• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3  
4  #include <linux/kernel.h>
5  #include <linux/module.h>
6  #include <crypto/algapi.h>
7  #include <crypto/internal/skcipher.h>
8  #include <crypto/internal/des.h>
9  #include <crypto/xts.h>
10  #include <crypto/sm4.h>
11  #include <crypto/scatterwalk.h>
12  
13  #include "cc_driver.h"
14  #include "cc_lli_defs.h"
15  #include "cc_buffer_mgr.h"
16  #include "cc_cipher.h"
17  #include "cc_request_mgr.h"
18  
19  #define MAX_SKCIPHER_SEQ_LEN 6
20  
21  #define template_skcipher	template_u.skcipher
22  
23  struct cc_user_key_info {
24  	u8 *key;
25  	dma_addr_t key_dma_addr;
26  };
27  
28  struct cc_hw_key_info {
29  	enum cc_hw_crypto_key key1_slot;
30  	enum cc_hw_crypto_key key2_slot;
31  };
32  
33  struct cc_cpp_key_info {
34  	u8 slot;
35  	enum cc_cpp_alg alg;
36  };
37  
38  enum cc_key_type {
39  	CC_UNPROTECTED_KEY,		/* User key */
40  	CC_HW_PROTECTED_KEY,		/* HW (FDE) key */
41  	CC_POLICY_PROTECTED_KEY,	/* CPP key */
42  	CC_INVALID_PROTECTED_KEY	/* Invalid key */
43  };
44  
45  struct cc_cipher_ctx {
46  	struct cc_drvdata *drvdata;
47  	int keylen;
48  	int cipher_mode;
49  	int flow_mode;
50  	unsigned int flags;
51  	enum cc_key_type key_type;
52  	struct cc_user_key_info user;
53  	union {
54  		struct cc_hw_key_info hw;
55  		struct cc_cpp_key_info cpp;
56  	};
57  	struct crypto_shash *shash_tfm;
58  	struct crypto_skcipher *fallback_tfm;
59  	bool fallback_on;
60  };
61  
62  static void cc_cipher_complete(struct device *dev, void *cc_req, int err);
63  
cc_key_type(struct crypto_tfm * tfm)64  static inline enum cc_key_type cc_key_type(struct crypto_tfm *tfm)
65  {
66  	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
67  
68  	return ctx_p->key_type;
69  }
70  
validate_keys_sizes(struct cc_cipher_ctx * ctx_p,u32 size)71  static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size)
72  {
73  	switch (ctx_p->flow_mode) {
74  	case S_DIN_to_AES:
75  		switch (size) {
76  		case CC_AES_128_BIT_KEY_SIZE:
77  		case CC_AES_192_BIT_KEY_SIZE:
78  			if (ctx_p->cipher_mode != DRV_CIPHER_XTS)
79  				return 0;
80  			break;
81  		case CC_AES_256_BIT_KEY_SIZE:
82  			return 0;
83  		case (CC_AES_192_BIT_KEY_SIZE * 2):
84  		case (CC_AES_256_BIT_KEY_SIZE * 2):
85  			if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
86  			    ctx_p->cipher_mode == DRV_CIPHER_ESSIV)
87  				return 0;
88  			break;
89  		default:
90  			break;
91  		}
92  		break;
93  	case S_DIN_to_DES:
94  		if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)
95  			return 0;
96  		break;
97  	case S_DIN_to_SM4:
98  		if (size == SM4_KEY_SIZE)
99  			return 0;
100  	default:
101  		break;
102  	}
103  	return -EINVAL;
104  }
105  
validate_data_size(struct cc_cipher_ctx * ctx_p,unsigned int size)106  static int validate_data_size(struct cc_cipher_ctx *ctx_p,
107  			      unsigned int size)
108  {
109  	switch (ctx_p->flow_mode) {
110  	case S_DIN_to_AES:
111  		switch (ctx_p->cipher_mode) {
112  		case DRV_CIPHER_XTS:
113  		case DRV_CIPHER_CBC_CTS:
114  			if (size >= AES_BLOCK_SIZE)
115  				return 0;
116  			break;
117  		case DRV_CIPHER_OFB:
118  		case DRV_CIPHER_CTR:
119  				return 0;
120  		case DRV_CIPHER_ECB:
121  		case DRV_CIPHER_CBC:
122  		case DRV_CIPHER_ESSIV:
123  			if (IS_ALIGNED(size, AES_BLOCK_SIZE))
124  				return 0;
125  			break;
126  		default:
127  			break;
128  		}
129  		break;
130  	case S_DIN_to_DES:
131  		if (IS_ALIGNED(size, DES_BLOCK_SIZE))
132  			return 0;
133  		break;
134  	case S_DIN_to_SM4:
135  		switch (ctx_p->cipher_mode) {
136  		case DRV_CIPHER_CTR:
137  			return 0;
138  		case DRV_CIPHER_ECB:
139  		case DRV_CIPHER_CBC:
140  			if (IS_ALIGNED(size, SM4_BLOCK_SIZE))
141  				return 0;
142  		default:
143  			break;
144  		}
145  	default:
146  		break;
147  	}
148  	return -EINVAL;
149  }
150  
cc_cipher_init(struct crypto_tfm * tfm)151  static int cc_cipher_init(struct crypto_tfm *tfm)
152  {
153  	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
154  	struct cc_crypto_alg *cc_alg =
155  			container_of(tfm->__crt_alg, struct cc_crypto_alg,
156  				     skcipher_alg.base);
157  	struct device *dev = drvdata_to_dev(cc_alg->drvdata);
158  	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
159  	unsigned int fallback_req_size = 0;
160  
161  	dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p,
162  		crypto_tfm_alg_name(tfm));
163  
164  	ctx_p->cipher_mode = cc_alg->cipher_mode;
165  	ctx_p->flow_mode = cc_alg->flow_mode;
166  	ctx_p->drvdata = cc_alg->drvdata;
167  
168  	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
169  		const char *name = crypto_tfm_alg_name(tfm);
170  
171  		/* Alloc hash tfm for essiv */
172  		ctx_p->shash_tfm = crypto_alloc_shash("sha256", 0, 0);
173  		if (IS_ERR(ctx_p->shash_tfm)) {
174  			dev_err(dev, "Error allocating hash tfm for ESSIV.\n");
175  			return PTR_ERR(ctx_p->shash_tfm);
176  		}
177  		max_key_buf_size <<= 1;
178  
179  		/* Alloc fallabck tfm or essiv when key size != 256 bit */
180  		ctx_p->fallback_tfm =
181  			crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
182  
183  		if (IS_ERR(ctx_p->fallback_tfm)) {
184  			/* Note we're still allowing registration with no fallback since it's
185  			 * better to have most modes supported than none at all.
186  			 */
187  			dev_warn(dev, "Error allocating fallback algo %s. Some modes may be available.\n",
188  			       name);
189  			ctx_p->fallback_tfm = NULL;
190  		} else {
191  			fallback_req_size = crypto_skcipher_reqsize(ctx_p->fallback_tfm);
192  		}
193  	}
194  
195  	crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
196  				    sizeof(struct cipher_req_ctx) + fallback_req_size);
197  
198  	/* Allocate key buffer, cache line aligned */
199  	ctx_p->user.key = kzalloc(max_key_buf_size, GFP_KERNEL);
200  	if (!ctx_p->user.key)
201  		goto free_fallback;
202  
203  	dev_dbg(dev, "Allocated key buffer in context. key=@%p\n",
204  		ctx_p->user.key);
205  
206  	/* Map key buffer */
207  	ctx_p->user.key_dma_addr = dma_map_single(dev, ctx_p->user.key,
208  						  max_key_buf_size,
209  						  DMA_TO_DEVICE);
210  	if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) {
211  		dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n",
212  			max_key_buf_size, ctx_p->user.key);
213  		goto free_key;
214  	}
215  	dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n",
216  		max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr);
217  
218  	return 0;
219  
220  free_key:
221  	kfree(ctx_p->user.key);
222  free_fallback:
223  	crypto_free_skcipher(ctx_p->fallback_tfm);
224  	crypto_free_shash(ctx_p->shash_tfm);
225  
226  	return -ENOMEM;
227  }
228  
cc_cipher_exit(struct crypto_tfm * tfm)229  static void cc_cipher_exit(struct crypto_tfm *tfm)
230  {
231  	struct crypto_alg *alg = tfm->__crt_alg;
232  	struct cc_crypto_alg *cc_alg =
233  			container_of(alg, struct cc_crypto_alg,
234  				     skcipher_alg.base);
235  	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
236  	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
237  	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
238  
239  	dev_dbg(dev, "Clearing context @%p for %s\n",
240  		crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm));
241  
242  	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
243  		/* Free hash tfm for essiv */
244  		crypto_free_shash(ctx_p->shash_tfm);
245  		ctx_p->shash_tfm = NULL;
246  		crypto_free_skcipher(ctx_p->fallback_tfm);
247  		ctx_p->fallback_tfm = NULL;
248  	}
249  
250  	/* Unmap key buffer */
251  	dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size,
252  			 DMA_TO_DEVICE);
253  	dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n",
254  		&ctx_p->user.key_dma_addr);
255  
256  	/* Free key buffer in context */
257  	kfree_sensitive(ctx_p->user.key);
258  	dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key);
259  }
260  
261  struct tdes_keys {
262  	u8	key1[DES_KEY_SIZE];
263  	u8	key2[DES_KEY_SIZE];
264  	u8	key3[DES_KEY_SIZE];
265  };
266  
cc_slot_to_hw_key(u8 slot_num)267  static enum cc_hw_crypto_key cc_slot_to_hw_key(u8 slot_num)
268  {
269  	switch (slot_num) {
270  	case 0:
271  		return KFDE0_KEY;
272  	case 1:
273  		return KFDE1_KEY;
274  	case 2:
275  		return KFDE2_KEY;
276  	case 3:
277  		return KFDE3_KEY;
278  	}
279  	return END_OF_KEYS;
280  }
281  
cc_slot_to_cpp_key(u8 slot_num)282  static u8 cc_slot_to_cpp_key(u8 slot_num)
283  {
284  	return (slot_num - CC_FIRST_CPP_KEY_SLOT);
285  }
286  
cc_slot_to_key_type(u8 slot_num)287  static inline enum cc_key_type cc_slot_to_key_type(u8 slot_num)
288  {
289  	if (slot_num >= CC_FIRST_HW_KEY_SLOT && slot_num <= CC_LAST_HW_KEY_SLOT)
290  		return CC_HW_PROTECTED_KEY;
291  	else if (slot_num >=  CC_FIRST_CPP_KEY_SLOT &&
292  		 slot_num <=  CC_LAST_CPP_KEY_SLOT)
293  		return CC_POLICY_PROTECTED_KEY;
294  	else
295  		return CC_INVALID_PROTECTED_KEY;
296  }
297  
cc_cipher_sethkey(struct crypto_skcipher * sktfm,const u8 * key,unsigned int keylen)298  static int cc_cipher_sethkey(struct crypto_skcipher *sktfm, const u8 *key,
299  			     unsigned int keylen)
300  {
301  	struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
302  	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
303  	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
304  	struct cc_hkey_info hki;
305  
306  	dev_dbg(dev, "Setting HW key in context @%p for %s. keylen=%u\n",
307  		ctx_p, crypto_tfm_alg_name(tfm), keylen);
308  	dump_byte_array("key", key, keylen);
309  
310  	/* STAT_PHASE_0: Init and sanity checks */
311  
312  	/* This check the size of the protected key token */
313  	if (keylen != sizeof(hki)) {
314  		dev_err(dev, "Unsupported protected key size %d.\n", keylen);
315  		return -EINVAL;
316  	}
317  
318  	memcpy(&hki, key, keylen);
319  
320  	/* The real key len for crypto op is the size of the HW key
321  	 * referenced by the HW key slot, not the hardware key token
322  	 */
323  	keylen = hki.keylen;
324  
325  	if (validate_keys_sizes(ctx_p, keylen)) {
326  		dev_dbg(dev, "Unsupported key size %d.\n", keylen);
327  		return -EINVAL;
328  	}
329  
330  	ctx_p->keylen = keylen;
331  	ctx_p->fallback_on = false;
332  
333  	switch (cc_slot_to_key_type(hki.hw_key1)) {
334  	case CC_HW_PROTECTED_KEY:
335  		if (ctx_p->flow_mode == S_DIN_to_SM4) {
336  			dev_err(dev, "Only AES HW protected keys are supported\n");
337  			return -EINVAL;
338  		}
339  
340  		ctx_p->hw.key1_slot = cc_slot_to_hw_key(hki.hw_key1);
341  		if (ctx_p->hw.key1_slot == END_OF_KEYS) {
342  			dev_err(dev, "Unsupported hw key1 number (%d)\n",
343  				hki.hw_key1);
344  			return -EINVAL;
345  		}
346  
347  		if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
348  		    ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
349  			if (hki.hw_key1 == hki.hw_key2) {
350  				dev_err(dev, "Illegal hw key numbers (%d,%d)\n",
351  					hki.hw_key1, hki.hw_key2);
352  				return -EINVAL;
353  			}
354  
355  			ctx_p->hw.key2_slot = cc_slot_to_hw_key(hki.hw_key2);
356  			if (ctx_p->hw.key2_slot == END_OF_KEYS) {
357  				dev_err(dev, "Unsupported hw key2 number (%d)\n",
358  					hki.hw_key2);
359  				return -EINVAL;
360  			}
361  		}
362  
363  		ctx_p->key_type = CC_HW_PROTECTED_KEY;
364  		dev_dbg(dev, "HW protected key  %d/%d set\n.",
365  			ctx_p->hw.key1_slot, ctx_p->hw.key2_slot);
366  		break;
367  
368  	case CC_POLICY_PROTECTED_KEY:
369  		if (ctx_p->drvdata->hw_rev < CC_HW_REV_713) {
370  			dev_err(dev, "CPP keys not supported in this hardware revision.\n");
371  			return -EINVAL;
372  		}
373  
374  		if (ctx_p->cipher_mode != DRV_CIPHER_CBC &&
375  		    ctx_p->cipher_mode != DRV_CIPHER_CTR) {
376  			dev_err(dev, "CPP keys only supported in CBC or CTR modes.\n");
377  			return -EINVAL;
378  		}
379  
380  		ctx_p->cpp.slot = cc_slot_to_cpp_key(hki.hw_key1);
381  		if (ctx_p->flow_mode == S_DIN_to_AES)
382  			ctx_p->cpp.alg = CC_CPP_AES;
383  		else /* Must be SM4 since due to sethkey registration */
384  			ctx_p->cpp.alg = CC_CPP_SM4;
385  		ctx_p->key_type = CC_POLICY_PROTECTED_KEY;
386  		dev_dbg(dev, "policy protected key alg: %d slot: %d.\n",
387  			ctx_p->cpp.alg, ctx_p->cpp.slot);
388  		break;
389  
390  	default:
391  		dev_err(dev, "Unsupported protected key (%d)\n", hki.hw_key1);
392  		return -EINVAL;
393  	}
394  
395  	return 0;
396  }
397  
cc_cipher_setkey(struct crypto_skcipher * sktfm,const u8 * key,unsigned int keylen)398  static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key,
399  			    unsigned int keylen)
400  {
401  	struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
402  	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
403  	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
404  	struct cc_crypto_alg *cc_alg =
405  			container_of(tfm->__crt_alg, struct cc_crypto_alg,
406  				     skcipher_alg.base);
407  	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
408  
409  	dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n",
410  		ctx_p, crypto_tfm_alg_name(tfm), keylen);
411  	dump_byte_array("key", key, keylen);
412  
413  	/* STAT_PHASE_0: Init and sanity checks */
414  
415  	if (validate_keys_sizes(ctx_p, keylen)) {
416  		dev_dbg(dev, "Invalid key size %d.\n", keylen);
417  		return -EINVAL;
418  	}
419  
420  	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
421  
422  		/* We only support 256 bit ESSIV-CBC-AES keys */
423  		if (keylen != AES_KEYSIZE_256)  {
424  			unsigned int flags = crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_MASK;
425  
426  			if (likely(ctx_p->fallback_tfm)) {
427  				ctx_p->fallback_on = true;
428  				crypto_skcipher_clear_flags(ctx_p->fallback_tfm,
429  							    CRYPTO_TFM_REQ_MASK);
430  				crypto_skcipher_clear_flags(ctx_p->fallback_tfm, flags);
431  				return crypto_skcipher_setkey(ctx_p->fallback_tfm, key, keylen);
432  			}
433  
434  			dev_dbg(dev, "Unsupported key size %d and no fallback.\n", keylen);
435  			return -EINVAL;
436  		}
437  
438  		/* Internal ESSIV key buffer is double sized */
439  		max_key_buf_size <<= 1;
440  	}
441  
442  	ctx_p->fallback_on = false;
443  	ctx_p->key_type = CC_UNPROTECTED_KEY;
444  
445  	/*
446  	 * Verify DES weak keys
447  	 * Note that we're dropping the expanded key since the
448  	 * HW does the expansion on its own.
449  	 */
450  	if (ctx_p->flow_mode == S_DIN_to_DES) {
451  		if ((keylen == DES3_EDE_KEY_SIZE &&
452  		     verify_skcipher_des3_key(sktfm, key)) ||
453  		    verify_skcipher_des_key(sktfm, key)) {
454  			dev_dbg(dev, "weak DES key");
455  			return -EINVAL;
456  		}
457  	}
458  
459  	if (ctx_p->cipher_mode == DRV_CIPHER_XTS &&
460  	    xts_check_key(tfm, key, keylen)) {
461  		dev_dbg(dev, "weak XTS key");
462  		return -EINVAL;
463  	}
464  
465  	/* STAT_PHASE_1: Copy key to ctx */
466  	dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr,
467  				max_key_buf_size, DMA_TO_DEVICE);
468  
469  	memcpy(ctx_p->user.key, key, keylen);
470  
471  	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
472  		/* sha256 for key2 - use sw implementation */
473  		int err;
474  
475  		err = crypto_shash_tfm_digest(ctx_p->shash_tfm,
476  					      ctx_p->user.key, keylen,
477  					      ctx_p->user.key + keylen);
478  		if (err) {
479  			dev_err(dev, "Failed to hash ESSIV key.\n");
480  			return err;
481  		}
482  
483  		keylen <<= 1;
484  	}
485  	dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr,
486  				   max_key_buf_size, DMA_TO_DEVICE);
487  	ctx_p->keylen = keylen;
488  
489  	dev_dbg(dev, "return safely");
490  	return 0;
491  }
492  
cc_out_setup_mode(struct cc_cipher_ctx * ctx_p)493  static int cc_out_setup_mode(struct cc_cipher_ctx *ctx_p)
494  {
495  	switch (ctx_p->flow_mode) {
496  	case S_DIN_to_AES:
497  		return S_AES_to_DOUT;
498  	case S_DIN_to_DES:
499  		return S_DES_to_DOUT;
500  	case S_DIN_to_SM4:
501  		return S_SM4_to_DOUT;
502  	default:
503  		return ctx_p->flow_mode;
504  	}
505  }
506  
cc_setup_readiv_desc(struct crypto_tfm * tfm,struct cipher_req_ctx * req_ctx,unsigned int ivsize,struct cc_hw_desc desc[],unsigned int * seq_size)507  static void cc_setup_readiv_desc(struct crypto_tfm *tfm,
508  				 struct cipher_req_ctx *req_ctx,
509  				 unsigned int ivsize, struct cc_hw_desc desc[],
510  				 unsigned int *seq_size)
511  {
512  	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
513  	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
514  	int cipher_mode = ctx_p->cipher_mode;
515  	int flow_mode = cc_out_setup_mode(ctx_p);
516  	int direction = req_ctx->gen_ctx.op_type;
517  	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
518  
519  	if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY)
520  		return;
521  
522  	switch (cipher_mode) {
523  	case DRV_CIPHER_ECB:
524  		break;
525  	case DRV_CIPHER_CBC:
526  	case DRV_CIPHER_CBC_CTS:
527  	case DRV_CIPHER_CTR:
528  	case DRV_CIPHER_OFB:
529  		/* Read next IV */
530  		hw_desc_init(&desc[*seq_size]);
531  		set_dout_dlli(&desc[*seq_size], iv_dma_addr, ivsize, NS_BIT, 1);
532  		set_cipher_config0(&desc[*seq_size], direction);
533  		set_flow_mode(&desc[*seq_size], flow_mode);
534  		set_cipher_mode(&desc[*seq_size], cipher_mode);
535  		if (cipher_mode == DRV_CIPHER_CTR ||
536  		    cipher_mode == DRV_CIPHER_OFB) {
537  			set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
538  		} else {
539  			set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE0);
540  		}
541  		set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
542  		(*seq_size)++;
543  		break;
544  	case DRV_CIPHER_XTS:
545  	case DRV_CIPHER_ESSIV:
546  		/*  IV */
547  		hw_desc_init(&desc[*seq_size]);
548  		set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
549  		set_cipher_mode(&desc[*seq_size], cipher_mode);
550  		set_cipher_config0(&desc[*seq_size], direction);
551  		set_flow_mode(&desc[*seq_size], flow_mode);
552  		set_dout_dlli(&desc[*seq_size], iv_dma_addr, CC_AES_BLOCK_SIZE,
553  			     NS_BIT, 1);
554  		set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
555  		(*seq_size)++;
556  		break;
557  	default:
558  		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
559  	}
560  }
561  
562  
cc_setup_state_desc(struct crypto_tfm * tfm,struct cipher_req_ctx * req_ctx,unsigned int ivsize,unsigned int nbytes,struct cc_hw_desc desc[],unsigned int * seq_size)563  static void cc_setup_state_desc(struct crypto_tfm *tfm,
564  				 struct cipher_req_ctx *req_ctx,
565  				 unsigned int ivsize, unsigned int nbytes,
566  				 struct cc_hw_desc desc[],
567  				 unsigned int *seq_size)
568  {
569  	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
570  	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
571  	int cipher_mode = ctx_p->cipher_mode;
572  	int flow_mode = ctx_p->flow_mode;
573  	int direction = req_ctx->gen_ctx.op_type;
574  	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
575  
576  	switch (cipher_mode) {
577  	case DRV_CIPHER_ECB:
578  		break;
579  	case DRV_CIPHER_CBC:
580  	case DRV_CIPHER_CBC_CTS:
581  	case DRV_CIPHER_CTR:
582  	case DRV_CIPHER_OFB:
583  		/* Load IV */
584  		hw_desc_init(&desc[*seq_size]);
585  		set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize,
586  			     NS_BIT);
587  		set_cipher_config0(&desc[*seq_size], direction);
588  		set_flow_mode(&desc[*seq_size], flow_mode);
589  		set_cipher_mode(&desc[*seq_size], cipher_mode);
590  		if (cipher_mode == DRV_CIPHER_CTR ||
591  		    cipher_mode == DRV_CIPHER_OFB) {
592  			set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
593  		} else {
594  			set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0);
595  		}
596  		(*seq_size)++;
597  		break;
598  	case DRV_CIPHER_XTS:
599  	case DRV_CIPHER_ESSIV:
600  		break;
601  	default:
602  		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
603  	}
604  }
605  
606  
cc_setup_xex_state_desc(struct crypto_tfm * tfm,struct cipher_req_ctx * req_ctx,unsigned int ivsize,unsigned int nbytes,struct cc_hw_desc desc[],unsigned int * seq_size)607  static void cc_setup_xex_state_desc(struct crypto_tfm *tfm,
608  				 struct cipher_req_ctx *req_ctx,
609  				 unsigned int ivsize, unsigned int nbytes,
610  				 struct cc_hw_desc desc[],
611  				 unsigned int *seq_size)
612  {
613  	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
614  	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
615  	int cipher_mode = ctx_p->cipher_mode;
616  	int flow_mode = ctx_p->flow_mode;
617  	int direction = req_ctx->gen_ctx.op_type;
618  	dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
619  	unsigned int key_len = (ctx_p->keylen / 2);
620  	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
621  	unsigned int key_offset = key_len;
622  
623  	switch (cipher_mode) {
624  	case DRV_CIPHER_ECB:
625  		break;
626  	case DRV_CIPHER_CBC:
627  	case DRV_CIPHER_CBC_CTS:
628  	case DRV_CIPHER_CTR:
629  	case DRV_CIPHER_OFB:
630  		break;
631  	case DRV_CIPHER_XTS:
632  	case DRV_CIPHER_ESSIV:
633  
634  		if (cipher_mode == DRV_CIPHER_ESSIV)
635  			key_len = SHA256_DIGEST_SIZE;
636  
637  		/* load XEX key */
638  		hw_desc_init(&desc[*seq_size]);
639  		set_cipher_mode(&desc[*seq_size], cipher_mode);
640  		set_cipher_config0(&desc[*seq_size], direction);
641  		if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
642  			set_hw_crypto_key(&desc[*seq_size],
643  					  ctx_p->hw.key2_slot);
644  		} else {
645  			set_din_type(&desc[*seq_size], DMA_DLLI,
646  				     (key_dma_addr + key_offset),
647  				     key_len, NS_BIT);
648  		}
649  		set_xex_data_unit_size(&desc[*seq_size], nbytes);
650  		set_flow_mode(&desc[*seq_size], S_DIN_to_AES2);
651  		set_key_size_aes(&desc[*seq_size], key_len);
652  		set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY);
653  		(*seq_size)++;
654  
655  		/* Load IV */
656  		hw_desc_init(&desc[*seq_size]);
657  		set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
658  		set_cipher_mode(&desc[*seq_size], cipher_mode);
659  		set_cipher_config0(&desc[*seq_size], direction);
660  		set_key_size_aes(&desc[*seq_size], key_len);
661  		set_flow_mode(&desc[*seq_size], flow_mode);
662  		set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr,
663  			     CC_AES_BLOCK_SIZE, NS_BIT);
664  		(*seq_size)++;
665  		break;
666  	default:
667  		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
668  	}
669  }
670  
cc_out_flow_mode(struct cc_cipher_ctx * ctx_p)671  static int cc_out_flow_mode(struct cc_cipher_ctx *ctx_p)
672  {
673  	switch (ctx_p->flow_mode) {
674  	case S_DIN_to_AES:
675  		return DIN_AES_DOUT;
676  	case S_DIN_to_DES:
677  		return DIN_DES_DOUT;
678  	case S_DIN_to_SM4:
679  		return DIN_SM4_DOUT;
680  	default:
681  		return ctx_p->flow_mode;
682  	}
683  }
684  
cc_setup_key_desc(struct crypto_tfm * tfm,struct cipher_req_ctx * req_ctx,unsigned int nbytes,struct cc_hw_desc desc[],unsigned int * seq_size)685  static void cc_setup_key_desc(struct crypto_tfm *tfm,
686  			      struct cipher_req_ctx *req_ctx,
687  			      unsigned int nbytes, struct cc_hw_desc desc[],
688  			      unsigned int *seq_size)
689  {
690  	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
691  	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
692  	int cipher_mode = ctx_p->cipher_mode;
693  	int flow_mode = ctx_p->flow_mode;
694  	int direction = req_ctx->gen_ctx.op_type;
695  	dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
696  	unsigned int key_len = ctx_p->keylen;
697  	unsigned int din_size;
698  
699  	switch (cipher_mode) {
700  	case DRV_CIPHER_CBC:
701  	case DRV_CIPHER_CBC_CTS:
702  	case DRV_CIPHER_CTR:
703  	case DRV_CIPHER_OFB:
704  	case DRV_CIPHER_ECB:
705  		/* Load key */
706  		hw_desc_init(&desc[*seq_size]);
707  		set_cipher_mode(&desc[*seq_size], cipher_mode);
708  		set_cipher_config0(&desc[*seq_size], direction);
709  
710  		if (cc_key_type(tfm) == CC_POLICY_PROTECTED_KEY) {
711  			/* We use the AES key size coding for all CPP algs */
712  			set_key_size_aes(&desc[*seq_size], key_len);
713  			set_cpp_crypto_key(&desc[*seq_size], ctx_p->cpp.slot);
714  			flow_mode = cc_out_flow_mode(ctx_p);
715  		} else {
716  			if (flow_mode == S_DIN_to_AES) {
717  				if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
718  					set_hw_crypto_key(&desc[*seq_size],
719  							  ctx_p->hw.key1_slot);
720  				} else {
721  					/* CC_POLICY_UNPROTECTED_KEY
722  					 * Invalid keys are filtered out in
723  					 * sethkey()
724  					 */
725  					din_size = (key_len == 24) ?
726  						AES_MAX_KEY_SIZE : key_len;
727  
728  					set_din_type(&desc[*seq_size], DMA_DLLI,
729  						     key_dma_addr, din_size,
730  						     NS_BIT);
731  				}
732  				set_key_size_aes(&desc[*seq_size], key_len);
733  			} else {
734  				/*des*/
735  				set_din_type(&desc[*seq_size], DMA_DLLI,
736  					     key_dma_addr, key_len, NS_BIT);
737  				set_key_size_des(&desc[*seq_size], key_len);
738  			}
739  			set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
740  		}
741  		set_flow_mode(&desc[*seq_size], flow_mode);
742  		(*seq_size)++;
743  		break;
744  	case DRV_CIPHER_XTS:
745  	case DRV_CIPHER_ESSIV:
746  		/* Load AES key */
747  		hw_desc_init(&desc[*seq_size]);
748  		set_cipher_mode(&desc[*seq_size], cipher_mode);
749  		set_cipher_config0(&desc[*seq_size], direction);
750  		if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
751  			set_hw_crypto_key(&desc[*seq_size],
752  					  ctx_p->hw.key1_slot);
753  		} else {
754  			set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
755  				     (key_len / 2), NS_BIT);
756  		}
757  		set_key_size_aes(&desc[*seq_size], (key_len / 2));
758  		set_flow_mode(&desc[*seq_size], flow_mode);
759  		set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
760  		(*seq_size)++;
761  		break;
762  	default:
763  		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
764  	}
765  }
766  
cc_setup_mlli_desc(struct crypto_tfm * tfm,struct cipher_req_ctx * req_ctx,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes,void * areq,struct cc_hw_desc desc[],unsigned int * seq_size)767  static void cc_setup_mlli_desc(struct crypto_tfm *tfm,
768  			       struct cipher_req_ctx *req_ctx,
769  			       struct scatterlist *dst, struct scatterlist *src,
770  			       unsigned int nbytes, void *areq,
771  			       struct cc_hw_desc desc[], unsigned int *seq_size)
772  {
773  	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
774  	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
775  
776  	if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
777  		/* bypass */
778  		dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n",
779  			&req_ctx->mlli_params.mlli_dma_addr,
780  			req_ctx->mlli_params.mlli_len,
781  			ctx_p->drvdata->mlli_sram_addr);
782  		hw_desc_init(&desc[*seq_size]);
783  		set_din_type(&desc[*seq_size], DMA_DLLI,
784  			     req_ctx->mlli_params.mlli_dma_addr,
785  			     req_ctx->mlli_params.mlli_len, NS_BIT);
786  		set_dout_sram(&desc[*seq_size],
787  			      ctx_p->drvdata->mlli_sram_addr,
788  			      req_ctx->mlli_params.mlli_len);
789  		set_flow_mode(&desc[*seq_size], BYPASS);
790  		(*seq_size)++;
791  	}
792  }
793  
cc_setup_flow_desc(struct crypto_tfm * tfm,struct cipher_req_ctx * req_ctx,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes,struct cc_hw_desc desc[],unsigned int * seq_size)794  static void cc_setup_flow_desc(struct crypto_tfm *tfm,
795  			       struct cipher_req_ctx *req_ctx,
796  			       struct scatterlist *dst, struct scatterlist *src,
797  			       unsigned int nbytes, struct cc_hw_desc desc[],
798  			       unsigned int *seq_size)
799  {
800  	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
801  	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
802  	unsigned int flow_mode = cc_out_flow_mode(ctx_p);
803  	bool last_desc = (ctx_p->key_type == CC_POLICY_PROTECTED_KEY ||
804  			  ctx_p->cipher_mode == DRV_CIPHER_ECB);
805  
806  	/* Process */
807  	if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) {
808  		dev_dbg(dev, " data params addr %pad length 0x%X\n",
809  			&sg_dma_address(src), nbytes);
810  		dev_dbg(dev, " data params addr %pad length 0x%X\n",
811  			&sg_dma_address(dst), nbytes);
812  		hw_desc_init(&desc[*seq_size]);
813  		set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src),
814  			     nbytes, NS_BIT);
815  		set_dout_dlli(&desc[*seq_size], sg_dma_address(dst),
816  			      nbytes, NS_BIT, (!last_desc ? 0 : 1));
817  		if (last_desc)
818  			set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
819  
820  		set_flow_mode(&desc[*seq_size], flow_mode);
821  		(*seq_size)++;
822  	} else {
823  		hw_desc_init(&desc[*seq_size]);
824  		set_din_type(&desc[*seq_size], DMA_MLLI,
825  			     ctx_p->drvdata->mlli_sram_addr,
826  			     req_ctx->in_mlli_nents, NS_BIT);
827  		if (req_ctx->out_nents == 0) {
828  			dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
829  				ctx_p->drvdata->mlli_sram_addr,
830  				ctx_p->drvdata->mlli_sram_addr);
831  			set_dout_mlli(&desc[*seq_size],
832  				      ctx_p->drvdata->mlli_sram_addr,
833  				      req_ctx->in_mlli_nents, NS_BIT,
834  				      (!last_desc ? 0 : 1));
835  		} else {
836  			dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
837  				ctx_p->drvdata->mlli_sram_addr,
838  				ctx_p->drvdata->mlli_sram_addr +
839  				(u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents);
840  			set_dout_mlli(&desc[*seq_size],
841  				      (ctx_p->drvdata->mlli_sram_addr +
842  				       (LLI_ENTRY_BYTE_SIZE *
843  					req_ctx->in_mlli_nents)),
844  				      req_ctx->out_mlli_nents, NS_BIT,
845  				      (!last_desc ? 0 : 1));
846  		}
847  		if (last_desc)
848  			set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
849  
850  		set_flow_mode(&desc[*seq_size], flow_mode);
851  		(*seq_size)++;
852  	}
853  }
854  
cc_cipher_complete(struct device * dev,void * cc_req,int err)855  static void cc_cipher_complete(struct device *dev, void *cc_req, int err)
856  {
857  	struct skcipher_request *req = (struct skcipher_request *)cc_req;
858  	struct scatterlist *dst = req->dst;
859  	struct scatterlist *src = req->src;
860  	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
861  	struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
862  	unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
863  
864  	if (err != -EINPROGRESS) {
865  		/* Not a BACKLOG notification */
866  		cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
867  		memcpy(req->iv, req_ctx->iv, ivsize);
868  		kfree_sensitive(req_ctx->iv);
869  	}
870  
871  	skcipher_request_complete(req, err);
872  }
873  
cc_cipher_process(struct skcipher_request * req,enum drv_crypto_direction direction)874  static int cc_cipher_process(struct skcipher_request *req,
875  			     enum drv_crypto_direction direction)
876  {
877  	struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
878  	struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm);
879  	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
880  	unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
881  	struct scatterlist *dst = req->dst;
882  	struct scatterlist *src = req->src;
883  	unsigned int nbytes = req->cryptlen;
884  	void *iv = req->iv;
885  	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
886  	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
887  	struct cc_hw_desc desc[MAX_SKCIPHER_SEQ_LEN];
888  	struct cc_crypto_req cc_req = {};
889  	int rc;
890  	unsigned int seq_len = 0;
891  	gfp_t flags = cc_gfp_flags(&req->base);
892  
893  	dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n",
894  		((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
895  		"Encrypt" : "Decrypt"), req, iv, nbytes);
896  
897  	/* STAT_PHASE_0: Init and sanity checks */
898  
899  	if (validate_data_size(ctx_p, nbytes)) {
900  		dev_dbg(dev, "Unsupported data size %d.\n", nbytes);
901  		rc = -EINVAL;
902  		goto exit_process;
903  	}
904  	if (nbytes == 0) {
905  		/* No data to process is valid */
906  		rc = 0;
907  		goto exit_process;
908  	}
909  
910  	if (ctx_p->fallback_on) {
911  		struct skcipher_request *subreq = skcipher_request_ctx(req);
912  
913  		*subreq = *req;
914  		skcipher_request_set_tfm(subreq, ctx_p->fallback_tfm);
915  		if (direction == DRV_CRYPTO_DIRECTION_ENCRYPT)
916  			return crypto_skcipher_encrypt(subreq);
917  		else
918  			return crypto_skcipher_decrypt(subreq);
919  	}
920  
921  	/* The IV we are handed may be allocted from the stack so
922  	 * we must copy it to a DMAable buffer before use.
923  	 */
924  	req_ctx->iv = kmemdup(iv, ivsize, flags);
925  	if (!req_ctx->iv) {
926  		rc = -ENOMEM;
927  		goto exit_process;
928  	}
929  
930  	/* Setup request structure */
931  	cc_req.user_cb = cc_cipher_complete;
932  	cc_req.user_arg = req;
933  
934  	/* Setup CPP operation details */
935  	if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) {
936  		cc_req.cpp.is_cpp = true;
937  		cc_req.cpp.alg = ctx_p->cpp.alg;
938  		cc_req.cpp.slot = ctx_p->cpp.slot;
939  	}
940  
941  	/* Setup request context */
942  	req_ctx->gen_ctx.op_type = direction;
943  
944  	/* STAT_PHASE_1: Map buffers */
945  
946  	rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes,
947  				      req_ctx->iv, src, dst, flags);
948  	if (rc) {
949  		dev_err(dev, "map_request() failed\n");
950  		goto exit_process;
951  	}
952  
953  	/* STAT_PHASE_2: Create sequence */
954  
955  	/* Setup state (IV)  */
956  	cc_setup_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
957  	/* Setup MLLI line, if needed */
958  	cc_setup_mlli_desc(tfm, req_ctx, dst, src, nbytes, req, desc, &seq_len);
959  	/* Setup key */
960  	cc_setup_key_desc(tfm, req_ctx, nbytes, desc, &seq_len);
961  	/* Setup state (IV and XEX key)  */
962  	cc_setup_xex_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
963  	/* Data processing */
964  	cc_setup_flow_desc(tfm, req_ctx, dst, src, nbytes, desc, &seq_len);
965  	/* Read next IV */
966  	cc_setup_readiv_desc(tfm, req_ctx, ivsize, desc, &seq_len);
967  
968  	/* STAT_PHASE_3: Lock HW and push sequence */
969  
970  	rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len,
971  			     &req->base);
972  	if (rc != -EINPROGRESS && rc != -EBUSY) {
973  		/* Failed to send the request or request completed
974  		 * synchronously
975  		 */
976  		cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
977  	}
978  
979  exit_process:
980  	if (rc != -EINPROGRESS && rc != -EBUSY) {
981  		kfree_sensitive(req_ctx->iv);
982  	}
983  
984  	return rc;
985  }
986  
cc_cipher_encrypt(struct skcipher_request * req)987  static int cc_cipher_encrypt(struct skcipher_request *req)
988  {
989  	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
990  
991  	memset(req_ctx, 0, sizeof(*req_ctx));
992  
993  	return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
994  }
995  
cc_cipher_decrypt(struct skcipher_request * req)996  static int cc_cipher_decrypt(struct skcipher_request *req)
997  {
998  	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
999  
1000  	memset(req_ctx, 0, sizeof(*req_ctx));
1001  
1002  	return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT);
1003  }
1004  
1005  /* Block cipher alg */
1006  static const struct cc_alg_template skcipher_algs[] = {
1007  	{
1008  		.name = "xts(paes)",
1009  		.driver_name = "xts-paes-ccree",
1010  		.blocksize = 1,
1011  		.template_skcipher = {
1012  			.setkey = cc_cipher_sethkey,
1013  			.encrypt = cc_cipher_encrypt,
1014  			.decrypt = cc_cipher_decrypt,
1015  			.min_keysize = CC_HW_KEY_SIZE,
1016  			.max_keysize = CC_HW_KEY_SIZE,
1017  			.ivsize = AES_BLOCK_SIZE,
1018  			},
1019  		.cipher_mode = DRV_CIPHER_XTS,
1020  		.flow_mode = S_DIN_to_AES,
1021  		.min_hw_rev = CC_HW_REV_630,
1022  		.std_body = CC_STD_NIST,
1023  		.sec_func = true,
1024  	},
1025  	{
1026  		.name = "essiv(cbc(paes),sha256)",
1027  		.driver_name = "essiv-paes-ccree",
1028  		.blocksize = AES_BLOCK_SIZE,
1029  		.template_skcipher = {
1030  			.setkey = cc_cipher_sethkey,
1031  			.encrypt = cc_cipher_encrypt,
1032  			.decrypt = cc_cipher_decrypt,
1033  			.min_keysize = CC_HW_KEY_SIZE,
1034  			.max_keysize = CC_HW_KEY_SIZE,
1035  			.ivsize = AES_BLOCK_SIZE,
1036  			},
1037  		.cipher_mode = DRV_CIPHER_ESSIV,
1038  		.flow_mode = S_DIN_to_AES,
1039  		.min_hw_rev = CC_HW_REV_712,
1040  		.std_body = CC_STD_NIST,
1041  		.sec_func = true,
1042  	},
1043  	{
1044  		.name = "ecb(paes)",
1045  		.driver_name = "ecb-paes-ccree",
1046  		.blocksize = AES_BLOCK_SIZE,
1047  		.template_skcipher = {
1048  			.setkey = cc_cipher_sethkey,
1049  			.encrypt = cc_cipher_encrypt,
1050  			.decrypt = cc_cipher_decrypt,
1051  			.min_keysize = CC_HW_KEY_SIZE,
1052  			.max_keysize = CC_HW_KEY_SIZE,
1053  			.ivsize = 0,
1054  			},
1055  		.cipher_mode = DRV_CIPHER_ECB,
1056  		.flow_mode = S_DIN_to_AES,
1057  		.min_hw_rev = CC_HW_REV_712,
1058  		.std_body = CC_STD_NIST,
1059  		.sec_func = true,
1060  	},
1061  	{
1062  		.name = "cbc(paes)",
1063  		.driver_name = "cbc-paes-ccree",
1064  		.blocksize = AES_BLOCK_SIZE,
1065  		.template_skcipher = {
1066  			.setkey = cc_cipher_sethkey,
1067  			.encrypt = cc_cipher_encrypt,
1068  			.decrypt = cc_cipher_decrypt,
1069  			.min_keysize = CC_HW_KEY_SIZE,
1070  			.max_keysize = CC_HW_KEY_SIZE,
1071  			.ivsize = AES_BLOCK_SIZE,
1072  		},
1073  		.cipher_mode = DRV_CIPHER_CBC,
1074  		.flow_mode = S_DIN_to_AES,
1075  		.min_hw_rev = CC_HW_REV_712,
1076  		.std_body = CC_STD_NIST,
1077  		.sec_func = true,
1078  	},
1079  	{
1080  		.name = "ofb(paes)",
1081  		.driver_name = "ofb-paes-ccree",
1082  		.blocksize = AES_BLOCK_SIZE,
1083  		.template_skcipher = {
1084  			.setkey = cc_cipher_sethkey,
1085  			.encrypt = cc_cipher_encrypt,
1086  			.decrypt = cc_cipher_decrypt,
1087  			.min_keysize = CC_HW_KEY_SIZE,
1088  			.max_keysize = CC_HW_KEY_SIZE,
1089  			.ivsize = AES_BLOCK_SIZE,
1090  			},
1091  		.cipher_mode = DRV_CIPHER_OFB,
1092  		.flow_mode = S_DIN_to_AES,
1093  		.min_hw_rev = CC_HW_REV_712,
1094  		.std_body = CC_STD_NIST,
1095  		.sec_func = true,
1096  	},
1097  	{
1098  		.name = "cts(cbc(paes))",
1099  		.driver_name = "cts-cbc-paes-ccree",
1100  		.blocksize = AES_BLOCK_SIZE,
1101  		.template_skcipher = {
1102  			.setkey = cc_cipher_sethkey,
1103  			.encrypt = cc_cipher_encrypt,
1104  			.decrypt = cc_cipher_decrypt,
1105  			.min_keysize = CC_HW_KEY_SIZE,
1106  			.max_keysize = CC_HW_KEY_SIZE,
1107  			.ivsize = AES_BLOCK_SIZE,
1108  			},
1109  		.cipher_mode = DRV_CIPHER_CBC_CTS,
1110  		.flow_mode = S_DIN_to_AES,
1111  		.min_hw_rev = CC_HW_REV_712,
1112  		.std_body = CC_STD_NIST,
1113  		.sec_func = true,
1114  	},
1115  	{
1116  		.name = "ctr(paes)",
1117  		.driver_name = "ctr-paes-ccree",
1118  		.blocksize = 1,
1119  		.template_skcipher = {
1120  			.setkey = cc_cipher_sethkey,
1121  			.encrypt = cc_cipher_encrypt,
1122  			.decrypt = cc_cipher_decrypt,
1123  			.min_keysize = CC_HW_KEY_SIZE,
1124  			.max_keysize = CC_HW_KEY_SIZE,
1125  			.ivsize = AES_BLOCK_SIZE,
1126  			},
1127  		.cipher_mode = DRV_CIPHER_CTR,
1128  		.flow_mode = S_DIN_to_AES,
1129  		.min_hw_rev = CC_HW_REV_712,
1130  		.std_body = CC_STD_NIST,
1131  		.sec_func = true,
1132  	},
1133  	{
1134  		/* See https://www.mail-archive.com/linux-crypto@vger.kernel.org/msg40576.html
1135  		 * for the reason why this differs from the generic
1136  		 * implementation.
1137  		 */
1138  		.name = "xts(aes)",
1139  		.driver_name = "xts-aes-ccree",
1140  		.blocksize = 1,
1141  		.template_skcipher = {
1142  			.setkey = cc_cipher_setkey,
1143  			.encrypt = cc_cipher_encrypt,
1144  			.decrypt = cc_cipher_decrypt,
1145  			.min_keysize = AES_MIN_KEY_SIZE * 2,
1146  			.max_keysize = AES_MAX_KEY_SIZE * 2,
1147  			.ivsize = AES_BLOCK_SIZE,
1148  			},
1149  		.cipher_mode = DRV_CIPHER_XTS,
1150  		.flow_mode = S_DIN_to_AES,
1151  		.min_hw_rev = CC_HW_REV_630,
1152  		.std_body = CC_STD_NIST,
1153  	},
1154  	{
1155  		.name = "essiv(cbc(aes),sha256)",
1156  		.driver_name = "essiv-aes-ccree",
1157  		.blocksize = AES_BLOCK_SIZE,
1158  		.template_skcipher = {
1159  			.setkey = cc_cipher_setkey,
1160  			.encrypt = cc_cipher_encrypt,
1161  			.decrypt = cc_cipher_decrypt,
1162  			.min_keysize = AES_MIN_KEY_SIZE,
1163  			.max_keysize = AES_MAX_KEY_SIZE,
1164  			.ivsize = AES_BLOCK_SIZE,
1165  			},
1166  		.cipher_mode = DRV_CIPHER_ESSIV,
1167  		.flow_mode = S_DIN_to_AES,
1168  		.min_hw_rev = CC_HW_REV_712,
1169  		.std_body = CC_STD_NIST,
1170  	},
1171  	{
1172  		.name = "ecb(aes)",
1173  		.driver_name = "ecb-aes-ccree",
1174  		.blocksize = AES_BLOCK_SIZE,
1175  		.template_skcipher = {
1176  			.setkey = cc_cipher_setkey,
1177  			.encrypt = cc_cipher_encrypt,
1178  			.decrypt = cc_cipher_decrypt,
1179  			.min_keysize = AES_MIN_KEY_SIZE,
1180  			.max_keysize = AES_MAX_KEY_SIZE,
1181  			.ivsize = 0,
1182  			},
1183  		.cipher_mode = DRV_CIPHER_ECB,
1184  		.flow_mode = S_DIN_to_AES,
1185  		.min_hw_rev = CC_HW_REV_630,
1186  		.std_body = CC_STD_NIST,
1187  	},
1188  	{
1189  		.name = "cbc(aes)",
1190  		.driver_name = "cbc-aes-ccree",
1191  		.blocksize = AES_BLOCK_SIZE,
1192  		.template_skcipher = {
1193  			.setkey = cc_cipher_setkey,
1194  			.encrypt = cc_cipher_encrypt,
1195  			.decrypt = cc_cipher_decrypt,
1196  			.min_keysize = AES_MIN_KEY_SIZE,
1197  			.max_keysize = AES_MAX_KEY_SIZE,
1198  			.ivsize = AES_BLOCK_SIZE,
1199  		},
1200  		.cipher_mode = DRV_CIPHER_CBC,
1201  		.flow_mode = S_DIN_to_AES,
1202  		.min_hw_rev = CC_HW_REV_630,
1203  		.std_body = CC_STD_NIST,
1204  	},
1205  	{
1206  		.name = "ofb(aes)",
1207  		.driver_name = "ofb-aes-ccree",
1208  		.blocksize = 1,
1209  		.template_skcipher = {
1210  			.setkey = cc_cipher_setkey,
1211  			.encrypt = cc_cipher_encrypt,
1212  			.decrypt = cc_cipher_decrypt,
1213  			.min_keysize = AES_MIN_KEY_SIZE,
1214  			.max_keysize = AES_MAX_KEY_SIZE,
1215  			.ivsize = AES_BLOCK_SIZE,
1216  			},
1217  		.cipher_mode = DRV_CIPHER_OFB,
1218  		.flow_mode = S_DIN_to_AES,
1219  		.min_hw_rev = CC_HW_REV_630,
1220  		.std_body = CC_STD_NIST,
1221  	},
1222  	{
1223  		.name = "cts(cbc(aes))",
1224  		.driver_name = "cts-cbc-aes-ccree",
1225  		.blocksize = AES_BLOCK_SIZE,
1226  		.template_skcipher = {
1227  			.setkey = cc_cipher_setkey,
1228  			.encrypt = cc_cipher_encrypt,
1229  			.decrypt = cc_cipher_decrypt,
1230  			.min_keysize = AES_MIN_KEY_SIZE,
1231  			.max_keysize = AES_MAX_KEY_SIZE,
1232  			.ivsize = AES_BLOCK_SIZE,
1233  			},
1234  		.cipher_mode = DRV_CIPHER_CBC_CTS,
1235  		.flow_mode = S_DIN_to_AES,
1236  		.min_hw_rev = CC_HW_REV_630,
1237  		.std_body = CC_STD_NIST,
1238  	},
1239  	{
1240  		.name = "ctr(aes)",
1241  		.driver_name = "ctr-aes-ccree",
1242  		.blocksize = 1,
1243  		.template_skcipher = {
1244  			.setkey = cc_cipher_setkey,
1245  			.encrypt = cc_cipher_encrypt,
1246  			.decrypt = cc_cipher_decrypt,
1247  			.min_keysize = AES_MIN_KEY_SIZE,
1248  			.max_keysize = AES_MAX_KEY_SIZE,
1249  			.ivsize = AES_BLOCK_SIZE,
1250  			},
1251  		.cipher_mode = DRV_CIPHER_CTR,
1252  		.flow_mode = S_DIN_to_AES,
1253  		.min_hw_rev = CC_HW_REV_630,
1254  		.std_body = CC_STD_NIST,
1255  	},
1256  	{
1257  		.name = "cbc(des3_ede)",
1258  		.driver_name = "cbc-3des-ccree",
1259  		.blocksize = DES3_EDE_BLOCK_SIZE,
1260  		.template_skcipher = {
1261  			.setkey = cc_cipher_setkey,
1262  			.encrypt = cc_cipher_encrypt,
1263  			.decrypt = cc_cipher_decrypt,
1264  			.min_keysize = DES3_EDE_KEY_SIZE,
1265  			.max_keysize = DES3_EDE_KEY_SIZE,
1266  			.ivsize = DES3_EDE_BLOCK_SIZE,
1267  			},
1268  		.cipher_mode = DRV_CIPHER_CBC,
1269  		.flow_mode = S_DIN_to_DES,
1270  		.min_hw_rev = CC_HW_REV_630,
1271  		.std_body = CC_STD_NIST,
1272  	},
1273  	{
1274  		.name = "ecb(des3_ede)",
1275  		.driver_name = "ecb-3des-ccree",
1276  		.blocksize = DES3_EDE_BLOCK_SIZE,
1277  		.template_skcipher = {
1278  			.setkey = cc_cipher_setkey,
1279  			.encrypt = cc_cipher_encrypt,
1280  			.decrypt = cc_cipher_decrypt,
1281  			.min_keysize = DES3_EDE_KEY_SIZE,
1282  			.max_keysize = DES3_EDE_KEY_SIZE,
1283  			.ivsize = 0,
1284  			},
1285  		.cipher_mode = DRV_CIPHER_ECB,
1286  		.flow_mode = S_DIN_to_DES,
1287  		.min_hw_rev = CC_HW_REV_630,
1288  		.std_body = CC_STD_NIST,
1289  	},
1290  	{
1291  		.name = "cbc(des)",
1292  		.driver_name = "cbc-des-ccree",
1293  		.blocksize = DES_BLOCK_SIZE,
1294  		.template_skcipher = {
1295  			.setkey = cc_cipher_setkey,
1296  			.encrypt = cc_cipher_encrypt,
1297  			.decrypt = cc_cipher_decrypt,
1298  			.min_keysize = DES_KEY_SIZE,
1299  			.max_keysize = DES_KEY_SIZE,
1300  			.ivsize = DES_BLOCK_SIZE,
1301  			},
1302  		.cipher_mode = DRV_CIPHER_CBC,
1303  		.flow_mode = S_DIN_to_DES,
1304  		.min_hw_rev = CC_HW_REV_630,
1305  		.std_body = CC_STD_NIST,
1306  	},
1307  	{
1308  		.name = "ecb(des)",
1309  		.driver_name = "ecb-des-ccree",
1310  		.blocksize = DES_BLOCK_SIZE,
1311  		.template_skcipher = {
1312  			.setkey = cc_cipher_setkey,
1313  			.encrypt = cc_cipher_encrypt,
1314  			.decrypt = cc_cipher_decrypt,
1315  			.min_keysize = DES_KEY_SIZE,
1316  			.max_keysize = DES_KEY_SIZE,
1317  			.ivsize = 0,
1318  			},
1319  		.cipher_mode = DRV_CIPHER_ECB,
1320  		.flow_mode = S_DIN_to_DES,
1321  		.min_hw_rev = CC_HW_REV_630,
1322  		.std_body = CC_STD_NIST,
1323  	},
1324  	{
1325  		.name = "cbc(sm4)",
1326  		.driver_name = "cbc-sm4-ccree",
1327  		.blocksize = SM4_BLOCK_SIZE,
1328  		.template_skcipher = {
1329  			.setkey = cc_cipher_setkey,
1330  			.encrypt = cc_cipher_encrypt,
1331  			.decrypt = cc_cipher_decrypt,
1332  			.min_keysize = SM4_KEY_SIZE,
1333  			.max_keysize = SM4_KEY_SIZE,
1334  			.ivsize = SM4_BLOCK_SIZE,
1335  			},
1336  		.cipher_mode = DRV_CIPHER_CBC,
1337  		.flow_mode = S_DIN_to_SM4,
1338  		.min_hw_rev = CC_HW_REV_713,
1339  		.std_body = CC_STD_OSCCA,
1340  	},
1341  	{
1342  		.name = "ecb(sm4)",
1343  		.driver_name = "ecb-sm4-ccree",
1344  		.blocksize = SM4_BLOCK_SIZE,
1345  		.template_skcipher = {
1346  			.setkey = cc_cipher_setkey,
1347  			.encrypt = cc_cipher_encrypt,
1348  			.decrypt = cc_cipher_decrypt,
1349  			.min_keysize = SM4_KEY_SIZE,
1350  			.max_keysize = SM4_KEY_SIZE,
1351  			.ivsize = 0,
1352  			},
1353  		.cipher_mode = DRV_CIPHER_ECB,
1354  		.flow_mode = S_DIN_to_SM4,
1355  		.min_hw_rev = CC_HW_REV_713,
1356  		.std_body = CC_STD_OSCCA,
1357  	},
1358  	{
1359  		.name = "ctr(sm4)",
1360  		.driver_name = "ctr-sm4-ccree",
1361  		.blocksize = 1,
1362  		.template_skcipher = {
1363  			.setkey = cc_cipher_setkey,
1364  			.encrypt = cc_cipher_encrypt,
1365  			.decrypt = cc_cipher_decrypt,
1366  			.min_keysize = SM4_KEY_SIZE,
1367  			.max_keysize = SM4_KEY_SIZE,
1368  			.ivsize = SM4_BLOCK_SIZE,
1369  			},
1370  		.cipher_mode = DRV_CIPHER_CTR,
1371  		.flow_mode = S_DIN_to_SM4,
1372  		.min_hw_rev = CC_HW_REV_713,
1373  		.std_body = CC_STD_OSCCA,
1374  	},
1375  	{
1376  		.name = "cbc(psm4)",
1377  		.driver_name = "cbc-psm4-ccree",
1378  		.blocksize = SM4_BLOCK_SIZE,
1379  		.template_skcipher = {
1380  			.setkey = cc_cipher_sethkey,
1381  			.encrypt = cc_cipher_encrypt,
1382  			.decrypt = cc_cipher_decrypt,
1383  			.min_keysize = CC_HW_KEY_SIZE,
1384  			.max_keysize = CC_HW_KEY_SIZE,
1385  			.ivsize = SM4_BLOCK_SIZE,
1386  			},
1387  		.cipher_mode = DRV_CIPHER_CBC,
1388  		.flow_mode = S_DIN_to_SM4,
1389  		.min_hw_rev = CC_HW_REV_713,
1390  		.std_body = CC_STD_OSCCA,
1391  		.sec_func = true,
1392  	},
1393  	{
1394  		.name = "ctr(psm4)",
1395  		.driver_name = "ctr-psm4-ccree",
1396  		.blocksize = SM4_BLOCK_SIZE,
1397  		.template_skcipher = {
1398  			.setkey = cc_cipher_sethkey,
1399  			.encrypt = cc_cipher_encrypt,
1400  			.decrypt = cc_cipher_decrypt,
1401  			.min_keysize = CC_HW_KEY_SIZE,
1402  			.max_keysize = CC_HW_KEY_SIZE,
1403  			.ivsize = SM4_BLOCK_SIZE,
1404  			},
1405  		.cipher_mode = DRV_CIPHER_CTR,
1406  		.flow_mode = S_DIN_to_SM4,
1407  		.min_hw_rev = CC_HW_REV_713,
1408  		.std_body = CC_STD_OSCCA,
1409  		.sec_func = true,
1410  	},
1411  };
1412  
cc_create_alg(const struct cc_alg_template * tmpl,struct device * dev)1413  static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl,
1414  					   struct device *dev)
1415  {
1416  	struct cc_crypto_alg *t_alg;
1417  	struct skcipher_alg *alg;
1418  
1419  	t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
1420  	if (!t_alg)
1421  		return ERR_PTR(-ENOMEM);
1422  
1423  	alg = &t_alg->skcipher_alg;
1424  
1425  	memcpy(alg, &tmpl->template_skcipher, sizeof(*alg));
1426  
1427  	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1428  	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
1429  		 tmpl->driver_name);
1430  	alg->base.cra_module = THIS_MODULE;
1431  	alg->base.cra_priority = CC_CRA_PRIO;
1432  	alg->base.cra_blocksize = tmpl->blocksize;
1433  	alg->base.cra_alignmask = 0;
1434  	alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx);
1435  
1436  	alg->base.cra_init = cc_cipher_init;
1437  	alg->base.cra_exit = cc_cipher_exit;
1438  	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
1439  
1440  	t_alg->cipher_mode = tmpl->cipher_mode;
1441  	t_alg->flow_mode = tmpl->flow_mode;
1442  
1443  	return t_alg;
1444  }
1445  
cc_cipher_free(struct cc_drvdata * drvdata)1446  int cc_cipher_free(struct cc_drvdata *drvdata)
1447  {
1448  	struct cc_crypto_alg *t_alg, *n;
1449  
1450  	/* Remove registered algs */
1451  	list_for_each_entry_safe(t_alg, n, &drvdata->alg_list, entry) {
1452  		crypto_unregister_skcipher(&t_alg->skcipher_alg);
1453  		list_del(&t_alg->entry);
1454  	}
1455  	return 0;
1456  }
1457  
cc_cipher_alloc(struct cc_drvdata * drvdata)1458  int cc_cipher_alloc(struct cc_drvdata *drvdata)
1459  {
1460  	struct cc_crypto_alg *t_alg;
1461  	struct device *dev = drvdata_to_dev(drvdata);
1462  	int rc = -ENOMEM;
1463  	int alg;
1464  
1465  	INIT_LIST_HEAD(&drvdata->alg_list);
1466  
1467  	/* Linux crypto */
1468  	dev_dbg(dev, "Number of algorithms = %zu\n",
1469  		ARRAY_SIZE(skcipher_algs));
1470  	for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) {
1471  		if ((skcipher_algs[alg].min_hw_rev > drvdata->hw_rev) ||
1472  		    !(drvdata->std_bodies & skcipher_algs[alg].std_body) ||
1473  		    (drvdata->sec_disabled && skcipher_algs[alg].sec_func))
1474  			continue;
1475  
1476  		dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name);
1477  		t_alg = cc_create_alg(&skcipher_algs[alg], dev);
1478  		if (IS_ERR(t_alg)) {
1479  			rc = PTR_ERR(t_alg);
1480  			dev_err(dev, "%s alg allocation failed\n",
1481  				skcipher_algs[alg].driver_name);
1482  			goto fail0;
1483  		}
1484  		t_alg->drvdata = drvdata;
1485  
1486  		dev_dbg(dev, "registering %s\n",
1487  			skcipher_algs[alg].driver_name);
1488  		rc = crypto_register_skcipher(&t_alg->skcipher_alg);
1489  		dev_dbg(dev, "%s alg registration rc = %x\n",
1490  			t_alg->skcipher_alg.base.cra_driver_name, rc);
1491  		if (rc) {
1492  			dev_err(dev, "%s alg registration failed\n",
1493  				t_alg->skcipher_alg.base.cra_driver_name);
1494  			goto fail0;
1495  		}
1496  
1497  		list_add_tail(&t_alg->entry, &drvdata->alg_list);
1498  		dev_dbg(dev, "Registered %s\n",
1499  			t_alg->skcipher_alg.base.cra_driver_name);
1500  	}
1501  	return 0;
1502  
1503  fail0:
1504  	cc_cipher_free(drvdata);
1505  	return rc;
1506  }
1507