1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41
42 #include "sane_ctype.h"
43
44 struct perf_missing_features perf_missing_features;
45
46 static clockid_t clockid;
47
perf_evsel__no_extra_init(struct perf_evsel * evsel __maybe_unused)48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 return 0;
51 }
52
test_attr__ready(void)53 void __weak test_attr__ready(void) { }
54
perf_evsel__no_extra_fini(struct perf_evsel * evsel __maybe_unused)55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58
59 static struct {
60 size_t size;
61 int (*init)(struct perf_evsel *evsel);
62 void (*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 .size = sizeof(struct perf_evsel),
65 .init = perf_evsel__no_extra_init,
66 .fini = perf_evsel__no_extra_fini,
67 };
68
perf_evsel__object_config(size_t object_size,int (* init)(struct perf_evsel * evsel),void (* fini)(struct perf_evsel * evsel))69 int perf_evsel__object_config(size_t object_size,
70 int (*init)(struct perf_evsel *evsel),
71 void (*fini)(struct perf_evsel *evsel))
72 {
73
74 if (object_size == 0)
75 goto set_methods;
76
77 if (perf_evsel__object.size > object_size)
78 return -EINVAL;
79
80 perf_evsel__object.size = object_size;
81
82 set_methods:
83 if (init != NULL)
84 perf_evsel__object.init = init;
85
86 if (fini != NULL)
87 perf_evsel__object.fini = fini;
88
89 return 0;
90 }
91
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93
__perf_evsel__sample_size(u64 sample_type)94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 u64 mask = sample_type & PERF_SAMPLE_MASK;
97 int size = 0;
98 int i;
99
100 for (i = 0; i < 64; i++) {
101 if (mask & (1ULL << i))
102 size++;
103 }
104
105 size *= sizeof(u64);
106
107 return size;
108 }
109
110 /**
111 * __perf_evsel__calc_id_pos - calculate id_pos.
112 * @sample_type: sample type
113 *
114 * This function returns the position of the event id (PERF_SAMPLE_ID or
115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116 * sample_event.
117 */
__perf_evsel__calc_id_pos(u64 sample_type)118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 int idx = 0;
121
122 if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 return 0;
124
125 if (!(sample_type & PERF_SAMPLE_ID))
126 return -1;
127
128 if (sample_type & PERF_SAMPLE_IP)
129 idx += 1;
130
131 if (sample_type & PERF_SAMPLE_TID)
132 idx += 1;
133
134 if (sample_type & PERF_SAMPLE_TIME)
135 idx += 1;
136
137 if (sample_type & PERF_SAMPLE_ADDR)
138 idx += 1;
139
140 return idx;
141 }
142
143 /**
144 * __perf_evsel__calc_is_pos - calculate is_pos.
145 * @sample_type: sample type
146 *
147 * This function returns the position (counting backwards) of the event id
148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149 * sample_id_all is used there is an id sample appended to non-sample events.
150 */
__perf_evsel__calc_is_pos(u64 sample_type)151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 int idx = 1;
154
155 if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 return 1;
157
158 if (!(sample_type & PERF_SAMPLE_ID))
159 return -1;
160
161 if (sample_type & PERF_SAMPLE_CPU)
162 idx += 1;
163
164 if (sample_type & PERF_SAMPLE_STREAM_ID)
165 idx += 1;
166
167 return idx;
168 }
169
perf_evsel__calc_id_pos(struct perf_evsel * evsel)170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175
__perf_evsel__set_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 enum perf_event_sample_format bit)
178 {
179 if (!(evsel->attr.sample_type & bit)) {
180 evsel->attr.sample_type |= bit;
181 evsel->sample_size += sizeof(u64);
182 perf_evsel__calc_id_pos(evsel);
183 }
184 }
185
__perf_evsel__reset_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 enum perf_event_sample_format bit)
188 {
189 if (evsel->attr.sample_type & bit) {
190 evsel->attr.sample_type &= ~bit;
191 evsel->sample_size -= sizeof(u64);
192 perf_evsel__calc_id_pos(evsel);
193 }
194 }
195
perf_evsel__set_sample_id(struct perf_evsel * evsel,bool can_sample_identifier)196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 bool can_sample_identifier)
198 {
199 if (can_sample_identifier) {
200 perf_evsel__reset_sample_bit(evsel, ID);
201 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 } else {
203 perf_evsel__set_sample_bit(evsel, ID);
204 }
205 evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207
208 /**
209 * perf_evsel__is_function_event - Return whether given evsel is a function
210 * trace event
211 *
212 * @evsel - evsel selector to be tested
213 *
214 * Return %true if event is function trace event
215 */
perf_evsel__is_function_event(struct perf_evsel * evsel)216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219
220 return evsel->name &&
221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222
223 #undef FUNCTION_EVENT
224 }
225
perf_evsel__init(struct perf_evsel * evsel,struct perf_event_attr * attr,int idx)226 void perf_evsel__init(struct perf_evsel *evsel,
227 struct perf_event_attr *attr, int idx)
228 {
229 evsel->idx = idx;
230 evsel->tracking = !idx;
231 evsel->attr = *attr;
232 evsel->leader = evsel;
233 evsel->unit = "";
234 evsel->scale = 1.0;
235 evsel->evlist = NULL;
236 evsel->bpf_fd = -1;
237 INIT_LIST_HEAD(&evsel->node);
238 INIT_LIST_HEAD(&evsel->config_terms);
239 perf_evsel__object.init(evsel);
240 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
241 perf_evsel__calc_id_pos(evsel);
242 evsel->cmdline_group_boundary = false;
243 evsel->metric_expr = NULL;
244 evsel->metric_name = NULL;
245 evsel->metric_events = NULL;
246 evsel->collect_stat = false;
247 evsel->pmu_name = NULL;
248 }
249
perf_evsel__new_idx(struct perf_event_attr * attr,int idx)250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
251 {
252 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
253
254 if (!evsel)
255 return NULL;
256 perf_evsel__init(evsel, attr, idx);
257
258 if (perf_evsel__is_bpf_output(evsel)) {
259 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
260 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
261 evsel->attr.sample_period = 1;
262 }
263
264 if (perf_evsel__is_clock(evsel)) {
265 /*
266 * The evsel->unit points to static alias->unit
267 * so it's ok to use static string in here.
268 */
269 static const char *unit = "msec";
270
271 evsel->unit = unit;
272 evsel->scale = 1e-6;
273 }
274
275 return evsel;
276 }
277
perf_event_can_profile_kernel(void)278 static bool perf_event_can_profile_kernel(void)
279 {
280 return geteuid() == 0 || perf_event_paranoid() == -1;
281 }
282
perf_evsel__new_cycles(bool precise)283 struct perf_evsel *perf_evsel__new_cycles(bool precise)
284 {
285 struct perf_event_attr attr = {
286 .type = PERF_TYPE_HARDWARE,
287 .config = PERF_COUNT_HW_CPU_CYCLES,
288 .exclude_kernel = !perf_event_can_profile_kernel(),
289 };
290 struct perf_evsel *evsel;
291
292 event_attr_init(&attr);
293
294 if (!precise)
295 goto new_event;
296 /*
297 * Unnamed union member, not supported as struct member named
298 * initializer in older compilers such as gcc 4.4.7
299 *
300 * Just for probing the precise_ip:
301 */
302 attr.sample_period = 1;
303
304 perf_event_attr__set_max_precise_ip(&attr);
305 /*
306 * Now let the usual logic to set up the perf_event_attr defaults
307 * to kick in when we return and before perf_evsel__open() is called.
308 */
309 attr.sample_period = 0;
310 new_event:
311 evsel = perf_evsel__new(&attr);
312 if (evsel == NULL)
313 goto out;
314
315 /* use asprintf() because free(evsel) assumes name is allocated */
316 if (asprintf(&evsel->name, "cycles%s%s%.*s",
317 (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
318 attr.exclude_kernel ? "u" : "",
319 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
320 goto error_free;
321 out:
322 return evsel;
323 error_free:
324 perf_evsel__delete(evsel);
325 evsel = NULL;
326 goto out;
327 }
328
329 /*
330 * Returns pointer with encoded error via <linux/err.h> interface.
331 */
perf_evsel__newtp_idx(const char * sys,const char * name,int idx)332 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
333 {
334 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
335 int err = -ENOMEM;
336
337 if (evsel == NULL) {
338 goto out_err;
339 } else {
340 struct perf_event_attr attr = {
341 .type = PERF_TYPE_TRACEPOINT,
342 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
343 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
344 };
345
346 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
347 goto out_free;
348
349 evsel->tp_format = trace_event__tp_format(sys, name);
350 if (IS_ERR(evsel->tp_format)) {
351 err = PTR_ERR(evsel->tp_format);
352 goto out_free;
353 }
354
355 event_attr_init(&attr);
356 attr.config = evsel->tp_format->id;
357 attr.sample_period = 1;
358 perf_evsel__init(evsel, &attr, idx);
359 }
360
361 return evsel;
362
363 out_free:
364 zfree(&evsel->name);
365 free(evsel);
366 out_err:
367 return ERR_PTR(err);
368 }
369
370 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
371 "cycles",
372 "instructions",
373 "cache-references",
374 "cache-misses",
375 "branches",
376 "branch-misses",
377 "bus-cycles",
378 "stalled-cycles-frontend",
379 "stalled-cycles-backend",
380 "ref-cycles",
381 };
382
__perf_evsel__hw_name(u64 config)383 static const char *__perf_evsel__hw_name(u64 config)
384 {
385 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
386 return perf_evsel__hw_names[config];
387
388 return "unknown-hardware";
389 }
390
perf_evsel__add_modifiers(struct perf_evsel * evsel,char * bf,size_t size)391 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
392 {
393 int colon = 0, r = 0;
394 struct perf_event_attr *attr = &evsel->attr;
395 bool exclude_guest_default = false;
396
397 #define MOD_PRINT(context, mod) do { \
398 if (!attr->exclude_##context) { \
399 if (!colon) colon = ++r; \
400 r += scnprintf(bf + r, size - r, "%c", mod); \
401 } } while(0)
402
403 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
404 MOD_PRINT(kernel, 'k');
405 MOD_PRINT(user, 'u');
406 MOD_PRINT(hv, 'h');
407 exclude_guest_default = true;
408 }
409
410 if (attr->precise_ip) {
411 if (!colon)
412 colon = ++r;
413 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
414 exclude_guest_default = true;
415 }
416
417 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
418 MOD_PRINT(host, 'H');
419 MOD_PRINT(guest, 'G');
420 }
421 #undef MOD_PRINT
422 if (colon)
423 bf[colon - 1] = ':';
424 return r;
425 }
426
perf_evsel__hw_name(struct perf_evsel * evsel,char * bf,size_t size)427 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
428 {
429 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
430 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
431 }
432
433 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
434 "cpu-clock",
435 "task-clock",
436 "page-faults",
437 "context-switches",
438 "cpu-migrations",
439 "minor-faults",
440 "major-faults",
441 "alignment-faults",
442 "emulation-faults",
443 "dummy",
444 };
445
__perf_evsel__sw_name(u64 config)446 static const char *__perf_evsel__sw_name(u64 config)
447 {
448 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
449 return perf_evsel__sw_names[config];
450 return "unknown-software";
451 }
452
perf_evsel__sw_name(struct perf_evsel * evsel,char * bf,size_t size)453 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
454 {
455 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
456 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
457 }
458
__perf_evsel__bp_name(char * bf,size_t size,u64 addr,u64 type)459 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
460 {
461 int r;
462
463 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
464
465 if (type & HW_BREAKPOINT_R)
466 r += scnprintf(bf + r, size - r, "r");
467
468 if (type & HW_BREAKPOINT_W)
469 r += scnprintf(bf + r, size - r, "w");
470
471 if (type & HW_BREAKPOINT_X)
472 r += scnprintf(bf + r, size - r, "x");
473
474 return r;
475 }
476
perf_evsel__bp_name(struct perf_evsel * evsel,char * bf,size_t size)477 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
478 {
479 struct perf_event_attr *attr = &evsel->attr;
480 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
481 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
482 }
483
484 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
485 [PERF_EVSEL__MAX_ALIASES] = {
486 { "L1-dcache", "l1-d", "l1d", "L1-data", },
487 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
488 { "LLC", "L2", },
489 { "dTLB", "d-tlb", "Data-TLB", },
490 { "iTLB", "i-tlb", "Instruction-TLB", },
491 { "branch", "branches", "bpu", "btb", "bpc", },
492 { "node", },
493 };
494
495 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
496 [PERF_EVSEL__MAX_ALIASES] = {
497 { "load", "loads", "read", },
498 { "store", "stores", "write", },
499 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
500 };
501
502 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
503 [PERF_EVSEL__MAX_ALIASES] = {
504 { "refs", "Reference", "ops", "access", },
505 { "misses", "miss", },
506 };
507
508 #define C(x) PERF_COUNT_HW_CACHE_##x
509 #define CACHE_READ (1 << C(OP_READ))
510 #define CACHE_WRITE (1 << C(OP_WRITE))
511 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
512 #define COP(x) (1 << x)
513
514 /*
515 * cache operartion stat
516 * L1I : Read and prefetch only
517 * ITLB and BPU : Read-only
518 */
519 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
520 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
522 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
523 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
524 [C(ITLB)] = (CACHE_READ),
525 [C(BPU)] = (CACHE_READ),
526 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
527 };
528
perf_evsel__is_cache_op_valid(u8 type,u8 op)529 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
530 {
531 if (perf_evsel__hw_cache_stat[type] & COP(op))
532 return true; /* valid */
533 else
534 return false; /* invalid */
535 }
536
__perf_evsel__hw_cache_type_op_res_name(u8 type,u8 op,u8 result,char * bf,size_t size)537 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
538 char *bf, size_t size)
539 {
540 if (result) {
541 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
542 perf_evsel__hw_cache_op[op][0],
543 perf_evsel__hw_cache_result[result][0]);
544 }
545
546 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
547 perf_evsel__hw_cache_op[op][1]);
548 }
549
__perf_evsel__hw_cache_name(u64 config,char * bf,size_t size)550 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
551 {
552 u8 op, result, type = (config >> 0) & 0xff;
553 const char *err = "unknown-ext-hardware-cache-type";
554
555 if (type >= PERF_COUNT_HW_CACHE_MAX)
556 goto out_err;
557
558 op = (config >> 8) & 0xff;
559 err = "unknown-ext-hardware-cache-op";
560 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
561 goto out_err;
562
563 result = (config >> 16) & 0xff;
564 err = "unknown-ext-hardware-cache-result";
565 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
566 goto out_err;
567
568 err = "invalid-cache";
569 if (!perf_evsel__is_cache_op_valid(type, op))
570 goto out_err;
571
572 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
573 out_err:
574 return scnprintf(bf, size, "%s", err);
575 }
576
perf_evsel__hw_cache_name(struct perf_evsel * evsel,char * bf,size_t size)577 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
578 {
579 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
580 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
581 }
582
perf_evsel__raw_name(struct perf_evsel * evsel,char * bf,size_t size)583 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
584 {
585 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
586 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
587 }
588
perf_evsel__name(struct perf_evsel * evsel)589 const char *perf_evsel__name(struct perf_evsel *evsel)
590 {
591 char bf[128];
592
593 if (!evsel)
594 goto out_unknown;
595
596 if (evsel->name)
597 return evsel->name;
598
599 switch (evsel->attr.type) {
600 case PERF_TYPE_RAW:
601 perf_evsel__raw_name(evsel, bf, sizeof(bf));
602 break;
603
604 case PERF_TYPE_HARDWARE:
605 perf_evsel__hw_name(evsel, bf, sizeof(bf));
606 break;
607
608 case PERF_TYPE_HW_CACHE:
609 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
610 break;
611
612 case PERF_TYPE_SOFTWARE:
613 perf_evsel__sw_name(evsel, bf, sizeof(bf));
614 break;
615
616 case PERF_TYPE_TRACEPOINT:
617 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
618 break;
619
620 case PERF_TYPE_BREAKPOINT:
621 perf_evsel__bp_name(evsel, bf, sizeof(bf));
622 break;
623
624 default:
625 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
626 evsel->attr.type);
627 break;
628 }
629
630 evsel->name = strdup(bf);
631
632 if (evsel->name)
633 return evsel->name;
634 out_unknown:
635 return "unknown";
636 }
637
perf_evsel__group_name(struct perf_evsel * evsel)638 const char *perf_evsel__group_name(struct perf_evsel *evsel)
639 {
640 return evsel->group_name ?: "anon group";
641 }
642
643 /*
644 * Returns the group details for the specified leader,
645 * with following rules.
646 *
647 * For record -e '{cycles,instructions}'
648 * 'anon group { cycles:u, instructions:u }'
649 *
650 * For record -e 'cycles,instructions' and report --group
651 * 'cycles:u, instructions:u'
652 */
perf_evsel__group_desc(struct perf_evsel * evsel,char * buf,size_t size)653 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
654 {
655 int ret = 0;
656 struct perf_evsel *pos;
657 const char *group_name = perf_evsel__group_name(evsel);
658
659 if (!evsel->forced_leader)
660 ret = scnprintf(buf, size, "%s { ", group_name);
661
662 ret += scnprintf(buf + ret, size - ret, "%s",
663 perf_evsel__name(evsel));
664
665 for_each_group_member(pos, evsel)
666 ret += scnprintf(buf + ret, size - ret, ", %s",
667 perf_evsel__name(pos));
668
669 if (!evsel->forced_leader)
670 ret += scnprintf(buf + ret, size - ret, " }");
671
672 return ret;
673 }
674
__perf_evsel__config_callchain(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * param)675 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
676 struct record_opts *opts,
677 struct callchain_param *param)
678 {
679 bool function = perf_evsel__is_function_event(evsel);
680 struct perf_event_attr *attr = &evsel->attr;
681
682 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
683
684 attr->sample_max_stack = param->max_stack;
685
686 if (param->record_mode == CALLCHAIN_LBR) {
687 if (!opts->branch_stack) {
688 if (attr->exclude_user) {
689 pr_warning("LBR callstack option is only available "
690 "to get user callchain information. "
691 "Falling back to framepointers.\n");
692 } else {
693 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
694 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
695 PERF_SAMPLE_BRANCH_CALL_STACK |
696 PERF_SAMPLE_BRANCH_NO_CYCLES |
697 PERF_SAMPLE_BRANCH_NO_FLAGS;
698 }
699 } else
700 pr_warning("Cannot use LBR callstack with branch stack. "
701 "Falling back to framepointers.\n");
702 }
703
704 if (param->record_mode == CALLCHAIN_DWARF) {
705 if (!function) {
706 perf_evsel__set_sample_bit(evsel, REGS_USER);
707 perf_evsel__set_sample_bit(evsel, STACK_USER);
708 attr->sample_regs_user |= PERF_REGS_MASK;
709 attr->sample_stack_user = param->dump_size;
710 attr->exclude_callchain_user = 1;
711 } else {
712 pr_info("Cannot use DWARF unwind for function trace event,"
713 " falling back to framepointers.\n");
714 }
715 }
716
717 if (function) {
718 pr_info("Disabling user space callchains for function trace event.\n");
719 attr->exclude_callchain_user = 1;
720 }
721 }
722
perf_evsel__config_callchain(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * param)723 void perf_evsel__config_callchain(struct perf_evsel *evsel,
724 struct record_opts *opts,
725 struct callchain_param *param)
726 {
727 if (param->enabled)
728 return __perf_evsel__config_callchain(evsel, opts, param);
729 }
730
731 static void
perf_evsel__reset_callgraph(struct perf_evsel * evsel,struct callchain_param * param)732 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
733 struct callchain_param *param)
734 {
735 struct perf_event_attr *attr = &evsel->attr;
736
737 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
738 if (param->record_mode == CALLCHAIN_LBR) {
739 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
740 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
741 PERF_SAMPLE_BRANCH_CALL_STACK);
742 }
743 if (param->record_mode == CALLCHAIN_DWARF) {
744 perf_evsel__reset_sample_bit(evsel, REGS_USER);
745 perf_evsel__reset_sample_bit(evsel, STACK_USER);
746 }
747 }
748
apply_config_terms(struct perf_evsel * evsel,struct record_opts * opts,bool track)749 static void apply_config_terms(struct perf_evsel *evsel,
750 struct record_opts *opts, bool track)
751 {
752 struct perf_evsel_config_term *term;
753 struct list_head *config_terms = &evsel->config_terms;
754 struct perf_event_attr *attr = &evsel->attr;
755 /* callgraph default */
756 struct callchain_param param = {
757 .record_mode = callchain_param.record_mode,
758 };
759 u32 dump_size = 0;
760 int max_stack = 0;
761 const char *callgraph_buf = NULL;
762
763 list_for_each_entry(term, config_terms, list) {
764 switch (term->type) {
765 case PERF_EVSEL__CONFIG_TERM_PERIOD:
766 if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
767 attr->sample_period = term->val.period;
768 attr->freq = 0;
769 perf_evsel__reset_sample_bit(evsel, PERIOD);
770 }
771 break;
772 case PERF_EVSEL__CONFIG_TERM_FREQ:
773 if (!(term->weak && opts->user_freq != UINT_MAX)) {
774 attr->sample_freq = term->val.freq;
775 attr->freq = 1;
776 perf_evsel__set_sample_bit(evsel, PERIOD);
777 }
778 break;
779 case PERF_EVSEL__CONFIG_TERM_TIME:
780 if (term->val.time)
781 perf_evsel__set_sample_bit(evsel, TIME);
782 else
783 perf_evsel__reset_sample_bit(evsel, TIME);
784 break;
785 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
786 callgraph_buf = term->val.callgraph;
787 break;
788 case PERF_EVSEL__CONFIG_TERM_BRANCH:
789 if (term->val.branch && strcmp(term->val.branch, "no")) {
790 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
791 parse_branch_str(term->val.branch,
792 &attr->branch_sample_type);
793 } else
794 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
795 break;
796 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
797 dump_size = term->val.stack_user;
798 break;
799 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
800 max_stack = term->val.max_stack;
801 break;
802 case PERF_EVSEL__CONFIG_TERM_INHERIT:
803 /*
804 * attr->inherit should has already been set by
805 * perf_evsel__config. If user explicitly set
806 * inherit using config terms, override global
807 * opt->no_inherit setting.
808 */
809 attr->inherit = term->val.inherit ? 1 : 0;
810 break;
811 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
812 attr->write_backward = term->val.overwrite ? 1 : 0;
813 break;
814 case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
815 break;
816 default:
817 break;
818 }
819 }
820
821 /* User explicitly set per-event callgraph, clear the old setting and reset. */
822 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
823 bool sample_address = false;
824
825 if (max_stack) {
826 param.max_stack = max_stack;
827 if (callgraph_buf == NULL)
828 callgraph_buf = "fp";
829 }
830
831 /* parse callgraph parameters */
832 if (callgraph_buf != NULL) {
833 if (!strcmp(callgraph_buf, "no")) {
834 param.enabled = false;
835 param.record_mode = CALLCHAIN_NONE;
836 } else {
837 param.enabled = true;
838 if (parse_callchain_record(callgraph_buf, ¶m)) {
839 pr_err("per-event callgraph setting for %s failed. "
840 "Apply callgraph global setting for it\n",
841 evsel->name);
842 return;
843 }
844 if (param.record_mode == CALLCHAIN_DWARF)
845 sample_address = true;
846 }
847 }
848 if (dump_size > 0) {
849 dump_size = round_up(dump_size, sizeof(u64));
850 param.dump_size = dump_size;
851 }
852
853 /* If global callgraph set, clear it */
854 if (callchain_param.enabled)
855 perf_evsel__reset_callgraph(evsel, &callchain_param);
856
857 /* set perf-event callgraph */
858 if (param.enabled) {
859 if (sample_address) {
860 perf_evsel__set_sample_bit(evsel, ADDR);
861 perf_evsel__set_sample_bit(evsel, DATA_SRC);
862 evsel->attr.mmap_data = track;
863 }
864 perf_evsel__config_callchain(evsel, opts, ¶m);
865 }
866 }
867 }
868
is_dummy_event(struct perf_evsel * evsel)869 static bool is_dummy_event(struct perf_evsel *evsel)
870 {
871 return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
872 (evsel->attr.config == PERF_COUNT_SW_DUMMY);
873 }
874
875 /*
876 * The enable_on_exec/disabled value strategy:
877 *
878 * 1) For any type of traced program:
879 * - all independent events and group leaders are disabled
880 * - all group members are enabled
881 *
882 * Group members are ruled by group leaders. They need to
883 * be enabled, because the group scheduling relies on that.
884 *
885 * 2) For traced programs executed by perf:
886 * - all independent events and group leaders have
887 * enable_on_exec set
888 * - we don't specifically enable or disable any event during
889 * the record command
890 *
891 * Independent events and group leaders are initially disabled
892 * and get enabled by exec. Group members are ruled by group
893 * leaders as stated in 1).
894 *
895 * 3) For traced programs attached by perf (pid/tid):
896 * - we specifically enable or disable all events during
897 * the record command
898 *
899 * When attaching events to already running traced we
900 * enable/disable events specifically, as there's no
901 * initial traced exec call.
902 */
perf_evsel__config(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * callchain)903 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
904 struct callchain_param *callchain)
905 {
906 struct perf_evsel *leader = evsel->leader;
907 struct perf_event_attr *attr = &evsel->attr;
908 int track = evsel->tracking;
909 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
910
911 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
912 attr->inherit = !opts->no_inherit;
913 attr->write_backward = opts->overwrite ? 1 : 0;
914
915 perf_evsel__set_sample_bit(evsel, IP);
916 perf_evsel__set_sample_bit(evsel, TID);
917
918 if (evsel->sample_read) {
919 perf_evsel__set_sample_bit(evsel, READ);
920
921 /*
922 * We need ID even in case of single event, because
923 * PERF_SAMPLE_READ process ID specific data.
924 */
925 perf_evsel__set_sample_id(evsel, false);
926
927 /*
928 * Apply group format only if we belong to group
929 * with more than one members.
930 */
931 if (leader->nr_members > 1) {
932 attr->read_format |= PERF_FORMAT_GROUP;
933 attr->inherit = 0;
934 }
935 }
936
937 /*
938 * We default some events to have a default interval. But keep
939 * it a weak assumption overridable by the user.
940 */
941 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
942 opts->user_interval != ULLONG_MAX)) {
943 if (opts->freq) {
944 perf_evsel__set_sample_bit(evsel, PERIOD);
945 attr->freq = 1;
946 attr->sample_freq = opts->freq;
947 } else {
948 attr->sample_period = opts->default_interval;
949 }
950 }
951
952 /*
953 * Disable sampling for all group members other
954 * than leader in case leader 'leads' the sampling.
955 */
956 if ((leader != evsel) && leader->sample_read) {
957 attr->freq = 0;
958 attr->sample_freq = 0;
959 attr->sample_period = 0;
960 attr->write_backward = 0;
961 }
962
963 if (opts->no_samples)
964 attr->sample_freq = 0;
965
966 if (opts->inherit_stat) {
967 evsel->attr.read_format |=
968 PERF_FORMAT_TOTAL_TIME_ENABLED |
969 PERF_FORMAT_TOTAL_TIME_RUNNING |
970 PERF_FORMAT_ID;
971 attr->inherit_stat = 1;
972 }
973
974 if (opts->sample_address) {
975 perf_evsel__set_sample_bit(evsel, ADDR);
976 attr->mmap_data = track;
977 }
978
979 /*
980 * We don't allow user space callchains for function trace
981 * event, due to issues with page faults while tracing page
982 * fault handler and its overall trickiness nature.
983 */
984 if (perf_evsel__is_function_event(evsel))
985 evsel->attr.exclude_callchain_user = 1;
986
987 if (callchain && callchain->enabled && !evsel->no_aux_samples)
988 perf_evsel__config_callchain(evsel, opts, callchain);
989
990 if (opts->sample_intr_regs) {
991 attr->sample_regs_intr = opts->sample_intr_regs;
992 perf_evsel__set_sample_bit(evsel, REGS_INTR);
993 }
994
995 if (opts->sample_user_regs) {
996 attr->sample_regs_user |= opts->sample_user_regs;
997 perf_evsel__set_sample_bit(evsel, REGS_USER);
998 }
999
1000 if (target__has_cpu(&opts->target) || opts->sample_cpu)
1001 perf_evsel__set_sample_bit(evsel, CPU);
1002
1003 /*
1004 * When the user explicitly disabled time don't force it here.
1005 */
1006 if (opts->sample_time &&
1007 (!perf_missing_features.sample_id_all &&
1008 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1009 opts->sample_time_set)))
1010 perf_evsel__set_sample_bit(evsel, TIME);
1011
1012 if (opts->raw_samples && !evsel->no_aux_samples) {
1013 perf_evsel__set_sample_bit(evsel, TIME);
1014 perf_evsel__set_sample_bit(evsel, RAW);
1015 perf_evsel__set_sample_bit(evsel, CPU);
1016 }
1017
1018 if (opts->sample_address)
1019 perf_evsel__set_sample_bit(evsel, DATA_SRC);
1020
1021 if (opts->sample_phys_addr)
1022 perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1023
1024 if (opts->no_buffering) {
1025 attr->watermark = 0;
1026 attr->wakeup_events = 1;
1027 }
1028 if (opts->branch_stack && !evsel->no_aux_samples) {
1029 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1030 attr->branch_sample_type = opts->branch_stack;
1031 }
1032
1033 if (opts->sample_weight)
1034 perf_evsel__set_sample_bit(evsel, WEIGHT);
1035
1036 attr->task = track;
1037 attr->mmap = track;
1038 attr->mmap2 = track && !perf_missing_features.mmap2;
1039 attr->comm = track;
1040
1041 if (opts->record_namespaces)
1042 attr->namespaces = track;
1043
1044 if (opts->record_switch_events)
1045 attr->context_switch = track;
1046
1047 if (opts->sample_transaction)
1048 perf_evsel__set_sample_bit(evsel, TRANSACTION);
1049
1050 if (opts->running_time) {
1051 evsel->attr.read_format |=
1052 PERF_FORMAT_TOTAL_TIME_ENABLED |
1053 PERF_FORMAT_TOTAL_TIME_RUNNING;
1054 }
1055
1056 /*
1057 * XXX see the function comment above
1058 *
1059 * Disabling only independent events or group leaders,
1060 * keeping group members enabled.
1061 */
1062 if (perf_evsel__is_group_leader(evsel))
1063 attr->disabled = 1;
1064
1065 /*
1066 * Setting enable_on_exec for independent events and
1067 * group leaders for traced executed by perf.
1068 */
1069 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1070 !opts->initial_delay)
1071 attr->enable_on_exec = 1;
1072
1073 if (evsel->immediate) {
1074 attr->disabled = 0;
1075 attr->enable_on_exec = 0;
1076 }
1077
1078 clockid = opts->clockid;
1079 if (opts->use_clockid) {
1080 attr->use_clockid = 1;
1081 attr->clockid = opts->clockid;
1082 }
1083
1084 if (evsel->precise_max)
1085 perf_event_attr__set_max_precise_ip(attr);
1086
1087 if (opts->all_user) {
1088 attr->exclude_kernel = 1;
1089 attr->exclude_user = 0;
1090 }
1091
1092 if (opts->all_kernel) {
1093 attr->exclude_kernel = 0;
1094 attr->exclude_user = 1;
1095 }
1096
1097 if (evsel->own_cpus || evsel->unit)
1098 evsel->attr.read_format |= PERF_FORMAT_ID;
1099
1100 /*
1101 * Apply event specific term settings,
1102 * it overloads any global configuration.
1103 */
1104 apply_config_terms(evsel, opts, track);
1105
1106 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1107
1108 /* The --period option takes the precedence. */
1109 if (opts->period_set) {
1110 if (opts->period)
1111 perf_evsel__set_sample_bit(evsel, PERIOD);
1112 else
1113 perf_evsel__reset_sample_bit(evsel, PERIOD);
1114 }
1115
1116 /*
1117 * For initial_delay, a dummy event is added implicitly.
1118 * The software event will trigger -EOPNOTSUPP error out,
1119 * if BRANCH_STACK bit is set.
1120 */
1121 if (opts->initial_delay && is_dummy_event(evsel))
1122 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1123 }
1124
perf_evsel__alloc_fd(struct perf_evsel * evsel,int ncpus,int nthreads)1125 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1126 {
1127 if (evsel->system_wide)
1128 nthreads = 1;
1129
1130 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1131
1132 if (evsel->fd) {
1133 int cpu, thread;
1134 for (cpu = 0; cpu < ncpus; cpu++) {
1135 for (thread = 0; thread < nthreads; thread++) {
1136 FD(evsel, cpu, thread) = -1;
1137 }
1138 }
1139 }
1140
1141 return evsel->fd != NULL ? 0 : -ENOMEM;
1142 }
1143
perf_evsel__run_ioctl(struct perf_evsel * evsel,int ioc,void * arg)1144 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1145 int ioc, void *arg)
1146 {
1147 int cpu, thread;
1148
1149 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1150 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1151 int fd = FD(evsel, cpu, thread),
1152 err = ioctl(fd, ioc, arg);
1153
1154 if (err)
1155 return err;
1156 }
1157 }
1158
1159 return 0;
1160 }
1161
perf_evsel__apply_filter(struct perf_evsel * evsel,const char * filter)1162 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1163 {
1164 return perf_evsel__run_ioctl(evsel,
1165 PERF_EVENT_IOC_SET_FILTER,
1166 (void *)filter);
1167 }
1168
perf_evsel__set_filter(struct perf_evsel * evsel,const char * filter)1169 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1170 {
1171 char *new_filter = strdup(filter);
1172
1173 if (new_filter != NULL) {
1174 free(evsel->filter);
1175 evsel->filter = new_filter;
1176 return 0;
1177 }
1178
1179 return -1;
1180 }
1181
perf_evsel__append_filter(struct perf_evsel * evsel,const char * fmt,const char * filter)1182 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1183 const char *fmt, const char *filter)
1184 {
1185 char *new_filter;
1186
1187 if (evsel->filter == NULL)
1188 return perf_evsel__set_filter(evsel, filter);
1189
1190 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1191 free(evsel->filter);
1192 evsel->filter = new_filter;
1193 return 0;
1194 }
1195
1196 return -1;
1197 }
1198
perf_evsel__append_tp_filter(struct perf_evsel * evsel,const char * filter)1199 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1200 {
1201 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1202 }
1203
perf_evsel__append_addr_filter(struct perf_evsel * evsel,const char * filter)1204 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1205 {
1206 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1207 }
1208
perf_evsel__enable(struct perf_evsel * evsel)1209 int perf_evsel__enable(struct perf_evsel *evsel)
1210 {
1211 return perf_evsel__run_ioctl(evsel,
1212 PERF_EVENT_IOC_ENABLE,
1213 0);
1214 }
1215
perf_evsel__disable(struct perf_evsel * evsel)1216 int perf_evsel__disable(struct perf_evsel *evsel)
1217 {
1218 return perf_evsel__run_ioctl(evsel,
1219 PERF_EVENT_IOC_DISABLE,
1220 0);
1221 }
1222
perf_evsel__alloc_id(struct perf_evsel * evsel,int ncpus,int nthreads)1223 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1224 {
1225 if (ncpus == 0 || nthreads == 0)
1226 return 0;
1227
1228 if (evsel->system_wide)
1229 nthreads = 1;
1230
1231 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1232 if (evsel->sample_id == NULL)
1233 return -ENOMEM;
1234
1235 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1236 if (evsel->id == NULL) {
1237 xyarray__delete(evsel->sample_id);
1238 evsel->sample_id = NULL;
1239 return -ENOMEM;
1240 }
1241
1242 return 0;
1243 }
1244
perf_evsel__free_fd(struct perf_evsel * evsel)1245 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1246 {
1247 xyarray__delete(evsel->fd);
1248 evsel->fd = NULL;
1249 }
1250
perf_evsel__free_id(struct perf_evsel * evsel)1251 static void perf_evsel__free_id(struct perf_evsel *evsel)
1252 {
1253 xyarray__delete(evsel->sample_id);
1254 evsel->sample_id = NULL;
1255 zfree(&evsel->id);
1256 }
1257
perf_evsel__free_config_terms(struct perf_evsel * evsel)1258 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1259 {
1260 struct perf_evsel_config_term *term, *h;
1261
1262 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1263 list_del(&term->list);
1264 free(term);
1265 }
1266 }
1267
perf_evsel__close_fd(struct perf_evsel * evsel)1268 void perf_evsel__close_fd(struct perf_evsel *evsel)
1269 {
1270 int cpu, thread;
1271
1272 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1273 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1274 close(FD(evsel, cpu, thread));
1275 FD(evsel, cpu, thread) = -1;
1276 }
1277 }
1278
perf_evsel__exit(struct perf_evsel * evsel)1279 void perf_evsel__exit(struct perf_evsel *evsel)
1280 {
1281 assert(list_empty(&evsel->node));
1282 assert(evsel->evlist == NULL);
1283 perf_evsel__free_counts(evsel);
1284 perf_evsel__free_fd(evsel);
1285 perf_evsel__free_id(evsel);
1286 perf_evsel__free_config_terms(evsel);
1287 cgroup__put(evsel->cgrp);
1288 cpu_map__put(evsel->cpus);
1289 cpu_map__put(evsel->own_cpus);
1290 thread_map__put(evsel->threads);
1291 zfree(&evsel->group_name);
1292 zfree(&evsel->name);
1293 zfree(&evsel->pmu_name);
1294 zfree(&evsel->per_pkg_mask);
1295 zfree(&evsel->metric_events);
1296 perf_evsel__object.fini(evsel);
1297 }
1298
perf_evsel__delete(struct perf_evsel * evsel)1299 void perf_evsel__delete(struct perf_evsel *evsel)
1300 {
1301 perf_evsel__exit(evsel);
1302 free(evsel);
1303 }
1304
perf_evsel__compute_deltas(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1305 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1306 struct perf_counts_values *count)
1307 {
1308 struct perf_counts_values tmp;
1309
1310 if (!evsel->prev_raw_counts)
1311 return;
1312
1313 if (cpu == -1) {
1314 tmp = evsel->prev_raw_counts->aggr;
1315 evsel->prev_raw_counts->aggr = *count;
1316 } else {
1317 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1318 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1319 }
1320
1321 count->val = count->val - tmp.val;
1322 count->ena = count->ena - tmp.ena;
1323 count->run = count->run - tmp.run;
1324 }
1325
perf_counts_values__scale(struct perf_counts_values * count,bool scale,s8 * pscaled)1326 void perf_counts_values__scale(struct perf_counts_values *count,
1327 bool scale, s8 *pscaled)
1328 {
1329 s8 scaled = 0;
1330
1331 if (scale) {
1332 if (count->run == 0) {
1333 scaled = -1;
1334 count->val = 0;
1335 } else if (count->run < count->ena) {
1336 scaled = 1;
1337 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1338 }
1339 } else
1340 count->ena = count->run = 0;
1341
1342 if (pscaled)
1343 *pscaled = scaled;
1344 }
1345
perf_evsel__read_size(struct perf_evsel * evsel)1346 static int perf_evsel__read_size(struct perf_evsel *evsel)
1347 {
1348 u64 read_format = evsel->attr.read_format;
1349 int entry = sizeof(u64); /* value */
1350 int size = 0;
1351 int nr = 1;
1352
1353 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1354 size += sizeof(u64);
1355
1356 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1357 size += sizeof(u64);
1358
1359 if (read_format & PERF_FORMAT_ID)
1360 entry += sizeof(u64);
1361
1362 if (read_format & PERF_FORMAT_GROUP) {
1363 nr = evsel->nr_members;
1364 size += sizeof(u64);
1365 }
1366
1367 size += entry * nr;
1368 return size;
1369 }
1370
perf_evsel__read(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1371 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1372 struct perf_counts_values *count)
1373 {
1374 size_t size = perf_evsel__read_size(evsel);
1375
1376 memset(count, 0, sizeof(*count));
1377
1378 if (FD(evsel, cpu, thread) < 0)
1379 return -EINVAL;
1380
1381 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1382 return -errno;
1383
1384 return 0;
1385 }
1386
1387 static int
perf_evsel__read_one(struct perf_evsel * evsel,int cpu,int thread)1388 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1389 {
1390 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1391
1392 return perf_evsel__read(evsel, cpu, thread, count);
1393 }
1394
1395 static void
perf_evsel__set_count(struct perf_evsel * counter,int cpu,int thread,u64 val,u64 ena,u64 run)1396 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1397 u64 val, u64 ena, u64 run)
1398 {
1399 struct perf_counts_values *count;
1400
1401 count = perf_counts(counter->counts, cpu, thread);
1402
1403 count->val = val;
1404 count->ena = ena;
1405 count->run = run;
1406 count->loaded = true;
1407 }
1408
1409 static int
perf_evsel__process_group_data(struct perf_evsel * leader,int cpu,int thread,u64 * data)1410 perf_evsel__process_group_data(struct perf_evsel *leader,
1411 int cpu, int thread, u64 *data)
1412 {
1413 u64 read_format = leader->attr.read_format;
1414 struct sample_read_value *v;
1415 u64 nr, ena = 0, run = 0, i;
1416
1417 nr = *data++;
1418
1419 if (nr != (u64) leader->nr_members)
1420 return -EINVAL;
1421
1422 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1423 ena = *data++;
1424
1425 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1426 run = *data++;
1427
1428 v = (struct sample_read_value *) data;
1429
1430 perf_evsel__set_count(leader, cpu, thread,
1431 v[0].value, ena, run);
1432
1433 for (i = 1; i < nr; i++) {
1434 struct perf_evsel *counter;
1435
1436 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1437 if (!counter)
1438 return -EINVAL;
1439
1440 perf_evsel__set_count(counter, cpu, thread,
1441 v[i].value, ena, run);
1442 }
1443
1444 return 0;
1445 }
1446
1447 static int
perf_evsel__read_group(struct perf_evsel * leader,int cpu,int thread)1448 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1449 {
1450 struct perf_stat_evsel *ps = leader->stats;
1451 u64 read_format = leader->attr.read_format;
1452 int size = perf_evsel__read_size(leader);
1453 u64 *data = ps->group_data;
1454
1455 if (!(read_format & PERF_FORMAT_ID))
1456 return -EINVAL;
1457
1458 if (!perf_evsel__is_group_leader(leader))
1459 return -EINVAL;
1460
1461 if (!data) {
1462 data = zalloc(size);
1463 if (!data)
1464 return -ENOMEM;
1465
1466 ps->group_data = data;
1467 }
1468
1469 if (FD(leader, cpu, thread) < 0)
1470 return -EINVAL;
1471
1472 if (readn(FD(leader, cpu, thread), data, size) <= 0)
1473 return -errno;
1474
1475 return perf_evsel__process_group_data(leader, cpu, thread, data);
1476 }
1477
perf_evsel__read_counter(struct perf_evsel * evsel,int cpu,int thread)1478 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1479 {
1480 u64 read_format = evsel->attr.read_format;
1481
1482 if (read_format & PERF_FORMAT_GROUP)
1483 return perf_evsel__read_group(evsel, cpu, thread);
1484 else
1485 return perf_evsel__read_one(evsel, cpu, thread);
1486 }
1487
__perf_evsel__read_on_cpu(struct perf_evsel * evsel,int cpu,int thread,bool scale)1488 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1489 int cpu, int thread, bool scale)
1490 {
1491 struct perf_counts_values count;
1492 size_t nv = scale ? 3 : 1;
1493
1494 if (FD(evsel, cpu, thread) < 0)
1495 return -EINVAL;
1496
1497 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1498 return -ENOMEM;
1499
1500 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1501 return -errno;
1502
1503 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1504 perf_counts_values__scale(&count, scale, NULL);
1505 *perf_counts(evsel->counts, cpu, thread) = count;
1506 return 0;
1507 }
1508
get_group_fd(struct perf_evsel * evsel,int cpu,int thread)1509 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1510 {
1511 struct perf_evsel *leader = evsel->leader;
1512 int fd;
1513
1514 if (perf_evsel__is_group_leader(evsel))
1515 return -1;
1516
1517 /*
1518 * Leader must be already processed/open,
1519 * if not it's a bug.
1520 */
1521 BUG_ON(!leader->fd);
1522
1523 fd = FD(leader, cpu, thread);
1524 BUG_ON(fd == -1);
1525
1526 return fd;
1527 }
1528
1529 struct bit_names {
1530 int bit;
1531 const char *name;
1532 };
1533
__p_bits(char * buf,size_t size,u64 value,struct bit_names * bits)1534 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1535 {
1536 bool first_bit = true;
1537 int i = 0;
1538
1539 do {
1540 if (value & bits[i].bit) {
1541 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1542 first_bit = false;
1543 }
1544 } while (bits[++i].name != NULL);
1545 }
1546
__p_sample_type(char * buf,size_t size,u64 value)1547 static void __p_sample_type(char *buf, size_t size, u64 value)
1548 {
1549 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1550 struct bit_names bits[] = {
1551 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1552 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1553 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1554 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1555 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1556 bit_name(WEIGHT), bit_name(PHYS_ADDR),
1557 { .name = NULL, }
1558 };
1559 #undef bit_name
1560 __p_bits(buf, size, value, bits);
1561 }
1562
__p_branch_sample_type(char * buf,size_t size,u64 value)1563 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1564 {
1565 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1566 struct bit_names bits[] = {
1567 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1568 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1569 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1570 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1571 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1572 { .name = NULL, }
1573 };
1574 #undef bit_name
1575 __p_bits(buf, size, value, bits);
1576 }
1577
__p_read_format(char * buf,size_t size,u64 value)1578 static void __p_read_format(char *buf, size_t size, u64 value)
1579 {
1580 #define bit_name(n) { PERF_FORMAT_##n, #n }
1581 struct bit_names bits[] = {
1582 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1583 bit_name(ID), bit_name(GROUP),
1584 { .name = NULL, }
1585 };
1586 #undef bit_name
1587 __p_bits(buf, size, value, bits);
1588 }
1589
1590 #define BUF_SIZE 1024
1591
1592 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1593 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1594 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1595 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1596 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1597 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1598
1599 #define PRINT_ATTRn(_n, _f, _p) \
1600 do { \
1601 if (attr->_f) { \
1602 _p(attr->_f); \
1603 ret += attr__fprintf(fp, _n, buf, priv);\
1604 } \
1605 } while (0)
1606
1607 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1608
perf_event_attr__fprintf(FILE * fp,struct perf_event_attr * attr,attr__fprintf_f attr__fprintf,void * priv)1609 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1610 attr__fprintf_f attr__fprintf, void *priv)
1611 {
1612 char buf[BUF_SIZE];
1613 int ret = 0;
1614
1615 PRINT_ATTRf(type, p_unsigned);
1616 PRINT_ATTRf(size, p_unsigned);
1617 PRINT_ATTRf(config, p_hex);
1618 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1619 PRINT_ATTRf(sample_type, p_sample_type);
1620 PRINT_ATTRf(read_format, p_read_format);
1621
1622 PRINT_ATTRf(disabled, p_unsigned);
1623 PRINT_ATTRf(inherit, p_unsigned);
1624 PRINT_ATTRf(pinned, p_unsigned);
1625 PRINT_ATTRf(exclusive, p_unsigned);
1626 PRINT_ATTRf(exclude_user, p_unsigned);
1627 PRINT_ATTRf(exclude_kernel, p_unsigned);
1628 PRINT_ATTRf(exclude_hv, p_unsigned);
1629 PRINT_ATTRf(exclude_idle, p_unsigned);
1630 PRINT_ATTRf(mmap, p_unsigned);
1631 PRINT_ATTRf(comm, p_unsigned);
1632 PRINT_ATTRf(freq, p_unsigned);
1633 PRINT_ATTRf(inherit_stat, p_unsigned);
1634 PRINT_ATTRf(enable_on_exec, p_unsigned);
1635 PRINT_ATTRf(task, p_unsigned);
1636 PRINT_ATTRf(watermark, p_unsigned);
1637 PRINT_ATTRf(precise_ip, p_unsigned);
1638 PRINT_ATTRf(mmap_data, p_unsigned);
1639 PRINT_ATTRf(sample_id_all, p_unsigned);
1640 PRINT_ATTRf(exclude_host, p_unsigned);
1641 PRINT_ATTRf(exclude_guest, p_unsigned);
1642 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1643 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1644 PRINT_ATTRf(mmap2, p_unsigned);
1645 PRINT_ATTRf(comm_exec, p_unsigned);
1646 PRINT_ATTRf(use_clockid, p_unsigned);
1647 PRINT_ATTRf(context_switch, p_unsigned);
1648 PRINT_ATTRf(write_backward, p_unsigned);
1649 PRINT_ATTRf(namespaces, p_unsigned);
1650
1651 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1652 PRINT_ATTRf(bp_type, p_unsigned);
1653 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1654 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1655 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1656 PRINT_ATTRf(sample_regs_user, p_hex);
1657 PRINT_ATTRf(sample_stack_user, p_unsigned);
1658 PRINT_ATTRf(clockid, p_signed);
1659 PRINT_ATTRf(sample_regs_intr, p_hex);
1660 PRINT_ATTRf(aux_watermark, p_unsigned);
1661 PRINT_ATTRf(sample_max_stack, p_unsigned);
1662
1663 return ret;
1664 }
1665
__open_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1666 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1667 void *priv __maybe_unused)
1668 {
1669 return fprintf(fp, " %-32s %s\n", name, val);
1670 }
1671
perf_evsel__remove_fd(struct perf_evsel * pos,int nr_cpus,int nr_threads,int thread_idx)1672 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1673 int nr_cpus, int nr_threads,
1674 int thread_idx)
1675 {
1676 for (int cpu = 0; cpu < nr_cpus; cpu++)
1677 for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1678 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1679 }
1680
update_fds(struct perf_evsel * evsel,int nr_cpus,int cpu_idx,int nr_threads,int thread_idx)1681 static int update_fds(struct perf_evsel *evsel,
1682 int nr_cpus, int cpu_idx,
1683 int nr_threads, int thread_idx)
1684 {
1685 struct perf_evsel *pos;
1686
1687 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1688 return -EINVAL;
1689
1690 evlist__for_each_entry(evsel->evlist, pos) {
1691 nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1692
1693 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1694
1695 /*
1696 * Since fds for next evsel has not been created,
1697 * there is no need to iterate whole event list.
1698 */
1699 if (pos == evsel)
1700 break;
1701 }
1702 return 0;
1703 }
1704
ignore_missing_thread(struct perf_evsel * evsel,int nr_cpus,int cpu,struct thread_map * threads,int thread,int err)1705 static bool ignore_missing_thread(struct perf_evsel *evsel,
1706 int nr_cpus, int cpu,
1707 struct thread_map *threads,
1708 int thread, int err)
1709 {
1710 pid_t ignore_pid = thread_map__pid(threads, thread);
1711
1712 if (!evsel->ignore_missing_thread)
1713 return false;
1714
1715 /* The system wide setup does not work with threads. */
1716 if (evsel->system_wide)
1717 return false;
1718
1719 /* The -ESRCH is perf event syscall errno for pid's not found. */
1720 if (err != -ESRCH)
1721 return false;
1722
1723 /* If there's only one thread, let it fail. */
1724 if (threads->nr == 1)
1725 return false;
1726
1727 /*
1728 * We should remove fd for missing_thread first
1729 * because thread_map__remove() will decrease threads->nr.
1730 */
1731 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1732 return false;
1733
1734 if (thread_map__remove(threads, thread))
1735 return false;
1736
1737 pr_warning("WARNING: Ignored open failure for pid %d\n",
1738 ignore_pid);
1739 return true;
1740 }
1741
perf_evsel__open(struct perf_evsel * evsel,struct cpu_map * cpus,struct thread_map * threads)1742 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1743 struct thread_map *threads)
1744 {
1745 int cpu, thread, nthreads;
1746 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1747 int pid = -1, err;
1748 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1749
1750 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1751 return -EINVAL;
1752
1753 if (cpus == NULL) {
1754 static struct cpu_map *empty_cpu_map;
1755
1756 if (empty_cpu_map == NULL) {
1757 empty_cpu_map = cpu_map__dummy_new();
1758 if (empty_cpu_map == NULL)
1759 return -ENOMEM;
1760 }
1761
1762 cpus = empty_cpu_map;
1763 }
1764
1765 if (threads == NULL) {
1766 static struct thread_map *empty_thread_map;
1767
1768 if (empty_thread_map == NULL) {
1769 empty_thread_map = thread_map__new_by_tid(-1);
1770 if (empty_thread_map == NULL)
1771 return -ENOMEM;
1772 }
1773
1774 threads = empty_thread_map;
1775 }
1776
1777 if (evsel->system_wide)
1778 nthreads = 1;
1779 else
1780 nthreads = threads->nr;
1781
1782 if (evsel->fd == NULL &&
1783 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1784 return -ENOMEM;
1785
1786 if (evsel->cgrp) {
1787 flags |= PERF_FLAG_PID_CGROUP;
1788 pid = evsel->cgrp->fd;
1789 }
1790
1791 fallback_missing_features:
1792 if (perf_missing_features.clockid_wrong)
1793 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1794 if (perf_missing_features.clockid) {
1795 evsel->attr.use_clockid = 0;
1796 evsel->attr.clockid = 0;
1797 }
1798 if (perf_missing_features.cloexec)
1799 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1800 if (perf_missing_features.mmap2)
1801 evsel->attr.mmap2 = 0;
1802 if (perf_missing_features.exclude_guest)
1803 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1804 if (perf_missing_features.lbr_flags)
1805 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1806 PERF_SAMPLE_BRANCH_NO_CYCLES);
1807 if (perf_missing_features.group_read && evsel->attr.inherit)
1808 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1809 retry_sample_id:
1810 if (perf_missing_features.sample_id_all)
1811 evsel->attr.sample_id_all = 0;
1812
1813 if (verbose >= 2) {
1814 fprintf(stderr, "%.60s\n", graph_dotted_line);
1815 fprintf(stderr, "perf_event_attr:\n");
1816 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1817 fprintf(stderr, "%.60s\n", graph_dotted_line);
1818 }
1819
1820 for (cpu = 0; cpu < cpus->nr; cpu++) {
1821
1822 for (thread = 0; thread < nthreads; thread++) {
1823 int fd, group_fd;
1824
1825 if (!evsel->cgrp && !evsel->system_wide)
1826 pid = thread_map__pid(threads, thread);
1827
1828 group_fd = get_group_fd(evsel, cpu, thread);
1829 retry_open:
1830 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1831 pid, cpus->map[cpu], group_fd, flags);
1832
1833 test_attr__ready();
1834
1835 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1836 group_fd, flags);
1837
1838 FD(evsel, cpu, thread) = fd;
1839
1840 if (fd < 0) {
1841 err = -errno;
1842
1843 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1844 /*
1845 * We just removed 1 thread, so take a step
1846 * back on thread index and lower the upper
1847 * nthreads limit.
1848 */
1849 nthreads--;
1850 thread--;
1851
1852 /* ... and pretend like nothing have happened. */
1853 err = 0;
1854 continue;
1855 }
1856
1857 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1858 err);
1859 goto try_fallback;
1860 }
1861
1862 pr_debug2(" = %d\n", fd);
1863
1864 if (evsel->bpf_fd >= 0) {
1865 int evt_fd = fd;
1866 int bpf_fd = evsel->bpf_fd;
1867
1868 err = ioctl(evt_fd,
1869 PERF_EVENT_IOC_SET_BPF,
1870 bpf_fd);
1871 if (err && errno != EEXIST) {
1872 pr_err("failed to attach bpf fd %d: %s\n",
1873 bpf_fd, strerror(errno));
1874 err = -EINVAL;
1875 goto out_close;
1876 }
1877 }
1878
1879 set_rlimit = NO_CHANGE;
1880
1881 /*
1882 * If we succeeded but had to kill clockid, fail and
1883 * have perf_evsel__open_strerror() print us a nice
1884 * error.
1885 */
1886 if (perf_missing_features.clockid ||
1887 perf_missing_features.clockid_wrong) {
1888 err = -EINVAL;
1889 goto out_close;
1890 }
1891 }
1892 }
1893
1894 return 0;
1895
1896 try_fallback:
1897 /*
1898 * perf stat needs between 5 and 22 fds per CPU. When we run out
1899 * of them try to increase the limits.
1900 */
1901 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1902 struct rlimit l;
1903 int old_errno = errno;
1904
1905 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1906 if (set_rlimit == NO_CHANGE)
1907 l.rlim_cur = l.rlim_max;
1908 else {
1909 l.rlim_cur = l.rlim_max + 1000;
1910 l.rlim_max = l.rlim_cur;
1911 }
1912 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1913 set_rlimit++;
1914 errno = old_errno;
1915 goto retry_open;
1916 }
1917 }
1918 errno = old_errno;
1919 }
1920
1921 if (err != -EINVAL || cpu > 0 || thread > 0)
1922 goto out_close;
1923
1924 /*
1925 * Must probe features in the order they were added to the
1926 * perf_event_attr interface.
1927 */
1928 if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1929 perf_missing_features.write_backward = true;
1930 pr_debug2("switching off write_backward\n");
1931 goto out_close;
1932 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1933 perf_missing_features.clockid_wrong = true;
1934 pr_debug2("switching off clockid\n");
1935 goto fallback_missing_features;
1936 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1937 perf_missing_features.clockid = true;
1938 pr_debug2("switching off use_clockid\n");
1939 goto fallback_missing_features;
1940 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1941 perf_missing_features.cloexec = true;
1942 pr_debug2("switching off cloexec flag\n");
1943 goto fallback_missing_features;
1944 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1945 perf_missing_features.mmap2 = true;
1946 pr_debug2("switching off mmap2\n");
1947 goto fallback_missing_features;
1948 } else if (!perf_missing_features.exclude_guest &&
1949 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1950 perf_missing_features.exclude_guest = true;
1951 pr_debug2("switching off exclude_guest, exclude_host\n");
1952 goto fallback_missing_features;
1953 } else if (!perf_missing_features.sample_id_all) {
1954 perf_missing_features.sample_id_all = true;
1955 pr_debug2("switching off sample_id_all\n");
1956 goto retry_sample_id;
1957 } else if (!perf_missing_features.lbr_flags &&
1958 (evsel->attr.branch_sample_type &
1959 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1960 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1961 perf_missing_features.lbr_flags = true;
1962 pr_debug2("switching off branch sample type no (cycles/flags)\n");
1963 goto fallback_missing_features;
1964 } else if (!perf_missing_features.group_read &&
1965 evsel->attr.inherit &&
1966 (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
1967 perf_evsel__is_group_leader(evsel)) {
1968 perf_missing_features.group_read = true;
1969 pr_debug2("switching off group read\n");
1970 goto fallback_missing_features;
1971 }
1972 out_close:
1973 if (err)
1974 threads->err_thread = thread;
1975
1976 do {
1977 while (--thread >= 0) {
1978 close(FD(evsel, cpu, thread));
1979 FD(evsel, cpu, thread) = -1;
1980 }
1981 thread = nthreads;
1982 } while (--cpu >= 0);
1983 return err;
1984 }
1985
perf_evsel__close(struct perf_evsel * evsel)1986 void perf_evsel__close(struct perf_evsel *evsel)
1987 {
1988 if (evsel->fd == NULL)
1989 return;
1990
1991 perf_evsel__close_fd(evsel);
1992 perf_evsel__free_fd(evsel);
1993 }
1994
perf_evsel__open_per_cpu(struct perf_evsel * evsel,struct cpu_map * cpus)1995 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1996 struct cpu_map *cpus)
1997 {
1998 return perf_evsel__open(evsel, cpus, NULL);
1999 }
2000
perf_evsel__open_per_thread(struct perf_evsel * evsel,struct thread_map * threads)2001 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
2002 struct thread_map *threads)
2003 {
2004 return perf_evsel__open(evsel, NULL, threads);
2005 }
2006
perf_evsel__parse_id_sample(const struct perf_evsel * evsel,const union perf_event * event,struct perf_sample * sample)2007 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
2008 const union perf_event *event,
2009 struct perf_sample *sample)
2010 {
2011 u64 type = evsel->attr.sample_type;
2012 const u64 *array = event->sample.array;
2013 bool swapped = evsel->needs_swap;
2014 union u64_swap u;
2015
2016 array += ((event->header.size -
2017 sizeof(event->header)) / sizeof(u64)) - 1;
2018
2019 if (type & PERF_SAMPLE_IDENTIFIER) {
2020 sample->id = *array;
2021 array--;
2022 }
2023
2024 if (type & PERF_SAMPLE_CPU) {
2025 u.val64 = *array;
2026 if (swapped) {
2027 /* undo swap of u64, then swap on individual u32s */
2028 u.val64 = bswap_64(u.val64);
2029 u.val32[0] = bswap_32(u.val32[0]);
2030 }
2031
2032 sample->cpu = u.val32[0];
2033 array--;
2034 }
2035
2036 if (type & PERF_SAMPLE_STREAM_ID) {
2037 sample->stream_id = *array;
2038 array--;
2039 }
2040
2041 if (type & PERF_SAMPLE_ID) {
2042 sample->id = *array;
2043 array--;
2044 }
2045
2046 if (type & PERF_SAMPLE_TIME) {
2047 sample->time = *array;
2048 array--;
2049 }
2050
2051 if (type & PERF_SAMPLE_TID) {
2052 u.val64 = *array;
2053 if (swapped) {
2054 /* undo swap of u64, then swap on individual u32s */
2055 u.val64 = bswap_64(u.val64);
2056 u.val32[0] = bswap_32(u.val32[0]);
2057 u.val32[1] = bswap_32(u.val32[1]);
2058 }
2059
2060 sample->pid = u.val32[0];
2061 sample->tid = u.val32[1];
2062 array--;
2063 }
2064
2065 return 0;
2066 }
2067
overflow(const void * endp,u16 max_size,const void * offset,u64 size)2068 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2069 u64 size)
2070 {
2071 return size > max_size || offset + size > endp;
2072 }
2073
2074 #define OVERFLOW_CHECK(offset, size, max_size) \
2075 do { \
2076 if (overflow(endp, (max_size), (offset), (size))) \
2077 return -EFAULT; \
2078 } while (0)
2079
2080 #define OVERFLOW_CHECK_u64(offset) \
2081 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2082
2083 static int
perf_event__check_size(union perf_event * event,unsigned int sample_size)2084 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2085 {
2086 /*
2087 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2088 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
2089 * check the format does not go past the end of the event.
2090 */
2091 if (sample_size + sizeof(event->header) > event->header.size)
2092 return -EFAULT;
2093
2094 return 0;
2095 }
2096
perf_evsel__parse_sample(struct perf_evsel * evsel,union perf_event * event,struct perf_sample * data)2097 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2098 struct perf_sample *data)
2099 {
2100 u64 type = evsel->attr.sample_type;
2101 bool swapped = evsel->needs_swap;
2102 const u64 *array;
2103 u16 max_size = event->header.size;
2104 const void *endp = (void *)event + max_size;
2105 u64 sz;
2106
2107 /*
2108 * used for cross-endian analysis. See git commit 65014ab3
2109 * for why this goofiness is needed.
2110 */
2111 union u64_swap u;
2112
2113 memset(data, 0, sizeof(*data));
2114 data->cpu = data->pid = data->tid = -1;
2115 data->stream_id = data->id = data->time = -1ULL;
2116 data->period = evsel->attr.sample_period;
2117 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2118 data->misc = event->header.misc;
2119 data->id = -1ULL;
2120 data->data_src = PERF_MEM_DATA_SRC_NONE;
2121
2122 if (event->header.type != PERF_RECORD_SAMPLE) {
2123 if (!evsel->attr.sample_id_all)
2124 return 0;
2125 return perf_evsel__parse_id_sample(evsel, event, data);
2126 }
2127
2128 array = event->sample.array;
2129
2130 if (perf_event__check_size(event, evsel->sample_size))
2131 return -EFAULT;
2132
2133 if (type & PERF_SAMPLE_IDENTIFIER) {
2134 data->id = *array;
2135 array++;
2136 }
2137
2138 if (type & PERF_SAMPLE_IP) {
2139 data->ip = *array;
2140 array++;
2141 }
2142
2143 if (type & PERF_SAMPLE_TID) {
2144 u.val64 = *array;
2145 if (swapped) {
2146 /* undo swap of u64, then swap on individual u32s */
2147 u.val64 = bswap_64(u.val64);
2148 u.val32[0] = bswap_32(u.val32[0]);
2149 u.val32[1] = bswap_32(u.val32[1]);
2150 }
2151
2152 data->pid = u.val32[0];
2153 data->tid = u.val32[1];
2154 array++;
2155 }
2156
2157 if (type & PERF_SAMPLE_TIME) {
2158 data->time = *array;
2159 array++;
2160 }
2161
2162 if (type & PERF_SAMPLE_ADDR) {
2163 data->addr = *array;
2164 array++;
2165 }
2166
2167 if (type & PERF_SAMPLE_ID) {
2168 data->id = *array;
2169 array++;
2170 }
2171
2172 if (type & PERF_SAMPLE_STREAM_ID) {
2173 data->stream_id = *array;
2174 array++;
2175 }
2176
2177 if (type & PERF_SAMPLE_CPU) {
2178
2179 u.val64 = *array;
2180 if (swapped) {
2181 /* undo swap of u64, then swap on individual u32s */
2182 u.val64 = bswap_64(u.val64);
2183 u.val32[0] = bswap_32(u.val32[0]);
2184 }
2185
2186 data->cpu = u.val32[0];
2187 array++;
2188 }
2189
2190 if (type & PERF_SAMPLE_PERIOD) {
2191 data->period = *array;
2192 array++;
2193 }
2194
2195 if (type & PERF_SAMPLE_READ) {
2196 u64 read_format = evsel->attr.read_format;
2197
2198 OVERFLOW_CHECK_u64(array);
2199 if (read_format & PERF_FORMAT_GROUP)
2200 data->read.group.nr = *array;
2201 else
2202 data->read.one.value = *array;
2203
2204 array++;
2205
2206 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2207 OVERFLOW_CHECK_u64(array);
2208 data->read.time_enabled = *array;
2209 array++;
2210 }
2211
2212 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2213 OVERFLOW_CHECK_u64(array);
2214 data->read.time_running = *array;
2215 array++;
2216 }
2217
2218 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2219 if (read_format & PERF_FORMAT_GROUP) {
2220 const u64 max_group_nr = UINT64_MAX /
2221 sizeof(struct sample_read_value);
2222
2223 if (data->read.group.nr > max_group_nr)
2224 return -EFAULT;
2225 sz = data->read.group.nr *
2226 sizeof(struct sample_read_value);
2227 OVERFLOW_CHECK(array, sz, max_size);
2228 data->read.group.values =
2229 (struct sample_read_value *)array;
2230 array = (void *)array + sz;
2231 } else {
2232 OVERFLOW_CHECK_u64(array);
2233 data->read.one.id = *array;
2234 array++;
2235 }
2236 }
2237
2238 if (evsel__has_callchain(evsel)) {
2239 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2240
2241 OVERFLOW_CHECK_u64(array);
2242 data->callchain = (struct ip_callchain *)array++;
2243 if (data->callchain->nr > max_callchain_nr)
2244 return -EFAULT;
2245 sz = data->callchain->nr * sizeof(u64);
2246 OVERFLOW_CHECK(array, sz, max_size);
2247 array = (void *)array + sz;
2248 }
2249
2250 if (type & PERF_SAMPLE_RAW) {
2251 OVERFLOW_CHECK_u64(array);
2252 u.val64 = *array;
2253
2254 /*
2255 * Undo swap of u64, then swap on individual u32s,
2256 * get the size of the raw area and undo all of the
2257 * swap. The pevent interface handles endianity by
2258 * itself.
2259 */
2260 if (swapped) {
2261 u.val64 = bswap_64(u.val64);
2262 u.val32[0] = bswap_32(u.val32[0]);
2263 u.val32[1] = bswap_32(u.val32[1]);
2264 }
2265 data->raw_size = u.val32[0];
2266
2267 /*
2268 * The raw data is aligned on 64bits including the
2269 * u32 size, so it's safe to use mem_bswap_64.
2270 */
2271 if (swapped)
2272 mem_bswap_64((void *) array, data->raw_size);
2273
2274 array = (void *)array + sizeof(u32);
2275
2276 OVERFLOW_CHECK(array, data->raw_size, max_size);
2277 data->raw_data = (void *)array;
2278 array = (void *)array + data->raw_size;
2279 }
2280
2281 if (type & PERF_SAMPLE_BRANCH_STACK) {
2282 const u64 max_branch_nr = UINT64_MAX /
2283 sizeof(struct branch_entry);
2284
2285 OVERFLOW_CHECK_u64(array);
2286 data->branch_stack = (struct branch_stack *)array++;
2287
2288 if (data->branch_stack->nr > max_branch_nr)
2289 return -EFAULT;
2290 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2291 OVERFLOW_CHECK(array, sz, max_size);
2292 array = (void *)array + sz;
2293 }
2294
2295 if (type & PERF_SAMPLE_REGS_USER) {
2296 OVERFLOW_CHECK_u64(array);
2297 data->user_regs.abi = *array;
2298 array++;
2299
2300 if (data->user_regs.abi) {
2301 u64 mask = evsel->attr.sample_regs_user;
2302
2303 sz = hweight_long(mask) * sizeof(u64);
2304 OVERFLOW_CHECK(array, sz, max_size);
2305 data->user_regs.mask = mask;
2306 data->user_regs.regs = (u64 *)array;
2307 array = (void *)array + sz;
2308 }
2309 }
2310
2311 if (type & PERF_SAMPLE_STACK_USER) {
2312 OVERFLOW_CHECK_u64(array);
2313 sz = *array++;
2314
2315 data->user_stack.offset = ((char *)(array - 1)
2316 - (char *) event);
2317
2318 if (!sz) {
2319 data->user_stack.size = 0;
2320 } else {
2321 OVERFLOW_CHECK(array, sz, max_size);
2322 data->user_stack.data = (char *)array;
2323 array = (void *)array + sz;
2324 OVERFLOW_CHECK_u64(array);
2325 data->user_stack.size = *array++;
2326 if (WARN_ONCE(data->user_stack.size > sz,
2327 "user stack dump failure\n"))
2328 return -EFAULT;
2329 }
2330 }
2331
2332 if (type & PERF_SAMPLE_WEIGHT) {
2333 OVERFLOW_CHECK_u64(array);
2334 data->weight = *array;
2335 array++;
2336 }
2337
2338 if (type & PERF_SAMPLE_DATA_SRC) {
2339 OVERFLOW_CHECK_u64(array);
2340 data->data_src = *array;
2341 array++;
2342 }
2343
2344 if (type & PERF_SAMPLE_TRANSACTION) {
2345 OVERFLOW_CHECK_u64(array);
2346 data->transaction = *array;
2347 array++;
2348 }
2349
2350 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2351 if (type & PERF_SAMPLE_REGS_INTR) {
2352 OVERFLOW_CHECK_u64(array);
2353 data->intr_regs.abi = *array;
2354 array++;
2355
2356 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2357 u64 mask = evsel->attr.sample_regs_intr;
2358
2359 sz = hweight_long(mask) * sizeof(u64);
2360 OVERFLOW_CHECK(array, sz, max_size);
2361 data->intr_regs.mask = mask;
2362 data->intr_regs.regs = (u64 *)array;
2363 array = (void *)array + sz;
2364 }
2365 }
2366
2367 data->phys_addr = 0;
2368 if (type & PERF_SAMPLE_PHYS_ADDR) {
2369 data->phys_addr = *array;
2370 array++;
2371 }
2372
2373 return 0;
2374 }
2375
perf_evsel__parse_sample_timestamp(struct perf_evsel * evsel,union perf_event * event,u64 * timestamp)2376 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2377 union perf_event *event,
2378 u64 *timestamp)
2379 {
2380 u64 type = evsel->attr.sample_type;
2381 const u64 *array;
2382
2383 if (!(type & PERF_SAMPLE_TIME))
2384 return -1;
2385
2386 if (event->header.type != PERF_RECORD_SAMPLE) {
2387 struct perf_sample data = {
2388 .time = -1ULL,
2389 };
2390
2391 if (!evsel->attr.sample_id_all)
2392 return -1;
2393 if (perf_evsel__parse_id_sample(evsel, event, &data))
2394 return -1;
2395
2396 *timestamp = data.time;
2397 return 0;
2398 }
2399
2400 array = event->sample.array;
2401
2402 if (perf_event__check_size(event, evsel->sample_size))
2403 return -EFAULT;
2404
2405 if (type & PERF_SAMPLE_IDENTIFIER)
2406 array++;
2407
2408 if (type & PERF_SAMPLE_IP)
2409 array++;
2410
2411 if (type & PERF_SAMPLE_TID)
2412 array++;
2413
2414 if (type & PERF_SAMPLE_TIME)
2415 *timestamp = *array;
2416
2417 return 0;
2418 }
2419
perf_event__sample_event_size(const struct perf_sample * sample,u64 type,u64 read_format)2420 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2421 u64 read_format)
2422 {
2423 size_t sz, result = sizeof(struct sample_event);
2424
2425 if (type & PERF_SAMPLE_IDENTIFIER)
2426 result += sizeof(u64);
2427
2428 if (type & PERF_SAMPLE_IP)
2429 result += sizeof(u64);
2430
2431 if (type & PERF_SAMPLE_TID)
2432 result += sizeof(u64);
2433
2434 if (type & PERF_SAMPLE_TIME)
2435 result += sizeof(u64);
2436
2437 if (type & PERF_SAMPLE_ADDR)
2438 result += sizeof(u64);
2439
2440 if (type & PERF_SAMPLE_ID)
2441 result += sizeof(u64);
2442
2443 if (type & PERF_SAMPLE_STREAM_ID)
2444 result += sizeof(u64);
2445
2446 if (type & PERF_SAMPLE_CPU)
2447 result += sizeof(u64);
2448
2449 if (type & PERF_SAMPLE_PERIOD)
2450 result += sizeof(u64);
2451
2452 if (type & PERF_SAMPLE_READ) {
2453 result += sizeof(u64);
2454 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2455 result += sizeof(u64);
2456 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2457 result += sizeof(u64);
2458 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2459 if (read_format & PERF_FORMAT_GROUP) {
2460 sz = sample->read.group.nr *
2461 sizeof(struct sample_read_value);
2462 result += sz;
2463 } else {
2464 result += sizeof(u64);
2465 }
2466 }
2467
2468 if (type & PERF_SAMPLE_CALLCHAIN) {
2469 sz = (sample->callchain->nr + 1) * sizeof(u64);
2470 result += sz;
2471 }
2472
2473 if (type & PERF_SAMPLE_RAW) {
2474 result += sizeof(u32);
2475 result += sample->raw_size;
2476 }
2477
2478 if (type & PERF_SAMPLE_BRANCH_STACK) {
2479 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2480 sz += sizeof(u64);
2481 result += sz;
2482 }
2483
2484 if (type & PERF_SAMPLE_REGS_USER) {
2485 if (sample->user_regs.abi) {
2486 result += sizeof(u64);
2487 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2488 result += sz;
2489 } else {
2490 result += sizeof(u64);
2491 }
2492 }
2493
2494 if (type & PERF_SAMPLE_STACK_USER) {
2495 sz = sample->user_stack.size;
2496 result += sizeof(u64);
2497 if (sz) {
2498 result += sz;
2499 result += sizeof(u64);
2500 }
2501 }
2502
2503 if (type & PERF_SAMPLE_WEIGHT)
2504 result += sizeof(u64);
2505
2506 if (type & PERF_SAMPLE_DATA_SRC)
2507 result += sizeof(u64);
2508
2509 if (type & PERF_SAMPLE_TRANSACTION)
2510 result += sizeof(u64);
2511
2512 if (type & PERF_SAMPLE_REGS_INTR) {
2513 if (sample->intr_regs.abi) {
2514 result += sizeof(u64);
2515 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2516 result += sz;
2517 } else {
2518 result += sizeof(u64);
2519 }
2520 }
2521
2522 if (type & PERF_SAMPLE_PHYS_ADDR)
2523 result += sizeof(u64);
2524
2525 return result;
2526 }
2527
perf_event__synthesize_sample(union perf_event * event,u64 type,u64 read_format,const struct perf_sample * sample)2528 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2529 u64 read_format,
2530 const struct perf_sample *sample)
2531 {
2532 u64 *array;
2533 size_t sz;
2534 /*
2535 * used for cross-endian analysis. See git commit 65014ab3
2536 * for why this goofiness is needed.
2537 */
2538 union u64_swap u;
2539
2540 array = event->sample.array;
2541
2542 if (type & PERF_SAMPLE_IDENTIFIER) {
2543 *array = sample->id;
2544 array++;
2545 }
2546
2547 if (type & PERF_SAMPLE_IP) {
2548 *array = sample->ip;
2549 array++;
2550 }
2551
2552 if (type & PERF_SAMPLE_TID) {
2553 u.val32[0] = sample->pid;
2554 u.val32[1] = sample->tid;
2555 *array = u.val64;
2556 array++;
2557 }
2558
2559 if (type & PERF_SAMPLE_TIME) {
2560 *array = sample->time;
2561 array++;
2562 }
2563
2564 if (type & PERF_SAMPLE_ADDR) {
2565 *array = sample->addr;
2566 array++;
2567 }
2568
2569 if (type & PERF_SAMPLE_ID) {
2570 *array = sample->id;
2571 array++;
2572 }
2573
2574 if (type & PERF_SAMPLE_STREAM_ID) {
2575 *array = sample->stream_id;
2576 array++;
2577 }
2578
2579 if (type & PERF_SAMPLE_CPU) {
2580 u.val32[0] = sample->cpu;
2581 u.val32[1] = 0;
2582 *array = u.val64;
2583 array++;
2584 }
2585
2586 if (type & PERF_SAMPLE_PERIOD) {
2587 *array = sample->period;
2588 array++;
2589 }
2590
2591 if (type & PERF_SAMPLE_READ) {
2592 if (read_format & PERF_FORMAT_GROUP)
2593 *array = sample->read.group.nr;
2594 else
2595 *array = sample->read.one.value;
2596 array++;
2597
2598 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2599 *array = sample->read.time_enabled;
2600 array++;
2601 }
2602
2603 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2604 *array = sample->read.time_running;
2605 array++;
2606 }
2607
2608 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2609 if (read_format & PERF_FORMAT_GROUP) {
2610 sz = sample->read.group.nr *
2611 sizeof(struct sample_read_value);
2612 memcpy(array, sample->read.group.values, sz);
2613 array = (void *)array + sz;
2614 } else {
2615 *array = sample->read.one.id;
2616 array++;
2617 }
2618 }
2619
2620 if (type & PERF_SAMPLE_CALLCHAIN) {
2621 sz = (sample->callchain->nr + 1) * sizeof(u64);
2622 memcpy(array, sample->callchain, sz);
2623 array = (void *)array + sz;
2624 }
2625
2626 if (type & PERF_SAMPLE_RAW) {
2627 u.val32[0] = sample->raw_size;
2628 *array = u.val64;
2629 array = (void *)array + sizeof(u32);
2630
2631 memcpy(array, sample->raw_data, sample->raw_size);
2632 array = (void *)array + sample->raw_size;
2633 }
2634
2635 if (type & PERF_SAMPLE_BRANCH_STACK) {
2636 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2637 sz += sizeof(u64);
2638 memcpy(array, sample->branch_stack, sz);
2639 array = (void *)array + sz;
2640 }
2641
2642 if (type & PERF_SAMPLE_REGS_USER) {
2643 if (sample->user_regs.abi) {
2644 *array++ = sample->user_regs.abi;
2645 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2646 memcpy(array, sample->user_regs.regs, sz);
2647 array = (void *)array + sz;
2648 } else {
2649 *array++ = 0;
2650 }
2651 }
2652
2653 if (type & PERF_SAMPLE_STACK_USER) {
2654 sz = sample->user_stack.size;
2655 *array++ = sz;
2656 if (sz) {
2657 memcpy(array, sample->user_stack.data, sz);
2658 array = (void *)array + sz;
2659 *array++ = sz;
2660 }
2661 }
2662
2663 if (type & PERF_SAMPLE_WEIGHT) {
2664 *array = sample->weight;
2665 array++;
2666 }
2667
2668 if (type & PERF_SAMPLE_DATA_SRC) {
2669 *array = sample->data_src;
2670 array++;
2671 }
2672
2673 if (type & PERF_SAMPLE_TRANSACTION) {
2674 *array = sample->transaction;
2675 array++;
2676 }
2677
2678 if (type & PERF_SAMPLE_REGS_INTR) {
2679 if (sample->intr_regs.abi) {
2680 *array++ = sample->intr_regs.abi;
2681 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2682 memcpy(array, sample->intr_regs.regs, sz);
2683 array = (void *)array + sz;
2684 } else {
2685 *array++ = 0;
2686 }
2687 }
2688
2689 if (type & PERF_SAMPLE_PHYS_ADDR) {
2690 *array = sample->phys_addr;
2691 array++;
2692 }
2693
2694 return 0;
2695 }
2696
perf_evsel__field(struct perf_evsel * evsel,const char * name)2697 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2698 {
2699 return tep_find_field(evsel->tp_format, name);
2700 }
2701
perf_evsel__rawptr(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2702 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2703 const char *name)
2704 {
2705 struct format_field *field = perf_evsel__field(evsel, name);
2706 int offset;
2707
2708 if (!field)
2709 return NULL;
2710
2711 offset = field->offset;
2712
2713 if (field->flags & FIELD_IS_DYNAMIC) {
2714 offset = *(int *)(sample->raw_data + field->offset);
2715 offset &= 0xffff;
2716 }
2717
2718 return sample->raw_data + offset;
2719 }
2720
format_field__intval(struct format_field * field,struct perf_sample * sample,bool needs_swap)2721 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2722 bool needs_swap)
2723 {
2724 u64 value;
2725 void *ptr = sample->raw_data + field->offset;
2726
2727 switch (field->size) {
2728 case 1:
2729 return *(u8 *)ptr;
2730 case 2:
2731 value = *(u16 *)ptr;
2732 break;
2733 case 4:
2734 value = *(u32 *)ptr;
2735 break;
2736 case 8:
2737 memcpy(&value, ptr, sizeof(u64));
2738 break;
2739 default:
2740 return 0;
2741 }
2742
2743 if (!needs_swap)
2744 return value;
2745
2746 switch (field->size) {
2747 case 2:
2748 return bswap_16(value);
2749 case 4:
2750 return bswap_32(value);
2751 case 8:
2752 return bswap_64(value);
2753 default:
2754 return 0;
2755 }
2756
2757 return 0;
2758 }
2759
perf_evsel__intval(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2760 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2761 const char *name)
2762 {
2763 struct format_field *field = perf_evsel__field(evsel, name);
2764
2765 if (!field)
2766 return 0;
2767
2768 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2769 }
2770
perf_evsel__fallback(struct perf_evsel * evsel,int err,char * msg,size_t msgsize)2771 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2772 char *msg, size_t msgsize)
2773 {
2774 int paranoid;
2775
2776 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2777 evsel->attr.type == PERF_TYPE_HARDWARE &&
2778 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2779 /*
2780 * If it's cycles then fall back to hrtimer based
2781 * cpu-clock-tick sw counter, which is always available even if
2782 * no PMU support.
2783 *
2784 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2785 * b0a873e).
2786 */
2787 scnprintf(msg, msgsize, "%s",
2788 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2789
2790 evsel->attr.type = PERF_TYPE_SOFTWARE;
2791 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2792
2793 zfree(&evsel->name);
2794 return true;
2795 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2796 (paranoid = perf_event_paranoid()) > 1) {
2797 const char *name = perf_evsel__name(evsel);
2798 char *new_name;
2799 const char *sep = ":";
2800
2801 /* Is there already the separator in the name. */
2802 if (strchr(name, '/') ||
2803 strchr(name, ':'))
2804 sep = "";
2805
2806 if (asprintf(&new_name, "%s%su", name, sep) < 0)
2807 return false;
2808
2809 if (evsel->name)
2810 free(evsel->name);
2811 evsel->name = new_name;
2812 scnprintf(msg, msgsize,
2813 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2814 evsel->attr.exclude_kernel = 1;
2815
2816 return true;
2817 }
2818
2819 return false;
2820 }
2821
find_process(const char * name)2822 static bool find_process(const char *name)
2823 {
2824 size_t len = strlen(name);
2825 DIR *dir;
2826 struct dirent *d;
2827 int ret = -1;
2828
2829 dir = opendir(procfs__mountpoint());
2830 if (!dir)
2831 return false;
2832
2833 /* Walk through the directory. */
2834 while (ret && (d = readdir(dir)) != NULL) {
2835 char path[PATH_MAX];
2836 char *data;
2837 size_t size;
2838
2839 if ((d->d_type != DT_DIR) ||
2840 !strcmp(".", d->d_name) ||
2841 !strcmp("..", d->d_name))
2842 continue;
2843
2844 scnprintf(path, sizeof(path), "%s/%s/comm",
2845 procfs__mountpoint(), d->d_name);
2846
2847 if (filename__read_str(path, &data, &size))
2848 continue;
2849
2850 ret = strncmp(name, data, len);
2851 free(data);
2852 }
2853
2854 closedir(dir);
2855 return ret ? false : true;
2856 }
2857
perf_evsel__open_strerror(struct perf_evsel * evsel,struct target * target,int err,char * msg,size_t size)2858 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2859 int err, char *msg, size_t size)
2860 {
2861 char sbuf[STRERR_BUFSIZE];
2862 int printed = 0;
2863
2864 switch (err) {
2865 case EPERM:
2866 case EACCES:
2867 if (err == EPERM)
2868 printed = scnprintf(msg, size,
2869 "No permission to enable %s event.\n\n",
2870 perf_evsel__name(evsel));
2871
2872 return scnprintf(msg + printed, size - printed,
2873 "You may not have permission to collect %sstats.\n\n"
2874 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2875 "which controls use of the performance events system by\n"
2876 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2877 "The current value is %d:\n\n"
2878 " -1: Allow use of (almost) all events by all users\n"
2879 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2880 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2881 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2882 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2883 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2884 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2885 " kernel.perf_event_paranoid = -1\n" ,
2886 target->system_wide ? "system-wide " : "",
2887 perf_event_paranoid());
2888 case ENOENT:
2889 return scnprintf(msg, size, "The %s event is not supported.",
2890 perf_evsel__name(evsel));
2891 case EMFILE:
2892 return scnprintf(msg, size, "%s",
2893 "Too many events are opened.\n"
2894 "Probably the maximum number of open file descriptors has been reached.\n"
2895 "Hint: Try again after reducing the number of events.\n"
2896 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2897 case ENOMEM:
2898 if (evsel__has_callchain(evsel) &&
2899 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2900 return scnprintf(msg, size,
2901 "Not enough memory to setup event with callchain.\n"
2902 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2903 "Hint: Current value: %d", sysctl__max_stack());
2904 break;
2905 case ENODEV:
2906 if (target->cpu_list)
2907 return scnprintf(msg, size, "%s",
2908 "No such device - did you specify an out-of-range profile CPU?");
2909 break;
2910 case EOPNOTSUPP:
2911 if (evsel->attr.sample_period != 0)
2912 return scnprintf(msg, size,
2913 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2914 perf_evsel__name(evsel));
2915 if (evsel->attr.precise_ip)
2916 return scnprintf(msg, size, "%s",
2917 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2918 #if defined(__i386__) || defined(__x86_64__)
2919 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2920 return scnprintf(msg, size, "%s",
2921 "No hardware sampling interrupt available.\n");
2922 #endif
2923 break;
2924 case EBUSY:
2925 if (find_process("oprofiled"))
2926 return scnprintf(msg, size,
2927 "The PMU counters are busy/taken by another profiler.\n"
2928 "We found oprofile daemon running, please stop it and try again.");
2929 break;
2930 case EINVAL:
2931 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2932 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2933 if (perf_missing_features.clockid)
2934 return scnprintf(msg, size, "clockid feature not supported.");
2935 if (perf_missing_features.clockid_wrong)
2936 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2937 break;
2938 default:
2939 break;
2940 }
2941
2942 return scnprintf(msg, size,
2943 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2944 "/bin/dmesg | grep -i perf may provide additional information.\n",
2945 err, str_error_r(err, sbuf, sizeof(sbuf)),
2946 perf_evsel__name(evsel));
2947 }
2948
perf_evsel__env(struct perf_evsel * evsel)2949 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2950 {
2951 if (evsel && evsel->evlist)
2952 return evsel->evlist->env;
2953 return NULL;
2954 }
2955