• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include "sane_ctype.h"
43 
44 struct perf_missing_features perf_missing_features;
45 
46 static clockid_t clockid;
47 
perf_evsel__no_extra_init(struct perf_evsel * evsel __maybe_unused)48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 	return 0;
51 }
52 
test_attr__ready(void)53 void __weak test_attr__ready(void) { }
54 
perf_evsel__no_extra_fini(struct perf_evsel * evsel __maybe_unused)55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58 
59 static struct {
60 	size_t	size;
61 	int	(*init)(struct perf_evsel *evsel);
62 	void	(*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 	.size = sizeof(struct perf_evsel),
65 	.init = perf_evsel__no_extra_init,
66 	.fini = perf_evsel__no_extra_fini,
67 };
68 
perf_evsel__object_config(size_t object_size,int (* init)(struct perf_evsel * evsel),void (* fini)(struct perf_evsel * evsel))69 int perf_evsel__object_config(size_t object_size,
70 			      int (*init)(struct perf_evsel *evsel),
71 			      void (*fini)(struct perf_evsel *evsel))
72 {
73 
74 	if (object_size == 0)
75 		goto set_methods;
76 
77 	if (perf_evsel__object.size > object_size)
78 		return -EINVAL;
79 
80 	perf_evsel__object.size = object_size;
81 
82 set_methods:
83 	if (init != NULL)
84 		perf_evsel__object.init = init;
85 
86 	if (fini != NULL)
87 		perf_evsel__object.fini = fini;
88 
89 	return 0;
90 }
91 
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93 
__perf_evsel__sample_size(u64 sample_type)94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 	u64 mask = sample_type & PERF_SAMPLE_MASK;
97 	int size = 0;
98 	int i;
99 
100 	for (i = 0; i < 64; i++) {
101 		if (mask & (1ULL << i))
102 			size++;
103 	}
104 
105 	size *= sizeof(u64);
106 
107 	return size;
108 }
109 
110 /**
111  * __perf_evsel__calc_id_pos - calculate id_pos.
112  * @sample_type: sample type
113  *
114  * This function returns the position of the event id (PERF_SAMPLE_ID or
115  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116  * sample_event.
117  */
__perf_evsel__calc_id_pos(u64 sample_type)118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 	int idx = 0;
121 
122 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 		return 0;
124 
125 	if (!(sample_type & PERF_SAMPLE_ID))
126 		return -1;
127 
128 	if (sample_type & PERF_SAMPLE_IP)
129 		idx += 1;
130 
131 	if (sample_type & PERF_SAMPLE_TID)
132 		idx += 1;
133 
134 	if (sample_type & PERF_SAMPLE_TIME)
135 		idx += 1;
136 
137 	if (sample_type & PERF_SAMPLE_ADDR)
138 		idx += 1;
139 
140 	return idx;
141 }
142 
143 /**
144  * __perf_evsel__calc_is_pos - calculate is_pos.
145  * @sample_type: sample type
146  *
147  * This function returns the position (counting backwards) of the event id
148  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149  * sample_id_all is used there is an id sample appended to non-sample events.
150  */
__perf_evsel__calc_is_pos(u64 sample_type)151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 	int idx = 1;
154 
155 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 		return 1;
157 
158 	if (!(sample_type & PERF_SAMPLE_ID))
159 		return -1;
160 
161 	if (sample_type & PERF_SAMPLE_CPU)
162 		idx += 1;
163 
164 	if (sample_type & PERF_SAMPLE_STREAM_ID)
165 		idx += 1;
166 
167 	return idx;
168 }
169 
perf_evsel__calc_id_pos(struct perf_evsel * evsel)170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175 
__perf_evsel__set_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 				  enum perf_event_sample_format bit)
178 {
179 	if (!(evsel->attr.sample_type & bit)) {
180 		evsel->attr.sample_type |= bit;
181 		evsel->sample_size += sizeof(u64);
182 		perf_evsel__calc_id_pos(evsel);
183 	}
184 }
185 
__perf_evsel__reset_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 				    enum perf_event_sample_format bit)
188 {
189 	if (evsel->attr.sample_type & bit) {
190 		evsel->attr.sample_type &= ~bit;
191 		evsel->sample_size -= sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
perf_evsel__set_sample_id(struct perf_evsel * evsel,bool can_sample_identifier)196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 			       bool can_sample_identifier)
198 {
199 	if (can_sample_identifier) {
200 		perf_evsel__reset_sample_bit(evsel, ID);
201 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 	} else {
203 		perf_evsel__set_sample_bit(evsel, ID);
204 	}
205 	evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207 
208 /**
209  * perf_evsel__is_function_event - Return whether given evsel is a function
210  * trace event
211  *
212  * @evsel - evsel selector to be tested
213  *
214  * Return %true if event is function trace event
215  */
perf_evsel__is_function_event(struct perf_evsel * evsel)216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219 
220 	return evsel->name &&
221 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222 
223 #undef FUNCTION_EVENT
224 }
225 
perf_evsel__init(struct perf_evsel * evsel,struct perf_event_attr * attr,int idx)226 void perf_evsel__init(struct perf_evsel *evsel,
227 		      struct perf_event_attr *attr, int idx)
228 {
229 	evsel->idx	   = idx;
230 	evsel->tracking	   = !idx;
231 	evsel->attr	   = *attr;
232 	evsel->leader	   = evsel;
233 	evsel->unit	   = "";
234 	evsel->scale	   = 1.0;
235 	evsel->evlist	   = NULL;
236 	evsel->bpf_fd	   = -1;
237 	INIT_LIST_HEAD(&evsel->node);
238 	INIT_LIST_HEAD(&evsel->config_terms);
239 	perf_evsel__object.init(evsel);
240 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
241 	perf_evsel__calc_id_pos(evsel);
242 	evsel->cmdline_group_boundary = false;
243 	evsel->metric_expr   = NULL;
244 	evsel->metric_name   = NULL;
245 	evsel->metric_events = NULL;
246 	evsel->collect_stat  = false;
247 	evsel->pmu_name      = NULL;
248 }
249 
perf_evsel__new_idx(struct perf_event_attr * attr,int idx)250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
251 {
252 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
253 
254 	if (!evsel)
255 		return NULL;
256 	perf_evsel__init(evsel, attr, idx);
257 
258 	if (perf_evsel__is_bpf_output(evsel)) {
259 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
260 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
261 		evsel->attr.sample_period = 1;
262 	}
263 
264 	if (perf_evsel__is_clock(evsel)) {
265 		/*
266 		 * The evsel->unit points to static alias->unit
267 		 * so it's ok to use static string in here.
268 		 */
269 		static const char *unit = "msec";
270 
271 		evsel->unit = unit;
272 		evsel->scale = 1e-6;
273 	}
274 
275 	return evsel;
276 }
277 
perf_event_can_profile_kernel(void)278 static bool perf_event_can_profile_kernel(void)
279 {
280 	return geteuid() == 0 || perf_event_paranoid() == -1;
281 }
282 
perf_evsel__new_cycles(bool precise)283 struct perf_evsel *perf_evsel__new_cycles(bool precise)
284 {
285 	struct perf_event_attr attr = {
286 		.type	= PERF_TYPE_HARDWARE,
287 		.config	= PERF_COUNT_HW_CPU_CYCLES,
288 		.exclude_kernel	= !perf_event_can_profile_kernel(),
289 	};
290 	struct perf_evsel *evsel;
291 
292 	event_attr_init(&attr);
293 
294 	if (!precise)
295 		goto new_event;
296 	/*
297 	 * Unnamed union member, not supported as struct member named
298 	 * initializer in older compilers such as gcc 4.4.7
299 	 *
300 	 * Just for probing the precise_ip:
301 	 */
302 	attr.sample_period = 1;
303 
304 	perf_event_attr__set_max_precise_ip(&attr);
305 	/*
306 	 * Now let the usual logic to set up the perf_event_attr defaults
307 	 * to kick in when we return and before perf_evsel__open() is called.
308 	 */
309 	attr.sample_period = 0;
310 new_event:
311 	evsel = perf_evsel__new(&attr);
312 	if (evsel == NULL)
313 		goto out;
314 
315 	/* use asprintf() because free(evsel) assumes name is allocated */
316 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
317 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
318 		     attr.exclude_kernel ? "u" : "",
319 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
320 		goto error_free;
321 out:
322 	return evsel;
323 error_free:
324 	perf_evsel__delete(evsel);
325 	evsel = NULL;
326 	goto out;
327 }
328 
329 /*
330  * Returns pointer with encoded error via <linux/err.h> interface.
331  */
perf_evsel__newtp_idx(const char * sys,const char * name,int idx)332 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
333 {
334 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
335 	int err = -ENOMEM;
336 
337 	if (evsel == NULL) {
338 		goto out_err;
339 	} else {
340 		struct perf_event_attr attr = {
341 			.type	       = PERF_TYPE_TRACEPOINT,
342 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
343 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
344 		};
345 
346 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
347 			goto out_free;
348 
349 		evsel->tp_format = trace_event__tp_format(sys, name);
350 		if (IS_ERR(evsel->tp_format)) {
351 			err = PTR_ERR(evsel->tp_format);
352 			goto out_free;
353 		}
354 
355 		event_attr_init(&attr);
356 		attr.config = evsel->tp_format->id;
357 		attr.sample_period = 1;
358 		perf_evsel__init(evsel, &attr, idx);
359 	}
360 
361 	return evsel;
362 
363 out_free:
364 	zfree(&evsel->name);
365 	free(evsel);
366 out_err:
367 	return ERR_PTR(err);
368 }
369 
370 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
371 	"cycles",
372 	"instructions",
373 	"cache-references",
374 	"cache-misses",
375 	"branches",
376 	"branch-misses",
377 	"bus-cycles",
378 	"stalled-cycles-frontend",
379 	"stalled-cycles-backend",
380 	"ref-cycles",
381 };
382 
__perf_evsel__hw_name(u64 config)383 static const char *__perf_evsel__hw_name(u64 config)
384 {
385 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
386 		return perf_evsel__hw_names[config];
387 
388 	return "unknown-hardware";
389 }
390 
perf_evsel__add_modifiers(struct perf_evsel * evsel,char * bf,size_t size)391 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
392 {
393 	int colon = 0, r = 0;
394 	struct perf_event_attr *attr = &evsel->attr;
395 	bool exclude_guest_default = false;
396 
397 #define MOD_PRINT(context, mod)	do {					\
398 		if (!attr->exclude_##context) {				\
399 			if (!colon) colon = ++r;			\
400 			r += scnprintf(bf + r, size - r, "%c", mod);	\
401 		} } while(0)
402 
403 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
404 		MOD_PRINT(kernel, 'k');
405 		MOD_PRINT(user, 'u');
406 		MOD_PRINT(hv, 'h');
407 		exclude_guest_default = true;
408 	}
409 
410 	if (attr->precise_ip) {
411 		if (!colon)
412 			colon = ++r;
413 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
414 		exclude_guest_default = true;
415 	}
416 
417 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
418 		MOD_PRINT(host, 'H');
419 		MOD_PRINT(guest, 'G');
420 	}
421 #undef MOD_PRINT
422 	if (colon)
423 		bf[colon - 1] = ':';
424 	return r;
425 }
426 
perf_evsel__hw_name(struct perf_evsel * evsel,char * bf,size_t size)427 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
428 {
429 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
430 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
431 }
432 
433 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
434 	"cpu-clock",
435 	"task-clock",
436 	"page-faults",
437 	"context-switches",
438 	"cpu-migrations",
439 	"minor-faults",
440 	"major-faults",
441 	"alignment-faults",
442 	"emulation-faults",
443 	"dummy",
444 };
445 
__perf_evsel__sw_name(u64 config)446 static const char *__perf_evsel__sw_name(u64 config)
447 {
448 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
449 		return perf_evsel__sw_names[config];
450 	return "unknown-software";
451 }
452 
perf_evsel__sw_name(struct perf_evsel * evsel,char * bf,size_t size)453 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
454 {
455 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
456 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
457 }
458 
__perf_evsel__bp_name(char * bf,size_t size,u64 addr,u64 type)459 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
460 {
461 	int r;
462 
463 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
464 
465 	if (type & HW_BREAKPOINT_R)
466 		r += scnprintf(bf + r, size - r, "r");
467 
468 	if (type & HW_BREAKPOINT_W)
469 		r += scnprintf(bf + r, size - r, "w");
470 
471 	if (type & HW_BREAKPOINT_X)
472 		r += scnprintf(bf + r, size - r, "x");
473 
474 	return r;
475 }
476 
perf_evsel__bp_name(struct perf_evsel * evsel,char * bf,size_t size)477 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
478 {
479 	struct perf_event_attr *attr = &evsel->attr;
480 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
481 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
482 }
483 
484 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
485 				[PERF_EVSEL__MAX_ALIASES] = {
486  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
487  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
488  { "LLC",	"L2",							},
489  { "dTLB",	"d-tlb",	"Data-TLB",				},
490  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
491  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
492  { "node",								},
493 };
494 
495 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
496 				   [PERF_EVSEL__MAX_ALIASES] = {
497  { "load",	"loads",	"read",					},
498  { "store",	"stores",	"write",				},
499  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
500 };
501 
502 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
503 				       [PERF_EVSEL__MAX_ALIASES] = {
504  { "refs",	"Reference",	"ops",		"access",		},
505  { "misses",	"miss",							},
506 };
507 
508 #define C(x)		PERF_COUNT_HW_CACHE_##x
509 #define CACHE_READ	(1 << C(OP_READ))
510 #define CACHE_WRITE	(1 << C(OP_WRITE))
511 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
512 #define COP(x)		(1 << x)
513 
514 /*
515  * cache operartion stat
516  * L1I : Read and prefetch only
517  * ITLB and BPU : Read-only
518  */
519 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
520  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
522  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
523  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
524  [C(ITLB)]	= (CACHE_READ),
525  [C(BPU)]	= (CACHE_READ),
526  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
527 };
528 
perf_evsel__is_cache_op_valid(u8 type,u8 op)529 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
530 {
531 	if (perf_evsel__hw_cache_stat[type] & COP(op))
532 		return true;	/* valid */
533 	else
534 		return false;	/* invalid */
535 }
536 
__perf_evsel__hw_cache_type_op_res_name(u8 type,u8 op,u8 result,char * bf,size_t size)537 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
538 					    char *bf, size_t size)
539 {
540 	if (result) {
541 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
542 				 perf_evsel__hw_cache_op[op][0],
543 				 perf_evsel__hw_cache_result[result][0]);
544 	}
545 
546 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
547 			 perf_evsel__hw_cache_op[op][1]);
548 }
549 
__perf_evsel__hw_cache_name(u64 config,char * bf,size_t size)550 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
551 {
552 	u8 op, result, type = (config >>  0) & 0xff;
553 	const char *err = "unknown-ext-hardware-cache-type";
554 
555 	if (type >= PERF_COUNT_HW_CACHE_MAX)
556 		goto out_err;
557 
558 	op = (config >>  8) & 0xff;
559 	err = "unknown-ext-hardware-cache-op";
560 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
561 		goto out_err;
562 
563 	result = (config >> 16) & 0xff;
564 	err = "unknown-ext-hardware-cache-result";
565 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
566 		goto out_err;
567 
568 	err = "invalid-cache";
569 	if (!perf_evsel__is_cache_op_valid(type, op))
570 		goto out_err;
571 
572 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
573 out_err:
574 	return scnprintf(bf, size, "%s", err);
575 }
576 
perf_evsel__hw_cache_name(struct perf_evsel * evsel,char * bf,size_t size)577 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
578 {
579 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
580 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
581 }
582 
perf_evsel__raw_name(struct perf_evsel * evsel,char * bf,size_t size)583 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
584 {
585 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
586 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
587 }
588 
perf_evsel__name(struct perf_evsel * evsel)589 const char *perf_evsel__name(struct perf_evsel *evsel)
590 {
591 	char bf[128];
592 
593 	if (!evsel)
594 		goto out_unknown;
595 
596 	if (evsel->name)
597 		return evsel->name;
598 
599 	switch (evsel->attr.type) {
600 	case PERF_TYPE_RAW:
601 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
602 		break;
603 
604 	case PERF_TYPE_HARDWARE:
605 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
606 		break;
607 
608 	case PERF_TYPE_HW_CACHE:
609 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
610 		break;
611 
612 	case PERF_TYPE_SOFTWARE:
613 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
614 		break;
615 
616 	case PERF_TYPE_TRACEPOINT:
617 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
618 		break;
619 
620 	case PERF_TYPE_BREAKPOINT:
621 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
622 		break;
623 
624 	default:
625 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
626 			  evsel->attr.type);
627 		break;
628 	}
629 
630 	evsel->name = strdup(bf);
631 
632 	if (evsel->name)
633 		return evsel->name;
634 out_unknown:
635 	return "unknown";
636 }
637 
perf_evsel__group_name(struct perf_evsel * evsel)638 const char *perf_evsel__group_name(struct perf_evsel *evsel)
639 {
640 	return evsel->group_name ?: "anon group";
641 }
642 
643 /*
644  * Returns the group details for the specified leader,
645  * with following rules.
646  *
647  *  For record -e '{cycles,instructions}'
648  *    'anon group { cycles:u, instructions:u }'
649  *
650  *  For record -e 'cycles,instructions' and report --group
651  *    'cycles:u, instructions:u'
652  */
perf_evsel__group_desc(struct perf_evsel * evsel,char * buf,size_t size)653 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
654 {
655 	int ret = 0;
656 	struct perf_evsel *pos;
657 	const char *group_name = perf_evsel__group_name(evsel);
658 
659 	if (!evsel->forced_leader)
660 		ret = scnprintf(buf, size, "%s { ", group_name);
661 
662 	ret += scnprintf(buf + ret, size - ret, "%s",
663 			 perf_evsel__name(evsel));
664 
665 	for_each_group_member(pos, evsel)
666 		ret += scnprintf(buf + ret, size - ret, ", %s",
667 				 perf_evsel__name(pos));
668 
669 	if (!evsel->forced_leader)
670 		ret += scnprintf(buf + ret, size - ret, " }");
671 
672 	return ret;
673 }
674 
__perf_evsel__config_callchain(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * param)675 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
676 					   struct record_opts *opts,
677 					   struct callchain_param *param)
678 {
679 	bool function = perf_evsel__is_function_event(evsel);
680 	struct perf_event_attr *attr = &evsel->attr;
681 
682 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
683 
684 	attr->sample_max_stack = param->max_stack;
685 
686 	if (param->record_mode == CALLCHAIN_LBR) {
687 		if (!opts->branch_stack) {
688 			if (attr->exclude_user) {
689 				pr_warning("LBR callstack option is only available "
690 					   "to get user callchain information. "
691 					   "Falling back to framepointers.\n");
692 			} else {
693 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
694 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
695 							PERF_SAMPLE_BRANCH_CALL_STACK |
696 							PERF_SAMPLE_BRANCH_NO_CYCLES |
697 							PERF_SAMPLE_BRANCH_NO_FLAGS;
698 			}
699 		} else
700 			 pr_warning("Cannot use LBR callstack with branch stack. "
701 				    "Falling back to framepointers.\n");
702 	}
703 
704 	if (param->record_mode == CALLCHAIN_DWARF) {
705 		if (!function) {
706 			perf_evsel__set_sample_bit(evsel, REGS_USER);
707 			perf_evsel__set_sample_bit(evsel, STACK_USER);
708 			attr->sample_regs_user |= PERF_REGS_MASK;
709 			attr->sample_stack_user = param->dump_size;
710 			attr->exclude_callchain_user = 1;
711 		} else {
712 			pr_info("Cannot use DWARF unwind for function trace event,"
713 				" falling back to framepointers.\n");
714 		}
715 	}
716 
717 	if (function) {
718 		pr_info("Disabling user space callchains for function trace event.\n");
719 		attr->exclude_callchain_user = 1;
720 	}
721 }
722 
perf_evsel__config_callchain(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * param)723 void perf_evsel__config_callchain(struct perf_evsel *evsel,
724 				  struct record_opts *opts,
725 				  struct callchain_param *param)
726 {
727 	if (param->enabled)
728 		return __perf_evsel__config_callchain(evsel, opts, param);
729 }
730 
731 static void
perf_evsel__reset_callgraph(struct perf_evsel * evsel,struct callchain_param * param)732 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
733 			    struct callchain_param *param)
734 {
735 	struct perf_event_attr *attr = &evsel->attr;
736 
737 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
738 	if (param->record_mode == CALLCHAIN_LBR) {
739 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
740 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
741 					      PERF_SAMPLE_BRANCH_CALL_STACK);
742 	}
743 	if (param->record_mode == CALLCHAIN_DWARF) {
744 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
745 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
746 	}
747 }
748 
apply_config_terms(struct perf_evsel * evsel,struct record_opts * opts,bool track)749 static void apply_config_terms(struct perf_evsel *evsel,
750 			       struct record_opts *opts, bool track)
751 {
752 	struct perf_evsel_config_term *term;
753 	struct list_head *config_terms = &evsel->config_terms;
754 	struct perf_event_attr *attr = &evsel->attr;
755 	/* callgraph default */
756 	struct callchain_param param = {
757 		.record_mode = callchain_param.record_mode,
758 	};
759 	u32 dump_size = 0;
760 	int max_stack = 0;
761 	const char *callgraph_buf = NULL;
762 
763 	list_for_each_entry(term, config_terms, list) {
764 		switch (term->type) {
765 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
766 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
767 				attr->sample_period = term->val.period;
768 				attr->freq = 0;
769 				perf_evsel__reset_sample_bit(evsel, PERIOD);
770 			}
771 			break;
772 		case PERF_EVSEL__CONFIG_TERM_FREQ:
773 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
774 				attr->sample_freq = term->val.freq;
775 				attr->freq = 1;
776 				perf_evsel__set_sample_bit(evsel, PERIOD);
777 			}
778 			break;
779 		case PERF_EVSEL__CONFIG_TERM_TIME:
780 			if (term->val.time)
781 				perf_evsel__set_sample_bit(evsel, TIME);
782 			else
783 				perf_evsel__reset_sample_bit(evsel, TIME);
784 			break;
785 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
786 			callgraph_buf = term->val.callgraph;
787 			break;
788 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
789 			if (term->val.branch && strcmp(term->val.branch, "no")) {
790 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
791 				parse_branch_str(term->val.branch,
792 						 &attr->branch_sample_type);
793 			} else
794 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
795 			break;
796 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
797 			dump_size = term->val.stack_user;
798 			break;
799 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
800 			max_stack = term->val.max_stack;
801 			break;
802 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
803 			/*
804 			 * attr->inherit should has already been set by
805 			 * perf_evsel__config. If user explicitly set
806 			 * inherit using config terms, override global
807 			 * opt->no_inherit setting.
808 			 */
809 			attr->inherit = term->val.inherit ? 1 : 0;
810 			break;
811 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
812 			attr->write_backward = term->val.overwrite ? 1 : 0;
813 			break;
814 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
815 			break;
816 		default:
817 			break;
818 		}
819 	}
820 
821 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
822 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
823 		bool sample_address = false;
824 
825 		if (max_stack) {
826 			param.max_stack = max_stack;
827 			if (callgraph_buf == NULL)
828 				callgraph_buf = "fp";
829 		}
830 
831 		/* parse callgraph parameters */
832 		if (callgraph_buf != NULL) {
833 			if (!strcmp(callgraph_buf, "no")) {
834 				param.enabled = false;
835 				param.record_mode = CALLCHAIN_NONE;
836 			} else {
837 				param.enabled = true;
838 				if (parse_callchain_record(callgraph_buf, &param)) {
839 					pr_err("per-event callgraph setting for %s failed. "
840 					       "Apply callgraph global setting for it\n",
841 					       evsel->name);
842 					return;
843 				}
844 				if (param.record_mode == CALLCHAIN_DWARF)
845 					sample_address = true;
846 			}
847 		}
848 		if (dump_size > 0) {
849 			dump_size = round_up(dump_size, sizeof(u64));
850 			param.dump_size = dump_size;
851 		}
852 
853 		/* If global callgraph set, clear it */
854 		if (callchain_param.enabled)
855 			perf_evsel__reset_callgraph(evsel, &callchain_param);
856 
857 		/* set perf-event callgraph */
858 		if (param.enabled) {
859 			if (sample_address) {
860 				perf_evsel__set_sample_bit(evsel, ADDR);
861 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
862 				evsel->attr.mmap_data = track;
863 			}
864 			perf_evsel__config_callchain(evsel, opts, &param);
865 		}
866 	}
867 }
868 
is_dummy_event(struct perf_evsel * evsel)869 static bool is_dummy_event(struct perf_evsel *evsel)
870 {
871 	return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
872 	       (evsel->attr.config == PERF_COUNT_SW_DUMMY);
873 }
874 
875 /*
876  * The enable_on_exec/disabled value strategy:
877  *
878  *  1) For any type of traced program:
879  *    - all independent events and group leaders are disabled
880  *    - all group members are enabled
881  *
882  *     Group members are ruled by group leaders. They need to
883  *     be enabled, because the group scheduling relies on that.
884  *
885  *  2) For traced programs executed by perf:
886  *     - all independent events and group leaders have
887  *       enable_on_exec set
888  *     - we don't specifically enable or disable any event during
889  *       the record command
890  *
891  *     Independent events and group leaders are initially disabled
892  *     and get enabled by exec. Group members are ruled by group
893  *     leaders as stated in 1).
894  *
895  *  3) For traced programs attached by perf (pid/tid):
896  *     - we specifically enable or disable all events during
897  *       the record command
898  *
899  *     When attaching events to already running traced we
900  *     enable/disable events specifically, as there's no
901  *     initial traced exec call.
902  */
perf_evsel__config(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * callchain)903 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
904 			struct callchain_param *callchain)
905 {
906 	struct perf_evsel *leader = evsel->leader;
907 	struct perf_event_attr *attr = &evsel->attr;
908 	int track = evsel->tracking;
909 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
910 
911 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
912 	attr->inherit	    = !opts->no_inherit;
913 	attr->write_backward = opts->overwrite ? 1 : 0;
914 
915 	perf_evsel__set_sample_bit(evsel, IP);
916 	perf_evsel__set_sample_bit(evsel, TID);
917 
918 	if (evsel->sample_read) {
919 		perf_evsel__set_sample_bit(evsel, READ);
920 
921 		/*
922 		 * We need ID even in case of single event, because
923 		 * PERF_SAMPLE_READ process ID specific data.
924 		 */
925 		perf_evsel__set_sample_id(evsel, false);
926 
927 		/*
928 		 * Apply group format only if we belong to group
929 		 * with more than one members.
930 		 */
931 		if (leader->nr_members > 1) {
932 			attr->read_format |= PERF_FORMAT_GROUP;
933 			attr->inherit = 0;
934 		}
935 	}
936 
937 	/*
938 	 * We default some events to have a default interval. But keep
939 	 * it a weak assumption overridable by the user.
940 	 */
941 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
942 				     opts->user_interval != ULLONG_MAX)) {
943 		if (opts->freq) {
944 			perf_evsel__set_sample_bit(evsel, PERIOD);
945 			attr->freq		= 1;
946 			attr->sample_freq	= opts->freq;
947 		} else {
948 			attr->sample_period = opts->default_interval;
949 		}
950 	}
951 
952 	/*
953 	 * Disable sampling for all group members other
954 	 * than leader in case leader 'leads' the sampling.
955 	 */
956 	if ((leader != evsel) && leader->sample_read) {
957 		attr->freq           = 0;
958 		attr->sample_freq    = 0;
959 		attr->sample_period  = 0;
960 		attr->write_backward = 0;
961 	}
962 
963 	if (opts->no_samples)
964 		attr->sample_freq = 0;
965 
966 	if (opts->inherit_stat) {
967 		evsel->attr.read_format |=
968 			PERF_FORMAT_TOTAL_TIME_ENABLED |
969 			PERF_FORMAT_TOTAL_TIME_RUNNING |
970 			PERF_FORMAT_ID;
971 		attr->inherit_stat = 1;
972 	}
973 
974 	if (opts->sample_address) {
975 		perf_evsel__set_sample_bit(evsel, ADDR);
976 		attr->mmap_data = track;
977 	}
978 
979 	/*
980 	 * We don't allow user space callchains for  function trace
981 	 * event, due to issues with page faults while tracing page
982 	 * fault handler and its overall trickiness nature.
983 	 */
984 	if (perf_evsel__is_function_event(evsel))
985 		evsel->attr.exclude_callchain_user = 1;
986 
987 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
988 		perf_evsel__config_callchain(evsel, opts, callchain);
989 
990 	if (opts->sample_intr_regs) {
991 		attr->sample_regs_intr = opts->sample_intr_regs;
992 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
993 	}
994 
995 	if (opts->sample_user_regs) {
996 		attr->sample_regs_user |= opts->sample_user_regs;
997 		perf_evsel__set_sample_bit(evsel, REGS_USER);
998 	}
999 
1000 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1001 		perf_evsel__set_sample_bit(evsel, CPU);
1002 
1003 	/*
1004 	 * When the user explicitly disabled time don't force it here.
1005 	 */
1006 	if (opts->sample_time &&
1007 	    (!perf_missing_features.sample_id_all &&
1008 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1009 	     opts->sample_time_set)))
1010 		perf_evsel__set_sample_bit(evsel, TIME);
1011 
1012 	if (opts->raw_samples && !evsel->no_aux_samples) {
1013 		perf_evsel__set_sample_bit(evsel, TIME);
1014 		perf_evsel__set_sample_bit(evsel, RAW);
1015 		perf_evsel__set_sample_bit(evsel, CPU);
1016 	}
1017 
1018 	if (opts->sample_address)
1019 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1020 
1021 	if (opts->sample_phys_addr)
1022 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1023 
1024 	if (opts->no_buffering) {
1025 		attr->watermark = 0;
1026 		attr->wakeup_events = 1;
1027 	}
1028 	if (opts->branch_stack && !evsel->no_aux_samples) {
1029 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1030 		attr->branch_sample_type = opts->branch_stack;
1031 	}
1032 
1033 	if (opts->sample_weight)
1034 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1035 
1036 	attr->task  = track;
1037 	attr->mmap  = track;
1038 	attr->mmap2 = track && !perf_missing_features.mmap2;
1039 	attr->comm  = track;
1040 
1041 	if (opts->record_namespaces)
1042 		attr->namespaces  = track;
1043 
1044 	if (opts->record_switch_events)
1045 		attr->context_switch = track;
1046 
1047 	if (opts->sample_transaction)
1048 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1049 
1050 	if (opts->running_time) {
1051 		evsel->attr.read_format |=
1052 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1053 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1054 	}
1055 
1056 	/*
1057 	 * XXX see the function comment above
1058 	 *
1059 	 * Disabling only independent events or group leaders,
1060 	 * keeping group members enabled.
1061 	 */
1062 	if (perf_evsel__is_group_leader(evsel))
1063 		attr->disabled = 1;
1064 
1065 	/*
1066 	 * Setting enable_on_exec for independent events and
1067 	 * group leaders for traced executed by perf.
1068 	 */
1069 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1070 		!opts->initial_delay)
1071 		attr->enable_on_exec = 1;
1072 
1073 	if (evsel->immediate) {
1074 		attr->disabled = 0;
1075 		attr->enable_on_exec = 0;
1076 	}
1077 
1078 	clockid = opts->clockid;
1079 	if (opts->use_clockid) {
1080 		attr->use_clockid = 1;
1081 		attr->clockid = opts->clockid;
1082 	}
1083 
1084 	if (evsel->precise_max)
1085 		perf_event_attr__set_max_precise_ip(attr);
1086 
1087 	if (opts->all_user) {
1088 		attr->exclude_kernel = 1;
1089 		attr->exclude_user   = 0;
1090 	}
1091 
1092 	if (opts->all_kernel) {
1093 		attr->exclude_kernel = 0;
1094 		attr->exclude_user   = 1;
1095 	}
1096 
1097 	if (evsel->own_cpus || evsel->unit)
1098 		evsel->attr.read_format |= PERF_FORMAT_ID;
1099 
1100 	/*
1101 	 * Apply event specific term settings,
1102 	 * it overloads any global configuration.
1103 	 */
1104 	apply_config_terms(evsel, opts, track);
1105 
1106 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1107 
1108 	/* The --period option takes the precedence. */
1109 	if (opts->period_set) {
1110 		if (opts->period)
1111 			perf_evsel__set_sample_bit(evsel, PERIOD);
1112 		else
1113 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1114 	}
1115 
1116 	/*
1117 	 * For initial_delay, a dummy event is added implicitly.
1118 	 * The software event will trigger -EOPNOTSUPP error out,
1119 	 * if BRANCH_STACK bit is set.
1120 	 */
1121 	if (opts->initial_delay && is_dummy_event(evsel))
1122 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1123 }
1124 
perf_evsel__alloc_fd(struct perf_evsel * evsel,int ncpus,int nthreads)1125 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1126 {
1127 	if (evsel->system_wide)
1128 		nthreads = 1;
1129 
1130 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1131 
1132 	if (evsel->fd) {
1133 		int cpu, thread;
1134 		for (cpu = 0; cpu < ncpus; cpu++) {
1135 			for (thread = 0; thread < nthreads; thread++) {
1136 				FD(evsel, cpu, thread) = -1;
1137 			}
1138 		}
1139 	}
1140 
1141 	return evsel->fd != NULL ? 0 : -ENOMEM;
1142 }
1143 
perf_evsel__run_ioctl(struct perf_evsel * evsel,int ioc,void * arg)1144 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1145 			  int ioc,  void *arg)
1146 {
1147 	int cpu, thread;
1148 
1149 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1150 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1151 			int fd = FD(evsel, cpu, thread),
1152 			    err = ioctl(fd, ioc, arg);
1153 
1154 			if (err)
1155 				return err;
1156 		}
1157 	}
1158 
1159 	return 0;
1160 }
1161 
perf_evsel__apply_filter(struct perf_evsel * evsel,const char * filter)1162 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1163 {
1164 	return perf_evsel__run_ioctl(evsel,
1165 				     PERF_EVENT_IOC_SET_FILTER,
1166 				     (void *)filter);
1167 }
1168 
perf_evsel__set_filter(struct perf_evsel * evsel,const char * filter)1169 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1170 {
1171 	char *new_filter = strdup(filter);
1172 
1173 	if (new_filter != NULL) {
1174 		free(evsel->filter);
1175 		evsel->filter = new_filter;
1176 		return 0;
1177 	}
1178 
1179 	return -1;
1180 }
1181 
perf_evsel__append_filter(struct perf_evsel * evsel,const char * fmt,const char * filter)1182 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1183 				     const char *fmt, const char *filter)
1184 {
1185 	char *new_filter;
1186 
1187 	if (evsel->filter == NULL)
1188 		return perf_evsel__set_filter(evsel, filter);
1189 
1190 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1191 		free(evsel->filter);
1192 		evsel->filter = new_filter;
1193 		return 0;
1194 	}
1195 
1196 	return -1;
1197 }
1198 
perf_evsel__append_tp_filter(struct perf_evsel * evsel,const char * filter)1199 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1200 {
1201 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1202 }
1203 
perf_evsel__append_addr_filter(struct perf_evsel * evsel,const char * filter)1204 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1205 {
1206 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1207 }
1208 
perf_evsel__enable(struct perf_evsel * evsel)1209 int perf_evsel__enable(struct perf_evsel *evsel)
1210 {
1211 	return perf_evsel__run_ioctl(evsel,
1212 				     PERF_EVENT_IOC_ENABLE,
1213 				     0);
1214 }
1215 
perf_evsel__disable(struct perf_evsel * evsel)1216 int perf_evsel__disable(struct perf_evsel *evsel)
1217 {
1218 	return perf_evsel__run_ioctl(evsel,
1219 				     PERF_EVENT_IOC_DISABLE,
1220 				     0);
1221 }
1222 
perf_evsel__alloc_id(struct perf_evsel * evsel,int ncpus,int nthreads)1223 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1224 {
1225 	if (ncpus == 0 || nthreads == 0)
1226 		return 0;
1227 
1228 	if (evsel->system_wide)
1229 		nthreads = 1;
1230 
1231 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1232 	if (evsel->sample_id == NULL)
1233 		return -ENOMEM;
1234 
1235 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1236 	if (evsel->id == NULL) {
1237 		xyarray__delete(evsel->sample_id);
1238 		evsel->sample_id = NULL;
1239 		return -ENOMEM;
1240 	}
1241 
1242 	return 0;
1243 }
1244 
perf_evsel__free_fd(struct perf_evsel * evsel)1245 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1246 {
1247 	xyarray__delete(evsel->fd);
1248 	evsel->fd = NULL;
1249 }
1250 
perf_evsel__free_id(struct perf_evsel * evsel)1251 static void perf_evsel__free_id(struct perf_evsel *evsel)
1252 {
1253 	xyarray__delete(evsel->sample_id);
1254 	evsel->sample_id = NULL;
1255 	zfree(&evsel->id);
1256 }
1257 
perf_evsel__free_config_terms(struct perf_evsel * evsel)1258 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1259 {
1260 	struct perf_evsel_config_term *term, *h;
1261 
1262 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1263 		list_del(&term->list);
1264 		free(term);
1265 	}
1266 }
1267 
perf_evsel__close_fd(struct perf_evsel * evsel)1268 void perf_evsel__close_fd(struct perf_evsel *evsel)
1269 {
1270 	int cpu, thread;
1271 
1272 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1273 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1274 			close(FD(evsel, cpu, thread));
1275 			FD(evsel, cpu, thread) = -1;
1276 		}
1277 }
1278 
perf_evsel__exit(struct perf_evsel * evsel)1279 void perf_evsel__exit(struct perf_evsel *evsel)
1280 {
1281 	assert(list_empty(&evsel->node));
1282 	assert(evsel->evlist == NULL);
1283 	perf_evsel__free_counts(evsel);
1284 	perf_evsel__free_fd(evsel);
1285 	perf_evsel__free_id(evsel);
1286 	perf_evsel__free_config_terms(evsel);
1287 	cgroup__put(evsel->cgrp);
1288 	cpu_map__put(evsel->cpus);
1289 	cpu_map__put(evsel->own_cpus);
1290 	thread_map__put(evsel->threads);
1291 	zfree(&evsel->group_name);
1292 	zfree(&evsel->name);
1293 	zfree(&evsel->pmu_name);
1294 	zfree(&evsel->per_pkg_mask);
1295 	zfree(&evsel->metric_events);
1296 	perf_evsel__object.fini(evsel);
1297 }
1298 
perf_evsel__delete(struct perf_evsel * evsel)1299 void perf_evsel__delete(struct perf_evsel *evsel)
1300 {
1301 	perf_evsel__exit(evsel);
1302 	free(evsel);
1303 }
1304 
perf_evsel__compute_deltas(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1305 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1306 				struct perf_counts_values *count)
1307 {
1308 	struct perf_counts_values tmp;
1309 
1310 	if (!evsel->prev_raw_counts)
1311 		return;
1312 
1313 	if (cpu == -1) {
1314 		tmp = evsel->prev_raw_counts->aggr;
1315 		evsel->prev_raw_counts->aggr = *count;
1316 	} else {
1317 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1318 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1319 	}
1320 
1321 	count->val = count->val - tmp.val;
1322 	count->ena = count->ena - tmp.ena;
1323 	count->run = count->run - tmp.run;
1324 }
1325 
perf_counts_values__scale(struct perf_counts_values * count,bool scale,s8 * pscaled)1326 void perf_counts_values__scale(struct perf_counts_values *count,
1327 			       bool scale, s8 *pscaled)
1328 {
1329 	s8 scaled = 0;
1330 
1331 	if (scale) {
1332 		if (count->run == 0) {
1333 			scaled = -1;
1334 			count->val = 0;
1335 		} else if (count->run < count->ena) {
1336 			scaled = 1;
1337 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1338 		}
1339 	} else
1340 		count->ena = count->run = 0;
1341 
1342 	if (pscaled)
1343 		*pscaled = scaled;
1344 }
1345 
perf_evsel__read_size(struct perf_evsel * evsel)1346 static int perf_evsel__read_size(struct perf_evsel *evsel)
1347 {
1348 	u64 read_format = evsel->attr.read_format;
1349 	int entry = sizeof(u64); /* value */
1350 	int size = 0;
1351 	int nr = 1;
1352 
1353 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1354 		size += sizeof(u64);
1355 
1356 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1357 		size += sizeof(u64);
1358 
1359 	if (read_format & PERF_FORMAT_ID)
1360 		entry += sizeof(u64);
1361 
1362 	if (read_format & PERF_FORMAT_GROUP) {
1363 		nr = evsel->nr_members;
1364 		size += sizeof(u64);
1365 	}
1366 
1367 	size += entry * nr;
1368 	return size;
1369 }
1370 
perf_evsel__read(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1371 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1372 		     struct perf_counts_values *count)
1373 {
1374 	size_t size = perf_evsel__read_size(evsel);
1375 
1376 	memset(count, 0, sizeof(*count));
1377 
1378 	if (FD(evsel, cpu, thread) < 0)
1379 		return -EINVAL;
1380 
1381 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1382 		return -errno;
1383 
1384 	return 0;
1385 }
1386 
1387 static int
perf_evsel__read_one(struct perf_evsel * evsel,int cpu,int thread)1388 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1389 {
1390 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1391 
1392 	return perf_evsel__read(evsel, cpu, thread, count);
1393 }
1394 
1395 static void
perf_evsel__set_count(struct perf_evsel * counter,int cpu,int thread,u64 val,u64 ena,u64 run)1396 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1397 		      u64 val, u64 ena, u64 run)
1398 {
1399 	struct perf_counts_values *count;
1400 
1401 	count = perf_counts(counter->counts, cpu, thread);
1402 
1403 	count->val    = val;
1404 	count->ena    = ena;
1405 	count->run    = run;
1406 	count->loaded = true;
1407 }
1408 
1409 static int
perf_evsel__process_group_data(struct perf_evsel * leader,int cpu,int thread,u64 * data)1410 perf_evsel__process_group_data(struct perf_evsel *leader,
1411 			       int cpu, int thread, u64 *data)
1412 {
1413 	u64 read_format = leader->attr.read_format;
1414 	struct sample_read_value *v;
1415 	u64 nr, ena = 0, run = 0, i;
1416 
1417 	nr = *data++;
1418 
1419 	if (nr != (u64) leader->nr_members)
1420 		return -EINVAL;
1421 
1422 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1423 		ena = *data++;
1424 
1425 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1426 		run = *data++;
1427 
1428 	v = (struct sample_read_value *) data;
1429 
1430 	perf_evsel__set_count(leader, cpu, thread,
1431 			      v[0].value, ena, run);
1432 
1433 	for (i = 1; i < nr; i++) {
1434 		struct perf_evsel *counter;
1435 
1436 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1437 		if (!counter)
1438 			return -EINVAL;
1439 
1440 		perf_evsel__set_count(counter, cpu, thread,
1441 				      v[i].value, ena, run);
1442 	}
1443 
1444 	return 0;
1445 }
1446 
1447 static int
perf_evsel__read_group(struct perf_evsel * leader,int cpu,int thread)1448 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1449 {
1450 	struct perf_stat_evsel *ps = leader->stats;
1451 	u64 read_format = leader->attr.read_format;
1452 	int size = perf_evsel__read_size(leader);
1453 	u64 *data = ps->group_data;
1454 
1455 	if (!(read_format & PERF_FORMAT_ID))
1456 		return -EINVAL;
1457 
1458 	if (!perf_evsel__is_group_leader(leader))
1459 		return -EINVAL;
1460 
1461 	if (!data) {
1462 		data = zalloc(size);
1463 		if (!data)
1464 			return -ENOMEM;
1465 
1466 		ps->group_data = data;
1467 	}
1468 
1469 	if (FD(leader, cpu, thread) < 0)
1470 		return -EINVAL;
1471 
1472 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1473 		return -errno;
1474 
1475 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1476 }
1477 
perf_evsel__read_counter(struct perf_evsel * evsel,int cpu,int thread)1478 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1479 {
1480 	u64 read_format = evsel->attr.read_format;
1481 
1482 	if (read_format & PERF_FORMAT_GROUP)
1483 		return perf_evsel__read_group(evsel, cpu, thread);
1484 	else
1485 		return perf_evsel__read_one(evsel, cpu, thread);
1486 }
1487 
__perf_evsel__read_on_cpu(struct perf_evsel * evsel,int cpu,int thread,bool scale)1488 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1489 			      int cpu, int thread, bool scale)
1490 {
1491 	struct perf_counts_values count;
1492 	size_t nv = scale ? 3 : 1;
1493 
1494 	if (FD(evsel, cpu, thread) < 0)
1495 		return -EINVAL;
1496 
1497 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1498 		return -ENOMEM;
1499 
1500 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1501 		return -errno;
1502 
1503 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1504 	perf_counts_values__scale(&count, scale, NULL);
1505 	*perf_counts(evsel->counts, cpu, thread) = count;
1506 	return 0;
1507 }
1508 
get_group_fd(struct perf_evsel * evsel,int cpu,int thread)1509 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1510 {
1511 	struct perf_evsel *leader = evsel->leader;
1512 	int fd;
1513 
1514 	if (perf_evsel__is_group_leader(evsel))
1515 		return -1;
1516 
1517 	/*
1518 	 * Leader must be already processed/open,
1519 	 * if not it's a bug.
1520 	 */
1521 	BUG_ON(!leader->fd);
1522 
1523 	fd = FD(leader, cpu, thread);
1524 	BUG_ON(fd == -1);
1525 
1526 	return fd;
1527 }
1528 
1529 struct bit_names {
1530 	int bit;
1531 	const char *name;
1532 };
1533 
__p_bits(char * buf,size_t size,u64 value,struct bit_names * bits)1534 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1535 {
1536 	bool first_bit = true;
1537 	int i = 0;
1538 
1539 	do {
1540 		if (value & bits[i].bit) {
1541 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1542 			first_bit = false;
1543 		}
1544 	} while (bits[++i].name != NULL);
1545 }
1546 
__p_sample_type(char * buf,size_t size,u64 value)1547 static void __p_sample_type(char *buf, size_t size, u64 value)
1548 {
1549 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1550 	struct bit_names bits[] = {
1551 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1552 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1553 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1554 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1555 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1556 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1557 		{ .name = NULL, }
1558 	};
1559 #undef bit_name
1560 	__p_bits(buf, size, value, bits);
1561 }
1562 
__p_branch_sample_type(char * buf,size_t size,u64 value)1563 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1564 {
1565 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1566 	struct bit_names bits[] = {
1567 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1568 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1569 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1570 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1571 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1572 		{ .name = NULL, }
1573 	};
1574 #undef bit_name
1575 	__p_bits(buf, size, value, bits);
1576 }
1577 
__p_read_format(char * buf,size_t size,u64 value)1578 static void __p_read_format(char *buf, size_t size, u64 value)
1579 {
1580 #define bit_name(n) { PERF_FORMAT_##n, #n }
1581 	struct bit_names bits[] = {
1582 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1583 		bit_name(ID), bit_name(GROUP),
1584 		{ .name = NULL, }
1585 	};
1586 #undef bit_name
1587 	__p_bits(buf, size, value, bits);
1588 }
1589 
1590 #define BUF_SIZE		1024
1591 
1592 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1593 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1594 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1595 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1596 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1597 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1598 
1599 #define PRINT_ATTRn(_n, _f, _p)				\
1600 do {							\
1601 	if (attr->_f) {					\
1602 		_p(attr->_f);				\
1603 		ret += attr__fprintf(fp, _n, buf, priv);\
1604 	}						\
1605 } while (0)
1606 
1607 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1608 
perf_event_attr__fprintf(FILE * fp,struct perf_event_attr * attr,attr__fprintf_f attr__fprintf,void * priv)1609 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1610 			     attr__fprintf_f attr__fprintf, void *priv)
1611 {
1612 	char buf[BUF_SIZE];
1613 	int ret = 0;
1614 
1615 	PRINT_ATTRf(type, p_unsigned);
1616 	PRINT_ATTRf(size, p_unsigned);
1617 	PRINT_ATTRf(config, p_hex);
1618 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1619 	PRINT_ATTRf(sample_type, p_sample_type);
1620 	PRINT_ATTRf(read_format, p_read_format);
1621 
1622 	PRINT_ATTRf(disabled, p_unsigned);
1623 	PRINT_ATTRf(inherit, p_unsigned);
1624 	PRINT_ATTRf(pinned, p_unsigned);
1625 	PRINT_ATTRf(exclusive, p_unsigned);
1626 	PRINT_ATTRf(exclude_user, p_unsigned);
1627 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1628 	PRINT_ATTRf(exclude_hv, p_unsigned);
1629 	PRINT_ATTRf(exclude_idle, p_unsigned);
1630 	PRINT_ATTRf(mmap, p_unsigned);
1631 	PRINT_ATTRf(comm, p_unsigned);
1632 	PRINT_ATTRf(freq, p_unsigned);
1633 	PRINT_ATTRf(inherit_stat, p_unsigned);
1634 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1635 	PRINT_ATTRf(task, p_unsigned);
1636 	PRINT_ATTRf(watermark, p_unsigned);
1637 	PRINT_ATTRf(precise_ip, p_unsigned);
1638 	PRINT_ATTRf(mmap_data, p_unsigned);
1639 	PRINT_ATTRf(sample_id_all, p_unsigned);
1640 	PRINT_ATTRf(exclude_host, p_unsigned);
1641 	PRINT_ATTRf(exclude_guest, p_unsigned);
1642 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1643 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1644 	PRINT_ATTRf(mmap2, p_unsigned);
1645 	PRINT_ATTRf(comm_exec, p_unsigned);
1646 	PRINT_ATTRf(use_clockid, p_unsigned);
1647 	PRINT_ATTRf(context_switch, p_unsigned);
1648 	PRINT_ATTRf(write_backward, p_unsigned);
1649 	PRINT_ATTRf(namespaces, p_unsigned);
1650 
1651 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1652 	PRINT_ATTRf(bp_type, p_unsigned);
1653 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1654 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1655 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1656 	PRINT_ATTRf(sample_regs_user, p_hex);
1657 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1658 	PRINT_ATTRf(clockid, p_signed);
1659 	PRINT_ATTRf(sample_regs_intr, p_hex);
1660 	PRINT_ATTRf(aux_watermark, p_unsigned);
1661 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1662 
1663 	return ret;
1664 }
1665 
__open_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1666 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1667 				void *priv __maybe_unused)
1668 {
1669 	return fprintf(fp, "  %-32s %s\n", name, val);
1670 }
1671 
perf_evsel__remove_fd(struct perf_evsel * pos,int nr_cpus,int nr_threads,int thread_idx)1672 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1673 				  int nr_cpus, int nr_threads,
1674 				  int thread_idx)
1675 {
1676 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1677 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1678 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1679 }
1680 
update_fds(struct perf_evsel * evsel,int nr_cpus,int cpu_idx,int nr_threads,int thread_idx)1681 static int update_fds(struct perf_evsel *evsel,
1682 		      int nr_cpus, int cpu_idx,
1683 		      int nr_threads, int thread_idx)
1684 {
1685 	struct perf_evsel *pos;
1686 
1687 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1688 		return -EINVAL;
1689 
1690 	evlist__for_each_entry(evsel->evlist, pos) {
1691 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1692 
1693 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1694 
1695 		/*
1696 		 * Since fds for next evsel has not been created,
1697 		 * there is no need to iterate whole event list.
1698 		 */
1699 		if (pos == evsel)
1700 			break;
1701 	}
1702 	return 0;
1703 }
1704 
ignore_missing_thread(struct perf_evsel * evsel,int nr_cpus,int cpu,struct thread_map * threads,int thread,int err)1705 static bool ignore_missing_thread(struct perf_evsel *evsel,
1706 				  int nr_cpus, int cpu,
1707 				  struct thread_map *threads,
1708 				  int thread, int err)
1709 {
1710 	pid_t ignore_pid = thread_map__pid(threads, thread);
1711 
1712 	if (!evsel->ignore_missing_thread)
1713 		return false;
1714 
1715 	/* The system wide setup does not work with threads. */
1716 	if (evsel->system_wide)
1717 		return false;
1718 
1719 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1720 	if (err != -ESRCH)
1721 		return false;
1722 
1723 	/* If there's only one thread, let it fail. */
1724 	if (threads->nr == 1)
1725 		return false;
1726 
1727 	/*
1728 	 * We should remove fd for missing_thread first
1729 	 * because thread_map__remove() will decrease threads->nr.
1730 	 */
1731 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1732 		return false;
1733 
1734 	if (thread_map__remove(threads, thread))
1735 		return false;
1736 
1737 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1738 		   ignore_pid);
1739 	return true;
1740 }
1741 
perf_evsel__open(struct perf_evsel * evsel,struct cpu_map * cpus,struct thread_map * threads)1742 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1743 		     struct thread_map *threads)
1744 {
1745 	int cpu, thread, nthreads;
1746 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1747 	int pid = -1, err;
1748 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1749 
1750 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1751 		return -EINVAL;
1752 
1753 	if (cpus == NULL) {
1754 		static struct cpu_map *empty_cpu_map;
1755 
1756 		if (empty_cpu_map == NULL) {
1757 			empty_cpu_map = cpu_map__dummy_new();
1758 			if (empty_cpu_map == NULL)
1759 				return -ENOMEM;
1760 		}
1761 
1762 		cpus = empty_cpu_map;
1763 	}
1764 
1765 	if (threads == NULL) {
1766 		static struct thread_map *empty_thread_map;
1767 
1768 		if (empty_thread_map == NULL) {
1769 			empty_thread_map = thread_map__new_by_tid(-1);
1770 			if (empty_thread_map == NULL)
1771 				return -ENOMEM;
1772 		}
1773 
1774 		threads = empty_thread_map;
1775 	}
1776 
1777 	if (evsel->system_wide)
1778 		nthreads = 1;
1779 	else
1780 		nthreads = threads->nr;
1781 
1782 	if (evsel->fd == NULL &&
1783 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1784 		return -ENOMEM;
1785 
1786 	if (evsel->cgrp) {
1787 		flags |= PERF_FLAG_PID_CGROUP;
1788 		pid = evsel->cgrp->fd;
1789 	}
1790 
1791 fallback_missing_features:
1792 	if (perf_missing_features.clockid_wrong)
1793 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1794 	if (perf_missing_features.clockid) {
1795 		evsel->attr.use_clockid = 0;
1796 		evsel->attr.clockid = 0;
1797 	}
1798 	if (perf_missing_features.cloexec)
1799 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1800 	if (perf_missing_features.mmap2)
1801 		evsel->attr.mmap2 = 0;
1802 	if (perf_missing_features.exclude_guest)
1803 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1804 	if (perf_missing_features.lbr_flags)
1805 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1806 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1807 	if (perf_missing_features.group_read && evsel->attr.inherit)
1808 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1809 retry_sample_id:
1810 	if (perf_missing_features.sample_id_all)
1811 		evsel->attr.sample_id_all = 0;
1812 
1813 	if (verbose >= 2) {
1814 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1815 		fprintf(stderr, "perf_event_attr:\n");
1816 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1817 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1818 	}
1819 
1820 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1821 
1822 		for (thread = 0; thread < nthreads; thread++) {
1823 			int fd, group_fd;
1824 
1825 			if (!evsel->cgrp && !evsel->system_wide)
1826 				pid = thread_map__pid(threads, thread);
1827 
1828 			group_fd = get_group_fd(evsel, cpu, thread);
1829 retry_open:
1830 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1831 				  pid, cpus->map[cpu], group_fd, flags);
1832 
1833 			test_attr__ready();
1834 
1835 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1836 						 group_fd, flags);
1837 
1838 			FD(evsel, cpu, thread) = fd;
1839 
1840 			if (fd < 0) {
1841 				err = -errno;
1842 
1843 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1844 					/*
1845 					 * We just removed 1 thread, so take a step
1846 					 * back on thread index and lower the upper
1847 					 * nthreads limit.
1848 					 */
1849 					nthreads--;
1850 					thread--;
1851 
1852 					/* ... and pretend like nothing have happened. */
1853 					err = 0;
1854 					continue;
1855 				}
1856 
1857 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1858 					  err);
1859 				goto try_fallback;
1860 			}
1861 
1862 			pr_debug2(" = %d\n", fd);
1863 
1864 			if (evsel->bpf_fd >= 0) {
1865 				int evt_fd = fd;
1866 				int bpf_fd = evsel->bpf_fd;
1867 
1868 				err = ioctl(evt_fd,
1869 					    PERF_EVENT_IOC_SET_BPF,
1870 					    bpf_fd);
1871 				if (err && errno != EEXIST) {
1872 					pr_err("failed to attach bpf fd %d: %s\n",
1873 					       bpf_fd, strerror(errno));
1874 					err = -EINVAL;
1875 					goto out_close;
1876 				}
1877 			}
1878 
1879 			set_rlimit = NO_CHANGE;
1880 
1881 			/*
1882 			 * If we succeeded but had to kill clockid, fail and
1883 			 * have perf_evsel__open_strerror() print us a nice
1884 			 * error.
1885 			 */
1886 			if (perf_missing_features.clockid ||
1887 			    perf_missing_features.clockid_wrong) {
1888 				err = -EINVAL;
1889 				goto out_close;
1890 			}
1891 		}
1892 	}
1893 
1894 	return 0;
1895 
1896 try_fallback:
1897 	/*
1898 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1899 	 * of them try to increase the limits.
1900 	 */
1901 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1902 		struct rlimit l;
1903 		int old_errno = errno;
1904 
1905 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1906 			if (set_rlimit == NO_CHANGE)
1907 				l.rlim_cur = l.rlim_max;
1908 			else {
1909 				l.rlim_cur = l.rlim_max + 1000;
1910 				l.rlim_max = l.rlim_cur;
1911 			}
1912 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1913 				set_rlimit++;
1914 				errno = old_errno;
1915 				goto retry_open;
1916 			}
1917 		}
1918 		errno = old_errno;
1919 	}
1920 
1921 	if (err != -EINVAL || cpu > 0 || thread > 0)
1922 		goto out_close;
1923 
1924 	/*
1925 	 * Must probe features in the order they were added to the
1926 	 * perf_event_attr interface.
1927 	 */
1928 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1929 		perf_missing_features.write_backward = true;
1930 		pr_debug2("switching off write_backward\n");
1931 		goto out_close;
1932 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1933 		perf_missing_features.clockid_wrong = true;
1934 		pr_debug2("switching off clockid\n");
1935 		goto fallback_missing_features;
1936 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1937 		perf_missing_features.clockid = true;
1938 		pr_debug2("switching off use_clockid\n");
1939 		goto fallback_missing_features;
1940 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1941 		perf_missing_features.cloexec = true;
1942 		pr_debug2("switching off cloexec flag\n");
1943 		goto fallback_missing_features;
1944 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1945 		perf_missing_features.mmap2 = true;
1946 		pr_debug2("switching off mmap2\n");
1947 		goto fallback_missing_features;
1948 	} else if (!perf_missing_features.exclude_guest &&
1949 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1950 		perf_missing_features.exclude_guest = true;
1951 		pr_debug2("switching off exclude_guest, exclude_host\n");
1952 		goto fallback_missing_features;
1953 	} else if (!perf_missing_features.sample_id_all) {
1954 		perf_missing_features.sample_id_all = true;
1955 		pr_debug2("switching off sample_id_all\n");
1956 		goto retry_sample_id;
1957 	} else if (!perf_missing_features.lbr_flags &&
1958 			(evsel->attr.branch_sample_type &
1959 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1960 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1961 		perf_missing_features.lbr_flags = true;
1962 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1963 		goto fallback_missing_features;
1964 	} else if (!perf_missing_features.group_read &&
1965 		    evsel->attr.inherit &&
1966 		   (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
1967 		   perf_evsel__is_group_leader(evsel)) {
1968 		perf_missing_features.group_read = true;
1969 		pr_debug2("switching off group read\n");
1970 		goto fallback_missing_features;
1971 	}
1972 out_close:
1973 	if (err)
1974 		threads->err_thread = thread;
1975 
1976 	do {
1977 		while (--thread >= 0) {
1978 			close(FD(evsel, cpu, thread));
1979 			FD(evsel, cpu, thread) = -1;
1980 		}
1981 		thread = nthreads;
1982 	} while (--cpu >= 0);
1983 	return err;
1984 }
1985 
perf_evsel__close(struct perf_evsel * evsel)1986 void perf_evsel__close(struct perf_evsel *evsel)
1987 {
1988 	if (evsel->fd == NULL)
1989 		return;
1990 
1991 	perf_evsel__close_fd(evsel);
1992 	perf_evsel__free_fd(evsel);
1993 }
1994 
perf_evsel__open_per_cpu(struct perf_evsel * evsel,struct cpu_map * cpus)1995 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1996 			     struct cpu_map *cpus)
1997 {
1998 	return perf_evsel__open(evsel, cpus, NULL);
1999 }
2000 
perf_evsel__open_per_thread(struct perf_evsel * evsel,struct thread_map * threads)2001 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
2002 				struct thread_map *threads)
2003 {
2004 	return perf_evsel__open(evsel, NULL, threads);
2005 }
2006 
perf_evsel__parse_id_sample(const struct perf_evsel * evsel,const union perf_event * event,struct perf_sample * sample)2007 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
2008 				       const union perf_event *event,
2009 				       struct perf_sample *sample)
2010 {
2011 	u64 type = evsel->attr.sample_type;
2012 	const u64 *array = event->sample.array;
2013 	bool swapped = evsel->needs_swap;
2014 	union u64_swap u;
2015 
2016 	array += ((event->header.size -
2017 		   sizeof(event->header)) / sizeof(u64)) - 1;
2018 
2019 	if (type & PERF_SAMPLE_IDENTIFIER) {
2020 		sample->id = *array;
2021 		array--;
2022 	}
2023 
2024 	if (type & PERF_SAMPLE_CPU) {
2025 		u.val64 = *array;
2026 		if (swapped) {
2027 			/* undo swap of u64, then swap on individual u32s */
2028 			u.val64 = bswap_64(u.val64);
2029 			u.val32[0] = bswap_32(u.val32[0]);
2030 		}
2031 
2032 		sample->cpu = u.val32[0];
2033 		array--;
2034 	}
2035 
2036 	if (type & PERF_SAMPLE_STREAM_ID) {
2037 		sample->stream_id = *array;
2038 		array--;
2039 	}
2040 
2041 	if (type & PERF_SAMPLE_ID) {
2042 		sample->id = *array;
2043 		array--;
2044 	}
2045 
2046 	if (type & PERF_SAMPLE_TIME) {
2047 		sample->time = *array;
2048 		array--;
2049 	}
2050 
2051 	if (type & PERF_SAMPLE_TID) {
2052 		u.val64 = *array;
2053 		if (swapped) {
2054 			/* undo swap of u64, then swap on individual u32s */
2055 			u.val64 = bswap_64(u.val64);
2056 			u.val32[0] = bswap_32(u.val32[0]);
2057 			u.val32[1] = bswap_32(u.val32[1]);
2058 		}
2059 
2060 		sample->pid = u.val32[0];
2061 		sample->tid = u.val32[1];
2062 		array--;
2063 	}
2064 
2065 	return 0;
2066 }
2067 
overflow(const void * endp,u16 max_size,const void * offset,u64 size)2068 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2069 			    u64 size)
2070 {
2071 	return size > max_size || offset + size > endp;
2072 }
2073 
2074 #define OVERFLOW_CHECK(offset, size, max_size)				\
2075 	do {								\
2076 		if (overflow(endp, (max_size), (offset), (size)))	\
2077 			return -EFAULT;					\
2078 	} while (0)
2079 
2080 #define OVERFLOW_CHECK_u64(offset) \
2081 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2082 
2083 static int
perf_event__check_size(union perf_event * event,unsigned int sample_size)2084 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2085 {
2086 	/*
2087 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2088 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2089 	 * check the format does not go past the end of the event.
2090 	 */
2091 	if (sample_size + sizeof(event->header) > event->header.size)
2092 		return -EFAULT;
2093 
2094 	return 0;
2095 }
2096 
perf_evsel__parse_sample(struct perf_evsel * evsel,union perf_event * event,struct perf_sample * data)2097 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2098 			     struct perf_sample *data)
2099 {
2100 	u64 type = evsel->attr.sample_type;
2101 	bool swapped = evsel->needs_swap;
2102 	const u64 *array;
2103 	u16 max_size = event->header.size;
2104 	const void *endp = (void *)event + max_size;
2105 	u64 sz;
2106 
2107 	/*
2108 	 * used for cross-endian analysis. See git commit 65014ab3
2109 	 * for why this goofiness is needed.
2110 	 */
2111 	union u64_swap u;
2112 
2113 	memset(data, 0, sizeof(*data));
2114 	data->cpu = data->pid = data->tid = -1;
2115 	data->stream_id = data->id = data->time = -1ULL;
2116 	data->period = evsel->attr.sample_period;
2117 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2118 	data->misc    = event->header.misc;
2119 	data->id = -1ULL;
2120 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2121 
2122 	if (event->header.type != PERF_RECORD_SAMPLE) {
2123 		if (!evsel->attr.sample_id_all)
2124 			return 0;
2125 		return perf_evsel__parse_id_sample(evsel, event, data);
2126 	}
2127 
2128 	array = event->sample.array;
2129 
2130 	if (perf_event__check_size(event, evsel->sample_size))
2131 		return -EFAULT;
2132 
2133 	if (type & PERF_SAMPLE_IDENTIFIER) {
2134 		data->id = *array;
2135 		array++;
2136 	}
2137 
2138 	if (type & PERF_SAMPLE_IP) {
2139 		data->ip = *array;
2140 		array++;
2141 	}
2142 
2143 	if (type & PERF_SAMPLE_TID) {
2144 		u.val64 = *array;
2145 		if (swapped) {
2146 			/* undo swap of u64, then swap on individual u32s */
2147 			u.val64 = bswap_64(u.val64);
2148 			u.val32[0] = bswap_32(u.val32[0]);
2149 			u.val32[1] = bswap_32(u.val32[1]);
2150 		}
2151 
2152 		data->pid = u.val32[0];
2153 		data->tid = u.val32[1];
2154 		array++;
2155 	}
2156 
2157 	if (type & PERF_SAMPLE_TIME) {
2158 		data->time = *array;
2159 		array++;
2160 	}
2161 
2162 	if (type & PERF_SAMPLE_ADDR) {
2163 		data->addr = *array;
2164 		array++;
2165 	}
2166 
2167 	if (type & PERF_SAMPLE_ID) {
2168 		data->id = *array;
2169 		array++;
2170 	}
2171 
2172 	if (type & PERF_SAMPLE_STREAM_ID) {
2173 		data->stream_id = *array;
2174 		array++;
2175 	}
2176 
2177 	if (type & PERF_SAMPLE_CPU) {
2178 
2179 		u.val64 = *array;
2180 		if (swapped) {
2181 			/* undo swap of u64, then swap on individual u32s */
2182 			u.val64 = bswap_64(u.val64);
2183 			u.val32[0] = bswap_32(u.val32[0]);
2184 		}
2185 
2186 		data->cpu = u.val32[0];
2187 		array++;
2188 	}
2189 
2190 	if (type & PERF_SAMPLE_PERIOD) {
2191 		data->period = *array;
2192 		array++;
2193 	}
2194 
2195 	if (type & PERF_SAMPLE_READ) {
2196 		u64 read_format = evsel->attr.read_format;
2197 
2198 		OVERFLOW_CHECK_u64(array);
2199 		if (read_format & PERF_FORMAT_GROUP)
2200 			data->read.group.nr = *array;
2201 		else
2202 			data->read.one.value = *array;
2203 
2204 		array++;
2205 
2206 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2207 			OVERFLOW_CHECK_u64(array);
2208 			data->read.time_enabled = *array;
2209 			array++;
2210 		}
2211 
2212 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2213 			OVERFLOW_CHECK_u64(array);
2214 			data->read.time_running = *array;
2215 			array++;
2216 		}
2217 
2218 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2219 		if (read_format & PERF_FORMAT_GROUP) {
2220 			const u64 max_group_nr = UINT64_MAX /
2221 					sizeof(struct sample_read_value);
2222 
2223 			if (data->read.group.nr > max_group_nr)
2224 				return -EFAULT;
2225 			sz = data->read.group.nr *
2226 			     sizeof(struct sample_read_value);
2227 			OVERFLOW_CHECK(array, sz, max_size);
2228 			data->read.group.values =
2229 					(struct sample_read_value *)array;
2230 			array = (void *)array + sz;
2231 		} else {
2232 			OVERFLOW_CHECK_u64(array);
2233 			data->read.one.id = *array;
2234 			array++;
2235 		}
2236 	}
2237 
2238 	if (evsel__has_callchain(evsel)) {
2239 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2240 
2241 		OVERFLOW_CHECK_u64(array);
2242 		data->callchain = (struct ip_callchain *)array++;
2243 		if (data->callchain->nr > max_callchain_nr)
2244 			return -EFAULT;
2245 		sz = data->callchain->nr * sizeof(u64);
2246 		OVERFLOW_CHECK(array, sz, max_size);
2247 		array = (void *)array + sz;
2248 	}
2249 
2250 	if (type & PERF_SAMPLE_RAW) {
2251 		OVERFLOW_CHECK_u64(array);
2252 		u.val64 = *array;
2253 
2254 		/*
2255 		 * Undo swap of u64, then swap on individual u32s,
2256 		 * get the size of the raw area and undo all of the
2257 		 * swap. The pevent interface handles endianity by
2258 		 * itself.
2259 		 */
2260 		if (swapped) {
2261 			u.val64 = bswap_64(u.val64);
2262 			u.val32[0] = bswap_32(u.val32[0]);
2263 			u.val32[1] = bswap_32(u.val32[1]);
2264 		}
2265 		data->raw_size = u.val32[0];
2266 
2267 		/*
2268 		 * The raw data is aligned on 64bits including the
2269 		 * u32 size, so it's safe to use mem_bswap_64.
2270 		 */
2271 		if (swapped)
2272 			mem_bswap_64((void *) array, data->raw_size);
2273 
2274 		array = (void *)array + sizeof(u32);
2275 
2276 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2277 		data->raw_data = (void *)array;
2278 		array = (void *)array + data->raw_size;
2279 	}
2280 
2281 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2282 		const u64 max_branch_nr = UINT64_MAX /
2283 					  sizeof(struct branch_entry);
2284 
2285 		OVERFLOW_CHECK_u64(array);
2286 		data->branch_stack = (struct branch_stack *)array++;
2287 
2288 		if (data->branch_stack->nr > max_branch_nr)
2289 			return -EFAULT;
2290 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2291 		OVERFLOW_CHECK(array, sz, max_size);
2292 		array = (void *)array + sz;
2293 	}
2294 
2295 	if (type & PERF_SAMPLE_REGS_USER) {
2296 		OVERFLOW_CHECK_u64(array);
2297 		data->user_regs.abi = *array;
2298 		array++;
2299 
2300 		if (data->user_regs.abi) {
2301 			u64 mask = evsel->attr.sample_regs_user;
2302 
2303 			sz = hweight_long(mask) * sizeof(u64);
2304 			OVERFLOW_CHECK(array, sz, max_size);
2305 			data->user_regs.mask = mask;
2306 			data->user_regs.regs = (u64 *)array;
2307 			array = (void *)array + sz;
2308 		}
2309 	}
2310 
2311 	if (type & PERF_SAMPLE_STACK_USER) {
2312 		OVERFLOW_CHECK_u64(array);
2313 		sz = *array++;
2314 
2315 		data->user_stack.offset = ((char *)(array - 1)
2316 					  - (char *) event);
2317 
2318 		if (!sz) {
2319 			data->user_stack.size = 0;
2320 		} else {
2321 			OVERFLOW_CHECK(array, sz, max_size);
2322 			data->user_stack.data = (char *)array;
2323 			array = (void *)array + sz;
2324 			OVERFLOW_CHECK_u64(array);
2325 			data->user_stack.size = *array++;
2326 			if (WARN_ONCE(data->user_stack.size > sz,
2327 				      "user stack dump failure\n"))
2328 				return -EFAULT;
2329 		}
2330 	}
2331 
2332 	if (type & PERF_SAMPLE_WEIGHT) {
2333 		OVERFLOW_CHECK_u64(array);
2334 		data->weight = *array;
2335 		array++;
2336 	}
2337 
2338 	if (type & PERF_SAMPLE_DATA_SRC) {
2339 		OVERFLOW_CHECK_u64(array);
2340 		data->data_src = *array;
2341 		array++;
2342 	}
2343 
2344 	if (type & PERF_SAMPLE_TRANSACTION) {
2345 		OVERFLOW_CHECK_u64(array);
2346 		data->transaction = *array;
2347 		array++;
2348 	}
2349 
2350 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2351 	if (type & PERF_SAMPLE_REGS_INTR) {
2352 		OVERFLOW_CHECK_u64(array);
2353 		data->intr_regs.abi = *array;
2354 		array++;
2355 
2356 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2357 			u64 mask = evsel->attr.sample_regs_intr;
2358 
2359 			sz = hweight_long(mask) * sizeof(u64);
2360 			OVERFLOW_CHECK(array, sz, max_size);
2361 			data->intr_regs.mask = mask;
2362 			data->intr_regs.regs = (u64 *)array;
2363 			array = (void *)array + sz;
2364 		}
2365 	}
2366 
2367 	data->phys_addr = 0;
2368 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2369 		data->phys_addr = *array;
2370 		array++;
2371 	}
2372 
2373 	return 0;
2374 }
2375 
perf_evsel__parse_sample_timestamp(struct perf_evsel * evsel,union perf_event * event,u64 * timestamp)2376 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2377 				       union perf_event *event,
2378 				       u64 *timestamp)
2379 {
2380 	u64 type = evsel->attr.sample_type;
2381 	const u64 *array;
2382 
2383 	if (!(type & PERF_SAMPLE_TIME))
2384 		return -1;
2385 
2386 	if (event->header.type != PERF_RECORD_SAMPLE) {
2387 		struct perf_sample data = {
2388 			.time = -1ULL,
2389 		};
2390 
2391 		if (!evsel->attr.sample_id_all)
2392 			return -1;
2393 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2394 			return -1;
2395 
2396 		*timestamp = data.time;
2397 		return 0;
2398 	}
2399 
2400 	array = event->sample.array;
2401 
2402 	if (perf_event__check_size(event, evsel->sample_size))
2403 		return -EFAULT;
2404 
2405 	if (type & PERF_SAMPLE_IDENTIFIER)
2406 		array++;
2407 
2408 	if (type & PERF_SAMPLE_IP)
2409 		array++;
2410 
2411 	if (type & PERF_SAMPLE_TID)
2412 		array++;
2413 
2414 	if (type & PERF_SAMPLE_TIME)
2415 		*timestamp = *array;
2416 
2417 	return 0;
2418 }
2419 
perf_event__sample_event_size(const struct perf_sample * sample,u64 type,u64 read_format)2420 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2421 				     u64 read_format)
2422 {
2423 	size_t sz, result = sizeof(struct sample_event);
2424 
2425 	if (type & PERF_SAMPLE_IDENTIFIER)
2426 		result += sizeof(u64);
2427 
2428 	if (type & PERF_SAMPLE_IP)
2429 		result += sizeof(u64);
2430 
2431 	if (type & PERF_SAMPLE_TID)
2432 		result += sizeof(u64);
2433 
2434 	if (type & PERF_SAMPLE_TIME)
2435 		result += sizeof(u64);
2436 
2437 	if (type & PERF_SAMPLE_ADDR)
2438 		result += sizeof(u64);
2439 
2440 	if (type & PERF_SAMPLE_ID)
2441 		result += sizeof(u64);
2442 
2443 	if (type & PERF_SAMPLE_STREAM_ID)
2444 		result += sizeof(u64);
2445 
2446 	if (type & PERF_SAMPLE_CPU)
2447 		result += sizeof(u64);
2448 
2449 	if (type & PERF_SAMPLE_PERIOD)
2450 		result += sizeof(u64);
2451 
2452 	if (type & PERF_SAMPLE_READ) {
2453 		result += sizeof(u64);
2454 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2455 			result += sizeof(u64);
2456 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2457 			result += sizeof(u64);
2458 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2459 		if (read_format & PERF_FORMAT_GROUP) {
2460 			sz = sample->read.group.nr *
2461 			     sizeof(struct sample_read_value);
2462 			result += sz;
2463 		} else {
2464 			result += sizeof(u64);
2465 		}
2466 	}
2467 
2468 	if (type & PERF_SAMPLE_CALLCHAIN) {
2469 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2470 		result += sz;
2471 	}
2472 
2473 	if (type & PERF_SAMPLE_RAW) {
2474 		result += sizeof(u32);
2475 		result += sample->raw_size;
2476 	}
2477 
2478 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2479 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2480 		sz += sizeof(u64);
2481 		result += sz;
2482 	}
2483 
2484 	if (type & PERF_SAMPLE_REGS_USER) {
2485 		if (sample->user_regs.abi) {
2486 			result += sizeof(u64);
2487 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2488 			result += sz;
2489 		} else {
2490 			result += sizeof(u64);
2491 		}
2492 	}
2493 
2494 	if (type & PERF_SAMPLE_STACK_USER) {
2495 		sz = sample->user_stack.size;
2496 		result += sizeof(u64);
2497 		if (sz) {
2498 			result += sz;
2499 			result += sizeof(u64);
2500 		}
2501 	}
2502 
2503 	if (type & PERF_SAMPLE_WEIGHT)
2504 		result += sizeof(u64);
2505 
2506 	if (type & PERF_SAMPLE_DATA_SRC)
2507 		result += sizeof(u64);
2508 
2509 	if (type & PERF_SAMPLE_TRANSACTION)
2510 		result += sizeof(u64);
2511 
2512 	if (type & PERF_SAMPLE_REGS_INTR) {
2513 		if (sample->intr_regs.abi) {
2514 			result += sizeof(u64);
2515 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2516 			result += sz;
2517 		} else {
2518 			result += sizeof(u64);
2519 		}
2520 	}
2521 
2522 	if (type & PERF_SAMPLE_PHYS_ADDR)
2523 		result += sizeof(u64);
2524 
2525 	return result;
2526 }
2527 
perf_event__synthesize_sample(union perf_event * event,u64 type,u64 read_format,const struct perf_sample * sample)2528 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2529 				  u64 read_format,
2530 				  const struct perf_sample *sample)
2531 {
2532 	u64 *array;
2533 	size_t sz;
2534 	/*
2535 	 * used for cross-endian analysis. See git commit 65014ab3
2536 	 * for why this goofiness is needed.
2537 	 */
2538 	union u64_swap u;
2539 
2540 	array = event->sample.array;
2541 
2542 	if (type & PERF_SAMPLE_IDENTIFIER) {
2543 		*array = sample->id;
2544 		array++;
2545 	}
2546 
2547 	if (type & PERF_SAMPLE_IP) {
2548 		*array = sample->ip;
2549 		array++;
2550 	}
2551 
2552 	if (type & PERF_SAMPLE_TID) {
2553 		u.val32[0] = sample->pid;
2554 		u.val32[1] = sample->tid;
2555 		*array = u.val64;
2556 		array++;
2557 	}
2558 
2559 	if (type & PERF_SAMPLE_TIME) {
2560 		*array = sample->time;
2561 		array++;
2562 	}
2563 
2564 	if (type & PERF_SAMPLE_ADDR) {
2565 		*array = sample->addr;
2566 		array++;
2567 	}
2568 
2569 	if (type & PERF_SAMPLE_ID) {
2570 		*array = sample->id;
2571 		array++;
2572 	}
2573 
2574 	if (type & PERF_SAMPLE_STREAM_ID) {
2575 		*array = sample->stream_id;
2576 		array++;
2577 	}
2578 
2579 	if (type & PERF_SAMPLE_CPU) {
2580 		u.val32[0] = sample->cpu;
2581 		u.val32[1] = 0;
2582 		*array = u.val64;
2583 		array++;
2584 	}
2585 
2586 	if (type & PERF_SAMPLE_PERIOD) {
2587 		*array = sample->period;
2588 		array++;
2589 	}
2590 
2591 	if (type & PERF_SAMPLE_READ) {
2592 		if (read_format & PERF_FORMAT_GROUP)
2593 			*array = sample->read.group.nr;
2594 		else
2595 			*array = sample->read.one.value;
2596 		array++;
2597 
2598 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2599 			*array = sample->read.time_enabled;
2600 			array++;
2601 		}
2602 
2603 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2604 			*array = sample->read.time_running;
2605 			array++;
2606 		}
2607 
2608 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2609 		if (read_format & PERF_FORMAT_GROUP) {
2610 			sz = sample->read.group.nr *
2611 			     sizeof(struct sample_read_value);
2612 			memcpy(array, sample->read.group.values, sz);
2613 			array = (void *)array + sz;
2614 		} else {
2615 			*array = sample->read.one.id;
2616 			array++;
2617 		}
2618 	}
2619 
2620 	if (type & PERF_SAMPLE_CALLCHAIN) {
2621 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2622 		memcpy(array, sample->callchain, sz);
2623 		array = (void *)array + sz;
2624 	}
2625 
2626 	if (type & PERF_SAMPLE_RAW) {
2627 		u.val32[0] = sample->raw_size;
2628 		*array = u.val64;
2629 		array = (void *)array + sizeof(u32);
2630 
2631 		memcpy(array, sample->raw_data, sample->raw_size);
2632 		array = (void *)array + sample->raw_size;
2633 	}
2634 
2635 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2636 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2637 		sz += sizeof(u64);
2638 		memcpy(array, sample->branch_stack, sz);
2639 		array = (void *)array + sz;
2640 	}
2641 
2642 	if (type & PERF_SAMPLE_REGS_USER) {
2643 		if (sample->user_regs.abi) {
2644 			*array++ = sample->user_regs.abi;
2645 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2646 			memcpy(array, sample->user_regs.regs, sz);
2647 			array = (void *)array + sz;
2648 		} else {
2649 			*array++ = 0;
2650 		}
2651 	}
2652 
2653 	if (type & PERF_SAMPLE_STACK_USER) {
2654 		sz = sample->user_stack.size;
2655 		*array++ = sz;
2656 		if (sz) {
2657 			memcpy(array, sample->user_stack.data, sz);
2658 			array = (void *)array + sz;
2659 			*array++ = sz;
2660 		}
2661 	}
2662 
2663 	if (type & PERF_SAMPLE_WEIGHT) {
2664 		*array = sample->weight;
2665 		array++;
2666 	}
2667 
2668 	if (type & PERF_SAMPLE_DATA_SRC) {
2669 		*array = sample->data_src;
2670 		array++;
2671 	}
2672 
2673 	if (type & PERF_SAMPLE_TRANSACTION) {
2674 		*array = sample->transaction;
2675 		array++;
2676 	}
2677 
2678 	if (type & PERF_SAMPLE_REGS_INTR) {
2679 		if (sample->intr_regs.abi) {
2680 			*array++ = sample->intr_regs.abi;
2681 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2682 			memcpy(array, sample->intr_regs.regs, sz);
2683 			array = (void *)array + sz;
2684 		} else {
2685 			*array++ = 0;
2686 		}
2687 	}
2688 
2689 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2690 		*array = sample->phys_addr;
2691 		array++;
2692 	}
2693 
2694 	return 0;
2695 }
2696 
perf_evsel__field(struct perf_evsel * evsel,const char * name)2697 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2698 {
2699 	return tep_find_field(evsel->tp_format, name);
2700 }
2701 
perf_evsel__rawptr(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2702 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2703 			 const char *name)
2704 {
2705 	struct format_field *field = perf_evsel__field(evsel, name);
2706 	int offset;
2707 
2708 	if (!field)
2709 		return NULL;
2710 
2711 	offset = field->offset;
2712 
2713 	if (field->flags & FIELD_IS_DYNAMIC) {
2714 		offset = *(int *)(sample->raw_data + field->offset);
2715 		offset &= 0xffff;
2716 	}
2717 
2718 	return sample->raw_data + offset;
2719 }
2720 
format_field__intval(struct format_field * field,struct perf_sample * sample,bool needs_swap)2721 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2722 			 bool needs_swap)
2723 {
2724 	u64 value;
2725 	void *ptr = sample->raw_data + field->offset;
2726 
2727 	switch (field->size) {
2728 	case 1:
2729 		return *(u8 *)ptr;
2730 	case 2:
2731 		value = *(u16 *)ptr;
2732 		break;
2733 	case 4:
2734 		value = *(u32 *)ptr;
2735 		break;
2736 	case 8:
2737 		memcpy(&value, ptr, sizeof(u64));
2738 		break;
2739 	default:
2740 		return 0;
2741 	}
2742 
2743 	if (!needs_swap)
2744 		return value;
2745 
2746 	switch (field->size) {
2747 	case 2:
2748 		return bswap_16(value);
2749 	case 4:
2750 		return bswap_32(value);
2751 	case 8:
2752 		return bswap_64(value);
2753 	default:
2754 		return 0;
2755 	}
2756 
2757 	return 0;
2758 }
2759 
perf_evsel__intval(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2760 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2761 		       const char *name)
2762 {
2763 	struct format_field *field = perf_evsel__field(evsel, name);
2764 
2765 	if (!field)
2766 		return 0;
2767 
2768 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2769 }
2770 
perf_evsel__fallback(struct perf_evsel * evsel,int err,char * msg,size_t msgsize)2771 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2772 			  char *msg, size_t msgsize)
2773 {
2774 	int paranoid;
2775 
2776 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2777 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2778 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2779 		/*
2780 		 * If it's cycles then fall back to hrtimer based
2781 		 * cpu-clock-tick sw counter, which is always available even if
2782 		 * no PMU support.
2783 		 *
2784 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2785 		 * b0a873e).
2786 		 */
2787 		scnprintf(msg, msgsize, "%s",
2788 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2789 
2790 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2791 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2792 
2793 		zfree(&evsel->name);
2794 		return true;
2795 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2796 		   (paranoid = perf_event_paranoid()) > 1) {
2797 		const char *name = perf_evsel__name(evsel);
2798 		char *new_name;
2799 		const char *sep = ":";
2800 
2801 		/* Is there already the separator in the name. */
2802 		if (strchr(name, '/') ||
2803 		    strchr(name, ':'))
2804 			sep = "";
2805 
2806 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2807 			return false;
2808 
2809 		if (evsel->name)
2810 			free(evsel->name);
2811 		evsel->name = new_name;
2812 		scnprintf(msg, msgsize,
2813 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2814 		evsel->attr.exclude_kernel = 1;
2815 
2816 		return true;
2817 	}
2818 
2819 	return false;
2820 }
2821 
find_process(const char * name)2822 static bool find_process(const char *name)
2823 {
2824 	size_t len = strlen(name);
2825 	DIR *dir;
2826 	struct dirent *d;
2827 	int ret = -1;
2828 
2829 	dir = opendir(procfs__mountpoint());
2830 	if (!dir)
2831 		return false;
2832 
2833 	/* Walk through the directory. */
2834 	while (ret && (d = readdir(dir)) != NULL) {
2835 		char path[PATH_MAX];
2836 		char *data;
2837 		size_t size;
2838 
2839 		if ((d->d_type != DT_DIR) ||
2840 		     !strcmp(".", d->d_name) ||
2841 		     !strcmp("..", d->d_name))
2842 			continue;
2843 
2844 		scnprintf(path, sizeof(path), "%s/%s/comm",
2845 			  procfs__mountpoint(), d->d_name);
2846 
2847 		if (filename__read_str(path, &data, &size))
2848 			continue;
2849 
2850 		ret = strncmp(name, data, len);
2851 		free(data);
2852 	}
2853 
2854 	closedir(dir);
2855 	return ret ? false : true;
2856 }
2857 
perf_evsel__open_strerror(struct perf_evsel * evsel,struct target * target,int err,char * msg,size_t size)2858 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2859 			      int err, char *msg, size_t size)
2860 {
2861 	char sbuf[STRERR_BUFSIZE];
2862 	int printed = 0;
2863 
2864 	switch (err) {
2865 	case EPERM:
2866 	case EACCES:
2867 		if (err == EPERM)
2868 			printed = scnprintf(msg, size,
2869 				"No permission to enable %s event.\n\n",
2870 				perf_evsel__name(evsel));
2871 
2872 		return scnprintf(msg + printed, size - printed,
2873 		 "You may not have permission to collect %sstats.\n\n"
2874 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2875 		 "which controls use of the performance events system by\n"
2876 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2877 		 "The current value is %d:\n\n"
2878 		 "  -1: Allow use of (almost) all events by all users\n"
2879 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2880 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2881 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2882 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2883 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2884 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2885 		 "	kernel.perf_event_paranoid = -1\n" ,
2886 				 target->system_wide ? "system-wide " : "",
2887 				 perf_event_paranoid());
2888 	case ENOENT:
2889 		return scnprintf(msg, size, "The %s event is not supported.",
2890 				 perf_evsel__name(evsel));
2891 	case EMFILE:
2892 		return scnprintf(msg, size, "%s",
2893 			 "Too many events are opened.\n"
2894 			 "Probably the maximum number of open file descriptors has been reached.\n"
2895 			 "Hint: Try again after reducing the number of events.\n"
2896 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2897 	case ENOMEM:
2898 		if (evsel__has_callchain(evsel) &&
2899 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2900 			return scnprintf(msg, size,
2901 					 "Not enough memory to setup event with callchain.\n"
2902 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2903 					 "Hint: Current value: %d", sysctl__max_stack());
2904 		break;
2905 	case ENODEV:
2906 		if (target->cpu_list)
2907 			return scnprintf(msg, size, "%s",
2908 	 "No such device - did you specify an out-of-range profile CPU?");
2909 		break;
2910 	case EOPNOTSUPP:
2911 		if (evsel->attr.sample_period != 0)
2912 			return scnprintf(msg, size,
2913 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2914 					 perf_evsel__name(evsel));
2915 		if (evsel->attr.precise_ip)
2916 			return scnprintf(msg, size, "%s",
2917 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2918 #if defined(__i386__) || defined(__x86_64__)
2919 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2920 			return scnprintf(msg, size, "%s",
2921 	"No hardware sampling interrupt available.\n");
2922 #endif
2923 		break;
2924 	case EBUSY:
2925 		if (find_process("oprofiled"))
2926 			return scnprintf(msg, size,
2927 	"The PMU counters are busy/taken by another profiler.\n"
2928 	"We found oprofile daemon running, please stop it and try again.");
2929 		break;
2930 	case EINVAL:
2931 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2932 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2933 		if (perf_missing_features.clockid)
2934 			return scnprintf(msg, size, "clockid feature not supported.");
2935 		if (perf_missing_features.clockid_wrong)
2936 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2937 		break;
2938 	default:
2939 		break;
2940 	}
2941 
2942 	return scnprintf(msg, size,
2943 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2944 	"/bin/dmesg | grep -i perf may provide additional information.\n",
2945 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2946 			 perf_evsel__name(evsel));
2947 }
2948 
perf_evsel__env(struct perf_evsel * evsel)2949 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2950 {
2951 	if (evsel && evsel->evlist)
2952 		return evsel->evlist->env;
2953 	return NULL;
2954 }
2955