1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mce.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "irq.h"
56 #include "kvm_cache_regs.h"
57 #include "lapic.h"
58 #include "mmu.h"
59 #include "nested.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69
70 #ifdef MODULE
71 static const struct x86_cpu_id vmx_cpu_id[] = {
72 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
73 {}
74 };
75 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
76 #endif
77
78 bool __read_mostly enable_vpid = 1;
79 module_param_named(vpid, enable_vpid, bool, 0444);
80
81 static bool __read_mostly enable_vnmi = 1;
82 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
83
84 bool __read_mostly flexpriority_enabled = 1;
85 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
86
87 bool __read_mostly enable_ept = 1;
88 module_param_named(ept, enable_ept, bool, S_IRUGO);
89
90 bool __read_mostly enable_unrestricted_guest = 1;
91 module_param_named(unrestricted_guest,
92 enable_unrestricted_guest, bool, S_IRUGO);
93
94 bool __read_mostly enable_ept_ad_bits = 1;
95 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
96
97 static bool __read_mostly emulate_invalid_guest_state = true;
98 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
99
100 static bool __read_mostly fasteoi = 1;
101 module_param(fasteoi, bool, S_IRUGO);
102
103 bool __read_mostly enable_apicv = 1;
104 module_param(enable_apicv, bool, S_IRUGO);
105
106 /*
107 * If nested=1, nested virtualization is supported, i.e., guests may use
108 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
109 * use VMX instructions.
110 */
111 static bool __read_mostly nested = 1;
112 module_param(nested, bool, S_IRUGO);
113
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116
117 static bool __read_mostly dump_invalid_vmcs = 0;
118 module_param(dump_invalid_vmcs, bool, 0644);
119
120 #define MSR_BITMAP_MODE_X2APIC 1
121 #define MSR_BITMAP_MODE_X2APIC_APICV 2
122
123 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
124
125 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
126 static int __read_mostly cpu_preemption_timer_multi;
127 static bool __read_mostly enable_preemption_timer = 1;
128 #ifdef CONFIG_X86_64
129 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
130 #endif
131
132 extern bool __read_mostly allow_smaller_maxphyaddr;
133 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
134
135 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
136 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
137 #define KVM_VM_CR0_ALWAYS_ON \
138 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
139 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
140
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150 RTIT_STATUS_BYTECNT))
151
152 /*
153 * List of MSRs that can be directly passed to the guest.
154 * In addition to these x2apic and PT MSRs are handled specially.
155 */
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
157 MSR_IA32_SPEC_CTRL,
158 MSR_IA32_PRED_CMD,
159 MSR_IA32_TSC,
160 #ifdef CONFIG_X86_64
161 MSR_FS_BASE,
162 MSR_GS_BASE,
163 MSR_KERNEL_GS_BASE,
164 #endif
165 MSR_IA32_SYSENTER_CS,
166 MSR_IA32_SYSENTER_ESP,
167 MSR_IA32_SYSENTER_EIP,
168 MSR_CORE_C1_RES,
169 MSR_CORE_C3_RESIDENCY,
170 MSR_CORE_C6_RESIDENCY,
171 MSR_CORE_C7_RESIDENCY,
172 };
173
174 /*
175 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176 * ple_gap: upper bound on the amount of time between two successive
177 * executions of PAUSE in a loop. Also indicate if ple enabled.
178 * According to test, this time is usually smaller than 128 cycles.
179 * ple_window: upper bound on the amount of time a guest is allowed to execute
180 * in a PAUSE loop. Tests indicate that most spinlocks are held for
181 * less than 2^12 cycles
182 * Time is measured based on a counter that runs at the same rate as the TSC,
183 * refer SDM volume 3b section 21.6.13 & 22.1.3.
184 */
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
187
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
190
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
194
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
198
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
202
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
206
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213
214 static const struct {
215 const char *option;
216 bool for_parse;
217 } vmentry_l1d_param[] = {
218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
220 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228
229 /* Control for disabling CPU Fill buffer clear */
230 static bool __read_mostly vmx_fb_clear_ctrl_available;
231
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)232 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
233 {
234 struct page *page;
235 unsigned int i;
236
237 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
238 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
239 return 0;
240 }
241
242 if (!enable_ept) {
243 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
244 return 0;
245 }
246
247 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
248 u64 msr;
249
250 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
251 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
252 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
253 return 0;
254 }
255 }
256
257 /* If set to auto use the default l1tf mitigation method */
258 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
259 switch (l1tf_mitigation) {
260 case L1TF_MITIGATION_OFF:
261 l1tf = VMENTER_L1D_FLUSH_NEVER;
262 break;
263 case L1TF_MITIGATION_FLUSH_NOWARN:
264 case L1TF_MITIGATION_FLUSH:
265 case L1TF_MITIGATION_FLUSH_NOSMT:
266 l1tf = VMENTER_L1D_FLUSH_COND;
267 break;
268 case L1TF_MITIGATION_FULL:
269 case L1TF_MITIGATION_FULL_FORCE:
270 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
271 break;
272 }
273 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
274 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
275 }
276
277 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
278 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
279 /*
280 * This allocation for vmx_l1d_flush_pages is not tied to a VM
281 * lifetime and so should not be charged to a memcg.
282 */
283 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
284 if (!page)
285 return -ENOMEM;
286 vmx_l1d_flush_pages = page_address(page);
287
288 /*
289 * Initialize each page with a different pattern in
290 * order to protect against KSM in the nested
291 * virtualization case.
292 */
293 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
294 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
295 PAGE_SIZE);
296 }
297 }
298
299 l1tf_vmx_mitigation = l1tf;
300
301 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
302 static_branch_enable(&vmx_l1d_should_flush);
303 else
304 static_branch_disable(&vmx_l1d_should_flush);
305
306 if (l1tf == VMENTER_L1D_FLUSH_COND)
307 static_branch_enable(&vmx_l1d_flush_cond);
308 else
309 static_branch_disable(&vmx_l1d_flush_cond);
310 return 0;
311 }
312
vmentry_l1d_flush_parse(const char * s)313 static int vmentry_l1d_flush_parse(const char *s)
314 {
315 unsigned int i;
316
317 if (s) {
318 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
319 if (vmentry_l1d_param[i].for_parse &&
320 sysfs_streq(s, vmentry_l1d_param[i].option))
321 return i;
322 }
323 }
324 return -EINVAL;
325 }
326
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)327 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
328 {
329 int l1tf, ret;
330
331 l1tf = vmentry_l1d_flush_parse(s);
332 if (l1tf < 0)
333 return l1tf;
334
335 if (!boot_cpu_has(X86_BUG_L1TF))
336 return 0;
337
338 /*
339 * Has vmx_init() run already? If not then this is the pre init
340 * parameter parsing. In that case just store the value and let
341 * vmx_init() do the proper setup after enable_ept has been
342 * established.
343 */
344 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
345 vmentry_l1d_flush_param = l1tf;
346 return 0;
347 }
348
349 mutex_lock(&vmx_l1d_flush_mutex);
350 ret = vmx_setup_l1d_flush(l1tf);
351 mutex_unlock(&vmx_l1d_flush_mutex);
352 return ret;
353 }
354
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)355 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
356 {
357 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
358 return sprintf(s, "???\n");
359
360 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
361 }
362
vmx_setup_fb_clear_ctrl(void)363 static void vmx_setup_fb_clear_ctrl(void)
364 {
365 u64 msr;
366
367 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
368 !boot_cpu_has_bug(X86_BUG_MDS) &&
369 !boot_cpu_has_bug(X86_BUG_TAA)) {
370 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
371 if (msr & ARCH_CAP_FB_CLEAR_CTRL)
372 vmx_fb_clear_ctrl_available = true;
373 }
374 }
375
vmx_disable_fb_clear(struct vcpu_vmx * vmx)376 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
377 {
378 u64 msr;
379
380 if (!vmx->disable_fb_clear)
381 return;
382
383 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
384 msr |= FB_CLEAR_DIS;
385 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
386 /* Cache the MSR value to avoid reading it later */
387 vmx->msr_ia32_mcu_opt_ctrl = msr;
388 }
389
vmx_enable_fb_clear(struct vcpu_vmx * vmx)390 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
391 {
392 if (!vmx->disable_fb_clear)
393 return;
394
395 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
396 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
397 }
398
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)399 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
400 {
401 vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
402
403 /*
404 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
405 * at VMEntry. Skip the MSR read/write when a guest has no use case to
406 * execute VERW.
407 */
408 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
409 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
410 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
411 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
412 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
413 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
414 vmx->disable_fb_clear = false;
415 }
416
417 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
418 .set = vmentry_l1d_flush_set,
419 .get = vmentry_l1d_flush_get,
420 };
421 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
422
423 static u32 vmx_segment_access_rights(struct kvm_segment *var);
424 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
425 u32 msr, int type);
426
427 void vmx_vmexit(void);
428
429 #define vmx_insn_failed(fmt...) \
430 do { \
431 WARN_ONCE(1, fmt); \
432 pr_warn_ratelimited(fmt); \
433 } while (0)
434
vmread_error(unsigned long field,bool fault)435 asmlinkage void vmread_error(unsigned long field, bool fault)
436 {
437 if (fault)
438 kvm_spurious_fault();
439 else
440 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
441 }
442
vmwrite_error(unsigned long field,unsigned long value)443 noinline void vmwrite_error(unsigned long field, unsigned long value)
444 {
445 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
446 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
447 }
448
vmclear_error(struct vmcs * vmcs,u64 phys_addr)449 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
450 {
451 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
452 }
453
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)454 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
455 {
456 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
457 }
458
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)459 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
460 {
461 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
462 ext, vpid, gva);
463 }
464
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)465 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
466 {
467 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
468 ext, eptp, gpa);
469 }
470
471 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
472 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
473 /*
474 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
475 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
476 */
477 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
478
479 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
480 static DEFINE_SPINLOCK(vmx_vpid_lock);
481
482 struct vmcs_config vmcs_config;
483 struct vmx_capability vmx_capability;
484
485 #define VMX_SEGMENT_FIELD(seg) \
486 [VCPU_SREG_##seg] = { \
487 .selector = GUEST_##seg##_SELECTOR, \
488 .base = GUEST_##seg##_BASE, \
489 .limit = GUEST_##seg##_LIMIT, \
490 .ar_bytes = GUEST_##seg##_AR_BYTES, \
491 }
492
493 static const struct kvm_vmx_segment_field {
494 unsigned selector;
495 unsigned base;
496 unsigned limit;
497 unsigned ar_bytes;
498 } kvm_vmx_segment_fields[] = {
499 VMX_SEGMENT_FIELD(CS),
500 VMX_SEGMENT_FIELD(DS),
501 VMX_SEGMENT_FIELD(ES),
502 VMX_SEGMENT_FIELD(FS),
503 VMX_SEGMENT_FIELD(GS),
504 VMX_SEGMENT_FIELD(SS),
505 VMX_SEGMENT_FIELD(TR),
506 VMX_SEGMENT_FIELD(LDTR),
507 };
508
vmx_segment_cache_clear(struct vcpu_vmx * vmx)509 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
510 {
511 vmx->segment_cache.bitmask = 0;
512 }
513
514 static unsigned long host_idt_base;
515
516 /*
517 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
518 * will emulate SYSCALL in legacy mode if the vendor string in guest
519 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
520 * support this emulation, IA32_STAR must always be included in
521 * vmx_uret_msrs_list[], even in i386 builds.
522 */
523 static const u32 vmx_uret_msrs_list[] = {
524 #ifdef CONFIG_X86_64
525 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
526 #endif
527 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
528 MSR_IA32_TSX_CTRL,
529 };
530
531 #if IS_ENABLED(CONFIG_HYPERV)
532 static bool __read_mostly enlightened_vmcs = true;
533 module_param(enlightened_vmcs, bool, 0444);
534
535 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
check_ept_pointer_match(struct kvm * kvm)536 static void check_ept_pointer_match(struct kvm *kvm)
537 {
538 struct kvm_vcpu *vcpu;
539 u64 tmp_eptp = INVALID_PAGE;
540 int i;
541
542 kvm_for_each_vcpu(i, vcpu, kvm) {
543 if (!VALID_PAGE(tmp_eptp)) {
544 tmp_eptp = to_vmx(vcpu)->ept_pointer;
545 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
546 to_kvm_vmx(kvm)->ept_pointers_match
547 = EPT_POINTERS_MISMATCH;
548 return;
549 }
550 }
551
552 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
553 }
554
kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list * flush,void * data)555 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
556 void *data)
557 {
558 struct kvm_tlb_range *range = data;
559
560 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
561 range->pages);
562 }
563
__hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_vcpu * vcpu,struct kvm_tlb_range * range)564 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
565 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
566 {
567 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
568
569 /*
570 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
571 * of the base of EPT PML4 table, strip off EPT configuration
572 * information.
573 */
574 if (range)
575 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
576 kvm_fill_hv_flush_list_func, (void *)range);
577 else
578 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
579 }
580
hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_tlb_range * range)581 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
582 struct kvm_tlb_range *range)
583 {
584 struct kvm_vcpu *vcpu;
585 int ret = 0, i;
586
587 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
588
589 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
590 check_ept_pointer_match(kvm);
591
592 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
593 kvm_for_each_vcpu(i, vcpu, kvm) {
594 /* If ept_pointer is invalid pointer, bypass flush request. */
595 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
596 ret |= __hv_remote_flush_tlb_with_range(
597 kvm, vcpu, range);
598 }
599 } else {
600 ret = __hv_remote_flush_tlb_with_range(kvm,
601 kvm_get_vcpu(kvm, 0), range);
602 }
603
604 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
605 return ret;
606 }
hv_remote_flush_tlb(struct kvm * kvm)607 static int hv_remote_flush_tlb(struct kvm *kvm)
608 {
609 return hv_remote_flush_tlb_with_range(kvm, NULL);
610 }
611
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)612 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
613 {
614 struct hv_enlightened_vmcs *evmcs;
615 struct hv_partition_assist_pg **p_hv_pa_pg =
616 &vcpu->kvm->arch.hyperv.hv_pa_pg;
617 /*
618 * Synthetic VM-Exit is not enabled in current code and so All
619 * evmcs in singe VM shares same assist page.
620 */
621 if (!*p_hv_pa_pg)
622 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
623
624 if (!*p_hv_pa_pg)
625 return -ENOMEM;
626
627 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
628
629 evmcs->partition_assist_page =
630 __pa(*p_hv_pa_pg);
631 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
632 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
633
634 return 0;
635 }
636
637 #endif /* IS_ENABLED(CONFIG_HYPERV) */
638
639 /*
640 * Comment's format: document - errata name - stepping - processor name.
641 * Refer from
642 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
643 */
644 static u32 vmx_preemption_cpu_tfms[] = {
645 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
646 0x000206E6,
647 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
648 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
649 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
650 0x00020652,
651 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
652 0x00020655,
653 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
654 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
655 /*
656 * 320767.pdf - AAP86 - B1 -
657 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
658 */
659 0x000106E5,
660 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
661 0x000106A0,
662 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
663 0x000106A1,
664 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
665 0x000106A4,
666 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
667 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
668 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
669 0x000106A5,
670 /* Xeon E3-1220 V2 */
671 0x000306A8,
672 };
673
cpu_has_broken_vmx_preemption_timer(void)674 static inline bool cpu_has_broken_vmx_preemption_timer(void)
675 {
676 u32 eax = cpuid_eax(0x00000001), i;
677
678 /* Clear the reserved bits */
679 eax &= ~(0x3U << 14 | 0xfU << 28);
680 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
681 if (eax == vmx_preemption_cpu_tfms[i])
682 return true;
683
684 return false;
685 }
686
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)687 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
688 {
689 return flexpriority_enabled && lapic_in_kernel(vcpu);
690 }
691
report_flexpriority(void)692 static inline bool report_flexpriority(void)
693 {
694 return flexpriority_enabled;
695 }
696
possible_passthrough_msr_slot(u32 msr)697 static int possible_passthrough_msr_slot(u32 msr)
698 {
699 u32 i;
700
701 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
702 if (vmx_possible_passthrough_msrs[i] == msr)
703 return i;
704
705 return -ENOENT;
706 }
707
is_valid_passthrough_msr(u32 msr)708 static bool is_valid_passthrough_msr(u32 msr)
709 {
710 bool r;
711
712 switch (msr) {
713 case 0x800 ... 0x8ff:
714 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
715 return true;
716 case MSR_IA32_RTIT_STATUS:
717 case MSR_IA32_RTIT_OUTPUT_BASE:
718 case MSR_IA32_RTIT_OUTPUT_MASK:
719 case MSR_IA32_RTIT_CR3_MATCH:
720 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
721 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
722 return true;
723 }
724
725 r = possible_passthrough_msr_slot(msr) != -ENOENT;
726
727 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
728
729 return r;
730 }
731
__vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)732 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
733 {
734 int i;
735
736 for (i = 0; i < vmx->nr_uret_msrs; ++i)
737 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
738 return i;
739 return -1;
740 }
741
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)742 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
743 {
744 int i;
745
746 i = __vmx_find_uret_msr(vmx, msr);
747 if (i >= 0)
748 return &vmx->guest_uret_msrs[i];
749 return NULL;
750 }
751
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)752 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
753 struct vmx_uret_msr *msr, u64 data)
754 {
755 int ret = 0;
756
757 u64 old_msr_data = msr->data;
758 msr->data = data;
759 if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
760 preempt_disable();
761 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
762 preempt_enable();
763 if (ret)
764 msr->data = old_msr_data;
765 }
766 return ret;
767 }
768
769 #ifdef CONFIG_KEXEC_CORE
crash_vmclear_local_loaded_vmcss(void)770 static void crash_vmclear_local_loaded_vmcss(void)
771 {
772 int cpu = raw_smp_processor_id();
773 struct loaded_vmcs *v;
774
775 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
776 loaded_vmcss_on_cpu_link)
777 vmcs_clear(v->vmcs);
778 }
779 #endif /* CONFIG_KEXEC_CORE */
780
__loaded_vmcs_clear(void * arg)781 static void __loaded_vmcs_clear(void *arg)
782 {
783 struct loaded_vmcs *loaded_vmcs = arg;
784 int cpu = raw_smp_processor_id();
785
786 if (loaded_vmcs->cpu != cpu)
787 return; /* vcpu migration can race with cpu offline */
788 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
789 per_cpu(current_vmcs, cpu) = NULL;
790
791 vmcs_clear(loaded_vmcs->vmcs);
792 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
793 vmcs_clear(loaded_vmcs->shadow_vmcs);
794
795 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
796
797 /*
798 * Ensure all writes to loaded_vmcs, including deleting it from its
799 * current percpu list, complete before setting loaded_vmcs->vcpu to
800 * -1, otherwise a different cpu can see vcpu == -1 first and add
801 * loaded_vmcs to its percpu list before it's deleted from this cpu's
802 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
803 */
804 smp_wmb();
805
806 loaded_vmcs->cpu = -1;
807 loaded_vmcs->launched = 0;
808 }
809
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)810 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
811 {
812 int cpu = loaded_vmcs->cpu;
813
814 if (cpu != -1)
815 smp_call_function_single(cpu,
816 __loaded_vmcs_clear, loaded_vmcs, 1);
817 }
818
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)819 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
820 unsigned field)
821 {
822 bool ret;
823 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
824
825 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
826 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
827 vmx->segment_cache.bitmask = 0;
828 }
829 ret = vmx->segment_cache.bitmask & mask;
830 vmx->segment_cache.bitmask |= mask;
831 return ret;
832 }
833
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)834 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
835 {
836 u16 *p = &vmx->segment_cache.seg[seg].selector;
837
838 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
839 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
840 return *p;
841 }
842
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)843 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
844 {
845 ulong *p = &vmx->segment_cache.seg[seg].base;
846
847 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
848 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
849 return *p;
850 }
851
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)852 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
853 {
854 u32 *p = &vmx->segment_cache.seg[seg].limit;
855
856 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
857 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
858 return *p;
859 }
860
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)861 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
862 {
863 u32 *p = &vmx->segment_cache.seg[seg].ar;
864
865 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
866 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
867 return *p;
868 }
869
update_exception_bitmap(struct kvm_vcpu * vcpu)870 void update_exception_bitmap(struct kvm_vcpu *vcpu)
871 {
872 u32 eb;
873
874 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
875 (1u << DB_VECTOR) | (1u << AC_VECTOR);
876 /*
877 * Guest access to VMware backdoor ports could legitimately
878 * trigger #GP because of TSS I/O permission bitmap.
879 * We intercept those #GP and allow access to them anyway
880 * as VMware does.
881 */
882 if (enable_vmware_backdoor)
883 eb |= (1u << GP_VECTOR);
884 if ((vcpu->guest_debug &
885 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
886 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
887 eb |= 1u << BP_VECTOR;
888 if (to_vmx(vcpu)->rmode.vm86_active)
889 eb = ~0;
890 if (!vmx_need_pf_intercept(vcpu))
891 eb &= ~(1u << PF_VECTOR);
892
893 /* When we are running a nested L2 guest and L1 specified for it a
894 * certain exception bitmap, we must trap the same exceptions and pass
895 * them to L1. When running L2, we will only handle the exceptions
896 * specified above if L1 did not want them.
897 */
898 if (is_guest_mode(vcpu))
899 eb |= get_vmcs12(vcpu)->exception_bitmap;
900 else {
901 /*
902 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
903 * between guest and host. In that case we only care about present
904 * faults. For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
905 * prepare_vmcs02_rare.
906 */
907 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
908 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
909 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
910 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
911 }
912
913 vmcs_write32(EXCEPTION_BITMAP, eb);
914 }
915
916 /*
917 * Check if MSR is intercepted for currently loaded MSR bitmap.
918 */
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)919 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
920 {
921 unsigned long *msr_bitmap;
922 int f = sizeof(unsigned long);
923
924 if (!cpu_has_vmx_msr_bitmap())
925 return true;
926
927 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
928
929 if (msr <= 0x1fff) {
930 return !!test_bit(msr, msr_bitmap + 0x800 / f);
931 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
932 msr &= 0x1fff;
933 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
934 }
935
936 return true;
937 }
938
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)939 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
940 {
941 unsigned int flags = 0;
942
943 if (vmx->loaded_vmcs->launched)
944 flags |= VMX_RUN_VMRESUME;
945
946 /*
947 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
948 * to change it directly without causing a vmexit. In that case read
949 * it after vmexit and store it in vmx->spec_ctrl.
950 */
951 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
952 flags |= VMX_RUN_SAVE_SPEC_CTRL;
953
954 return flags;
955 }
956
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)957 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
958 unsigned long entry, unsigned long exit)
959 {
960 vm_entry_controls_clearbit(vmx, entry);
961 vm_exit_controls_clearbit(vmx, exit);
962 }
963
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)964 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
965 {
966 unsigned int i;
967
968 for (i = 0; i < m->nr; ++i) {
969 if (m->val[i].index == msr)
970 return i;
971 }
972 return -ENOENT;
973 }
974
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)975 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
976 {
977 int i;
978 struct msr_autoload *m = &vmx->msr_autoload;
979
980 switch (msr) {
981 case MSR_EFER:
982 if (cpu_has_load_ia32_efer()) {
983 clear_atomic_switch_msr_special(vmx,
984 VM_ENTRY_LOAD_IA32_EFER,
985 VM_EXIT_LOAD_IA32_EFER);
986 return;
987 }
988 break;
989 case MSR_CORE_PERF_GLOBAL_CTRL:
990 if (cpu_has_load_perf_global_ctrl()) {
991 clear_atomic_switch_msr_special(vmx,
992 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
993 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
994 return;
995 }
996 break;
997 }
998 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
999 if (i < 0)
1000 goto skip_guest;
1001 --m->guest.nr;
1002 m->guest.val[i] = m->guest.val[m->guest.nr];
1003 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1004
1005 skip_guest:
1006 i = vmx_find_loadstore_msr_slot(&m->host, msr);
1007 if (i < 0)
1008 return;
1009
1010 --m->host.nr;
1011 m->host.val[i] = m->host.val[m->host.nr];
1012 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1013 }
1014
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1015 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1016 unsigned long entry, unsigned long exit,
1017 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1018 u64 guest_val, u64 host_val)
1019 {
1020 vmcs_write64(guest_val_vmcs, guest_val);
1021 if (host_val_vmcs != HOST_IA32_EFER)
1022 vmcs_write64(host_val_vmcs, host_val);
1023 vm_entry_controls_setbit(vmx, entry);
1024 vm_exit_controls_setbit(vmx, exit);
1025 }
1026
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1027 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1028 u64 guest_val, u64 host_val, bool entry_only)
1029 {
1030 int i, j = 0;
1031 struct msr_autoload *m = &vmx->msr_autoload;
1032
1033 switch (msr) {
1034 case MSR_EFER:
1035 if (cpu_has_load_ia32_efer()) {
1036 add_atomic_switch_msr_special(vmx,
1037 VM_ENTRY_LOAD_IA32_EFER,
1038 VM_EXIT_LOAD_IA32_EFER,
1039 GUEST_IA32_EFER,
1040 HOST_IA32_EFER,
1041 guest_val, host_val);
1042 return;
1043 }
1044 break;
1045 case MSR_CORE_PERF_GLOBAL_CTRL:
1046 if (cpu_has_load_perf_global_ctrl()) {
1047 add_atomic_switch_msr_special(vmx,
1048 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1049 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1050 GUEST_IA32_PERF_GLOBAL_CTRL,
1051 HOST_IA32_PERF_GLOBAL_CTRL,
1052 guest_val, host_val);
1053 return;
1054 }
1055 break;
1056 case MSR_IA32_PEBS_ENABLE:
1057 /* PEBS needs a quiescent period after being disabled (to write
1058 * a record). Disabling PEBS through VMX MSR swapping doesn't
1059 * provide that period, so a CPU could write host's record into
1060 * guest's memory.
1061 */
1062 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1063 }
1064
1065 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1066 if (!entry_only)
1067 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1068
1069 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1070 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1071 printk_once(KERN_WARNING "Not enough msr switch entries. "
1072 "Can't add msr %x\n", msr);
1073 return;
1074 }
1075 if (i < 0) {
1076 i = m->guest.nr++;
1077 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1078 }
1079 m->guest.val[i].index = msr;
1080 m->guest.val[i].value = guest_val;
1081
1082 if (entry_only)
1083 return;
1084
1085 if (j < 0) {
1086 j = m->host.nr++;
1087 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1088 }
1089 m->host.val[j].index = msr;
1090 m->host.val[j].value = host_val;
1091 }
1092
update_transition_efer(struct vcpu_vmx * vmx)1093 static bool update_transition_efer(struct vcpu_vmx *vmx)
1094 {
1095 u64 guest_efer = vmx->vcpu.arch.efer;
1096 u64 ignore_bits = 0;
1097 int i;
1098
1099 /* Shadow paging assumes NX to be available. */
1100 if (!enable_ept)
1101 guest_efer |= EFER_NX;
1102
1103 /*
1104 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1105 */
1106 ignore_bits |= EFER_SCE;
1107 #ifdef CONFIG_X86_64
1108 ignore_bits |= EFER_LMA | EFER_LME;
1109 /* SCE is meaningful only in long mode on Intel */
1110 if (guest_efer & EFER_LMA)
1111 ignore_bits &= ~(u64)EFER_SCE;
1112 #endif
1113
1114 /*
1115 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1116 * On CPUs that support "load IA32_EFER", always switch EFER
1117 * atomically, since it's faster than switching it manually.
1118 */
1119 if (cpu_has_load_ia32_efer() ||
1120 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1121 if (!(guest_efer & EFER_LMA))
1122 guest_efer &= ~EFER_LME;
1123 if (guest_efer != host_efer)
1124 add_atomic_switch_msr(vmx, MSR_EFER,
1125 guest_efer, host_efer, false);
1126 else
1127 clear_atomic_switch_msr(vmx, MSR_EFER);
1128 return false;
1129 }
1130
1131 i = __vmx_find_uret_msr(vmx, MSR_EFER);
1132 if (i < 0)
1133 return false;
1134
1135 clear_atomic_switch_msr(vmx, MSR_EFER);
1136
1137 guest_efer &= ~ignore_bits;
1138 guest_efer |= host_efer & ignore_bits;
1139
1140 vmx->guest_uret_msrs[i].data = guest_efer;
1141 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1142
1143 return true;
1144 }
1145
1146 #ifdef CONFIG_X86_32
1147 /*
1148 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1149 * VMCS rather than the segment table. KVM uses this helper to figure
1150 * out the current bases to poke them into the VMCS before entry.
1151 */
segment_base(u16 selector)1152 static unsigned long segment_base(u16 selector)
1153 {
1154 struct desc_struct *table;
1155 unsigned long v;
1156
1157 if (!(selector & ~SEGMENT_RPL_MASK))
1158 return 0;
1159
1160 table = get_current_gdt_ro();
1161
1162 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1163 u16 ldt_selector = kvm_read_ldt();
1164
1165 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1166 return 0;
1167
1168 table = (struct desc_struct *)segment_base(ldt_selector);
1169 }
1170 v = get_desc_base(&table[selector >> 3]);
1171 return v;
1172 }
1173 #endif
1174
pt_can_write_msr(struct vcpu_vmx * vmx)1175 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1176 {
1177 return vmx_pt_mode_is_host_guest() &&
1178 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1179 }
1180
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1181 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1182 {
1183 /* The base must be 128-byte aligned and a legal physical address. */
1184 return !kvm_vcpu_is_illegal_gpa(vcpu, base) && !(base & 0x7f);
1185 }
1186
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1187 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1188 {
1189 u32 i;
1190
1191 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1192 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1193 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1194 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1195 for (i = 0; i < addr_range; i++) {
1196 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1197 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1198 }
1199 }
1200
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1201 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1202 {
1203 u32 i;
1204
1205 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1206 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1207 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1208 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1209 for (i = 0; i < addr_range; i++) {
1210 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1211 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1212 }
1213 }
1214
pt_guest_enter(struct vcpu_vmx * vmx)1215 static void pt_guest_enter(struct vcpu_vmx *vmx)
1216 {
1217 if (vmx_pt_mode_is_system())
1218 return;
1219
1220 /*
1221 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1222 * Save host state before VM entry.
1223 */
1224 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1225 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1226 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1227 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1228 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1229 }
1230 }
1231
pt_guest_exit(struct vcpu_vmx * vmx)1232 static void pt_guest_exit(struct vcpu_vmx *vmx)
1233 {
1234 if (vmx_pt_mode_is_system())
1235 return;
1236
1237 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1238 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1239 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1240 }
1241
1242 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1243 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1244 }
1245
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1246 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1247 unsigned long fs_base, unsigned long gs_base)
1248 {
1249 if (unlikely(fs_sel != host->fs_sel)) {
1250 if (!(fs_sel & 7))
1251 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1252 else
1253 vmcs_write16(HOST_FS_SELECTOR, 0);
1254 host->fs_sel = fs_sel;
1255 }
1256 if (unlikely(gs_sel != host->gs_sel)) {
1257 if (!(gs_sel & 7))
1258 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1259 else
1260 vmcs_write16(HOST_GS_SELECTOR, 0);
1261 host->gs_sel = gs_sel;
1262 }
1263 if (unlikely(fs_base != host->fs_base)) {
1264 vmcs_writel(HOST_FS_BASE, fs_base);
1265 host->fs_base = fs_base;
1266 }
1267 if (unlikely(gs_base != host->gs_base)) {
1268 vmcs_writel(HOST_GS_BASE, gs_base);
1269 host->gs_base = gs_base;
1270 }
1271 }
1272
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1273 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1274 {
1275 struct vcpu_vmx *vmx = to_vmx(vcpu);
1276 struct vmcs_host_state *host_state;
1277 #ifdef CONFIG_X86_64
1278 int cpu = raw_smp_processor_id();
1279 #endif
1280 unsigned long fs_base, gs_base;
1281 u16 fs_sel, gs_sel;
1282 int i;
1283
1284 vmx->req_immediate_exit = false;
1285
1286 /*
1287 * Note that guest MSRs to be saved/restored can also be changed
1288 * when guest state is loaded. This happens when guest transitions
1289 * to/from long-mode by setting MSR_EFER.LMA.
1290 */
1291 if (!vmx->guest_uret_msrs_loaded) {
1292 vmx->guest_uret_msrs_loaded = true;
1293 for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
1294 kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
1295 vmx->guest_uret_msrs[i].data,
1296 vmx->guest_uret_msrs[i].mask);
1297
1298 }
1299
1300 if (vmx->nested.need_vmcs12_to_shadow_sync)
1301 nested_sync_vmcs12_to_shadow(vcpu);
1302
1303 if (vmx->guest_state_loaded)
1304 return;
1305
1306 host_state = &vmx->loaded_vmcs->host_state;
1307
1308 /*
1309 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1310 * allow segment selectors with cpl > 0 or ti == 1.
1311 */
1312 host_state->ldt_sel = kvm_read_ldt();
1313
1314 #ifdef CONFIG_X86_64
1315 savesegment(ds, host_state->ds_sel);
1316 savesegment(es, host_state->es_sel);
1317
1318 gs_base = cpu_kernelmode_gs_base(cpu);
1319 if (likely(is_64bit_mm(current->mm))) {
1320 current_save_fsgs();
1321 fs_sel = current->thread.fsindex;
1322 gs_sel = current->thread.gsindex;
1323 fs_base = current->thread.fsbase;
1324 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1325 } else {
1326 savesegment(fs, fs_sel);
1327 savesegment(gs, gs_sel);
1328 fs_base = read_msr(MSR_FS_BASE);
1329 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1330 }
1331
1332 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1333 #else
1334 savesegment(fs, fs_sel);
1335 savesegment(gs, gs_sel);
1336 fs_base = segment_base(fs_sel);
1337 gs_base = segment_base(gs_sel);
1338 #endif
1339
1340 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1341 vmx->guest_state_loaded = true;
1342 }
1343
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1344 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1345 {
1346 struct vmcs_host_state *host_state;
1347
1348 if (!vmx->guest_state_loaded)
1349 return;
1350
1351 host_state = &vmx->loaded_vmcs->host_state;
1352
1353 ++vmx->vcpu.stat.host_state_reload;
1354
1355 #ifdef CONFIG_X86_64
1356 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1357 #endif
1358 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1359 kvm_load_ldt(host_state->ldt_sel);
1360 #ifdef CONFIG_X86_64
1361 load_gs_index(host_state->gs_sel);
1362 #else
1363 loadsegment(gs, host_state->gs_sel);
1364 #endif
1365 }
1366 if (host_state->fs_sel & 7)
1367 loadsegment(fs, host_state->fs_sel);
1368 #ifdef CONFIG_X86_64
1369 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1370 loadsegment(ds, host_state->ds_sel);
1371 loadsegment(es, host_state->es_sel);
1372 }
1373 #endif
1374 invalidate_tss_limit();
1375 #ifdef CONFIG_X86_64
1376 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1377 #endif
1378 load_fixmap_gdt(raw_smp_processor_id());
1379 vmx->guest_state_loaded = false;
1380 vmx->guest_uret_msrs_loaded = false;
1381 }
1382
1383 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1384 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1385 {
1386 preempt_disable();
1387 if (vmx->guest_state_loaded)
1388 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1389 preempt_enable();
1390 return vmx->msr_guest_kernel_gs_base;
1391 }
1392
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1393 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1394 {
1395 preempt_disable();
1396 if (vmx->guest_state_loaded)
1397 wrmsrl(MSR_KERNEL_GS_BASE, data);
1398 preempt_enable();
1399 vmx->msr_guest_kernel_gs_base = data;
1400 }
1401 #endif
1402
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1403 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1404 struct loaded_vmcs *buddy)
1405 {
1406 struct vcpu_vmx *vmx = to_vmx(vcpu);
1407 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1408 struct vmcs *prev;
1409
1410 if (!already_loaded) {
1411 loaded_vmcs_clear(vmx->loaded_vmcs);
1412 local_irq_disable();
1413
1414 /*
1415 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1416 * this cpu's percpu list, otherwise it may not yet be deleted
1417 * from its previous cpu's percpu list. Pairs with the
1418 * smb_wmb() in __loaded_vmcs_clear().
1419 */
1420 smp_rmb();
1421
1422 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1423 &per_cpu(loaded_vmcss_on_cpu, cpu));
1424 local_irq_enable();
1425 }
1426
1427 prev = per_cpu(current_vmcs, cpu);
1428 if (prev != vmx->loaded_vmcs->vmcs) {
1429 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1430 vmcs_load(vmx->loaded_vmcs->vmcs);
1431
1432 /*
1433 * No indirect branch prediction barrier needed when switching
1434 * the active VMCS within a vCPU, unless IBRS is advertised to
1435 * the vCPU. To minimize the number of IBPBs executed, KVM
1436 * performs IBPB on nested VM-Exit (a single nested transition
1437 * may switch the active VMCS multiple times).
1438 */
1439 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1440 indirect_branch_prediction_barrier();
1441 }
1442
1443 if (!already_loaded) {
1444 void *gdt = get_current_gdt_ro();
1445 unsigned long sysenter_esp;
1446
1447 /*
1448 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1449 * TLB entries from its previous association with the vCPU.
1450 */
1451 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1452
1453 /*
1454 * Linux uses per-cpu TSS and GDT, so set these when switching
1455 * processors. See 22.2.4.
1456 */
1457 vmcs_writel(HOST_TR_BASE,
1458 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1459 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1460
1461 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1462 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1463
1464 vmx->loaded_vmcs->cpu = cpu;
1465 }
1466
1467 /* Setup TSC multiplier */
1468 if (kvm_has_tsc_control &&
1469 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1470 decache_tsc_multiplier(vmx);
1471 }
1472
1473 /*
1474 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1475 * vcpu mutex is already taken.
1476 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1477 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1478 {
1479 struct vcpu_vmx *vmx = to_vmx(vcpu);
1480
1481 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1482
1483 vmx_vcpu_pi_load(vcpu, cpu);
1484
1485 vmx->host_debugctlmsr = get_debugctlmsr();
1486 }
1487
vmx_vcpu_put(struct kvm_vcpu * vcpu)1488 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1489 {
1490 vmx_vcpu_pi_put(vcpu);
1491
1492 vmx_prepare_switch_to_host(to_vmx(vcpu));
1493 }
1494
emulation_required(struct kvm_vcpu * vcpu)1495 static bool emulation_required(struct kvm_vcpu *vcpu)
1496 {
1497 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1498 }
1499
vmx_get_rflags(struct kvm_vcpu * vcpu)1500 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1501 {
1502 struct vcpu_vmx *vmx = to_vmx(vcpu);
1503 unsigned long rflags, save_rflags;
1504
1505 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1506 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1507 rflags = vmcs_readl(GUEST_RFLAGS);
1508 if (vmx->rmode.vm86_active) {
1509 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1510 save_rflags = vmx->rmode.save_rflags;
1511 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1512 }
1513 vmx->rflags = rflags;
1514 }
1515 return vmx->rflags;
1516 }
1517
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1518 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1519 {
1520 struct vcpu_vmx *vmx = to_vmx(vcpu);
1521 unsigned long old_rflags;
1522
1523 if (is_unrestricted_guest(vcpu)) {
1524 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1525 vmx->rflags = rflags;
1526 vmcs_writel(GUEST_RFLAGS, rflags);
1527 return;
1528 }
1529
1530 old_rflags = vmx_get_rflags(vcpu);
1531 vmx->rflags = rflags;
1532 if (vmx->rmode.vm86_active) {
1533 vmx->rmode.save_rflags = rflags;
1534 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1535 }
1536 vmcs_writel(GUEST_RFLAGS, rflags);
1537
1538 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1539 vmx->emulation_required = emulation_required(vcpu);
1540 }
1541
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1542 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1543 {
1544 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1545 int ret = 0;
1546
1547 if (interruptibility & GUEST_INTR_STATE_STI)
1548 ret |= KVM_X86_SHADOW_INT_STI;
1549 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1550 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1551
1552 return ret;
1553 }
1554
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1555 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1556 {
1557 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1558 u32 interruptibility = interruptibility_old;
1559
1560 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1561
1562 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1563 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1564 else if (mask & KVM_X86_SHADOW_INT_STI)
1565 interruptibility |= GUEST_INTR_STATE_STI;
1566
1567 if ((interruptibility != interruptibility_old))
1568 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1569 }
1570
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1571 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1572 {
1573 struct vcpu_vmx *vmx = to_vmx(vcpu);
1574 unsigned long value;
1575
1576 /*
1577 * Any MSR write that attempts to change bits marked reserved will
1578 * case a #GP fault.
1579 */
1580 if (data & vmx->pt_desc.ctl_bitmask)
1581 return 1;
1582
1583 /*
1584 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1585 * result in a #GP unless the same write also clears TraceEn.
1586 */
1587 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1588 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1589 return 1;
1590
1591 /*
1592 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1593 * and FabricEn would cause #GP, if
1594 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1595 */
1596 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1597 !(data & RTIT_CTL_FABRIC_EN) &&
1598 !intel_pt_validate_cap(vmx->pt_desc.caps,
1599 PT_CAP_single_range_output))
1600 return 1;
1601
1602 /*
1603 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1604 * utilize encodings marked reserved will casue a #GP fault.
1605 */
1606 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1607 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1608 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1609 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1610 return 1;
1611 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1612 PT_CAP_cycle_thresholds);
1613 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1614 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1615 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1616 return 1;
1617 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1618 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1619 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1620 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1621 return 1;
1622
1623 /*
1624 * If ADDRx_CFG is reserved or the encodings is >2 will
1625 * cause a #GP fault.
1626 */
1627 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1628 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1629 return 1;
1630 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1631 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1632 return 1;
1633 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1634 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1635 return 1;
1636 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1637 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1638 return 1;
1639
1640 return 0;
1641 }
1642
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,void * insn,int insn_len)1643 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1644 {
1645 return true;
1646 }
1647
skip_emulated_instruction(struct kvm_vcpu * vcpu)1648 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1649 {
1650 unsigned long rip, orig_rip;
1651
1652 /*
1653 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1654 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1655 * set when EPT misconfig occurs. In practice, real hardware updates
1656 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1657 * (namely Hyper-V) don't set it due to it being undefined behavior,
1658 * i.e. we end up advancing IP with some random value.
1659 */
1660 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1661 to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1662 orig_rip = kvm_rip_read(vcpu);
1663 rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1664 #ifdef CONFIG_X86_64
1665 /*
1666 * We need to mask out the high 32 bits of RIP if not in 64-bit
1667 * mode, but just finding out that we are in 64-bit mode is
1668 * quite expensive. Only do it if there was a carry.
1669 */
1670 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1671 rip = (u32)rip;
1672 #endif
1673 kvm_rip_write(vcpu, rip);
1674 } else {
1675 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1676 return 0;
1677 }
1678
1679 /* skipping an emulated instruction also counts */
1680 vmx_set_interrupt_shadow(vcpu, 0);
1681
1682 return 1;
1683 }
1684
1685 /*
1686 * Recognizes a pending MTF VM-exit and records the nested state for later
1687 * delivery.
1688 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1689 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1690 {
1691 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1692 struct vcpu_vmx *vmx = to_vmx(vcpu);
1693
1694 if (!is_guest_mode(vcpu))
1695 return;
1696
1697 /*
1698 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1699 * T-bit traps. As instruction emulation is completed (i.e. at the
1700 * instruction boundary), any #DB exception pending delivery must be a
1701 * debug-trap. Record the pending MTF state to be delivered in
1702 * vmx_check_nested_events().
1703 */
1704 if (nested_cpu_has_mtf(vmcs12) &&
1705 (!vcpu->arch.exception.pending ||
1706 vcpu->arch.exception.nr == DB_VECTOR))
1707 vmx->nested.mtf_pending = true;
1708 else
1709 vmx->nested.mtf_pending = false;
1710 }
1711
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1712 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1713 {
1714 vmx_update_emulated_instruction(vcpu);
1715 return skip_emulated_instruction(vcpu);
1716 }
1717
vmx_clear_hlt(struct kvm_vcpu * vcpu)1718 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1719 {
1720 /*
1721 * Ensure that we clear the HLT state in the VMCS. We don't need to
1722 * explicitly skip the instruction because if the HLT state is set,
1723 * then the instruction is already executing and RIP has already been
1724 * advanced.
1725 */
1726 if (kvm_hlt_in_guest(vcpu->kvm) &&
1727 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1728 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1729 }
1730
vmx_queue_exception(struct kvm_vcpu * vcpu)1731 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1732 {
1733 struct vcpu_vmx *vmx = to_vmx(vcpu);
1734 unsigned nr = vcpu->arch.exception.nr;
1735 bool has_error_code = vcpu->arch.exception.has_error_code;
1736 u32 error_code = vcpu->arch.exception.error_code;
1737 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1738
1739 kvm_deliver_exception_payload(vcpu);
1740
1741 if (has_error_code) {
1742 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1743 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1744 }
1745
1746 if (vmx->rmode.vm86_active) {
1747 int inc_eip = 0;
1748 if (kvm_exception_is_soft(nr))
1749 inc_eip = vcpu->arch.event_exit_inst_len;
1750 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1751 return;
1752 }
1753
1754 WARN_ON_ONCE(vmx->emulation_required);
1755
1756 if (kvm_exception_is_soft(nr)) {
1757 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1758 vmx->vcpu.arch.event_exit_inst_len);
1759 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1760 } else
1761 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1762
1763 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1764
1765 vmx_clear_hlt(vcpu);
1766 }
1767
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr)1768 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
1769 {
1770 struct vmx_uret_msr tmp;
1771 int from, to;
1772
1773 from = __vmx_find_uret_msr(vmx, msr);
1774 if (from < 0)
1775 return;
1776 to = vmx->nr_active_uret_msrs++;
1777
1778 tmp = vmx->guest_uret_msrs[to];
1779 vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
1780 vmx->guest_uret_msrs[from] = tmp;
1781 }
1782
1783 /*
1784 * Set up the vmcs to automatically save and restore system
1785 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1786 * mode, as fiddling with msrs is very expensive.
1787 */
setup_msrs(struct vcpu_vmx * vmx)1788 static void setup_msrs(struct vcpu_vmx *vmx)
1789 {
1790 vmx->guest_uret_msrs_loaded = false;
1791 vmx->nr_active_uret_msrs = 0;
1792 #ifdef CONFIG_X86_64
1793 /*
1794 * The SYSCALL MSRs are only needed on long mode guests, and only
1795 * when EFER.SCE is set.
1796 */
1797 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1798 vmx_setup_uret_msr(vmx, MSR_STAR);
1799 vmx_setup_uret_msr(vmx, MSR_LSTAR);
1800 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
1801 }
1802 #endif
1803 if (update_transition_efer(vmx))
1804 vmx_setup_uret_msr(vmx, MSR_EFER);
1805
1806 if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1807 vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
1808
1809 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
1810
1811 if (cpu_has_vmx_msr_bitmap())
1812 vmx_update_msr_bitmap(&vmx->vcpu);
1813 }
1814
vmx_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1815 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1816 {
1817 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1818 u64 g_tsc_offset = 0;
1819
1820 /*
1821 * We're here if L1 chose not to trap WRMSR to TSC. According
1822 * to the spec, this should set L1's TSC; The offset that L1
1823 * set for L2 remains unchanged, and still needs to be added
1824 * to the newly set TSC to get L2's TSC.
1825 */
1826 if (is_guest_mode(vcpu) &&
1827 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1828 g_tsc_offset = vmcs12->tsc_offset;
1829
1830 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1831 vcpu->arch.tsc_offset - g_tsc_offset,
1832 offset);
1833 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1834 return offset + g_tsc_offset;
1835 }
1836
1837 /*
1838 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1839 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1840 * all guests if the "nested" module option is off, and can also be disabled
1841 * for a single guest by disabling its VMX cpuid bit.
1842 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1843 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1844 {
1845 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1846 }
1847
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1848 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1849 uint64_t val)
1850 {
1851 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1852
1853 return !(val & ~valid_bits);
1854 }
1855
vmx_get_msr_feature(struct kvm_msr_entry * msr)1856 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1857 {
1858 switch (msr->index) {
1859 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1860 if (!nested)
1861 return 1;
1862 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1863 case MSR_IA32_PERF_CAPABILITIES:
1864 msr->data = vmx_get_perf_capabilities();
1865 return 0;
1866 default:
1867 return KVM_MSR_RET_INVALID;
1868 }
1869 }
1870
1871 /*
1872 * Reads an msr value (of 'msr_index') into 'pdata'.
1873 * Returns 0 on success, non-0 otherwise.
1874 * Assumes vcpu_load() was already called.
1875 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1876 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1877 {
1878 struct vcpu_vmx *vmx = to_vmx(vcpu);
1879 struct vmx_uret_msr *msr;
1880 u32 index;
1881
1882 switch (msr_info->index) {
1883 #ifdef CONFIG_X86_64
1884 case MSR_FS_BASE:
1885 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1886 break;
1887 case MSR_GS_BASE:
1888 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1889 break;
1890 case MSR_KERNEL_GS_BASE:
1891 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1892 break;
1893 #endif
1894 case MSR_EFER:
1895 return kvm_get_msr_common(vcpu, msr_info);
1896 case MSR_IA32_TSX_CTRL:
1897 if (!msr_info->host_initiated &&
1898 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1899 return 1;
1900 goto find_uret_msr;
1901 case MSR_IA32_UMWAIT_CONTROL:
1902 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1903 return 1;
1904
1905 msr_info->data = vmx->msr_ia32_umwait_control;
1906 break;
1907 case MSR_IA32_SPEC_CTRL:
1908 if (!msr_info->host_initiated &&
1909 !guest_has_spec_ctrl_msr(vcpu))
1910 return 1;
1911
1912 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1913 break;
1914 case MSR_IA32_SYSENTER_CS:
1915 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1916 break;
1917 case MSR_IA32_SYSENTER_EIP:
1918 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1919 break;
1920 case MSR_IA32_SYSENTER_ESP:
1921 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1922 break;
1923 case MSR_IA32_BNDCFGS:
1924 if (!kvm_mpx_supported() ||
1925 (!msr_info->host_initiated &&
1926 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1927 return 1;
1928 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1929 break;
1930 case MSR_IA32_MCG_EXT_CTL:
1931 if (!msr_info->host_initiated &&
1932 !(vmx->msr_ia32_feature_control &
1933 FEAT_CTL_LMCE_ENABLED))
1934 return 1;
1935 msr_info->data = vcpu->arch.mcg_ext_ctl;
1936 break;
1937 case MSR_IA32_FEAT_CTL:
1938 msr_info->data = vmx->msr_ia32_feature_control;
1939 break;
1940 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1941 if (!nested_vmx_allowed(vcpu))
1942 return 1;
1943 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1944 &msr_info->data))
1945 return 1;
1946 /*
1947 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1948 * instead of just ignoring the features, different Hyper-V
1949 * versions are either trying to use them and fail or do some
1950 * sanity checking and refuse to boot. Filter all unsupported
1951 * features out.
1952 */
1953 if (!msr_info->host_initiated &&
1954 vmx->nested.enlightened_vmcs_enabled)
1955 nested_evmcs_filter_control_msr(msr_info->index,
1956 &msr_info->data);
1957 break;
1958 case MSR_IA32_RTIT_CTL:
1959 if (!vmx_pt_mode_is_host_guest())
1960 return 1;
1961 msr_info->data = vmx->pt_desc.guest.ctl;
1962 break;
1963 case MSR_IA32_RTIT_STATUS:
1964 if (!vmx_pt_mode_is_host_guest())
1965 return 1;
1966 msr_info->data = vmx->pt_desc.guest.status;
1967 break;
1968 case MSR_IA32_RTIT_CR3_MATCH:
1969 if (!vmx_pt_mode_is_host_guest() ||
1970 !intel_pt_validate_cap(vmx->pt_desc.caps,
1971 PT_CAP_cr3_filtering))
1972 return 1;
1973 msr_info->data = vmx->pt_desc.guest.cr3_match;
1974 break;
1975 case MSR_IA32_RTIT_OUTPUT_BASE:
1976 if (!vmx_pt_mode_is_host_guest() ||
1977 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1978 PT_CAP_topa_output) &&
1979 !intel_pt_validate_cap(vmx->pt_desc.caps,
1980 PT_CAP_single_range_output)))
1981 return 1;
1982 msr_info->data = vmx->pt_desc.guest.output_base;
1983 break;
1984 case MSR_IA32_RTIT_OUTPUT_MASK:
1985 if (!vmx_pt_mode_is_host_guest() ||
1986 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1987 PT_CAP_topa_output) &&
1988 !intel_pt_validate_cap(vmx->pt_desc.caps,
1989 PT_CAP_single_range_output)))
1990 return 1;
1991 msr_info->data = vmx->pt_desc.guest.output_mask;
1992 break;
1993 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1994 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1995 if (!vmx_pt_mode_is_host_guest() ||
1996 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1997 PT_CAP_num_address_ranges)))
1998 return 1;
1999 if (index % 2)
2000 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2001 else
2002 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2003 break;
2004 case MSR_TSC_AUX:
2005 if (!msr_info->host_initiated &&
2006 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2007 return 1;
2008 goto find_uret_msr;
2009 default:
2010 find_uret_msr:
2011 msr = vmx_find_uret_msr(vmx, msr_info->index);
2012 if (msr) {
2013 msr_info->data = msr->data;
2014 break;
2015 }
2016 return kvm_get_msr_common(vcpu, msr_info);
2017 }
2018
2019 return 0;
2020 }
2021
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2022 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2023 u64 data)
2024 {
2025 #ifdef CONFIG_X86_64
2026 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2027 return (u32)data;
2028 #endif
2029 return (unsigned long)data;
2030 }
2031
2032 /*
2033 * Writes msr value into the appropriate "register".
2034 * Returns 0 on success, non-0 otherwise.
2035 * Assumes vcpu_load() was already called.
2036 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2037 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2038 {
2039 struct vcpu_vmx *vmx = to_vmx(vcpu);
2040 struct vmx_uret_msr *msr;
2041 int ret = 0;
2042 u32 msr_index = msr_info->index;
2043 u64 data = msr_info->data;
2044 u32 index;
2045
2046 switch (msr_index) {
2047 case MSR_EFER:
2048 ret = kvm_set_msr_common(vcpu, msr_info);
2049 break;
2050 #ifdef CONFIG_X86_64
2051 case MSR_FS_BASE:
2052 vmx_segment_cache_clear(vmx);
2053 vmcs_writel(GUEST_FS_BASE, data);
2054 break;
2055 case MSR_GS_BASE:
2056 vmx_segment_cache_clear(vmx);
2057 vmcs_writel(GUEST_GS_BASE, data);
2058 break;
2059 case MSR_KERNEL_GS_BASE:
2060 vmx_write_guest_kernel_gs_base(vmx, data);
2061 break;
2062 #endif
2063 case MSR_IA32_SYSENTER_CS:
2064 if (is_guest_mode(vcpu))
2065 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2066 vmcs_write32(GUEST_SYSENTER_CS, data);
2067 break;
2068 case MSR_IA32_SYSENTER_EIP:
2069 if (is_guest_mode(vcpu)) {
2070 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2071 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2072 }
2073 vmcs_writel(GUEST_SYSENTER_EIP, data);
2074 break;
2075 case MSR_IA32_SYSENTER_ESP:
2076 if (is_guest_mode(vcpu)) {
2077 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2078 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2079 }
2080 vmcs_writel(GUEST_SYSENTER_ESP, data);
2081 break;
2082 case MSR_IA32_DEBUGCTLMSR:
2083 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2084 VM_EXIT_SAVE_DEBUG_CONTROLS)
2085 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2086
2087 ret = kvm_set_msr_common(vcpu, msr_info);
2088 break;
2089
2090 case MSR_IA32_BNDCFGS:
2091 if (!kvm_mpx_supported() ||
2092 (!msr_info->host_initiated &&
2093 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2094 return 1;
2095 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2096 (data & MSR_IA32_BNDCFGS_RSVD))
2097 return 1;
2098 vmcs_write64(GUEST_BNDCFGS, data);
2099 break;
2100 case MSR_IA32_UMWAIT_CONTROL:
2101 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2102 return 1;
2103
2104 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2105 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2106 return 1;
2107
2108 vmx->msr_ia32_umwait_control = data;
2109 break;
2110 case MSR_IA32_SPEC_CTRL:
2111 if (!msr_info->host_initiated &&
2112 !guest_has_spec_ctrl_msr(vcpu))
2113 return 1;
2114
2115 if (kvm_spec_ctrl_test_value(data))
2116 return 1;
2117
2118 vmx->spec_ctrl = data;
2119 if (!data)
2120 break;
2121
2122 /*
2123 * For non-nested:
2124 * When it's written (to non-zero) for the first time, pass
2125 * it through.
2126 *
2127 * For nested:
2128 * The handling of the MSR bitmap for L2 guests is done in
2129 * nested_vmx_prepare_msr_bitmap. We should not touch the
2130 * vmcs02.msr_bitmap here since it gets completely overwritten
2131 * in the merging. We update the vmcs01 here for L1 as well
2132 * since it will end up touching the MSR anyway now.
2133 */
2134 vmx_disable_intercept_for_msr(vcpu,
2135 MSR_IA32_SPEC_CTRL,
2136 MSR_TYPE_RW);
2137 break;
2138 case MSR_IA32_TSX_CTRL:
2139 if (!msr_info->host_initiated &&
2140 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2141 return 1;
2142 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2143 return 1;
2144 goto find_uret_msr;
2145 case MSR_IA32_PRED_CMD:
2146 if (!msr_info->host_initiated &&
2147 !guest_has_pred_cmd_msr(vcpu))
2148 return 1;
2149
2150 if (data & ~PRED_CMD_IBPB)
2151 return 1;
2152 if (!boot_cpu_has(X86_FEATURE_IBPB))
2153 return 1;
2154 if (!data)
2155 break;
2156
2157 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2158
2159 /*
2160 * For non-nested:
2161 * When it's written (to non-zero) for the first time, pass
2162 * it through.
2163 *
2164 * For nested:
2165 * The handling of the MSR bitmap for L2 guests is done in
2166 * nested_vmx_prepare_msr_bitmap. We should not touch the
2167 * vmcs02.msr_bitmap here since it gets completely overwritten
2168 * in the merging.
2169 */
2170 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2171 break;
2172 case MSR_IA32_CR_PAT:
2173 if (!kvm_pat_valid(data))
2174 return 1;
2175
2176 if (is_guest_mode(vcpu) &&
2177 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2178 get_vmcs12(vcpu)->guest_ia32_pat = data;
2179
2180 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2181 vmcs_write64(GUEST_IA32_PAT, data);
2182 vcpu->arch.pat = data;
2183 break;
2184 }
2185 ret = kvm_set_msr_common(vcpu, msr_info);
2186 break;
2187 case MSR_IA32_TSC_ADJUST:
2188 ret = kvm_set_msr_common(vcpu, msr_info);
2189 break;
2190 case MSR_IA32_MCG_EXT_CTL:
2191 if ((!msr_info->host_initiated &&
2192 !(to_vmx(vcpu)->msr_ia32_feature_control &
2193 FEAT_CTL_LMCE_ENABLED)) ||
2194 (data & ~MCG_EXT_CTL_LMCE_EN))
2195 return 1;
2196 vcpu->arch.mcg_ext_ctl = data;
2197 break;
2198 case MSR_IA32_FEAT_CTL:
2199 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2200 (to_vmx(vcpu)->msr_ia32_feature_control &
2201 FEAT_CTL_LOCKED && !msr_info->host_initiated))
2202 return 1;
2203 vmx->msr_ia32_feature_control = data;
2204 if (msr_info->host_initiated && data == 0)
2205 vmx_leave_nested(vcpu);
2206 break;
2207 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2208 if (!msr_info->host_initiated)
2209 return 1; /* they are read-only */
2210 if (!nested_vmx_allowed(vcpu))
2211 return 1;
2212 return vmx_set_vmx_msr(vcpu, msr_index, data);
2213 case MSR_IA32_RTIT_CTL:
2214 if (!vmx_pt_mode_is_host_guest() ||
2215 vmx_rtit_ctl_check(vcpu, data) ||
2216 vmx->nested.vmxon)
2217 return 1;
2218 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2219 vmx->pt_desc.guest.ctl = data;
2220 pt_update_intercept_for_msr(vcpu);
2221 break;
2222 case MSR_IA32_RTIT_STATUS:
2223 if (!pt_can_write_msr(vmx))
2224 return 1;
2225 if (data & MSR_IA32_RTIT_STATUS_MASK)
2226 return 1;
2227 vmx->pt_desc.guest.status = data;
2228 break;
2229 case MSR_IA32_RTIT_CR3_MATCH:
2230 if (!pt_can_write_msr(vmx))
2231 return 1;
2232 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2233 PT_CAP_cr3_filtering))
2234 return 1;
2235 vmx->pt_desc.guest.cr3_match = data;
2236 break;
2237 case MSR_IA32_RTIT_OUTPUT_BASE:
2238 if (!pt_can_write_msr(vmx))
2239 return 1;
2240 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2241 PT_CAP_topa_output) &&
2242 !intel_pt_validate_cap(vmx->pt_desc.caps,
2243 PT_CAP_single_range_output))
2244 return 1;
2245 if (!pt_output_base_valid(vcpu, data))
2246 return 1;
2247 vmx->pt_desc.guest.output_base = data;
2248 break;
2249 case MSR_IA32_RTIT_OUTPUT_MASK:
2250 if (!pt_can_write_msr(vmx))
2251 return 1;
2252 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2253 PT_CAP_topa_output) &&
2254 !intel_pt_validate_cap(vmx->pt_desc.caps,
2255 PT_CAP_single_range_output))
2256 return 1;
2257 vmx->pt_desc.guest.output_mask = data;
2258 break;
2259 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2260 if (!pt_can_write_msr(vmx))
2261 return 1;
2262 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2263 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2264 PT_CAP_num_address_ranges))
2265 return 1;
2266 if (is_noncanonical_address(data, vcpu))
2267 return 1;
2268 if (index % 2)
2269 vmx->pt_desc.guest.addr_b[index / 2] = data;
2270 else
2271 vmx->pt_desc.guest.addr_a[index / 2] = data;
2272 break;
2273 case MSR_TSC_AUX:
2274 if (!msr_info->host_initiated &&
2275 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2276 return 1;
2277 /* Check reserved bit, higher 32 bits should be zero */
2278 if ((data >> 32) != 0)
2279 return 1;
2280 goto find_uret_msr;
2281
2282 default:
2283 find_uret_msr:
2284 msr = vmx_find_uret_msr(vmx, msr_index);
2285 if (msr)
2286 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2287 else
2288 ret = kvm_set_msr_common(vcpu, msr_info);
2289 }
2290
2291 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2292 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2293 vmx_update_fb_clear_dis(vcpu, vmx);
2294
2295 return ret;
2296 }
2297
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2298 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2299 {
2300 unsigned long guest_owned_bits;
2301
2302 kvm_register_mark_available(vcpu, reg);
2303
2304 switch (reg) {
2305 case VCPU_REGS_RSP:
2306 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2307 break;
2308 case VCPU_REGS_RIP:
2309 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2310 break;
2311 case VCPU_EXREG_PDPTR:
2312 if (enable_ept)
2313 ept_save_pdptrs(vcpu);
2314 break;
2315 case VCPU_EXREG_CR0:
2316 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2317
2318 vcpu->arch.cr0 &= ~guest_owned_bits;
2319 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2320 break;
2321 case VCPU_EXREG_CR3:
2322 if (is_unrestricted_guest(vcpu) ||
2323 (enable_ept && is_paging(vcpu)))
2324 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2325 break;
2326 case VCPU_EXREG_CR4:
2327 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2328
2329 vcpu->arch.cr4 &= ~guest_owned_bits;
2330 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2331 break;
2332 default:
2333 WARN_ON_ONCE(1);
2334 break;
2335 }
2336 }
2337
cpu_has_kvm_support(void)2338 static __init int cpu_has_kvm_support(void)
2339 {
2340 return cpu_has_vmx();
2341 }
2342
vmx_disabled_by_bios(void)2343 static __init int vmx_disabled_by_bios(void)
2344 {
2345 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2346 !boot_cpu_has(X86_FEATURE_VMX);
2347 }
2348
kvm_cpu_vmxon(u64 vmxon_pointer)2349 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2350 {
2351 u64 msr;
2352
2353 cr4_set_bits(X86_CR4_VMXE);
2354 intel_pt_handle_vmx(1);
2355
2356 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2357 _ASM_EXTABLE(1b, %l[fault])
2358 : : [vmxon_pointer] "m"(vmxon_pointer)
2359 : : fault);
2360 return 0;
2361
2362 fault:
2363 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2364 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2365 intel_pt_handle_vmx(0);
2366 cr4_clear_bits(X86_CR4_VMXE);
2367
2368 return -EFAULT;
2369 }
2370
hardware_enable(void)2371 static int hardware_enable(void)
2372 {
2373 int cpu = raw_smp_processor_id();
2374 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2375 int r;
2376
2377 if (cr4_read_shadow() & X86_CR4_VMXE)
2378 return -EBUSY;
2379
2380 /*
2381 * This can happen if we hot-added a CPU but failed to allocate
2382 * VP assist page for it.
2383 */
2384 if (static_branch_unlikely(&enable_evmcs) &&
2385 !hv_get_vp_assist_page(cpu))
2386 return -EFAULT;
2387
2388 r = kvm_cpu_vmxon(phys_addr);
2389 if (r)
2390 return r;
2391
2392 if (enable_ept)
2393 ept_sync_global();
2394
2395 return 0;
2396 }
2397
vmclear_local_loaded_vmcss(void)2398 static void vmclear_local_loaded_vmcss(void)
2399 {
2400 int cpu = raw_smp_processor_id();
2401 struct loaded_vmcs *v, *n;
2402
2403 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2404 loaded_vmcss_on_cpu_link)
2405 __loaded_vmcs_clear(v);
2406 }
2407
2408
2409 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2410 * tricks.
2411 */
kvm_cpu_vmxoff(void)2412 static void kvm_cpu_vmxoff(void)
2413 {
2414 asm volatile (__ex("vmxoff"));
2415
2416 intel_pt_handle_vmx(0);
2417 cr4_clear_bits(X86_CR4_VMXE);
2418 }
2419
hardware_disable(void)2420 static void hardware_disable(void)
2421 {
2422 vmclear_local_loaded_vmcss();
2423 kvm_cpu_vmxoff();
2424 }
2425
2426 /*
2427 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2428 * directly instead of going through cpu_has(), to ensure KVM is trapping
2429 * ENCLS whenever it's supported in hardware. It does not matter whether
2430 * the host OS supports or has enabled SGX.
2431 */
cpu_has_sgx(void)2432 static bool cpu_has_sgx(void)
2433 {
2434 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2435 }
2436
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2437 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2438 u32 msr, u32 *result)
2439 {
2440 u32 vmx_msr_low, vmx_msr_high;
2441 u32 ctl = ctl_min | ctl_opt;
2442
2443 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2444
2445 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2446 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2447
2448 /* Ensure minimum (required) set of control bits are supported. */
2449 if (ctl_min & ~ctl)
2450 return -EIO;
2451
2452 *result = ctl;
2453 return 0;
2454 }
2455
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2456 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2457 struct vmx_capability *vmx_cap)
2458 {
2459 u32 vmx_msr_low, vmx_msr_high;
2460 u32 min, opt, min2, opt2;
2461 u32 _pin_based_exec_control = 0;
2462 u32 _cpu_based_exec_control = 0;
2463 u32 _cpu_based_2nd_exec_control = 0;
2464 u32 _vmexit_control = 0;
2465 u32 _vmentry_control = 0;
2466
2467 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2468 min = CPU_BASED_HLT_EXITING |
2469 #ifdef CONFIG_X86_64
2470 CPU_BASED_CR8_LOAD_EXITING |
2471 CPU_BASED_CR8_STORE_EXITING |
2472 #endif
2473 CPU_BASED_CR3_LOAD_EXITING |
2474 CPU_BASED_CR3_STORE_EXITING |
2475 CPU_BASED_UNCOND_IO_EXITING |
2476 CPU_BASED_MOV_DR_EXITING |
2477 CPU_BASED_USE_TSC_OFFSETTING |
2478 CPU_BASED_MWAIT_EXITING |
2479 CPU_BASED_MONITOR_EXITING |
2480 CPU_BASED_INVLPG_EXITING |
2481 CPU_BASED_RDPMC_EXITING;
2482
2483 opt = CPU_BASED_TPR_SHADOW |
2484 CPU_BASED_USE_MSR_BITMAPS |
2485 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2486 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2487 &_cpu_based_exec_control) < 0)
2488 return -EIO;
2489 #ifdef CONFIG_X86_64
2490 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2491 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2492 ~CPU_BASED_CR8_STORE_EXITING;
2493 #endif
2494 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2495 min2 = 0;
2496 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2497 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2498 SECONDARY_EXEC_WBINVD_EXITING |
2499 SECONDARY_EXEC_ENABLE_VPID |
2500 SECONDARY_EXEC_ENABLE_EPT |
2501 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2502 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2503 SECONDARY_EXEC_DESC |
2504 SECONDARY_EXEC_ENABLE_RDTSCP |
2505 SECONDARY_EXEC_ENABLE_INVPCID |
2506 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2507 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2508 SECONDARY_EXEC_SHADOW_VMCS |
2509 SECONDARY_EXEC_XSAVES |
2510 SECONDARY_EXEC_RDSEED_EXITING |
2511 SECONDARY_EXEC_RDRAND_EXITING |
2512 SECONDARY_EXEC_ENABLE_PML |
2513 SECONDARY_EXEC_TSC_SCALING |
2514 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2515 SECONDARY_EXEC_PT_USE_GPA |
2516 SECONDARY_EXEC_PT_CONCEAL_VMX |
2517 SECONDARY_EXEC_ENABLE_VMFUNC;
2518 if (cpu_has_sgx())
2519 opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2520 if (adjust_vmx_controls(min2, opt2,
2521 MSR_IA32_VMX_PROCBASED_CTLS2,
2522 &_cpu_based_2nd_exec_control) < 0)
2523 return -EIO;
2524 }
2525 #ifndef CONFIG_X86_64
2526 if (!(_cpu_based_2nd_exec_control &
2527 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2528 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2529 #endif
2530
2531 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2532 _cpu_based_2nd_exec_control &= ~(
2533 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2534 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2535 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2536
2537 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2538 &vmx_cap->ept, &vmx_cap->vpid);
2539
2540 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2541 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2542 enabled */
2543 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2544 CPU_BASED_CR3_STORE_EXITING |
2545 CPU_BASED_INVLPG_EXITING);
2546 } else if (vmx_cap->ept) {
2547 vmx_cap->ept = 0;
2548 pr_warn_once("EPT CAP should not exist if not support "
2549 "1-setting enable EPT VM-execution control\n");
2550 }
2551 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2552 vmx_cap->vpid) {
2553 vmx_cap->vpid = 0;
2554 pr_warn_once("VPID CAP should not exist if not support "
2555 "1-setting enable VPID VM-execution control\n");
2556 }
2557
2558 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2559 #ifdef CONFIG_X86_64
2560 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2561 #endif
2562 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2563 VM_EXIT_LOAD_IA32_PAT |
2564 VM_EXIT_LOAD_IA32_EFER |
2565 VM_EXIT_CLEAR_BNDCFGS |
2566 VM_EXIT_PT_CONCEAL_PIP |
2567 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2568 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2569 &_vmexit_control) < 0)
2570 return -EIO;
2571
2572 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2573 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2574 PIN_BASED_VMX_PREEMPTION_TIMER;
2575 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2576 &_pin_based_exec_control) < 0)
2577 return -EIO;
2578
2579 if (cpu_has_broken_vmx_preemption_timer())
2580 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2581 if (!(_cpu_based_2nd_exec_control &
2582 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2583 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2584
2585 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2586 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2587 VM_ENTRY_LOAD_IA32_PAT |
2588 VM_ENTRY_LOAD_IA32_EFER |
2589 VM_ENTRY_LOAD_BNDCFGS |
2590 VM_ENTRY_PT_CONCEAL_PIP |
2591 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2592 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2593 &_vmentry_control) < 0)
2594 return -EIO;
2595
2596 /*
2597 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2598 * can't be used due to an errata where VM Exit may incorrectly clear
2599 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2600 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2601 */
2602 if (boot_cpu_data.x86 == 0x6) {
2603 switch (boot_cpu_data.x86_model) {
2604 case 26: /* AAK155 */
2605 case 30: /* AAP115 */
2606 case 37: /* AAT100 */
2607 case 44: /* BC86,AAY89,BD102 */
2608 case 46: /* BA97 */
2609 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2610 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2611 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2612 "does not work properly. Using workaround\n");
2613 break;
2614 default:
2615 break;
2616 }
2617 }
2618
2619
2620 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2621
2622 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2623 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2624 return -EIO;
2625
2626 #ifdef CONFIG_X86_64
2627 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2628 if (vmx_msr_high & (1u<<16))
2629 return -EIO;
2630 #endif
2631
2632 /* Require Write-Back (WB) memory type for VMCS accesses. */
2633 if (((vmx_msr_high >> 18) & 15) != 6)
2634 return -EIO;
2635
2636 vmcs_conf->size = vmx_msr_high & 0x1fff;
2637 vmcs_conf->order = get_order(vmcs_conf->size);
2638 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2639
2640 vmcs_conf->revision_id = vmx_msr_low;
2641
2642 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2643 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2644 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2645 vmcs_conf->vmexit_ctrl = _vmexit_control;
2646 vmcs_conf->vmentry_ctrl = _vmentry_control;
2647
2648 #if IS_ENABLED(CONFIG_HYPERV)
2649 if (enlightened_vmcs)
2650 evmcs_sanitize_exec_ctrls(vmcs_conf);
2651 #endif
2652
2653 return 0;
2654 }
2655
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2656 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2657 {
2658 int node = cpu_to_node(cpu);
2659 struct page *pages;
2660 struct vmcs *vmcs;
2661
2662 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2663 if (!pages)
2664 return NULL;
2665 vmcs = page_address(pages);
2666 memset(vmcs, 0, vmcs_config.size);
2667
2668 /* KVM supports Enlightened VMCS v1 only */
2669 if (static_branch_unlikely(&enable_evmcs))
2670 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2671 else
2672 vmcs->hdr.revision_id = vmcs_config.revision_id;
2673
2674 if (shadow)
2675 vmcs->hdr.shadow_vmcs = 1;
2676 return vmcs;
2677 }
2678
free_vmcs(struct vmcs * vmcs)2679 void free_vmcs(struct vmcs *vmcs)
2680 {
2681 free_pages((unsigned long)vmcs, vmcs_config.order);
2682 }
2683
2684 /*
2685 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2686 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2687 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2688 {
2689 if (!loaded_vmcs->vmcs)
2690 return;
2691 loaded_vmcs_clear(loaded_vmcs);
2692 free_vmcs(loaded_vmcs->vmcs);
2693 loaded_vmcs->vmcs = NULL;
2694 if (loaded_vmcs->msr_bitmap)
2695 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2696 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2697 }
2698
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2699 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2700 {
2701 loaded_vmcs->vmcs = alloc_vmcs(false);
2702 if (!loaded_vmcs->vmcs)
2703 return -ENOMEM;
2704
2705 vmcs_clear(loaded_vmcs->vmcs);
2706
2707 loaded_vmcs->shadow_vmcs = NULL;
2708 loaded_vmcs->hv_timer_soft_disabled = false;
2709 loaded_vmcs->cpu = -1;
2710 loaded_vmcs->launched = 0;
2711
2712 if (cpu_has_vmx_msr_bitmap()) {
2713 loaded_vmcs->msr_bitmap = (unsigned long *)
2714 __get_free_page(GFP_KERNEL_ACCOUNT);
2715 if (!loaded_vmcs->msr_bitmap)
2716 goto out_vmcs;
2717 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2718
2719 if (IS_ENABLED(CONFIG_HYPERV) &&
2720 static_branch_unlikely(&enable_evmcs) &&
2721 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2722 struct hv_enlightened_vmcs *evmcs =
2723 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2724
2725 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2726 }
2727 }
2728
2729 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2730 memset(&loaded_vmcs->controls_shadow, 0,
2731 sizeof(struct vmcs_controls_shadow));
2732
2733 return 0;
2734
2735 out_vmcs:
2736 free_loaded_vmcs(loaded_vmcs);
2737 return -ENOMEM;
2738 }
2739
free_kvm_area(void)2740 static void free_kvm_area(void)
2741 {
2742 int cpu;
2743
2744 for_each_possible_cpu(cpu) {
2745 free_vmcs(per_cpu(vmxarea, cpu));
2746 per_cpu(vmxarea, cpu) = NULL;
2747 }
2748 }
2749
alloc_kvm_area(void)2750 static __init int alloc_kvm_area(void)
2751 {
2752 int cpu;
2753
2754 for_each_possible_cpu(cpu) {
2755 struct vmcs *vmcs;
2756
2757 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2758 if (!vmcs) {
2759 free_kvm_area();
2760 return -ENOMEM;
2761 }
2762
2763 /*
2764 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2765 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2766 * revision_id reported by MSR_IA32_VMX_BASIC.
2767 *
2768 * However, even though not explicitly documented by
2769 * TLFS, VMXArea passed as VMXON argument should
2770 * still be marked with revision_id reported by
2771 * physical CPU.
2772 */
2773 if (static_branch_unlikely(&enable_evmcs))
2774 vmcs->hdr.revision_id = vmcs_config.revision_id;
2775
2776 per_cpu(vmxarea, cpu) = vmcs;
2777 }
2778 return 0;
2779 }
2780
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2781 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2782 struct kvm_segment *save)
2783 {
2784 if (!emulate_invalid_guest_state) {
2785 /*
2786 * CS and SS RPL should be equal during guest entry according
2787 * to VMX spec, but in reality it is not always so. Since vcpu
2788 * is in the middle of the transition from real mode to
2789 * protected mode it is safe to assume that RPL 0 is a good
2790 * default value.
2791 */
2792 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2793 save->selector &= ~SEGMENT_RPL_MASK;
2794 save->dpl = save->selector & SEGMENT_RPL_MASK;
2795 save->s = 1;
2796 }
2797 vmx_set_segment(vcpu, save, seg);
2798 }
2799
enter_pmode(struct kvm_vcpu * vcpu)2800 static void enter_pmode(struct kvm_vcpu *vcpu)
2801 {
2802 unsigned long flags;
2803 struct vcpu_vmx *vmx = to_vmx(vcpu);
2804
2805 /*
2806 * Update real mode segment cache. It may be not up-to-date if sement
2807 * register was written while vcpu was in a guest mode.
2808 */
2809 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2810 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2811 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2812 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2813 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2814 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2815
2816 vmx->rmode.vm86_active = 0;
2817
2818 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2819
2820 flags = vmcs_readl(GUEST_RFLAGS);
2821 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2822 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2823 vmcs_writel(GUEST_RFLAGS, flags);
2824
2825 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2826 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2827
2828 update_exception_bitmap(vcpu);
2829
2830 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2831 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2832 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2833 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2834 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2835 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2836 }
2837
fix_rmode_seg(int seg,struct kvm_segment * save)2838 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2839 {
2840 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2841 struct kvm_segment var = *save;
2842
2843 var.dpl = 0x3;
2844 if (seg == VCPU_SREG_CS)
2845 var.type = 0x3;
2846
2847 if (!emulate_invalid_guest_state) {
2848 var.selector = var.base >> 4;
2849 var.base = var.base & 0xffff0;
2850 var.limit = 0xffff;
2851 var.g = 0;
2852 var.db = 0;
2853 var.present = 1;
2854 var.s = 1;
2855 var.l = 0;
2856 var.unusable = 0;
2857 var.type = 0x3;
2858 var.avl = 0;
2859 if (save->base & 0xf)
2860 printk_once(KERN_WARNING "kvm: segment base is not "
2861 "paragraph aligned when entering "
2862 "protected mode (seg=%d)", seg);
2863 }
2864
2865 vmcs_write16(sf->selector, var.selector);
2866 vmcs_writel(sf->base, var.base);
2867 vmcs_write32(sf->limit, var.limit);
2868 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2869 }
2870
enter_rmode(struct kvm_vcpu * vcpu)2871 static void enter_rmode(struct kvm_vcpu *vcpu)
2872 {
2873 unsigned long flags;
2874 struct vcpu_vmx *vmx = to_vmx(vcpu);
2875 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2876
2877 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2878 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2879 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2880 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2881 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2882 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2883 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2884
2885 vmx->rmode.vm86_active = 1;
2886
2887 /*
2888 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2889 * vcpu. Warn the user that an update is overdue.
2890 */
2891 if (!kvm_vmx->tss_addr)
2892 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2893 "called before entering vcpu\n");
2894
2895 vmx_segment_cache_clear(vmx);
2896
2897 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2898 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2899 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2900
2901 flags = vmcs_readl(GUEST_RFLAGS);
2902 vmx->rmode.save_rflags = flags;
2903
2904 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2905
2906 vmcs_writel(GUEST_RFLAGS, flags);
2907 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2908 update_exception_bitmap(vcpu);
2909
2910 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2911 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2912 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2913 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2914 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2915 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2916
2917 kvm_mmu_reset_context(vcpu);
2918 }
2919
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2920 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2921 {
2922 struct vcpu_vmx *vmx = to_vmx(vcpu);
2923 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2924
2925 /* Nothing to do if hardware doesn't support EFER. */
2926 if (!msr)
2927 return 0;
2928
2929 vcpu->arch.efer = efer;
2930 if (efer & EFER_LMA) {
2931 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2932 msr->data = efer;
2933 } else {
2934 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2935
2936 msr->data = efer & ~EFER_LME;
2937 }
2938 setup_msrs(vmx);
2939 return 0;
2940 }
2941
2942 #ifdef CONFIG_X86_64
2943
enter_lmode(struct kvm_vcpu * vcpu)2944 static void enter_lmode(struct kvm_vcpu *vcpu)
2945 {
2946 u32 guest_tr_ar;
2947
2948 vmx_segment_cache_clear(to_vmx(vcpu));
2949
2950 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2951 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2952 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2953 __func__);
2954 vmcs_write32(GUEST_TR_AR_BYTES,
2955 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2956 | VMX_AR_TYPE_BUSY_64_TSS);
2957 }
2958 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2959 }
2960
exit_lmode(struct kvm_vcpu * vcpu)2961 static void exit_lmode(struct kvm_vcpu *vcpu)
2962 {
2963 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2964 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2965 }
2966
2967 #endif
2968
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)2969 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2970 {
2971 struct vcpu_vmx *vmx = to_vmx(vcpu);
2972
2973 /*
2974 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2975 * the CPU is not required to invalidate guest-physical mappings on
2976 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
2977 * associated with the root EPT structure and not any particular VPID
2978 * (INVVPID also isn't required to invalidate guest-physical mappings).
2979 */
2980 if (enable_ept) {
2981 ept_sync_global();
2982 } else if (enable_vpid) {
2983 if (cpu_has_vmx_invvpid_global()) {
2984 vpid_sync_vcpu_global();
2985 } else {
2986 vpid_sync_vcpu_single(vmx->vpid);
2987 vpid_sync_vcpu_single(vmx->nested.vpid02);
2988 }
2989 }
2990 }
2991
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)2992 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2993 {
2994 struct kvm_mmu *mmu = vcpu->arch.mmu;
2995 u64 root_hpa = mmu->root_hpa;
2996
2997 /* No flush required if the current context is invalid. */
2998 if (!VALID_PAGE(root_hpa))
2999 return;
3000
3001 if (enable_ept)
3002 ept_sync_context(construct_eptp(vcpu, root_hpa,
3003 mmu->shadow_root_level));
3004 else if (!is_guest_mode(vcpu))
3005 vpid_sync_context(to_vmx(vcpu)->vpid);
3006 else
3007 vpid_sync_context(nested_get_vpid02(vcpu));
3008 }
3009
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3010 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3011 {
3012 /*
3013 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
3014 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3015 */
3016 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
3017 }
3018
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3019 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3020 {
3021 /*
3022 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
3023 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit
3024 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3025 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3026 * i.e. no explicit INVVPID is necessary.
3027 */
3028 vpid_sync_context(to_vmx(vcpu)->vpid);
3029 }
3030
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3031 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3032 {
3033 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3034
3035 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3036 return;
3037
3038 if (is_pae_paging(vcpu)) {
3039 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3040 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3041 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3042 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3043 }
3044 }
3045
ept_save_pdptrs(struct kvm_vcpu * vcpu)3046 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3047 {
3048 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3049
3050 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3051 return;
3052
3053 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3054 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3055 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3056 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3057
3058 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3059 }
3060
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)3061 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3062 unsigned long cr0,
3063 struct kvm_vcpu *vcpu)
3064 {
3065 struct vcpu_vmx *vmx = to_vmx(vcpu);
3066
3067 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3068 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3069 if (!(cr0 & X86_CR0_PG)) {
3070 /* From paging/starting to nonpaging */
3071 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3072 CPU_BASED_CR3_STORE_EXITING);
3073 vcpu->arch.cr0 = cr0;
3074 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3075 } else if (!is_paging(vcpu)) {
3076 /* From nonpaging to paging */
3077 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3078 CPU_BASED_CR3_STORE_EXITING);
3079 vcpu->arch.cr0 = cr0;
3080 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3081 }
3082
3083 if (!(cr0 & X86_CR0_WP))
3084 *hw_cr0 &= ~X86_CR0_WP;
3085 }
3086
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3087 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3088 {
3089 struct vcpu_vmx *vmx = to_vmx(vcpu);
3090 unsigned long hw_cr0;
3091
3092 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3093 if (is_unrestricted_guest(vcpu))
3094 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3095 else {
3096 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3097
3098 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3099 enter_pmode(vcpu);
3100
3101 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3102 enter_rmode(vcpu);
3103 }
3104
3105 #ifdef CONFIG_X86_64
3106 if (vcpu->arch.efer & EFER_LME) {
3107 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3108 enter_lmode(vcpu);
3109 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3110 exit_lmode(vcpu);
3111 }
3112 #endif
3113
3114 if (enable_ept && !is_unrestricted_guest(vcpu))
3115 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3116
3117 vmcs_writel(CR0_READ_SHADOW, cr0);
3118 vmcs_writel(GUEST_CR0, hw_cr0);
3119 vcpu->arch.cr0 = cr0;
3120 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3121
3122 /* depends on vcpu->arch.cr0 to be set to a new value */
3123 vmx->emulation_required = emulation_required(vcpu);
3124 }
3125
vmx_get_max_tdp_level(void)3126 static int vmx_get_max_tdp_level(void)
3127 {
3128 if (cpu_has_vmx_ept_5levels())
3129 return 5;
3130 return 4;
3131 }
3132
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa,int root_level)3133 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
3134 int root_level)
3135 {
3136 u64 eptp = VMX_EPTP_MT_WB;
3137
3138 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3139
3140 if (enable_ept_ad_bits &&
3141 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3142 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3143 eptp |= (root_hpa & PAGE_MASK);
3144
3145 return eptp;
3146 }
3147
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,unsigned long pgd,int pgd_level)3148 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
3149 int pgd_level)
3150 {
3151 struct kvm *kvm = vcpu->kvm;
3152 bool update_guest_cr3 = true;
3153 unsigned long guest_cr3;
3154 u64 eptp;
3155
3156 if (enable_ept) {
3157 eptp = construct_eptp(vcpu, pgd, pgd_level);
3158 vmcs_write64(EPT_POINTER, eptp);
3159
3160 if (kvm_x86_ops.tlb_remote_flush) {
3161 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3162 to_vmx(vcpu)->ept_pointer = eptp;
3163 to_kvm_vmx(kvm)->ept_pointers_match
3164 = EPT_POINTERS_CHECK;
3165 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3166 }
3167
3168 if (!enable_unrestricted_guest && !is_paging(vcpu))
3169 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3170 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3171 guest_cr3 = vcpu->arch.cr3;
3172 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3173 update_guest_cr3 = false;
3174 vmx_ept_load_pdptrs(vcpu);
3175 } else {
3176 guest_cr3 = pgd;
3177 }
3178
3179 if (update_guest_cr3)
3180 vmcs_writel(GUEST_CR3, guest_cr3);
3181 }
3182
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3183 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3184 {
3185 struct vcpu_vmx *vmx = to_vmx(vcpu);
3186 /*
3187 * Pass through host's Machine Check Enable value to hw_cr4, which
3188 * is in force while we are in guest mode. Do not let guests control
3189 * this bit, even if host CR4.MCE == 0.
3190 */
3191 unsigned long hw_cr4;
3192
3193 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3194 if (is_unrestricted_guest(vcpu))
3195 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3196 else if (vmx->rmode.vm86_active)
3197 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3198 else
3199 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3200
3201 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3202 if (cr4 & X86_CR4_UMIP) {
3203 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3204 hw_cr4 &= ~X86_CR4_UMIP;
3205 } else if (!is_guest_mode(vcpu) ||
3206 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3207 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3208 }
3209 }
3210
3211 if (cr4 & X86_CR4_VMXE) {
3212 /*
3213 * To use VMXON (and later other VMX instructions), a guest
3214 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3215 * So basically the check on whether to allow nested VMX
3216 * is here. We operate under the default treatment of SMM,
3217 * so VMX cannot be enabled under SMM.
3218 */
3219 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3220 return 1;
3221 }
3222
3223 if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3224 return 1;
3225
3226 vcpu->arch.cr4 = cr4;
3227 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3228
3229 if (!is_unrestricted_guest(vcpu)) {
3230 if (enable_ept) {
3231 if (!is_paging(vcpu)) {
3232 hw_cr4 &= ~X86_CR4_PAE;
3233 hw_cr4 |= X86_CR4_PSE;
3234 } else if (!(cr4 & X86_CR4_PAE)) {
3235 hw_cr4 &= ~X86_CR4_PAE;
3236 }
3237 }
3238
3239 /*
3240 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3241 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3242 * to be manually disabled when guest switches to non-paging
3243 * mode.
3244 *
3245 * If !enable_unrestricted_guest, the CPU is always running
3246 * with CR0.PG=1 and CR4 needs to be modified.
3247 * If enable_unrestricted_guest, the CPU automatically
3248 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3249 */
3250 if (!is_paging(vcpu))
3251 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3252 }
3253
3254 vmcs_writel(CR4_READ_SHADOW, cr4);
3255 vmcs_writel(GUEST_CR4, hw_cr4);
3256 return 0;
3257 }
3258
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3259 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3260 {
3261 struct vcpu_vmx *vmx = to_vmx(vcpu);
3262 u32 ar;
3263
3264 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3265 *var = vmx->rmode.segs[seg];
3266 if (seg == VCPU_SREG_TR
3267 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3268 return;
3269 var->base = vmx_read_guest_seg_base(vmx, seg);
3270 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3271 return;
3272 }
3273 var->base = vmx_read_guest_seg_base(vmx, seg);
3274 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3275 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3276 ar = vmx_read_guest_seg_ar(vmx, seg);
3277 var->unusable = (ar >> 16) & 1;
3278 var->type = ar & 15;
3279 var->s = (ar >> 4) & 1;
3280 var->dpl = (ar >> 5) & 3;
3281 /*
3282 * Some userspaces do not preserve unusable property. Since usable
3283 * segment has to be present according to VMX spec we can use present
3284 * property to amend userspace bug by making unusable segment always
3285 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3286 * segment as unusable.
3287 */
3288 var->present = !var->unusable;
3289 var->avl = (ar >> 12) & 1;
3290 var->l = (ar >> 13) & 1;
3291 var->db = (ar >> 14) & 1;
3292 var->g = (ar >> 15) & 1;
3293 }
3294
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3295 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3296 {
3297 struct kvm_segment s;
3298
3299 if (to_vmx(vcpu)->rmode.vm86_active) {
3300 vmx_get_segment(vcpu, &s, seg);
3301 return s.base;
3302 }
3303 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3304 }
3305
vmx_get_cpl(struct kvm_vcpu * vcpu)3306 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3307 {
3308 struct vcpu_vmx *vmx = to_vmx(vcpu);
3309
3310 if (unlikely(vmx->rmode.vm86_active))
3311 return 0;
3312 else {
3313 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3314 return VMX_AR_DPL(ar);
3315 }
3316 }
3317
vmx_segment_access_rights(struct kvm_segment * var)3318 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3319 {
3320 u32 ar;
3321
3322 if (var->unusable || !var->present)
3323 ar = 1 << 16;
3324 else {
3325 ar = var->type & 15;
3326 ar |= (var->s & 1) << 4;
3327 ar |= (var->dpl & 3) << 5;
3328 ar |= (var->present & 1) << 7;
3329 ar |= (var->avl & 1) << 12;
3330 ar |= (var->l & 1) << 13;
3331 ar |= (var->db & 1) << 14;
3332 ar |= (var->g & 1) << 15;
3333 }
3334
3335 return ar;
3336 }
3337
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3338 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3339 {
3340 struct vcpu_vmx *vmx = to_vmx(vcpu);
3341 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3342
3343 vmx_segment_cache_clear(vmx);
3344
3345 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3346 vmx->rmode.segs[seg] = *var;
3347 if (seg == VCPU_SREG_TR)
3348 vmcs_write16(sf->selector, var->selector);
3349 else if (var->s)
3350 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3351 goto out;
3352 }
3353
3354 vmcs_writel(sf->base, var->base);
3355 vmcs_write32(sf->limit, var->limit);
3356 vmcs_write16(sf->selector, var->selector);
3357
3358 /*
3359 * Fix the "Accessed" bit in AR field of segment registers for older
3360 * qemu binaries.
3361 * IA32 arch specifies that at the time of processor reset the
3362 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3363 * is setting it to 0 in the userland code. This causes invalid guest
3364 * state vmexit when "unrestricted guest" mode is turned on.
3365 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3366 * tree. Newer qemu binaries with that qemu fix would not need this
3367 * kvm hack.
3368 */
3369 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3370 var->type |= 0x1; /* Accessed */
3371
3372 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3373
3374 out:
3375 vmx->emulation_required = emulation_required(vcpu);
3376 }
3377
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3378 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3379 {
3380 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3381
3382 *db = (ar >> 14) & 1;
3383 *l = (ar >> 13) & 1;
3384 }
3385
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3386 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3387 {
3388 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3389 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3390 }
3391
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3392 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3393 {
3394 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3395 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3396 }
3397
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3398 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3399 {
3400 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3401 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3402 }
3403
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3404 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3405 {
3406 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3407 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3408 }
3409
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3410 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3411 {
3412 struct kvm_segment var;
3413 u32 ar;
3414
3415 vmx_get_segment(vcpu, &var, seg);
3416 var.dpl = 0x3;
3417 if (seg == VCPU_SREG_CS)
3418 var.type = 0x3;
3419 ar = vmx_segment_access_rights(&var);
3420
3421 if (var.base != (var.selector << 4))
3422 return false;
3423 if (var.limit != 0xffff)
3424 return false;
3425 if (ar != 0xf3)
3426 return false;
3427
3428 return true;
3429 }
3430
code_segment_valid(struct kvm_vcpu * vcpu)3431 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3432 {
3433 struct kvm_segment cs;
3434 unsigned int cs_rpl;
3435
3436 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3437 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3438
3439 if (cs.unusable)
3440 return false;
3441 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3442 return false;
3443 if (!cs.s)
3444 return false;
3445 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3446 if (cs.dpl > cs_rpl)
3447 return false;
3448 } else {
3449 if (cs.dpl != cs_rpl)
3450 return false;
3451 }
3452 if (!cs.present)
3453 return false;
3454
3455 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3456 return true;
3457 }
3458
stack_segment_valid(struct kvm_vcpu * vcpu)3459 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3460 {
3461 struct kvm_segment ss;
3462 unsigned int ss_rpl;
3463
3464 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3465 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3466
3467 if (ss.unusable)
3468 return true;
3469 if (ss.type != 3 && ss.type != 7)
3470 return false;
3471 if (!ss.s)
3472 return false;
3473 if (ss.dpl != ss_rpl) /* DPL != RPL */
3474 return false;
3475 if (!ss.present)
3476 return false;
3477
3478 return true;
3479 }
3480
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3481 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3482 {
3483 struct kvm_segment var;
3484 unsigned int rpl;
3485
3486 vmx_get_segment(vcpu, &var, seg);
3487 rpl = var.selector & SEGMENT_RPL_MASK;
3488
3489 if (var.unusable)
3490 return true;
3491 if (!var.s)
3492 return false;
3493 if (!var.present)
3494 return false;
3495 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3496 if (var.dpl < rpl) /* DPL < RPL */
3497 return false;
3498 }
3499
3500 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3501 * rights flags
3502 */
3503 return true;
3504 }
3505
tr_valid(struct kvm_vcpu * vcpu)3506 static bool tr_valid(struct kvm_vcpu *vcpu)
3507 {
3508 struct kvm_segment tr;
3509
3510 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3511
3512 if (tr.unusable)
3513 return false;
3514 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3515 return false;
3516 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3517 return false;
3518 if (!tr.present)
3519 return false;
3520
3521 return true;
3522 }
3523
ldtr_valid(struct kvm_vcpu * vcpu)3524 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3525 {
3526 struct kvm_segment ldtr;
3527
3528 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3529
3530 if (ldtr.unusable)
3531 return true;
3532 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3533 return false;
3534 if (ldtr.type != 2)
3535 return false;
3536 if (!ldtr.present)
3537 return false;
3538
3539 return true;
3540 }
3541
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3542 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3543 {
3544 struct kvm_segment cs, ss;
3545
3546 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3547 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3548
3549 return ((cs.selector & SEGMENT_RPL_MASK) ==
3550 (ss.selector & SEGMENT_RPL_MASK));
3551 }
3552
3553 /*
3554 * Check if guest state is valid. Returns true if valid, false if
3555 * not.
3556 * We assume that registers are always usable
3557 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3558 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3559 {
3560 /* real mode guest state checks */
3561 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3562 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3563 return false;
3564 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3565 return false;
3566 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3567 return false;
3568 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3569 return false;
3570 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3571 return false;
3572 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3573 return false;
3574 } else {
3575 /* protected mode guest state checks */
3576 if (!cs_ss_rpl_check(vcpu))
3577 return false;
3578 if (!code_segment_valid(vcpu))
3579 return false;
3580 if (!stack_segment_valid(vcpu))
3581 return false;
3582 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3583 return false;
3584 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3585 return false;
3586 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3587 return false;
3588 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3589 return false;
3590 if (!tr_valid(vcpu))
3591 return false;
3592 if (!ldtr_valid(vcpu))
3593 return false;
3594 }
3595 /* TODO:
3596 * - Add checks on RIP
3597 * - Add checks on RFLAGS
3598 */
3599
3600 return true;
3601 }
3602
init_rmode_tss(struct kvm * kvm)3603 static int init_rmode_tss(struct kvm *kvm)
3604 {
3605 gfn_t fn;
3606 u16 data = 0;
3607 int idx, r;
3608
3609 idx = srcu_read_lock(&kvm->srcu);
3610 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3611 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3612 if (r < 0)
3613 goto out;
3614 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3615 r = kvm_write_guest_page(kvm, fn++, &data,
3616 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3617 if (r < 0)
3618 goto out;
3619 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3620 if (r < 0)
3621 goto out;
3622 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3623 if (r < 0)
3624 goto out;
3625 data = ~0;
3626 r = kvm_write_guest_page(kvm, fn, &data,
3627 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3628 sizeof(u8));
3629 out:
3630 srcu_read_unlock(&kvm->srcu, idx);
3631 return r;
3632 }
3633
init_rmode_identity_map(struct kvm * kvm)3634 static int init_rmode_identity_map(struct kvm *kvm)
3635 {
3636 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3637 int i, r = 0;
3638 kvm_pfn_t identity_map_pfn;
3639 u32 tmp;
3640
3641 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3642 mutex_lock(&kvm->slots_lock);
3643
3644 if (likely(kvm_vmx->ept_identity_pagetable_done))
3645 goto out;
3646
3647 if (!kvm_vmx->ept_identity_map_addr)
3648 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3649 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3650
3651 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3652 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3653 if (r < 0)
3654 goto out;
3655
3656 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3657 if (r < 0)
3658 goto out;
3659 /* Set up identity-mapping pagetable for EPT in real mode */
3660 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3661 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3662 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3663 r = kvm_write_guest_page(kvm, identity_map_pfn,
3664 &tmp, i * sizeof(tmp), sizeof(tmp));
3665 if (r < 0)
3666 goto out;
3667 }
3668 kvm_vmx->ept_identity_pagetable_done = true;
3669
3670 out:
3671 mutex_unlock(&kvm->slots_lock);
3672 return r;
3673 }
3674
seg_setup(int seg)3675 static void seg_setup(int seg)
3676 {
3677 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3678 unsigned int ar;
3679
3680 vmcs_write16(sf->selector, 0);
3681 vmcs_writel(sf->base, 0);
3682 vmcs_write32(sf->limit, 0xffff);
3683 ar = 0x93;
3684 if (seg == VCPU_SREG_CS)
3685 ar |= 0x08; /* code segment */
3686
3687 vmcs_write32(sf->ar_bytes, ar);
3688 }
3689
alloc_apic_access_page(struct kvm * kvm)3690 static int alloc_apic_access_page(struct kvm *kvm)
3691 {
3692 struct page *page;
3693 int r = 0;
3694
3695 mutex_lock(&kvm->slots_lock);
3696 if (kvm->arch.apic_access_page_done)
3697 goto out;
3698 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3699 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3700 if (r)
3701 goto out;
3702
3703 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3704 if (is_error_page(page)) {
3705 r = -EFAULT;
3706 goto out;
3707 }
3708
3709 /*
3710 * Do not pin the page in memory, so that memory hot-unplug
3711 * is able to migrate it.
3712 */
3713 put_page(page);
3714 kvm->arch.apic_access_page_done = true;
3715 out:
3716 mutex_unlock(&kvm->slots_lock);
3717 return r;
3718 }
3719
allocate_vpid(void)3720 int allocate_vpid(void)
3721 {
3722 int vpid;
3723
3724 if (!enable_vpid)
3725 return 0;
3726 spin_lock(&vmx_vpid_lock);
3727 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3728 if (vpid < VMX_NR_VPIDS)
3729 __set_bit(vpid, vmx_vpid_bitmap);
3730 else
3731 vpid = 0;
3732 spin_unlock(&vmx_vpid_lock);
3733 return vpid;
3734 }
3735
free_vpid(int vpid)3736 void free_vpid(int vpid)
3737 {
3738 if (!enable_vpid || vpid == 0)
3739 return;
3740 spin_lock(&vmx_vpid_lock);
3741 __clear_bit(vpid, vmx_vpid_bitmap);
3742 spin_unlock(&vmx_vpid_lock);
3743 }
3744
vmx_clear_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3745 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3746 {
3747 int f = sizeof(unsigned long);
3748
3749 if (msr <= 0x1fff)
3750 __clear_bit(msr, msr_bitmap + 0x000 / f);
3751 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3752 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3753 }
3754
vmx_clear_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3755 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3756 {
3757 int f = sizeof(unsigned long);
3758
3759 if (msr <= 0x1fff)
3760 __clear_bit(msr, msr_bitmap + 0x800 / f);
3761 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3762 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3763 }
3764
vmx_set_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3765 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3766 {
3767 int f = sizeof(unsigned long);
3768
3769 if (msr <= 0x1fff)
3770 __set_bit(msr, msr_bitmap + 0x000 / f);
3771 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3772 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3773 }
3774
vmx_set_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3775 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3776 {
3777 int f = sizeof(unsigned long);
3778
3779 if (msr <= 0x1fff)
3780 __set_bit(msr, msr_bitmap + 0x800 / f);
3781 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3782 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3783 }
3784
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3785 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
3786 u32 msr, int type)
3787 {
3788 struct vcpu_vmx *vmx = to_vmx(vcpu);
3789 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3790
3791 if (!cpu_has_vmx_msr_bitmap())
3792 return;
3793
3794 if (static_branch_unlikely(&enable_evmcs))
3795 evmcs_touch_msr_bitmap();
3796
3797 /*
3798 * Mark the desired intercept state in shadow bitmap, this is needed
3799 * for resync when the MSR filters change.
3800 */
3801 if (is_valid_passthrough_msr(msr)) {
3802 int idx = possible_passthrough_msr_slot(msr);
3803
3804 if (idx != -ENOENT) {
3805 if (type & MSR_TYPE_R)
3806 clear_bit(idx, vmx->shadow_msr_intercept.read);
3807 if (type & MSR_TYPE_W)
3808 clear_bit(idx, vmx->shadow_msr_intercept.write);
3809 }
3810 }
3811
3812 if ((type & MSR_TYPE_R) &&
3813 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3814 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3815 type &= ~MSR_TYPE_R;
3816 }
3817
3818 if ((type & MSR_TYPE_W) &&
3819 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3820 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3821 type &= ~MSR_TYPE_W;
3822 }
3823
3824 if (type & MSR_TYPE_R)
3825 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3826
3827 if (type & MSR_TYPE_W)
3828 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3829 }
3830
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3831 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
3832 u32 msr, int type)
3833 {
3834 struct vcpu_vmx *vmx = to_vmx(vcpu);
3835 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3836
3837 if (!cpu_has_vmx_msr_bitmap())
3838 return;
3839
3840 if (static_branch_unlikely(&enable_evmcs))
3841 evmcs_touch_msr_bitmap();
3842
3843 /*
3844 * Mark the desired intercept state in shadow bitmap, this is needed
3845 * for resync when the MSR filter changes.
3846 */
3847 if (is_valid_passthrough_msr(msr)) {
3848 int idx = possible_passthrough_msr_slot(msr);
3849
3850 if (idx != -ENOENT) {
3851 if (type & MSR_TYPE_R)
3852 set_bit(idx, vmx->shadow_msr_intercept.read);
3853 if (type & MSR_TYPE_W)
3854 set_bit(idx, vmx->shadow_msr_intercept.write);
3855 }
3856 }
3857
3858 if (type & MSR_TYPE_R)
3859 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3860
3861 if (type & MSR_TYPE_W)
3862 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3863 }
3864
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool value)3865 static __always_inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu,
3866 u32 msr, int type, bool value)
3867 {
3868 if (value)
3869 vmx_enable_intercept_for_msr(vcpu, msr, type);
3870 else
3871 vmx_disable_intercept_for_msr(vcpu, msr, type);
3872 }
3873
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)3874 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3875 {
3876 u8 mode = 0;
3877
3878 if (cpu_has_secondary_exec_ctrls() &&
3879 (secondary_exec_controls_get(to_vmx(vcpu)) &
3880 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3881 mode |= MSR_BITMAP_MODE_X2APIC;
3882 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3883 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3884 }
3885
3886 return mode;
3887 }
3888
vmx_reset_x2apic_msrs(struct kvm_vcpu * vcpu,u8 mode)3889 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3890 {
3891 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3892 unsigned long read_intercept;
3893 int msr;
3894
3895 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3896
3897 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3898 unsigned int read_idx = msr / BITS_PER_LONG;
3899 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3900
3901 msr_bitmap[read_idx] = read_intercept;
3902 msr_bitmap[write_idx] = ~0ul;
3903 }
3904 }
3905
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu,u8 mode)3906 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3907 {
3908 if (!cpu_has_vmx_msr_bitmap())
3909 return;
3910
3911 vmx_reset_x2apic_msrs(vcpu, mode);
3912
3913 /*
3914 * TPR reads and writes can be virtualized even if virtual interrupt
3915 * delivery is not in use.
3916 */
3917 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3918 !(mode & MSR_BITMAP_MODE_X2APIC));
3919
3920 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3921 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3922 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3923 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3924 }
3925 }
3926
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)3927 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3928 {
3929 struct vcpu_vmx *vmx = to_vmx(vcpu);
3930 u8 mode = vmx_msr_bitmap_mode(vcpu);
3931 u8 changed = mode ^ vmx->msr_bitmap_mode;
3932
3933 if (!changed)
3934 return;
3935
3936 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3937 vmx_update_msr_bitmap_x2apic(vcpu, mode);
3938
3939 vmx->msr_bitmap_mode = mode;
3940 }
3941
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)3942 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3943 {
3944 struct vcpu_vmx *vmx = to_vmx(vcpu);
3945 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3946 u32 i;
3947
3948 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3949 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3950 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3951 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3952 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3953 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3954 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3955 }
3956 }
3957
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3958 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3959 {
3960 struct vcpu_vmx *vmx = to_vmx(vcpu);
3961 void *vapic_page;
3962 u32 vppr;
3963 int rvi;
3964
3965 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3966 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3967 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3968 return false;
3969
3970 rvi = vmx_get_rvi();
3971
3972 vapic_page = vmx->nested.virtual_apic_map.hva;
3973 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3974
3975 return ((rvi & 0xf0) > (vppr & 0xf0));
3976 }
3977
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)3978 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3979 {
3980 struct vcpu_vmx *vmx = to_vmx(vcpu);
3981 u32 i;
3982
3983 /*
3984 * Set intercept permissions for all potentially passed through MSRs
3985 * again. They will automatically get filtered through the MSR filter,
3986 * so we are back in sync after this.
3987 */
3988 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3989 u32 msr = vmx_possible_passthrough_msrs[i];
3990 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3991 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3992
3993 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3994 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3995 }
3996
3997 pt_update_intercept_for_msr(vcpu);
3998 vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
3999 }
4000
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)4001 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4002 bool nested)
4003 {
4004 #ifdef CONFIG_SMP
4005 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
4006
4007 if (vcpu->mode == IN_GUEST_MODE) {
4008 /*
4009 * The vector of interrupt to be delivered to vcpu had
4010 * been set in PIR before this function.
4011 *
4012 * Following cases will be reached in this block, and
4013 * we always send a notification event in all cases as
4014 * explained below.
4015 *
4016 * Case 1: vcpu keeps in non-root mode. Sending a
4017 * notification event posts the interrupt to vcpu.
4018 *
4019 * Case 2: vcpu exits to root mode and is still
4020 * runnable. PIR will be synced to vIRR before the
4021 * next vcpu entry. Sending a notification event in
4022 * this case has no effect, as vcpu is not in root
4023 * mode.
4024 *
4025 * Case 3: vcpu exits to root mode and is blocked.
4026 * vcpu_block() has already synced PIR to vIRR and
4027 * never blocks vcpu if vIRR is not cleared. Therefore,
4028 * a blocked vcpu here does not wait for any requested
4029 * interrupts in PIR, and sending a notification event
4030 * which has no effect is safe here.
4031 */
4032
4033 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4034 return true;
4035 }
4036 #endif
4037 return false;
4038 }
4039
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4040 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4041 int vector)
4042 {
4043 struct vcpu_vmx *vmx = to_vmx(vcpu);
4044
4045 if (is_guest_mode(vcpu) &&
4046 vector == vmx->nested.posted_intr_nv) {
4047 /*
4048 * If a posted intr is not recognized by hardware,
4049 * we will accomplish it in the next vmentry.
4050 */
4051 vmx->nested.pi_pending = true;
4052 kvm_make_request(KVM_REQ_EVENT, vcpu);
4053 /* the PIR and ON have been set by L1. */
4054 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
4055 kvm_vcpu_kick(vcpu);
4056 return 0;
4057 }
4058 return -1;
4059 }
4060 /*
4061 * Send interrupt to vcpu via posted interrupt way.
4062 * 1. If target vcpu is running(non-root mode), send posted interrupt
4063 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4064 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4065 * interrupt from PIR in next vmentry.
4066 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4067 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4068 {
4069 struct vcpu_vmx *vmx = to_vmx(vcpu);
4070 int r;
4071
4072 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4073 if (!r)
4074 return 0;
4075
4076 if (!vcpu->arch.apicv_active)
4077 return -1;
4078
4079 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4080 return 0;
4081
4082 /* If a previous notification has sent the IPI, nothing to do. */
4083 if (pi_test_and_set_on(&vmx->pi_desc))
4084 return 0;
4085
4086 if (vcpu != kvm_get_running_vcpu() &&
4087 !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4088 kvm_vcpu_kick(vcpu);
4089
4090 return 0;
4091 }
4092
4093 /*
4094 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4095 * will not change in the lifetime of the guest.
4096 * Note that host-state that does change is set elsewhere. E.g., host-state
4097 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4098 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4099 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4100 {
4101 u32 low32, high32;
4102 unsigned long tmpl;
4103 unsigned long cr0, cr3, cr4;
4104
4105 cr0 = read_cr0();
4106 WARN_ON(cr0 & X86_CR0_TS);
4107 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4108
4109 /*
4110 * Save the most likely value for this task's CR3 in the VMCS.
4111 * We can't use __get_current_cr3_fast() because we're not atomic.
4112 */
4113 cr3 = __read_cr3();
4114 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4115 vmx->loaded_vmcs->host_state.cr3 = cr3;
4116
4117 /* Save the most likely value for this task's CR4 in the VMCS. */
4118 cr4 = cr4_read_shadow();
4119 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4120 vmx->loaded_vmcs->host_state.cr4 = cr4;
4121
4122 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4123 #ifdef CONFIG_X86_64
4124 /*
4125 * Load null selectors, so we can avoid reloading them in
4126 * vmx_prepare_switch_to_host(), in case userspace uses
4127 * the null selectors too (the expected case).
4128 */
4129 vmcs_write16(HOST_DS_SELECTOR, 0);
4130 vmcs_write16(HOST_ES_SELECTOR, 0);
4131 #else
4132 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4133 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4134 #endif
4135 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4136 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4137
4138 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4139
4140 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4141
4142 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4143 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4144 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4145 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4146
4147 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4148 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4149 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4150 }
4151
4152 if (cpu_has_load_ia32_efer())
4153 vmcs_write64(HOST_IA32_EFER, host_efer);
4154 }
4155
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4156 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4157 {
4158 struct kvm_vcpu *vcpu = &vmx->vcpu;
4159
4160 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4161 ~vcpu->arch.cr4_guest_rsvd_bits;
4162 if (!enable_ept)
4163 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4164 if (is_guest_mode(&vmx->vcpu))
4165 vcpu->arch.cr4_guest_owned_bits &=
4166 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4167 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4168 }
4169
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4170 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4171 {
4172 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4173
4174 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4175 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4176
4177 if (!enable_vnmi)
4178 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4179
4180 if (!enable_preemption_timer)
4181 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4182
4183 return pin_based_exec_ctrl;
4184 }
4185
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4186 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4187 {
4188 struct vcpu_vmx *vmx = to_vmx(vcpu);
4189
4190 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4191 if (cpu_has_secondary_exec_ctrls()) {
4192 if (kvm_vcpu_apicv_active(vcpu))
4193 secondary_exec_controls_setbit(vmx,
4194 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4195 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4196 else
4197 secondary_exec_controls_clearbit(vmx,
4198 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4199 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4200 }
4201
4202 if (cpu_has_vmx_msr_bitmap())
4203 vmx_update_msr_bitmap(vcpu);
4204 }
4205
vmx_exec_control(struct vcpu_vmx * vmx)4206 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4207 {
4208 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4209
4210 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4211 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4212
4213 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4214 exec_control &= ~CPU_BASED_TPR_SHADOW;
4215 #ifdef CONFIG_X86_64
4216 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4217 CPU_BASED_CR8_LOAD_EXITING;
4218 #endif
4219 }
4220 if (!enable_ept)
4221 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4222 CPU_BASED_CR3_LOAD_EXITING |
4223 CPU_BASED_INVLPG_EXITING;
4224 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4225 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4226 CPU_BASED_MONITOR_EXITING);
4227 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4228 exec_control &= ~CPU_BASED_HLT_EXITING;
4229 return exec_control;
4230 }
4231
4232 /*
4233 * Adjust a single secondary execution control bit to intercept/allow an
4234 * instruction in the guest. This is usually done based on whether or not a
4235 * feature has been exposed to the guest in order to correctly emulate faults.
4236 */
4237 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4238 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4239 u32 control, bool enabled, bool exiting)
4240 {
4241 /*
4242 * If the control is for an opt-in feature, clear the control if the
4243 * feature is not exposed to the guest, i.e. not enabled. If the
4244 * control is opt-out, i.e. an exiting control, clear the control if
4245 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4246 * disabled for the associated instruction. Note, the caller is
4247 * responsible presetting exec_control to set all supported bits.
4248 */
4249 if (enabled == exiting)
4250 *exec_control &= ~control;
4251
4252 /*
4253 * Update the nested MSR settings so that a nested VMM can/can't set
4254 * controls for features that are/aren't exposed to the guest.
4255 */
4256 if (nested) {
4257 if (enabled)
4258 vmx->nested.msrs.secondary_ctls_high |= control;
4259 else
4260 vmx->nested.msrs.secondary_ctls_high &= ~control;
4261 }
4262 }
4263
4264 /*
4265 * Wrapper macro for the common case of adjusting a secondary execution control
4266 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4267 * verifies that the control is actually supported by KVM and hardware.
4268 */
4269 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4270 ({ \
4271 bool __enabled; \
4272 \
4273 if (cpu_has_vmx_##name()) { \
4274 __enabled = guest_cpuid_has(&(vmx)->vcpu, \
4275 X86_FEATURE_##feat_name); \
4276 vmx_adjust_secondary_exec_control(vmx, exec_control, \
4277 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4278 } \
4279 })
4280
4281 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4282 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4283 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4284
4285 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4286 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4287
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)4288 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4289 {
4290 struct kvm_vcpu *vcpu = &vmx->vcpu;
4291
4292 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4293
4294 if (vmx_pt_mode_is_system())
4295 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4296 if (!cpu_need_virtualize_apic_accesses(vcpu))
4297 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4298 if (vmx->vpid == 0)
4299 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4300 if (!enable_ept) {
4301 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4302 enable_unrestricted_guest = 0;
4303 }
4304 if (!enable_unrestricted_guest)
4305 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4306 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4307 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4308 if (!kvm_vcpu_apicv_active(vcpu))
4309 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4310 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4311 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4312
4313 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4314 * in vmx_set_cr4. */
4315 exec_control &= ~SECONDARY_EXEC_DESC;
4316
4317 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4318 (handle_vmptrld).
4319 We can NOT enable shadow_vmcs here because we don't have yet
4320 a current VMCS12
4321 */
4322 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4323
4324 if (!enable_pml)
4325 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4326
4327 if (cpu_has_vmx_xsaves()) {
4328 /* Exposing XSAVES only when XSAVE is exposed */
4329 bool xsaves_enabled =
4330 boot_cpu_has(X86_FEATURE_XSAVE) &&
4331 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4332 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4333
4334 vcpu->arch.xsaves_enabled = xsaves_enabled;
4335
4336 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4337 SECONDARY_EXEC_XSAVES,
4338 xsaves_enabled, false);
4339 }
4340
4341 vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
4342
4343 /*
4344 * Expose INVPCID if and only if PCID is also exposed to the guest.
4345 * INVPCID takes a #UD when it's disabled in the VMCS, but a #GP or #PF
4346 * if CR4.PCIDE=0. Enumerating CPUID.INVPCID=1 would lead to incorrect
4347 * behavior from the guest perspective (it would expect #GP or #PF).
4348 */
4349 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
4350 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4351 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4352
4353
4354 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4355 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4356
4357 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4358 ENABLE_USR_WAIT_PAUSE, false);
4359
4360 vmx->secondary_exec_control = exec_control;
4361 }
4362
ept_set_mmio_spte_mask(void)4363 static void ept_set_mmio_spte_mask(void)
4364 {
4365 /*
4366 * EPT Misconfigurations can be generated if the value of bits 2:0
4367 * of an EPT paging-structure entry is 110b (write/execute).
4368 */
4369 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4370 }
4371
4372 #define VMX_XSS_EXIT_BITMAP 0
4373
4374 /*
4375 * Noting that the initialization of Guest-state Area of VMCS is in
4376 * vmx_vcpu_reset().
4377 */
init_vmcs(struct vcpu_vmx * vmx)4378 static void init_vmcs(struct vcpu_vmx *vmx)
4379 {
4380 if (nested)
4381 nested_vmx_set_vmcs_shadowing_bitmap();
4382
4383 if (cpu_has_vmx_msr_bitmap())
4384 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4385
4386 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4387
4388 /* Control */
4389 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4390
4391 exec_controls_set(vmx, vmx_exec_control(vmx));
4392
4393 if (cpu_has_secondary_exec_ctrls()) {
4394 vmx_compute_secondary_exec_control(vmx);
4395 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4396 }
4397
4398 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4399 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4400 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4401 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4402 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4403
4404 vmcs_write16(GUEST_INTR_STATUS, 0);
4405
4406 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4407 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4408 }
4409
4410 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4411 vmcs_write32(PLE_GAP, ple_gap);
4412 vmx->ple_window = ple_window;
4413 vmx->ple_window_dirty = true;
4414 }
4415
4416 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4417 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4418 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4419
4420 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4421 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4422 vmx_set_constant_host_state(vmx);
4423 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4424 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4425
4426 if (cpu_has_vmx_vmfunc())
4427 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4428
4429 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4430 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4431 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4432 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4433 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4434
4435 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4436 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4437
4438 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4439
4440 /* 22.2.1, 20.8.1 */
4441 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4442
4443 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4444 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4445
4446 set_cr4_guest_host_mask(vmx);
4447
4448 if (vmx->vpid != 0)
4449 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4450
4451 if (cpu_has_vmx_xsaves())
4452 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4453
4454 if (enable_pml) {
4455 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4456 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4457 }
4458
4459 if (cpu_has_vmx_encls_vmexit())
4460 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4461
4462 if (vmx_pt_mode_is_host_guest()) {
4463 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4464 /* Bit[6~0] are forced to 1, writes are ignored. */
4465 vmx->pt_desc.guest.output_mask = 0x7F;
4466 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4467 }
4468 }
4469
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4470 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4471 {
4472 struct vcpu_vmx *vmx = to_vmx(vcpu);
4473 struct msr_data apic_base_msr;
4474 u64 cr0;
4475
4476 vmx->rmode.vm86_active = 0;
4477 vmx->spec_ctrl = 0;
4478
4479 vmx->msr_ia32_umwait_control = 0;
4480
4481 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4482 vmx->hv_deadline_tsc = -1;
4483 kvm_set_cr8(vcpu, 0);
4484
4485 if (!init_event) {
4486 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4487 MSR_IA32_APICBASE_ENABLE;
4488 if (kvm_vcpu_is_reset_bsp(vcpu))
4489 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4490 apic_base_msr.host_initiated = true;
4491 kvm_set_apic_base(vcpu, &apic_base_msr);
4492 }
4493
4494 vmx_segment_cache_clear(vmx);
4495
4496 seg_setup(VCPU_SREG_CS);
4497 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4498 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4499
4500 seg_setup(VCPU_SREG_DS);
4501 seg_setup(VCPU_SREG_ES);
4502 seg_setup(VCPU_SREG_FS);
4503 seg_setup(VCPU_SREG_GS);
4504 seg_setup(VCPU_SREG_SS);
4505
4506 vmcs_write16(GUEST_TR_SELECTOR, 0);
4507 vmcs_writel(GUEST_TR_BASE, 0);
4508 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4509 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4510
4511 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4512 vmcs_writel(GUEST_LDTR_BASE, 0);
4513 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4514 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4515
4516 if (!init_event) {
4517 vmcs_write32(GUEST_SYSENTER_CS, 0);
4518 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4519 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4520 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4521 }
4522
4523 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4524 kvm_rip_write(vcpu, 0xfff0);
4525
4526 vmcs_writel(GUEST_GDTR_BASE, 0);
4527 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4528
4529 vmcs_writel(GUEST_IDTR_BASE, 0);
4530 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4531
4532 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4533 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4534 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4535 if (kvm_mpx_supported())
4536 vmcs_write64(GUEST_BNDCFGS, 0);
4537
4538 setup_msrs(vmx);
4539
4540 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4541
4542 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4543 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4544 if (cpu_need_tpr_shadow(vcpu))
4545 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4546 __pa(vcpu->arch.apic->regs));
4547 vmcs_write32(TPR_THRESHOLD, 0);
4548 }
4549
4550 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4551
4552 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4553 vmx->vcpu.arch.cr0 = cr0;
4554 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4555 vmx_set_cr4(vcpu, 0);
4556 vmx_set_efer(vcpu, 0);
4557
4558 update_exception_bitmap(vcpu);
4559
4560 vpid_sync_context(vmx->vpid);
4561 if (init_event)
4562 vmx_clear_hlt(vcpu);
4563
4564 vmx_update_fb_clear_dis(vcpu, vmx);
4565 }
4566
enable_irq_window(struct kvm_vcpu * vcpu)4567 static void enable_irq_window(struct kvm_vcpu *vcpu)
4568 {
4569 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4570 }
4571
enable_nmi_window(struct kvm_vcpu * vcpu)4572 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4573 {
4574 if (!enable_vnmi ||
4575 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4576 enable_irq_window(vcpu);
4577 return;
4578 }
4579
4580 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4581 }
4582
vmx_inject_irq(struct kvm_vcpu * vcpu)4583 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4584 {
4585 struct vcpu_vmx *vmx = to_vmx(vcpu);
4586 uint32_t intr;
4587 int irq = vcpu->arch.interrupt.nr;
4588
4589 trace_kvm_inj_virq(irq);
4590
4591 ++vcpu->stat.irq_injections;
4592 if (vmx->rmode.vm86_active) {
4593 int inc_eip = 0;
4594 if (vcpu->arch.interrupt.soft)
4595 inc_eip = vcpu->arch.event_exit_inst_len;
4596 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4597 return;
4598 }
4599 intr = irq | INTR_INFO_VALID_MASK;
4600 if (vcpu->arch.interrupt.soft) {
4601 intr |= INTR_TYPE_SOFT_INTR;
4602 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4603 vmx->vcpu.arch.event_exit_inst_len);
4604 } else
4605 intr |= INTR_TYPE_EXT_INTR;
4606 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4607
4608 vmx_clear_hlt(vcpu);
4609 }
4610
vmx_inject_nmi(struct kvm_vcpu * vcpu)4611 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4612 {
4613 struct vcpu_vmx *vmx = to_vmx(vcpu);
4614
4615 if (!enable_vnmi) {
4616 /*
4617 * Tracking the NMI-blocked state in software is built upon
4618 * finding the next open IRQ window. This, in turn, depends on
4619 * well-behaving guests: They have to keep IRQs disabled at
4620 * least as long as the NMI handler runs. Otherwise we may
4621 * cause NMI nesting, maybe breaking the guest. But as this is
4622 * highly unlikely, we can live with the residual risk.
4623 */
4624 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4625 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4626 }
4627
4628 ++vcpu->stat.nmi_injections;
4629 vmx->loaded_vmcs->nmi_known_unmasked = false;
4630
4631 if (vmx->rmode.vm86_active) {
4632 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4633 return;
4634 }
4635
4636 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4637 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4638
4639 vmx_clear_hlt(vcpu);
4640 }
4641
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4642 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4643 {
4644 struct vcpu_vmx *vmx = to_vmx(vcpu);
4645 bool masked;
4646
4647 if (!enable_vnmi)
4648 return vmx->loaded_vmcs->soft_vnmi_blocked;
4649 if (vmx->loaded_vmcs->nmi_known_unmasked)
4650 return false;
4651 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4652 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4653 return masked;
4654 }
4655
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4656 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4657 {
4658 struct vcpu_vmx *vmx = to_vmx(vcpu);
4659
4660 if (!enable_vnmi) {
4661 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4662 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4663 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4664 }
4665 } else {
4666 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4667 if (masked)
4668 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4669 GUEST_INTR_STATE_NMI);
4670 else
4671 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4672 GUEST_INTR_STATE_NMI);
4673 }
4674 }
4675
vmx_nmi_blocked(struct kvm_vcpu * vcpu)4676 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4677 {
4678 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4679 return false;
4680
4681 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4682 return true;
4683
4684 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4685 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4686 GUEST_INTR_STATE_NMI));
4687 }
4688
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4689 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4690 {
4691 if (to_vmx(vcpu)->nested.nested_run_pending)
4692 return -EBUSY;
4693
4694 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
4695 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4696 return -EBUSY;
4697
4698 return !vmx_nmi_blocked(vcpu);
4699 }
4700
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4701 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4702 {
4703 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4704 return false;
4705
4706 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4707 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4708 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4709 }
4710
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)4711 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4712 {
4713 if (to_vmx(vcpu)->nested.nested_run_pending)
4714 return -EBUSY;
4715
4716 /*
4717 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4718 * e.g. if the IRQ arrived asynchronously after checking nested events.
4719 */
4720 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4721 return -EBUSY;
4722
4723 return !vmx_interrupt_blocked(vcpu);
4724 }
4725
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4726 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4727 {
4728 int ret;
4729
4730 if (enable_unrestricted_guest)
4731 return 0;
4732
4733 mutex_lock(&kvm->slots_lock);
4734 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4735 PAGE_SIZE * 3);
4736 mutex_unlock(&kvm->slots_lock);
4737
4738 if (ret)
4739 return ret;
4740 to_kvm_vmx(kvm)->tss_addr = addr;
4741 return init_rmode_tss(kvm);
4742 }
4743
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4744 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4745 {
4746 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4747 return 0;
4748 }
4749
rmode_exception(struct kvm_vcpu * vcpu,int vec)4750 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4751 {
4752 switch (vec) {
4753 case BP_VECTOR:
4754 /*
4755 * Update instruction length as we may reinject the exception
4756 * from user space while in guest debugging mode.
4757 */
4758 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4759 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4760 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4761 return false;
4762 fallthrough;
4763 case DB_VECTOR:
4764 return !(vcpu->guest_debug &
4765 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4766 case DE_VECTOR:
4767 case OF_VECTOR:
4768 case BR_VECTOR:
4769 case UD_VECTOR:
4770 case DF_VECTOR:
4771 case SS_VECTOR:
4772 case GP_VECTOR:
4773 case MF_VECTOR:
4774 return true;
4775 }
4776 return false;
4777 }
4778
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)4779 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4780 int vec, u32 err_code)
4781 {
4782 /*
4783 * Instruction with address size override prefix opcode 0x67
4784 * Cause the #SS fault with 0 error code in VM86 mode.
4785 */
4786 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4787 if (kvm_emulate_instruction(vcpu, 0)) {
4788 if (vcpu->arch.halt_request) {
4789 vcpu->arch.halt_request = 0;
4790 return kvm_vcpu_halt(vcpu);
4791 }
4792 return 1;
4793 }
4794 return 0;
4795 }
4796
4797 /*
4798 * Forward all other exceptions that are valid in real mode.
4799 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4800 * the required debugging infrastructure rework.
4801 */
4802 kvm_queue_exception(vcpu, vec);
4803 return 1;
4804 }
4805
4806 /*
4807 * Trigger machine check on the host. We assume all the MSRs are already set up
4808 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4809 * We pass a fake environment to the machine check handler because we want
4810 * the guest to be always treated like user space, no matter what context
4811 * it used internally.
4812 */
kvm_machine_check(void)4813 static void kvm_machine_check(void)
4814 {
4815 #if defined(CONFIG_X86_MCE)
4816 struct pt_regs regs = {
4817 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4818 .flags = X86_EFLAGS_IF,
4819 };
4820
4821 do_machine_check(®s);
4822 #endif
4823 }
4824
handle_machine_check(struct kvm_vcpu * vcpu)4825 static int handle_machine_check(struct kvm_vcpu *vcpu)
4826 {
4827 /* handled by vmx_vcpu_run() */
4828 return 1;
4829 }
4830
4831 /*
4832 * If the host has split lock detection disabled, then #AC is
4833 * unconditionally injected into the guest, which is the pre split lock
4834 * detection behaviour.
4835 *
4836 * If the host has split lock detection enabled then #AC is
4837 * only injected into the guest when:
4838 * - Guest CPL == 3 (user mode)
4839 * - Guest has #AC detection enabled in CR0
4840 * - Guest EFLAGS has AC bit set
4841 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)4842 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4843 {
4844 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4845 return true;
4846
4847 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4848 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4849 }
4850
handle_exception_nmi(struct kvm_vcpu * vcpu)4851 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4852 {
4853 struct vcpu_vmx *vmx = to_vmx(vcpu);
4854 struct kvm_run *kvm_run = vcpu->run;
4855 u32 intr_info, ex_no, error_code;
4856 unsigned long cr2, rip, dr6;
4857 u32 vect_info;
4858
4859 vect_info = vmx->idt_vectoring_info;
4860 intr_info = vmx_get_intr_info(vcpu);
4861
4862 if (is_machine_check(intr_info) || is_nmi(intr_info))
4863 return 1; /* handled by handle_exception_nmi_irqoff() */
4864
4865 if (is_invalid_opcode(intr_info))
4866 return handle_ud(vcpu);
4867
4868 error_code = 0;
4869 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4870 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4871
4872 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4873 WARN_ON_ONCE(!enable_vmware_backdoor);
4874
4875 /*
4876 * VMware backdoor emulation on #GP interception only handles
4877 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4878 * error code on #GP.
4879 */
4880 if (error_code) {
4881 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4882 return 1;
4883 }
4884 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4885 }
4886
4887 /*
4888 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4889 * MMIO, it is better to report an internal error.
4890 * See the comments in vmx_handle_exit.
4891 */
4892 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4893 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4894 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4895 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4896 vcpu->run->internal.ndata = 4;
4897 vcpu->run->internal.data[0] = vect_info;
4898 vcpu->run->internal.data[1] = intr_info;
4899 vcpu->run->internal.data[2] = error_code;
4900 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4901 return 0;
4902 }
4903
4904 if (is_page_fault(intr_info)) {
4905 cr2 = vmx_get_exit_qual(vcpu);
4906 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4907 /*
4908 * EPT will cause page fault only if we need to
4909 * detect illegal GPAs.
4910 */
4911 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4912 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4913 return 1;
4914 } else
4915 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4916 }
4917
4918 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4919
4920 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4921 return handle_rmode_exception(vcpu, ex_no, error_code);
4922
4923 switch (ex_no) {
4924 case DB_VECTOR:
4925 dr6 = vmx_get_exit_qual(vcpu);
4926 if (!(vcpu->guest_debug &
4927 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4928 if (is_icebp(intr_info))
4929 WARN_ON(!skip_emulated_instruction(vcpu));
4930
4931 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4932 return 1;
4933 }
4934 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4935 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4936 fallthrough;
4937 case BP_VECTOR:
4938 /*
4939 * Update instruction length as we may reinject #BP from
4940 * user space while in guest debugging mode. Reading it for
4941 * #DB as well causes no harm, it is not used in that case.
4942 */
4943 vmx->vcpu.arch.event_exit_inst_len =
4944 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4945 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4946 rip = kvm_rip_read(vcpu);
4947 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4948 kvm_run->debug.arch.exception = ex_no;
4949 break;
4950 case AC_VECTOR:
4951 if (vmx_guest_inject_ac(vcpu)) {
4952 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4953 return 1;
4954 }
4955
4956 /*
4957 * Handle split lock. Depending on detection mode this will
4958 * either warn and disable split lock detection for this
4959 * task or force SIGBUS on it.
4960 */
4961 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4962 return 1;
4963 fallthrough;
4964 default:
4965 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4966 kvm_run->ex.exception = ex_no;
4967 kvm_run->ex.error_code = error_code;
4968 break;
4969 }
4970 return 0;
4971 }
4972
handle_external_interrupt(struct kvm_vcpu * vcpu)4973 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4974 {
4975 ++vcpu->stat.irq_exits;
4976 return 1;
4977 }
4978
handle_triple_fault(struct kvm_vcpu * vcpu)4979 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4980 {
4981 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4982 vcpu->mmio_needed = 0;
4983 return 0;
4984 }
4985
handle_io(struct kvm_vcpu * vcpu)4986 static int handle_io(struct kvm_vcpu *vcpu)
4987 {
4988 unsigned long exit_qualification;
4989 int size, in, string;
4990 unsigned port;
4991
4992 exit_qualification = vmx_get_exit_qual(vcpu);
4993 string = (exit_qualification & 16) != 0;
4994
4995 ++vcpu->stat.io_exits;
4996
4997 if (string)
4998 return kvm_emulate_instruction(vcpu, 0);
4999
5000 port = exit_qualification >> 16;
5001 size = (exit_qualification & 7) + 1;
5002 in = (exit_qualification & 8) != 0;
5003
5004 return kvm_fast_pio(vcpu, size, port, in);
5005 }
5006
5007 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5008 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5009 {
5010 /*
5011 * Patch in the VMCALL instruction:
5012 */
5013 hypercall[0] = 0x0f;
5014 hypercall[1] = 0x01;
5015 hypercall[2] = 0xc1;
5016 }
5017
5018 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5019 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5020 {
5021 if (is_guest_mode(vcpu)) {
5022 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5023 unsigned long orig_val = val;
5024
5025 /*
5026 * We get here when L2 changed cr0 in a way that did not change
5027 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5028 * but did change L0 shadowed bits. So we first calculate the
5029 * effective cr0 value that L1 would like to write into the
5030 * hardware. It consists of the L2-owned bits from the new
5031 * value combined with the L1-owned bits from L1's guest_cr0.
5032 */
5033 val = (val & ~vmcs12->cr0_guest_host_mask) |
5034 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5035
5036 if (!nested_guest_cr0_valid(vcpu, val))
5037 return 1;
5038
5039 if (kvm_set_cr0(vcpu, val))
5040 return 1;
5041 vmcs_writel(CR0_READ_SHADOW, orig_val);
5042 return 0;
5043 } else {
5044 if (to_vmx(vcpu)->nested.vmxon &&
5045 !nested_host_cr0_valid(vcpu, val))
5046 return 1;
5047
5048 return kvm_set_cr0(vcpu, val);
5049 }
5050 }
5051
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5052 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5053 {
5054 if (is_guest_mode(vcpu)) {
5055 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5056 unsigned long orig_val = val;
5057
5058 /* analogously to handle_set_cr0 */
5059 val = (val & ~vmcs12->cr4_guest_host_mask) |
5060 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5061 if (kvm_set_cr4(vcpu, val))
5062 return 1;
5063 vmcs_writel(CR4_READ_SHADOW, orig_val);
5064 return 0;
5065 } else
5066 return kvm_set_cr4(vcpu, val);
5067 }
5068
handle_desc(struct kvm_vcpu * vcpu)5069 static int handle_desc(struct kvm_vcpu *vcpu)
5070 {
5071 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5072 return kvm_emulate_instruction(vcpu, 0);
5073 }
5074
handle_cr(struct kvm_vcpu * vcpu)5075 static int handle_cr(struct kvm_vcpu *vcpu)
5076 {
5077 unsigned long exit_qualification, val;
5078 int cr;
5079 int reg;
5080 int err;
5081 int ret;
5082
5083 exit_qualification = vmx_get_exit_qual(vcpu);
5084 cr = exit_qualification & 15;
5085 reg = (exit_qualification >> 8) & 15;
5086 switch ((exit_qualification >> 4) & 3) {
5087 case 0: /* mov to cr */
5088 val = kvm_register_readl(vcpu, reg);
5089 trace_kvm_cr_write(cr, val);
5090 switch (cr) {
5091 case 0:
5092 err = handle_set_cr0(vcpu, val);
5093 return kvm_complete_insn_gp(vcpu, err);
5094 case 3:
5095 WARN_ON_ONCE(enable_unrestricted_guest);
5096 err = kvm_set_cr3(vcpu, val);
5097 return kvm_complete_insn_gp(vcpu, err);
5098 case 4:
5099 err = handle_set_cr4(vcpu, val);
5100 return kvm_complete_insn_gp(vcpu, err);
5101 case 8: {
5102 u8 cr8_prev = kvm_get_cr8(vcpu);
5103 u8 cr8 = (u8)val;
5104 err = kvm_set_cr8(vcpu, cr8);
5105 ret = kvm_complete_insn_gp(vcpu, err);
5106 if (lapic_in_kernel(vcpu))
5107 return ret;
5108 if (cr8_prev <= cr8)
5109 return ret;
5110 /*
5111 * TODO: we might be squashing a
5112 * KVM_GUESTDBG_SINGLESTEP-triggered
5113 * KVM_EXIT_DEBUG here.
5114 */
5115 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5116 return 0;
5117 }
5118 }
5119 break;
5120 case 2: /* clts */
5121 WARN_ONCE(1, "Guest should always own CR0.TS");
5122 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5123 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5124 return kvm_skip_emulated_instruction(vcpu);
5125 case 1: /*mov from cr*/
5126 switch (cr) {
5127 case 3:
5128 WARN_ON_ONCE(enable_unrestricted_guest);
5129 val = kvm_read_cr3(vcpu);
5130 kvm_register_write(vcpu, reg, val);
5131 trace_kvm_cr_read(cr, val);
5132 return kvm_skip_emulated_instruction(vcpu);
5133 case 8:
5134 val = kvm_get_cr8(vcpu);
5135 kvm_register_write(vcpu, reg, val);
5136 trace_kvm_cr_read(cr, val);
5137 return kvm_skip_emulated_instruction(vcpu);
5138 }
5139 break;
5140 case 3: /* lmsw */
5141 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5142 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5143 kvm_lmsw(vcpu, val);
5144
5145 return kvm_skip_emulated_instruction(vcpu);
5146 default:
5147 break;
5148 }
5149 vcpu->run->exit_reason = 0;
5150 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5151 (int)(exit_qualification >> 4) & 3, cr);
5152 return 0;
5153 }
5154
handle_dr(struct kvm_vcpu * vcpu)5155 static int handle_dr(struct kvm_vcpu *vcpu)
5156 {
5157 unsigned long exit_qualification;
5158 int dr, dr7, reg;
5159
5160 exit_qualification = vmx_get_exit_qual(vcpu);
5161 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5162
5163 /* First, if DR does not exist, trigger UD */
5164 if (!kvm_require_dr(vcpu, dr))
5165 return 1;
5166
5167 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5168 if (!kvm_require_cpl(vcpu, 0))
5169 return 1;
5170 dr7 = vmcs_readl(GUEST_DR7);
5171 if (dr7 & DR7_GD) {
5172 /*
5173 * As the vm-exit takes precedence over the debug trap, we
5174 * need to emulate the latter, either for the host or the
5175 * guest debugging itself.
5176 */
5177 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5178 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5179 vcpu->run->debug.arch.dr7 = dr7;
5180 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5181 vcpu->run->debug.arch.exception = DB_VECTOR;
5182 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5183 return 0;
5184 } else {
5185 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5186 return 1;
5187 }
5188 }
5189
5190 if (vcpu->guest_debug == 0) {
5191 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5192
5193 /*
5194 * No more DR vmexits; force a reload of the debug registers
5195 * and reenter on this instruction. The next vmexit will
5196 * retrieve the full state of the debug registers.
5197 */
5198 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5199 return 1;
5200 }
5201
5202 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5203 if (exit_qualification & TYPE_MOV_FROM_DR) {
5204 unsigned long val;
5205
5206 if (kvm_get_dr(vcpu, dr, &val))
5207 return 1;
5208 kvm_register_write(vcpu, reg, val);
5209 } else
5210 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5211 return 1;
5212
5213 return kvm_skip_emulated_instruction(vcpu);
5214 }
5215
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5216 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5217 {
5218 get_debugreg(vcpu->arch.db[0], 0);
5219 get_debugreg(vcpu->arch.db[1], 1);
5220 get_debugreg(vcpu->arch.db[2], 2);
5221 get_debugreg(vcpu->arch.db[3], 3);
5222 get_debugreg(vcpu->arch.dr6, 6);
5223 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5224
5225 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5226 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5227 }
5228
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5229 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5230 {
5231 vmcs_writel(GUEST_DR7, val);
5232 }
5233
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5234 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5235 {
5236 kvm_apic_update_ppr(vcpu);
5237 return 1;
5238 }
5239
handle_interrupt_window(struct kvm_vcpu * vcpu)5240 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5241 {
5242 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5243
5244 kvm_make_request(KVM_REQ_EVENT, vcpu);
5245
5246 ++vcpu->stat.irq_window_exits;
5247 return 1;
5248 }
5249
handle_vmcall(struct kvm_vcpu * vcpu)5250 static int handle_vmcall(struct kvm_vcpu *vcpu)
5251 {
5252 return kvm_emulate_hypercall(vcpu);
5253 }
5254
handle_invd(struct kvm_vcpu * vcpu)5255 static int handle_invd(struct kvm_vcpu *vcpu)
5256 {
5257 /* Treat an INVD instruction as a NOP and just skip it. */
5258 return kvm_skip_emulated_instruction(vcpu);
5259 }
5260
handle_invlpg(struct kvm_vcpu * vcpu)5261 static int handle_invlpg(struct kvm_vcpu *vcpu)
5262 {
5263 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5264
5265 kvm_mmu_invlpg(vcpu, exit_qualification);
5266 return kvm_skip_emulated_instruction(vcpu);
5267 }
5268
handle_rdpmc(struct kvm_vcpu * vcpu)5269 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5270 {
5271 int err;
5272
5273 err = kvm_rdpmc(vcpu);
5274 return kvm_complete_insn_gp(vcpu, err);
5275 }
5276
handle_wbinvd(struct kvm_vcpu * vcpu)5277 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5278 {
5279 return kvm_emulate_wbinvd(vcpu);
5280 }
5281
handle_xsetbv(struct kvm_vcpu * vcpu)5282 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5283 {
5284 u64 new_bv = kvm_read_edx_eax(vcpu);
5285 u32 index = kvm_rcx_read(vcpu);
5286
5287 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5288 return kvm_skip_emulated_instruction(vcpu);
5289 return 1;
5290 }
5291
handle_apic_access(struct kvm_vcpu * vcpu)5292 static int handle_apic_access(struct kvm_vcpu *vcpu)
5293 {
5294 if (likely(fasteoi)) {
5295 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5296 int access_type, offset;
5297
5298 access_type = exit_qualification & APIC_ACCESS_TYPE;
5299 offset = exit_qualification & APIC_ACCESS_OFFSET;
5300 /*
5301 * Sane guest uses MOV to write EOI, with written value
5302 * not cared. So make a short-circuit here by avoiding
5303 * heavy instruction emulation.
5304 */
5305 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5306 (offset == APIC_EOI)) {
5307 kvm_lapic_set_eoi(vcpu);
5308 return kvm_skip_emulated_instruction(vcpu);
5309 }
5310 }
5311 return kvm_emulate_instruction(vcpu, 0);
5312 }
5313
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5314 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5315 {
5316 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5317 int vector = exit_qualification & 0xff;
5318
5319 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5320 kvm_apic_set_eoi_accelerated(vcpu, vector);
5321 return 1;
5322 }
5323
handle_apic_write(struct kvm_vcpu * vcpu)5324 static int handle_apic_write(struct kvm_vcpu *vcpu)
5325 {
5326 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5327 u32 offset = exit_qualification & 0xfff;
5328
5329 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5330 kvm_apic_write_nodecode(vcpu, offset);
5331 return 1;
5332 }
5333
handle_task_switch(struct kvm_vcpu * vcpu)5334 static int handle_task_switch(struct kvm_vcpu *vcpu)
5335 {
5336 struct vcpu_vmx *vmx = to_vmx(vcpu);
5337 unsigned long exit_qualification;
5338 bool has_error_code = false;
5339 u32 error_code = 0;
5340 u16 tss_selector;
5341 int reason, type, idt_v, idt_index;
5342
5343 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5344 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5345 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5346
5347 exit_qualification = vmx_get_exit_qual(vcpu);
5348
5349 reason = (u32)exit_qualification >> 30;
5350 if (reason == TASK_SWITCH_GATE && idt_v) {
5351 switch (type) {
5352 case INTR_TYPE_NMI_INTR:
5353 vcpu->arch.nmi_injected = false;
5354 vmx_set_nmi_mask(vcpu, true);
5355 break;
5356 case INTR_TYPE_EXT_INTR:
5357 case INTR_TYPE_SOFT_INTR:
5358 kvm_clear_interrupt_queue(vcpu);
5359 break;
5360 case INTR_TYPE_HARD_EXCEPTION:
5361 if (vmx->idt_vectoring_info &
5362 VECTORING_INFO_DELIVER_CODE_MASK) {
5363 has_error_code = true;
5364 error_code =
5365 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5366 }
5367 fallthrough;
5368 case INTR_TYPE_SOFT_EXCEPTION:
5369 kvm_clear_exception_queue(vcpu);
5370 break;
5371 default:
5372 break;
5373 }
5374 }
5375 tss_selector = exit_qualification;
5376
5377 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5378 type != INTR_TYPE_EXT_INTR &&
5379 type != INTR_TYPE_NMI_INTR))
5380 WARN_ON(!skip_emulated_instruction(vcpu));
5381
5382 /*
5383 * TODO: What about debug traps on tss switch?
5384 * Are we supposed to inject them and update dr6?
5385 */
5386 return kvm_task_switch(vcpu, tss_selector,
5387 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5388 reason, has_error_code, error_code);
5389 }
5390
handle_ept_violation(struct kvm_vcpu * vcpu)5391 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5392 {
5393 unsigned long exit_qualification;
5394 gpa_t gpa;
5395 u64 error_code;
5396
5397 exit_qualification = vmx_get_exit_qual(vcpu);
5398
5399 /*
5400 * EPT violation happened while executing iret from NMI,
5401 * "blocked by NMI" bit has to be set before next VM entry.
5402 * There are errata that may cause this bit to not be set:
5403 * AAK134, BY25.
5404 */
5405 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5406 enable_vnmi &&
5407 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5408 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5409
5410 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5411 trace_kvm_page_fault(gpa, exit_qualification);
5412
5413 /* Is it a read fault? */
5414 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5415 ? PFERR_USER_MASK : 0;
5416 /* Is it a write fault? */
5417 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5418 ? PFERR_WRITE_MASK : 0;
5419 /* Is it a fetch fault? */
5420 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5421 ? PFERR_FETCH_MASK : 0;
5422 /* ept page table entry is present? */
5423 error_code |= (exit_qualification &
5424 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5425 EPT_VIOLATION_EXECUTABLE))
5426 ? PFERR_PRESENT_MASK : 0;
5427
5428 error_code |= (exit_qualification & 0x100) != 0 ?
5429 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5430
5431 vcpu->arch.exit_qualification = exit_qualification;
5432
5433 /*
5434 * Check that the GPA doesn't exceed physical memory limits, as that is
5435 * a guest page fault. We have to emulate the instruction here, because
5436 * if the illegal address is that of a paging structure, then
5437 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5438 * would also use advanced VM-exit information for EPT violations to
5439 * reconstruct the page fault error code.
5440 */
5441 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5442 return kvm_emulate_instruction(vcpu, 0);
5443
5444 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5445 }
5446
handle_ept_misconfig(struct kvm_vcpu * vcpu)5447 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5448 {
5449 gpa_t gpa;
5450
5451 /*
5452 * A nested guest cannot optimize MMIO vmexits, because we have an
5453 * nGPA here instead of the required GPA.
5454 */
5455 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5456 if (!is_guest_mode(vcpu) &&
5457 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5458 trace_kvm_fast_mmio(gpa);
5459 return kvm_skip_emulated_instruction(vcpu);
5460 }
5461
5462 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5463 }
5464
handle_nmi_window(struct kvm_vcpu * vcpu)5465 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5466 {
5467 WARN_ON_ONCE(!enable_vnmi);
5468 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5469 ++vcpu->stat.nmi_window_exits;
5470 kvm_make_request(KVM_REQ_EVENT, vcpu);
5471
5472 return 1;
5473 }
5474
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5475 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5476 {
5477 struct vcpu_vmx *vmx = to_vmx(vcpu);
5478 bool intr_window_requested;
5479 unsigned count = 130;
5480
5481 intr_window_requested = exec_controls_get(vmx) &
5482 CPU_BASED_INTR_WINDOW_EXITING;
5483
5484 while (vmx->emulation_required && count-- != 0) {
5485 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5486 return handle_interrupt_window(&vmx->vcpu);
5487
5488 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5489 return 1;
5490
5491 if (!kvm_emulate_instruction(vcpu, 0))
5492 return 0;
5493
5494 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5495 vcpu->arch.exception.pending) {
5496 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5497 vcpu->run->internal.suberror =
5498 KVM_INTERNAL_ERROR_EMULATION;
5499 vcpu->run->internal.ndata = 0;
5500 return 0;
5501 }
5502
5503 if (vcpu->arch.halt_request) {
5504 vcpu->arch.halt_request = 0;
5505 return kvm_vcpu_halt(vcpu);
5506 }
5507
5508 /*
5509 * Note, return 1 and not 0, vcpu_run() will invoke
5510 * xfer_to_guest_mode() which will create a proper return
5511 * code.
5512 */
5513 if (__xfer_to_guest_mode_work_pending())
5514 return 1;
5515 }
5516
5517 return 1;
5518 }
5519
grow_ple_window(struct kvm_vcpu * vcpu)5520 static void grow_ple_window(struct kvm_vcpu *vcpu)
5521 {
5522 struct vcpu_vmx *vmx = to_vmx(vcpu);
5523 unsigned int old = vmx->ple_window;
5524
5525 vmx->ple_window = __grow_ple_window(old, ple_window,
5526 ple_window_grow,
5527 ple_window_max);
5528
5529 if (vmx->ple_window != old) {
5530 vmx->ple_window_dirty = true;
5531 trace_kvm_ple_window_update(vcpu->vcpu_id,
5532 vmx->ple_window, old);
5533 }
5534 }
5535
shrink_ple_window(struct kvm_vcpu * vcpu)5536 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5537 {
5538 struct vcpu_vmx *vmx = to_vmx(vcpu);
5539 unsigned int old = vmx->ple_window;
5540
5541 vmx->ple_window = __shrink_ple_window(old, ple_window,
5542 ple_window_shrink,
5543 ple_window);
5544
5545 if (vmx->ple_window != old) {
5546 vmx->ple_window_dirty = true;
5547 trace_kvm_ple_window_update(vcpu->vcpu_id,
5548 vmx->ple_window, old);
5549 }
5550 }
5551
vmx_enable_tdp(void)5552 static void vmx_enable_tdp(void)
5553 {
5554 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5555 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5556 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5557 0ull, VMX_EPT_EXECUTABLE_MASK,
5558 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5559 VMX_EPT_RWX_MASK, 0ull);
5560
5561 ept_set_mmio_spte_mask();
5562 }
5563
5564 /*
5565 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5566 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5567 */
handle_pause(struct kvm_vcpu * vcpu)5568 static int handle_pause(struct kvm_vcpu *vcpu)
5569 {
5570 if (!kvm_pause_in_guest(vcpu->kvm))
5571 grow_ple_window(vcpu);
5572
5573 /*
5574 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5575 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5576 * never set PAUSE_EXITING and just set PLE if supported,
5577 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5578 */
5579 kvm_vcpu_on_spin(vcpu, true);
5580 return kvm_skip_emulated_instruction(vcpu);
5581 }
5582
handle_nop(struct kvm_vcpu * vcpu)5583 static int handle_nop(struct kvm_vcpu *vcpu)
5584 {
5585 return kvm_skip_emulated_instruction(vcpu);
5586 }
5587
handle_mwait(struct kvm_vcpu * vcpu)5588 static int handle_mwait(struct kvm_vcpu *vcpu)
5589 {
5590 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5591 return handle_nop(vcpu);
5592 }
5593
handle_invalid_op(struct kvm_vcpu * vcpu)5594 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5595 {
5596 kvm_queue_exception(vcpu, UD_VECTOR);
5597 return 1;
5598 }
5599
handle_monitor_trap(struct kvm_vcpu * vcpu)5600 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5601 {
5602 return 1;
5603 }
5604
handle_monitor(struct kvm_vcpu * vcpu)5605 static int handle_monitor(struct kvm_vcpu *vcpu)
5606 {
5607 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5608 return handle_nop(vcpu);
5609 }
5610
handle_invpcid(struct kvm_vcpu * vcpu)5611 static int handle_invpcid(struct kvm_vcpu *vcpu)
5612 {
5613 u32 vmx_instruction_info;
5614 unsigned long type;
5615 gva_t gva;
5616 struct {
5617 u64 pcid;
5618 u64 gla;
5619 } operand;
5620
5621 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5622 kvm_queue_exception(vcpu, UD_VECTOR);
5623 return 1;
5624 }
5625
5626 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5627 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5628
5629 if (type > 3) {
5630 kvm_inject_gp(vcpu, 0);
5631 return 1;
5632 }
5633
5634 /* According to the Intel instruction reference, the memory operand
5635 * is read even if it isn't needed (e.g., for type==all)
5636 */
5637 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5638 vmx_instruction_info, false,
5639 sizeof(operand), &gva))
5640 return 1;
5641
5642 return kvm_handle_invpcid(vcpu, type, gva);
5643 }
5644
handle_pml_full(struct kvm_vcpu * vcpu)5645 static int handle_pml_full(struct kvm_vcpu *vcpu)
5646 {
5647 unsigned long exit_qualification;
5648
5649 trace_kvm_pml_full(vcpu->vcpu_id);
5650
5651 exit_qualification = vmx_get_exit_qual(vcpu);
5652
5653 /*
5654 * PML buffer FULL happened while executing iret from NMI,
5655 * "blocked by NMI" bit has to be set before next VM entry.
5656 */
5657 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5658 enable_vnmi &&
5659 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5660 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5661 GUEST_INTR_STATE_NMI);
5662
5663 /*
5664 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5665 * here.., and there's no userspace involvement needed for PML.
5666 */
5667 return 1;
5668 }
5669
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)5670 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5671 {
5672 struct vcpu_vmx *vmx = to_vmx(vcpu);
5673
5674 if (!vmx->req_immediate_exit &&
5675 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5676 kvm_lapic_expired_hv_timer(vcpu);
5677 return EXIT_FASTPATH_REENTER_GUEST;
5678 }
5679
5680 return EXIT_FASTPATH_NONE;
5681 }
5682
handle_preemption_timer(struct kvm_vcpu * vcpu)5683 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5684 {
5685 handle_fastpath_preemption_timer(vcpu);
5686 return 1;
5687 }
5688
5689 /*
5690 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5691 * are overwritten by nested_vmx_setup() when nested=1.
5692 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5693 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5694 {
5695 kvm_queue_exception(vcpu, UD_VECTOR);
5696 return 1;
5697 }
5698
handle_encls(struct kvm_vcpu * vcpu)5699 static int handle_encls(struct kvm_vcpu *vcpu)
5700 {
5701 /*
5702 * SGX virtualization is not yet supported. There is no software
5703 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5704 * to prevent the guest from executing ENCLS.
5705 */
5706 kvm_queue_exception(vcpu, UD_VECTOR);
5707 return 1;
5708 }
5709
5710 /*
5711 * The exit handlers return 1 if the exit was handled fully and guest execution
5712 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5713 * to be done to userspace and return 0.
5714 */
5715 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5716 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5717 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5718 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5719 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5720 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5721 [EXIT_REASON_CR_ACCESS] = handle_cr,
5722 [EXIT_REASON_DR_ACCESS] = handle_dr,
5723 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
5724 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
5725 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
5726 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
5727 [EXIT_REASON_HLT] = kvm_emulate_halt,
5728 [EXIT_REASON_INVD] = handle_invd,
5729 [EXIT_REASON_INVLPG] = handle_invlpg,
5730 [EXIT_REASON_RDPMC] = handle_rdpmc,
5731 [EXIT_REASON_VMCALL] = handle_vmcall,
5732 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5733 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5734 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5735 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5736 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5737 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5738 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5739 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5740 [EXIT_REASON_VMON] = handle_vmx_instruction,
5741 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5742 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5743 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5744 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5745 [EXIT_REASON_WBINVD] = handle_wbinvd,
5746 [EXIT_REASON_XSETBV] = handle_xsetbv,
5747 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5748 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5749 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5750 [EXIT_REASON_LDTR_TR] = handle_desc,
5751 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5752 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5753 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5754 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5755 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5756 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5757 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5758 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5759 [EXIT_REASON_RDRAND] = handle_invalid_op,
5760 [EXIT_REASON_RDSEED] = handle_invalid_op,
5761 [EXIT_REASON_PML_FULL] = handle_pml_full,
5762 [EXIT_REASON_INVPCID] = handle_invpcid,
5763 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5764 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5765 [EXIT_REASON_ENCLS] = handle_encls,
5766 };
5767
5768 static const int kvm_vmx_max_exit_handlers =
5769 ARRAY_SIZE(kvm_vmx_exit_handlers);
5770
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)5771 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5772 u32 *intr_info, u32 *error_code)
5773 {
5774 struct vcpu_vmx *vmx = to_vmx(vcpu);
5775
5776 *info1 = vmx_get_exit_qual(vcpu);
5777 if (!(vmx->exit_reason.failed_vmentry)) {
5778 *info2 = vmx->idt_vectoring_info;
5779 *intr_info = vmx_get_intr_info(vcpu);
5780 if (is_exception_with_error_code(*intr_info))
5781 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5782 else
5783 *error_code = 0;
5784 } else {
5785 *info2 = 0;
5786 *intr_info = 0;
5787 *error_code = 0;
5788 }
5789 }
5790
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)5791 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5792 {
5793 if (vmx->pml_pg) {
5794 __free_page(vmx->pml_pg);
5795 vmx->pml_pg = NULL;
5796 }
5797 }
5798
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)5799 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5800 {
5801 struct vcpu_vmx *vmx = to_vmx(vcpu);
5802 u64 *pml_buf;
5803 u16 pml_idx;
5804
5805 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5806
5807 /* Do nothing if PML buffer is empty */
5808 if (pml_idx == (PML_ENTITY_NUM - 1))
5809 return;
5810
5811 /* PML index always points to next available PML buffer entity */
5812 if (pml_idx >= PML_ENTITY_NUM)
5813 pml_idx = 0;
5814 else
5815 pml_idx++;
5816
5817 pml_buf = page_address(vmx->pml_pg);
5818 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5819 u64 gpa;
5820
5821 gpa = pml_buf[pml_idx];
5822 WARN_ON(gpa & (PAGE_SIZE - 1));
5823 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5824 }
5825
5826 /* reset PML index */
5827 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5828 }
5829
5830 /*
5831 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5832 * Called before reporting dirty_bitmap to userspace.
5833 */
kvm_flush_pml_buffers(struct kvm * kvm)5834 static void kvm_flush_pml_buffers(struct kvm *kvm)
5835 {
5836 int i;
5837 struct kvm_vcpu *vcpu;
5838 /*
5839 * We only need to kick vcpu out of guest mode here, as PML buffer
5840 * is flushed at beginning of all VMEXITs, and it's obvious that only
5841 * vcpus running in guest are possible to have unflushed GPAs in PML
5842 * buffer.
5843 */
5844 kvm_for_each_vcpu(i, vcpu, kvm)
5845 kvm_vcpu_kick(vcpu);
5846 }
5847
vmx_dump_sel(char * name,uint32_t sel)5848 static void vmx_dump_sel(char *name, uint32_t sel)
5849 {
5850 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5851 name, vmcs_read16(sel),
5852 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5853 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5854 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5855 }
5856
vmx_dump_dtsel(char * name,uint32_t limit)5857 static void vmx_dump_dtsel(char *name, uint32_t limit)
5858 {
5859 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5860 name, vmcs_read32(limit),
5861 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5862 }
5863
dump_vmcs(void)5864 void dump_vmcs(void)
5865 {
5866 u32 vmentry_ctl, vmexit_ctl;
5867 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5868 unsigned long cr4;
5869
5870 if (!dump_invalid_vmcs) {
5871 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5872 return;
5873 }
5874
5875 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5876 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5877 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5878 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5879 cr4 = vmcs_readl(GUEST_CR4);
5880 secondary_exec_control = 0;
5881 if (cpu_has_secondary_exec_ctrls())
5882 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5883
5884 pr_err("*** Guest State ***\n");
5885 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5886 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5887 vmcs_readl(CR0_GUEST_HOST_MASK));
5888 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5889 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5890 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5891 if (cpu_has_vmx_ept()) {
5892 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5893 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5894 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5895 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5896 }
5897 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5898 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5899 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5900 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5901 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5902 vmcs_readl(GUEST_SYSENTER_ESP),
5903 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5904 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5905 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5906 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5907 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5908 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5909 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5910 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5911 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5912 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5913 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5914 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5915 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5916 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5917 vmcs_read64(GUEST_IA32_EFER),
5918 vmcs_read64(GUEST_IA32_PAT));
5919 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5920 vmcs_read64(GUEST_IA32_DEBUGCTL),
5921 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5922 if (cpu_has_load_perf_global_ctrl() &&
5923 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5924 pr_err("PerfGlobCtl = 0x%016llx\n",
5925 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5926 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5927 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5928 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5929 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5930 vmcs_read32(GUEST_ACTIVITY_STATE));
5931 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5932 pr_err("InterruptStatus = %04x\n",
5933 vmcs_read16(GUEST_INTR_STATUS));
5934
5935 pr_err("*** Host State ***\n");
5936 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5937 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5938 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5939 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5940 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5941 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5942 vmcs_read16(HOST_TR_SELECTOR));
5943 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5944 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5945 vmcs_readl(HOST_TR_BASE));
5946 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5947 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5948 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5949 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5950 vmcs_readl(HOST_CR4));
5951 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5952 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5953 vmcs_read32(HOST_IA32_SYSENTER_CS),
5954 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5955 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5956 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5957 vmcs_read64(HOST_IA32_EFER),
5958 vmcs_read64(HOST_IA32_PAT));
5959 if (cpu_has_load_perf_global_ctrl() &&
5960 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5961 pr_err("PerfGlobCtl = 0x%016llx\n",
5962 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5963
5964 pr_err("*** Control State ***\n");
5965 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5966 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5967 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5968 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5969 vmcs_read32(EXCEPTION_BITMAP),
5970 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5971 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5972 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5973 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5974 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5975 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5976 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5977 vmcs_read32(VM_EXIT_INTR_INFO),
5978 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5979 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5980 pr_err(" reason=%08x qualification=%016lx\n",
5981 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5982 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5983 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5984 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5985 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5986 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5987 pr_err("TSC Multiplier = 0x%016llx\n",
5988 vmcs_read64(TSC_MULTIPLIER));
5989 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5990 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5991 u16 status = vmcs_read16(GUEST_INTR_STATUS);
5992 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5993 }
5994 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5995 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5996 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5997 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5998 }
5999 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6000 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6001 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6002 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6003 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6004 pr_err("PLE Gap=%08x Window=%08x\n",
6005 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6006 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6007 pr_err("Virtual processor ID = 0x%04x\n",
6008 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6009 }
6010
6011 /*
6012 * The guest has exited. See if we can fix it or if we need userspace
6013 * assistance.
6014 */
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6015 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6016 {
6017 struct vcpu_vmx *vmx = to_vmx(vcpu);
6018 union vmx_exit_reason exit_reason = vmx->exit_reason;
6019 u32 vectoring_info = vmx->idt_vectoring_info;
6020 u16 exit_handler_index;
6021
6022 /*
6023 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6024 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6025 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6026 * mode as if vcpus is in root mode, the PML buffer must has been
6027 * flushed already.
6028 */
6029 if (enable_pml)
6030 vmx_flush_pml_buffer(vcpu);
6031
6032 /*
6033 * We should never reach this point with a pending nested VM-Enter, and
6034 * more specifically emulation of L2 due to invalid guest state (see
6035 * below) should never happen as that means we incorrectly allowed a
6036 * nested VM-Enter with an invalid vmcs12.
6037 */
6038 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6039
6040 /* If guest state is invalid, start emulating */
6041 if (vmx->emulation_required)
6042 return handle_invalid_guest_state(vcpu);
6043
6044 if (is_guest_mode(vcpu)) {
6045 /*
6046 * The host physical addresses of some pages of guest memory
6047 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6048 * Page). The CPU may write to these pages via their host
6049 * physical address while L2 is running, bypassing any
6050 * address-translation-based dirty tracking (e.g. EPT write
6051 * protection).
6052 *
6053 * Mark them dirty on every exit from L2 to prevent them from
6054 * getting out of sync with dirty tracking.
6055 */
6056 nested_mark_vmcs12_pages_dirty(vcpu);
6057
6058 if (nested_vmx_reflect_vmexit(vcpu))
6059 return 1;
6060 }
6061
6062 if (exit_reason.failed_vmentry) {
6063 dump_vmcs();
6064 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6065 vcpu->run->fail_entry.hardware_entry_failure_reason
6066 = exit_reason.full;
6067 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6068 return 0;
6069 }
6070
6071 if (unlikely(vmx->fail)) {
6072 dump_vmcs();
6073 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6074 vcpu->run->fail_entry.hardware_entry_failure_reason
6075 = vmcs_read32(VM_INSTRUCTION_ERROR);
6076 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6077 return 0;
6078 }
6079
6080 /*
6081 * Note:
6082 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6083 * delivery event since it indicates guest is accessing MMIO.
6084 * The vm-exit can be triggered again after return to guest that
6085 * will cause infinite loop.
6086 */
6087 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6088 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6089 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6090 exit_reason.basic != EXIT_REASON_PML_FULL &&
6091 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6092 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6093 int ndata = 3;
6094
6095 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6096 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6097 vcpu->run->internal.data[0] = vectoring_info;
6098 vcpu->run->internal.data[1] = exit_reason.full;
6099 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6100 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6101 vcpu->run->internal.data[ndata++] =
6102 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6103 }
6104 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6105 vcpu->run->internal.ndata = ndata;
6106 return 0;
6107 }
6108
6109 if (unlikely(!enable_vnmi &&
6110 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6111 if (!vmx_interrupt_blocked(vcpu)) {
6112 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6113 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6114 vcpu->arch.nmi_pending) {
6115 /*
6116 * This CPU don't support us in finding the end of an
6117 * NMI-blocked window if the guest runs with IRQs
6118 * disabled. So we pull the trigger after 1 s of
6119 * futile waiting, but inform the user about this.
6120 */
6121 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6122 "state on VCPU %d after 1 s timeout\n",
6123 __func__, vcpu->vcpu_id);
6124 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6125 }
6126 }
6127
6128 if (exit_fastpath != EXIT_FASTPATH_NONE)
6129 return 1;
6130
6131 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6132 goto unexpected_vmexit;
6133 #ifdef CONFIG_RETPOLINE
6134 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6135 return kvm_emulate_wrmsr(vcpu);
6136 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6137 return handle_preemption_timer(vcpu);
6138 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6139 return handle_interrupt_window(vcpu);
6140 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6141 return handle_external_interrupt(vcpu);
6142 else if (exit_reason.basic == EXIT_REASON_HLT)
6143 return kvm_emulate_halt(vcpu);
6144 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6145 return handle_ept_misconfig(vcpu);
6146 #endif
6147
6148 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6149 kvm_vmx_max_exit_handlers);
6150 if (!kvm_vmx_exit_handlers[exit_handler_index])
6151 goto unexpected_vmexit;
6152
6153 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6154
6155 unexpected_vmexit:
6156 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6157 exit_reason.full);
6158 dump_vmcs();
6159 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6160 vcpu->run->internal.suberror =
6161 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6162 vcpu->run->internal.ndata = 2;
6163 vcpu->run->internal.data[0] = exit_reason.full;
6164 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6165 return 0;
6166 }
6167
6168 /*
6169 * Software based L1D cache flush which is used when microcode providing
6170 * the cache control MSR is not loaded.
6171 *
6172 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6173 * flush it is required to read in 64 KiB because the replacement algorithm
6174 * is not exactly LRU. This could be sized at runtime via topology
6175 * information but as all relevant affected CPUs have 32KiB L1D cache size
6176 * there is no point in doing so.
6177 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6178 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6179 {
6180 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6181
6182 /*
6183 * This code is only executed when the the flush mode is 'cond' or
6184 * 'always'
6185 */
6186 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6187 bool flush_l1d;
6188
6189 /*
6190 * Clear the per-vcpu flush bit, it gets set again
6191 * either from vcpu_run() or from one of the unsafe
6192 * VMEXIT handlers.
6193 */
6194 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6195 vcpu->arch.l1tf_flush_l1d = false;
6196
6197 /*
6198 * Clear the per-cpu flush bit, it gets set again from
6199 * the interrupt handlers.
6200 */
6201 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6202 kvm_clear_cpu_l1tf_flush_l1d();
6203
6204 if (!flush_l1d)
6205 return;
6206 }
6207
6208 vcpu->stat.l1d_flush++;
6209
6210 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6211 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6212 return;
6213 }
6214
6215 asm volatile(
6216 /* First ensure the pages are in the TLB */
6217 "xorl %%eax, %%eax\n"
6218 ".Lpopulate_tlb:\n\t"
6219 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6220 "addl $4096, %%eax\n\t"
6221 "cmpl %%eax, %[size]\n\t"
6222 "jne .Lpopulate_tlb\n\t"
6223 "xorl %%eax, %%eax\n\t"
6224 "cpuid\n\t"
6225 /* Now fill the cache */
6226 "xorl %%eax, %%eax\n"
6227 ".Lfill_cache:\n"
6228 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6229 "addl $64, %%eax\n\t"
6230 "cmpl %%eax, %[size]\n\t"
6231 "jne .Lfill_cache\n\t"
6232 "lfence\n"
6233 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6234 [size] "r" (size)
6235 : "eax", "ebx", "ecx", "edx");
6236 }
6237
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6238 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6239 {
6240 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6241 int tpr_threshold;
6242
6243 if (is_guest_mode(vcpu) &&
6244 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6245 return;
6246
6247 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6248 if (is_guest_mode(vcpu))
6249 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6250 else
6251 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6252 }
6253
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6254 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6255 {
6256 struct vcpu_vmx *vmx = to_vmx(vcpu);
6257 u32 sec_exec_control;
6258
6259 if (!lapic_in_kernel(vcpu))
6260 return;
6261
6262 if (!flexpriority_enabled &&
6263 !cpu_has_vmx_virtualize_x2apic_mode())
6264 return;
6265
6266 /* Postpone execution until vmcs01 is the current VMCS. */
6267 if (is_guest_mode(vcpu)) {
6268 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6269 return;
6270 }
6271
6272 sec_exec_control = secondary_exec_controls_get(vmx);
6273 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6274 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6275
6276 switch (kvm_get_apic_mode(vcpu)) {
6277 case LAPIC_MODE_INVALID:
6278 WARN_ONCE(true, "Invalid local APIC state");
6279 case LAPIC_MODE_DISABLED:
6280 break;
6281 case LAPIC_MODE_XAPIC:
6282 if (flexpriority_enabled) {
6283 sec_exec_control |=
6284 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6285 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6286
6287 /*
6288 * Flush the TLB, reloading the APIC access page will
6289 * only do so if its physical address has changed, but
6290 * the guest may have inserted a non-APIC mapping into
6291 * the TLB while the APIC access page was disabled.
6292 */
6293 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6294 }
6295 break;
6296 case LAPIC_MODE_X2APIC:
6297 if (cpu_has_vmx_virtualize_x2apic_mode())
6298 sec_exec_control |=
6299 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6300 break;
6301 }
6302 secondary_exec_controls_set(vmx, sec_exec_control);
6303
6304 vmx_update_msr_bitmap(vcpu);
6305 }
6306
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6307 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6308 {
6309 struct page *page;
6310
6311 /* Defer reload until vmcs01 is the current VMCS. */
6312 if (is_guest_mode(vcpu)) {
6313 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6314 return;
6315 }
6316
6317 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6318 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6319 return;
6320
6321 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6322 if (is_error_page(page))
6323 return;
6324
6325 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6326 vmx_flush_tlb_current(vcpu);
6327
6328 /*
6329 * Do not pin apic access page in memory, the MMU notifier
6330 * will call us again if it is migrated or swapped out.
6331 */
6332 put_page(page);
6333 }
6334
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6335 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6336 {
6337 u16 status;
6338 u8 old;
6339
6340 if (max_isr == -1)
6341 max_isr = 0;
6342
6343 status = vmcs_read16(GUEST_INTR_STATUS);
6344 old = status >> 8;
6345 if (max_isr != old) {
6346 status &= 0xff;
6347 status |= max_isr << 8;
6348 vmcs_write16(GUEST_INTR_STATUS, status);
6349 }
6350 }
6351
vmx_set_rvi(int vector)6352 static void vmx_set_rvi(int vector)
6353 {
6354 u16 status;
6355 u8 old;
6356
6357 if (vector == -1)
6358 vector = 0;
6359
6360 status = vmcs_read16(GUEST_INTR_STATUS);
6361 old = (u8)status & 0xff;
6362 if ((u8)vector != old) {
6363 status &= ~0xff;
6364 status |= (u8)vector;
6365 vmcs_write16(GUEST_INTR_STATUS, status);
6366 }
6367 }
6368
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6369 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6370 {
6371 /*
6372 * When running L2, updating RVI is only relevant when
6373 * vmcs12 virtual-interrupt-delivery enabled.
6374 * However, it can be enabled only when L1 also
6375 * intercepts external-interrupts and in that case
6376 * we should not update vmcs02 RVI but instead intercept
6377 * interrupt. Therefore, do nothing when running L2.
6378 */
6379 if (!is_guest_mode(vcpu))
6380 vmx_set_rvi(max_irr);
6381 }
6382
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6383 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6384 {
6385 struct vcpu_vmx *vmx = to_vmx(vcpu);
6386 int max_irr;
6387 bool max_irr_updated;
6388
6389 WARN_ON(!vcpu->arch.apicv_active);
6390 if (pi_test_on(&vmx->pi_desc)) {
6391 pi_clear_on(&vmx->pi_desc);
6392 /*
6393 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6394 * But on x86 this is just a compiler barrier anyway.
6395 */
6396 smp_mb__after_atomic();
6397 max_irr_updated =
6398 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6399
6400 /*
6401 * If we are running L2 and L1 has a new pending interrupt
6402 * which can be injected, this may cause a vmexit or it may
6403 * be injected into L2. Either way, this interrupt will be
6404 * processed via KVM_REQ_EVENT, not RVI, because we do not use
6405 * virtual interrupt delivery to inject L1 interrupts into L2.
6406 */
6407 if (is_guest_mode(vcpu) && max_irr_updated)
6408 kvm_make_request(KVM_REQ_EVENT, vcpu);
6409 } else {
6410 max_irr = kvm_lapic_find_highest_irr(vcpu);
6411 }
6412 vmx_hwapic_irr_update(vcpu, max_irr);
6413 return max_irr;
6414 }
6415
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6416 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6417 {
6418 if (!kvm_vcpu_apicv_active(vcpu))
6419 return;
6420
6421 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6422 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6423 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6424 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6425 }
6426
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6427 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6428 {
6429 struct vcpu_vmx *vmx = to_vmx(vcpu);
6430
6431 pi_clear_on(&vmx->pi_desc);
6432 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6433 }
6434
6435 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6436
handle_interrupt_nmi_irqoff(struct kvm_vcpu * vcpu,unsigned long entry)6437 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6438 unsigned long entry)
6439 {
6440 kvm_before_interrupt(vcpu);
6441 vmx_do_interrupt_nmi_irqoff(entry);
6442 kvm_after_interrupt(vcpu);
6443 }
6444
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6445 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6446 {
6447 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6448 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6449
6450 /* if exit due to PF check for async PF */
6451 if (is_page_fault(intr_info))
6452 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6453 /* Handle machine checks before interrupts are enabled */
6454 else if (is_machine_check(intr_info))
6455 kvm_machine_check();
6456 /* We need to handle NMIs before interrupts are enabled */
6457 else if (is_nmi(intr_info))
6458 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6459 }
6460
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6461 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6462 {
6463 u32 intr_info = vmx_get_intr_info(vcpu);
6464 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6465 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6466
6467 if (WARN_ONCE(!is_external_intr(intr_info),
6468 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6469 return;
6470
6471 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6472 vcpu->arch.at_instruction_boundary = true;
6473 }
6474
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6475 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6476 {
6477 struct vcpu_vmx *vmx = to_vmx(vcpu);
6478
6479 if (vmx->emulation_required)
6480 return;
6481
6482 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6483 handle_external_interrupt_irqoff(vcpu);
6484 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6485 handle_exception_nmi_irqoff(vmx);
6486 }
6487
vmx_has_emulated_msr(u32 index)6488 static bool vmx_has_emulated_msr(u32 index)
6489 {
6490 switch (index) {
6491 case MSR_IA32_SMBASE:
6492 /*
6493 * We cannot do SMM unless we can run the guest in big
6494 * real mode.
6495 */
6496 return enable_unrestricted_guest || emulate_invalid_guest_state;
6497 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6498 return nested;
6499 case MSR_AMD64_VIRT_SPEC_CTRL:
6500 /* This is AMD only. */
6501 return false;
6502 default:
6503 return true;
6504 }
6505 }
6506
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6507 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6508 {
6509 u32 exit_intr_info;
6510 bool unblock_nmi;
6511 u8 vector;
6512 bool idtv_info_valid;
6513
6514 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6515
6516 if (enable_vnmi) {
6517 if (vmx->loaded_vmcs->nmi_known_unmasked)
6518 return;
6519
6520 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6521 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6522 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6523 /*
6524 * SDM 3: 27.7.1.2 (September 2008)
6525 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6526 * a guest IRET fault.
6527 * SDM 3: 23.2.2 (September 2008)
6528 * Bit 12 is undefined in any of the following cases:
6529 * If the VM exit sets the valid bit in the IDT-vectoring
6530 * information field.
6531 * If the VM exit is due to a double fault.
6532 */
6533 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6534 vector != DF_VECTOR && !idtv_info_valid)
6535 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6536 GUEST_INTR_STATE_NMI);
6537 else
6538 vmx->loaded_vmcs->nmi_known_unmasked =
6539 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6540 & GUEST_INTR_STATE_NMI);
6541 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6542 vmx->loaded_vmcs->vnmi_blocked_time +=
6543 ktime_to_ns(ktime_sub(ktime_get(),
6544 vmx->loaded_vmcs->entry_time));
6545 }
6546
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6547 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6548 u32 idt_vectoring_info,
6549 int instr_len_field,
6550 int error_code_field)
6551 {
6552 u8 vector;
6553 int type;
6554 bool idtv_info_valid;
6555
6556 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6557
6558 vcpu->arch.nmi_injected = false;
6559 kvm_clear_exception_queue(vcpu);
6560 kvm_clear_interrupt_queue(vcpu);
6561
6562 if (!idtv_info_valid)
6563 return;
6564
6565 kvm_make_request(KVM_REQ_EVENT, vcpu);
6566
6567 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6568 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6569
6570 switch (type) {
6571 case INTR_TYPE_NMI_INTR:
6572 vcpu->arch.nmi_injected = true;
6573 /*
6574 * SDM 3: 27.7.1.2 (September 2008)
6575 * Clear bit "block by NMI" before VM entry if a NMI
6576 * delivery faulted.
6577 */
6578 vmx_set_nmi_mask(vcpu, false);
6579 break;
6580 case INTR_TYPE_SOFT_EXCEPTION:
6581 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6582 fallthrough;
6583 case INTR_TYPE_HARD_EXCEPTION:
6584 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6585 u32 err = vmcs_read32(error_code_field);
6586 kvm_requeue_exception_e(vcpu, vector, err);
6587 } else
6588 kvm_requeue_exception(vcpu, vector);
6589 break;
6590 case INTR_TYPE_SOFT_INTR:
6591 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6592 fallthrough;
6593 case INTR_TYPE_EXT_INTR:
6594 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6595 break;
6596 default:
6597 break;
6598 }
6599 }
6600
vmx_complete_interrupts(struct vcpu_vmx * vmx)6601 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6602 {
6603 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6604 VM_EXIT_INSTRUCTION_LEN,
6605 IDT_VECTORING_ERROR_CODE);
6606 }
6607
vmx_cancel_injection(struct kvm_vcpu * vcpu)6608 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6609 {
6610 __vmx_complete_interrupts(vcpu,
6611 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6612 VM_ENTRY_INSTRUCTION_LEN,
6613 VM_ENTRY_EXCEPTION_ERROR_CODE);
6614
6615 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6616 }
6617
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6618 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6619 {
6620 int i, nr_msrs;
6621 struct perf_guest_switch_msr *msrs;
6622
6623 msrs = perf_guest_get_msrs(&nr_msrs);
6624
6625 if (!msrs)
6626 return;
6627
6628 for (i = 0; i < nr_msrs; i++)
6629 if (msrs[i].host == msrs[i].guest)
6630 clear_atomic_switch_msr(vmx, msrs[i].msr);
6631 else
6632 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6633 msrs[i].host, false);
6634 }
6635
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6636 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6637 {
6638 struct vcpu_vmx *vmx = to_vmx(vcpu);
6639 u64 tscl;
6640 u32 delta_tsc;
6641
6642 if (vmx->req_immediate_exit) {
6643 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6644 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6645 } else if (vmx->hv_deadline_tsc != -1) {
6646 tscl = rdtsc();
6647 if (vmx->hv_deadline_tsc > tscl)
6648 /* set_hv_timer ensures the delta fits in 32-bits */
6649 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6650 cpu_preemption_timer_multi);
6651 else
6652 delta_tsc = 0;
6653
6654 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6655 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6656 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6657 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6658 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6659 }
6660 }
6661
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)6662 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6663 {
6664 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6665 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6666 vmcs_writel(HOST_RSP, host_rsp);
6667 }
6668 }
6669
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)6670 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
6671 unsigned int flags)
6672 {
6673 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
6674
6675 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
6676 return;
6677
6678 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
6679 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
6680
6681 /*
6682 * If the guest/host SPEC_CTRL values differ, restore the host value.
6683 *
6684 * For legacy IBRS, the IBRS bit always needs to be written after
6685 * transitioning from a less privileged predictor mode, regardless of
6686 * whether the guest/host values differ.
6687 */
6688 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
6689 vmx->spec_ctrl != hostval)
6690 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
6691
6692 barrier_nospec();
6693 }
6694
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)6695 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6696 {
6697 switch (to_vmx(vcpu)->exit_reason.basic) {
6698 case EXIT_REASON_MSR_WRITE:
6699 return handle_fastpath_set_msr_irqoff(vcpu);
6700 case EXIT_REASON_PREEMPTION_TIMER:
6701 return handle_fastpath_preemption_timer(vcpu);
6702 default:
6703 return EXIT_FASTPATH_NONE;
6704 }
6705 }
6706
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx,unsigned long flags)6707 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6708 struct vcpu_vmx *vmx,
6709 unsigned long flags)
6710 {
6711 /*
6712 * VMENTER enables interrupts (host state), but the kernel state is
6713 * interrupts disabled when this is invoked. Also tell RCU about
6714 * it. This is the same logic as for exit_to_user_mode().
6715 *
6716 * This ensures that e.g. latency analysis on the host observes
6717 * guest mode as interrupt enabled.
6718 *
6719 * guest_enter_irqoff() informs context tracking about the
6720 * transition to guest mode and if enabled adjusts RCU state
6721 * accordingly.
6722 */
6723 instrumentation_begin();
6724 trace_hardirqs_on_prepare();
6725 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6726 instrumentation_end();
6727
6728 guest_enter_irqoff();
6729 lockdep_hardirqs_on(CALLER_ADDR0);
6730
6731 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6732 if (static_branch_unlikely(&vmx_l1d_should_flush))
6733 vmx_l1d_flush(vcpu);
6734 else if (static_branch_unlikely(&mds_user_clear))
6735 mds_clear_cpu_buffers();
6736 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
6737 kvm_arch_has_assigned_device(vcpu->kvm))
6738 mds_clear_cpu_buffers();
6739
6740 vmx_disable_fb_clear(vmx);
6741
6742 if (vcpu->arch.cr2 != native_read_cr2())
6743 native_write_cr2(vcpu->arch.cr2);
6744
6745 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6746 flags);
6747
6748 vcpu->arch.cr2 = native_read_cr2();
6749
6750 vmx_enable_fb_clear(vmx);
6751
6752 /*
6753 * VMEXIT disables interrupts (host state), but tracing and lockdep
6754 * have them in state 'on' as recorded before entering guest mode.
6755 * Same as enter_from_user_mode().
6756 *
6757 * context_tracking_guest_exit() restores host context and reinstates
6758 * RCU if enabled and required.
6759 *
6760 * This needs to be done before the below as native_read_msr()
6761 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6762 * into world and some more.
6763 */
6764 lockdep_hardirqs_off(CALLER_ADDR0);
6765 context_tracking_guest_exit();
6766
6767 instrumentation_begin();
6768 trace_hardirqs_off_finish();
6769 instrumentation_end();
6770 }
6771
vmx_vcpu_run(struct kvm_vcpu * vcpu)6772 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6773 {
6774 fastpath_t exit_fastpath;
6775 struct vcpu_vmx *vmx = to_vmx(vcpu);
6776 unsigned long cr3, cr4;
6777
6778 reenter_guest:
6779 /* Record the guest's net vcpu time for enforced NMI injections. */
6780 if (unlikely(!enable_vnmi &&
6781 vmx->loaded_vmcs->soft_vnmi_blocked))
6782 vmx->loaded_vmcs->entry_time = ktime_get();
6783
6784 /* Don't enter VMX if guest state is invalid, let the exit handler
6785 start emulation until we arrive back to a valid state */
6786 if (vmx->emulation_required)
6787 return EXIT_FASTPATH_NONE;
6788
6789 if (vmx->ple_window_dirty) {
6790 vmx->ple_window_dirty = false;
6791 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6792 }
6793
6794 /*
6795 * We did this in prepare_switch_to_guest, because it needs to
6796 * be within srcu_read_lock.
6797 */
6798 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6799
6800 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6801 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6802 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6803 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6804
6805 cr3 = __get_current_cr3_fast();
6806 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6807 vmcs_writel(HOST_CR3, cr3);
6808 vmx->loaded_vmcs->host_state.cr3 = cr3;
6809 }
6810
6811 cr4 = cr4_read_shadow();
6812 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6813 vmcs_writel(HOST_CR4, cr4);
6814 vmx->loaded_vmcs->host_state.cr4 = cr4;
6815 }
6816
6817 /* When single-stepping over STI and MOV SS, we must clear the
6818 * corresponding interruptibility bits in the guest state. Otherwise
6819 * vmentry fails as it then expects bit 14 (BS) in pending debug
6820 * exceptions being set, but that's not correct for the guest debugging
6821 * case. */
6822 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6823 vmx_set_interrupt_shadow(vcpu, 0);
6824
6825 kvm_load_guest_xsave_state(vcpu);
6826
6827 pt_guest_enter(vmx);
6828
6829 atomic_switch_perf_msrs(vmx);
6830
6831 if (enable_preemption_timer)
6832 vmx_update_hv_timer(vcpu);
6833
6834 kvm_wait_lapic_expire(vcpu);
6835
6836 /*
6837 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6838 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6839 * is no need to worry about the conditional branch over the wrmsr
6840 * being speculatively taken.
6841 */
6842 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6843
6844 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6845 vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx));
6846
6847 /* All fields are clean at this point */
6848 if (static_branch_unlikely(&enable_evmcs))
6849 current_evmcs->hv_clean_fields |=
6850 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6851
6852 if (static_branch_unlikely(&enable_evmcs))
6853 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6854
6855 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6856 if (vmx->host_debugctlmsr)
6857 update_debugctlmsr(vmx->host_debugctlmsr);
6858
6859 #ifndef CONFIG_X86_64
6860 /*
6861 * The sysexit path does not restore ds/es, so we must set them to
6862 * a reasonable value ourselves.
6863 *
6864 * We can't defer this to vmx_prepare_switch_to_host() since that
6865 * function may be executed in interrupt context, which saves and
6866 * restore segments around it, nullifying its effect.
6867 */
6868 loadsegment(ds, __USER_DS);
6869 loadsegment(es, __USER_DS);
6870 #endif
6871
6872 vmx_register_cache_reset(vcpu);
6873
6874 pt_guest_exit(vmx);
6875
6876 kvm_load_host_xsave_state(vcpu);
6877
6878 vmx->nested.nested_run_pending = 0;
6879 vmx->idt_vectoring_info = 0;
6880
6881 if (unlikely(vmx->fail)) {
6882 vmx->exit_reason.full = 0xdead;
6883 return EXIT_FASTPATH_NONE;
6884 }
6885
6886 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6887 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6888 kvm_machine_check();
6889
6890 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6891
6892 if (unlikely(vmx->exit_reason.failed_vmentry))
6893 return EXIT_FASTPATH_NONE;
6894
6895 vmx->loaded_vmcs->launched = 1;
6896 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6897
6898 vmx_recover_nmi_blocking(vmx);
6899 vmx_complete_interrupts(vmx);
6900
6901 if (is_guest_mode(vcpu))
6902 return EXIT_FASTPATH_NONE;
6903
6904 exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6905 if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
6906 if (!kvm_vcpu_exit_request(vcpu)) {
6907 /*
6908 * FIXME: this goto should be a loop in vcpu_enter_guest,
6909 * but it would incur the cost of a retpoline for now.
6910 * Revisit once static calls are available.
6911 */
6912 if (vcpu->arch.apicv_active)
6913 vmx_sync_pir_to_irr(vcpu);
6914 goto reenter_guest;
6915 }
6916 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
6917 }
6918
6919 return exit_fastpath;
6920 }
6921
vmx_free_vcpu(struct kvm_vcpu * vcpu)6922 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6923 {
6924 struct vcpu_vmx *vmx = to_vmx(vcpu);
6925
6926 if (enable_pml)
6927 vmx_destroy_pml_buffer(vmx);
6928 free_vpid(vmx->vpid);
6929 nested_vmx_free_vcpu(vcpu);
6930 free_loaded_vmcs(vmx->loaded_vmcs);
6931 }
6932
vmx_create_vcpu(struct kvm_vcpu * vcpu)6933 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6934 {
6935 struct vcpu_vmx *vmx;
6936 int i, cpu, err;
6937
6938 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6939 vmx = to_vmx(vcpu);
6940
6941 err = -ENOMEM;
6942
6943 vmx->vpid = allocate_vpid();
6944
6945 /*
6946 * If PML is turned on, failure on enabling PML just results in failure
6947 * of creating the vcpu, therefore we can simplify PML logic (by
6948 * avoiding dealing with cases, such as enabling PML partially on vcpus
6949 * for the guest), etc.
6950 */
6951 if (enable_pml) {
6952 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6953 if (!vmx->pml_pg)
6954 goto free_vpid;
6955 }
6956
6957 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
6958
6959 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
6960 u32 index = vmx_uret_msrs_list[i];
6961 int j = vmx->nr_uret_msrs;
6962
6963 if (kvm_probe_user_return_msr(index))
6964 continue;
6965
6966 vmx->guest_uret_msrs[j].slot = i;
6967 vmx->guest_uret_msrs[j].data = 0;
6968 switch (index) {
6969 case MSR_IA32_TSX_CTRL:
6970 /*
6971 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID
6972 * interception. Keep the host value unchanged to avoid
6973 * changing CPUID bits under the host kernel's feet.
6974 *
6975 * hle=0, rtm=0, tsx_ctrl=1 can be found with some
6976 * combinations of new kernel and old userspace. If
6977 * those guests run on a tsx=off host, do allow guests
6978 * to use TSX_CTRL, but do not change the value on the
6979 * host so that TSX remains always disabled.
6980 */
6981 if (boot_cpu_has(X86_FEATURE_RTM))
6982 vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6983 else
6984 vmx->guest_uret_msrs[j].mask = 0;
6985 break;
6986 default:
6987 vmx->guest_uret_msrs[j].mask = -1ull;
6988 break;
6989 }
6990 ++vmx->nr_uret_msrs;
6991 }
6992
6993 err = alloc_loaded_vmcs(&vmx->vmcs01);
6994 if (err < 0)
6995 goto free_pml;
6996
6997 /* The MSR bitmap starts with all ones */
6998 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6999 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7000
7001 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7002 #ifdef CONFIG_X86_64
7003 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7004 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7005 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7006 #endif
7007 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7008 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7009 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7010 if (kvm_cstate_in_guest(vcpu->kvm)) {
7011 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7012 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7013 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7014 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7015 }
7016 vmx->msr_bitmap_mode = 0;
7017
7018 vmx->loaded_vmcs = &vmx->vmcs01;
7019 cpu = get_cpu();
7020 vmx_vcpu_load(vcpu, cpu);
7021 vcpu->cpu = cpu;
7022 init_vmcs(vmx);
7023 vmx_vcpu_put(vcpu);
7024 put_cpu();
7025 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7026 err = alloc_apic_access_page(vcpu->kvm);
7027 if (err)
7028 goto free_vmcs;
7029 }
7030
7031 if (enable_ept && !enable_unrestricted_guest) {
7032 err = init_rmode_identity_map(vcpu->kvm);
7033 if (err)
7034 goto free_vmcs;
7035 }
7036
7037 if (nested)
7038 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
7039 else
7040 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
7041
7042 vmx->nested.posted_intr_nv = -1;
7043 vmx->nested.current_vmptr = -1ull;
7044
7045 vcpu->arch.microcode_version = 0x100000000ULL;
7046 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
7047
7048 /*
7049 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
7050 * or POSTED_INTR_WAKEUP_VECTOR.
7051 */
7052 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
7053 vmx->pi_desc.sn = 1;
7054
7055 vmx->ept_pointer = INVALID_PAGE;
7056
7057 return 0;
7058
7059 free_vmcs:
7060 free_loaded_vmcs(vmx->loaded_vmcs);
7061 free_pml:
7062 vmx_destroy_pml_buffer(vmx);
7063 free_vpid:
7064 free_vpid(vmx->vpid);
7065 return err;
7066 }
7067
7068 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7069 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7070
vmx_vm_init(struct kvm * kvm)7071 static int vmx_vm_init(struct kvm *kvm)
7072 {
7073 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
7074
7075 if (!ple_gap)
7076 kvm->arch.pause_in_guest = true;
7077
7078 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7079 switch (l1tf_mitigation) {
7080 case L1TF_MITIGATION_OFF:
7081 case L1TF_MITIGATION_FLUSH_NOWARN:
7082 /* 'I explicitly don't care' is set */
7083 break;
7084 case L1TF_MITIGATION_FLUSH:
7085 case L1TF_MITIGATION_FLUSH_NOSMT:
7086 case L1TF_MITIGATION_FULL:
7087 /*
7088 * Warn upon starting the first VM in a potentially
7089 * insecure environment.
7090 */
7091 if (sched_smt_active())
7092 pr_warn_once(L1TF_MSG_SMT);
7093 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7094 pr_warn_once(L1TF_MSG_L1D);
7095 break;
7096 case L1TF_MITIGATION_FULL_FORCE:
7097 /* Flush is enforced */
7098 break;
7099 }
7100 }
7101 kvm_apicv_init(kvm, enable_apicv);
7102 return 0;
7103 }
7104
vmx_check_processor_compat(void)7105 static int __init vmx_check_processor_compat(void)
7106 {
7107 struct vmcs_config vmcs_conf;
7108 struct vmx_capability vmx_cap;
7109
7110 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7111 !this_cpu_has(X86_FEATURE_VMX)) {
7112 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7113 return -EIO;
7114 }
7115
7116 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7117 return -EIO;
7118 if (nested)
7119 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7120 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7121 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7122 smp_processor_id());
7123 return -EIO;
7124 }
7125 return 0;
7126 }
7127
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7128 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7129 {
7130 u8 cache;
7131 u64 ipat = 0;
7132
7133 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7134 * memory aliases with conflicting memory types and sometimes MCEs.
7135 * We have to be careful as to what are honored and when.
7136 *
7137 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7138 * UC. The effective memory type is UC or WC depending on guest PAT.
7139 * This was historically the source of MCEs and we want to be
7140 * conservative.
7141 *
7142 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7143 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7144 * EPT memory type is set to WB. The effective memory type is forced
7145 * WB.
7146 *
7147 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7148 * EPT memory type is used to emulate guest CD/MTRR.
7149 */
7150
7151 if (is_mmio) {
7152 cache = MTRR_TYPE_UNCACHABLE;
7153 goto exit;
7154 }
7155
7156 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7157 ipat = VMX_EPT_IPAT_BIT;
7158 cache = MTRR_TYPE_WRBACK;
7159 goto exit;
7160 }
7161
7162 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7163 ipat = VMX_EPT_IPAT_BIT;
7164 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7165 cache = MTRR_TYPE_WRBACK;
7166 else
7167 cache = MTRR_TYPE_UNCACHABLE;
7168 goto exit;
7169 }
7170
7171 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7172
7173 exit:
7174 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7175 }
7176
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx)7177 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7178 {
7179 /*
7180 * These bits in the secondary execution controls field
7181 * are dynamic, the others are mostly based on the hypervisor
7182 * architecture and the guest's CPUID. Do not touch the
7183 * dynamic bits.
7184 */
7185 u32 mask =
7186 SECONDARY_EXEC_SHADOW_VMCS |
7187 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7188 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7189 SECONDARY_EXEC_DESC;
7190
7191 u32 new_ctl = vmx->secondary_exec_control;
7192 u32 cur_ctl = secondary_exec_controls_get(vmx);
7193
7194 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7195 }
7196
7197 /*
7198 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7199 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7200 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7201 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7202 {
7203 struct vcpu_vmx *vmx = to_vmx(vcpu);
7204 struct kvm_cpuid_entry2 *entry;
7205
7206 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7207 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7208
7209 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7210 if (entry && (entry->_reg & (_cpuid_mask))) \
7211 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7212 } while (0)
7213
7214 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7215 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7216 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7217 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7218 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7219 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7220 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7221 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7222 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7223 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7224 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7225 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7226 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7227 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7228 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7229
7230 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7231 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7232 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7233 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7234 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7235 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7236 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7237
7238 #undef cr4_fixed1_update
7239 }
7240
nested_vmx_entry_exit_ctls_update(struct kvm_vcpu * vcpu)7241 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7242 {
7243 struct vcpu_vmx *vmx = to_vmx(vcpu);
7244
7245 if (kvm_mpx_supported()) {
7246 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7247
7248 if (mpx_enabled) {
7249 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7250 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7251 } else {
7252 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7253 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7254 }
7255 }
7256 }
7257
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7258 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7259 {
7260 struct vcpu_vmx *vmx = to_vmx(vcpu);
7261 struct kvm_cpuid_entry2 *best = NULL;
7262 int i;
7263
7264 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7265 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7266 if (!best)
7267 return;
7268 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7269 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7270 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7271 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7272 }
7273
7274 /* Get the number of configurable Address Ranges for filtering */
7275 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7276 PT_CAP_num_address_ranges);
7277
7278 /* Initialize and clear the no dependency bits */
7279 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7280 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7281
7282 /*
7283 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7284 * will inject an #GP
7285 */
7286 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7287 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7288
7289 /*
7290 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7291 * PSBFreq can be set
7292 */
7293 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7294 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7295 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7296
7297 /*
7298 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7299 * MTCFreq can be set
7300 */
7301 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7302 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7303 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7304
7305 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7306 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7307 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7308 RTIT_CTL_PTW_EN);
7309
7310 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7311 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7312 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7313
7314 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7315 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7316 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7317
7318 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7319 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7320 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7321
7322 /* unmask address range configure area */
7323 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7324 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7325 }
7326
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7327 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7328 {
7329 struct vcpu_vmx *vmx = to_vmx(vcpu);
7330
7331 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7332 vcpu->arch.xsaves_enabled = false;
7333
7334 if (cpu_has_secondary_exec_ctrls()) {
7335 vmx_compute_secondary_exec_control(vmx);
7336 vmcs_set_secondary_exec_control(vmx);
7337 }
7338
7339 if (nested_vmx_allowed(vcpu))
7340 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7341 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7342 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7343 else
7344 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7345 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7346 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7347
7348 if (nested_vmx_allowed(vcpu)) {
7349 nested_vmx_cr_fixed1_bits_update(vcpu);
7350 nested_vmx_entry_exit_ctls_update(vcpu);
7351 }
7352
7353 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7354 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7355 update_intel_pt_cfg(vcpu);
7356
7357 if (boot_cpu_has(X86_FEATURE_RTM)) {
7358 struct vmx_uret_msr *msr;
7359 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7360 if (msr) {
7361 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7362 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7363 }
7364 }
7365
7366 set_cr4_guest_host_mask(vmx);
7367
7368 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7369 update_exception_bitmap(vcpu);
7370 }
7371
vmx_set_cpu_caps(void)7372 static __init void vmx_set_cpu_caps(void)
7373 {
7374 kvm_set_cpu_caps();
7375
7376 /* CPUID 0x1 */
7377 if (nested)
7378 kvm_cpu_cap_set(X86_FEATURE_VMX);
7379
7380 /* CPUID 0x7 */
7381 if (kvm_mpx_supported())
7382 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7383 if (cpu_has_vmx_invpcid())
7384 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7385 if (vmx_pt_mode_is_host_guest())
7386 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7387
7388 if (vmx_umip_emulated())
7389 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7390
7391 /* CPUID 0xD.1 */
7392 supported_xss = 0;
7393 if (!cpu_has_vmx_xsaves())
7394 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7395
7396 /* CPUID 0x80000001 and 0x7 (RDPID) */
7397 if (!cpu_has_vmx_rdtscp()) {
7398 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7399 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7400 }
7401
7402 if (cpu_has_vmx_waitpkg())
7403 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7404 }
7405
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7406 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7407 {
7408 to_vmx(vcpu)->req_immediate_exit = true;
7409 }
7410
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7411 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7412 struct x86_instruction_info *info)
7413 {
7414 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7415 unsigned short port;
7416 bool intercept;
7417 int size;
7418
7419 if (info->intercept == x86_intercept_in ||
7420 info->intercept == x86_intercept_ins) {
7421 port = info->src_val;
7422 size = info->dst_bytes;
7423 } else {
7424 port = info->dst_val;
7425 size = info->src_bytes;
7426 }
7427
7428 /*
7429 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7430 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7431 * control.
7432 *
7433 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7434 */
7435 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7436 intercept = nested_cpu_has(vmcs12,
7437 CPU_BASED_UNCOND_IO_EXITING);
7438 else
7439 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7440
7441 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7442 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7443 }
7444
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7445 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7446 struct x86_instruction_info *info,
7447 enum x86_intercept_stage stage,
7448 struct x86_exception *exception)
7449 {
7450 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7451
7452 switch (info->intercept) {
7453 /*
7454 * RDPID causes #UD if disabled through secondary execution controls.
7455 * Because it is marked as EmulateOnUD, we need to intercept it here.
7456 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7457 */
7458 case x86_intercept_rdpid:
7459 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7460 exception->vector = UD_VECTOR;
7461 exception->error_code_valid = false;
7462 return X86EMUL_PROPAGATE_FAULT;
7463 }
7464 break;
7465
7466 case x86_intercept_in:
7467 case x86_intercept_ins:
7468 case x86_intercept_out:
7469 case x86_intercept_outs:
7470 return vmx_check_intercept_io(vcpu, info);
7471
7472 case x86_intercept_lgdt:
7473 case x86_intercept_lidt:
7474 case x86_intercept_lldt:
7475 case x86_intercept_ltr:
7476 case x86_intercept_sgdt:
7477 case x86_intercept_sidt:
7478 case x86_intercept_sldt:
7479 case x86_intercept_str:
7480 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7481 return X86EMUL_CONTINUE;
7482
7483 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7484 break;
7485
7486 /* TODO: check more intercepts... */
7487 default:
7488 break;
7489 }
7490
7491 return X86EMUL_UNHANDLEABLE;
7492 }
7493
7494 #ifdef CONFIG_X86_64
7495 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7496 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7497 u64 divisor, u64 *result)
7498 {
7499 u64 low = a << shift, high = a >> (64 - shift);
7500
7501 /* To avoid the overflow on divq */
7502 if (high >= divisor)
7503 return 1;
7504
7505 /* Low hold the result, high hold rem which is discarded */
7506 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7507 "rm" (divisor), "0" (low), "1" (high));
7508 *result = low;
7509
7510 return 0;
7511 }
7512
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7513 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7514 bool *expired)
7515 {
7516 struct vcpu_vmx *vmx;
7517 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7518 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7519
7520 vmx = to_vmx(vcpu);
7521 tscl = rdtsc();
7522 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7523 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7524 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7525 ktimer->timer_advance_ns);
7526
7527 if (delta_tsc > lapic_timer_advance_cycles)
7528 delta_tsc -= lapic_timer_advance_cycles;
7529 else
7530 delta_tsc = 0;
7531
7532 /* Convert to host delta tsc if tsc scaling is enabled */
7533 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7534 delta_tsc && u64_shl_div_u64(delta_tsc,
7535 kvm_tsc_scaling_ratio_frac_bits,
7536 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7537 return -ERANGE;
7538
7539 /*
7540 * If the delta tsc can't fit in the 32 bit after the multi shift,
7541 * we can't use the preemption timer.
7542 * It's possible that it fits on later vmentries, but checking
7543 * on every vmentry is costly so we just use an hrtimer.
7544 */
7545 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7546 return -ERANGE;
7547
7548 vmx->hv_deadline_tsc = tscl + delta_tsc;
7549 *expired = !delta_tsc;
7550 return 0;
7551 }
7552
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7553 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7554 {
7555 to_vmx(vcpu)->hv_deadline_tsc = -1;
7556 }
7557 #endif
7558
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7559 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7560 {
7561 if (!kvm_pause_in_guest(vcpu->kvm))
7562 shrink_ple_window(vcpu);
7563 }
7564
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7565 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7566 struct kvm_memory_slot *slot)
7567 {
7568 if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7569 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7570 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7571 }
7572
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7573 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7574 struct kvm_memory_slot *slot)
7575 {
7576 kvm_mmu_slot_set_dirty(kvm, slot);
7577 }
7578
vmx_flush_log_dirty(struct kvm * kvm)7579 static void vmx_flush_log_dirty(struct kvm *kvm)
7580 {
7581 kvm_flush_pml_buffers(kvm);
7582 }
7583
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)7584 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7585 struct kvm_memory_slot *memslot,
7586 gfn_t offset, unsigned long mask)
7587 {
7588 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7589 }
7590
vmx_pre_block(struct kvm_vcpu * vcpu)7591 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7592 {
7593 if (pi_pre_block(vcpu))
7594 return 1;
7595
7596 if (kvm_lapic_hv_timer_in_use(vcpu))
7597 kvm_lapic_switch_to_sw_timer(vcpu);
7598
7599 return 0;
7600 }
7601
vmx_post_block(struct kvm_vcpu * vcpu)7602 static void vmx_post_block(struct kvm_vcpu *vcpu)
7603 {
7604 if (kvm_x86_ops.set_hv_timer)
7605 kvm_lapic_switch_to_hv_timer(vcpu);
7606
7607 pi_post_block(vcpu);
7608 }
7609
vmx_setup_mce(struct kvm_vcpu * vcpu)7610 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7611 {
7612 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7613 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7614 FEAT_CTL_LMCE_ENABLED;
7615 else
7616 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7617 ~FEAT_CTL_LMCE_ENABLED;
7618 }
7619
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)7620 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7621 {
7622 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7623 if (to_vmx(vcpu)->nested.nested_run_pending)
7624 return -EBUSY;
7625 return !is_smm(vcpu);
7626 }
7627
vmx_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7628 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7629 {
7630 struct vcpu_vmx *vmx = to_vmx(vcpu);
7631
7632 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7633 if (vmx->nested.smm.guest_mode)
7634 nested_vmx_vmexit(vcpu, -1, 0, 0);
7635
7636 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7637 vmx->nested.vmxon = false;
7638 vmx_clear_hlt(vcpu);
7639 return 0;
7640 }
7641
vmx_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7642 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7643 {
7644 struct vcpu_vmx *vmx = to_vmx(vcpu);
7645 int ret;
7646
7647 if (vmx->nested.smm.vmxon) {
7648 vmx->nested.vmxon = true;
7649 vmx->nested.smm.vmxon = false;
7650 }
7651
7652 if (vmx->nested.smm.guest_mode) {
7653 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7654 if (ret)
7655 return ret;
7656
7657 vmx->nested.smm.guest_mode = false;
7658 }
7659 return 0;
7660 }
7661
enable_smi_window(struct kvm_vcpu * vcpu)7662 static void enable_smi_window(struct kvm_vcpu *vcpu)
7663 {
7664 /* RSM will cause a vmexit anyway. */
7665 }
7666
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7667 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7668 {
7669 return to_vmx(vcpu)->nested.vmxon;
7670 }
7671
vmx_migrate_timers(struct kvm_vcpu * vcpu)7672 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7673 {
7674 if (is_guest_mode(vcpu)) {
7675 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7676
7677 if (hrtimer_try_to_cancel(timer) == 1)
7678 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7679 }
7680 }
7681
hardware_unsetup(void)7682 static void hardware_unsetup(void)
7683 {
7684 if (nested)
7685 nested_vmx_hardware_unsetup();
7686
7687 free_kvm_area();
7688 }
7689
vmx_check_apicv_inhibit_reasons(ulong bit)7690 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7691 {
7692 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7693 BIT(APICV_INHIBIT_REASON_HYPERV);
7694
7695 return supported & BIT(bit);
7696 }
7697
7698 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7699 .hardware_unsetup = hardware_unsetup,
7700
7701 .hardware_enable = hardware_enable,
7702 .hardware_disable = hardware_disable,
7703 .cpu_has_accelerated_tpr = report_flexpriority,
7704 .has_emulated_msr = vmx_has_emulated_msr,
7705
7706 .vm_size = sizeof(struct kvm_vmx),
7707 .vm_init = vmx_vm_init,
7708
7709 .vcpu_create = vmx_create_vcpu,
7710 .vcpu_free = vmx_free_vcpu,
7711 .vcpu_reset = vmx_vcpu_reset,
7712
7713 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7714 .vcpu_load = vmx_vcpu_load,
7715 .vcpu_put = vmx_vcpu_put,
7716
7717 .update_exception_bitmap = update_exception_bitmap,
7718 .get_msr_feature = vmx_get_msr_feature,
7719 .get_msr = vmx_get_msr,
7720 .set_msr = vmx_set_msr,
7721 .get_segment_base = vmx_get_segment_base,
7722 .get_segment = vmx_get_segment,
7723 .set_segment = vmx_set_segment,
7724 .get_cpl = vmx_get_cpl,
7725 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7726 .set_cr0 = vmx_set_cr0,
7727 .set_cr4 = vmx_set_cr4,
7728 .set_efer = vmx_set_efer,
7729 .get_idt = vmx_get_idt,
7730 .set_idt = vmx_set_idt,
7731 .get_gdt = vmx_get_gdt,
7732 .set_gdt = vmx_set_gdt,
7733 .set_dr7 = vmx_set_dr7,
7734 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7735 .cache_reg = vmx_cache_reg,
7736 .get_rflags = vmx_get_rflags,
7737 .set_rflags = vmx_set_rflags,
7738
7739 .tlb_flush_all = vmx_flush_tlb_all,
7740 .tlb_flush_current = vmx_flush_tlb_current,
7741 .tlb_flush_gva = vmx_flush_tlb_gva,
7742 .tlb_flush_guest = vmx_flush_tlb_guest,
7743
7744 .run = vmx_vcpu_run,
7745 .handle_exit = vmx_handle_exit,
7746 .skip_emulated_instruction = vmx_skip_emulated_instruction,
7747 .update_emulated_instruction = vmx_update_emulated_instruction,
7748 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7749 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7750 .patch_hypercall = vmx_patch_hypercall,
7751 .set_irq = vmx_inject_irq,
7752 .set_nmi = vmx_inject_nmi,
7753 .queue_exception = vmx_queue_exception,
7754 .cancel_injection = vmx_cancel_injection,
7755 .interrupt_allowed = vmx_interrupt_allowed,
7756 .nmi_allowed = vmx_nmi_allowed,
7757 .get_nmi_mask = vmx_get_nmi_mask,
7758 .set_nmi_mask = vmx_set_nmi_mask,
7759 .enable_nmi_window = enable_nmi_window,
7760 .enable_irq_window = enable_irq_window,
7761 .update_cr8_intercept = update_cr8_intercept,
7762 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7763 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7764 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7765 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7766 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7767 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7768 .hwapic_irr_update = vmx_hwapic_irr_update,
7769 .hwapic_isr_update = vmx_hwapic_isr_update,
7770 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7771 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7772 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7773 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7774
7775 .set_tss_addr = vmx_set_tss_addr,
7776 .set_identity_map_addr = vmx_set_identity_map_addr,
7777 .get_mt_mask = vmx_get_mt_mask,
7778
7779 .get_exit_info = vmx_get_exit_info,
7780
7781 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7782
7783 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7784
7785 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7786
7787 .load_mmu_pgd = vmx_load_mmu_pgd,
7788
7789 .check_intercept = vmx_check_intercept,
7790 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7791
7792 .request_immediate_exit = vmx_request_immediate_exit,
7793
7794 .sched_in = vmx_sched_in,
7795
7796 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7797 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7798 .flush_log_dirty = vmx_flush_log_dirty,
7799 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7800
7801 .pre_block = vmx_pre_block,
7802 .post_block = vmx_post_block,
7803
7804 .pmu_ops = &intel_pmu_ops,
7805 .nested_ops = &vmx_nested_ops,
7806
7807 .update_pi_irte = pi_update_irte,
7808
7809 #ifdef CONFIG_X86_64
7810 .set_hv_timer = vmx_set_hv_timer,
7811 .cancel_hv_timer = vmx_cancel_hv_timer,
7812 #endif
7813
7814 .setup_mce = vmx_setup_mce,
7815
7816 .smi_allowed = vmx_smi_allowed,
7817 .pre_enter_smm = vmx_pre_enter_smm,
7818 .pre_leave_smm = vmx_pre_leave_smm,
7819 .enable_smi_window = enable_smi_window,
7820
7821 .can_emulate_instruction = vmx_can_emulate_instruction,
7822 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7823 .migrate_timers = vmx_migrate_timers,
7824
7825 .msr_filter_changed = vmx_msr_filter_changed,
7826 };
7827
hardware_setup(void)7828 static __init int hardware_setup(void)
7829 {
7830 unsigned long host_bndcfgs;
7831 struct desc_ptr dt;
7832 int r, i, ept_lpage_level;
7833
7834 store_idt(&dt);
7835 host_idt_base = dt.address;
7836
7837 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7838 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
7839
7840 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7841 return -EIO;
7842
7843 if (boot_cpu_has(X86_FEATURE_NX))
7844 kvm_enable_efer_bits(EFER_NX);
7845
7846 if (boot_cpu_has(X86_FEATURE_MPX)) {
7847 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7848 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7849 }
7850
7851 if (!cpu_has_vmx_mpx())
7852 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7853 XFEATURE_MASK_BNDCSR);
7854
7855 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7856 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7857 enable_vpid = 0;
7858
7859 if (!cpu_has_vmx_ept() ||
7860 !cpu_has_vmx_ept_4levels() ||
7861 !cpu_has_vmx_ept_mt_wb() ||
7862 !cpu_has_vmx_invept_global())
7863 enable_ept = 0;
7864
7865 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7866 enable_ept_ad_bits = 0;
7867
7868 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7869 enable_unrestricted_guest = 0;
7870
7871 if (!cpu_has_vmx_flexpriority())
7872 flexpriority_enabled = 0;
7873
7874 if (!cpu_has_virtual_nmis())
7875 enable_vnmi = 0;
7876
7877 /*
7878 * set_apic_access_page_addr() is used to reload apic access
7879 * page upon invalidation. No need to do anything if not
7880 * using the APIC_ACCESS_ADDR VMCS field.
7881 */
7882 if (!flexpriority_enabled)
7883 vmx_x86_ops.set_apic_access_page_addr = NULL;
7884
7885 if (!cpu_has_vmx_tpr_shadow())
7886 vmx_x86_ops.update_cr8_intercept = NULL;
7887
7888 #if IS_ENABLED(CONFIG_HYPERV)
7889 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7890 && enable_ept) {
7891 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7892 vmx_x86_ops.tlb_remote_flush_with_range =
7893 hv_remote_flush_tlb_with_range;
7894 }
7895 #endif
7896
7897 if (!cpu_has_vmx_ple()) {
7898 ple_gap = 0;
7899 ple_window = 0;
7900 ple_window_grow = 0;
7901 ple_window_max = 0;
7902 ple_window_shrink = 0;
7903 }
7904
7905 if (!cpu_has_vmx_apicv()) {
7906 enable_apicv = 0;
7907 vmx_x86_ops.sync_pir_to_irr = NULL;
7908 }
7909
7910 if (cpu_has_vmx_tsc_scaling()) {
7911 kvm_has_tsc_control = true;
7912 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7913 kvm_tsc_scaling_ratio_frac_bits = 48;
7914 }
7915
7916 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7917
7918 if (enable_ept)
7919 vmx_enable_tdp();
7920
7921 if (!enable_ept)
7922 ept_lpage_level = 0;
7923 else if (cpu_has_vmx_ept_1g_page())
7924 ept_lpage_level = PG_LEVEL_1G;
7925 else if (cpu_has_vmx_ept_2m_page())
7926 ept_lpage_level = PG_LEVEL_2M;
7927 else
7928 ept_lpage_level = PG_LEVEL_4K;
7929 kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7930
7931 /*
7932 * Only enable PML when hardware supports PML feature, and both EPT
7933 * and EPT A/D bit features are enabled -- PML depends on them to work.
7934 */
7935 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7936 enable_pml = 0;
7937
7938 if (!enable_pml) {
7939 vmx_x86_ops.slot_enable_log_dirty = NULL;
7940 vmx_x86_ops.slot_disable_log_dirty = NULL;
7941 vmx_x86_ops.flush_log_dirty = NULL;
7942 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
7943 }
7944
7945 if (!cpu_has_vmx_preemption_timer())
7946 enable_preemption_timer = false;
7947
7948 if (enable_preemption_timer) {
7949 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7950 u64 vmx_msr;
7951
7952 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7953 cpu_preemption_timer_multi =
7954 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7955
7956 if (tsc_khz)
7957 use_timer_freq = (u64)tsc_khz * 1000;
7958 use_timer_freq >>= cpu_preemption_timer_multi;
7959
7960 /*
7961 * KVM "disables" the preemption timer by setting it to its max
7962 * value. Don't use the timer if it might cause spurious exits
7963 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7964 */
7965 if (use_timer_freq > 0xffffffffu / 10)
7966 enable_preemption_timer = false;
7967 }
7968
7969 if (!enable_preemption_timer) {
7970 vmx_x86_ops.set_hv_timer = NULL;
7971 vmx_x86_ops.cancel_hv_timer = NULL;
7972 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7973 }
7974
7975 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7976
7977 kvm_mce_cap_supported |= MCG_LMCE_P;
7978
7979 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7980 return -EINVAL;
7981 if (!enable_ept || !cpu_has_vmx_intel_pt())
7982 pt_mode = PT_MODE_SYSTEM;
7983
7984 if (nested) {
7985 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7986 vmx_capability.ept);
7987
7988 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7989 if (r)
7990 return r;
7991 }
7992
7993 vmx_set_cpu_caps();
7994
7995 r = alloc_kvm_area();
7996 if (r)
7997 nested_vmx_hardware_unsetup();
7998 return r;
7999 }
8000
8001 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8002 .cpu_has_kvm_support = cpu_has_kvm_support,
8003 .disabled_by_bios = vmx_disabled_by_bios,
8004 .check_processor_compatibility = vmx_check_processor_compat,
8005 .hardware_setup = hardware_setup,
8006
8007 .runtime_ops = &vmx_x86_ops,
8008 };
8009
vmx_cleanup_l1d_flush(void)8010 static void vmx_cleanup_l1d_flush(void)
8011 {
8012 if (vmx_l1d_flush_pages) {
8013 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8014 vmx_l1d_flush_pages = NULL;
8015 }
8016 /* Restore state so sysfs ignores VMX */
8017 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8018 }
8019
vmx_exit(void)8020 static void vmx_exit(void)
8021 {
8022 #ifdef CONFIG_KEXEC_CORE
8023 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8024 synchronize_rcu();
8025 #endif
8026
8027 kvm_exit();
8028
8029 #if IS_ENABLED(CONFIG_HYPERV)
8030 if (static_branch_unlikely(&enable_evmcs)) {
8031 int cpu;
8032 struct hv_vp_assist_page *vp_ap;
8033 /*
8034 * Reset everything to support using non-enlightened VMCS
8035 * access later (e.g. when we reload the module with
8036 * enlightened_vmcs=0)
8037 */
8038 for_each_online_cpu(cpu) {
8039 vp_ap = hv_get_vp_assist_page(cpu);
8040
8041 if (!vp_ap)
8042 continue;
8043
8044 vp_ap->nested_control.features.directhypercall = 0;
8045 vp_ap->current_nested_vmcs = 0;
8046 vp_ap->enlighten_vmentry = 0;
8047 }
8048
8049 static_branch_disable(&enable_evmcs);
8050 }
8051 #endif
8052 vmx_cleanup_l1d_flush();
8053 }
8054 module_exit(vmx_exit);
8055
vmx_init(void)8056 static int __init vmx_init(void)
8057 {
8058 int r, cpu;
8059
8060 #if IS_ENABLED(CONFIG_HYPERV)
8061 /*
8062 * Enlightened VMCS usage should be recommended and the host needs
8063 * to support eVMCS v1 or above. We can also disable eVMCS support
8064 * with module parameter.
8065 */
8066 if (enlightened_vmcs &&
8067 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8068 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8069 KVM_EVMCS_VERSION) {
8070 int cpu;
8071
8072 /* Check that we have assist pages on all online CPUs */
8073 for_each_online_cpu(cpu) {
8074 if (!hv_get_vp_assist_page(cpu)) {
8075 enlightened_vmcs = false;
8076 break;
8077 }
8078 }
8079
8080 if (enlightened_vmcs) {
8081 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8082 static_branch_enable(&enable_evmcs);
8083 }
8084
8085 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8086 vmx_x86_ops.enable_direct_tlbflush
8087 = hv_enable_direct_tlbflush;
8088
8089 } else {
8090 enlightened_vmcs = false;
8091 }
8092 #endif
8093
8094 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8095 __alignof__(struct vcpu_vmx), THIS_MODULE);
8096 if (r)
8097 return r;
8098
8099 /*
8100 * Must be called after kvm_init() so enable_ept is properly set
8101 * up. Hand the parameter mitigation value in which was stored in
8102 * the pre module init parser. If no parameter was given, it will
8103 * contain 'auto' which will be turned into the default 'cond'
8104 * mitigation mode.
8105 */
8106 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8107 if (r) {
8108 vmx_exit();
8109 return r;
8110 }
8111
8112 vmx_setup_fb_clear_ctrl();
8113
8114 for_each_possible_cpu(cpu) {
8115 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8116
8117 pi_init_cpu(cpu);
8118 }
8119
8120 #ifdef CONFIG_KEXEC_CORE
8121 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8122 crash_vmclear_local_loaded_vmcss);
8123 #endif
8124 vmx_check_vmcs12_offsets();
8125
8126 /*
8127 * Shadow paging doesn't have a (further) performance penalty
8128 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8129 * by default
8130 */
8131 if (!enable_ept)
8132 allow_smaller_maxphyaddr = true;
8133
8134 return 0;
8135 }
8136 module_init(vmx_init);
8137