1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81
82 #include "loop.h"
83
84 #include <linux/uaccess.h>
85
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88
89 static int max_part;
90 static int part_shift;
91
transfer_xor(struct loop_device * lo,int cmd,struct page * raw_page,unsigned raw_off,struct page * loop_page,unsigned loop_off,int size,sector_t real_block)92 static int transfer_xor(struct loop_device *lo, int cmd,
93 struct page *raw_page, unsigned raw_off,
94 struct page *loop_page, unsigned loop_off,
95 int size, sector_t real_block)
96 {
97 char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 char *in, *out, *key;
100 int i, keysize;
101
102 if (cmd == READ) {
103 in = raw_buf;
104 out = loop_buf;
105 } else {
106 in = loop_buf;
107 out = raw_buf;
108 }
109
110 key = lo->lo_encrypt_key;
111 keysize = lo->lo_encrypt_key_size;
112 for (i = 0; i < size; i++)
113 *out++ = *in++ ^ key[(i & 511) % keysize];
114
115 kunmap_atomic(loop_buf);
116 kunmap_atomic(raw_buf);
117 cond_resched();
118 return 0;
119 }
120
xor_init(struct loop_device * lo,const struct loop_info64 * info)121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 if (unlikely(info->lo_encrypt_key_size <= 0))
124 return -EINVAL;
125 return 0;
126 }
127
128 static struct loop_func_table none_funcs = {
129 .number = LO_CRYPT_NONE,
130 };
131
132 static struct loop_func_table xor_funcs = {
133 .number = LO_CRYPT_XOR,
134 .transfer = transfer_xor,
135 .init = xor_init
136 };
137
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 &none_funcs,
141 &xor_funcs
142 };
143
get_size(loff_t offset,loff_t sizelimit,struct file * file)144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 loff_t loopsize;
147
148 /* Compute loopsize in bytes */
149 loopsize = i_size_read(file->f_mapping->host);
150 if (offset > 0)
151 loopsize -= offset;
152 /* offset is beyond i_size, weird but possible */
153 if (loopsize < 0)
154 return 0;
155
156 if (sizelimit > 0 && sizelimit < loopsize)
157 loopsize = sizelimit;
158 /*
159 * Unfortunately, if we want to do I/O on the device,
160 * the number of 512-byte sectors has to fit into a sector_t.
161 */
162 return loopsize >> 9;
163 }
164
get_loop_size(struct loop_device * lo,struct file * file)165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169
__loop_update_dio(struct loop_device * lo,bool dio)170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 struct file *file = lo->lo_backing_file;
173 struct address_space *mapping = file->f_mapping;
174 struct inode *inode = mapping->host;
175 unsigned short sb_bsize = 0;
176 unsigned dio_align = 0;
177 bool use_dio;
178
179 if (inode->i_sb->s_bdev) {
180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 dio_align = sb_bsize - 1;
182 }
183
184 /*
185 * We support direct I/O only if lo_offset is aligned with the
186 * logical I/O size of backing device, and the logical block
187 * size of loop is bigger than the backing device's and the loop
188 * needn't transform transfer.
189 *
190 * TODO: the above condition may be loosed in the future, and
191 * direct I/O may be switched runtime at that time because most
192 * of requests in sane applications should be PAGE_SIZE aligned
193 */
194 if (dio) {
195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 !(lo->lo_offset & dio_align) &&
197 mapping->a_ops->direct_IO &&
198 !lo->transfer)
199 use_dio = true;
200 else
201 use_dio = false;
202 } else {
203 use_dio = false;
204 }
205
206 if (lo->use_dio == use_dio)
207 return;
208
209 /* flush dirty pages before changing direct IO */
210 vfs_fsync(file, 0);
211
212 /*
213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 * will get updated by ioctl(LOOP_GET_STATUS)
216 */
217 if (lo->lo_state == Lo_bound)
218 blk_mq_freeze_queue(lo->lo_queue);
219 lo->use_dio = use_dio;
220 if (use_dio) {
221 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
222 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
223 } else {
224 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
226 }
227 if (lo->lo_state == Lo_bound)
228 blk_mq_unfreeze_queue(lo->lo_queue);
229 }
230
231 /**
232 * loop_validate_block_size() - validates the passed in block size
233 * @bsize: size to validate
234 */
235 static int
loop_validate_block_size(unsigned long bsize)236 loop_validate_block_size(unsigned long bsize)
237 {
238 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
239 return -EINVAL;
240
241 return 0;
242 }
243
244 /**
245 * loop_set_size() - sets device size and notifies userspace
246 * @lo: struct loop_device to set the size for
247 * @size: new size of the loop device
248 *
249 * Callers must validate that the size passed into this function fits into
250 * a sector_t, eg using loop_validate_size()
251 */
loop_set_size(struct loop_device * lo,loff_t size)252 static void loop_set_size(struct loop_device *lo, loff_t size)
253 {
254 struct block_device *bdev = lo->lo_device;
255
256 bd_set_nr_sectors(bdev, size);
257
258 if (!set_capacity_revalidate_and_notify(lo->lo_disk, size, false))
259 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
260 }
261
262 static inline int
lo_do_transfer(struct loop_device * lo,int cmd,struct page * rpage,unsigned roffs,struct page * lpage,unsigned loffs,int size,sector_t rblock)263 lo_do_transfer(struct loop_device *lo, int cmd,
264 struct page *rpage, unsigned roffs,
265 struct page *lpage, unsigned loffs,
266 int size, sector_t rblock)
267 {
268 int ret;
269
270 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
271 if (likely(!ret))
272 return 0;
273
274 printk_ratelimited(KERN_ERR
275 "loop: Transfer error at byte offset %llu, length %i.\n",
276 (unsigned long long)rblock << 9, size);
277 return ret;
278 }
279
lo_write_bvec(struct file * file,struct bio_vec * bvec,loff_t * ppos)280 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
281 {
282 struct iov_iter i;
283 ssize_t bw;
284
285 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
286
287 file_start_write(file);
288 bw = vfs_iter_write(file, &i, ppos, 0);
289 file_end_write(file);
290
291 if (likely(bw == bvec->bv_len))
292 return 0;
293
294 printk_ratelimited(KERN_ERR
295 "loop: Write error at byte offset %llu, length %i.\n",
296 (unsigned long long)*ppos, bvec->bv_len);
297 if (bw >= 0)
298 bw = -EIO;
299 return bw;
300 }
301
lo_write_simple(struct loop_device * lo,struct request * rq,loff_t pos)302 static int lo_write_simple(struct loop_device *lo, struct request *rq,
303 loff_t pos)
304 {
305 struct bio_vec bvec;
306 struct req_iterator iter;
307 int ret = 0;
308
309 rq_for_each_segment(bvec, rq, iter) {
310 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
311 if (ret < 0)
312 break;
313 cond_resched();
314 }
315
316 return ret;
317 }
318
319 /*
320 * This is the slow, transforming version that needs to double buffer the
321 * data as it cannot do the transformations in place without having direct
322 * access to the destination pages of the backing file.
323 */
lo_write_transfer(struct loop_device * lo,struct request * rq,loff_t pos)324 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
325 loff_t pos)
326 {
327 struct bio_vec bvec, b;
328 struct req_iterator iter;
329 struct page *page;
330 int ret = 0;
331
332 page = alloc_page(GFP_NOIO);
333 if (unlikely(!page))
334 return -ENOMEM;
335
336 rq_for_each_segment(bvec, rq, iter) {
337 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
338 bvec.bv_offset, bvec.bv_len, pos >> 9);
339 if (unlikely(ret))
340 break;
341
342 b.bv_page = page;
343 b.bv_offset = 0;
344 b.bv_len = bvec.bv_len;
345 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
346 if (ret < 0)
347 break;
348 }
349
350 __free_page(page);
351 return ret;
352 }
353
lo_read_simple(struct loop_device * lo,struct request * rq,loff_t pos)354 static int lo_read_simple(struct loop_device *lo, struct request *rq,
355 loff_t pos)
356 {
357 struct bio_vec bvec;
358 struct req_iterator iter;
359 struct iov_iter i;
360 ssize_t len;
361
362 rq_for_each_segment(bvec, rq, iter) {
363 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
364 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
365 if (len < 0)
366 return len;
367
368 flush_dcache_page(bvec.bv_page);
369
370 if (len != bvec.bv_len) {
371 struct bio *bio;
372
373 __rq_for_each_bio(bio, rq)
374 zero_fill_bio(bio);
375 break;
376 }
377 cond_resched();
378 }
379
380 return 0;
381 }
382
lo_read_transfer(struct loop_device * lo,struct request * rq,loff_t pos)383 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
384 loff_t pos)
385 {
386 struct bio_vec bvec, b;
387 struct req_iterator iter;
388 struct iov_iter i;
389 struct page *page;
390 ssize_t len;
391 int ret = 0;
392
393 page = alloc_page(GFP_NOIO);
394 if (unlikely(!page))
395 return -ENOMEM;
396
397 rq_for_each_segment(bvec, rq, iter) {
398 loff_t offset = pos;
399
400 b.bv_page = page;
401 b.bv_offset = 0;
402 b.bv_len = bvec.bv_len;
403
404 iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
405 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
406 if (len < 0) {
407 ret = len;
408 goto out_free_page;
409 }
410
411 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
412 bvec.bv_offset, len, offset >> 9);
413 if (ret)
414 goto out_free_page;
415
416 flush_dcache_page(bvec.bv_page);
417
418 if (len != bvec.bv_len) {
419 struct bio *bio;
420
421 __rq_for_each_bio(bio, rq)
422 zero_fill_bio(bio);
423 break;
424 }
425 }
426
427 ret = 0;
428 out_free_page:
429 __free_page(page);
430 return ret;
431 }
432
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)433 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
434 int mode)
435 {
436 /*
437 * We use fallocate to manipulate the space mappings used by the image
438 * a.k.a. discard/zerorange. However we do not support this if
439 * encryption is enabled, because it may give an attacker useful
440 * information.
441 */
442 struct file *file = lo->lo_backing_file;
443 struct request_queue *q = lo->lo_queue;
444 int ret;
445
446 mode |= FALLOC_FL_KEEP_SIZE;
447
448 if (!blk_queue_discard(q)) {
449 ret = -EOPNOTSUPP;
450 goto out;
451 }
452
453 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
454 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
455 ret = -EIO;
456 out:
457 return ret;
458 }
459
lo_req_flush(struct loop_device * lo,struct request * rq)460 static int lo_req_flush(struct loop_device *lo, struct request *rq)
461 {
462 struct file *file = lo->lo_backing_file;
463 int ret = vfs_fsync(file, 0);
464 if (unlikely(ret && ret != -EINVAL))
465 ret = -EIO;
466
467 return ret;
468 }
469
lo_complete_rq(struct request * rq)470 static void lo_complete_rq(struct request *rq)
471 {
472 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
473 blk_status_t ret = BLK_STS_OK;
474
475 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
476 req_op(rq) != REQ_OP_READ) {
477 if (cmd->ret < 0)
478 ret = errno_to_blk_status(cmd->ret);
479 goto end_io;
480 }
481
482 /*
483 * Short READ - if we got some data, advance our request and
484 * retry it. If we got no data, end the rest with EIO.
485 */
486 if (cmd->ret) {
487 blk_update_request(rq, BLK_STS_OK, cmd->ret);
488 cmd->ret = 0;
489 blk_mq_requeue_request(rq, true);
490 } else {
491 if (cmd->use_aio) {
492 struct bio *bio = rq->bio;
493
494 while (bio) {
495 zero_fill_bio(bio);
496 bio = bio->bi_next;
497 }
498 }
499 ret = BLK_STS_IOERR;
500 end_io:
501 blk_mq_end_request(rq, ret);
502 }
503 }
504
lo_rw_aio_do_completion(struct loop_cmd * cmd)505 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
506 {
507 struct request *rq = blk_mq_rq_from_pdu(cmd);
508
509 if (!atomic_dec_and_test(&cmd->ref))
510 return;
511 kfree(cmd->bvec);
512 cmd->bvec = NULL;
513 if (likely(!blk_should_fake_timeout(rq->q)))
514 blk_mq_complete_request(rq);
515 }
516
lo_rw_aio_complete(struct kiocb * iocb,long ret,long ret2)517 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
518 {
519 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
520
521 if (cmd->css)
522 css_put(cmd->css);
523 cmd->ret = ret;
524 lo_rw_aio_do_completion(cmd);
525 }
526
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,bool rw)527 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
528 loff_t pos, bool rw)
529 {
530 struct iov_iter iter;
531 struct req_iterator rq_iter;
532 struct bio_vec *bvec;
533 struct request *rq = blk_mq_rq_from_pdu(cmd);
534 struct bio *bio = rq->bio;
535 struct file *file = lo->lo_backing_file;
536 struct bio_vec tmp;
537 unsigned int offset;
538 int nr_bvec = 0;
539 int ret;
540
541 rq_for_each_bvec(tmp, rq, rq_iter)
542 nr_bvec++;
543
544 if (rq->bio != rq->biotail) {
545
546 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
547 GFP_NOIO);
548 if (!bvec)
549 return -EIO;
550 cmd->bvec = bvec;
551
552 /*
553 * The bios of the request may be started from the middle of
554 * the 'bvec' because of bio splitting, so we can't directly
555 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
556 * API will take care of all details for us.
557 */
558 rq_for_each_bvec(tmp, rq, rq_iter) {
559 *bvec = tmp;
560 bvec++;
561 }
562 bvec = cmd->bvec;
563 offset = 0;
564 } else {
565 /*
566 * Same here, this bio may be started from the middle of the
567 * 'bvec' because of bio splitting, so offset from the bvec
568 * must be passed to iov iterator
569 */
570 offset = bio->bi_iter.bi_bvec_done;
571 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
572 }
573 atomic_set(&cmd->ref, 2);
574
575 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
576 iter.iov_offset = offset;
577
578 cmd->iocb.ki_pos = pos;
579 cmd->iocb.ki_filp = file;
580 cmd->iocb.ki_complete = lo_rw_aio_complete;
581 cmd->iocb.ki_flags = IOCB_DIRECT;
582 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
583 if (cmd->css)
584 kthread_associate_blkcg(cmd->css);
585
586 if (rw == WRITE)
587 ret = call_write_iter(file, &cmd->iocb, &iter);
588 else
589 ret = call_read_iter(file, &cmd->iocb, &iter);
590
591 lo_rw_aio_do_completion(cmd);
592 kthread_associate_blkcg(NULL);
593
594 if (ret != -EIOCBQUEUED)
595 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
596 return 0;
597 }
598
do_req_filebacked(struct loop_device * lo,struct request * rq)599 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
600 {
601 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
602 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
603
604 /*
605 * lo_write_simple and lo_read_simple should have been covered
606 * by io submit style function like lo_rw_aio(), one blocker
607 * is that lo_read_simple() need to call flush_dcache_page after
608 * the page is written from kernel, and it isn't easy to handle
609 * this in io submit style function which submits all segments
610 * of the req at one time. And direct read IO doesn't need to
611 * run flush_dcache_page().
612 */
613 switch (req_op(rq)) {
614 case REQ_OP_FLUSH:
615 return lo_req_flush(lo, rq);
616 case REQ_OP_WRITE_ZEROES:
617 /*
618 * If the caller doesn't want deallocation, call zeroout to
619 * write zeroes the range. Otherwise, punch them out.
620 */
621 return lo_fallocate(lo, rq, pos,
622 (rq->cmd_flags & REQ_NOUNMAP) ?
623 FALLOC_FL_ZERO_RANGE :
624 FALLOC_FL_PUNCH_HOLE);
625 case REQ_OP_DISCARD:
626 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
627 case REQ_OP_WRITE:
628 if (lo->transfer)
629 return lo_write_transfer(lo, rq, pos);
630 else if (cmd->use_aio)
631 return lo_rw_aio(lo, cmd, pos, WRITE);
632 else
633 return lo_write_simple(lo, rq, pos);
634 case REQ_OP_READ:
635 if (lo->transfer)
636 return lo_read_transfer(lo, rq, pos);
637 else if (cmd->use_aio)
638 return lo_rw_aio(lo, cmd, pos, READ);
639 else
640 return lo_read_simple(lo, rq, pos);
641 default:
642 WARN_ON_ONCE(1);
643 return -EIO;
644 }
645 }
646
loop_update_dio(struct loop_device * lo)647 static inline void loop_update_dio(struct loop_device *lo)
648 {
649 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
650 lo->use_dio);
651 }
652
loop_reread_partitions(struct loop_device * lo,struct block_device * bdev)653 static void loop_reread_partitions(struct loop_device *lo,
654 struct block_device *bdev)
655 {
656 int rc;
657
658 mutex_lock(&bdev->bd_mutex);
659 rc = bdev_disk_changed(bdev, false);
660 mutex_unlock(&bdev->bd_mutex);
661 if (rc)
662 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
663 __func__, lo->lo_number, lo->lo_file_name, rc);
664 }
665
is_loop_device(struct file * file)666 static inline int is_loop_device(struct file *file)
667 {
668 struct inode *i = file->f_mapping->host;
669
670 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
671 }
672
loop_validate_file(struct file * file,struct block_device * bdev)673 static int loop_validate_file(struct file *file, struct block_device *bdev)
674 {
675 struct inode *inode = file->f_mapping->host;
676 struct file *f = file;
677
678 /* Avoid recursion */
679 while (is_loop_device(f)) {
680 struct loop_device *l;
681
682 if (f->f_mapping->host->i_bdev == bdev)
683 return -EBADF;
684
685 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
686 if (l->lo_state != Lo_bound) {
687 return -EINVAL;
688 }
689 f = l->lo_backing_file;
690 }
691 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
692 return -EINVAL;
693 return 0;
694 }
695
696 /*
697 * loop_change_fd switched the backing store of a loopback device to
698 * a new file. This is useful for operating system installers to free up
699 * the original file and in High Availability environments to switch to
700 * an alternative location for the content in case of server meltdown.
701 * This can only work if the loop device is used read-only, and if the
702 * new backing store is the same size and type as the old backing store.
703 */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)704 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
705 unsigned int arg)
706 {
707 struct file *file = NULL, *old_file;
708 int error;
709 bool partscan;
710
711 error = mutex_lock_killable(&loop_ctl_mutex);
712 if (error)
713 return error;
714 error = -ENXIO;
715 if (lo->lo_state != Lo_bound)
716 goto out_err;
717
718 /* the loop device has to be read-only */
719 error = -EINVAL;
720 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
721 goto out_err;
722
723 error = -EBADF;
724 file = fget(arg);
725 if (!file)
726 goto out_err;
727
728 error = loop_validate_file(file, bdev);
729 if (error)
730 goto out_err;
731
732 old_file = lo->lo_backing_file;
733
734 error = -EINVAL;
735
736 /* size of the new backing store needs to be the same */
737 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
738 goto out_err;
739
740 /* and ... switch */
741 blk_mq_freeze_queue(lo->lo_queue);
742 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
743 lo->lo_backing_file = file;
744 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
745 mapping_set_gfp_mask(file->f_mapping,
746 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
747 loop_update_dio(lo);
748 blk_mq_unfreeze_queue(lo->lo_queue);
749 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
750 mutex_unlock(&loop_ctl_mutex);
751 /*
752 * We must drop file reference outside of loop_ctl_mutex as dropping
753 * the file ref can take bd_mutex which creates circular locking
754 * dependency.
755 */
756 fput(old_file);
757 if (partscan)
758 loop_reread_partitions(lo, bdev);
759 return 0;
760
761 out_err:
762 mutex_unlock(&loop_ctl_mutex);
763 if (file)
764 fput(file);
765 return error;
766 }
767
768 /* loop sysfs attributes */
769
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))770 static ssize_t loop_attr_show(struct device *dev, char *page,
771 ssize_t (*callback)(struct loop_device *, char *))
772 {
773 struct gendisk *disk = dev_to_disk(dev);
774 struct loop_device *lo = disk->private_data;
775
776 return callback(lo, page);
777 }
778
779 #define LOOP_ATTR_RO(_name) \
780 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
781 static ssize_t loop_attr_do_show_##_name(struct device *d, \
782 struct device_attribute *attr, char *b) \
783 { \
784 return loop_attr_show(d, b, loop_attr_##_name##_show); \
785 } \
786 static struct device_attribute loop_attr_##_name = \
787 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
788
loop_attr_backing_file_show(struct loop_device * lo,char * buf)789 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
790 {
791 ssize_t ret;
792 char *p = NULL;
793
794 spin_lock_irq(&lo->lo_lock);
795 if (lo->lo_backing_file)
796 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
797 spin_unlock_irq(&lo->lo_lock);
798
799 if (IS_ERR_OR_NULL(p))
800 ret = PTR_ERR(p);
801 else {
802 ret = strlen(p);
803 memmove(buf, p, ret);
804 buf[ret++] = '\n';
805 buf[ret] = 0;
806 }
807
808 return ret;
809 }
810
loop_attr_offset_show(struct loop_device * lo,char * buf)811 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
812 {
813 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
814 }
815
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)816 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
817 {
818 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
819 }
820
loop_attr_autoclear_show(struct loop_device * lo,char * buf)821 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
822 {
823 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
824
825 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
826 }
827
loop_attr_partscan_show(struct loop_device * lo,char * buf)828 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
829 {
830 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
831
832 return sprintf(buf, "%s\n", partscan ? "1" : "0");
833 }
834
loop_attr_dio_show(struct loop_device * lo,char * buf)835 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
836 {
837 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
838
839 return sprintf(buf, "%s\n", dio ? "1" : "0");
840 }
841
842 LOOP_ATTR_RO(backing_file);
843 LOOP_ATTR_RO(offset);
844 LOOP_ATTR_RO(sizelimit);
845 LOOP_ATTR_RO(autoclear);
846 LOOP_ATTR_RO(partscan);
847 LOOP_ATTR_RO(dio);
848
849 static struct attribute *loop_attrs[] = {
850 &loop_attr_backing_file.attr,
851 &loop_attr_offset.attr,
852 &loop_attr_sizelimit.attr,
853 &loop_attr_autoclear.attr,
854 &loop_attr_partscan.attr,
855 &loop_attr_dio.attr,
856 NULL,
857 };
858
859 static struct attribute_group loop_attribute_group = {
860 .name = "loop",
861 .attrs= loop_attrs,
862 };
863
loop_sysfs_init(struct loop_device * lo)864 static void loop_sysfs_init(struct loop_device *lo)
865 {
866 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
867 &loop_attribute_group);
868 }
869
loop_sysfs_exit(struct loop_device * lo)870 static void loop_sysfs_exit(struct loop_device *lo)
871 {
872 if (lo->sysfs_inited)
873 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
874 &loop_attribute_group);
875 }
876
loop_config_discard(struct loop_device * lo)877 static void loop_config_discard(struct loop_device *lo)
878 {
879 struct file *file = lo->lo_backing_file;
880 struct inode *inode = file->f_mapping->host;
881 struct request_queue *q = lo->lo_queue;
882 u32 granularity, max_discard_sectors;
883
884 /*
885 * If the backing device is a block device, mirror its zeroing
886 * capability. Set the discard sectors to the block device's zeroing
887 * capabilities because loop discards result in blkdev_issue_zeroout(),
888 * not blkdev_issue_discard(). This maintains consistent behavior with
889 * file-backed loop devices: discarded regions read back as zero.
890 */
891 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
892 struct request_queue *backingq;
893
894 backingq = bdev_get_queue(inode->i_bdev);
895
896 max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
897 granularity = backingq->limits.discard_granularity ?:
898 queue_physical_block_size(backingq);
899
900 /*
901 * We use punch hole to reclaim the free space used by the
902 * image a.k.a. discard. However we do not support discard if
903 * encryption is enabled, because it may give an attacker
904 * useful information.
905 */
906 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
907 max_discard_sectors = 0;
908 granularity = 0;
909
910 } else {
911 max_discard_sectors = UINT_MAX >> 9;
912 granularity = inode->i_sb->s_blocksize;
913 }
914
915 if (max_discard_sectors) {
916 q->limits.discard_granularity = granularity;
917 blk_queue_max_discard_sectors(q, max_discard_sectors);
918 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
919 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
920 } else {
921 q->limits.discard_granularity = 0;
922 blk_queue_max_discard_sectors(q, 0);
923 blk_queue_max_write_zeroes_sectors(q, 0);
924 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
925 }
926 q->limits.discard_alignment = 0;
927 }
928
loop_unprepare_queue(struct loop_device * lo)929 static void loop_unprepare_queue(struct loop_device *lo)
930 {
931 kthread_flush_worker(&lo->worker);
932 kthread_stop(lo->worker_task);
933 }
934
loop_kthread_worker_fn(void * worker_ptr)935 static int loop_kthread_worker_fn(void *worker_ptr)
936 {
937 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
938 return kthread_worker_fn(worker_ptr);
939 }
940
loop_prepare_queue(struct loop_device * lo)941 static int loop_prepare_queue(struct loop_device *lo)
942 {
943 kthread_init_worker(&lo->worker);
944 lo->worker_task = kthread_run(loop_kthread_worker_fn,
945 &lo->worker, "loop%d", lo->lo_number);
946 if (IS_ERR(lo->worker_task))
947 return -ENOMEM;
948 set_user_nice(lo->worker_task, MIN_NICE);
949 return 0;
950 }
951
loop_update_rotational(struct loop_device * lo)952 static void loop_update_rotational(struct loop_device *lo)
953 {
954 struct file *file = lo->lo_backing_file;
955 struct inode *file_inode = file->f_mapping->host;
956 struct block_device *file_bdev = file_inode->i_sb->s_bdev;
957 struct request_queue *q = lo->lo_queue;
958 bool nonrot = true;
959
960 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
961 if (file_bdev)
962 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
963
964 if (nonrot)
965 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
966 else
967 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
968 }
969
970 static int
loop_release_xfer(struct loop_device * lo)971 loop_release_xfer(struct loop_device *lo)
972 {
973 int err = 0;
974 struct loop_func_table *xfer = lo->lo_encryption;
975
976 if (xfer) {
977 if (xfer->release)
978 err = xfer->release(lo);
979 lo->transfer = NULL;
980 lo->lo_encryption = NULL;
981 module_put(xfer->owner);
982 }
983 return err;
984 }
985
986 static int
loop_init_xfer(struct loop_device * lo,struct loop_func_table * xfer,const struct loop_info64 * i)987 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
988 const struct loop_info64 *i)
989 {
990 int err = 0;
991
992 if (xfer) {
993 struct module *owner = xfer->owner;
994
995 if (!try_module_get(owner))
996 return -EINVAL;
997 if (xfer->init)
998 err = xfer->init(lo, i);
999 if (err)
1000 module_put(owner);
1001 else
1002 lo->lo_encryption = xfer;
1003 }
1004 return err;
1005 }
1006
1007 /**
1008 * loop_set_status_from_info - configure device from loop_info
1009 * @lo: struct loop_device to configure
1010 * @info: struct loop_info64 to configure the device with
1011 *
1012 * Configures the loop device parameters according to the passed
1013 * in loop_info64 configuration.
1014 */
1015 static int
loop_set_status_from_info(struct loop_device * lo,const struct loop_info64 * info)1016 loop_set_status_from_info(struct loop_device *lo,
1017 const struct loop_info64 *info)
1018 {
1019 int err;
1020 struct loop_func_table *xfer;
1021 kuid_t uid = current_uid();
1022
1023 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1024 return -EINVAL;
1025
1026 err = loop_release_xfer(lo);
1027 if (err)
1028 return err;
1029
1030 if (info->lo_encrypt_type) {
1031 unsigned int type = info->lo_encrypt_type;
1032
1033 if (type >= MAX_LO_CRYPT)
1034 return -EINVAL;
1035 xfer = xfer_funcs[type];
1036 if (xfer == NULL)
1037 return -EINVAL;
1038 } else
1039 xfer = NULL;
1040
1041 err = loop_init_xfer(lo, xfer, info);
1042 if (err)
1043 return err;
1044
1045 lo->lo_offset = info->lo_offset;
1046 lo->lo_sizelimit = info->lo_sizelimit;
1047 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1048 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1049 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1050 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1051
1052 if (!xfer)
1053 xfer = &none_funcs;
1054 lo->transfer = xfer->transfer;
1055 lo->ioctl = xfer->ioctl;
1056
1057 lo->lo_flags = info->lo_flags;
1058
1059 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1060 lo->lo_init[0] = info->lo_init[0];
1061 lo->lo_init[1] = info->lo_init[1];
1062 if (info->lo_encrypt_key_size) {
1063 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1064 info->lo_encrypt_key_size);
1065 lo->lo_key_owner = uid;
1066 }
1067
1068 return 0;
1069 }
1070
loop_configure(struct loop_device * lo,fmode_t mode,struct block_device * bdev,const struct loop_config * config)1071 static int loop_configure(struct loop_device *lo, fmode_t mode,
1072 struct block_device *bdev,
1073 const struct loop_config *config)
1074 {
1075 struct file *file;
1076 struct inode *inode;
1077 struct address_space *mapping;
1078 struct block_device *claimed_bdev = NULL;
1079 int error;
1080 loff_t size;
1081 bool partscan;
1082 unsigned short bsize;
1083
1084 /* This is safe, since we have a reference from open(). */
1085 __module_get(THIS_MODULE);
1086
1087 error = -EBADF;
1088 file = fget(config->fd);
1089 if (!file)
1090 goto out;
1091
1092 /*
1093 * If we don't hold exclusive handle for the device, upgrade to it
1094 * here to avoid changing device under exclusive owner.
1095 */
1096 if (!(mode & FMODE_EXCL)) {
1097 claimed_bdev = bdev->bd_contains;
1098 error = bd_prepare_to_claim(bdev, claimed_bdev, loop_configure);
1099 if (error)
1100 goto out_putf;
1101 }
1102
1103 error = mutex_lock_killable(&loop_ctl_mutex);
1104 if (error)
1105 goto out_bdev;
1106
1107 error = -EBUSY;
1108 if (lo->lo_state != Lo_unbound)
1109 goto out_unlock;
1110
1111 error = loop_validate_file(file, bdev);
1112 if (error)
1113 goto out_unlock;
1114
1115 mapping = file->f_mapping;
1116 inode = mapping->host;
1117
1118 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1119 error = -EINVAL;
1120 goto out_unlock;
1121 }
1122
1123 if (config->block_size) {
1124 error = loop_validate_block_size(config->block_size);
1125 if (error)
1126 goto out_unlock;
1127 }
1128
1129 error = loop_set_status_from_info(lo, &config->info);
1130 if (error)
1131 goto out_unlock;
1132
1133 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1134 !file->f_op->write_iter)
1135 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1136
1137 error = loop_prepare_queue(lo);
1138 if (error)
1139 goto out_unlock;
1140
1141 set_device_ro(bdev, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1142
1143 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1144 lo->lo_device = bdev;
1145 lo->lo_backing_file = file;
1146 lo->old_gfp_mask = mapping_gfp_mask(mapping);
1147 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1148
1149 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1150 blk_queue_write_cache(lo->lo_queue, true, false);
1151
1152 if (config->block_size)
1153 bsize = config->block_size;
1154 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1155 /* In case of direct I/O, match underlying block size */
1156 bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1157 else
1158 bsize = 512;
1159
1160 blk_queue_logical_block_size(lo->lo_queue, bsize);
1161 blk_queue_physical_block_size(lo->lo_queue, bsize);
1162 blk_queue_io_min(lo->lo_queue, bsize);
1163
1164 loop_config_discard(lo);
1165 loop_update_rotational(lo);
1166 loop_update_dio(lo);
1167 loop_sysfs_init(lo);
1168
1169 size = get_loop_size(lo, file);
1170 loop_set_size(lo, size);
1171
1172 set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1173 block_size(inode->i_bdev) : PAGE_SIZE);
1174
1175 lo->lo_state = Lo_bound;
1176 if (part_shift)
1177 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1178 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1179 if (partscan)
1180 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1181
1182 /* Grab the block_device to prevent its destruction after we
1183 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1184 */
1185 bdgrab(bdev);
1186 mutex_unlock(&loop_ctl_mutex);
1187 if (partscan)
1188 loop_reread_partitions(lo, bdev);
1189 if (claimed_bdev)
1190 bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1191 return 0;
1192
1193 out_unlock:
1194 mutex_unlock(&loop_ctl_mutex);
1195 out_bdev:
1196 if (claimed_bdev)
1197 bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1198 out_putf:
1199 fput(file);
1200 out:
1201 /* This is safe: open() is still holding a reference. */
1202 module_put(THIS_MODULE);
1203 return error;
1204 }
1205
__loop_clr_fd(struct loop_device * lo,bool release)1206 static int __loop_clr_fd(struct loop_device *lo, bool release)
1207 {
1208 struct file *filp = NULL;
1209 gfp_t gfp = lo->old_gfp_mask;
1210 struct block_device *bdev = lo->lo_device;
1211 int err = 0;
1212 bool partscan = false;
1213 int lo_number;
1214
1215 mutex_lock(&loop_ctl_mutex);
1216 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1217 err = -ENXIO;
1218 goto out_unlock;
1219 }
1220
1221 filp = lo->lo_backing_file;
1222 if (filp == NULL) {
1223 err = -EINVAL;
1224 goto out_unlock;
1225 }
1226
1227 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1228 blk_queue_write_cache(lo->lo_queue, false, false);
1229
1230 /* freeze request queue during the transition */
1231 blk_mq_freeze_queue(lo->lo_queue);
1232
1233 spin_lock_irq(&lo->lo_lock);
1234 lo->lo_backing_file = NULL;
1235 spin_unlock_irq(&lo->lo_lock);
1236
1237 loop_release_xfer(lo);
1238 lo->transfer = NULL;
1239 lo->ioctl = NULL;
1240 lo->lo_device = NULL;
1241 lo->lo_encryption = NULL;
1242 lo->lo_offset = 0;
1243 lo->lo_sizelimit = 0;
1244 lo->lo_encrypt_key_size = 0;
1245 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1246 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1247 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1248 blk_queue_logical_block_size(lo->lo_queue, 512);
1249 blk_queue_physical_block_size(lo->lo_queue, 512);
1250 blk_queue_io_min(lo->lo_queue, 512);
1251 if (bdev) {
1252 bdput(bdev);
1253 invalidate_bdev(bdev);
1254 bdev->bd_inode->i_mapping->wb_err = 0;
1255 }
1256 set_capacity(lo->lo_disk, 0);
1257 loop_sysfs_exit(lo);
1258 if (bdev) {
1259 bd_set_nr_sectors(bdev, 0);
1260 /* let user-space know about this change */
1261 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1262 }
1263 mapping_set_gfp_mask(filp->f_mapping, gfp);
1264 /* This is safe: open() is still holding a reference. */
1265 module_put(THIS_MODULE);
1266 blk_mq_unfreeze_queue(lo->lo_queue);
1267
1268 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1269 lo_number = lo->lo_number;
1270 loop_unprepare_queue(lo);
1271 out_unlock:
1272 mutex_unlock(&loop_ctl_mutex);
1273 if (partscan) {
1274 /*
1275 * bd_mutex has been held already in release path, so don't
1276 * acquire it if this function is called in such case.
1277 *
1278 * If the reread partition isn't from release path, lo_refcnt
1279 * must be at least one and it can only become zero when the
1280 * current holder is released.
1281 */
1282 if (!release)
1283 mutex_lock(&bdev->bd_mutex);
1284 err = bdev_disk_changed(bdev, false);
1285 if (!release)
1286 mutex_unlock(&bdev->bd_mutex);
1287 if (err)
1288 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1289 __func__, lo_number, err);
1290 /* Device is gone, no point in returning error */
1291 err = 0;
1292 }
1293
1294 /*
1295 * lo->lo_state is set to Lo_unbound here after above partscan has
1296 * finished.
1297 *
1298 * There cannot be anybody else entering __loop_clr_fd() as
1299 * lo->lo_backing_file is already cleared and Lo_rundown state
1300 * protects us from all the other places trying to change the 'lo'
1301 * device.
1302 */
1303 mutex_lock(&loop_ctl_mutex);
1304 lo->lo_flags = 0;
1305 if (!part_shift)
1306 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1307 lo->lo_state = Lo_unbound;
1308 mutex_unlock(&loop_ctl_mutex);
1309
1310 /*
1311 * Need not hold loop_ctl_mutex to fput backing file.
1312 * Calling fput holding loop_ctl_mutex triggers a circular
1313 * lock dependency possibility warning as fput can take
1314 * bd_mutex which is usually taken before loop_ctl_mutex.
1315 */
1316 if (filp)
1317 fput(filp);
1318 return err;
1319 }
1320
loop_clr_fd(struct loop_device * lo)1321 static int loop_clr_fd(struct loop_device *lo)
1322 {
1323 int err;
1324
1325 err = mutex_lock_killable(&loop_ctl_mutex);
1326 if (err)
1327 return err;
1328 if (lo->lo_state != Lo_bound) {
1329 mutex_unlock(&loop_ctl_mutex);
1330 return -ENXIO;
1331 }
1332 /*
1333 * If we've explicitly asked to tear down the loop device,
1334 * and it has an elevated reference count, set it for auto-teardown when
1335 * the last reference goes away. This stops $!~#$@ udev from
1336 * preventing teardown because it decided that it needs to run blkid on
1337 * the loopback device whenever they appear. xfstests is notorious for
1338 * failing tests because blkid via udev races with a losetup
1339 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1340 * command to fail with EBUSY.
1341 */
1342 if (atomic_read(&lo->lo_refcnt) > 1) {
1343 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1344 mutex_unlock(&loop_ctl_mutex);
1345 return 0;
1346 }
1347 lo->lo_state = Lo_rundown;
1348 mutex_unlock(&loop_ctl_mutex);
1349
1350 return __loop_clr_fd(lo, false);
1351 }
1352
1353 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1354 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1355 {
1356 int err;
1357 struct block_device *bdev;
1358 kuid_t uid = current_uid();
1359 int prev_lo_flags;
1360 bool partscan = false;
1361 bool size_changed = false;
1362
1363 err = mutex_lock_killable(&loop_ctl_mutex);
1364 if (err)
1365 return err;
1366 if (lo->lo_encrypt_key_size &&
1367 !uid_eq(lo->lo_key_owner, uid) &&
1368 !capable(CAP_SYS_ADMIN)) {
1369 err = -EPERM;
1370 goto out_unlock;
1371 }
1372 if (lo->lo_state != Lo_bound) {
1373 err = -ENXIO;
1374 goto out_unlock;
1375 }
1376
1377 if (lo->lo_offset != info->lo_offset ||
1378 lo->lo_sizelimit != info->lo_sizelimit) {
1379 size_changed = true;
1380 sync_blockdev(lo->lo_device);
1381 invalidate_bdev(lo->lo_device);
1382 }
1383
1384 /* I/O need to be drained during transfer transition */
1385 blk_mq_freeze_queue(lo->lo_queue);
1386
1387 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1388 /* If any pages were dirtied after invalidate_bdev(), try again */
1389 err = -EAGAIN;
1390 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1391 __func__, lo->lo_number, lo->lo_file_name,
1392 lo->lo_device->bd_inode->i_mapping->nrpages);
1393 goto out_unfreeze;
1394 }
1395
1396 prev_lo_flags = lo->lo_flags;
1397
1398 err = loop_set_status_from_info(lo, info);
1399 if (err)
1400 goto out_unfreeze;
1401
1402 /* Mask out flags that can't be set using LOOP_SET_STATUS. */
1403 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1404 /* For those flags, use the previous values instead */
1405 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1406 /* For flags that can't be cleared, use previous values too */
1407 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1408
1409 if (size_changed) {
1410 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1411 lo->lo_backing_file);
1412 loop_set_size(lo, new_size);
1413 }
1414
1415 loop_config_discard(lo);
1416
1417 /* update dio if lo_offset or transfer is changed */
1418 __loop_update_dio(lo, lo->use_dio);
1419
1420 out_unfreeze:
1421 blk_mq_unfreeze_queue(lo->lo_queue);
1422
1423 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1424 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1425 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1426 bdev = lo->lo_device;
1427 partscan = true;
1428 }
1429 out_unlock:
1430 mutex_unlock(&loop_ctl_mutex);
1431 if (partscan)
1432 loop_reread_partitions(lo, bdev);
1433
1434 return err;
1435 }
1436
1437 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1438 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1439 {
1440 struct path path;
1441 struct kstat stat;
1442 int ret;
1443
1444 ret = mutex_lock_killable(&loop_ctl_mutex);
1445 if (ret)
1446 return ret;
1447 if (lo->lo_state != Lo_bound) {
1448 mutex_unlock(&loop_ctl_mutex);
1449 return -ENXIO;
1450 }
1451
1452 memset(info, 0, sizeof(*info));
1453 info->lo_number = lo->lo_number;
1454 info->lo_offset = lo->lo_offset;
1455 info->lo_sizelimit = lo->lo_sizelimit;
1456 info->lo_flags = lo->lo_flags;
1457 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1458 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1459 info->lo_encrypt_type =
1460 lo->lo_encryption ? lo->lo_encryption->number : 0;
1461 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1462 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1463 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1464 lo->lo_encrypt_key_size);
1465 }
1466
1467 /* Drop loop_ctl_mutex while we call into the filesystem. */
1468 path = lo->lo_backing_file->f_path;
1469 path_get(&path);
1470 mutex_unlock(&loop_ctl_mutex);
1471 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1472 if (!ret) {
1473 info->lo_device = huge_encode_dev(stat.dev);
1474 info->lo_inode = stat.ino;
1475 info->lo_rdevice = huge_encode_dev(stat.rdev);
1476 }
1477 path_put(&path);
1478 return ret;
1479 }
1480
1481 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1482 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1483 {
1484 memset(info64, 0, sizeof(*info64));
1485 info64->lo_number = info->lo_number;
1486 info64->lo_device = info->lo_device;
1487 info64->lo_inode = info->lo_inode;
1488 info64->lo_rdevice = info->lo_rdevice;
1489 info64->lo_offset = info->lo_offset;
1490 info64->lo_sizelimit = 0;
1491 info64->lo_encrypt_type = info->lo_encrypt_type;
1492 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1493 info64->lo_flags = info->lo_flags;
1494 info64->lo_init[0] = info->lo_init[0];
1495 info64->lo_init[1] = info->lo_init[1];
1496 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1497 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1498 else
1499 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1500 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1501 }
1502
1503 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1504 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1505 {
1506 memset(info, 0, sizeof(*info));
1507 info->lo_number = info64->lo_number;
1508 info->lo_device = info64->lo_device;
1509 info->lo_inode = info64->lo_inode;
1510 info->lo_rdevice = info64->lo_rdevice;
1511 info->lo_offset = info64->lo_offset;
1512 info->lo_encrypt_type = info64->lo_encrypt_type;
1513 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1514 info->lo_flags = info64->lo_flags;
1515 info->lo_init[0] = info64->lo_init[0];
1516 info->lo_init[1] = info64->lo_init[1];
1517 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1518 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1519 else
1520 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1521 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1522
1523 /* error in case values were truncated */
1524 if (info->lo_device != info64->lo_device ||
1525 info->lo_rdevice != info64->lo_rdevice ||
1526 info->lo_inode != info64->lo_inode ||
1527 info->lo_offset != info64->lo_offset)
1528 return -EOVERFLOW;
1529
1530 return 0;
1531 }
1532
1533 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1534 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1535 {
1536 struct loop_info info;
1537 struct loop_info64 info64;
1538
1539 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1540 return -EFAULT;
1541 loop_info64_from_old(&info, &info64);
1542 return loop_set_status(lo, &info64);
1543 }
1544
1545 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1546 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1547 {
1548 struct loop_info64 info64;
1549
1550 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1551 return -EFAULT;
1552 return loop_set_status(lo, &info64);
1553 }
1554
1555 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1556 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1557 struct loop_info info;
1558 struct loop_info64 info64;
1559 int err;
1560
1561 if (!arg)
1562 return -EINVAL;
1563 err = loop_get_status(lo, &info64);
1564 if (!err)
1565 err = loop_info64_to_old(&info64, &info);
1566 if (!err && copy_to_user(arg, &info, sizeof(info)))
1567 err = -EFAULT;
1568
1569 return err;
1570 }
1571
1572 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1573 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1574 struct loop_info64 info64;
1575 int err;
1576
1577 if (!arg)
1578 return -EINVAL;
1579 err = loop_get_status(lo, &info64);
1580 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1581 err = -EFAULT;
1582
1583 return err;
1584 }
1585
loop_set_capacity(struct loop_device * lo)1586 static int loop_set_capacity(struct loop_device *lo)
1587 {
1588 loff_t size;
1589
1590 if (unlikely(lo->lo_state != Lo_bound))
1591 return -ENXIO;
1592
1593 size = get_loop_size(lo, lo->lo_backing_file);
1594 loop_set_size(lo, size);
1595
1596 return 0;
1597 }
1598
loop_set_dio(struct loop_device * lo,unsigned long arg)1599 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1600 {
1601 int error = -ENXIO;
1602 if (lo->lo_state != Lo_bound)
1603 goto out;
1604
1605 __loop_update_dio(lo, !!arg);
1606 if (lo->use_dio == !!arg)
1607 return 0;
1608 error = -EINVAL;
1609 out:
1610 return error;
1611 }
1612
loop_set_block_size(struct loop_device * lo,unsigned long arg)1613 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1614 {
1615 int err = 0;
1616
1617 if (lo->lo_state != Lo_bound)
1618 return -ENXIO;
1619
1620 err = loop_validate_block_size(arg);
1621 if (err)
1622 return err;
1623
1624 if (lo->lo_queue->limits.logical_block_size == arg)
1625 return 0;
1626
1627 sync_blockdev(lo->lo_device);
1628 invalidate_bdev(lo->lo_device);
1629
1630 blk_mq_freeze_queue(lo->lo_queue);
1631
1632 /* invalidate_bdev should have truncated all the pages */
1633 if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1634 err = -EAGAIN;
1635 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1636 __func__, lo->lo_number, lo->lo_file_name,
1637 lo->lo_device->bd_inode->i_mapping->nrpages);
1638 goto out_unfreeze;
1639 }
1640
1641 blk_queue_logical_block_size(lo->lo_queue, arg);
1642 blk_queue_physical_block_size(lo->lo_queue, arg);
1643 blk_queue_io_min(lo->lo_queue, arg);
1644 loop_update_dio(lo);
1645 out_unfreeze:
1646 blk_mq_unfreeze_queue(lo->lo_queue);
1647
1648 return err;
1649 }
1650
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1651 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1652 unsigned long arg)
1653 {
1654 int err;
1655
1656 err = mutex_lock_killable(&loop_ctl_mutex);
1657 if (err)
1658 return err;
1659 switch (cmd) {
1660 case LOOP_SET_CAPACITY:
1661 err = loop_set_capacity(lo);
1662 break;
1663 case LOOP_SET_DIRECT_IO:
1664 err = loop_set_dio(lo, arg);
1665 break;
1666 case LOOP_SET_BLOCK_SIZE:
1667 err = loop_set_block_size(lo, arg);
1668 break;
1669 default:
1670 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1671 }
1672 mutex_unlock(&loop_ctl_mutex);
1673 return err;
1674 }
1675
lo_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1676 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1677 unsigned int cmd, unsigned long arg)
1678 {
1679 struct loop_device *lo = bdev->bd_disk->private_data;
1680 void __user *argp = (void __user *) arg;
1681 int err;
1682
1683 switch (cmd) {
1684 case LOOP_SET_FD: {
1685 /*
1686 * Legacy case - pass in a zeroed out struct loop_config with
1687 * only the file descriptor set , which corresponds with the
1688 * default parameters we'd have used otherwise.
1689 */
1690 struct loop_config config;
1691
1692 memset(&config, 0, sizeof(config));
1693 config.fd = arg;
1694
1695 return loop_configure(lo, mode, bdev, &config);
1696 }
1697 case LOOP_CONFIGURE: {
1698 struct loop_config config;
1699
1700 if (copy_from_user(&config, argp, sizeof(config)))
1701 return -EFAULT;
1702
1703 return loop_configure(lo, mode, bdev, &config);
1704 }
1705 case LOOP_CHANGE_FD:
1706 return loop_change_fd(lo, bdev, arg);
1707 case LOOP_CLR_FD:
1708 return loop_clr_fd(lo);
1709 case LOOP_SET_STATUS:
1710 err = -EPERM;
1711 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1712 err = loop_set_status_old(lo, argp);
1713 }
1714 break;
1715 case LOOP_GET_STATUS:
1716 return loop_get_status_old(lo, argp);
1717 case LOOP_SET_STATUS64:
1718 err = -EPERM;
1719 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1720 err = loop_set_status64(lo, argp);
1721 }
1722 break;
1723 case LOOP_GET_STATUS64:
1724 return loop_get_status64(lo, argp);
1725 case LOOP_SET_CAPACITY:
1726 case LOOP_SET_DIRECT_IO:
1727 case LOOP_SET_BLOCK_SIZE:
1728 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1729 return -EPERM;
1730 fallthrough;
1731 default:
1732 err = lo_simple_ioctl(lo, cmd, arg);
1733 break;
1734 }
1735
1736 return err;
1737 }
1738
1739 #ifdef CONFIG_COMPAT
1740 struct compat_loop_info {
1741 compat_int_t lo_number; /* ioctl r/o */
1742 compat_dev_t lo_device; /* ioctl r/o */
1743 compat_ulong_t lo_inode; /* ioctl r/o */
1744 compat_dev_t lo_rdevice; /* ioctl r/o */
1745 compat_int_t lo_offset;
1746 compat_int_t lo_encrypt_type;
1747 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1748 compat_int_t lo_flags; /* ioctl r/o */
1749 char lo_name[LO_NAME_SIZE];
1750 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1751 compat_ulong_t lo_init[2];
1752 char reserved[4];
1753 };
1754
1755 /*
1756 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1757 * - noinlined to reduce stack space usage in main part of driver
1758 */
1759 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1760 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1761 struct loop_info64 *info64)
1762 {
1763 struct compat_loop_info info;
1764
1765 if (copy_from_user(&info, arg, sizeof(info)))
1766 return -EFAULT;
1767
1768 memset(info64, 0, sizeof(*info64));
1769 info64->lo_number = info.lo_number;
1770 info64->lo_device = info.lo_device;
1771 info64->lo_inode = info.lo_inode;
1772 info64->lo_rdevice = info.lo_rdevice;
1773 info64->lo_offset = info.lo_offset;
1774 info64->lo_sizelimit = 0;
1775 info64->lo_encrypt_type = info.lo_encrypt_type;
1776 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1777 info64->lo_flags = info.lo_flags;
1778 info64->lo_init[0] = info.lo_init[0];
1779 info64->lo_init[1] = info.lo_init[1];
1780 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1781 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1782 else
1783 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1784 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1785 return 0;
1786 }
1787
1788 /*
1789 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1790 * - noinlined to reduce stack space usage in main part of driver
1791 */
1792 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1793 loop_info64_to_compat(const struct loop_info64 *info64,
1794 struct compat_loop_info __user *arg)
1795 {
1796 struct compat_loop_info info;
1797
1798 memset(&info, 0, sizeof(info));
1799 info.lo_number = info64->lo_number;
1800 info.lo_device = info64->lo_device;
1801 info.lo_inode = info64->lo_inode;
1802 info.lo_rdevice = info64->lo_rdevice;
1803 info.lo_offset = info64->lo_offset;
1804 info.lo_encrypt_type = info64->lo_encrypt_type;
1805 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1806 info.lo_flags = info64->lo_flags;
1807 info.lo_init[0] = info64->lo_init[0];
1808 info.lo_init[1] = info64->lo_init[1];
1809 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1810 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1811 else
1812 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1813 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1814
1815 /* error in case values were truncated */
1816 if (info.lo_device != info64->lo_device ||
1817 info.lo_rdevice != info64->lo_rdevice ||
1818 info.lo_inode != info64->lo_inode ||
1819 info.lo_offset != info64->lo_offset ||
1820 info.lo_init[0] != info64->lo_init[0] ||
1821 info.lo_init[1] != info64->lo_init[1])
1822 return -EOVERFLOW;
1823
1824 if (copy_to_user(arg, &info, sizeof(info)))
1825 return -EFAULT;
1826 return 0;
1827 }
1828
1829 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1830 loop_set_status_compat(struct loop_device *lo,
1831 const struct compat_loop_info __user *arg)
1832 {
1833 struct loop_info64 info64;
1834 int ret;
1835
1836 ret = loop_info64_from_compat(arg, &info64);
1837 if (ret < 0)
1838 return ret;
1839 return loop_set_status(lo, &info64);
1840 }
1841
1842 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1843 loop_get_status_compat(struct loop_device *lo,
1844 struct compat_loop_info __user *arg)
1845 {
1846 struct loop_info64 info64;
1847 int err;
1848
1849 if (!arg)
1850 return -EINVAL;
1851 err = loop_get_status(lo, &info64);
1852 if (!err)
1853 err = loop_info64_to_compat(&info64, arg);
1854 return err;
1855 }
1856
lo_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1857 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1858 unsigned int cmd, unsigned long arg)
1859 {
1860 struct loop_device *lo = bdev->bd_disk->private_data;
1861 int err;
1862
1863 switch(cmd) {
1864 case LOOP_SET_STATUS:
1865 err = loop_set_status_compat(lo,
1866 (const struct compat_loop_info __user *)arg);
1867 break;
1868 case LOOP_GET_STATUS:
1869 err = loop_get_status_compat(lo,
1870 (struct compat_loop_info __user *)arg);
1871 break;
1872 case LOOP_SET_CAPACITY:
1873 case LOOP_CLR_FD:
1874 case LOOP_GET_STATUS64:
1875 case LOOP_SET_STATUS64:
1876 case LOOP_CONFIGURE:
1877 arg = (unsigned long) compat_ptr(arg);
1878 fallthrough;
1879 case LOOP_SET_FD:
1880 case LOOP_CHANGE_FD:
1881 case LOOP_SET_BLOCK_SIZE:
1882 case LOOP_SET_DIRECT_IO:
1883 err = lo_ioctl(bdev, mode, cmd, arg);
1884 break;
1885 default:
1886 err = -ENOIOCTLCMD;
1887 break;
1888 }
1889 return err;
1890 }
1891 #endif
1892
lo_open(struct block_device * bdev,fmode_t mode)1893 static int lo_open(struct block_device *bdev, fmode_t mode)
1894 {
1895 struct loop_device *lo;
1896 int err;
1897
1898 err = mutex_lock_killable(&loop_ctl_mutex);
1899 if (err)
1900 return err;
1901 lo = bdev->bd_disk->private_data;
1902 if (!lo) {
1903 err = -ENXIO;
1904 goto out;
1905 }
1906
1907 atomic_inc(&lo->lo_refcnt);
1908 out:
1909 mutex_unlock(&loop_ctl_mutex);
1910 return err;
1911 }
1912
lo_release(struct gendisk * disk,fmode_t mode)1913 static void lo_release(struct gendisk *disk, fmode_t mode)
1914 {
1915 struct loop_device *lo;
1916
1917 mutex_lock(&loop_ctl_mutex);
1918 lo = disk->private_data;
1919 if (atomic_dec_return(&lo->lo_refcnt))
1920 goto out_unlock;
1921
1922 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1923 if (lo->lo_state != Lo_bound)
1924 goto out_unlock;
1925 lo->lo_state = Lo_rundown;
1926 mutex_unlock(&loop_ctl_mutex);
1927 /*
1928 * In autoclear mode, stop the loop thread
1929 * and remove configuration after last close.
1930 */
1931 __loop_clr_fd(lo, true);
1932 return;
1933 } else if (lo->lo_state == Lo_bound) {
1934 /*
1935 * Otherwise keep thread (if running) and config,
1936 * but flush possible ongoing bios in thread.
1937 */
1938 blk_mq_freeze_queue(lo->lo_queue);
1939 blk_mq_unfreeze_queue(lo->lo_queue);
1940 }
1941
1942 out_unlock:
1943 mutex_unlock(&loop_ctl_mutex);
1944 }
1945
1946 static const struct block_device_operations lo_fops = {
1947 .owner = THIS_MODULE,
1948 .open = lo_open,
1949 .release = lo_release,
1950 .ioctl = lo_ioctl,
1951 #ifdef CONFIG_COMPAT
1952 .compat_ioctl = lo_compat_ioctl,
1953 #endif
1954 };
1955
1956 /*
1957 * And now the modules code and kernel interface.
1958 */
1959 static int max_loop;
1960 module_param(max_loop, int, 0444);
1961 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1962 module_param(max_part, int, 0444);
1963 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1964 MODULE_LICENSE("GPL");
1965 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1966
loop_register_transfer(struct loop_func_table * funcs)1967 int loop_register_transfer(struct loop_func_table *funcs)
1968 {
1969 unsigned int n = funcs->number;
1970
1971 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1972 return -EINVAL;
1973 xfer_funcs[n] = funcs;
1974 return 0;
1975 }
1976
unregister_transfer_cb(int id,void * ptr,void * data)1977 static int unregister_transfer_cb(int id, void *ptr, void *data)
1978 {
1979 struct loop_device *lo = ptr;
1980 struct loop_func_table *xfer = data;
1981
1982 mutex_lock(&loop_ctl_mutex);
1983 if (lo->lo_encryption == xfer)
1984 loop_release_xfer(lo);
1985 mutex_unlock(&loop_ctl_mutex);
1986 return 0;
1987 }
1988
loop_unregister_transfer(int number)1989 int loop_unregister_transfer(int number)
1990 {
1991 unsigned int n = number;
1992 struct loop_func_table *xfer;
1993
1994 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1995 return -EINVAL;
1996
1997 xfer_funcs[n] = NULL;
1998 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1999 return 0;
2000 }
2001
2002 EXPORT_SYMBOL(loop_register_transfer);
2003 EXPORT_SYMBOL(loop_unregister_transfer);
2004
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2005 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
2006 const struct blk_mq_queue_data *bd)
2007 {
2008 struct request *rq = bd->rq;
2009 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2010 struct loop_device *lo = rq->q->queuedata;
2011
2012 blk_mq_start_request(rq);
2013
2014 if (lo->lo_state != Lo_bound)
2015 return BLK_STS_IOERR;
2016
2017 switch (req_op(rq)) {
2018 case REQ_OP_FLUSH:
2019 case REQ_OP_DISCARD:
2020 case REQ_OP_WRITE_ZEROES:
2021 cmd->use_aio = false;
2022 break;
2023 default:
2024 cmd->use_aio = lo->use_dio;
2025 break;
2026 }
2027
2028 /* always use the first bio's css */
2029 #ifdef CONFIG_BLK_CGROUP
2030 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
2031 cmd->css = &bio_blkcg(rq->bio)->css;
2032 css_get(cmd->css);
2033 } else
2034 #endif
2035 cmd->css = NULL;
2036 kthread_queue_work(&lo->worker, &cmd->work);
2037
2038 return BLK_STS_OK;
2039 }
2040
loop_handle_cmd(struct loop_cmd * cmd)2041 static void loop_handle_cmd(struct loop_cmd *cmd)
2042 {
2043 struct request *rq = blk_mq_rq_from_pdu(cmd);
2044 const bool write = op_is_write(req_op(rq));
2045 struct loop_device *lo = rq->q->queuedata;
2046 int ret = 0;
2047
2048 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2049 ret = -EIO;
2050 goto failed;
2051 }
2052
2053 ret = do_req_filebacked(lo, rq);
2054 failed:
2055 /* complete non-aio request */
2056 if (!cmd->use_aio || ret) {
2057 if (ret == -EOPNOTSUPP)
2058 cmd->ret = ret;
2059 else
2060 cmd->ret = ret ? -EIO : 0;
2061 if (likely(!blk_should_fake_timeout(rq->q)))
2062 blk_mq_complete_request(rq);
2063 }
2064 }
2065
loop_queue_work(struct kthread_work * work)2066 static void loop_queue_work(struct kthread_work *work)
2067 {
2068 struct loop_cmd *cmd =
2069 container_of(work, struct loop_cmd, work);
2070
2071 loop_handle_cmd(cmd);
2072 }
2073
loop_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2074 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
2075 unsigned int hctx_idx, unsigned int numa_node)
2076 {
2077 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2078
2079 kthread_init_work(&cmd->work, loop_queue_work);
2080 return 0;
2081 }
2082
2083 static const struct blk_mq_ops loop_mq_ops = {
2084 .queue_rq = loop_queue_rq,
2085 .init_request = loop_init_request,
2086 .complete = lo_complete_rq,
2087 };
2088
loop_add(struct loop_device ** l,int i)2089 static int loop_add(struct loop_device **l, int i)
2090 {
2091 struct loop_device *lo;
2092 struct gendisk *disk;
2093 int err;
2094
2095 err = -ENOMEM;
2096 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2097 if (!lo)
2098 goto out;
2099
2100 lo->lo_state = Lo_unbound;
2101
2102 /* allocate id, if @id >= 0, we're requesting that specific id */
2103 if (i >= 0) {
2104 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2105 if (err == -ENOSPC)
2106 err = -EEXIST;
2107 } else {
2108 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2109 }
2110 if (err < 0)
2111 goto out_free_dev;
2112 i = err;
2113
2114 err = -ENOMEM;
2115 lo->tag_set.ops = &loop_mq_ops;
2116 lo->tag_set.nr_hw_queues = 1;
2117 lo->tag_set.queue_depth = 128;
2118 lo->tag_set.numa_node = NUMA_NO_NODE;
2119 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2120 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING |
2121 BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2122 lo->tag_set.driver_data = lo;
2123
2124 err = blk_mq_alloc_tag_set(&lo->tag_set);
2125 if (err)
2126 goto out_free_idr;
2127
2128 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2129 if (IS_ERR(lo->lo_queue)) {
2130 err = PTR_ERR(lo->lo_queue);
2131 goto out_cleanup_tags;
2132 }
2133 lo->lo_queue->queuedata = lo;
2134
2135 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2136
2137 /*
2138 * By default, we do buffer IO, so it doesn't make sense to enable
2139 * merge because the I/O submitted to backing file is handled page by
2140 * page. For directio mode, merge does help to dispatch bigger request
2141 * to underlayer disk. We will enable merge once directio is enabled.
2142 */
2143 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2144
2145 err = -ENOMEM;
2146 disk = lo->lo_disk = alloc_disk(1 << part_shift);
2147 if (!disk)
2148 goto out_free_queue;
2149
2150 /*
2151 * Disable partition scanning by default. The in-kernel partition
2152 * scanning can be requested individually per-device during its
2153 * setup. Userspace can always add and remove partitions from all
2154 * devices. The needed partition minors are allocated from the
2155 * extended minor space, the main loop device numbers will continue
2156 * to match the loop minors, regardless of the number of partitions
2157 * used.
2158 *
2159 * If max_part is given, partition scanning is globally enabled for
2160 * all loop devices. The minors for the main loop devices will be
2161 * multiples of max_part.
2162 *
2163 * Note: Global-for-all-devices, set-only-at-init, read-only module
2164 * parameteters like 'max_loop' and 'max_part' make things needlessly
2165 * complicated, are too static, inflexible and may surprise
2166 * userspace tools. Parameters like this in general should be avoided.
2167 */
2168 if (!part_shift)
2169 disk->flags |= GENHD_FL_NO_PART_SCAN;
2170 disk->flags |= GENHD_FL_EXT_DEVT;
2171 atomic_set(&lo->lo_refcnt, 0);
2172 lo->lo_number = i;
2173 spin_lock_init(&lo->lo_lock);
2174 disk->major = LOOP_MAJOR;
2175 disk->first_minor = i << part_shift;
2176 disk->fops = &lo_fops;
2177 disk->private_data = lo;
2178 disk->queue = lo->lo_queue;
2179 sprintf(disk->disk_name, "loop%d", i);
2180 add_disk(disk);
2181 *l = lo;
2182 return lo->lo_number;
2183
2184 out_free_queue:
2185 blk_cleanup_queue(lo->lo_queue);
2186 out_cleanup_tags:
2187 blk_mq_free_tag_set(&lo->tag_set);
2188 out_free_idr:
2189 idr_remove(&loop_index_idr, i);
2190 out_free_dev:
2191 kfree(lo);
2192 out:
2193 return err;
2194 }
2195
loop_remove(struct loop_device * lo)2196 static void loop_remove(struct loop_device *lo)
2197 {
2198 del_gendisk(lo->lo_disk);
2199 blk_cleanup_queue(lo->lo_queue);
2200 blk_mq_free_tag_set(&lo->tag_set);
2201 put_disk(lo->lo_disk);
2202 kfree(lo);
2203 }
2204
find_free_cb(int id,void * ptr,void * data)2205 static int find_free_cb(int id, void *ptr, void *data)
2206 {
2207 struct loop_device *lo = ptr;
2208 struct loop_device **l = data;
2209
2210 if (lo->lo_state == Lo_unbound) {
2211 *l = lo;
2212 return 1;
2213 }
2214 return 0;
2215 }
2216
loop_lookup(struct loop_device ** l,int i)2217 static int loop_lookup(struct loop_device **l, int i)
2218 {
2219 struct loop_device *lo;
2220 int ret = -ENODEV;
2221
2222 if (i < 0) {
2223 int err;
2224
2225 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2226 if (err == 1) {
2227 *l = lo;
2228 ret = lo->lo_number;
2229 }
2230 goto out;
2231 }
2232
2233 /* lookup and return a specific i */
2234 lo = idr_find(&loop_index_idr, i);
2235 if (lo) {
2236 *l = lo;
2237 ret = lo->lo_number;
2238 }
2239 out:
2240 return ret;
2241 }
2242
loop_probe(dev_t dev,int * part,void * data)2243 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2244 {
2245 struct loop_device *lo;
2246 struct kobject *kobj;
2247 int err;
2248
2249 mutex_lock(&loop_ctl_mutex);
2250 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2251 if (err < 0)
2252 err = loop_add(&lo, MINOR(dev) >> part_shift);
2253 if (err < 0)
2254 kobj = NULL;
2255 else
2256 kobj = get_disk_and_module(lo->lo_disk);
2257 mutex_unlock(&loop_ctl_mutex);
2258
2259 *part = 0;
2260 return kobj;
2261 }
2262
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2263 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2264 unsigned long parm)
2265 {
2266 struct loop_device *lo;
2267 int ret;
2268
2269 ret = mutex_lock_killable(&loop_ctl_mutex);
2270 if (ret)
2271 return ret;
2272
2273 ret = -ENOSYS;
2274 switch (cmd) {
2275 case LOOP_CTL_ADD:
2276 ret = loop_lookup(&lo, parm);
2277 if (ret >= 0) {
2278 ret = -EEXIST;
2279 break;
2280 }
2281 ret = loop_add(&lo, parm);
2282 break;
2283 case LOOP_CTL_REMOVE:
2284 ret = loop_lookup(&lo, parm);
2285 if (ret < 0)
2286 break;
2287 if (lo->lo_state != Lo_unbound) {
2288 ret = -EBUSY;
2289 break;
2290 }
2291 if (atomic_read(&lo->lo_refcnt) > 0) {
2292 ret = -EBUSY;
2293 break;
2294 }
2295 lo->lo_disk->private_data = NULL;
2296 idr_remove(&loop_index_idr, lo->lo_number);
2297 loop_remove(lo);
2298 break;
2299 case LOOP_CTL_GET_FREE:
2300 ret = loop_lookup(&lo, -1);
2301 if (ret >= 0)
2302 break;
2303 ret = loop_add(&lo, -1);
2304 }
2305 mutex_unlock(&loop_ctl_mutex);
2306
2307 return ret;
2308 }
2309
2310 static const struct file_operations loop_ctl_fops = {
2311 .open = nonseekable_open,
2312 .unlocked_ioctl = loop_control_ioctl,
2313 .compat_ioctl = loop_control_ioctl,
2314 .owner = THIS_MODULE,
2315 .llseek = noop_llseek,
2316 };
2317
2318 static struct miscdevice loop_misc = {
2319 .minor = LOOP_CTRL_MINOR,
2320 .name = "loop-control",
2321 .fops = &loop_ctl_fops,
2322 };
2323
2324 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2325 MODULE_ALIAS("devname:loop-control");
2326
loop_init(void)2327 static int __init loop_init(void)
2328 {
2329 int i, nr;
2330 unsigned long range;
2331 struct loop_device *lo;
2332 int err;
2333
2334 part_shift = 0;
2335 if (max_part > 0) {
2336 part_shift = fls(max_part);
2337
2338 /*
2339 * Adjust max_part according to part_shift as it is exported
2340 * to user space so that user can decide correct minor number
2341 * if [s]he want to create more devices.
2342 *
2343 * Note that -1 is required because partition 0 is reserved
2344 * for the whole disk.
2345 */
2346 max_part = (1UL << part_shift) - 1;
2347 }
2348
2349 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2350 err = -EINVAL;
2351 goto err_out;
2352 }
2353
2354 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2355 err = -EINVAL;
2356 goto err_out;
2357 }
2358
2359 /*
2360 * If max_loop is specified, create that many devices upfront.
2361 * This also becomes a hard limit. If max_loop is not specified,
2362 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2363 * init time. Loop devices can be requested on-demand with the
2364 * /dev/loop-control interface, or be instantiated by accessing
2365 * a 'dead' device node.
2366 */
2367 if (max_loop) {
2368 nr = max_loop;
2369 range = max_loop << part_shift;
2370 } else {
2371 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2372 range = 1UL << MINORBITS;
2373 }
2374
2375 err = misc_register(&loop_misc);
2376 if (err < 0)
2377 goto err_out;
2378
2379
2380 if (register_blkdev(LOOP_MAJOR, "loop")) {
2381 err = -EIO;
2382 goto misc_out;
2383 }
2384
2385 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2386 THIS_MODULE, loop_probe, NULL, NULL);
2387
2388 /* pre-create number of devices given by config or max_loop */
2389 mutex_lock(&loop_ctl_mutex);
2390 for (i = 0; i < nr; i++)
2391 loop_add(&lo, i);
2392 mutex_unlock(&loop_ctl_mutex);
2393
2394 printk(KERN_INFO "loop: module loaded\n");
2395 return 0;
2396
2397 misc_out:
2398 misc_deregister(&loop_misc);
2399 err_out:
2400 return err;
2401 }
2402
loop_exit_cb(int id,void * ptr,void * data)2403 static int loop_exit_cb(int id, void *ptr, void *data)
2404 {
2405 struct loop_device *lo = ptr;
2406
2407 loop_remove(lo);
2408 return 0;
2409 }
2410
loop_exit(void)2411 static void __exit loop_exit(void)
2412 {
2413 unsigned long range;
2414
2415 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2416
2417 mutex_lock(&loop_ctl_mutex);
2418
2419 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2420 idr_destroy(&loop_index_idr);
2421
2422 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2423 unregister_blkdev(LOOP_MAJOR, "loop");
2424
2425 misc_deregister(&loop_misc);
2426
2427 mutex_unlock(&loop_ctl_mutex);
2428 }
2429
2430 module_init(loop_init);
2431 module_exit(loop_exit);
2432
2433 #ifndef MODULE
max_loop_setup(char * str)2434 static int __init max_loop_setup(char *str)
2435 {
2436 max_loop = simple_strtol(str, NULL, 0);
2437 return 1;
2438 }
2439
2440 __setup("max_loop=", max_loop_setup);
2441 #endif
2442