1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_WX 13 select ARCH_BINFMT_ELF_STATE 14 select ARCH_HAS_DEBUG_VIRTUAL 15 select ARCH_HAS_DEBUG_VM_PGTABLE 16 select ARCH_HAS_DEVMEM_IS_ALLOWED 17 select ARCH_HAS_DMA_PREP_COHERENT 18 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 19 select ARCH_HAS_FAST_MULTIPLIER 20 select ARCH_HAS_FORTIFY_SOURCE 21 select ARCH_HAS_GCOV_PROFILE_ALL 22 select ARCH_HAS_GIGANTIC_PAGE 23 select ARCH_HAS_KCOV 24 select ARCH_HAS_KEEPINITRD 25 select ARCH_HAS_MEMBARRIER_SYNC_CORE 26 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 27 select ARCH_HAS_PTE_DEVMAP 28 select ARCH_HAS_PTE_SPECIAL 29 select ARCH_HAS_SETUP_DMA_OPS 30 select ARCH_HAS_SET_DIRECT_MAP 31 select ARCH_HAS_SET_MEMORY 32 select ARCH_STACKWALK 33 select ARCH_HAS_STRICT_KERNEL_RWX 34 select ARCH_HAS_STRICT_MODULE_RWX 35 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 36 select ARCH_HAS_SYNC_DMA_FOR_CPU 37 select ARCH_HAS_SYSCALL_WRAPPER 38 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 39 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 40 select ARCH_HAVE_ELF_PROT 41 select ARCH_HAVE_NMI_SAFE_CMPXCHG 42 select ARCH_INLINE_READ_LOCK if !PREEMPTION 43 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 44 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 45 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 46 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 47 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 48 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 49 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 50 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 51 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 52 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 53 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 54 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 55 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 56 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 57 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 58 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 59 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 60 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 61 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 62 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 63 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 64 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 65 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 66 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 67 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 68 select ARCH_KEEP_MEMBLOCK 69 select ARCH_USE_CMPXCHG_LOCKREF 70 select ARCH_USE_GNU_PROPERTY 71 select ARCH_USE_QUEUED_RWLOCKS 72 select ARCH_USE_QUEUED_SPINLOCKS 73 select ARCH_USE_SYM_ANNOTATIONS 74 select ARCH_SUPPORTS_MEMORY_FAILURE 75 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 76 select ARCH_SUPPORTS_ATOMIC_RMW 77 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG) 78 select ARCH_SUPPORTS_NUMA_BALANCING 79 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 80 select ARCH_WANT_DEFAULT_BPF_JIT 81 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 82 select ARCH_WANT_FRAME_POINTERS 83 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 84 select ARCH_WANT_LD_ORPHAN_WARN 85 select ARCH_HAS_UBSAN_SANITIZE_ALL 86 select ARM_AMBA 87 select ARM_ARCH_TIMER 88 select ARM_GIC 89 select AUDIT_ARCH_COMPAT_GENERIC 90 select ARM_GIC_V2M if PCI 91 select ARM_GIC_V3 92 select ARM_GIC_V3_ITS if PCI 93 select ARM_PSCI_FW 94 select BUILDTIME_TABLE_SORT 95 select CLONE_BACKWARDS 96 select COMMON_CLK 97 select CPU_PM if (SUSPEND || CPU_IDLE) 98 select CRC32 99 select DCACHE_WORD_ACCESS 100 select DMA_DIRECT_REMAP 101 select EDAC_SUPPORT 102 select FRAME_POINTER 103 select GENERIC_ALLOCATOR 104 select GENERIC_ARCH_TOPOLOGY 105 select GENERIC_CLOCKEVENTS 106 select GENERIC_CLOCKEVENTS_BROADCAST 107 select GENERIC_CPU_AUTOPROBE 108 select GENERIC_CPU_VULNERABILITIES 109 select GENERIC_EARLY_IOREMAP 110 select GENERIC_IDLE_POLL_SETUP 111 select GENERIC_IRQ_IPI 112 select GENERIC_IRQ_MULTI_HANDLER 113 select GENERIC_IRQ_PROBE 114 select GENERIC_IRQ_SHOW 115 select GENERIC_IRQ_SHOW_LEVEL 116 select GENERIC_PCI_IOMAP 117 select GENERIC_PTDUMP 118 select GENERIC_SCHED_CLOCK 119 select GENERIC_SMP_IDLE_THREAD 120 select GENERIC_STRNCPY_FROM_USER 121 select GENERIC_STRNLEN_USER 122 select GENERIC_TIME_VSYSCALL 123 select GENERIC_GETTIMEOFDAY 124 select GENERIC_VDSO_TIME_NS 125 select HANDLE_DOMAIN_IRQ 126 select HARDIRQS_SW_RESEND 127 select HAVE_MOVE_PMD 128 select HAVE_PCI 129 select HAVE_ACPI_APEI if (ACPI && EFI) 130 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 131 select HAVE_ARCH_AUDITSYSCALL 132 select HAVE_ARCH_BITREVERSE 133 select HAVE_ARCH_COMPILER_H 134 select HAVE_ARCH_HUGE_VMAP 135 select HAVE_ARCH_JUMP_LABEL 136 select HAVE_ARCH_JUMP_LABEL_RELATIVE 137 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 138 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 139 select HAVE_ARCH_KGDB 140 select HAVE_ARCH_MMAP_RND_BITS 141 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 142 select HAVE_ARCH_PREL32_RELOCATIONS 143 select HAVE_ARCH_SECCOMP_FILTER 144 select HAVE_ARCH_STACKLEAK 145 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 146 select HAVE_ARCH_TRACEHOOK 147 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 148 select HAVE_ARCH_VMAP_STACK 149 select HAVE_ARM_SMCCC 150 select HAVE_ASM_MODVERSIONS 151 select HAVE_EBPF_JIT 152 select HAVE_C_RECORDMCOUNT 153 select HAVE_CMPXCHG_DOUBLE 154 select HAVE_CMPXCHG_LOCAL 155 select HAVE_CONTEXT_TRACKING 156 select HAVE_DEBUG_BUGVERBOSE 157 select HAVE_DEBUG_KMEMLEAK 158 select HAVE_DMA_CONTIGUOUS 159 select HAVE_DYNAMIC_FTRACE 160 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 161 if $(cc-option,-fpatchable-function-entry=2) 162 select HAVE_EFFICIENT_UNALIGNED_ACCESS 163 select HAVE_FAST_GUP 164 select HAVE_FTRACE_MCOUNT_RECORD 165 select HAVE_FUNCTION_TRACER 166 select HAVE_FUNCTION_ERROR_INJECTION 167 select HAVE_FUNCTION_GRAPH_TRACER 168 select HAVE_GCC_PLUGINS 169 select HAVE_HW_BREAKPOINT if PERF_EVENTS 170 select HAVE_IRQ_TIME_ACCOUNTING 171 select HAVE_NMI 172 select HAVE_PATA_PLATFORM 173 select HAVE_PERF_EVENTS 174 select HAVE_PERF_REGS 175 select HAVE_PERF_USER_STACK_DUMP 176 select HAVE_REGS_AND_STACK_ACCESS_API 177 select HAVE_FUNCTION_ARG_ACCESS_API 178 select HAVE_FUTEX_CMPXCHG if FUTEX 179 select MMU_GATHER_RCU_TABLE_FREE 180 select HAVE_RSEQ 181 select HAVE_STACKPROTECTOR 182 select HAVE_SYSCALL_TRACEPOINTS 183 select HAVE_KPROBES 184 select HAVE_KRETPROBES 185 select HAVE_GENERIC_VDSO 186 select HOLES_IN_ZONE 187 select IOMMU_DMA if IOMMU_SUPPORT 188 select IRQ_DOMAIN 189 select IRQ_FORCED_THREADING 190 select MODULES_USE_ELF_RELA 191 select NEED_DMA_MAP_STATE 192 select NEED_SG_DMA_LENGTH 193 select OF 194 select OF_EARLY_FLATTREE 195 select PCI_DOMAINS_GENERIC if PCI 196 select PCI_ECAM if (ACPI && PCI) 197 select PCI_SYSCALL if PCI 198 select POWER_RESET 199 select POWER_SUPPLY 200 select SET_FS 201 select SPARSE_IRQ 202 select SWIOTLB 203 select SYSCTL_EXCEPTION_TRACE 204 select THREAD_INFO_IN_TASK 205 help 206 ARM 64-bit (AArch64) Linux support. 207 208config 64BIT 209 def_bool y 210 211config MMU 212 def_bool y 213 214config ARM64_PAGE_SHIFT 215 int 216 default 16 if ARM64_64K_PAGES 217 default 14 if ARM64_16K_PAGES 218 default 12 219 220config ARM64_CONT_PTE_SHIFT 221 int 222 default 5 if ARM64_64K_PAGES 223 default 7 if ARM64_16K_PAGES 224 default 4 225 226config ARM64_CONT_PMD_SHIFT 227 int 228 default 5 if ARM64_64K_PAGES 229 default 5 if ARM64_16K_PAGES 230 default 4 231 232config ARCH_MMAP_RND_BITS_MIN 233 default 14 if ARM64_64K_PAGES 234 default 16 if ARM64_16K_PAGES 235 default 18 236 237# max bits determined by the following formula: 238# VA_BITS - PAGE_SHIFT - 3 239config ARCH_MMAP_RND_BITS_MAX 240 default 19 if ARM64_VA_BITS=36 241 default 24 if ARM64_VA_BITS=39 242 default 27 if ARM64_VA_BITS=42 243 default 30 if ARM64_VA_BITS=47 244 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 245 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 246 default 33 if ARM64_VA_BITS=48 247 default 14 if ARM64_64K_PAGES 248 default 16 if ARM64_16K_PAGES 249 default 18 250 251config ARCH_MMAP_RND_COMPAT_BITS_MIN 252 default 7 if ARM64_64K_PAGES 253 default 9 if ARM64_16K_PAGES 254 default 11 255 256config ARCH_MMAP_RND_COMPAT_BITS_MAX 257 default 16 258 259config NO_IOPORT_MAP 260 def_bool y if !PCI 261 262config STACKTRACE_SUPPORT 263 def_bool y 264 265config ILLEGAL_POINTER_VALUE 266 hex 267 default 0xdead000000000000 268 269config LOCKDEP_SUPPORT 270 def_bool y 271 272config TRACE_IRQFLAGS_SUPPORT 273 def_bool y 274 275config GENERIC_BUG 276 def_bool y 277 depends on BUG 278 279config GENERIC_BUG_RELATIVE_POINTERS 280 def_bool y 281 depends on GENERIC_BUG 282 283config GENERIC_HWEIGHT 284 def_bool y 285 286config GENERIC_CSUM 287 def_bool y 288 289config GENERIC_CALIBRATE_DELAY 290 def_bool y 291 292config ZONE_DMA 293 bool "Support DMA zone" if EXPERT 294 default y 295 296config ZONE_DMA32 297 bool "Support DMA32 zone" if EXPERT 298 default y 299 300config ARCH_ENABLE_MEMORY_HOTPLUG 301 def_bool y 302 303config ARCH_ENABLE_MEMORY_HOTREMOVE 304 def_bool y 305 306config SMP 307 def_bool y 308 309config KERNEL_MODE_NEON 310 def_bool y 311 312config FIX_EARLYCON_MEM 313 def_bool y 314 315config PGTABLE_LEVELS 316 int 317 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 318 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 319 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 320 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 321 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 322 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 323 324config ARCH_SUPPORTS_UPROBES 325 def_bool y 326 327config ARCH_PROC_KCORE_TEXT 328 def_bool y 329 330config BROKEN_GAS_INST 331 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 332 333config KASAN_SHADOW_OFFSET 334 hex 335 depends on KASAN 336 default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 337 default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 338 default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 339 default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 340 default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 341 default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 342 default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 343 default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 344 default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 345 default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 346 default 0xffffffffffffffff 347 348source "arch/arm64/Kconfig.platforms" 349 350menu "Kernel Features" 351 352menu "ARM errata workarounds via the alternatives framework" 353 354config ARM64_WORKAROUND_CLEAN_CACHE 355 bool 356 357config ARM64_ERRATUM_826319 358 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 359 default y 360 select ARM64_WORKAROUND_CLEAN_CACHE 361 help 362 This option adds an alternative code sequence to work around ARM 363 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 364 AXI master interface and an L2 cache. 365 366 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 367 and is unable to accept a certain write via this interface, it will 368 not progress on read data presented on the read data channel and the 369 system can deadlock. 370 371 The workaround promotes data cache clean instructions to 372 data cache clean-and-invalidate. 373 Please note that this does not necessarily enable the workaround, 374 as it depends on the alternative framework, which will only patch 375 the kernel if an affected CPU is detected. 376 377 If unsure, say Y. 378 379config ARM64_ERRATUM_827319 380 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 381 default y 382 select ARM64_WORKAROUND_CLEAN_CACHE 383 help 384 This option adds an alternative code sequence to work around ARM 385 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 386 master interface and an L2 cache. 387 388 Under certain conditions this erratum can cause a clean line eviction 389 to occur at the same time as another transaction to the same address 390 on the AMBA 5 CHI interface, which can cause data corruption if the 391 interconnect reorders the two transactions. 392 393 The workaround promotes data cache clean instructions to 394 data cache clean-and-invalidate. 395 Please note that this does not necessarily enable the workaround, 396 as it depends on the alternative framework, which will only patch 397 the kernel if an affected CPU is detected. 398 399 If unsure, say Y. 400 401config ARM64_ERRATUM_824069 402 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 403 default y 404 select ARM64_WORKAROUND_CLEAN_CACHE 405 help 406 This option adds an alternative code sequence to work around ARM 407 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 408 to a coherent interconnect. 409 410 If a Cortex-A53 processor is executing a store or prefetch for 411 write instruction at the same time as a processor in another 412 cluster is executing a cache maintenance operation to the same 413 address, then this erratum might cause a clean cache line to be 414 incorrectly marked as dirty. 415 416 The workaround promotes data cache clean instructions to 417 data cache clean-and-invalidate. 418 Please note that this option does not necessarily enable the 419 workaround, as it depends on the alternative framework, which will 420 only patch the kernel if an affected CPU is detected. 421 422 If unsure, say Y. 423 424config ARM64_ERRATUM_819472 425 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 426 default y 427 select ARM64_WORKAROUND_CLEAN_CACHE 428 help 429 This option adds an alternative code sequence to work around ARM 430 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 431 present when it is connected to a coherent interconnect. 432 433 If the processor is executing a load and store exclusive sequence at 434 the same time as a processor in another cluster is executing a cache 435 maintenance operation to the same address, then this erratum might 436 cause data corruption. 437 438 The workaround promotes data cache clean instructions to 439 data cache clean-and-invalidate. 440 Please note that this does not necessarily enable the workaround, 441 as it depends on the alternative framework, which will only patch 442 the kernel if an affected CPU is detected. 443 444 If unsure, say Y. 445 446config ARM64_ERRATUM_832075 447 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 448 default y 449 help 450 This option adds an alternative code sequence to work around ARM 451 erratum 832075 on Cortex-A57 parts up to r1p2. 452 453 Affected Cortex-A57 parts might deadlock when exclusive load/store 454 instructions to Write-Back memory are mixed with Device loads. 455 456 The workaround is to promote device loads to use Load-Acquire 457 semantics. 458 Please note that this does not necessarily enable the workaround, 459 as it depends on the alternative framework, which will only patch 460 the kernel if an affected CPU is detected. 461 462 If unsure, say Y. 463 464config ARM64_ERRATUM_834220 465 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 466 depends on KVM 467 default y 468 help 469 This option adds an alternative code sequence to work around ARM 470 erratum 834220 on Cortex-A57 parts up to r1p2. 471 472 Affected Cortex-A57 parts might report a Stage 2 translation 473 fault as the result of a Stage 1 fault for load crossing a 474 page boundary when there is a permission or device memory 475 alignment fault at Stage 1 and a translation fault at Stage 2. 476 477 The workaround is to verify that the Stage 1 translation 478 doesn't generate a fault before handling the Stage 2 fault. 479 Please note that this does not necessarily enable the workaround, 480 as it depends on the alternative framework, which will only patch 481 the kernel if an affected CPU is detected. 482 483 If unsure, say Y. 484 485config ARM64_ERRATUM_845719 486 bool "Cortex-A53: 845719: a load might read incorrect data" 487 depends on COMPAT 488 default y 489 help 490 This option adds an alternative code sequence to work around ARM 491 erratum 845719 on Cortex-A53 parts up to r0p4. 492 493 When running a compat (AArch32) userspace on an affected Cortex-A53 494 part, a load at EL0 from a virtual address that matches the bottom 32 495 bits of the virtual address used by a recent load at (AArch64) EL1 496 might return incorrect data. 497 498 The workaround is to write the contextidr_el1 register on exception 499 return to a 32-bit task. 500 Please note that this does not necessarily enable the workaround, 501 as it depends on the alternative framework, which will only patch 502 the kernel if an affected CPU is detected. 503 504 If unsure, say Y. 505 506config ARM64_ERRATUM_843419 507 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 508 default y 509 select ARM64_MODULE_PLTS if MODULES 510 help 511 This option links the kernel with '--fix-cortex-a53-843419' and 512 enables PLT support to replace certain ADRP instructions, which can 513 cause subsequent memory accesses to use an incorrect address on 514 Cortex-A53 parts up to r0p4. 515 516 If unsure, say Y. 517 518config ARM64_ERRATUM_1024718 519 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 520 default y 521 help 522 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 523 524 Affected Cortex-A55 cores (all revisions) could cause incorrect 525 update of the hardware dirty bit when the DBM/AP bits are updated 526 without a break-before-make. The workaround is to disable the usage 527 of hardware DBM locally on the affected cores. CPUs not affected by 528 this erratum will continue to use the feature. 529 530 If unsure, say Y. 531 532config ARM64_ERRATUM_1418040 533 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 534 default y 535 depends on COMPAT 536 help 537 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 538 errata 1188873 and 1418040. 539 540 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 541 cause register corruption when accessing the timer registers 542 from AArch32 userspace. 543 544 If unsure, say Y. 545 546config ARM64_WORKAROUND_SPECULATIVE_AT 547 bool 548 549config ARM64_ERRATUM_1165522 550 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 551 default y 552 select ARM64_WORKAROUND_SPECULATIVE_AT 553 help 554 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 555 556 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 557 corrupted TLBs by speculating an AT instruction during a guest 558 context switch. 559 560 If unsure, say Y. 561 562config ARM64_ERRATUM_1319367 563 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 564 default y 565 select ARM64_WORKAROUND_SPECULATIVE_AT 566 help 567 This option adds work arounds for ARM Cortex-A57 erratum 1319537 568 and A72 erratum 1319367 569 570 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 571 speculating an AT instruction during a guest context switch. 572 573 If unsure, say Y. 574 575config ARM64_ERRATUM_1530923 576 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 577 default y 578 select ARM64_WORKAROUND_SPECULATIVE_AT 579 help 580 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 581 582 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 583 corrupted TLBs by speculating an AT instruction during a guest 584 context switch. 585 586 If unsure, say Y. 587 588config ARM64_WORKAROUND_REPEAT_TLBI 589 bool 590 591config ARM64_ERRATUM_1286807 592 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 593 default y 594 select ARM64_WORKAROUND_REPEAT_TLBI 595 help 596 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 597 598 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 599 address for a cacheable mapping of a location is being 600 accessed by a core while another core is remapping the virtual 601 address to a new physical page using the recommended 602 break-before-make sequence, then under very rare circumstances 603 TLBI+DSB completes before a read using the translation being 604 invalidated has been observed by other observers. The 605 workaround repeats the TLBI+DSB operation. 606 607config ARM64_ERRATUM_1463225 608 bool "Cortex-A76: Software Step might prevent interrupt recognition" 609 default y 610 help 611 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 612 613 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 614 of a system call instruction (SVC) can prevent recognition of 615 subsequent interrupts when software stepping is disabled in the 616 exception handler of the system call and either kernel debugging 617 is enabled or VHE is in use. 618 619 Work around the erratum by triggering a dummy step exception 620 when handling a system call from a task that is being stepped 621 in a VHE configuration of the kernel. 622 623 If unsure, say Y. 624 625config ARM64_ERRATUM_1542419 626 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 627 default y 628 help 629 This option adds a workaround for ARM Neoverse-N1 erratum 630 1542419. 631 632 Affected Neoverse-N1 cores could execute a stale instruction when 633 modified by another CPU. The workaround depends on a firmware 634 counterpart. 635 636 Workaround the issue by hiding the DIC feature from EL0. This 637 forces user-space to perform cache maintenance. 638 639 If unsure, say Y. 640 641config ARM64_ERRATUM_1508412 642 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 643 default y 644 help 645 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 646 647 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 648 of a store-exclusive or read of PAR_EL1 and a load with device or 649 non-cacheable memory attributes. The workaround depends on a firmware 650 counterpart. 651 652 KVM guests must also have the workaround implemented or they can 653 deadlock the system. 654 655 Work around the issue by inserting DMB SY barriers around PAR_EL1 656 register reads and warning KVM users. The DMB barrier is sufficient 657 to prevent a speculative PAR_EL1 read. 658 659 If unsure, say Y. 660 661config CAVIUM_ERRATUM_22375 662 bool "Cavium erratum 22375, 24313" 663 default y 664 help 665 Enable workaround for errata 22375 and 24313. 666 667 This implements two gicv3-its errata workarounds for ThunderX. Both 668 with a small impact affecting only ITS table allocation. 669 670 erratum 22375: only alloc 8MB table size 671 erratum 24313: ignore memory access type 672 673 The fixes are in ITS initialization and basically ignore memory access 674 type and table size provided by the TYPER and BASER registers. 675 676 If unsure, say Y. 677 678config CAVIUM_ERRATUM_23144 679 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 680 depends on NUMA 681 default y 682 help 683 ITS SYNC command hang for cross node io and collections/cpu mapping. 684 685 If unsure, say Y. 686 687config CAVIUM_ERRATUM_23154 688 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 689 default y 690 help 691 The gicv3 of ThunderX requires a modified version for 692 reading the IAR status to ensure data synchronization 693 (access to icc_iar1_el1 is not sync'ed before and after). 694 695 If unsure, say Y. 696 697config CAVIUM_ERRATUM_27456 698 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 699 default y 700 help 701 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 702 instructions may cause the icache to become corrupted if it 703 contains data for a non-current ASID. The fix is to 704 invalidate the icache when changing the mm context. 705 706 If unsure, say Y. 707 708config CAVIUM_ERRATUM_30115 709 bool "Cavium erratum 30115: Guest may disable interrupts in host" 710 default y 711 help 712 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 713 1.2, and T83 Pass 1.0, KVM guest execution may disable 714 interrupts in host. Trapping both GICv3 group-0 and group-1 715 accesses sidesteps the issue. 716 717 If unsure, say Y. 718 719config CAVIUM_TX2_ERRATUM_219 720 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 721 default y 722 help 723 On Cavium ThunderX2, a load, store or prefetch instruction between a 724 TTBR update and the corresponding context synchronizing operation can 725 cause a spurious Data Abort to be delivered to any hardware thread in 726 the CPU core. 727 728 Work around the issue by avoiding the problematic code sequence and 729 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 730 trap handler performs the corresponding register access, skips the 731 instruction and ensures context synchronization by virtue of the 732 exception return. 733 734 If unsure, say Y. 735 736config FUJITSU_ERRATUM_010001 737 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 738 default y 739 help 740 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 741 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 742 accesses may cause undefined fault (Data abort, DFSC=0b111111). 743 This fault occurs under a specific hardware condition when a 744 load/store instruction performs an address translation using: 745 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 746 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 747 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 748 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 749 750 The workaround is to ensure these bits are clear in TCR_ELx. 751 The workaround only affects the Fujitsu-A64FX. 752 753 If unsure, say Y. 754 755config HISILICON_ERRATUM_161600802 756 bool "Hip07 161600802: Erroneous redistributor VLPI base" 757 default y 758 help 759 The HiSilicon Hip07 SoC uses the wrong redistributor base 760 when issued ITS commands such as VMOVP and VMAPP, and requires 761 a 128kB offset to be applied to the target address in this commands. 762 763 If unsure, say Y. 764 765config QCOM_FALKOR_ERRATUM_1003 766 bool "Falkor E1003: Incorrect translation due to ASID change" 767 default y 768 help 769 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 770 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 771 in TTBR1_EL1, this situation only occurs in the entry trampoline and 772 then only for entries in the walk cache, since the leaf translation 773 is unchanged. Work around the erratum by invalidating the walk cache 774 entries for the trampoline before entering the kernel proper. 775 776config QCOM_FALKOR_ERRATUM_1009 777 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 778 default y 779 select ARM64_WORKAROUND_REPEAT_TLBI 780 help 781 On Falkor v1, the CPU may prematurely complete a DSB following a 782 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 783 one more time to fix the issue. 784 785 If unsure, say Y. 786 787config QCOM_QDF2400_ERRATUM_0065 788 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 789 default y 790 help 791 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 792 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 793 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 794 795 If unsure, say Y. 796 797config QCOM_FALKOR_ERRATUM_E1041 798 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 799 default y 800 help 801 Falkor CPU may speculatively fetch instructions from an improper 802 memory location when MMU translation is changed from SCTLR_ELn[M]=1 803 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 804 805 If unsure, say Y. 806 807config SOCIONEXT_SYNQUACER_PREITS 808 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 809 default y 810 help 811 Socionext Synquacer SoCs implement a separate h/w block to generate 812 MSI doorbell writes with non-zero values for the device ID. 813 814 If unsure, say Y. 815 816endmenu 817 818 819choice 820 prompt "Page size" 821 default ARM64_4K_PAGES 822 help 823 Page size (translation granule) configuration. 824 825config ARM64_4K_PAGES 826 bool "4KB" 827 help 828 This feature enables 4KB pages support. 829 830config ARM64_16K_PAGES 831 bool "16KB" 832 help 833 The system will use 16KB pages support. AArch32 emulation 834 requires applications compiled with 16K (or a multiple of 16K) 835 aligned segments. 836 837config ARM64_64K_PAGES 838 bool "64KB" 839 help 840 This feature enables 64KB pages support (4KB by default) 841 allowing only two levels of page tables and faster TLB 842 look-up. AArch32 emulation requires applications compiled 843 with 64K aligned segments. 844 845endchoice 846 847choice 848 prompt "Virtual address space size" 849 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 850 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 851 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 852 help 853 Allows choosing one of multiple possible virtual address 854 space sizes. The level of translation table is determined by 855 a combination of page size and virtual address space size. 856 857config ARM64_VA_BITS_36 858 bool "36-bit" if EXPERT 859 depends on ARM64_16K_PAGES 860 861config ARM64_VA_BITS_39 862 bool "39-bit" 863 depends on ARM64_4K_PAGES 864 865config ARM64_VA_BITS_42 866 bool "42-bit" 867 depends on ARM64_64K_PAGES 868 869config ARM64_VA_BITS_47 870 bool "47-bit" 871 depends on ARM64_16K_PAGES 872 873config ARM64_VA_BITS_48 874 bool "48-bit" 875 876config ARM64_VA_BITS_52 877 bool "52-bit" 878 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 879 help 880 Enable 52-bit virtual addressing for userspace when explicitly 881 requested via a hint to mmap(). The kernel will also use 52-bit 882 virtual addresses for its own mappings (provided HW support for 883 this feature is available, otherwise it reverts to 48-bit). 884 885 NOTE: Enabling 52-bit virtual addressing in conjunction with 886 ARMv8.3 Pointer Authentication will result in the PAC being 887 reduced from 7 bits to 3 bits, which may have a significant 888 impact on its susceptibility to brute-force attacks. 889 890 If unsure, select 48-bit virtual addressing instead. 891 892endchoice 893 894config ARM64_FORCE_52BIT 895 bool "Force 52-bit virtual addresses for userspace" 896 depends on ARM64_VA_BITS_52 && EXPERT 897 help 898 For systems with 52-bit userspace VAs enabled, the kernel will attempt 899 to maintain compatibility with older software by providing 48-bit VAs 900 unless a hint is supplied to mmap. 901 902 This configuration option disables the 48-bit compatibility logic, and 903 forces all userspace addresses to be 52-bit on HW that supports it. One 904 should only enable this configuration option for stress testing userspace 905 memory management code. If unsure say N here. 906 907config ARM64_VA_BITS 908 int 909 default 36 if ARM64_VA_BITS_36 910 default 39 if ARM64_VA_BITS_39 911 default 42 if ARM64_VA_BITS_42 912 default 47 if ARM64_VA_BITS_47 913 default 48 if ARM64_VA_BITS_48 914 default 52 if ARM64_VA_BITS_52 915 916choice 917 prompt "Physical address space size" 918 default ARM64_PA_BITS_48 919 help 920 Choose the maximum physical address range that the kernel will 921 support. 922 923config ARM64_PA_BITS_48 924 bool "48-bit" 925 926config ARM64_PA_BITS_52 927 bool "52-bit (ARMv8.2)" 928 depends on ARM64_64K_PAGES 929 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 930 help 931 Enable support for a 52-bit physical address space, introduced as 932 part of the ARMv8.2-LPA extension. 933 934 With this enabled, the kernel will also continue to work on CPUs that 935 do not support ARMv8.2-LPA, but with some added memory overhead (and 936 minor performance overhead). 937 938endchoice 939 940config ARM64_PA_BITS 941 int 942 default 48 if ARM64_PA_BITS_48 943 default 52 if ARM64_PA_BITS_52 944 945choice 946 prompt "Endianness" 947 default CPU_LITTLE_ENDIAN 948 help 949 Select the endianness of data accesses performed by the CPU. Userspace 950 applications will need to be compiled and linked for the endianness 951 that is selected here. 952 953config CPU_BIG_ENDIAN 954 bool "Build big-endian kernel" 955 depends on !LD_IS_LLD || LLD_VERSION >= 130000 956 help 957 Say Y if you plan on running a kernel with a big-endian userspace. 958 959config CPU_LITTLE_ENDIAN 960 bool "Build little-endian kernel" 961 help 962 Say Y if you plan on running a kernel with a little-endian userspace. 963 This is usually the case for distributions targeting arm64. 964 965endchoice 966 967config SCHED_MC 968 bool "Multi-core scheduler support" 969 help 970 Multi-core scheduler support improves the CPU scheduler's decision 971 making when dealing with multi-core CPU chips at a cost of slightly 972 increased overhead in some places. If unsure say N here. 973 974config SCHED_SMT 975 bool "SMT scheduler support" 976 help 977 Improves the CPU scheduler's decision making when dealing with 978 MultiThreading at a cost of slightly increased overhead in some 979 places. If unsure say N here. 980 981config NR_CPUS 982 int "Maximum number of CPUs (2-4096)" 983 range 2 4096 984 default "256" 985 986config HOTPLUG_CPU 987 bool "Support for hot-pluggable CPUs" 988 select GENERIC_IRQ_MIGRATION 989 help 990 Say Y here to experiment with turning CPUs off and on. CPUs 991 can be controlled through /sys/devices/system/cpu. 992 993# Common NUMA Features 994config NUMA 995 bool "NUMA Memory Allocation and Scheduler Support" 996 select ACPI_NUMA if ACPI 997 select OF_NUMA 998 help 999 Enable NUMA (Non-Uniform Memory Access) support. 1000 1001 The kernel will try to allocate memory used by a CPU on the 1002 local memory of the CPU and add some more 1003 NUMA awareness to the kernel. 1004 1005config NODES_SHIFT 1006 int "Maximum NUMA Nodes (as a power of 2)" 1007 range 1 10 1008 default "4" 1009 depends on NEED_MULTIPLE_NODES 1010 help 1011 Specify the maximum number of NUMA Nodes available on the target 1012 system. Increases memory reserved to accommodate various tables. 1013 1014config USE_PERCPU_NUMA_NODE_ID 1015 def_bool y 1016 depends on NUMA 1017 1018config HAVE_SETUP_PER_CPU_AREA 1019 def_bool y 1020 depends on NUMA 1021 1022config NEED_PER_CPU_EMBED_FIRST_CHUNK 1023 def_bool y 1024 depends on NUMA 1025 1026source "kernel/Kconfig.hz" 1027 1028config ARCH_SUPPORTS_DEBUG_PAGEALLOC 1029 def_bool y 1030 1031config ARCH_SPARSEMEM_ENABLE 1032 def_bool y 1033 select SPARSEMEM_VMEMMAP_ENABLE 1034 1035config ARCH_SPARSEMEM_DEFAULT 1036 def_bool ARCH_SPARSEMEM_ENABLE 1037 1038config ARCH_SELECT_MEMORY_MODEL 1039 def_bool ARCH_SPARSEMEM_ENABLE 1040 1041config ARCH_FLATMEM_ENABLE 1042 def_bool !NUMA 1043 1044config HAVE_ARCH_PFN_VALID 1045 def_bool y 1046 1047config HW_PERF_EVENTS 1048 def_bool y 1049 depends on ARM_PMU 1050 1051config SYS_SUPPORTS_HUGETLBFS 1052 def_bool y 1053 1054config ARCH_WANT_HUGE_PMD_SHARE 1055 1056config ARCH_HAS_CACHE_LINE_SIZE 1057 def_bool y 1058 1059config ARCH_ENABLE_SPLIT_PMD_PTLOCK 1060 def_bool y if PGTABLE_LEVELS > 2 1061 1062# Supported by clang >= 7.0 1063config CC_HAVE_SHADOW_CALL_STACK 1064 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1065 1066config PARAVIRT 1067 bool "Enable paravirtualization code" 1068 help 1069 This changes the kernel so it can modify itself when it is run 1070 under a hypervisor, potentially improving performance significantly 1071 over full virtualization. 1072 1073config PARAVIRT_TIME_ACCOUNTING 1074 bool "Paravirtual steal time accounting" 1075 select PARAVIRT 1076 help 1077 Select this option to enable fine granularity task steal time 1078 accounting. Time spent executing other tasks in parallel with 1079 the current vCPU is discounted from the vCPU power. To account for 1080 that, there can be a small performance impact. 1081 1082 If in doubt, say N here. 1083 1084config KEXEC 1085 depends on PM_SLEEP_SMP 1086 select KEXEC_CORE 1087 bool "kexec system call" 1088 help 1089 kexec is a system call that implements the ability to shutdown your 1090 current kernel, and to start another kernel. It is like a reboot 1091 but it is independent of the system firmware. And like a reboot 1092 you can start any kernel with it, not just Linux. 1093 1094config KEXEC_FILE 1095 bool "kexec file based system call" 1096 select KEXEC_CORE 1097 help 1098 This is new version of kexec system call. This system call is 1099 file based and takes file descriptors as system call argument 1100 for kernel and initramfs as opposed to list of segments as 1101 accepted by previous system call. 1102 1103config KEXEC_SIG 1104 bool "Verify kernel signature during kexec_file_load() syscall" 1105 depends on KEXEC_FILE 1106 help 1107 Select this option to verify a signature with loaded kernel 1108 image. If configured, any attempt of loading a image without 1109 valid signature will fail. 1110 1111 In addition to that option, you need to enable signature 1112 verification for the corresponding kernel image type being 1113 loaded in order for this to work. 1114 1115config KEXEC_IMAGE_VERIFY_SIG 1116 bool "Enable Image signature verification support" 1117 default y 1118 depends on KEXEC_SIG 1119 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1120 help 1121 Enable Image signature verification support. 1122 1123comment "Support for PE file signature verification disabled" 1124 depends on KEXEC_SIG 1125 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1126 1127config CRASH_DUMP 1128 bool "Build kdump crash kernel" 1129 help 1130 Generate crash dump after being started by kexec. This should 1131 be normally only set in special crash dump kernels which are 1132 loaded in the main kernel with kexec-tools into a specially 1133 reserved region and then later executed after a crash by 1134 kdump/kexec. 1135 1136 For more details see Documentation/admin-guide/kdump/kdump.rst 1137 1138config XEN_DOM0 1139 def_bool y 1140 depends on XEN 1141 1142config XEN 1143 bool "Xen guest support on ARM64" 1144 depends on ARM64 && OF 1145 select SWIOTLB_XEN 1146 select PARAVIRT 1147 help 1148 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1149 1150config FORCE_MAX_ZONEORDER 1151 int 1152 default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE) 1153 default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE) 1154 default "11" 1155 help 1156 The kernel memory allocator divides physically contiguous memory 1157 blocks into "zones", where each zone is a power of two number of 1158 pages. This option selects the largest power of two that the kernel 1159 keeps in the memory allocator. If you need to allocate very large 1160 blocks of physically contiguous memory, then you may need to 1161 increase this value. 1162 1163 This config option is actually maximum order plus one. For example, 1164 a value of 11 means that the largest free memory block is 2^10 pages. 1165 1166 We make sure that we can allocate upto a HugePage size for each configuration. 1167 Hence we have : 1168 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1169 1170 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1171 4M allocations matching the default size used by generic code. 1172 1173config UNMAP_KERNEL_AT_EL0 1174 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1175 default y 1176 help 1177 Speculation attacks against some high-performance processors can 1178 be used to bypass MMU permission checks and leak kernel data to 1179 userspace. This can be defended against by unmapping the kernel 1180 when running in userspace, mapping it back in on exception entry 1181 via a trampoline page in the vector table. 1182 1183 If unsure, say Y. 1184 1185config MITIGATE_SPECTRE_BRANCH_HISTORY 1186 bool "Mitigate Spectre style attacks against branch history" if EXPERT 1187 default y 1188 help 1189 Speculation attacks against some high-performance processors can 1190 make use of branch history to influence future speculation. 1191 When taking an exception from user-space, a sequence of branches 1192 or a firmware call overwrites the branch history. 1193 1194config RODATA_FULL_DEFAULT_ENABLED 1195 bool "Apply r/o permissions of VM areas also to their linear aliases" 1196 default y 1197 help 1198 Apply read-only attributes of VM areas to the linear alias of 1199 the backing pages as well. This prevents code or read-only data 1200 from being modified (inadvertently or intentionally) via another 1201 mapping of the same memory page. This additional enhancement can 1202 be turned off at runtime by passing rodata=[off|on] (and turned on 1203 with rodata=full if this option is set to 'n') 1204 1205 This requires the linear region to be mapped down to pages, 1206 which may adversely affect performance in some cases. 1207 1208config ARM64_SW_TTBR0_PAN 1209 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1210 help 1211 Enabling this option prevents the kernel from accessing 1212 user-space memory directly by pointing TTBR0_EL1 to a reserved 1213 zeroed area and reserved ASID. The user access routines 1214 restore the valid TTBR0_EL1 temporarily. 1215 1216config ARM64_TAGGED_ADDR_ABI 1217 bool "Enable the tagged user addresses syscall ABI" 1218 default y 1219 help 1220 When this option is enabled, user applications can opt in to a 1221 relaxed ABI via prctl() allowing tagged addresses to be passed 1222 to system calls as pointer arguments. For details, see 1223 Documentation/arm64/tagged-address-abi.rst. 1224 1225menuconfig COMPAT 1226 bool "Kernel support for 32-bit EL0" 1227 depends on ARM64_4K_PAGES || EXPERT 1228 select COMPAT_BINFMT_ELF if BINFMT_ELF 1229 select HAVE_UID16 1230 select OLD_SIGSUSPEND3 1231 select COMPAT_OLD_SIGACTION 1232 help 1233 This option enables support for a 32-bit EL0 running under a 64-bit 1234 kernel at EL1. AArch32-specific components such as system calls, 1235 the user helper functions, VFP support and the ptrace interface are 1236 handled appropriately by the kernel. 1237 1238 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1239 that you will only be able to execute AArch32 binaries that were compiled 1240 with page size aligned segments. 1241 1242 If you want to execute 32-bit userspace applications, say Y. 1243 1244if COMPAT 1245 1246config KUSER_HELPERS 1247 bool "Enable kuser helpers page for 32-bit applications" 1248 default y 1249 help 1250 Warning: disabling this option may break 32-bit user programs. 1251 1252 Provide kuser helpers to compat tasks. The kernel provides 1253 helper code to userspace in read only form at a fixed location 1254 to allow userspace to be independent of the CPU type fitted to 1255 the system. This permits binaries to be run on ARMv4 through 1256 to ARMv8 without modification. 1257 1258 See Documentation/arm/kernel_user_helpers.rst for details. 1259 1260 However, the fixed address nature of these helpers can be used 1261 by ROP (return orientated programming) authors when creating 1262 exploits. 1263 1264 If all of the binaries and libraries which run on your platform 1265 are built specifically for your platform, and make no use of 1266 these helpers, then you can turn this option off to hinder 1267 such exploits. However, in that case, if a binary or library 1268 relying on those helpers is run, it will not function correctly. 1269 1270 Say N here only if you are absolutely certain that you do not 1271 need these helpers; otherwise, the safe option is to say Y. 1272 1273config COMPAT_VDSO 1274 bool "Enable vDSO for 32-bit applications" 1275 depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != "" 1276 select GENERIC_COMPAT_VDSO 1277 default y 1278 help 1279 Place in the process address space of 32-bit applications an 1280 ELF shared object providing fast implementations of gettimeofday 1281 and clock_gettime. 1282 1283 You must have a 32-bit build of glibc 2.22 or later for programs 1284 to seamlessly take advantage of this. 1285 1286config THUMB2_COMPAT_VDSO 1287 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1288 depends on COMPAT_VDSO 1289 default y 1290 help 1291 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1292 otherwise with '-marm'. 1293 1294menuconfig ARMV8_DEPRECATED 1295 bool "Emulate deprecated/obsolete ARMv8 instructions" 1296 depends on SYSCTL 1297 help 1298 Legacy software support may require certain instructions 1299 that have been deprecated or obsoleted in the architecture. 1300 1301 Enable this config to enable selective emulation of these 1302 features. 1303 1304 If unsure, say Y 1305 1306if ARMV8_DEPRECATED 1307 1308config SWP_EMULATION 1309 bool "Emulate SWP/SWPB instructions" 1310 help 1311 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1312 they are always undefined. Say Y here to enable software 1313 emulation of these instructions for userspace using LDXR/STXR. 1314 This feature can be controlled at runtime with the abi.swp 1315 sysctl which is disabled by default. 1316 1317 In some older versions of glibc [<=2.8] SWP is used during futex 1318 trylock() operations with the assumption that the code will not 1319 be preempted. This invalid assumption may be more likely to fail 1320 with SWP emulation enabled, leading to deadlock of the user 1321 application. 1322 1323 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1324 on an external transaction monitoring block called a global 1325 monitor to maintain update atomicity. If your system does not 1326 implement a global monitor, this option can cause programs that 1327 perform SWP operations to uncached memory to deadlock. 1328 1329 If unsure, say Y 1330 1331config CP15_BARRIER_EMULATION 1332 bool "Emulate CP15 Barrier instructions" 1333 help 1334 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1335 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1336 strongly recommended to use the ISB, DSB, and DMB 1337 instructions instead. 1338 1339 Say Y here to enable software emulation of these 1340 instructions for AArch32 userspace code. When this option is 1341 enabled, CP15 barrier usage is traced which can help 1342 identify software that needs updating. This feature can be 1343 controlled at runtime with the abi.cp15_barrier sysctl. 1344 1345 If unsure, say Y 1346 1347config SETEND_EMULATION 1348 bool "Emulate SETEND instruction" 1349 help 1350 The SETEND instruction alters the data-endianness of the 1351 AArch32 EL0, and is deprecated in ARMv8. 1352 1353 Say Y here to enable software emulation of the instruction 1354 for AArch32 userspace code. This feature can be controlled 1355 at runtime with the abi.setend sysctl. 1356 1357 Note: All the cpus on the system must have mixed endian support at EL0 1358 for this feature to be enabled. If a new CPU - which doesn't support mixed 1359 endian - is hotplugged in after this feature has been enabled, there could 1360 be unexpected results in the applications. 1361 1362 If unsure, say Y 1363endif 1364 1365endif 1366 1367menu "ARMv8.1 architectural features" 1368 1369config ARM64_HW_AFDBM 1370 bool "Support for hardware updates of the Access and Dirty page flags" 1371 default y 1372 help 1373 The ARMv8.1 architecture extensions introduce support for 1374 hardware updates of the access and dirty information in page 1375 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1376 capable processors, accesses to pages with PTE_AF cleared will 1377 set this bit instead of raising an access flag fault. 1378 Similarly, writes to read-only pages with the DBM bit set will 1379 clear the read-only bit (AP[2]) instead of raising a 1380 permission fault. 1381 1382 Kernels built with this configuration option enabled continue 1383 to work on pre-ARMv8.1 hardware and the performance impact is 1384 minimal. If unsure, say Y. 1385 1386config ARM64_PAN 1387 bool "Enable support for Privileged Access Never (PAN)" 1388 default y 1389 help 1390 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1391 prevents the kernel or hypervisor from accessing user-space (EL0) 1392 memory directly. 1393 1394 Choosing this option will cause any unprotected (not using 1395 copy_to_user et al) memory access to fail with a permission fault. 1396 1397 The feature is detected at runtime, and will remain as a 'nop' 1398 instruction if the cpu does not implement the feature. 1399 1400config AS_HAS_LSE_ATOMICS 1401 def_bool $(as-instr,.arch_extension lse) 1402 1403config ARM64_LSE_ATOMICS 1404 bool 1405 default ARM64_USE_LSE_ATOMICS 1406 depends on AS_HAS_LSE_ATOMICS 1407 1408config ARM64_USE_LSE_ATOMICS 1409 bool "Atomic instructions" 1410 depends on JUMP_LABEL 1411 default y 1412 help 1413 As part of the Large System Extensions, ARMv8.1 introduces new 1414 atomic instructions that are designed specifically to scale in 1415 very large systems. 1416 1417 Say Y here to make use of these instructions for the in-kernel 1418 atomic routines. This incurs a small overhead on CPUs that do 1419 not support these instructions and requires the kernel to be 1420 built with binutils >= 2.25 in order for the new instructions 1421 to be used. 1422 1423config ARM64_VHE 1424 bool "Enable support for Virtualization Host Extensions (VHE)" 1425 default y 1426 help 1427 Virtualization Host Extensions (VHE) allow the kernel to run 1428 directly at EL2 (instead of EL1) on processors that support 1429 it. This leads to better performance for KVM, as they reduce 1430 the cost of the world switch. 1431 1432 Selecting this option allows the VHE feature to be detected 1433 at runtime, and does not affect processors that do not 1434 implement this feature. 1435 1436endmenu 1437 1438menu "ARMv8.2 architectural features" 1439 1440config ARM64_UAO 1441 bool "Enable support for User Access Override (UAO)" 1442 default y 1443 help 1444 User Access Override (UAO; part of the ARMv8.2 Extensions) 1445 causes the 'unprivileged' variant of the load/store instructions to 1446 be overridden to be privileged. 1447 1448 This option changes get_user() and friends to use the 'unprivileged' 1449 variant of the load/store instructions. This ensures that user-space 1450 really did have access to the supplied memory. When addr_limit is 1451 set to kernel memory the UAO bit will be set, allowing privileged 1452 access to kernel memory. 1453 1454 Choosing this option will cause copy_to_user() et al to use user-space 1455 memory permissions. 1456 1457 The feature is detected at runtime, the kernel will use the 1458 regular load/store instructions if the cpu does not implement the 1459 feature. 1460 1461config ARM64_PMEM 1462 bool "Enable support for persistent memory" 1463 select ARCH_HAS_PMEM_API 1464 select ARCH_HAS_UACCESS_FLUSHCACHE 1465 help 1466 Say Y to enable support for the persistent memory API based on the 1467 ARMv8.2 DCPoP feature. 1468 1469 The feature is detected at runtime, and the kernel will use DC CVAC 1470 operations if DC CVAP is not supported (following the behaviour of 1471 DC CVAP itself if the system does not define a point of persistence). 1472 1473config ARM64_RAS_EXTN 1474 bool "Enable support for RAS CPU Extensions" 1475 default y 1476 help 1477 CPUs that support the Reliability, Availability and Serviceability 1478 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1479 errors, classify them and report them to software. 1480 1481 On CPUs with these extensions system software can use additional 1482 barriers to determine if faults are pending and read the 1483 classification from a new set of registers. 1484 1485 Selecting this feature will allow the kernel to use these barriers 1486 and access the new registers if the system supports the extension. 1487 Platform RAS features may additionally depend on firmware support. 1488 1489config ARM64_CNP 1490 bool "Enable support for Common Not Private (CNP) translations" 1491 default y 1492 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1493 help 1494 Common Not Private (CNP) allows translation table entries to 1495 be shared between different PEs in the same inner shareable 1496 domain, so the hardware can use this fact to optimise the 1497 caching of such entries in the TLB. 1498 1499 Selecting this option allows the CNP feature to be detected 1500 at runtime, and does not affect PEs that do not implement 1501 this feature. 1502 1503endmenu 1504 1505menu "ARMv8.3 architectural features" 1506 1507config ARM64_PTR_AUTH 1508 bool "Enable support for pointer authentication" 1509 default y 1510 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1511 # Modern compilers insert a .note.gnu.property section note for PAC 1512 # which is only understood by binutils starting with version 2.33.1. 1513 depends on LD_IS_LLD || LD_VERSION >= 233010000 || (CC_IS_GCC && GCC_VERSION < 90100) 1514 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1515 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1516 help 1517 Pointer authentication (part of the ARMv8.3 Extensions) provides 1518 instructions for signing and authenticating pointers against secret 1519 keys, which can be used to mitigate Return Oriented Programming (ROP) 1520 and other attacks. 1521 1522 This option enables these instructions at EL0 (i.e. for userspace). 1523 Choosing this option will cause the kernel to initialise secret keys 1524 for each process at exec() time, with these keys being 1525 context-switched along with the process. 1526 1527 If the compiler supports the -mbranch-protection or 1528 -msign-return-address flag (e.g. GCC 7 or later), then this option 1529 will also cause the kernel itself to be compiled with return address 1530 protection. In this case, and if the target hardware is known to 1531 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1532 disabled with minimal loss of protection. 1533 1534 The feature is detected at runtime. If the feature is not present in 1535 hardware it will not be advertised to userspace/KVM guest nor will it 1536 be enabled. 1537 1538 If the feature is present on the boot CPU but not on a late CPU, then 1539 the late CPU will be parked. Also, if the boot CPU does not have 1540 address auth and the late CPU has then the late CPU will still boot 1541 but with the feature disabled. On such a system, this option should 1542 not be selected. 1543 1544 This feature works with FUNCTION_GRAPH_TRACER option only if 1545 DYNAMIC_FTRACE_WITH_REGS is enabled. 1546 1547config CC_HAS_BRANCH_PROT_PAC_RET 1548 # GCC 9 or later, clang 8 or later 1549 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1550 1551config CC_HAS_SIGN_RETURN_ADDRESS 1552 # GCC 7, 8 1553 def_bool $(cc-option,-msign-return-address=all) 1554 1555config AS_HAS_PAC 1556 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1557 1558config AS_HAS_CFI_NEGATE_RA_STATE 1559 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1560 1561endmenu 1562 1563menu "ARMv8.4 architectural features" 1564 1565config ARM64_AMU_EXTN 1566 bool "Enable support for the Activity Monitors Unit CPU extension" 1567 default y 1568 help 1569 The activity monitors extension is an optional extension introduced 1570 by the ARMv8.4 CPU architecture. This enables support for version 1 1571 of the activity monitors architecture, AMUv1. 1572 1573 To enable the use of this extension on CPUs that implement it, say Y. 1574 1575 Note that for architectural reasons, firmware _must_ implement AMU 1576 support when running on CPUs that present the activity monitors 1577 extension. The required support is present in: 1578 * Version 1.5 and later of the ARM Trusted Firmware 1579 1580 For kernels that have this configuration enabled but boot with broken 1581 firmware, you may need to say N here until the firmware is fixed. 1582 Otherwise you may experience firmware panics or lockups when 1583 accessing the counter registers. Even if you are not observing these 1584 symptoms, the values returned by the register reads might not 1585 correctly reflect reality. Most commonly, the value read will be 0, 1586 indicating that the counter is not enabled. 1587 1588config AS_HAS_ARMV8_4 1589 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1590 1591config ARM64_TLB_RANGE 1592 bool "Enable support for tlbi range feature" 1593 default y 1594 depends on AS_HAS_ARMV8_4 1595 help 1596 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1597 range of input addresses. 1598 1599 The feature introduces new assembly instructions, and they were 1600 support when binutils >= 2.30. 1601 1602endmenu 1603 1604menu "ARMv8.5 architectural features" 1605 1606config ARM64_BTI 1607 bool "Branch Target Identification support" 1608 default y 1609 help 1610 Branch Target Identification (part of the ARMv8.5 Extensions) 1611 provides a mechanism to limit the set of locations to which computed 1612 branch instructions such as BR or BLR can jump. 1613 1614 To make use of BTI on CPUs that support it, say Y. 1615 1616 BTI is intended to provide complementary protection to other control 1617 flow integrity protection mechanisms, such as the Pointer 1618 authentication mechanism provided as part of the ARMv8.3 Extensions. 1619 For this reason, it does not make sense to enable this option without 1620 also enabling support for pointer authentication. Thus, when 1621 enabling this option you should also select ARM64_PTR_AUTH=y. 1622 1623 Userspace binaries must also be specifically compiled to make use of 1624 this mechanism. If you say N here or the hardware does not support 1625 BTI, such binaries can still run, but you get no additional 1626 enforcement of branch destinations. 1627 1628config ARM64_BTI_KERNEL 1629 bool "Use Branch Target Identification for kernel" 1630 default y 1631 depends on ARM64_BTI 1632 depends on ARM64_PTR_AUTH 1633 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1634 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1635 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1636 depends on !(CC_IS_CLANG && GCOV_KERNEL) 1637 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1638 help 1639 Build the kernel with Branch Target Identification annotations 1640 and enable enforcement of this for kernel code. When this option 1641 is enabled and the system supports BTI all kernel code including 1642 modular code must have BTI enabled. 1643 1644config CC_HAS_BRANCH_PROT_PAC_RET_BTI 1645 # GCC 9 or later, clang 8 or later 1646 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 1647 1648config ARM64_E0PD 1649 bool "Enable support for E0PD" 1650 default y 1651 help 1652 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1653 that EL0 accesses made via TTBR1 always fault in constant time, 1654 providing similar benefits to KASLR as those provided by KPTI, but 1655 with lower overhead and without disrupting legitimate access to 1656 kernel memory such as SPE. 1657 1658 This option enables E0PD for TTBR1 where available. 1659 1660config ARCH_RANDOM 1661 bool "Enable support for random number generation" 1662 default y 1663 help 1664 Random number generation (part of the ARMv8.5 Extensions) 1665 provides a high bandwidth, cryptographically secure 1666 hardware random number generator. 1667 1668config ARM64_AS_HAS_MTE 1669 # Initial support for MTE went in binutils 2.32.0, checked with 1670 # ".arch armv8.5-a+memtag" below. However, this was incomplete 1671 # as a late addition to the final architecture spec (LDGM/STGM) 1672 # is only supported in the newer 2.32.x and 2.33 binutils 1673 # versions, hence the extra "stgm" instruction check below. 1674 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 1675 1676config ARM64_MTE 1677 bool "Memory Tagging Extension support" 1678 default y 1679 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 1680 depends on AS_HAS_LSE_ATOMICS 1681 select ARCH_USES_HIGH_VMA_FLAGS 1682 help 1683 Memory Tagging (part of the ARMv8.5 Extensions) provides 1684 architectural support for run-time, always-on detection of 1685 various classes of memory error to aid with software debugging 1686 to eliminate vulnerabilities arising from memory-unsafe 1687 languages. 1688 1689 This option enables the support for the Memory Tagging 1690 Extension at EL0 (i.e. for userspace). 1691 1692 Selecting this option allows the feature to be detected at 1693 runtime. Any secondary CPU not implementing this feature will 1694 not be allowed a late bring-up. 1695 1696 Userspace binaries that want to use this feature must 1697 explicitly opt in. The mechanism for the userspace is 1698 described in: 1699 1700 Documentation/arm64/memory-tagging-extension.rst. 1701 1702endmenu 1703 1704config ARM64_SVE 1705 bool "ARM Scalable Vector Extension support" 1706 default y 1707 depends on !KVM || ARM64_VHE 1708 help 1709 The Scalable Vector Extension (SVE) is an extension to the AArch64 1710 execution state which complements and extends the SIMD functionality 1711 of the base architecture to support much larger vectors and to enable 1712 additional vectorisation opportunities. 1713 1714 To enable use of this extension on CPUs that implement it, say Y. 1715 1716 On CPUs that support the SVE2 extensions, this option will enable 1717 those too. 1718 1719 Note that for architectural reasons, firmware _must_ implement SVE 1720 support when running on SVE capable hardware. The required support 1721 is present in: 1722 1723 * version 1.5 and later of the ARM Trusted Firmware 1724 * the AArch64 boot wrapper since commit 5e1261e08abf 1725 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1726 1727 For other firmware implementations, consult the firmware documentation 1728 or vendor. 1729 1730 If you need the kernel to boot on SVE-capable hardware with broken 1731 firmware, you may need to say N here until you get your firmware 1732 fixed. Otherwise, you may experience firmware panics or lockups when 1733 booting the kernel. If unsure and you are not observing these 1734 symptoms, you should assume that it is safe to say Y. 1735 1736 CPUs that support SVE are architecturally required to support the 1737 Virtualization Host Extensions (VHE), so the kernel makes no 1738 provision for supporting SVE alongside KVM without VHE enabled. 1739 Thus, you will need to enable CONFIG_ARM64_VHE if you want to support 1740 KVM in the same kernel image. 1741 1742config ARM64_MODULE_PLTS 1743 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1744 depends on MODULES 1745 select HAVE_MOD_ARCH_SPECIFIC 1746 help 1747 Allocate PLTs when loading modules so that jumps and calls whose 1748 targets are too far away for their relative offsets to be encoded 1749 in the instructions themselves can be bounced via veneers in the 1750 module's PLT. This allows modules to be allocated in the generic 1751 vmalloc area after the dedicated module memory area has been 1752 exhausted. 1753 1754 When running with address space randomization (KASLR), the module 1755 region itself may be too far away for ordinary relative jumps and 1756 calls, and so in that case, module PLTs are required and cannot be 1757 disabled. 1758 1759 Specific errata workaround(s) might also force module PLTs to be 1760 enabled (ARM64_ERRATUM_843419). 1761 1762config ARM64_PSEUDO_NMI 1763 bool "Support for NMI-like interrupts" 1764 select ARM_GIC_V3 1765 help 1766 Adds support for mimicking Non-Maskable Interrupts through the use of 1767 GIC interrupt priority. This support requires version 3 or later of 1768 ARM GIC. 1769 1770 This high priority configuration for interrupts needs to be 1771 explicitly enabled by setting the kernel parameter 1772 "irqchip.gicv3_pseudo_nmi" to 1. 1773 1774 If unsure, say N 1775 1776if ARM64_PSEUDO_NMI 1777config ARM64_DEBUG_PRIORITY_MASKING 1778 bool "Debug interrupt priority masking" 1779 help 1780 This adds runtime checks to functions enabling/disabling 1781 interrupts when using priority masking. The additional checks verify 1782 the validity of ICC_PMR_EL1 when calling concerned functions. 1783 1784 If unsure, say N 1785endif 1786 1787config RELOCATABLE 1788 bool "Build a relocatable kernel image" if EXPERT 1789 select ARCH_HAS_RELR 1790 default y 1791 help 1792 This builds the kernel as a Position Independent Executable (PIE), 1793 which retains all relocation metadata required to relocate the 1794 kernel binary at runtime to a different virtual address than the 1795 address it was linked at. 1796 Since AArch64 uses the RELA relocation format, this requires a 1797 relocation pass at runtime even if the kernel is loaded at the 1798 same address it was linked at. 1799 1800config RANDOMIZE_BASE 1801 bool "Randomize the address of the kernel image" 1802 select ARM64_MODULE_PLTS if MODULES 1803 select RELOCATABLE 1804 help 1805 Randomizes the virtual address at which the kernel image is 1806 loaded, as a security feature that deters exploit attempts 1807 relying on knowledge of the location of kernel internals. 1808 1809 It is the bootloader's job to provide entropy, by passing a 1810 random u64 value in /chosen/kaslr-seed at kernel entry. 1811 1812 When booting via the UEFI stub, it will invoke the firmware's 1813 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 1814 to the kernel proper. In addition, it will randomise the physical 1815 location of the kernel Image as well. 1816 1817 If unsure, say N. 1818 1819config RANDOMIZE_MODULE_REGION_FULL 1820 bool "Randomize the module region over a 4 GB range" 1821 depends on RANDOMIZE_BASE 1822 default y 1823 help 1824 Randomizes the location of the module region inside a 4 GB window 1825 covering the core kernel. This way, it is less likely for modules 1826 to leak information about the location of core kernel data structures 1827 but it does imply that function calls between modules and the core 1828 kernel will need to be resolved via veneers in the module PLT. 1829 1830 When this option is not set, the module region will be randomized over 1831 a limited range that contains the [_stext, _etext] interval of the 1832 core kernel, so branch relocations are always in range. 1833 1834config CC_HAVE_STACKPROTECTOR_SYSREG 1835 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 1836 1837config STACKPROTECTOR_PER_TASK 1838 def_bool y 1839 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 1840 1841endmenu 1842 1843menu "Boot options" 1844 1845config ARM64_ACPI_PARKING_PROTOCOL 1846 bool "Enable support for the ARM64 ACPI parking protocol" 1847 depends on ACPI 1848 help 1849 Enable support for the ARM64 ACPI parking protocol. If disabled 1850 the kernel will not allow booting through the ARM64 ACPI parking 1851 protocol even if the corresponding data is present in the ACPI 1852 MADT table. 1853 1854config CMDLINE 1855 string "Default kernel command string" 1856 default "" 1857 help 1858 Provide a set of default command-line options at build time by 1859 entering them here. As a minimum, you should specify the the 1860 root device (e.g. root=/dev/nfs). 1861 1862config CMDLINE_FORCE 1863 bool "Always use the default kernel command string" 1864 depends on CMDLINE != "" 1865 help 1866 Always use the default kernel command string, even if the boot 1867 loader passes other arguments to the kernel. 1868 This is useful if you cannot or don't want to change the 1869 command-line options your boot loader passes to the kernel. 1870 1871config EFI_STUB 1872 bool 1873 1874config EFI 1875 bool "UEFI runtime support" 1876 depends on OF && !CPU_BIG_ENDIAN 1877 depends on KERNEL_MODE_NEON 1878 select ARCH_SUPPORTS_ACPI 1879 select LIBFDT 1880 select UCS2_STRING 1881 select EFI_PARAMS_FROM_FDT 1882 select EFI_RUNTIME_WRAPPERS 1883 select EFI_STUB 1884 select EFI_GENERIC_STUB 1885 default y 1886 help 1887 This option provides support for runtime services provided 1888 by UEFI firmware (such as non-volatile variables, realtime 1889 clock, and platform reset). A UEFI stub is also provided to 1890 allow the kernel to be booted as an EFI application. This 1891 is only useful on systems that have UEFI firmware. 1892 1893config DMI 1894 bool "Enable support for SMBIOS (DMI) tables" 1895 depends on EFI 1896 default y 1897 help 1898 This enables SMBIOS/DMI feature for systems. 1899 1900 This option is only useful on systems that have UEFI firmware. 1901 However, even with this option, the resultant kernel should 1902 continue to boot on existing non-UEFI platforms. 1903 1904endmenu 1905 1906config SYSVIPC_COMPAT 1907 def_bool y 1908 depends on COMPAT && SYSVIPC 1909 1910config ARCH_ENABLE_HUGEPAGE_MIGRATION 1911 def_bool y 1912 depends on HUGETLB_PAGE && MIGRATION 1913 1914config ARCH_ENABLE_THP_MIGRATION 1915 def_bool y 1916 depends on TRANSPARENT_HUGEPAGE 1917 1918menu "Power management options" 1919 1920source "kernel/power/Kconfig" 1921 1922config ARCH_HIBERNATION_POSSIBLE 1923 def_bool y 1924 depends on CPU_PM 1925 1926config ARCH_HIBERNATION_HEADER 1927 def_bool y 1928 depends on HIBERNATION 1929 1930config ARCH_SUSPEND_POSSIBLE 1931 def_bool y 1932 1933endmenu 1934 1935menu "CPU Power Management" 1936 1937source "drivers/cpuidle/Kconfig" 1938 1939source "drivers/cpufreq/Kconfig" 1940 1941endmenu 1942 1943source "drivers/firmware/Kconfig" 1944 1945source "drivers/acpi/Kconfig" 1946 1947source "arch/arm64/kvm/Kconfig" 1948 1949if CRYPTO 1950source "arch/arm64/crypto/Kconfig" 1951endif 1952