches && etmq->prev_packet) {
938 		bool generate_sample = false;
939 
940 		/* Generate sample for tracing on packet */
941 		if (etmq->prev_packet->sample_type == CS_ETM_TRACE_ON)
942 			generate_sample = true;
943 
944 		/* Generate sample for branch taken packet */
945 		if (etmq->prev_packet->sample_type == CS_ETM_RANGE &&
946 		    etmq->prev_packet->last_instr_taken_branch)
947 			generate_sample = true;
948 
949 		if (generate_sample) {
950 			ret = cs_etm__synth_branch_sample(etmq);
951 			if (ret)
952 				return ret;
953 		}
954 	}
955 
956 	if (etm->sample_branches || etm->synth_opts.last_branch) {
957 		/*
958 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
959 		 * the next incoming packet.
960 		 */
961 		tmp = etmq->packet;
962 		etmq->packet = etmq->prev_packet;
963 		etmq->prev_packet = tmp;
964 	}
965 
966 	return 0;
967 }
968 
cs_etm__flush(struct cs_etm_queue * etmq)969 static int cs_etm__flush(struct cs_etm_queue *etmq)
970 {
971 	int err = 0;
972 	struct cs_etm_auxtrace *etm = etmq->etm;
973 	struct cs_etm_packet *tmp;
974 
975 	if (!etmq->prev_packet)
976 		return 0;
977 
978 	/* Handle start tracing packet */
979 	if (etmq->prev_packet->sample_type == CS_ETM_EMPTY)
980 		goto swap_packet;
981 
982 	if (etmq->etm->synth_opts.last_branch &&
983 	    etmq->prev_packet->sample_type == CS_ETM_RANGE) {
984 		/*
985 		 * Generate a last branch event for the branches left in the
986 		 * circular buffer at the end of the trace.
987 		 *
988 		 * Use the address of the end of the last reported execution
989 		 * range
990 		 */
991 		u64 addr = cs_etm__last_executed_instr(etmq->prev_packet);
992 
993 		err = cs_etm__synth_instruction_sample(
994 			etmq, addr,
995 			etmq->period_instructions);
996 		if (err)
997 			return err;
998 
999 		etmq->period_instructions = 0;
1000 
1001 	}
1002 
1003 	if (etm->sample_branches &&
1004 	    etmq->prev_packet->sample_type == CS_ETM_RANGE) {
1005 		err = cs_etm__synth_branch_sample(etmq);
1006 		if (err)
1007 			return err;
1008 	}
1009 
1010 swap_packet:
1011 	if (etm->sample_branches || etm->synth_opts.last_branch) {
1012 		/*
1013 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1014 		 * the next incoming packet.
1015 		 */
1016 		tmp = etmq->packet;
1017 		etmq->packet = etmq->prev_packet;
1018 		etmq->prev_packet = tmp;
1019 	}
1020 
1021 	return err;
1022 }
1023 
cs_etm__run_decoder(struct cs_etm_queue * etmq)1024 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
1025 {
1026 	struct cs_etm_auxtrace *etm = etmq->etm;
1027 	struct cs_etm_buffer buffer;
1028 	size_t buffer_used, processed;
1029 	int err = 0;
1030 
1031 	if (!etm->kernel_start)
1032 		etm->kernel_start = machine__kernel_start(etm->machine);
1033 
1034 	/* Go through each buffer in the queue and decode them one by one */
1035 	while (1) {
1036 		buffer_used = 0;
1037 		memset(&buffer, 0, sizeof(buffer));
1038 		err = cs_etm__get_trace(&buffer, etmq);
1039 		if (err <= 0)
1040 			return err;
1041 		/*
1042 		 * We cannot assume consecutive blocks in the data file are
1043 		 * contiguous, reset the decoder to force re-sync.
1044 		 */
1045 		err = cs_etm_decoder__reset(etmq->decoder);
1046 		if (err != 0)
1047 			return err;
1048 
1049 		/* Run trace decoder until buffer consumed or end of trace */
1050 		do {
1051 			processed = 0;
1052 			err = cs_etm_decoder__process_data_block(
1053 				etmq->decoder,
1054 				etmq->offset,
1055 				&buffer.buf[buffer_used],
1056 				buffer.len - buffer_used,
1057 				&processed);
1058 			if (err)
1059 				return err;
1060 
1061 			etmq->offset += processed;
1062 			buffer_used += processed;
1063 
1064 			/* Process each packet in this chunk */
1065 			while (1) {
1066 				err = cs_etm_decoder__get_packet(etmq->decoder,
1067 								 etmq->packet);
1068 				if (err <= 0)
1069 					/*
1070 					 * Stop processing this chunk on
1071 					 * end of data or error
1072 					 */
1073 					break;
1074 
1075 				switch (etmq->packet->sample_type) {
1076 				case CS_ETM_RANGE:
1077 					/*
1078 					 * If the packet contains an instruction
1079 					 * range, generate instruction sequence
1080 					 * events.
1081 					 */
1082 					cs_etm__sample(etmq);
1083 					break;
1084 				case CS_ETM_TRACE_ON:
1085 					/*
1086 					 * Discontinuity in trace, flush
1087 					 * previous branch stack
1088 					 */
1089 					cs_etm__flush(etmq);
1090 					break;
1091 				case CS_ETM_EMPTY:
1092 					/*
1093 					 * Should not receive empty packet,
1094 					 * report error.
1095 					 */
1096 					pr_err("CS ETM Trace: empty packet\n");
1097 					return -EINVAL;
1098 				default:
1099 					break;
1100 				}
1101 			}
1102 		} while (buffer.len > buffer_used);
1103 
1104 		if (err == 0)
1105 			/* Flush any remaining branch stack entries */
1106 			err = cs_etm__flush(etmq);
1107 	}
1108 
1109 	return err;
1110 }
1111 
cs_etm__process_timeless_queues(struct cs_etm_auxtrace * etm,pid_t tid,u64 time_)1112 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
1113 					   pid_t tid, u64 time_)
1114 {
1115 	unsigned int i;
1116 	struct auxtrace_queues *queues = &etm->queues;
1117 
1118 	for (i = 0; i < queues->nr_queues; i++) {
1119 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
1120 		struct cs_etm_queue *etmq = queue->priv;
1121 
1122 		if (etmq && ((tid == -1) || (etmq->tid == tid))) {
1123 			etmq->time = time_;
1124 			cs_etm__set_pid_tid_cpu(etm, queue);
1125 			cs_etm__run_decoder(etmq);
1126 		}
1127 	}
1128 
1129 	return 0;
1130 }
1131 
cs_etm__process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)1132 static int cs_etm__process_event(struct perf_session *session,
1133 				 union perf_event *event,
1134 				 struct perf_sample *sample,
1135 				 struct perf_tool *tool)
1136 {
1137 	int err = 0;
1138 	u64 timestamp;
1139 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
1140 						   struct cs_etm_auxtrace,
1141 						   auxtrace);
1142 
1143 	if (dump_trace)
1144 		return 0;
1145 
1146 	if (!tool->ordered_events) {
1147 		pr_err("CoreSight ETM Trace requires ordered events\n");
1148 		return -EINVAL;
1149 	}
1150 
1151 	if (!etm->timeless_decoding)
1152 		return -EINVAL;
1153 
1154 	if (sample->time && (sample->time != (u64) -1))
1155 		timestamp = sample->time;
1156 	else
1157 		timestamp = 0;
1158 
1159 	if (timestamp || etm->timeless_decoding) {
1160 		err = cs_etm__update_queues(etm);
1161 		if (err)
1162 			return err;
1163 	}
1164 
1165 	if (event->header.type == PERF_RECORD_EXIT)
1166 		return cs_etm__process_timeless_queues(etm,
1167 						       event->fork.tid,
1168 						       sample->time);
1169 
1170 	return 0;
1171 }
1172 
cs_etm__process_auxtrace_event(struct perf_session * session,union perf_event * event,struct perf_tool * tool __maybe_unused)1173 static int cs_etm__process_auxtrace_event(struct perf_session *session,
1174 					  union perf_event *event,
1175 					  struct perf_tool *tool __maybe_unused)
1176 {
1177 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
1178 						   struct cs_etm_auxtrace,
1179 						   auxtrace);
1180 	if (!etm->data_queued) {
1181 		struct auxtrace_buffer *buffer;
1182 		off_t  data_offset;
1183 		int fd = perf_data__fd(session->data);
1184 		bool is_pipe = perf_data__is_pipe(session->data);
1185 		int err;
1186 
1187 		if (is_pipe)
1188 			data_offset = 0;
1189 		else {
1190 			data_offset = lseek(fd, 0, SEEK_CUR);
1191 			if (data_offset == -1)
1192 				return -errno;
1193 		}
1194 
1195 		err = auxtrace_queues__add_event(&etm->queues, session,
1196 						 event, data_offset, &buffer);
1197 		if (err)
1198 			return err;
1199 
1200 		if (dump_trace)
1201 			if (auxtrace_buffer__get_data(buffer, fd)) {
1202 				cs_etm__dump_event(etm, buffer);
1203 				auxtrace_buffer__put_data(buffer);
1204 			}
1205 	}
1206 
1207 	return 0;
1208 }
1209 
cs_etm__is_timeless_decoding(struct cs_etm_auxtrace * etm)1210 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
1211 {
1212 	struct perf_evsel *evsel;
1213 	struct perf_evlist *evlist = etm->session->evlist;
1214 	bool timeless_decoding = true;
1215 
1216 	/*
1217 	 * Circle through the list of event and complain if we find one
1218 	 * with the time bit set.
1219 	 */
1220 	evlist__for_each_entry(evlist, evsel) {
1221 		if ((evsel->attr.sample_type & PERF_SAMPLE_TIME))
1222 			timeless_decoding = false;
1223 	}
1224 
1225 	return timeless_decoding;
1226 }
1227 
1228 static const char * const cs_etm_global_header_fmts[] = {
1229 	[CS_HEADER_VERSION_0]	= "	Header version		       %llx\n",
1230 	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
1231 	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
1232 };
1233 
1234 static const char * const cs_etm_priv_fmts[] = {
1235 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
1236 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
1237 	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
1238 	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
1239 	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
1240 	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
1241 };
1242 
1243 static const char * const cs_etmv4_priv_fmts[] = {
1244 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
1245 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
1246 	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
1247 	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
1248 	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
1249 	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
1250 	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
1251 	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
1252 	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
1253 };
1254 
cs_etm__print_auxtrace_info(u64 * val,int num)1255 static void cs_etm__print_auxtrace_info(u64 *val, int num)
1256 {
1257 	int i, j, cpu = 0;
1258 
1259 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
1260 		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
1261 
1262 	for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
1263 		if (val[i] == __perf_cs_etmv3_magic)
1264 			for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
1265 				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
1266 		else if (val[i] == __perf_cs_etmv4_magic)
1267 			for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
1268 				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
1269 		else
1270 			/* failure.. return */
1271 			return;
1272 	}
1273 }
1274 
cs_etm__process_auxtrace_info(union perf_event * event,struct perf_session * session)1275 int cs_etm__process_auxtrace_info(union perf_event *event,
1276 				  struct perf_session *session)
1277 {
1278 	struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
1279 	struct cs_etm_auxtrace *etm = NULL;
1280 	struct int_node *inode;
1281 	unsigned int pmu_type;
1282 	int event_header_size = sizeof(struct perf_event_header);
1283 	int info_header_size;
1284 	int total_size = auxtrace_info->header.size;
1285 	int priv_size = 0;
1286 	int num_cpu;
1287 	int err = 0, idx = -1;
1288 	int i, j, k;
1289 	u64 *ptr, *hdr = NULL;
1290 	u64 **metadata = NULL;
1291 
1292 	/*
1293 	 * sizeof(auxtrace_info_event::type) +
1294 	 * sizeof(auxtrace_info_event::reserved) == 8
1295 	 */
1296 	info_header_size = 8;
1297 
1298 	if (total_size < (event_header_size + info_header_size))
1299 		return -EINVAL;
1300 
1301 	priv_size = total_size - event_header_size - info_header_size;
1302 
1303 	/* First the global part */
1304 	ptr = (u64 *) auxtrace_info->priv;
1305 
1306 	/* Look for version '0' of the header */
1307 	if (ptr[0] != 0)
1308 		return -EINVAL;
1309 
1310 	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
1311 	if (!hdr)
1312 		return -ENOMEM;
1313 
1314 	/* Extract header information - see cs-etm.h for format */
1315 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
1316 		hdr[i] = ptr[i];
1317 	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
1318 	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
1319 				    0xffffffff);
1320 
1321 	/*
1322 	 * Create an RB tree for traceID-CPU# tuple. Since the conversion has
1323 	 * to be made for each packet that gets decoded, optimizing access in
1324 	 * anything other than a sequential array is worth doing.
1325 	 */
1326 	traceid_list = intlist__new(NULL);
1327 	if (!traceid_list) {
1328 		err = -ENOMEM;
1329 		goto err_free_hdr;
1330 	}
1331 
1332 	metadata = zalloc(sizeof(*metadata) * num_cpu);
1333 	if (!metadata) {
1334 		err = -ENOMEM;
1335 		goto err_free_traceid_list;
1336 	}
1337 
1338 	/*
1339 	 * The metadata is stored in the auxtrace_info section and encodes
1340 	 * the configuration of the ARM embedded trace macrocell which is
1341 	 * required by the trace decoder to properly decode the trace due
1342 	 * to its highly compressed nature.
1343 	 */
1344 	for (j = 0; j < num_cpu; j++) {
1345 		if (ptr[i] == __perf_cs_etmv3_magic) {
1346 			metadata[j] = zalloc(sizeof(*metadata[j]) *
1347 					     CS_ETM_PRIV_MAX);
1348 			if (!metadata[j]) {
1349 				err = -ENOMEM;
1350 				goto err_free_metadata;
1351 			}
1352 			for (k = 0; k < CS_ETM_PRIV_MAX; k++)
1353 				metadata[j][k] = ptr[i + k];
1354 
1355 			/* The traceID is our handle */
1356 			idx = metadata[j][CS_ETM_ETMTRACEIDR];
1357 			i += CS_ETM_PRIV_MAX;
1358 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
1359 			metadata[j] = zalloc(sizeof(*metadata[j]) *
1360 					     CS_ETMV4_PRIV_MAX);
1361 			if (!metadata[j]) {
1362 				err = -ENOMEM;
1363 				goto err_free_metadata;
1364 			}
1365 			for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
1366 				metadata[j][k] = ptr[i + k];
1367 
1368 			/* The traceID is our handle */
1369 			idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
1370 			i += CS_ETMV4_PRIV_MAX;
1371 		}
1372 
1373 		/* Get an RB node for this CPU */
1374 		inode = intlist__findnew(traceid_list, idx);
1375 
1376 		/* Something went wrong, no need to continue */
1377 		if (!inode) {
1378 			err = PTR_ERR(inode);
1379 			goto err_free_metadata;
1380 		}
1381 
1382 		/*
1383 		 * The node for that CPU should not be taken.
1384 		 * Back out if that's the case.
1385 		 */
1386 		if (inode->priv) {
1387 			err = -EINVAL;
1388 			goto err_free_metadata;
1389 		}
1390 		/* All good, associate the traceID with the CPU# */
1391 		inode->priv = &metadata[j][CS_ETM_CPU];
1392 	}
1393 
1394 	/*
1395 	 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
1396 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
1397 	 * global metadata, and each cpu's metadata respectively.
1398 	 * The following tests if the correct number of double words was
1399 	 * present in the auxtrace info section.
1400 	 */
1401 	if (i * 8 != priv_size) {
1402 		err = -EINVAL;
1403 		goto err_free_metadata;
1404 	}
1405 
1406 	etm = zalloc(sizeof(*etm));
1407 
1408 	if (!etm) {
1409 		err = -ENOMEM;
1410 		goto err_free_metadata;
1411 	}
1412 
1413 	err = auxtrace_queues__init(&etm->queues);
1414 	if (err)
1415 		goto err_free_etm;
1416 
1417 	etm->session = session;
1418 	etm->machine = &session->machines.host;
1419 
1420 	etm->num_cpu = num_cpu;
1421 	etm->pmu_type = pmu_type;
1422 	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
1423 	etm->metadata = metadata;
1424 	etm->auxtrace_type = auxtrace_info->type;
1425 	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
1426 
1427 	etm->auxtrace.process_event = cs_etm__process_event;
1428 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
1429 	etm->auxtrace.flush_events = cs_etm__flush_events;
1430 	etm->auxtrace.free_events = cs_etm__free_events;
1431 	etm->auxtrace.free = cs_etm__free;
1432 	session->auxtrace = &etm->auxtrace;
1433 
1434 	etm->unknown_thread = thread__new(999999999, 999999999);
1435 	if (!etm->unknown_thread)
1436 		goto err_free_queues;
1437 
1438 	/*
1439 	 * Initialize list node so that at thread__zput() we can avoid
1440 	 * segmentation fault at list_del_init().
1441 	 */
1442 	INIT_LIST_HEAD(&etm->unknown_thread->node);
1443 
1444 	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
1445 	if (err)
1446 		goto err_delete_thread;
1447 
1448 	if (thread__init_map_groups(etm->unknown_thread, etm->machine))
1449 		goto err_delete_thread;
1450 
1451 	if (dump_trace) {
1452 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
1453 		return 0;
1454 	}
1455 
1456 	if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
1457 		etm->synth_opts = *session->itrace_synth_opts;
1458 	} else {
1459 		itrace_synth_opts__set_default(&etm->synth_opts);
1460 		etm->synth_opts.callchain = false;
1461 	}
1462 
1463 	err = cs_etm__synth_events(etm, session);
1464 	if (err)
1465 		goto err_delete_thread;
1466 
1467 	err = auxtrace_queues__process_index(&etm->queues, session);
1468 	if (err)
1469 		goto err_delete_thread;
1470 
1471 	etm->data_queued = etm->queues.populated;
1472 
1473 	return 0;
1474 
1475 err_delete_thread:
1476 	thread__zput(etm->unknown_thread);
1477 err_free_queues:
1478 	auxtrace_queues__free(&etm->queues);
1479 	session->auxtrace = NULL;
1480 err_free_etm:
1481 	zfree(&etm);
1482 err_free_metadata:
1483 	/* No need to check @metadata[j], free(NULL) is supported */
1484 	for (j = 0; j < num_cpu; j++)
1485 		free(metadata[j]);
1486 	zfree(&metadata);
1487 err_free_traceid_list:
1488 	intlist__delete(traceid_list);
1489 err_free_hdr:
1490 	zfree(&hdr);
1491 
1492 	return -EINVAL;
1493 }
1494