1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Bluetooth Software UART Qualcomm protocol
4 *
5 * HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6 * protocol extension to H4.
7 *
8 * Copyright (C) 2007 Texas Instruments, Inc.
9 * Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10 *
11 * Acknowledgements:
12 * This file is based on hci_ll.c, which was...
13 * Written by Ohad Ben-Cohen <ohad@bencohen.org>
14 * which was in turn based on hci_h4.c, which was written
15 * by Maxim Krasnyansky and Marcel Holtmann.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38
39 #include "hci_uart.h"
40 #include "btqca.h"
41
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND 0xFE
44 #define HCI_IBS_WAKE_IND 0xFD
45 #define HCI_IBS_WAKE_ACK 0xFC
46 #define HCI_MAX_IBS_SIZE 10
47
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS 100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS 200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS 2000
51 #define CMD_TRANS_TIMEOUT_MS 100
52 #define MEMDUMP_TIMEOUT_MS 8000
53
54 /* susclk rate */
55 #define SUSCLK_RATE_32KHZ 32768
56
57 /* Controller debug log header */
58 #define QCA_DEBUG_HANDLE 0x2EDC
59
60 /* max retry count when init fails */
61 #define MAX_INIT_RETRIES 3
62
63 /* Controller dump header */
64 #define QCA_SSR_DUMP_HANDLE 0x0108
65 #define QCA_DUMP_PACKET_SIZE 255
66 #define QCA_LAST_SEQUENCE_NUM 0xFFFF
67 #define QCA_CRASHBYTE_PACKET_LEN 1096
68 #define QCA_MEMDUMP_BYTE 0xFB
69
70 enum qca_flags {
71 QCA_IBS_ENABLED,
72 QCA_DROP_VENDOR_EVENT,
73 QCA_SUSPENDING,
74 QCA_MEMDUMP_COLLECTION,
75 QCA_HW_ERROR_EVENT,
76 QCA_SSR_TRIGGERED
77 };
78
79 enum qca_capabilities {
80 QCA_CAP_WIDEBAND_SPEECH = BIT(0),
81 QCA_CAP_VALID_LE_STATES = BIT(1),
82 };
83
84 /* HCI_IBS transmit side sleep protocol states */
85 enum tx_ibs_states {
86 HCI_IBS_TX_ASLEEP,
87 HCI_IBS_TX_WAKING,
88 HCI_IBS_TX_AWAKE,
89 };
90
91 /* HCI_IBS receive side sleep protocol states */
92 enum rx_states {
93 HCI_IBS_RX_ASLEEP,
94 HCI_IBS_RX_AWAKE,
95 };
96
97 /* HCI_IBS transmit and receive side clock state vote */
98 enum hci_ibs_clock_state_vote {
99 HCI_IBS_VOTE_STATS_UPDATE,
100 HCI_IBS_TX_VOTE_CLOCK_ON,
101 HCI_IBS_TX_VOTE_CLOCK_OFF,
102 HCI_IBS_RX_VOTE_CLOCK_ON,
103 HCI_IBS_RX_VOTE_CLOCK_OFF,
104 };
105
106 /* Controller memory dump states */
107 enum qca_memdump_states {
108 QCA_MEMDUMP_IDLE,
109 QCA_MEMDUMP_COLLECTING,
110 QCA_MEMDUMP_COLLECTED,
111 QCA_MEMDUMP_TIMEOUT,
112 };
113
114 struct qca_memdump_data {
115 char *memdump_buf_head;
116 char *memdump_buf_tail;
117 u32 current_seq_no;
118 u32 received_dump;
119 u32 ram_dump_size;
120 };
121
122 struct qca_memdump_event_hdr {
123 __u8 evt;
124 __u8 plen;
125 __u16 opcode;
126 __u16 seq_no;
127 __u8 reserved;
128 } __packed;
129
130
131 struct qca_dump_size {
132 u32 dump_size;
133 } __packed;
134
135 struct qca_data {
136 struct hci_uart *hu;
137 struct sk_buff *rx_skb;
138 struct sk_buff_head txq;
139 struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */
140 struct sk_buff_head rx_memdump_q; /* Memdump wait queue */
141 spinlock_t hci_ibs_lock; /* HCI_IBS state lock */
142 u8 tx_ibs_state; /* HCI_IBS transmit side power state*/
143 u8 rx_ibs_state; /* HCI_IBS receive side power state */
144 bool tx_vote; /* Clock must be on for TX */
145 bool rx_vote; /* Clock must be on for RX */
146 struct timer_list tx_idle_timer;
147 u32 tx_idle_delay;
148 struct timer_list wake_retrans_timer;
149 u32 wake_retrans;
150 struct workqueue_struct *workqueue;
151 struct work_struct ws_awake_rx;
152 struct work_struct ws_awake_device;
153 struct work_struct ws_rx_vote_off;
154 struct work_struct ws_tx_vote_off;
155 struct work_struct ctrl_memdump_evt;
156 struct delayed_work ctrl_memdump_timeout;
157 struct qca_memdump_data *qca_memdump;
158 unsigned long flags;
159 struct completion drop_ev_comp;
160 wait_queue_head_t suspend_wait_q;
161 enum qca_memdump_states memdump_state;
162 struct mutex hci_memdump_lock;
163
164 /* For debugging purpose */
165 u64 ibs_sent_wacks;
166 u64 ibs_sent_slps;
167 u64 ibs_sent_wakes;
168 u64 ibs_recv_wacks;
169 u64 ibs_recv_slps;
170 u64 ibs_recv_wakes;
171 u64 vote_last_jif;
172 u32 vote_on_ms;
173 u32 vote_off_ms;
174 u64 tx_votes_on;
175 u64 rx_votes_on;
176 u64 tx_votes_off;
177 u64 rx_votes_off;
178 u64 votes_on;
179 u64 votes_off;
180 };
181
182 enum qca_speed_type {
183 QCA_INIT_SPEED = 1,
184 QCA_OPER_SPEED
185 };
186
187 /*
188 * Voltage regulator information required for configuring the
189 * QCA Bluetooth chipset
190 */
191 struct qca_vreg {
192 const char *name;
193 unsigned int load_uA;
194 };
195
196 struct qca_device_data {
197 enum qca_btsoc_type soc_type;
198 struct qca_vreg *vregs;
199 size_t num_vregs;
200 uint32_t capabilities;
201 };
202
203 /*
204 * Platform data for the QCA Bluetooth power driver.
205 */
206 struct qca_power {
207 struct device *dev;
208 struct regulator_bulk_data *vreg_bulk;
209 int num_vregs;
210 bool vregs_on;
211 };
212
213 struct qca_serdev {
214 struct hci_uart serdev_hu;
215 struct gpio_desc *bt_en;
216 struct clk *susclk;
217 enum qca_btsoc_type btsoc_type;
218 struct qca_power *bt_power;
219 u32 init_speed;
220 u32 oper_speed;
221 const char *firmware_name;
222 };
223
224 static int qca_regulator_enable(struct qca_serdev *qcadev);
225 static void qca_regulator_disable(struct qca_serdev *qcadev);
226 static void qca_power_shutdown(struct hci_uart *hu);
227 static int qca_power_off(struct hci_dev *hdev);
228 static void qca_controller_memdump(struct work_struct *work);
229
qca_soc_type(struct hci_uart * hu)230 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
231 {
232 enum qca_btsoc_type soc_type;
233
234 if (hu->serdev) {
235 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
236
237 soc_type = qsd->btsoc_type;
238 } else {
239 soc_type = QCA_ROME;
240 }
241
242 return soc_type;
243 }
244
qca_get_firmware_name(struct hci_uart * hu)245 static const char *qca_get_firmware_name(struct hci_uart *hu)
246 {
247 if (hu->serdev) {
248 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
249
250 return qsd->firmware_name;
251 } else {
252 return NULL;
253 }
254 }
255
__serial_clock_on(struct tty_struct * tty)256 static void __serial_clock_on(struct tty_struct *tty)
257 {
258 /* TODO: Some chipset requires to enable UART clock on client
259 * side to save power consumption or manual work is required.
260 * Please put your code to control UART clock here if needed
261 */
262 }
263
__serial_clock_off(struct tty_struct * tty)264 static void __serial_clock_off(struct tty_struct *tty)
265 {
266 /* TODO: Some chipset requires to disable UART clock on client
267 * side to save power consumption or manual work is required.
268 * Please put your code to control UART clock off here if needed
269 */
270 }
271
272 /* serial_clock_vote needs to be called with the ibs lock held */
serial_clock_vote(unsigned long vote,struct hci_uart * hu)273 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
274 {
275 struct qca_data *qca = hu->priv;
276 unsigned int diff;
277
278 bool old_vote = (qca->tx_vote | qca->rx_vote);
279 bool new_vote;
280
281 switch (vote) {
282 case HCI_IBS_VOTE_STATS_UPDATE:
283 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
284
285 if (old_vote)
286 qca->vote_off_ms += diff;
287 else
288 qca->vote_on_ms += diff;
289 return;
290
291 case HCI_IBS_TX_VOTE_CLOCK_ON:
292 qca->tx_vote = true;
293 qca->tx_votes_on++;
294 break;
295
296 case HCI_IBS_RX_VOTE_CLOCK_ON:
297 qca->rx_vote = true;
298 qca->rx_votes_on++;
299 break;
300
301 case HCI_IBS_TX_VOTE_CLOCK_OFF:
302 qca->tx_vote = false;
303 qca->tx_votes_off++;
304 break;
305
306 case HCI_IBS_RX_VOTE_CLOCK_OFF:
307 qca->rx_vote = false;
308 qca->rx_votes_off++;
309 break;
310
311 default:
312 BT_ERR("Voting irregularity");
313 return;
314 }
315
316 new_vote = qca->rx_vote | qca->tx_vote;
317
318 if (new_vote != old_vote) {
319 if (new_vote)
320 __serial_clock_on(hu->tty);
321 else
322 __serial_clock_off(hu->tty);
323
324 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
325 vote ? "true" : "false");
326
327 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
328
329 if (new_vote) {
330 qca->votes_on++;
331 qca->vote_off_ms += diff;
332 } else {
333 qca->votes_off++;
334 qca->vote_on_ms += diff;
335 }
336 qca->vote_last_jif = jiffies;
337 }
338 }
339
340 /* Builds and sends an HCI_IBS command packet.
341 * These are very simple packets with only 1 cmd byte.
342 */
send_hci_ibs_cmd(u8 cmd,struct hci_uart * hu)343 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
344 {
345 int err = 0;
346 struct sk_buff *skb = NULL;
347 struct qca_data *qca = hu->priv;
348
349 BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
350
351 skb = bt_skb_alloc(1, GFP_ATOMIC);
352 if (!skb) {
353 BT_ERR("Failed to allocate memory for HCI_IBS packet");
354 return -ENOMEM;
355 }
356
357 /* Assign HCI_IBS type */
358 skb_put_u8(skb, cmd);
359
360 skb_queue_tail(&qca->txq, skb);
361
362 return err;
363 }
364
qca_wq_awake_device(struct work_struct * work)365 static void qca_wq_awake_device(struct work_struct *work)
366 {
367 struct qca_data *qca = container_of(work, struct qca_data,
368 ws_awake_device);
369 struct hci_uart *hu = qca->hu;
370 unsigned long retrans_delay;
371 unsigned long flags;
372
373 BT_DBG("hu %p wq awake device", hu);
374
375 /* Vote for serial clock */
376 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
377
378 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
379
380 /* Send wake indication to device */
381 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
382 BT_ERR("Failed to send WAKE to device");
383
384 qca->ibs_sent_wakes++;
385
386 /* Start retransmit timer */
387 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
388 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
389
390 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
391
392 /* Actually send the packets */
393 hci_uart_tx_wakeup(hu);
394 }
395
qca_wq_awake_rx(struct work_struct * work)396 static void qca_wq_awake_rx(struct work_struct *work)
397 {
398 struct qca_data *qca = container_of(work, struct qca_data,
399 ws_awake_rx);
400 struct hci_uart *hu = qca->hu;
401 unsigned long flags;
402
403 BT_DBG("hu %p wq awake rx", hu);
404
405 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
406
407 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
408 qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
409
410 /* Always acknowledge device wake up,
411 * sending IBS message doesn't count as TX ON.
412 */
413 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
414 BT_ERR("Failed to acknowledge device wake up");
415
416 qca->ibs_sent_wacks++;
417
418 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
419
420 /* Actually send the packets */
421 hci_uart_tx_wakeup(hu);
422 }
423
qca_wq_serial_rx_clock_vote_off(struct work_struct * work)424 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
425 {
426 struct qca_data *qca = container_of(work, struct qca_data,
427 ws_rx_vote_off);
428 struct hci_uart *hu = qca->hu;
429
430 BT_DBG("hu %p rx clock vote off", hu);
431
432 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
433 }
434
qca_wq_serial_tx_clock_vote_off(struct work_struct * work)435 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
436 {
437 struct qca_data *qca = container_of(work, struct qca_data,
438 ws_tx_vote_off);
439 struct hci_uart *hu = qca->hu;
440
441 BT_DBG("hu %p tx clock vote off", hu);
442
443 /* Run HCI tx handling unlocked */
444 hci_uart_tx_wakeup(hu);
445
446 /* Now that message queued to tty driver, vote for tty clocks off.
447 * It is up to the tty driver to pend the clocks off until tx done.
448 */
449 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
450 }
451
hci_ibs_tx_idle_timeout(struct timer_list * t)452 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
453 {
454 struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
455 struct hci_uart *hu = qca->hu;
456 unsigned long flags;
457
458 BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
459
460 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
461 flags, SINGLE_DEPTH_NESTING);
462
463 switch (qca->tx_ibs_state) {
464 case HCI_IBS_TX_AWAKE:
465 /* TX_IDLE, go to SLEEP */
466 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
467 BT_ERR("Failed to send SLEEP to device");
468 break;
469 }
470 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
471 qca->ibs_sent_slps++;
472 queue_work(qca->workqueue, &qca->ws_tx_vote_off);
473 break;
474
475 case HCI_IBS_TX_ASLEEP:
476 case HCI_IBS_TX_WAKING:
477 default:
478 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
479 break;
480 }
481
482 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
483 }
484
hci_ibs_wake_retrans_timeout(struct timer_list * t)485 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
486 {
487 struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
488 struct hci_uart *hu = qca->hu;
489 unsigned long flags, retrans_delay;
490 bool retransmit = false;
491
492 BT_DBG("hu %p wake retransmit timeout in %d state",
493 hu, qca->tx_ibs_state);
494
495 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
496 flags, SINGLE_DEPTH_NESTING);
497
498 /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
499 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
500 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
501 return;
502 }
503
504 switch (qca->tx_ibs_state) {
505 case HCI_IBS_TX_WAKING:
506 /* No WAKE_ACK, retransmit WAKE */
507 retransmit = true;
508 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
509 BT_ERR("Failed to acknowledge device wake up");
510 break;
511 }
512 qca->ibs_sent_wakes++;
513 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
514 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
515 break;
516
517 case HCI_IBS_TX_ASLEEP:
518 case HCI_IBS_TX_AWAKE:
519 default:
520 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
521 break;
522 }
523
524 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
525
526 if (retransmit)
527 hci_uart_tx_wakeup(hu);
528 }
529
530
qca_controller_memdump_timeout(struct work_struct * work)531 static void qca_controller_memdump_timeout(struct work_struct *work)
532 {
533 struct qca_data *qca = container_of(work, struct qca_data,
534 ctrl_memdump_timeout.work);
535 struct hci_uart *hu = qca->hu;
536
537 mutex_lock(&qca->hci_memdump_lock);
538 if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
539 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
540 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
541 /* Inject hw error event to reset the device
542 * and driver.
543 */
544 hci_reset_dev(hu->hdev);
545 }
546 }
547
548 mutex_unlock(&qca->hci_memdump_lock);
549 }
550
551
552 /* Initialize protocol */
qca_open(struct hci_uart * hu)553 static int qca_open(struct hci_uart *hu)
554 {
555 struct qca_serdev *qcadev;
556 struct qca_data *qca;
557
558 BT_DBG("hu %p qca_open", hu);
559
560 if (!hci_uart_has_flow_control(hu))
561 return -EOPNOTSUPP;
562
563 qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
564 if (!qca)
565 return -ENOMEM;
566
567 skb_queue_head_init(&qca->txq);
568 skb_queue_head_init(&qca->tx_wait_q);
569 skb_queue_head_init(&qca->rx_memdump_q);
570 spin_lock_init(&qca->hci_ibs_lock);
571 mutex_init(&qca->hci_memdump_lock);
572 qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
573 if (!qca->workqueue) {
574 BT_ERR("QCA Workqueue not initialized properly");
575 kfree(qca);
576 return -ENOMEM;
577 }
578
579 INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
580 INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
581 INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
582 INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
583 INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
584 INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
585 qca_controller_memdump_timeout);
586 init_waitqueue_head(&qca->suspend_wait_q);
587
588 qca->hu = hu;
589 init_completion(&qca->drop_ev_comp);
590
591 /* Assume we start with both sides asleep -- extra wakes OK */
592 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
593 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
594
595 qca->vote_last_jif = jiffies;
596
597 hu->priv = qca;
598
599 if (hu->serdev) {
600 qcadev = serdev_device_get_drvdata(hu->serdev);
601
602 if (qca_is_wcn399x(qcadev->btsoc_type))
603 hu->init_speed = qcadev->init_speed;
604
605 if (qcadev->oper_speed)
606 hu->oper_speed = qcadev->oper_speed;
607 }
608
609 timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
610 qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
611
612 timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
613 qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
614
615 BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
616 qca->tx_idle_delay, qca->wake_retrans);
617
618 return 0;
619 }
620
qca_debugfs_init(struct hci_dev * hdev)621 static void qca_debugfs_init(struct hci_dev *hdev)
622 {
623 struct hci_uart *hu = hci_get_drvdata(hdev);
624 struct qca_data *qca = hu->priv;
625 struct dentry *ibs_dir;
626 umode_t mode;
627
628 if (!hdev->debugfs)
629 return;
630
631 ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
632
633 /* read only */
634 mode = S_IRUGO;
635 debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
636 debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
637 debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
638 &qca->ibs_sent_slps);
639 debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
640 &qca->ibs_sent_wakes);
641 debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
642 &qca->ibs_sent_wacks);
643 debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
644 &qca->ibs_recv_slps);
645 debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
646 &qca->ibs_recv_wakes);
647 debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
648 &qca->ibs_recv_wacks);
649 debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
650 debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
651 debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
652 debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
653 debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
654 debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
655 debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
656 debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
657 debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
658 debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
659
660 /* read/write */
661 mode = S_IRUGO | S_IWUSR;
662 debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
663 debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
664 &qca->tx_idle_delay);
665 }
666
667 /* Flush protocol data */
qca_flush(struct hci_uart * hu)668 static int qca_flush(struct hci_uart *hu)
669 {
670 struct qca_data *qca = hu->priv;
671
672 BT_DBG("hu %p qca flush", hu);
673
674 skb_queue_purge(&qca->tx_wait_q);
675 skb_queue_purge(&qca->txq);
676
677 return 0;
678 }
679
680 /* Close protocol */
qca_close(struct hci_uart * hu)681 static int qca_close(struct hci_uart *hu)
682 {
683 struct qca_data *qca = hu->priv;
684
685 BT_DBG("hu %p qca close", hu);
686
687 serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
688
689 skb_queue_purge(&qca->tx_wait_q);
690 skb_queue_purge(&qca->txq);
691 skb_queue_purge(&qca->rx_memdump_q);
692 del_timer(&qca->tx_idle_timer);
693 del_timer(&qca->wake_retrans_timer);
694 destroy_workqueue(qca->workqueue);
695 qca->hu = NULL;
696
697 kfree_skb(qca->rx_skb);
698
699 hu->priv = NULL;
700
701 kfree(qca);
702
703 return 0;
704 }
705
706 /* Called upon a wake-up-indication from the device.
707 */
device_want_to_wakeup(struct hci_uart * hu)708 static void device_want_to_wakeup(struct hci_uart *hu)
709 {
710 unsigned long flags;
711 struct qca_data *qca = hu->priv;
712
713 BT_DBG("hu %p want to wake up", hu);
714
715 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
716
717 qca->ibs_recv_wakes++;
718
719 /* Don't wake the rx up when suspending. */
720 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
721 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
722 return;
723 }
724
725 switch (qca->rx_ibs_state) {
726 case HCI_IBS_RX_ASLEEP:
727 /* Make sure clock is on - we may have turned clock off since
728 * receiving the wake up indicator awake rx clock.
729 */
730 queue_work(qca->workqueue, &qca->ws_awake_rx);
731 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
732 return;
733
734 case HCI_IBS_RX_AWAKE:
735 /* Always acknowledge device wake up,
736 * sending IBS message doesn't count as TX ON.
737 */
738 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
739 BT_ERR("Failed to acknowledge device wake up");
740 break;
741 }
742 qca->ibs_sent_wacks++;
743 break;
744
745 default:
746 /* Any other state is illegal */
747 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
748 qca->rx_ibs_state);
749 break;
750 }
751
752 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
753
754 /* Actually send the packets */
755 hci_uart_tx_wakeup(hu);
756 }
757
758 /* Called upon a sleep-indication from the device.
759 */
device_want_to_sleep(struct hci_uart * hu)760 static void device_want_to_sleep(struct hci_uart *hu)
761 {
762 unsigned long flags;
763 struct qca_data *qca = hu->priv;
764
765 BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
766
767 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
768
769 qca->ibs_recv_slps++;
770
771 switch (qca->rx_ibs_state) {
772 case HCI_IBS_RX_AWAKE:
773 /* Update state */
774 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
775 /* Vote off rx clock under workqueue */
776 queue_work(qca->workqueue, &qca->ws_rx_vote_off);
777 break;
778
779 case HCI_IBS_RX_ASLEEP:
780 break;
781
782 default:
783 /* Any other state is illegal */
784 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
785 qca->rx_ibs_state);
786 break;
787 }
788
789 wake_up_interruptible(&qca->suspend_wait_q);
790
791 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
792 }
793
794 /* Called upon wake-up-acknowledgement from the device
795 */
device_woke_up(struct hci_uart * hu)796 static void device_woke_up(struct hci_uart *hu)
797 {
798 unsigned long flags, idle_delay;
799 struct qca_data *qca = hu->priv;
800 struct sk_buff *skb = NULL;
801
802 BT_DBG("hu %p woke up", hu);
803
804 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
805
806 qca->ibs_recv_wacks++;
807
808 /* Don't react to the wake-up-acknowledgment when suspending. */
809 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
810 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
811 return;
812 }
813
814 switch (qca->tx_ibs_state) {
815 case HCI_IBS_TX_AWAKE:
816 /* Expect one if we send 2 WAKEs */
817 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
818 qca->tx_ibs_state);
819 break;
820
821 case HCI_IBS_TX_WAKING:
822 /* Send pending packets */
823 while ((skb = skb_dequeue(&qca->tx_wait_q)))
824 skb_queue_tail(&qca->txq, skb);
825
826 /* Switch timers and change state to HCI_IBS_TX_AWAKE */
827 del_timer(&qca->wake_retrans_timer);
828 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
829 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
830 qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
831 break;
832
833 case HCI_IBS_TX_ASLEEP:
834 default:
835 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
836 qca->tx_ibs_state);
837 break;
838 }
839
840 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
841
842 /* Actually send the packets */
843 hci_uart_tx_wakeup(hu);
844 }
845
846 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
847 * two simultaneous tasklets.
848 */
qca_enqueue(struct hci_uart * hu,struct sk_buff * skb)849 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
850 {
851 unsigned long flags = 0, idle_delay;
852 struct qca_data *qca = hu->priv;
853
854 BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
855 qca->tx_ibs_state);
856
857 if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
858 /* As SSR is in progress, ignore the packets */
859 bt_dev_dbg(hu->hdev, "SSR is in progress");
860 kfree_skb(skb);
861 return 0;
862 }
863
864 /* Prepend skb with frame type */
865 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
866
867 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
868
869 /* Don't go to sleep in middle of patch download or
870 * Out-Of-Band(GPIOs control) sleep is selected.
871 * Don't wake the device up when suspending.
872 */
873 if (!test_bit(QCA_IBS_ENABLED, &qca->flags) ||
874 test_bit(QCA_SUSPENDING, &qca->flags)) {
875 skb_queue_tail(&qca->txq, skb);
876 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
877 return 0;
878 }
879
880 /* Act according to current state */
881 switch (qca->tx_ibs_state) {
882 case HCI_IBS_TX_AWAKE:
883 BT_DBG("Device awake, sending normally");
884 skb_queue_tail(&qca->txq, skb);
885 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
886 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
887 break;
888
889 case HCI_IBS_TX_ASLEEP:
890 BT_DBG("Device asleep, waking up and queueing packet");
891 /* Save packet for later */
892 skb_queue_tail(&qca->tx_wait_q, skb);
893
894 qca->tx_ibs_state = HCI_IBS_TX_WAKING;
895 /* Schedule a work queue to wake up device */
896 queue_work(qca->workqueue, &qca->ws_awake_device);
897 break;
898
899 case HCI_IBS_TX_WAKING:
900 BT_DBG("Device waking up, queueing packet");
901 /* Transient state; just keep packet for later */
902 skb_queue_tail(&qca->tx_wait_q, skb);
903 break;
904
905 default:
906 BT_ERR("Illegal tx state: %d (losing packet)",
907 qca->tx_ibs_state);
908 kfree_skb(skb);
909 break;
910 }
911
912 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
913
914 return 0;
915 }
916
qca_ibs_sleep_ind(struct hci_dev * hdev,struct sk_buff * skb)917 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
918 {
919 struct hci_uart *hu = hci_get_drvdata(hdev);
920
921 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
922
923 device_want_to_sleep(hu);
924
925 kfree_skb(skb);
926 return 0;
927 }
928
qca_ibs_wake_ind(struct hci_dev * hdev,struct sk_buff * skb)929 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
930 {
931 struct hci_uart *hu = hci_get_drvdata(hdev);
932
933 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
934
935 device_want_to_wakeup(hu);
936
937 kfree_skb(skb);
938 return 0;
939 }
940
qca_ibs_wake_ack(struct hci_dev * hdev,struct sk_buff * skb)941 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
942 {
943 struct hci_uart *hu = hci_get_drvdata(hdev);
944
945 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
946
947 device_woke_up(hu);
948
949 kfree_skb(skb);
950 return 0;
951 }
952
qca_recv_acl_data(struct hci_dev * hdev,struct sk_buff * skb)953 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
954 {
955 /* We receive debug logs from chip as an ACL packets.
956 * Instead of sending the data to ACL to decode the
957 * received data, we are pushing them to the above layers
958 * as a diagnostic packet.
959 */
960 if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
961 return hci_recv_diag(hdev, skb);
962
963 return hci_recv_frame(hdev, skb);
964 }
965
qca_controller_memdump(struct work_struct * work)966 static void qca_controller_memdump(struct work_struct *work)
967 {
968 struct qca_data *qca = container_of(work, struct qca_data,
969 ctrl_memdump_evt);
970 struct hci_uart *hu = qca->hu;
971 struct sk_buff *skb;
972 struct qca_memdump_event_hdr *cmd_hdr;
973 struct qca_memdump_data *qca_memdump = qca->qca_memdump;
974 struct qca_dump_size *dump;
975 char *memdump_buf;
976 char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
977 u16 seq_no;
978 u32 dump_size;
979 u32 rx_size;
980 enum qca_btsoc_type soc_type = qca_soc_type(hu);
981
982 while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
983
984 mutex_lock(&qca->hci_memdump_lock);
985 /* Skip processing the received packets if timeout detected
986 * or memdump collection completed.
987 */
988 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
989 qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
990 mutex_unlock(&qca->hci_memdump_lock);
991 return;
992 }
993
994 if (!qca_memdump) {
995 qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
996 GFP_ATOMIC);
997 if (!qca_memdump) {
998 mutex_unlock(&qca->hci_memdump_lock);
999 return;
1000 }
1001
1002 qca->qca_memdump = qca_memdump;
1003 }
1004
1005 qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1006 cmd_hdr = (void *) skb->data;
1007 seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1008 skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1009
1010 if (!seq_no) {
1011
1012 /* This is the first frame of memdump packet from
1013 * the controller, Disable IBS to recevie dump
1014 * with out any interruption, ideally time required for
1015 * the controller to send the dump is 8 seconds. let us
1016 * start timer to handle this asynchronous activity.
1017 */
1018 clear_bit(QCA_IBS_ENABLED, &qca->flags);
1019 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1020 dump = (void *) skb->data;
1021 dump_size = __le32_to_cpu(dump->dump_size);
1022 if (!(dump_size)) {
1023 bt_dev_err(hu->hdev, "Rx invalid memdump size");
1024 kfree(qca_memdump);
1025 kfree_skb(skb);
1026 qca->qca_memdump = NULL;
1027 mutex_unlock(&qca->hci_memdump_lock);
1028 return;
1029 }
1030
1031 bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1032 dump_size);
1033 queue_delayed_work(qca->workqueue,
1034 &qca->ctrl_memdump_timeout,
1035 msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1036 );
1037
1038 skb_pull(skb, sizeof(dump_size));
1039 memdump_buf = vmalloc(dump_size);
1040 qca_memdump->ram_dump_size = dump_size;
1041 qca_memdump->memdump_buf_head = memdump_buf;
1042 qca_memdump->memdump_buf_tail = memdump_buf;
1043 }
1044
1045 memdump_buf = qca_memdump->memdump_buf_tail;
1046
1047 /* If sequence no 0 is missed then there is no point in
1048 * accepting the other sequences.
1049 */
1050 if (!memdump_buf) {
1051 bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1052 kfree(qca_memdump);
1053 kfree_skb(skb);
1054 qca->qca_memdump = NULL;
1055 mutex_unlock(&qca->hci_memdump_lock);
1056 return;
1057 }
1058
1059 /* There could be chance of missing some packets from
1060 * the controller. In such cases let us store the dummy
1061 * packets in the buffer.
1062 */
1063 /* For QCA6390, controller does not lost packets but
1064 * sequence number field of packat sometimes has error
1065 * bits, so skip this checking for missing packet.
1066 */
1067 while ((seq_no > qca_memdump->current_seq_no + 1) &&
1068 (soc_type != QCA_QCA6390) &&
1069 seq_no != QCA_LAST_SEQUENCE_NUM) {
1070 bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1071 qca_memdump->current_seq_no);
1072 rx_size = qca_memdump->received_dump;
1073 rx_size += QCA_DUMP_PACKET_SIZE;
1074 if (rx_size > qca_memdump->ram_dump_size) {
1075 bt_dev_err(hu->hdev,
1076 "QCA memdump received %d, no space for missed packet",
1077 qca_memdump->received_dump);
1078 break;
1079 }
1080 memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1081 memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1082 qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1083 qca_memdump->current_seq_no++;
1084 }
1085
1086 rx_size = qca_memdump->received_dump + skb->len;
1087 if (rx_size <= qca_memdump->ram_dump_size) {
1088 if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1089 (seq_no != qca_memdump->current_seq_no))
1090 bt_dev_err(hu->hdev,
1091 "QCA memdump unexpected packet %d",
1092 seq_no);
1093 bt_dev_dbg(hu->hdev,
1094 "QCA memdump packet %d with length %d",
1095 seq_no, skb->len);
1096 memcpy(memdump_buf, (unsigned char *)skb->data,
1097 skb->len);
1098 memdump_buf = memdump_buf + skb->len;
1099 qca_memdump->memdump_buf_tail = memdump_buf;
1100 qca_memdump->current_seq_no = seq_no + 1;
1101 qca_memdump->received_dump += skb->len;
1102 } else {
1103 bt_dev_err(hu->hdev,
1104 "QCA memdump received %d, no space for packet %d",
1105 qca_memdump->received_dump, seq_no);
1106 }
1107 qca->qca_memdump = qca_memdump;
1108 kfree_skb(skb);
1109 if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1110 bt_dev_info(hu->hdev,
1111 "QCA memdump Done, received %d, total %d",
1112 qca_memdump->received_dump,
1113 qca_memdump->ram_dump_size);
1114 memdump_buf = qca_memdump->memdump_buf_head;
1115 dev_coredumpv(&hu->serdev->dev, memdump_buf,
1116 qca_memdump->received_dump, GFP_KERNEL);
1117 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1118 kfree(qca->qca_memdump);
1119 qca->qca_memdump = NULL;
1120 qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1121 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1122 }
1123
1124 mutex_unlock(&qca->hci_memdump_lock);
1125 }
1126
1127 }
1128
qca_controller_memdump_event(struct hci_dev * hdev,struct sk_buff * skb)1129 static int qca_controller_memdump_event(struct hci_dev *hdev,
1130 struct sk_buff *skb)
1131 {
1132 struct hci_uart *hu = hci_get_drvdata(hdev);
1133 struct qca_data *qca = hu->priv;
1134
1135 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1136 skb_queue_tail(&qca->rx_memdump_q, skb);
1137 queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1138
1139 return 0;
1140 }
1141
qca_recv_event(struct hci_dev * hdev,struct sk_buff * skb)1142 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1143 {
1144 struct hci_uart *hu = hci_get_drvdata(hdev);
1145 struct qca_data *qca = hu->priv;
1146
1147 if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1148 struct hci_event_hdr *hdr = (void *)skb->data;
1149
1150 /* For the WCN3990 the vendor command for a baudrate change
1151 * isn't sent as synchronous HCI command, because the
1152 * controller sends the corresponding vendor event with the
1153 * new baudrate. The event is received and properly decoded
1154 * after changing the baudrate of the host port. It needs to
1155 * be dropped, otherwise it can be misinterpreted as
1156 * response to a later firmware download command (also a
1157 * vendor command).
1158 */
1159
1160 if (hdr->evt == HCI_EV_VENDOR)
1161 complete(&qca->drop_ev_comp);
1162
1163 kfree_skb(skb);
1164
1165 return 0;
1166 }
1167 /* We receive chip memory dump as an event packet, With a dedicated
1168 * handler followed by a hardware error event. When this event is
1169 * received we store dump into a file before closing hci. This
1170 * dump will help in triaging the issues.
1171 */
1172 if ((skb->data[0] == HCI_VENDOR_PKT) &&
1173 (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1174 return qca_controller_memdump_event(hdev, skb);
1175
1176 return hci_recv_frame(hdev, skb);
1177 }
1178
1179 #define QCA_IBS_SLEEP_IND_EVENT \
1180 .type = HCI_IBS_SLEEP_IND, \
1181 .hlen = 0, \
1182 .loff = 0, \
1183 .lsize = 0, \
1184 .maxlen = HCI_MAX_IBS_SIZE
1185
1186 #define QCA_IBS_WAKE_IND_EVENT \
1187 .type = HCI_IBS_WAKE_IND, \
1188 .hlen = 0, \
1189 .loff = 0, \
1190 .lsize = 0, \
1191 .maxlen = HCI_MAX_IBS_SIZE
1192
1193 #define QCA_IBS_WAKE_ACK_EVENT \
1194 .type = HCI_IBS_WAKE_ACK, \
1195 .hlen = 0, \
1196 .loff = 0, \
1197 .lsize = 0, \
1198 .maxlen = HCI_MAX_IBS_SIZE
1199
1200 static const struct h4_recv_pkt qca_recv_pkts[] = {
1201 { H4_RECV_ACL, .recv = qca_recv_acl_data },
1202 { H4_RECV_SCO, .recv = hci_recv_frame },
1203 { H4_RECV_EVENT, .recv = qca_recv_event },
1204 { QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind },
1205 { QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack },
1206 { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1207 };
1208
qca_recv(struct hci_uart * hu,const void * data,int count)1209 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1210 {
1211 struct qca_data *qca = hu->priv;
1212
1213 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1214 return -EUNATCH;
1215
1216 qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1217 qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1218 if (IS_ERR(qca->rx_skb)) {
1219 int err = PTR_ERR(qca->rx_skb);
1220 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1221 qca->rx_skb = NULL;
1222 return err;
1223 }
1224
1225 return count;
1226 }
1227
qca_dequeue(struct hci_uart * hu)1228 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1229 {
1230 struct qca_data *qca = hu->priv;
1231
1232 return skb_dequeue(&qca->txq);
1233 }
1234
qca_get_baudrate_value(int speed)1235 static uint8_t qca_get_baudrate_value(int speed)
1236 {
1237 switch (speed) {
1238 case 9600:
1239 return QCA_BAUDRATE_9600;
1240 case 19200:
1241 return QCA_BAUDRATE_19200;
1242 case 38400:
1243 return QCA_BAUDRATE_38400;
1244 case 57600:
1245 return QCA_BAUDRATE_57600;
1246 case 115200:
1247 return QCA_BAUDRATE_115200;
1248 case 230400:
1249 return QCA_BAUDRATE_230400;
1250 case 460800:
1251 return QCA_BAUDRATE_460800;
1252 case 500000:
1253 return QCA_BAUDRATE_500000;
1254 case 921600:
1255 return QCA_BAUDRATE_921600;
1256 case 1000000:
1257 return QCA_BAUDRATE_1000000;
1258 case 2000000:
1259 return QCA_BAUDRATE_2000000;
1260 case 3000000:
1261 return QCA_BAUDRATE_3000000;
1262 case 3200000:
1263 return QCA_BAUDRATE_3200000;
1264 case 3500000:
1265 return QCA_BAUDRATE_3500000;
1266 default:
1267 return QCA_BAUDRATE_115200;
1268 }
1269 }
1270
qca_set_baudrate(struct hci_dev * hdev,uint8_t baudrate)1271 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1272 {
1273 struct hci_uart *hu = hci_get_drvdata(hdev);
1274 struct qca_data *qca = hu->priv;
1275 struct sk_buff *skb;
1276 u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1277
1278 if (baudrate > QCA_BAUDRATE_3200000)
1279 return -EINVAL;
1280
1281 cmd[4] = baudrate;
1282
1283 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1284 if (!skb) {
1285 bt_dev_err(hdev, "Failed to allocate baudrate packet");
1286 return -ENOMEM;
1287 }
1288
1289 /* Assign commands to change baudrate and packet type. */
1290 skb_put_data(skb, cmd, sizeof(cmd));
1291 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1292
1293 skb_queue_tail(&qca->txq, skb);
1294 hci_uart_tx_wakeup(hu);
1295
1296 /* Wait for the baudrate change request to be sent */
1297
1298 while (!skb_queue_empty(&qca->txq))
1299 usleep_range(100, 200);
1300
1301 if (hu->serdev)
1302 serdev_device_wait_until_sent(hu->serdev,
1303 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1304
1305 /* Give the controller time to process the request */
1306 if (qca_is_wcn399x(qca_soc_type(hu)))
1307 msleep(10);
1308 else
1309 msleep(300);
1310
1311 return 0;
1312 }
1313
host_set_baudrate(struct hci_uart * hu,unsigned int speed)1314 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1315 {
1316 if (hu->serdev)
1317 serdev_device_set_baudrate(hu->serdev, speed);
1318 else
1319 hci_uart_set_baudrate(hu, speed);
1320 }
1321
qca_send_power_pulse(struct hci_uart * hu,bool on)1322 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1323 {
1324 int ret;
1325 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1326 u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1327
1328 /* These power pulses are single byte command which are sent
1329 * at required baudrate to wcn3990. On wcn3990, we have an external
1330 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1331 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1332 * and also we use the same power inputs to turn on and off for
1333 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1334 * we send a power on pulse at 115200 bps. This algorithm will help to
1335 * save power. Disabling hardware flow control is mandatory while
1336 * sending power pulses to SoC.
1337 */
1338 bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1339
1340 serdev_device_write_flush(hu->serdev);
1341 hci_uart_set_flow_control(hu, true);
1342 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1343 if (ret < 0) {
1344 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1345 return ret;
1346 }
1347
1348 serdev_device_wait_until_sent(hu->serdev, timeout);
1349 hci_uart_set_flow_control(hu, false);
1350
1351 /* Give to controller time to boot/shutdown */
1352 if (on)
1353 msleep(100);
1354 else
1355 msleep(10);
1356
1357 return 0;
1358 }
1359
qca_get_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1360 static unsigned int qca_get_speed(struct hci_uart *hu,
1361 enum qca_speed_type speed_type)
1362 {
1363 unsigned int speed = 0;
1364
1365 if (speed_type == QCA_INIT_SPEED) {
1366 if (hu->init_speed)
1367 speed = hu->init_speed;
1368 else if (hu->proto->init_speed)
1369 speed = hu->proto->init_speed;
1370 } else {
1371 if (hu->oper_speed)
1372 speed = hu->oper_speed;
1373 else if (hu->proto->oper_speed)
1374 speed = hu->proto->oper_speed;
1375 }
1376
1377 return speed;
1378 }
1379
qca_check_speeds(struct hci_uart * hu)1380 static int qca_check_speeds(struct hci_uart *hu)
1381 {
1382 if (qca_is_wcn399x(qca_soc_type(hu))) {
1383 if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1384 !qca_get_speed(hu, QCA_OPER_SPEED))
1385 return -EINVAL;
1386 } else {
1387 if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1388 !qca_get_speed(hu, QCA_OPER_SPEED))
1389 return -EINVAL;
1390 }
1391
1392 return 0;
1393 }
1394
qca_set_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1395 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1396 {
1397 unsigned int speed, qca_baudrate;
1398 struct qca_data *qca = hu->priv;
1399 int ret = 0;
1400
1401 if (speed_type == QCA_INIT_SPEED) {
1402 speed = qca_get_speed(hu, QCA_INIT_SPEED);
1403 if (speed)
1404 host_set_baudrate(hu, speed);
1405 } else {
1406 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1407
1408 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1409 if (!speed)
1410 return 0;
1411
1412 /* Disable flow control for wcn3990 to deassert RTS while
1413 * changing the baudrate of chip and host.
1414 */
1415 if (qca_is_wcn399x(soc_type))
1416 hci_uart_set_flow_control(hu, true);
1417
1418 if (soc_type == QCA_WCN3990) {
1419 reinit_completion(&qca->drop_ev_comp);
1420 set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1421 }
1422
1423 qca_baudrate = qca_get_baudrate_value(speed);
1424 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1425 ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1426 if (ret)
1427 goto error;
1428
1429 host_set_baudrate(hu, speed);
1430
1431 error:
1432 if (qca_is_wcn399x(soc_type))
1433 hci_uart_set_flow_control(hu, false);
1434
1435 if (soc_type == QCA_WCN3990) {
1436 /* Wait for the controller to send the vendor event
1437 * for the baudrate change command.
1438 */
1439 if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1440 msecs_to_jiffies(100))) {
1441 bt_dev_err(hu->hdev,
1442 "Failed to change controller baudrate\n");
1443 ret = -ETIMEDOUT;
1444 }
1445
1446 clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1447 }
1448 }
1449
1450 return ret;
1451 }
1452
qca_send_crashbuffer(struct hci_uart * hu)1453 static int qca_send_crashbuffer(struct hci_uart *hu)
1454 {
1455 struct qca_data *qca = hu->priv;
1456 struct sk_buff *skb;
1457
1458 skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1459 if (!skb) {
1460 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1461 return -ENOMEM;
1462 }
1463
1464 /* We forcefully crash the controller, by sending 0xfb byte for
1465 * 1024 times. We also might have chance of losing data, To be
1466 * on safer side we send 1096 bytes to the SoC.
1467 */
1468 memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1469 QCA_CRASHBYTE_PACKET_LEN);
1470 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1471 bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1472 skb_queue_tail(&qca->txq, skb);
1473 hci_uart_tx_wakeup(hu);
1474
1475 return 0;
1476 }
1477
qca_wait_for_dump_collection(struct hci_dev * hdev)1478 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1479 {
1480 struct hci_uart *hu = hci_get_drvdata(hdev);
1481 struct qca_data *qca = hu->priv;
1482
1483 wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1484 TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1485
1486 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1487 }
1488
qca_hw_error(struct hci_dev * hdev,u8 code)1489 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1490 {
1491 struct hci_uart *hu = hci_get_drvdata(hdev);
1492 struct qca_data *qca = hu->priv;
1493
1494 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1495 set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1496 bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1497
1498 if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1499 /* If hardware error event received for other than QCA
1500 * soc memory dump event, then we need to crash the SOC
1501 * and wait here for 8 seconds to get the dump packets.
1502 * This will block main thread to be on hold until we
1503 * collect dump.
1504 */
1505 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1506 qca_send_crashbuffer(hu);
1507 qca_wait_for_dump_collection(hdev);
1508 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1509 /* Let us wait here until memory dump collected or
1510 * memory dump timer expired.
1511 */
1512 bt_dev_info(hdev, "waiting for dump to complete");
1513 qca_wait_for_dump_collection(hdev);
1514 }
1515
1516 mutex_lock(&qca->hci_memdump_lock);
1517 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1518 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1519 if (qca->qca_memdump) {
1520 vfree(qca->qca_memdump->memdump_buf_head);
1521 kfree(qca->qca_memdump);
1522 qca->qca_memdump = NULL;
1523 }
1524 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1525 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1526 }
1527 mutex_unlock(&qca->hci_memdump_lock);
1528
1529 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1530 qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1531 cancel_work_sync(&qca->ctrl_memdump_evt);
1532 skb_queue_purge(&qca->rx_memdump_q);
1533 }
1534
1535 clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1536 }
1537
qca_cmd_timeout(struct hci_dev * hdev)1538 static void qca_cmd_timeout(struct hci_dev *hdev)
1539 {
1540 struct hci_uart *hu = hci_get_drvdata(hdev);
1541 struct qca_data *qca = hu->priv;
1542
1543 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1544 if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1545 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1546 qca_send_crashbuffer(hu);
1547 qca_wait_for_dump_collection(hdev);
1548 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1549 /* Let us wait here until memory dump collected or
1550 * memory dump timer expired.
1551 */
1552 bt_dev_info(hdev, "waiting for dump to complete");
1553 qca_wait_for_dump_collection(hdev);
1554 }
1555
1556 mutex_lock(&qca->hci_memdump_lock);
1557 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1558 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1559 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1560 /* Inject hw error event to reset the device
1561 * and driver.
1562 */
1563 hci_reset_dev(hu->hdev);
1564 }
1565 }
1566 mutex_unlock(&qca->hci_memdump_lock);
1567 }
1568
qca_wcn3990_init(struct hci_uart * hu)1569 static int qca_wcn3990_init(struct hci_uart *hu)
1570 {
1571 struct qca_serdev *qcadev;
1572 int ret;
1573
1574 /* Check for vregs status, may be hci down has turned
1575 * off the voltage regulator.
1576 */
1577 qcadev = serdev_device_get_drvdata(hu->serdev);
1578 if (!qcadev->bt_power->vregs_on) {
1579 serdev_device_close(hu->serdev);
1580 ret = qca_regulator_enable(qcadev);
1581 if (ret)
1582 return ret;
1583
1584 ret = serdev_device_open(hu->serdev);
1585 if (ret) {
1586 bt_dev_err(hu->hdev, "failed to open port");
1587 return ret;
1588 }
1589 }
1590
1591 /* Forcefully enable wcn3990 to enter in to boot mode. */
1592 host_set_baudrate(hu, 2400);
1593 ret = qca_send_power_pulse(hu, false);
1594 if (ret)
1595 return ret;
1596
1597 qca_set_speed(hu, QCA_INIT_SPEED);
1598 ret = qca_send_power_pulse(hu, true);
1599 if (ret)
1600 return ret;
1601
1602 /* Now the device is in ready state to communicate with host.
1603 * To sync host with device we need to reopen port.
1604 * Without this, we will have RTS and CTS synchronization
1605 * issues.
1606 */
1607 serdev_device_close(hu->serdev);
1608 ret = serdev_device_open(hu->serdev);
1609 if (ret) {
1610 bt_dev_err(hu->hdev, "failed to open port");
1611 return ret;
1612 }
1613
1614 hci_uart_set_flow_control(hu, false);
1615
1616 return 0;
1617 }
1618
qca_power_on(struct hci_dev * hdev)1619 static int qca_power_on(struct hci_dev *hdev)
1620 {
1621 struct hci_uart *hu = hci_get_drvdata(hdev);
1622 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1623 struct qca_serdev *qcadev;
1624 int ret = 0;
1625
1626 /* Non-serdev device usually is powered by external power
1627 * and don't need additional action in driver for power on
1628 */
1629 if (!hu->serdev)
1630 return 0;
1631
1632 if (qca_is_wcn399x(soc_type)) {
1633 ret = qca_wcn3990_init(hu);
1634 } else {
1635 qcadev = serdev_device_get_drvdata(hu->serdev);
1636 if (qcadev->bt_en) {
1637 gpiod_set_value_cansleep(qcadev->bt_en, 1);
1638 /* Controller needs time to bootup. */
1639 msleep(150);
1640 }
1641 }
1642
1643 return ret;
1644 }
1645
qca_setup(struct hci_uart * hu)1646 static int qca_setup(struct hci_uart *hu)
1647 {
1648 struct hci_dev *hdev = hu->hdev;
1649 struct qca_data *qca = hu->priv;
1650 unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1651 unsigned int retries = 0;
1652 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1653 const char *firmware_name = qca_get_firmware_name(hu);
1654 int ret;
1655 int soc_ver = 0;
1656
1657 ret = qca_check_speeds(hu);
1658 if (ret)
1659 return ret;
1660
1661 /* Patch downloading has to be done without IBS mode */
1662 clear_bit(QCA_IBS_ENABLED, &qca->flags);
1663
1664 /* Enable controller to do both LE scan and BR/EDR inquiry
1665 * simultaneously.
1666 */
1667 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1668
1669 bt_dev_info(hdev, "setting up %s",
1670 qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME/QCA6390");
1671
1672 qca->memdump_state = QCA_MEMDUMP_IDLE;
1673
1674 retry:
1675 ret = qca_power_on(hdev);
1676 if (ret)
1677 return ret;
1678
1679 clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1680
1681 if (qca_is_wcn399x(soc_type)) {
1682 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1683
1684 ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1685 if (ret)
1686 return ret;
1687 } else {
1688 qca_set_speed(hu, QCA_INIT_SPEED);
1689 }
1690
1691 /* Setup user speed if needed */
1692 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1693 if (speed) {
1694 ret = qca_set_speed(hu, QCA_OPER_SPEED);
1695 if (ret)
1696 return ret;
1697
1698 qca_baudrate = qca_get_baudrate_value(speed);
1699 }
1700
1701 if (!qca_is_wcn399x(soc_type)) {
1702 /* Get QCA version information */
1703 ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1704 if (ret)
1705 return ret;
1706 }
1707
1708 bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver);
1709 /* Setup patch / NVM configurations */
1710 ret = qca_uart_setup(hdev, qca_baudrate, soc_type, soc_ver,
1711 firmware_name);
1712 if (!ret) {
1713 set_bit(QCA_IBS_ENABLED, &qca->flags);
1714 qca_debugfs_init(hdev);
1715 hu->hdev->hw_error = qca_hw_error;
1716 hu->hdev->cmd_timeout = qca_cmd_timeout;
1717 } else if (ret == -ENOENT) {
1718 /* No patch/nvm-config found, run with original fw/config */
1719 ret = 0;
1720 } else if (ret == -EAGAIN) {
1721 /*
1722 * Userspace firmware loader will return -EAGAIN in case no
1723 * patch/nvm-config is found, so run with original fw/config.
1724 */
1725 ret = 0;
1726 } else {
1727 if (retries < MAX_INIT_RETRIES) {
1728 qca_power_shutdown(hu);
1729 if (hu->serdev) {
1730 serdev_device_close(hu->serdev);
1731 ret = serdev_device_open(hu->serdev);
1732 if (ret) {
1733 bt_dev_err(hdev, "failed to open port");
1734 return ret;
1735 }
1736 }
1737 retries++;
1738 goto retry;
1739 }
1740 }
1741
1742 /* Setup bdaddr */
1743 if (soc_type == QCA_ROME)
1744 hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1745 else
1746 hu->hdev->set_bdaddr = qca_set_bdaddr;
1747
1748 return ret;
1749 }
1750
1751 static const struct hci_uart_proto qca_proto = {
1752 .id = HCI_UART_QCA,
1753 .name = "QCA",
1754 .manufacturer = 29,
1755 .init_speed = 115200,
1756 .oper_speed = 3000000,
1757 .open = qca_open,
1758 .close = qca_close,
1759 .flush = qca_flush,
1760 .setup = qca_setup,
1761 .recv = qca_recv,
1762 .enqueue = qca_enqueue,
1763 .dequeue = qca_dequeue,
1764 };
1765
1766 static const struct qca_device_data qca_soc_data_wcn3990 = {
1767 .soc_type = QCA_WCN3990,
1768 .vregs = (struct qca_vreg []) {
1769 { "vddio", 15000 },
1770 { "vddxo", 80000 },
1771 { "vddrf", 300000 },
1772 { "vddch0", 450000 },
1773 },
1774 .num_vregs = 4,
1775 };
1776
1777 static const struct qca_device_data qca_soc_data_wcn3991 = {
1778 .soc_type = QCA_WCN3991,
1779 .vregs = (struct qca_vreg []) {
1780 { "vddio", 15000 },
1781 { "vddxo", 80000 },
1782 { "vddrf", 300000 },
1783 { "vddch0", 450000 },
1784 },
1785 .num_vregs = 4,
1786 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1787 };
1788
1789 static const struct qca_device_data qca_soc_data_wcn3998 = {
1790 .soc_type = QCA_WCN3998,
1791 .vregs = (struct qca_vreg []) {
1792 { "vddio", 10000 },
1793 { "vddxo", 80000 },
1794 { "vddrf", 300000 },
1795 { "vddch0", 450000 },
1796 },
1797 .num_vregs = 4,
1798 };
1799
1800 static const struct qca_device_data qca_soc_data_qca6390 = {
1801 .soc_type = QCA_QCA6390,
1802 .num_vregs = 0,
1803 };
1804
qca_power_shutdown(struct hci_uart * hu)1805 static void qca_power_shutdown(struct hci_uart *hu)
1806 {
1807 struct qca_serdev *qcadev;
1808 struct qca_data *qca = hu->priv;
1809 unsigned long flags;
1810 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1811
1812 /* From this point we go into power off state. But serial port is
1813 * still open, stop queueing the IBS data and flush all the buffered
1814 * data in skb's.
1815 */
1816 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1817 clear_bit(QCA_IBS_ENABLED, &qca->flags);
1818 qca_flush(hu);
1819 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1820
1821 /* Non-serdev device usually is powered by external power
1822 * and don't need additional action in driver for power down
1823 */
1824 if (!hu->serdev)
1825 return;
1826
1827 qcadev = serdev_device_get_drvdata(hu->serdev);
1828
1829 if (qca_is_wcn399x(soc_type)) {
1830 host_set_baudrate(hu, 2400);
1831 qca_send_power_pulse(hu, false);
1832 qca_regulator_disable(qcadev);
1833 } else if (qcadev->bt_en) {
1834 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1835 }
1836 }
1837
qca_power_off(struct hci_dev * hdev)1838 static int qca_power_off(struct hci_dev *hdev)
1839 {
1840 struct hci_uart *hu = hci_get_drvdata(hdev);
1841 struct qca_data *qca = hu->priv;
1842 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1843
1844 hu->hdev->hw_error = NULL;
1845 hu->hdev->cmd_timeout = NULL;
1846
1847 /* Stop sending shutdown command if soc crashes. */
1848 if (soc_type != QCA_ROME
1849 && qca->memdump_state == QCA_MEMDUMP_IDLE) {
1850 qca_send_pre_shutdown_cmd(hdev);
1851 usleep_range(8000, 10000);
1852 }
1853
1854 qca_power_shutdown(hu);
1855 return 0;
1856 }
1857
qca_regulator_enable(struct qca_serdev * qcadev)1858 static int qca_regulator_enable(struct qca_serdev *qcadev)
1859 {
1860 struct qca_power *power = qcadev->bt_power;
1861 int ret;
1862
1863 /* Already enabled */
1864 if (power->vregs_on)
1865 return 0;
1866
1867 BT_DBG("enabling %d regulators)", power->num_vregs);
1868
1869 ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1870 if (ret)
1871 return ret;
1872
1873 power->vregs_on = true;
1874
1875 ret = clk_prepare_enable(qcadev->susclk);
1876 if (ret)
1877 qca_regulator_disable(qcadev);
1878
1879 return ret;
1880 }
1881
qca_regulator_disable(struct qca_serdev * qcadev)1882 static void qca_regulator_disable(struct qca_serdev *qcadev)
1883 {
1884 struct qca_power *power;
1885
1886 if (!qcadev)
1887 return;
1888
1889 power = qcadev->bt_power;
1890
1891 /* Already disabled? */
1892 if (!power->vregs_on)
1893 return;
1894
1895 regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1896 power->vregs_on = false;
1897
1898 clk_disable_unprepare(qcadev->susclk);
1899 }
1900
qca_init_regulators(struct qca_power * qca,const struct qca_vreg * vregs,size_t num_vregs)1901 static int qca_init_regulators(struct qca_power *qca,
1902 const struct qca_vreg *vregs, size_t num_vregs)
1903 {
1904 struct regulator_bulk_data *bulk;
1905 int ret;
1906 int i;
1907
1908 bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
1909 if (!bulk)
1910 return -ENOMEM;
1911
1912 for (i = 0; i < num_vregs; i++)
1913 bulk[i].supply = vregs[i].name;
1914
1915 ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
1916 if (ret < 0)
1917 return ret;
1918
1919 for (i = 0; i < num_vregs; i++) {
1920 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
1921 if (ret)
1922 return ret;
1923 }
1924
1925 qca->vreg_bulk = bulk;
1926 qca->num_vregs = num_vregs;
1927
1928 return 0;
1929 }
1930
qca_serdev_probe(struct serdev_device * serdev)1931 static int qca_serdev_probe(struct serdev_device *serdev)
1932 {
1933 struct qca_serdev *qcadev;
1934 struct hci_dev *hdev;
1935 const struct qca_device_data *data;
1936 int err;
1937 bool power_ctrl_enabled = true;
1938
1939 qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
1940 if (!qcadev)
1941 return -ENOMEM;
1942
1943 qcadev->serdev_hu.serdev = serdev;
1944 data = device_get_match_data(&serdev->dev);
1945 serdev_device_set_drvdata(serdev, qcadev);
1946 device_property_read_string(&serdev->dev, "firmware-name",
1947 &qcadev->firmware_name);
1948 device_property_read_u32(&serdev->dev, "max-speed",
1949 &qcadev->oper_speed);
1950 if (!qcadev->oper_speed)
1951 BT_DBG("UART will pick default operating speed");
1952
1953 if (data && qca_is_wcn399x(data->soc_type)) {
1954 qcadev->btsoc_type = data->soc_type;
1955 qcadev->bt_power = devm_kzalloc(&serdev->dev,
1956 sizeof(struct qca_power),
1957 GFP_KERNEL);
1958 if (!qcadev->bt_power)
1959 return -ENOMEM;
1960
1961 qcadev->bt_power->dev = &serdev->dev;
1962 err = qca_init_regulators(qcadev->bt_power, data->vregs,
1963 data->num_vregs);
1964 if (err) {
1965 BT_ERR("Failed to init regulators:%d", err);
1966 return err;
1967 }
1968
1969 qcadev->bt_power->vregs_on = false;
1970
1971 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1972 if (IS_ERR(qcadev->susclk)) {
1973 dev_err(&serdev->dev, "failed to acquire clk\n");
1974 return PTR_ERR(qcadev->susclk);
1975 }
1976
1977 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1978 if (err) {
1979 BT_ERR("wcn3990 serdev registration failed");
1980 return err;
1981 }
1982 } else {
1983 if (data)
1984 qcadev->btsoc_type = data->soc_type;
1985 else
1986 qcadev->btsoc_type = QCA_ROME;
1987
1988 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
1989 GPIOD_OUT_LOW);
1990 if (IS_ERR_OR_NULL(qcadev->bt_en)) {
1991 dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
1992 power_ctrl_enabled = false;
1993 }
1994
1995 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1996 if (IS_ERR(qcadev->susclk)) {
1997 dev_warn(&serdev->dev, "failed to acquire clk\n");
1998 return PTR_ERR(qcadev->susclk);
1999 }
2000 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2001 if (err)
2002 return err;
2003
2004 err = clk_prepare_enable(qcadev->susclk);
2005 if (err)
2006 return err;
2007
2008 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2009 if (err) {
2010 BT_ERR("Rome serdev registration failed");
2011 clk_disable_unprepare(qcadev->susclk);
2012 return err;
2013 }
2014 }
2015
2016 hdev = qcadev->serdev_hu.hdev;
2017
2018 if (power_ctrl_enabled) {
2019 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2020 hdev->shutdown = qca_power_off;
2021 }
2022
2023 if (data) {
2024 /* Wideband speech support must be set per driver since it can't
2025 * be queried via hci. Same with the valid le states quirk.
2026 */
2027 if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2028 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2029 &hdev->quirks);
2030
2031 if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2032 set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2033 }
2034
2035 return 0;
2036 }
2037
qca_serdev_remove(struct serdev_device * serdev)2038 static void qca_serdev_remove(struct serdev_device *serdev)
2039 {
2040 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2041 struct qca_power *power = qcadev->bt_power;
2042
2043 if (qca_is_wcn399x(qcadev->btsoc_type) && power->vregs_on)
2044 qca_power_shutdown(&qcadev->serdev_hu);
2045 else if (qcadev->susclk)
2046 clk_disable_unprepare(qcadev->susclk);
2047
2048 hci_uart_unregister_device(&qcadev->serdev_hu);
2049 }
2050
qca_serdev_shutdown(struct device * dev)2051 static void qca_serdev_shutdown(struct device *dev)
2052 {
2053 int ret;
2054 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2055 struct serdev_device *serdev = to_serdev_device(dev);
2056 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2057 const u8 ibs_wake_cmd[] = { 0xFD };
2058 const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2059
2060 if (qcadev->btsoc_type == QCA_QCA6390) {
2061 serdev_device_write_flush(serdev);
2062 ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2063 sizeof(ibs_wake_cmd));
2064 if (ret < 0) {
2065 BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2066 return;
2067 }
2068 serdev_device_wait_until_sent(serdev, timeout);
2069 usleep_range(8000, 10000);
2070
2071 serdev_device_write_flush(serdev);
2072 ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2073 sizeof(edl_reset_soc_cmd));
2074 if (ret < 0) {
2075 BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2076 return;
2077 }
2078 serdev_device_wait_until_sent(serdev, timeout);
2079 usleep_range(8000, 10000);
2080 }
2081 }
2082
qca_suspend(struct device * dev)2083 static int __maybe_unused qca_suspend(struct device *dev)
2084 {
2085 struct serdev_device *serdev = to_serdev_device(dev);
2086 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2087 struct hci_uart *hu = &qcadev->serdev_hu;
2088 struct qca_data *qca = hu->priv;
2089 unsigned long flags;
2090 bool tx_pending = false;
2091 int ret = 0;
2092 u8 cmd;
2093
2094 set_bit(QCA_SUSPENDING, &qca->flags);
2095
2096 /* Device is downloading patch or doesn't support in-band sleep. */
2097 if (!test_bit(QCA_IBS_ENABLED, &qca->flags))
2098 return 0;
2099
2100 cancel_work_sync(&qca->ws_awake_device);
2101 cancel_work_sync(&qca->ws_awake_rx);
2102
2103 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2104 flags, SINGLE_DEPTH_NESTING);
2105
2106 switch (qca->tx_ibs_state) {
2107 case HCI_IBS_TX_WAKING:
2108 del_timer(&qca->wake_retrans_timer);
2109 fallthrough;
2110 case HCI_IBS_TX_AWAKE:
2111 del_timer(&qca->tx_idle_timer);
2112
2113 serdev_device_write_flush(hu->serdev);
2114 cmd = HCI_IBS_SLEEP_IND;
2115 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2116
2117 if (ret < 0) {
2118 BT_ERR("Failed to send SLEEP to device");
2119 break;
2120 }
2121
2122 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2123 qca->ibs_sent_slps++;
2124 tx_pending = true;
2125 break;
2126
2127 case HCI_IBS_TX_ASLEEP:
2128 break;
2129
2130 default:
2131 BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2132 ret = -EINVAL;
2133 break;
2134 }
2135
2136 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2137
2138 if (ret < 0)
2139 goto error;
2140
2141 if (tx_pending) {
2142 serdev_device_wait_until_sent(hu->serdev,
2143 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2144 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2145 }
2146
2147 /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2148 * to sleep, so that the packet does not wake the system later.
2149 */
2150 ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2151 qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2152 msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2153 if (ret == 0) {
2154 ret = -ETIMEDOUT;
2155 goto error;
2156 }
2157
2158 return 0;
2159
2160 error:
2161 clear_bit(QCA_SUSPENDING, &qca->flags);
2162
2163 return ret;
2164 }
2165
qca_resume(struct device * dev)2166 static int __maybe_unused qca_resume(struct device *dev)
2167 {
2168 struct serdev_device *serdev = to_serdev_device(dev);
2169 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2170 struct hci_uart *hu = &qcadev->serdev_hu;
2171 struct qca_data *qca = hu->priv;
2172
2173 clear_bit(QCA_SUSPENDING, &qca->flags);
2174
2175 return 0;
2176 }
2177
2178 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2179
2180 #ifdef CONFIG_OF
2181 static const struct of_device_id qca_bluetooth_of_match[] = {
2182 { .compatible = "qcom,qca6174-bt" },
2183 { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2184 { .compatible = "qcom,qca9377-bt" },
2185 { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2186 { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2187 { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2188 { /* sentinel */ }
2189 };
2190 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2191 #endif
2192
2193 #ifdef CONFIG_ACPI
2194 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2195 { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2196 { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2197 { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2198 { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2199 { },
2200 };
2201 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2202 #endif
2203
2204
2205 static struct serdev_device_driver qca_serdev_driver = {
2206 .probe = qca_serdev_probe,
2207 .remove = qca_serdev_remove,
2208 .driver = {
2209 .name = "hci_uart_qca",
2210 .of_match_table = of_match_ptr(qca_bluetooth_of_match),
2211 .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2212 .shutdown = qca_serdev_shutdown,
2213 .pm = &qca_pm_ops,
2214 },
2215 };
2216
qca_init(void)2217 int __init qca_init(void)
2218 {
2219 serdev_device_driver_register(&qca_serdev_driver);
2220
2221 return hci_uart_register_proto(&qca_proto);
2222 }
2223
qca_deinit(void)2224 int __exit qca_deinit(void)
2225 {
2226 serdev_device_driver_unregister(&qca_serdev_driver);
2227
2228 return hci_uart_unregister_proto(&qca_proto);
2229 }
2230