• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36 #include <linux/part_stat.h>
37 
38 #ifdef CONFIG_ZRAM_GROUP
39 #include <linux/memcontrol.h>
40 #endif
41 
42 #include "zram_drv.h"
43 
44 static DEFINE_IDR(zram_index_idr);
45 /* idr index must be protected */
46 static DEFINE_MUTEX(zram_index_mutex);
47 
48 static int zram_major;
49 static const char *default_compressor = "lzo-rle";
50 
51 /* Module params (documentation at end) */
52 static unsigned int num_devices = 1;
53 /*
54  * Pages that compress to sizes equals or greater than this are stored
55  * uncompressed in memory.
56  */
57 static size_t huge_class_size;
58 
59 static const struct block_device_operations zram_devops;
60 static const struct block_device_operations zram_wb_devops;
61 
62 static void zram_free_page(struct zram *zram, size_t index);
63 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
64 				u32 index, int offset, struct bio *bio);
65 
init_done(struct zram * zram)66 static inline bool init_done(struct zram *zram)
67 {
68 	return zram->disksize;
69 }
70 
dev_to_zram(struct device * dev)71 static inline struct zram *dev_to_zram(struct device *dev)
72 {
73 	return (struct zram *)dev_to_disk(dev)->private_data;
74 }
75 
zram_set_element(struct zram * zram,u32 index,unsigned long element)76 static inline void zram_set_element(struct zram *zram, u32 index,
77 			unsigned long element)
78 {
79 	zram->table[index].element = element;
80 }
81 
zram_get_element(struct zram * zram,u32 index)82 static unsigned long zram_get_element(struct zram *zram, u32 index)
83 {
84 	return zram->table[index].element;
85 }
86 
zram_allocated(struct zram * zram,u32 index)87 static inline bool zram_allocated(struct zram *zram, u32 index)
88 {
89 	return zram_get_obj_size(zram, index) ||
90 			zram_test_flag(zram, index, ZRAM_SAME) ||
91 			zram_test_flag(zram, index, ZRAM_WB);
92 }
93 
94 #if PAGE_SIZE != 4096
is_partial_io(struct bio_vec * bvec)95 static inline bool is_partial_io(struct bio_vec *bvec)
96 {
97 	return bvec->bv_len != PAGE_SIZE;
98 }
99 #else
is_partial_io(struct bio_vec * bvec)100 static inline bool is_partial_io(struct bio_vec *bvec)
101 {
102 	return false;
103 }
104 #endif
105 
106 /*
107  * Check if request is within bounds and aligned on zram logical blocks.
108  */
valid_io_request(struct zram * zram,sector_t start,unsigned int size)109 static inline bool valid_io_request(struct zram *zram,
110 		sector_t start, unsigned int size)
111 {
112 	u64 end, bound;
113 
114 	/* unaligned request */
115 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
116 		return false;
117 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
118 		return false;
119 
120 	end = start + (size >> SECTOR_SHIFT);
121 	bound = zram->disksize >> SECTOR_SHIFT;
122 	/* out of range range */
123 	if (unlikely(start >= bound || end > bound || start > end))
124 		return false;
125 
126 	/* I/O request is valid */
127 	return true;
128 }
129 
update_position(u32 * index,int * offset,struct bio_vec * bvec)130 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
131 {
132 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
133 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
134 }
135 
update_used_max(struct zram * zram,const unsigned long pages)136 static inline void update_used_max(struct zram *zram,
137 					const unsigned long pages)
138 {
139 	unsigned long old_max, cur_max;
140 
141 	old_max = atomic_long_read(&zram->stats.max_used_pages);
142 
143 	do {
144 		cur_max = old_max;
145 		if (pages > cur_max)
146 			old_max = atomic_long_cmpxchg(
147 				&zram->stats.max_used_pages, cur_max, pages);
148 	} while (old_max != cur_max);
149 }
150 
zram_fill_page(void * ptr,unsigned long len,unsigned long value)151 static inline void zram_fill_page(void *ptr, unsigned long len,
152 					unsigned long value)
153 {
154 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
155 	memset_l(ptr, value, len / sizeof(unsigned long));
156 }
157 
page_same_filled(void * ptr,unsigned long * element)158 static bool page_same_filled(void *ptr, unsigned long *element)
159 {
160 	unsigned long *page;
161 	unsigned long val;
162 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
163 
164 	page = (unsigned long *)ptr;
165 	val = page[0];
166 
167 	if (val != page[last_pos])
168 		return false;
169 
170 	for (pos = 1; pos < last_pos; pos++) {
171 		if (val != page[pos])
172 			return false;
173 	}
174 
175 	*element = val;
176 
177 	return true;
178 }
179 
initstate_show(struct device * dev,struct device_attribute * attr,char * buf)180 static ssize_t initstate_show(struct device *dev,
181 		struct device_attribute *attr, char *buf)
182 {
183 	u32 val;
184 	struct zram *zram = dev_to_zram(dev);
185 
186 	down_read(&zram->init_lock);
187 	val = init_done(zram);
188 	up_read(&zram->init_lock);
189 
190 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
191 }
192 
disksize_show(struct device * dev,struct device_attribute * attr,char * buf)193 static ssize_t disksize_show(struct device *dev,
194 		struct device_attribute *attr, char *buf)
195 {
196 	struct zram *zram = dev_to_zram(dev);
197 
198 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
199 }
200 
mem_limit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)201 static ssize_t mem_limit_store(struct device *dev,
202 		struct device_attribute *attr, const char *buf, size_t len)
203 {
204 	u64 limit;
205 	char *tmp;
206 	struct zram *zram = dev_to_zram(dev);
207 
208 	limit = memparse(buf, &tmp);
209 	if (buf == tmp) /* no chars parsed, invalid input */
210 		return -EINVAL;
211 
212 	down_write(&zram->init_lock);
213 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
214 	up_write(&zram->init_lock);
215 
216 	return len;
217 }
218 
mem_used_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)219 static ssize_t mem_used_max_store(struct device *dev,
220 		struct device_attribute *attr, const char *buf, size_t len)
221 {
222 	int err;
223 	unsigned long val;
224 	struct zram *zram = dev_to_zram(dev);
225 
226 	err = kstrtoul(buf, 10, &val);
227 	if (err || val != 0)
228 		return -EINVAL;
229 
230 	down_read(&zram->init_lock);
231 	if (init_done(zram)) {
232 		atomic_long_set(&zram->stats.max_used_pages,
233 				zs_get_total_pages(zram->mem_pool));
234 	}
235 	up_read(&zram->init_lock);
236 
237 	return len;
238 }
239 
idle_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)240 static ssize_t idle_store(struct device *dev,
241 		struct device_attribute *attr, const char *buf, size_t len)
242 {
243 	struct zram *zram = dev_to_zram(dev);
244 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
245 	int index;
246 
247 	if (!sysfs_streq(buf, "all"))
248 		return -EINVAL;
249 
250 	down_read(&zram->init_lock);
251 	if (!init_done(zram)) {
252 		up_read(&zram->init_lock);
253 		return -EINVAL;
254 	}
255 
256 	for (index = 0; index < nr_pages; index++) {
257 		/*
258 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
259 		 * See the comment in writeback_store.
260 		 */
261 		zram_slot_lock(zram, index);
262 		if (zram_allocated(zram, index) &&
263 				!zram_test_flag(zram, index, ZRAM_UNDER_WB))
264 			zram_set_flag(zram, index, ZRAM_IDLE);
265 		zram_slot_unlock(zram, index);
266 	}
267 
268 	up_read(&zram->init_lock);
269 
270 	return len;
271 }
272 
273 #ifdef CONFIG_ZRAM_WRITEBACK
writeback_limit_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)274 static ssize_t writeback_limit_enable_store(struct device *dev,
275 		struct device_attribute *attr, const char *buf, size_t len)
276 {
277 	struct zram *zram = dev_to_zram(dev);
278 	u64 val;
279 	ssize_t ret = -EINVAL;
280 
281 	if (kstrtoull(buf, 10, &val))
282 		return ret;
283 
284 	down_read(&zram->init_lock);
285 	spin_lock(&zram->wb_limit_lock);
286 	zram->wb_limit_enable = val;
287 	spin_unlock(&zram->wb_limit_lock);
288 	up_read(&zram->init_lock);
289 	ret = len;
290 
291 	return ret;
292 }
293 
writeback_limit_enable_show(struct device * dev,struct device_attribute * attr,char * buf)294 static ssize_t writeback_limit_enable_show(struct device *dev,
295 		struct device_attribute *attr, char *buf)
296 {
297 	bool val;
298 	struct zram *zram = dev_to_zram(dev);
299 
300 	down_read(&zram->init_lock);
301 	spin_lock(&zram->wb_limit_lock);
302 	val = zram->wb_limit_enable;
303 	spin_unlock(&zram->wb_limit_lock);
304 	up_read(&zram->init_lock);
305 
306 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
307 }
308 
writeback_limit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)309 static ssize_t writeback_limit_store(struct device *dev,
310 		struct device_attribute *attr, const char *buf, size_t len)
311 {
312 	struct zram *zram = dev_to_zram(dev);
313 	u64 val;
314 	ssize_t ret = -EINVAL;
315 
316 	if (kstrtoull(buf, 10, &val))
317 		return ret;
318 
319 	down_read(&zram->init_lock);
320 	spin_lock(&zram->wb_limit_lock);
321 	zram->bd_wb_limit = val;
322 	spin_unlock(&zram->wb_limit_lock);
323 	up_read(&zram->init_lock);
324 	ret = len;
325 
326 	return ret;
327 }
328 
writeback_limit_show(struct device * dev,struct device_attribute * attr,char * buf)329 static ssize_t writeback_limit_show(struct device *dev,
330 		struct device_attribute *attr, char *buf)
331 {
332 	u64 val;
333 	struct zram *zram = dev_to_zram(dev);
334 
335 	down_read(&zram->init_lock);
336 	spin_lock(&zram->wb_limit_lock);
337 	val = zram->bd_wb_limit;
338 	spin_unlock(&zram->wb_limit_lock);
339 	up_read(&zram->init_lock);
340 
341 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
342 }
343 
reset_bdev(struct zram * zram)344 static void reset_bdev(struct zram *zram)
345 {
346 	struct block_device *bdev;
347 
348 	if (!zram->backing_dev)
349 		return;
350 
351 	bdev = zram->bdev;
352 	if (zram->old_block_size)
353 		set_blocksize(bdev, zram->old_block_size);
354 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
355 	/* hope filp_close flush all of IO */
356 	filp_close(zram->backing_dev, NULL);
357 	zram->backing_dev = NULL;
358 	zram->old_block_size = 0;
359 	zram->bdev = NULL;
360 	zram->disk->fops = &zram_devops;
361 	kvfree(zram->bitmap);
362 	zram->bitmap = NULL;
363 }
364 
backing_dev_show(struct device * dev,struct device_attribute * attr,char * buf)365 static ssize_t backing_dev_show(struct device *dev,
366 		struct device_attribute *attr, char *buf)
367 {
368 	struct file *file;
369 	struct zram *zram = dev_to_zram(dev);
370 	char *p;
371 	ssize_t ret;
372 
373 	down_read(&zram->init_lock);
374 	file = zram->backing_dev;
375 	if (!file) {
376 		memcpy(buf, "none\n", 5);
377 		up_read(&zram->init_lock);
378 		return 5;
379 	}
380 
381 	p = file_path(file, buf, PAGE_SIZE - 1);
382 	if (IS_ERR(p)) {
383 		ret = PTR_ERR(p);
384 		goto out;
385 	}
386 
387 	ret = strlen(p);
388 	memmove(buf, p, ret);
389 	buf[ret++] = '\n';
390 out:
391 	up_read(&zram->init_lock);
392 	return ret;
393 }
394 
backing_dev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)395 static ssize_t backing_dev_store(struct device *dev,
396 		struct device_attribute *attr, const char *buf, size_t len)
397 {
398 	char *file_name;
399 	size_t sz;
400 	struct file *backing_dev = NULL;
401 	struct inode *inode;
402 	struct address_space *mapping;
403 	unsigned int bitmap_sz, old_block_size = 0;
404 	unsigned long nr_pages, *bitmap = NULL;
405 	struct block_device *bdev = NULL;
406 	int err;
407 	struct zram *zram = dev_to_zram(dev);
408 
409 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
410 	if (!file_name)
411 		return -ENOMEM;
412 
413 	down_write(&zram->init_lock);
414 	if (init_done(zram)) {
415 		pr_info("Can't setup backing device for initialized device\n");
416 		err = -EBUSY;
417 		goto out;
418 	}
419 
420 	strlcpy(file_name, buf, PATH_MAX);
421 	/* ignore trailing newline */
422 	sz = strlen(file_name);
423 	if (sz > 0 && file_name[sz - 1] == '\n')
424 		file_name[sz - 1] = 0x00;
425 
426 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
427 	if (IS_ERR(backing_dev)) {
428 		err = PTR_ERR(backing_dev);
429 		backing_dev = NULL;
430 		goto out;
431 	}
432 
433 	mapping = backing_dev->f_mapping;
434 	inode = mapping->host;
435 
436 	/* Support only block device in this moment */
437 	if (!S_ISBLK(inode->i_mode)) {
438 		err = -ENOTBLK;
439 		goto out;
440 	}
441 
442 	bdev = blkdev_get_by_dev(inode->i_rdev,
443 			FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
444 	if (IS_ERR(bdev)) {
445 		err = PTR_ERR(bdev);
446 		bdev = NULL;
447 		goto out;
448 	}
449 
450 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
451 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
452 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
453 	if (!bitmap) {
454 		err = -ENOMEM;
455 		goto out;
456 	}
457 
458 	old_block_size = block_size(bdev);
459 	err = set_blocksize(bdev, PAGE_SIZE);
460 	if (err)
461 		goto out;
462 
463 	reset_bdev(zram);
464 
465 	zram->old_block_size = old_block_size;
466 	zram->bdev = bdev;
467 	zram->backing_dev = backing_dev;
468 	zram->bitmap = bitmap;
469 	zram->nr_pages = nr_pages;
470 	/*
471 	 * With writeback feature, zram does asynchronous IO so it's no longer
472 	 * synchronous device so let's remove synchronous io flag. Othewise,
473 	 * upper layer(e.g., swap) could wait IO completion rather than
474 	 * (submit and return), which will cause system sluggish.
475 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
476 	 * upper layer expects IO was done so it could deallocate the page
477 	 * freely but in fact, IO is going on so finally could cause
478 	 * use-after-free when the IO is really done.
479 	 */
480 	zram->disk->fops = &zram_wb_devops;
481 	up_write(&zram->init_lock);
482 
483 	pr_info("setup backing device %s\n", file_name);
484 	kfree(file_name);
485 
486 	return len;
487 out:
488 	if (bitmap)
489 		kvfree(bitmap);
490 
491 	if (bdev)
492 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
493 
494 	if (backing_dev)
495 		filp_close(backing_dev, NULL);
496 
497 	up_write(&zram->init_lock);
498 
499 	kfree(file_name);
500 
501 	return err;
502 }
503 
alloc_block_bdev(struct zram * zram)504 static unsigned long alloc_block_bdev(struct zram *zram)
505 {
506 	unsigned long blk_idx = 1;
507 retry:
508 	/* skip 0 bit to confuse zram.handle = 0 */
509 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
510 	if (blk_idx == zram->nr_pages)
511 		return 0;
512 
513 	if (test_and_set_bit(blk_idx, zram->bitmap))
514 		goto retry;
515 
516 	atomic64_inc(&zram->stats.bd_count);
517 	return blk_idx;
518 }
519 
free_block_bdev(struct zram * zram,unsigned long blk_idx)520 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
521 {
522 	int was_set;
523 
524 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
525 	WARN_ON_ONCE(!was_set);
526 	atomic64_dec(&zram->stats.bd_count);
527 }
528 
zram_page_end_io(struct bio * bio)529 static void zram_page_end_io(struct bio *bio)
530 {
531 	struct page *page = bio_first_page_all(bio);
532 
533 	page_endio(page, op_is_write(bio_op(bio)),
534 			blk_status_to_errno(bio->bi_status));
535 	bio_put(bio);
536 }
537 
538 /*
539  * Returns 1 if the submission is successful.
540  */
read_from_bdev_async(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * parent)541 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
542 			unsigned long entry, struct bio *parent)
543 {
544 	struct bio *bio;
545 
546 	bio = bio_alloc(GFP_ATOMIC, 1);
547 	if (!bio)
548 		return -ENOMEM;
549 
550 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
551 	bio_set_dev(bio, zram->bdev);
552 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
553 		bio_put(bio);
554 		return -EIO;
555 	}
556 
557 	if (!parent) {
558 		bio->bi_opf = REQ_OP_READ;
559 		bio->bi_end_io = zram_page_end_io;
560 	} else {
561 		bio->bi_opf = parent->bi_opf;
562 		bio_chain(bio, parent);
563 	}
564 
565 	submit_bio(bio);
566 	return 1;
567 }
568 
569 #define HUGE_WRITEBACK 1
570 #define IDLE_WRITEBACK 2
571 
writeback_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)572 static ssize_t writeback_store(struct device *dev,
573 		struct device_attribute *attr, const char *buf, size_t len)
574 {
575 	struct zram *zram = dev_to_zram(dev);
576 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
577 	unsigned long index;
578 	struct bio bio;
579 	struct bio_vec bio_vec;
580 	struct page *page;
581 	ssize_t ret = len;
582 	int mode, err;
583 	unsigned long blk_idx = 0;
584 
585 	if (sysfs_streq(buf, "idle"))
586 		mode = IDLE_WRITEBACK;
587 	else if (sysfs_streq(buf, "huge"))
588 		mode = HUGE_WRITEBACK;
589 	else
590 		return -EINVAL;
591 
592 	down_read(&zram->init_lock);
593 	if (!init_done(zram)) {
594 		ret = -EINVAL;
595 		goto release_init_lock;
596 	}
597 
598 	if (!zram->backing_dev) {
599 		ret = -ENODEV;
600 		goto release_init_lock;
601 	}
602 
603 	page = alloc_page(GFP_KERNEL);
604 	if (!page) {
605 		ret = -ENOMEM;
606 		goto release_init_lock;
607 	}
608 
609 	for (index = 0; index < nr_pages; index++) {
610 		struct bio_vec bvec;
611 
612 		bvec.bv_page = page;
613 		bvec.bv_len = PAGE_SIZE;
614 		bvec.bv_offset = 0;
615 
616 		spin_lock(&zram->wb_limit_lock);
617 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
618 			spin_unlock(&zram->wb_limit_lock);
619 			ret = -EIO;
620 			break;
621 		}
622 		spin_unlock(&zram->wb_limit_lock);
623 
624 		if (!blk_idx) {
625 			blk_idx = alloc_block_bdev(zram);
626 			if (!blk_idx) {
627 				ret = -ENOSPC;
628 				break;
629 			}
630 		}
631 
632 		zram_slot_lock(zram, index);
633 		if (!zram_allocated(zram, index))
634 			goto next;
635 
636 		if (zram_test_flag(zram, index, ZRAM_WB) ||
637 				zram_test_flag(zram, index, ZRAM_SAME) ||
638 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
639 			goto next;
640 
641 		if (mode == IDLE_WRITEBACK &&
642 			  !zram_test_flag(zram, index, ZRAM_IDLE))
643 			goto next;
644 		if (mode == HUGE_WRITEBACK &&
645 			  !zram_test_flag(zram, index, ZRAM_HUGE))
646 			goto next;
647 		/*
648 		 * Clearing ZRAM_UNDER_WB is duty of caller.
649 		 * IOW, zram_free_page never clear it.
650 		 */
651 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
652 		/* Need for hugepage writeback racing */
653 		zram_set_flag(zram, index, ZRAM_IDLE);
654 		zram_slot_unlock(zram, index);
655 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
656 			zram_slot_lock(zram, index);
657 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
658 			zram_clear_flag(zram, index, ZRAM_IDLE);
659 			zram_slot_unlock(zram, index);
660 			continue;
661 		}
662 
663 		bio_init(&bio, &bio_vec, 1);
664 		bio_set_dev(&bio, zram->bdev);
665 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
666 		bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
667 
668 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
669 				bvec.bv_offset);
670 		/*
671 		 * XXX: A single page IO would be inefficient for write
672 		 * but it would be not bad as starter.
673 		 */
674 		err = submit_bio_wait(&bio);
675 		if (err) {
676 			zram_slot_lock(zram, index);
677 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
678 			zram_clear_flag(zram, index, ZRAM_IDLE);
679 			zram_slot_unlock(zram, index);
680 			/*
681 			 * Return last IO error unless every IO were
682 			 * not suceeded.
683 			 */
684 			ret = err;
685 			continue;
686 		}
687 
688 		atomic64_inc(&zram->stats.bd_writes);
689 		/*
690 		 * We released zram_slot_lock so need to check if the slot was
691 		 * changed. If there is freeing for the slot, we can catch it
692 		 * easily by zram_allocated.
693 		 * A subtle case is the slot is freed/reallocated/marked as
694 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
695 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
696 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
697 		 */
698 		zram_slot_lock(zram, index);
699 		if (!zram_allocated(zram, index) ||
700 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
701 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
702 			zram_clear_flag(zram, index, ZRAM_IDLE);
703 			goto next;
704 		}
705 
706 		zram_free_page(zram, index);
707 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
708 		zram_set_flag(zram, index, ZRAM_WB);
709 		zram_set_element(zram, index, blk_idx);
710 		blk_idx = 0;
711 		atomic64_inc(&zram->stats.pages_stored);
712 		spin_lock(&zram->wb_limit_lock);
713 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
714 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
715 		spin_unlock(&zram->wb_limit_lock);
716 next:
717 		zram_slot_unlock(zram, index);
718 	}
719 
720 	if (blk_idx)
721 		free_block_bdev(zram, blk_idx);
722 	__free_page(page);
723 release_init_lock:
724 	up_read(&zram->init_lock);
725 
726 	return ret;
727 }
728 
729 struct zram_work {
730 	struct work_struct work;
731 	struct zram *zram;
732 	unsigned long entry;
733 	struct bio *bio;
734 	struct bio_vec bvec;
735 };
736 
737 #if PAGE_SIZE != 4096
zram_sync_read(struct work_struct * work)738 static void zram_sync_read(struct work_struct *work)
739 {
740 	struct zram_work *zw = container_of(work, struct zram_work, work);
741 	struct zram *zram = zw->zram;
742 	unsigned long entry = zw->entry;
743 	struct bio *bio = zw->bio;
744 
745 	read_from_bdev_async(zram, &zw->bvec, entry, bio);
746 }
747 
748 /*
749  * Block layer want one ->submit_bio to be active at a time, so if we use
750  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
751  * use a worker thread context.
752  */
read_from_bdev_sync(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * bio)753 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
754 				unsigned long entry, struct bio *bio)
755 {
756 	struct zram_work work;
757 
758 	work.bvec = *bvec;
759 	work.zram = zram;
760 	work.entry = entry;
761 	work.bio = bio;
762 
763 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
764 	queue_work(system_unbound_wq, &work.work);
765 	flush_work(&work.work);
766 	destroy_work_on_stack(&work.work);
767 
768 	return 1;
769 }
770 #else
read_from_bdev_sync(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * bio)771 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
772 				unsigned long entry, struct bio *bio)
773 {
774 	WARN_ON(1);
775 	return -EIO;
776 }
777 #endif
778 
read_from_bdev(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * parent,bool sync)779 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
780 			unsigned long entry, struct bio *parent, bool sync)
781 {
782 	atomic64_inc(&zram->stats.bd_reads);
783 	if (sync)
784 		return read_from_bdev_sync(zram, bvec, entry, parent);
785 	else
786 		return read_from_bdev_async(zram, bvec, entry, parent);
787 }
788 #else
reset_bdev(struct zram * zram)789 static inline void reset_bdev(struct zram *zram) {};
read_from_bdev(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * parent,bool sync)790 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
791 			unsigned long entry, struct bio *parent, bool sync)
792 {
793 	return -EIO;
794 }
795 
free_block_bdev(struct zram * zram,unsigned long blk_idx)796 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
797 #endif
798 
799 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
800 
801 static struct dentry *zram_debugfs_root;
802 
zram_debugfs_create(void)803 static void zram_debugfs_create(void)
804 {
805 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
806 }
807 
zram_debugfs_destroy(void)808 static void zram_debugfs_destroy(void)
809 {
810 	debugfs_remove_recursive(zram_debugfs_root);
811 }
812 
zram_accessed(struct zram * zram,u32 index)813 static void zram_accessed(struct zram *zram, u32 index)
814 {
815 	zram_clear_flag(zram, index, ZRAM_IDLE);
816 	zram->table[index].ac_time = ktime_get_boottime();
817 }
818 
read_block_state(struct file * file,char __user * buf,size_t count,loff_t * ppos)819 static ssize_t read_block_state(struct file *file, char __user *buf,
820 				size_t count, loff_t *ppos)
821 {
822 	char *kbuf;
823 	ssize_t index, written = 0;
824 	struct zram *zram = file->private_data;
825 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
826 	struct timespec64 ts;
827 
828 	kbuf = kvmalloc(count, GFP_KERNEL);
829 	if (!kbuf)
830 		return -ENOMEM;
831 
832 	down_read(&zram->init_lock);
833 	if (!init_done(zram)) {
834 		up_read(&zram->init_lock);
835 		kvfree(kbuf);
836 		return -EINVAL;
837 	}
838 
839 	for (index = *ppos; index < nr_pages; index++) {
840 		int copied;
841 
842 		zram_slot_lock(zram, index);
843 		if (!zram_allocated(zram, index))
844 			goto next;
845 
846 		ts = ktime_to_timespec64(zram->table[index].ac_time);
847 		copied = snprintf(kbuf + written, count,
848 			"%12zd %12lld.%06lu %c%c%c%c\n",
849 			index, (s64)ts.tv_sec,
850 			ts.tv_nsec / NSEC_PER_USEC,
851 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
852 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
853 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
854 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
855 
856 		if (count < copied) {
857 			zram_slot_unlock(zram, index);
858 			break;
859 		}
860 		written += copied;
861 		count -= copied;
862 next:
863 		zram_slot_unlock(zram, index);
864 		*ppos += 1;
865 	}
866 
867 	up_read(&zram->init_lock);
868 	if (copy_to_user(buf, kbuf, written))
869 		written = -EFAULT;
870 	kvfree(kbuf);
871 
872 	return written;
873 }
874 
875 static const struct file_operations proc_zram_block_state_op = {
876 	.open = simple_open,
877 	.read = read_block_state,
878 	.llseek = default_llseek,
879 };
880 
zram_debugfs_register(struct zram * zram)881 static void zram_debugfs_register(struct zram *zram)
882 {
883 	if (!zram_debugfs_root)
884 		return;
885 
886 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
887 						zram_debugfs_root);
888 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
889 				zram, &proc_zram_block_state_op);
890 }
891 
zram_debugfs_unregister(struct zram * zram)892 static void zram_debugfs_unregister(struct zram *zram)
893 {
894 	debugfs_remove_recursive(zram->debugfs_dir);
895 }
896 #else
zram_debugfs_create(void)897 static void zram_debugfs_create(void) {};
zram_debugfs_destroy(void)898 static void zram_debugfs_destroy(void) {};
zram_accessed(struct zram * zram,u32 index)899 static void zram_accessed(struct zram *zram, u32 index)
900 {
901 	zram_clear_flag(zram, index, ZRAM_IDLE);
902 };
zram_debugfs_register(struct zram * zram)903 static void zram_debugfs_register(struct zram *zram) {};
zram_debugfs_unregister(struct zram * zram)904 static void zram_debugfs_unregister(struct zram *zram) {};
905 #endif
906 
907 /*
908  * We switched to per-cpu streams and this attr is not needed anymore.
909  * However, we will keep it around for some time, because:
910  * a) we may revert per-cpu streams in the future
911  * b) it's visible to user space and we need to follow our 2 years
912  *    retirement rule; but we already have a number of 'soon to be
913  *    altered' attrs, so max_comp_streams need to wait for the next
914  *    layoff cycle.
915  */
max_comp_streams_show(struct device * dev,struct device_attribute * attr,char * buf)916 static ssize_t max_comp_streams_show(struct device *dev,
917 		struct device_attribute *attr, char *buf)
918 {
919 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
920 }
921 
max_comp_streams_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)922 static ssize_t max_comp_streams_store(struct device *dev,
923 		struct device_attribute *attr, const char *buf, size_t len)
924 {
925 	return len;
926 }
927 
comp_algorithm_show(struct device * dev,struct device_attribute * attr,char * buf)928 static ssize_t comp_algorithm_show(struct device *dev,
929 		struct device_attribute *attr, char *buf)
930 {
931 	size_t sz;
932 	struct zram *zram = dev_to_zram(dev);
933 
934 	down_read(&zram->init_lock);
935 	sz = zcomp_available_show(zram->compressor, buf);
936 	up_read(&zram->init_lock);
937 
938 	return sz;
939 }
940 
comp_algorithm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)941 static ssize_t comp_algorithm_store(struct device *dev,
942 		struct device_attribute *attr, const char *buf, size_t len)
943 {
944 	struct zram *zram = dev_to_zram(dev);
945 	char compressor[ARRAY_SIZE(zram->compressor)];
946 	size_t sz;
947 
948 	strlcpy(compressor, buf, sizeof(compressor));
949 	/* ignore trailing newline */
950 	sz = strlen(compressor);
951 	if (sz > 0 && compressor[sz - 1] == '\n')
952 		compressor[sz - 1] = 0x00;
953 
954 	if (!zcomp_available_algorithm(compressor))
955 		return -EINVAL;
956 
957 	down_write(&zram->init_lock);
958 	if (init_done(zram)) {
959 		up_write(&zram->init_lock);
960 		pr_info("Can't change algorithm for initialized device\n");
961 		return -EBUSY;
962 	}
963 
964 	strcpy(zram->compressor, compressor);
965 	up_write(&zram->init_lock);
966 	return len;
967 }
968 
compact_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)969 static ssize_t compact_store(struct device *dev,
970 		struct device_attribute *attr, const char *buf, size_t len)
971 {
972 	struct zram *zram = dev_to_zram(dev);
973 
974 	down_read(&zram->init_lock);
975 	if (!init_done(zram)) {
976 		up_read(&zram->init_lock);
977 		return -EINVAL;
978 	}
979 
980 	zs_compact(zram->mem_pool);
981 	up_read(&zram->init_lock);
982 
983 	return len;
984 }
985 
io_stat_show(struct device * dev,struct device_attribute * attr,char * buf)986 static ssize_t io_stat_show(struct device *dev,
987 		struct device_attribute *attr, char *buf)
988 {
989 	struct zram *zram = dev_to_zram(dev);
990 	ssize_t ret;
991 
992 	down_read(&zram->init_lock);
993 	ret = scnprintf(buf, PAGE_SIZE,
994 			"%8llu %8llu %8llu %8llu\n",
995 			(u64)atomic64_read(&zram->stats.failed_reads),
996 			(u64)atomic64_read(&zram->stats.failed_writes),
997 			(u64)atomic64_read(&zram->stats.invalid_io),
998 			(u64)atomic64_read(&zram->stats.notify_free));
999 	up_read(&zram->init_lock);
1000 
1001 	return ret;
1002 }
1003 
mm_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1004 static ssize_t mm_stat_show(struct device *dev,
1005 		struct device_attribute *attr, char *buf)
1006 {
1007 	struct zram *zram = dev_to_zram(dev);
1008 	struct zs_pool_stats pool_stats;
1009 	u64 orig_size, mem_used = 0;
1010 	long max_used;
1011 	ssize_t ret;
1012 
1013 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1014 
1015 	down_read(&zram->init_lock);
1016 	if (init_done(zram)) {
1017 		mem_used = zs_get_total_pages(zram->mem_pool);
1018 		zs_pool_stats(zram->mem_pool, &pool_stats);
1019 	}
1020 
1021 	orig_size = atomic64_read(&zram->stats.pages_stored);
1022 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1023 
1024 	ret = scnprintf(buf, PAGE_SIZE,
1025 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
1026 			orig_size << PAGE_SHIFT,
1027 			(u64)atomic64_read(&zram->stats.compr_data_size),
1028 			mem_used << PAGE_SHIFT,
1029 			zram->limit_pages << PAGE_SHIFT,
1030 			max_used << PAGE_SHIFT,
1031 			(u64)atomic64_read(&zram->stats.same_pages),
1032 			atomic_long_read(&pool_stats.pages_compacted),
1033 			(u64)atomic64_read(&zram->stats.huge_pages));
1034 	up_read(&zram->init_lock);
1035 
1036 	return ret;
1037 }
1038 
1039 #ifdef CONFIG_ZRAM_WRITEBACK
1040 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
bd_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1041 static ssize_t bd_stat_show(struct device *dev,
1042 		struct device_attribute *attr, char *buf)
1043 {
1044 	struct zram *zram = dev_to_zram(dev);
1045 	ssize_t ret;
1046 
1047 	down_read(&zram->init_lock);
1048 	ret = scnprintf(buf, PAGE_SIZE,
1049 		"%8llu %8llu %8llu\n",
1050 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1051 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1052 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1053 	up_read(&zram->init_lock);
1054 
1055 	return ret;
1056 }
1057 #endif
1058 
debug_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1059 static ssize_t debug_stat_show(struct device *dev,
1060 		struct device_attribute *attr, char *buf)
1061 {
1062 	int version = 1;
1063 	struct zram *zram = dev_to_zram(dev);
1064 	ssize_t ret;
1065 
1066 	down_read(&zram->init_lock);
1067 	ret = scnprintf(buf, PAGE_SIZE,
1068 			"version: %d\n%8llu %8llu\n",
1069 			version,
1070 			(u64)atomic64_read(&zram->stats.writestall),
1071 			(u64)atomic64_read(&zram->stats.miss_free));
1072 	up_read(&zram->init_lock);
1073 
1074 	return ret;
1075 }
1076 
1077 static DEVICE_ATTR_RO(io_stat);
1078 static DEVICE_ATTR_RO(mm_stat);
1079 #ifdef CONFIG_ZRAM_WRITEBACK
1080 static DEVICE_ATTR_RO(bd_stat);
1081 #endif
1082 static DEVICE_ATTR_RO(debug_stat);
1083 
1084 #ifdef CONFIG_ZRAM_GROUP
group_show(struct device * dev,struct device_attribute * attr,char * buf)1085 static ssize_t group_show(struct device *dev, struct device_attribute *attr, char *buf)
1086 {
1087 	struct zram *zram = dev_to_zram(dev);
1088 
1089 	down_read(&zram->init_lock);
1090 	if (zram->zgrp_ctrl == ZGRP_NONE)
1091 		strcpy(buf, "disable\n");
1092 	else if (zram->zgrp_ctrl == ZGRP_TRACK)
1093 		strcpy(buf, "readonly\n");
1094 #ifdef CONFIG_ZRAM_GROUP_WRITEBACK
1095 	else if (zram->zgrp_ctrl == ZGRP_WRITE)
1096 		strcpy(buf, "readwrite");
1097 #endif
1098 	up_read(&zram->init_lock);
1099 
1100 	return strlen(buf);
1101 }
1102 
group_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1103 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
1104 				const char *buf, size_t len)
1105 {
1106 	struct zram *zram = dev_to_zram(dev);
1107 	int ret;
1108 #ifdef CONFIG_ZRAM_GROUP_DEBUG
1109 	u32 op, gid, index;
1110 
1111 	ret = sscanf(buf, "%u %u %u", &op, &index, &gid);
1112 	if (ret == 3) {
1113 		pr_info("op[%u] index[%u] gid[%u].\n", op, index, gid);
1114 		group_debug(zram, op, index, gid);
1115 		return len;
1116 	}
1117 #endif
1118 
1119 	ret = len;
1120 	down_write(&zram->init_lock);
1121 	if (init_done(zram)) {
1122 		pr_info("Can't setup group ctrl for initialized device!\n");
1123 		ret = -EBUSY;
1124 		goto out;
1125 	}
1126 	if (!strcmp(buf, "disable\n"))
1127 		zram->zgrp_ctrl = ZGRP_NONE;
1128 	else if (!strcmp(buf, "readonly\n"))
1129 		zram->zgrp_ctrl = ZGRP_TRACK;
1130 #ifdef CONFIG_ZRAM_GROUP_WRITEBACK
1131 	else if (!strcmp(buf, "readwrite\n"))
1132 		zram->zgrp_ctrl = ZGRP_WRITE;
1133 #endif
1134 	else
1135 		ret = -EINVAL;
1136 out:
1137 	up_write(&zram->init_lock);
1138 
1139 	return ret;
1140 }
1141 #endif
1142 
zram_meta_free(struct zram * zram,u64 disksize)1143 static void zram_meta_free(struct zram *zram, u64 disksize)
1144 {
1145 	size_t num_pages = disksize >> PAGE_SHIFT;
1146 	size_t index;
1147 
1148 	/* Free all pages that are still in this zram device */
1149 	for (index = 0; index < num_pages; index++)
1150 		zram_free_page(zram, index);
1151 
1152 	zs_destroy_pool(zram->mem_pool);
1153 	vfree(zram->table);
1154 #ifdef CONFIG_ZRAM_GROUP
1155 	zram_group_deinit(zram);
1156 #endif
1157 }
1158 
zram_meta_alloc(struct zram * zram,u64 disksize)1159 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1160 {
1161 	size_t num_pages;
1162 
1163 	num_pages = disksize >> PAGE_SHIFT;
1164 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1165 	if (!zram->table)
1166 		return false;
1167 
1168 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1169 	if (!zram->mem_pool) {
1170 		vfree(zram->table);
1171 		return false;
1172 	}
1173 
1174 	if (!huge_class_size)
1175 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1176 #ifdef CONFIG_ZRAM_GROUP
1177 	zram_group_init(zram, num_pages);
1178 #endif
1179 
1180 	return true;
1181 }
1182 
1183 /*
1184  * To protect concurrent access to the same index entry,
1185  * caller should hold this table index entry's bit_spinlock to
1186  * indicate this index entry is accessing.
1187  */
zram_free_page(struct zram * zram,size_t index)1188 static void zram_free_page(struct zram *zram, size_t index)
1189 {
1190 	unsigned long handle;
1191 
1192 #ifdef CONFIG_ZRAM_GROUP
1193 	zram_group_untrack_obj(zram, index);
1194 #endif
1195 
1196 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1197 	zram->table[index].ac_time = 0;
1198 #endif
1199 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1200 		zram_clear_flag(zram, index, ZRAM_IDLE);
1201 
1202 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1203 		zram_clear_flag(zram, index, ZRAM_HUGE);
1204 		atomic64_dec(&zram->stats.huge_pages);
1205 	}
1206 
1207 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1208 		zram_clear_flag(zram, index, ZRAM_WB);
1209 		free_block_bdev(zram, zram_get_element(zram, index));
1210 		goto out;
1211 	}
1212 
1213 	/*
1214 	 * No memory is allocated for same element filled pages.
1215 	 * Simply clear same page flag.
1216 	 */
1217 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1218 		zram_clear_flag(zram, index, ZRAM_SAME);
1219 		atomic64_dec(&zram->stats.same_pages);
1220 		goto out;
1221 	}
1222 
1223 	handle = zram_get_handle(zram, index);
1224 	if (!handle)
1225 		return;
1226 
1227 	zs_free(zram->mem_pool, handle);
1228 
1229 	atomic64_sub(zram_get_obj_size(zram, index),
1230 			&zram->stats.compr_data_size);
1231 out:
1232 	atomic64_dec(&zram->stats.pages_stored);
1233 	zram_set_handle(zram, index, 0);
1234 	zram_set_obj_size(zram, index, 0);
1235 	WARN_ON_ONCE(zram->table[index].flags &
1236 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1237 }
1238 
__zram_bvec_read(struct zram * zram,struct page * page,u32 index,struct bio * bio,bool partial_io)1239 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1240 				struct bio *bio, bool partial_io)
1241 {
1242 	struct zcomp_strm *zstrm;
1243 	unsigned long handle;
1244 	unsigned int size;
1245 	void *src, *dst;
1246 	int ret;
1247 
1248 	zram_slot_lock(zram, index);
1249 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1250 		struct bio_vec bvec;
1251 
1252 		zram_slot_unlock(zram, index);
1253 
1254 		bvec.bv_page = page;
1255 		bvec.bv_len = PAGE_SIZE;
1256 		bvec.bv_offset = 0;
1257 		return read_from_bdev(zram, &bvec,
1258 				zram_get_element(zram, index),
1259 				bio, partial_io);
1260 	}
1261 #ifdef CONFIG_ZRAM_GROUP_WRITEBACK
1262 	if (!bio) {
1263 		ret = zram_group_fault_obj(zram, index);
1264 		if (ret) {
1265 			zram_slot_unlock(zram, index);
1266 			return ret;
1267 		}
1268 	}
1269 
1270 	if (zram_test_flag(zram, index, ZRAM_GWB)) {
1271 		zram_slot_unlock(zram, index);
1272 		return -EIO;
1273 	}
1274 #endif
1275 	handle = zram_get_handle(zram, index);
1276 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1277 		unsigned long value;
1278 		void *mem;
1279 
1280 		value = handle ? zram_get_element(zram, index) : 0;
1281 		mem = kmap_atomic(page);
1282 		zram_fill_page(mem, PAGE_SIZE, value);
1283 		kunmap_atomic(mem);
1284 		zram_slot_unlock(zram, index);
1285 		return 0;
1286 	}
1287 
1288 	size = zram_get_obj_size(zram, index);
1289 
1290 	if (size != PAGE_SIZE)
1291 		zstrm = zcomp_stream_get(zram->comp);
1292 
1293 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1294 	if (size == PAGE_SIZE) {
1295 		dst = kmap_atomic(page);
1296 		memcpy(dst, src, PAGE_SIZE);
1297 		kunmap_atomic(dst);
1298 		ret = 0;
1299 	} else {
1300 		dst = kmap_atomic(page);
1301 		ret = zcomp_decompress(zstrm, src, size, dst);
1302 		kunmap_atomic(dst);
1303 		zcomp_stream_put(zram->comp);
1304 	}
1305 	zs_unmap_object(zram->mem_pool, handle);
1306 	zram_slot_unlock(zram, index);
1307 
1308 	/* Should NEVER happen. Return bio error if it does. */
1309 	if (WARN_ON(ret))
1310 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1311 
1312 	return ret;
1313 }
1314 
zram_bvec_read(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)1315 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1316 				u32 index, int offset, struct bio *bio)
1317 {
1318 	int ret;
1319 	struct page *page;
1320 
1321 	page = bvec->bv_page;
1322 	if (is_partial_io(bvec)) {
1323 		/* Use a temporary buffer to decompress the page */
1324 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1325 		if (!page)
1326 			return -ENOMEM;
1327 	}
1328 
1329 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1330 	if (unlikely(ret))
1331 		goto out;
1332 
1333 	if (is_partial_io(bvec)) {
1334 		void *dst = kmap_atomic(bvec->bv_page);
1335 		void *src = kmap_atomic(page);
1336 
1337 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1338 		kunmap_atomic(src);
1339 		kunmap_atomic(dst);
1340 	}
1341 out:
1342 	if (is_partial_io(bvec))
1343 		__free_page(page);
1344 
1345 	return ret;
1346 }
1347 
__zram_bvec_write(struct zram * zram,struct bio_vec * bvec,u32 index,struct bio * bio)1348 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1349 				u32 index, struct bio *bio)
1350 {
1351 	int ret = 0;
1352 	unsigned long alloced_pages;
1353 	unsigned long handle = 0;
1354 	unsigned int comp_len = 0;
1355 	void *src, *dst, *mem;
1356 	struct zcomp_strm *zstrm;
1357 	struct page *page = bvec->bv_page;
1358 	unsigned long element = 0;
1359 	enum zram_pageflags flags = 0;
1360 
1361 	mem = kmap_atomic(page);
1362 	if (page_same_filled(mem, &element)) {
1363 		kunmap_atomic(mem);
1364 		/* Free memory associated with this sector now. */
1365 		flags = ZRAM_SAME;
1366 		atomic64_inc(&zram->stats.same_pages);
1367 		goto out;
1368 	}
1369 	kunmap_atomic(mem);
1370 
1371 compress_again:
1372 	zstrm = zcomp_stream_get(zram->comp);
1373 	src = kmap_atomic(page);
1374 	ret = zcomp_compress(zstrm, src, &comp_len);
1375 	kunmap_atomic(src);
1376 
1377 	if (unlikely(ret)) {
1378 		zcomp_stream_put(zram->comp);
1379 		pr_err("Compression failed! err=%d\n", ret);
1380 		zs_free(zram->mem_pool, handle);
1381 		return ret;
1382 	}
1383 
1384 	if (comp_len >= huge_class_size)
1385 		comp_len = PAGE_SIZE;
1386 	/*
1387 	 * handle allocation has 2 paths:
1388 	 * a) fast path is executed with preemption disabled (for
1389 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1390 	 *  since we can't sleep;
1391 	 * b) slow path enables preemption and attempts to allocate
1392 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1393 	 *  put per-cpu compression stream and, thus, to re-do
1394 	 *  the compression once handle is allocated.
1395 	 *
1396 	 * if we have a 'non-null' handle here then we are coming
1397 	 * from the slow path and handle has already been allocated.
1398 	 */
1399 	if (!handle)
1400 		handle = zs_malloc(zram->mem_pool, comp_len,
1401 				__GFP_KSWAPD_RECLAIM |
1402 				__GFP_NOWARN |
1403 				__GFP_HIGHMEM |
1404 				__GFP_MOVABLE);
1405 	if (!handle) {
1406 		zcomp_stream_put(zram->comp);
1407 		atomic64_inc(&zram->stats.writestall);
1408 		handle = zs_malloc(zram->mem_pool, comp_len,
1409 				GFP_NOIO | __GFP_HIGHMEM |
1410 				__GFP_MOVABLE);
1411 		if (handle)
1412 			goto compress_again;
1413 		return -ENOMEM;
1414 	}
1415 
1416 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1417 	update_used_max(zram, alloced_pages);
1418 
1419 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1420 		zcomp_stream_put(zram->comp);
1421 		zs_free(zram->mem_pool, handle);
1422 		return -ENOMEM;
1423 	}
1424 
1425 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1426 
1427 	src = zstrm->buffer;
1428 	if (comp_len == PAGE_SIZE)
1429 		src = kmap_atomic(page);
1430 	memcpy(dst, src, comp_len);
1431 	if (comp_len == PAGE_SIZE)
1432 		kunmap_atomic(src);
1433 
1434 	zcomp_stream_put(zram->comp);
1435 	zs_unmap_object(zram->mem_pool, handle);
1436 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1437 out:
1438 	/*
1439 	 * Free memory associated with this sector
1440 	 * before overwriting unused sectors.
1441 	 */
1442 	zram_slot_lock(zram, index);
1443 	zram_free_page(zram, index);
1444 
1445 	if (comp_len == PAGE_SIZE) {
1446 		zram_set_flag(zram, index, ZRAM_HUGE);
1447 		atomic64_inc(&zram->stats.huge_pages);
1448 	}
1449 
1450 	if (flags) {
1451 		zram_set_flag(zram, index, flags);
1452 		zram_set_element(zram, index, element);
1453 	}  else {
1454 		zram_set_handle(zram, index, handle);
1455 		zram_set_obj_size(zram, index, comp_len);
1456 	}
1457 #ifdef CONFIG_ZRAM_GROUP
1458 	zram_group_track_obj(zram, index, page->mem_cgroup);
1459 #endif
1460 	zram_slot_unlock(zram, index);
1461 
1462 	/* Update stats */
1463 	atomic64_inc(&zram->stats.pages_stored);
1464 	return ret;
1465 }
1466 
zram_bvec_write(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)1467 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1468 				u32 index, int offset, struct bio *bio)
1469 {
1470 	int ret;
1471 	struct page *page = NULL;
1472 	void *src;
1473 	struct bio_vec vec;
1474 
1475 	vec = *bvec;
1476 	if (is_partial_io(bvec)) {
1477 		void *dst;
1478 		/*
1479 		 * This is a partial IO. We need to read the full page
1480 		 * before to write the changes.
1481 		 */
1482 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1483 		if (!page)
1484 			return -ENOMEM;
1485 
1486 		ret = __zram_bvec_read(zram, page, index, bio, true);
1487 		if (ret)
1488 			goto out;
1489 
1490 		src = kmap_atomic(bvec->bv_page);
1491 		dst = kmap_atomic(page);
1492 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1493 		kunmap_atomic(dst);
1494 		kunmap_atomic(src);
1495 
1496 		vec.bv_page = page;
1497 		vec.bv_len = PAGE_SIZE;
1498 		vec.bv_offset = 0;
1499 	}
1500 
1501 	ret = __zram_bvec_write(zram, &vec, index, bio);
1502 out:
1503 	if (is_partial_io(bvec))
1504 		__free_page(page);
1505 	return ret;
1506 }
1507 
1508 /*
1509  * zram_bio_discard - handler on discard request
1510  * @index: physical block index in PAGE_SIZE units
1511  * @offset: byte offset within physical block
1512  */
zram_bio_discard(struct zram * zram,u32 index,int offset,struct bio * bio)1513 static void zram_bio_discard(struct zram *zram, u32 index,
1514 			     int offset, struct bio *bio)
1515 {
1516 	size_t n = bio->bi_iter.bi_size;
1517 
1518 	/*
1519 	 * zram manages data in physical block size units. Because logical block
1520 	 * size isn't identical with physical block size on some arch, we
1521 	 * could get a discard request pointing to a specific offset within a
1522 	 * certain physical block.  Although we can handle this request by
1523 	 * reading that physiclal block and decompressing and partially zeroing
1524 	 * and re-compressing and then re-storing it, this isn't reasonable
1525 	 * because our intent with a discard request is to save memory.  So
1526 	 * skipping this logical block is appropriate here.
1527 	 */
1528 	if (offset) {
1529 		if (n <= (PAGE_SIZE - offset))
1530 			return;
1531 
1532 		n -= (PAGE_SIZE - offset);
1533 		index++;
1534 	}
1535 
1536 	while (n >= PAGE_SIZE) {
1537 		zram_slot_lock(zram, index);
1538 		zram_free_page(zram, index);
1539 		zram_slot_unlock(zram, index);
1540 		atomic64_inc(&zram->stats.notify_free);
1541 		index++;
1542 		n -= PAGE_SIZE;
1543 	}
1544 }
1545 
1546 /*
1547  * Returns errno if it has some problem. Otherwise return 0 or 1.
1548  * Returns 0 if IO request was done synchronously
1549  * Returns 1 if IO request was successfully submitted.
1550  */
zram_bvec_rw(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,unsigned int op,struct bio * bio)1551 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1552 			int offset, unsigned int op, struct bio *bio)
1553 {
1554 	int ret;
1555 
1556 	if (!op_is_write(op)) {
1557 		atomic64_inc(&zram->stats.num_reads);
1558 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1559 		flush_dcache_page(bvec->bv_page);
1560 	} else {
1561 		atomic64_inc(&zram->stats.num_writes);
1562 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1563 	}
1564 
1565 	zram_slot_lock(zram, index);
1566 	zram_accessed(zram, index);
1567 	zram_slot_unlock(zram, index);
1568 
1569 	if (unlikely(ret < 0)) {
1570 		if (!op_is_write(op))
1571 			atomic64_inc(&zram->stats.failed_reads);
1572 		else
1573 			atomic64_inc(&zram->stats.failed_writes);
1574 	}
1575 
1576 	return ret;
1577 }
1578 
__zram_make_request(struct zram * zram,struct bio * bio)1579 static void __zram_make_request(struct zram *zram, struct bio *bio)
1580 {
1581 	int offset;
1582 	u32 index;
1583 	struct bio_vec bvec;
1584 	struct bvec_iter iter;
1585 	unsigned long start_time;
1586 
1587 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1588 	offset = (bio->bi_iter.bi_sector &
1589 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1590 
1591 	switch (bio_op(bio)) {
1592 	case REQ_OP_DISCARD:
1593 	case REQ_OP_WRITE_ZEROES:
1594 		zram_bio_discard(zram, index, offset, bio);
1595 		bio_endio(bio);
1596 		return;
1597 	default:
1598 		break;
1599 	}
1600 
1601 	start_time = bio_start_io_acct(bio);
1602 	bio_for_each_segment(bvec, bio, iter) {
1603 		struct bio_vec bv = bvec;
1604 		unsigned int unwritten = bvec.bv_len;
1605 
1606 		do {
1607 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1608 							unwritten);
1609 			if (zram_bvec_rw(zram, &bv, index, offset,
1610 					 bio_op(bio), bio) < 0) {
1611 				bio->bi_status = BLK_STS_IOERR;
1612 				break;
1613 			}
1614 
1615 			bv.bv_offset += bv.bv_len;
1616 			unwritten -= bv.bv_len;
1617 
1618 			update_position(&index, &offset, &bv);
1619 		} while (unwritten);
1620 	}
1621 	bio_end_io_acct(bio, start_time);
1622 	bio_endio(bio);
1623 }
1624 
1625 /*
1626  * Handler function for all zram I/O requests.
1627  */
zram_submit_bio(struct bio * bio)1628 static blk_qc_t zram_submit_bio(struct bio *bio)
1629 {
1630 	struct zram *zram = bio->bi_disk->private_data;
1631 
1632 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1633 					bio->bi_iter.bi_size)) {
1634 		atomic64_inc(&zram->stats.invalid_io);
1635 		goto error;
1636 	}
1637 
1638 	__zram_make_request(zram, bio);
1639 	return BLK_QC_T_NONE;
1640 
1641 error:
1642 	bio_io_error(bio);
1643 	return BLK_QC_T_NONE;
1644 }
1645 
zram_slot_free_notify(struct block_device * bdev,unsigned long index)1646 static void zram_slot_free_notify(struct block_device *bdev,
1647 				unsigned long index)
1648 {
1649 	struct zram *zram;
1650 
1651 	zram = bdev->bd_disk->private_data;
1652 
1653 	atomic64_inc(&zram->stats.notify_free);
1654 	if (!zram_slot_trylock(zram, index)) {
1655 		atomic64_inc(&zram->stats.miss_free);
1656 		return;
1657 	}
1658 
1659 	zram_free_page(zram, index);
1660 	zram_slot_unlock(zram, index);
1661 }
1662 
zram_rw_page(struct block_device * bdev,sector_t sector,struct page * page,unsigned int op)1663 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1664 		       struct page *page, unsigned int op)
1665 {
1666 	int offset, ret;
1667 	u32 index;
1668 	struct zram *zram;
1669 	struct bio_vec bv;
1670 	unsigned long start_time;
1671 
1672 	if (PageTransHuge(page))
1673 		return -ENOTSUPP;
1674 	zram = bdev->bd_disk->private_data;
1675 
1676 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1677 		atomic64_inc(&zram->stats.invalid_io);
1678 		ret = -EINVAL;
1679 		goto out;
1680 	}
1681 
1682 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1683 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1684 
1685 	bv.bv_page = page;
1686 	bv.bv_len = PAGE_SIZE;
1687 	bv.bv_offset = 0;
1688 
1689 	start_time = disk_start_io_acct(bdev->bd_disk, SECTORS_PER_PAGE, op);
1690 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1691 	disk_end_io_acct(bdev->bd_disk, op, start_time);
1692 out:
1693 	/*
1694 	 * If I/O fails, just return error(ie, non-zero) without
1695 	 * calling page_endio.
1696 	 * It causes resubmit the I/O with bio request by upper functions
1697 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1698 	 * bio->bi_end_io does things to handle the error
1699 	 * (e.g., SetPageError, set_page_dirty and extra works).
1700 	 */
1701 	if (unlikely(ret < 0))
1702 		return ret;
1703 
1704 	switch (ret) {
1705 	case 0:
1706 		page_endio(page, op_is_write(op), 0);
1707 		break;
1708 	case 1:
1709 		ret = 0;
1710 		break;
1711 	default:
1712 		WARN_ON(1);
1713 	}
1714 	return ret;
1715 }
1716 
zram_reset_device(struct zram * zram)1717 static void zram_reset_device(struct zram *zram)
1718 {
1719 	struct zcomp *comp;
1720 	u64 disksize;
1721 
1722 	down_write(&zram->init_lock);
1723 
1724 	zram->limit_pages = 0;
1725 
1726 	if (!init_done(zram)) {
1727 		up_write(&zram->init_lock);
1728 		return;
1729 	}
1730 
1731 	comp = zram->comp;
1732 	disksize = zram->disksize;
1733 	zram->disksize = 0;
1734 
1735 	set_capacity(zram->disk, 0);
1736 	part_stat_set_all(&zram->disk->part0, 0);
1737 
1738 	up_write(&zram->init_lock);
1739 	/* I/O operation under all of CPU are done so let's free */
1740 	zram_meta_free(zram, disksize);
1741 	memset(&zram->stats, 0, sizeof(zram->stats));
1742 	zcomp_destroy(comp);
1743 	reset_bdev(zram);
1744 }
1745 
disksize_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1746 static ssize_t disksize_store(struct device *dev,
1747 		struct device_attribute *attr, const char *buf, size_t len)
1748 {
1749 	u64 disksize;
1750 	struct zcomp *comp;
1751 	struct zram *zram = dev_to_zram(dev);
1752 	int err;
1753 
1754 	disksize = memparse(buf, NULL);
1755 	if (!disksize)
1756 		return -EINVAL;
1757 
1758 	down_write(&zram->init_lock);
1759 	if (init_done(zram)) {
1760 		pr_info("Cannot change disksize for initialized device\n");
1761 		err = -EBUSY;
1762 		goto out_unlock;
1763 	}
1764 
1765 	disksize = PAGE_ALIGN(disksize);
1766 	if (!zram_meta_alloc(zram, disksize)) {
1767 		err = -ENOMEM;
1768 		goto out_unlock;
1769 	}
1770 
1771 	comp = zcomp_create(zram->compressor);
1772 	if (IS_ERR(comp)) {
1773 		pr_err("Cannot initialise %s compressing backend\n",
1774 				zram->compressor);
1775 		err = PTR_ERR(comp);
1776 		goto out_free_meta;
1777 	}
1778 
1779 	zram->comp = comp;
1780 	zram->disksize = disksize;
1781 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1782 
1783 	revalidate_disk_size(zram->disk, true);
1784 	up_write(&zram->init_lock);
1785 
1786 	return len;
1787 
1788 out_free_meta:
1789 	zram_meta_free(zram, disksize);
1790 out_unlock:
1791 	up_write(&zram->init_lock);
1792 	return err;
1793 }
1794 
reset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1795 static ssize_t reset_store(struct device *dev,
1796 		struct device_attribute *attr, const char *buf, size_t len)
1797 {
1798 	int ret;
1799 	unsigned short do_reset;
1800 	struct zram *zram;
1801 	struct block_device *bdev;
1802 
1803 	ret = kstrtou16(buf, 10, &do_reset);
1804 	if (ret)
1805 		return ret;
1806 
1807 	if (!do_reset)
1808 		return -EINVAL;
1809 
1810 	zram = dev_to_zram(dev);
1811 	bdev = bdget_disk(zram->disk, 0);
1812 	if (!bdev)
1813 		return -ENOMEM;
1814 
1815 	mutex_lock(&bdev->bd_mutex);
1816 	/* Do not reset an active device or claimed device */
1817 	if (bdev->bd_openers || zram->claim) {
1818 		mutex_unlock(&bdev->bd_mutex);
1819 		bdput(bdev);
1820 		return -EBUSY;
1821 	}
1822 
1823 	/* From now on, anyone can't open /dev/zram[0-9] */
1824 	zram->claim = true;
1825 	mutex_unlock(&bdev->bd_mutex);
1826 
1827 	/* Make sure all the pending I/O are finished */
1828 	fsync_bdev(bdev);
1829 	zram_reset_device(zram);
1830 	revalidate_disk_size(zram->disk, true);
1831 	bdput(bdev);
1832 
1833 	mutex_lock(&bdev->bd_mutex);
1834 	zram->claim = false;
1835 	mutex_unlock(&bdev->bd_mutex);
1836 
1837 	return len;
1838 }
1839 
zram_open(struct block_device * bdev,fmode_t mode)1840 static int zram_open(struct block_device *bdev, fmode_t mode)
1841 {
1842 	int ret = 0;
1843 	struct zram *zram;
1844 
1845 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1846 
1847 	zram = bdev->bd_disk->private_data;
1848 	/* zram was claimed to reset so open request fails */
1849 	if (zram->claim)
1850 		ret = -EBUSY;
1851 
1852 	return ret;
1853 }
1854 
1855 static const struct block_device_operations zram_devops = {
1856 	.open = zram_open,
1857 	.submit_bio = zram_submit_bio,
1858 	.swap_slot_free_notify = zram_slot_free_notify,
1859 	.rw_page = zram_rw_page,
1860 	.owner = THIS_MODULE
1861 };
1862 
1863 static const struct block_device_operations zram_wb_devops = {
1864 	.open = zram_open,
1865 	.submit_bio = zram_submit_bio,
1866 	.swap_slot_free_notify = zram_slot_free_notify,
1867 	.owner = THIS_MODULE
1868 };
1869 
1870 static DEVICE_ATTR_WO(compact);
1871 static DEVICE_ATTR_RW(disksize);
1872 static DEVICE_ATTR_RO(initstate);
1873 static DEVICE_ATTR_WO(reset);
1874 static DEVICE_ATTR_WO(mem_limit);
1875 static DEVICE_ATTR_WO(mem_used_max);
1876 static DEVICE_ATTR_WO(idle);
1877 static DEVICE_ATTR_RW(max_comp_streams);
1878 static DEVICE_ATTR_RW(comp_algorithm);
1879 #ifdef CONFIG_ZRAM_WRITEBACK
1880 static DEVICE_ATTR_RW(backing_dev);
1881 static DEVICE_ATTR_WO(writeback);
1882 static DEVICE_ATTR_RW(writeback_limit);
1883 static DEVICE_ATTR_RW(writeback_limit_enable);
1884 #endif
1885 #ifdef CONFIG_ZRAM_GROUP
1886 static DEVICE_ATTR_RW(group);
1887 #endif
1888 
1889 static struct attribute *zram_disk_attrs[] = {
1890 	&dev_attr_disksize.attr,
1891 	&dev_attr_initstate.attr,
1892 	&dev_attr_reset.attr,
1893 	&dev_attr_compact.attr,
1894 	&dev_attr_mem_limit.attr,
1895 	&dev_attr_mem_used_max.attr,
1896 	&dev_attr_idle.attr,
1897 	&dev_attr_max_comp_streams.attr,
1898 	&dev_attr_comp_algorithm.attr,
1899 #ifdef CONFIG_ZRAM_WRITEBACK
1900 	&dev_attr_backing_dev.attr,
1901 	&dev_attr_writeback.attr,
1902 	&dev_attr_writeback_limit.attr,
1903 	&dev_attr_writeback_limit_enable.attr,
1904 #endif
1905 	&dev_attr_io_stat.attr,
1906 	&dev_attr_mm_stat.attr,
1907 #ifdef CONFIG_ZRAM_WRITEBACK
1908 	&dev_attr_bd_stat.attr,
1909 #endif
1910 	&dev_attr_debug_stat.attr,
1911 #ifdef CONFIG_ZRAM_GROUP
1912 	&dev_attr_group.attr,
1913 #endif
1914 	NULL,
1915 };
1916 
1917 static const struct attribute_group zram_disk_attr_group = {
1918 	.attrs = zram_disk_attrs,
1919 };
1920 
1921 static const struct attribute_group *zram_disk_attr_groups[] = {
1922 	&zram_disk_attr_group,
1923 	NULL,
1924 };
1925 
1926 /*
1927  * Allocate and initialize new zram device. the function returns
1928  * '>= 0' device_id upon success, and negative value otherwise.
1929  */
zram_add(void)1930 static int zram_add(void)
1931 {
1932 	struct zram *zram;
1933 	struct request_queue *queue;
1934 	int ret, device_id;
1935 
1936 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1937 	if (!zram)
1938 		return -ENOMEM;
1939 
1940 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1941 	if (ret < 0)
1942 		goto out_free_dev;
1943 	device_id = ret;
1944 
1945 	init_rwsem(&zram->init_lock);
1946 #ifdef CONFIG_ZRAM_WRITEBACK
1947 	spin_lock_init(&zram->wb_limit_lock);
1948 #endif
1949 	queue = blk_alloc_queue(NUMA_NO_NODE);
1950 	if (!queue) {
1951 		pr_err("Error allocating disk queue for device %d\n",
1952 			device_id);
1953 		ret = -ENOMEM;
1954 		goto out_free_idr;
1955 	}
1956 
1957 	/* gendisk structure */
1958 	zram->disk = alloc_disk(1);
1959 	if (!zram->disk) {
1960 		pr_err("Error allocating disk structure for device %d\n",
1961 			device_id);
1962 		ret = -ENOMEM;
1963 		goto out_free_queue;
1964 	}
1965 
1966 	zram->disk->major = zram_major;
1967 	zram->disk->first_minor = device_id;
1968 	zram->disk->fops = &zram_devops;
1969 	zram->disk->queue = queue;
1970 	zram->disk->private_data = zram;
1971 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1972 
1973 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1974 	set_capacity(zram->disk, 0);
1975 	/* zram devices sort of resembles non-rotational disks */
1976 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1977 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1978 
1979 	/*
1980 	 * To ensure that we always get PAGE_SIZE aligned
1981 	 * and n*PAGE_SIZED sized I/O requests.
1982 	 */
1983 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1984 	blk_queue_logical_block_size(zram->disk->queue,
1985 					ZRAM_LOGICAL_BLOCK_SIZE);
1986 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1987 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1988 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1989 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1990 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1991 
1992 	/*
1993 	 * zram_bio_discard() will clear all logical blocks if logical block
1994 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1995 	 * different, we will skip discarding some parts of logical blocks in
1996 	 * the part of the request range which isn't aligned to physical block
1997 	 * size.  So we can't ensure that all discarded logical blocks are
1998 	 * zeroed.
1999 	 */
2000 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
2001 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
2002 
2003 	blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue);
2004 	device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
2005 
2006 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
2007 
2008 	zram_debugfs_register(zram);
2009 	pr_info("Added device: %s\n", zram->disk->disk_name);
2010 	return device_id;
2011 
2012 out_free_queue:
2013 	blk_cleanup_queue(queue);
2014 out_free_idr:
2015 	idr_remove(&zram_index_idr, device_id);
2016 out_free_dev:
2017 	kfree(zram);
2018 	return ret;
2019 }
2020 
zram_remove(struct zram * zram)2021 static int zram_remove(struct zram *zram)
2022 {
2023 	struct block_device *bdev;
2024 
2025 	bdev = bdget_disk(zram->disk, 0);
2026 	if (!bdev)
2027 		return -ENOMEM;
2028 
2029 	mutex_lock(&bdev->bd_mutex);
2030 	if (bdev->bd_openers || zram->claim) {
2031 		mutex_unlock(&bdev->bd_mutex);
2032 		bdput(bdev);
2033 		return -EBUSY;
2034 	}
2035 
2036 	zram->claim = true;
2037 	mutex_unlock(&bdev->bd_mutex);
2038 
2039 	zram_debugfs_unregister(zram);
2040 
2041 	/* Make sure all the pending I/O are finished */
2042 	fsync_bdev(bdev);
2043 	zram_reset_device(zram);
2044 	bdput(bdev);
2045 
2046 	pr_info("Removed device: %s\n", zram->disk->disk_name);
2047 
2048 	del_gendisk(zram->disk);
2049 	blk_cleanup_queue(zram->disk->queue);
2050 	put_disk(zram->disk);
2051 	kfree(zram);
2052 	return 0;
2053 }
2054 
2055 /* zram-control sysfs attributes */
2056 
2057 /*
2058  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2059  * sense that reading from this file does alter the state of your system -- it
2060  * creates a new un-initialized zram device and returns back this device's
2061  * device_id (or an error code if it fails to create a new device).
2062  */
hot_add_show(struct class * class,struct class_attribute * attr,char * buf)2063 static ssize_t hot_add_show(struct class *class,
2064 			struct class_attribute *attr,
2065 			char *buf)
2066 {
2067 	int ret;
2068 
2069 	mutex_lock(&zram_index_mutex);
2070 	ret = zram_add();
2071 	mutex_unlock(&zram_index_mutex);
2072 
2073 	if (ret < 0)
2074 		return ret;
2075 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2076 }
2077 static struct class_attribute class_attr_hot_add =
2078 	__ATTR(hot_add, 0400, hot_add_show, NULL);
2079 
hot_remove_store(struct class * class,struct class_attribute * attr,const char * buf,size_t count)2080 static ssize_t hot_remove_store(struct class *class,
2081 			struct class_attribute *attr,
2082 			const char *buf,
2083 			size_t count)
2084 {
2085 	struct zram *zram;
2086 	int ret, dev_id;
2087 
2088 	/* dev_id is gendisk->first_minor, which is `int' */
2089 	ret = kstrtoint(buf, 10, &dev_id);
2090 	if (ret)
2091 		return ret;
2092 	if (dev_id < 0)
2093 		return -EINVAL;
2094 
2095 	mutex_lock(&zram_index_mutex);
2096 
2097 	zram = idr_find(&zram_index_idr, dev_id);
2098 	if (zram) {
2099 		ret = zram_remove(zram);
2100 		if (!ret)
2101 			idr_remove(&zram_index_idr, dev_id);
2102 	} else {
2103 		ret = -ENODEV;
2104 	}
2105 
2106 	mutex_unlock(&zram_index_mutex);
2107 	return ret ? ret : count;
2108 }
2109 static CLASS_ATTR_WO(hot_remove);
2110 
2111 static struct attribute *zram_control_class_attrs[] = {
2112 	&class_attr_hot_add.attr,
2113 	&class_attr_hot_remove.attr,
2114 	NULL,
2115 };
2116 ATTRIBUTE_GROUPS(zram_control_class);
2117 
2118 static struct class zram_control_class = {
2119 	.name		= "zram-control",
2120 	.owner		= THIS_MODULE,
2121 	.class_groups	= zram_control_class_groups,
2122 };
2123 
zram_remove_cb(int id,void * ptr,void * data)2124 static int zram_remove_cb(int id, void *ptr, void *data)
2125 {
2126 	zram_remove(ptr);
2127 	return 0;
2128 }
2129 
destroy_devices(void)2130 static void destroy_devices(void)
2131 {
2132 	class_unregister(&zram_control_class);
2133 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2134 	zram_debugfs_destroy();
2135 	idr_destroy(&zram_index_idr);
2136 	unregister_blkdev(zram_major, "zram");
2137 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2138 }
2139 
zram_init(void)2140 static int __init zram_init(void)
2141 {
2142 	int ret;
2143 
2144 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2145 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2146 	if (ret < 0)
2147 		return ret;
2148 
2149 	ret = class_register(&zram_control_class);
2150 	if (ret) {
2151 		pr_err("Unable to register zram-control class\n");
2152 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2153 		return ret;
2154 	}
2155 
2156 	zram_debugfs_create();
2157 	zram_major = register_blkdev(0, "zram");
2158 	if (zram_major <= 0) {
2159 		pr_err("Unable to get major number\n");
2160 		class_unregister(&zram_control_class);
2161 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2162 		return -EBUSY;
2163 	}
2164 
2165 	while (num_devices != 0) {
2166 		mutex_lock(&zram_index_mutex);
2167 		ret = zram_add();
2168 		mutex_unlock(&zram_index_mutex);
2169 		if (ret < 0)
2170 			goto out_error;
2171 		num_devices--;
2172 	}
2173 
2174 	return 0;
2175 
2176 out_error:
2177 	destroy_devices();
2178 	return ret;
2179 }
2180 
zram_exit(void)2181 static void __exit zram_exit(void)
2182 {
2183 	destroy_devices();
2184 }
2185 
2186 module_init(zram_init);
2187 module_exit(zram_exit);
2188 
2189 module_param(num_devices, uint, 0);
2190 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2191 
2192 MODULE_LICENSE("Dual BSD/GPL");
2193 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2194 MODULE_DESCRIPTION("Compressed RAM Block Device");
2195