1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Framework for buffer objects that can be shared across devices/subsystems.
4 *
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
7 *
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
12 */
13
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31
32 static inline int is_dma_buf_file(struct file *);
33
34 struct dma_buf_list {
35 struct list_head head;
36 struct mutex lock;
37 };
38
39 static struct dma_buf_list db_list;
40
dmabuffs_dname(struct dentry * dentry,char * buffer,int buflen)41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
42 {
43 struct dma_buf *dmabuf;
44 char name[DMA_BUF_NAME_LEN];
45 size_t ret = 0;
46
47 dmabuf = dentry->d_fsdata;
48 spin_lock(&dmabuf->name_lock);
49 if (dmabuf->name)
50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
51 spin_unlock(&dmabuf->name_lock);
52
53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 dentry->d_name.name, ret > 0 ? name : "");
55 }
56
dma_buf_release(struct dentry * dentry)57 static void dma_buf_release(struct dentry *dentry)
58 {
59 struct dma_buf *dmabuf;
60
61 dmabuf = dentry->d_fsdata;
62 if (unlikely(!dmabuf))
63 return;
64
65 BUG_ON(dmabuf->vmapping_counter);
66
67 /*
68 * Any fences that a dma-buf poll can wait on should be signaled
69 * before releasing dma-buf. This is the responsibility of each
70 * driver that uses the reservation objects.
71 *
72 * If you hit this BUG() it means someone dropped their ref to the
73 * dma-buf while still having pending operation to the buffer.
74 */
75 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
76
77 dmabuf->ops->release(dmabuf);
78
79 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
80 dma_resv_fini(dmabuf->resv);
81
82 module_put(dmabuf->owner);
83 kfree(dmabuf->name);
84 kfree(dmabuf);
85 }
86
dma_buf_file_release(struct inode * inode,struct file * file)87 static int dma_buf_file_release(struct inode *inode, struct file *file)
88 {
89 struct dma_buf *dmabuf;
90
91 if (!is_dma_buf_file(file))
92 return -EINVAL;
93
94 dmabuf = file->private_data;
95
96 mutex_lock(&db_list.lock);
97 list_del(&dmabuf->list_node);
98 mutex_unlock(&db_list.lock);
99
100 return 0;
101 }
102
103 static const struct dentry_operations dma_buf_dentry_ops = {
104 .d_dname = dmabuffs_dname,
105 .d_release = dma_buf_release,
106 };
107
108 static struct vfsmount *dma_buf_mnt;
109
dma_buf_fs_init_context(struct fs_context * fc)110 static int dma_buf_fs_init_context(struct fs_context *fc)
111 {
112 struct pseudo_fs_context *ctx;
113
114 ctx = init_pseudo(fc, DMA_BUF_MAGIC);
115 if (!ctx)
116 return -ENOMEM;
117 ctx->dops = &dma_buf_dentry_ops;
118 return 0;
119 }
120
121 static struct file_system_type dma_buf_fs_type = {
122 .name = "dmabuf",
123 .init_fs_context = dma_buf_fs_init_context,
124 .kill_sb = kill_anon_super,
125 };
126
dma_buf_mmap_internal(struct file * file,struct vm_area_struct * vma)127 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
128 {
129 struct dma_buf *dmabuf;
130
131 if (!is_dma_buf_file(file))
132 return -EINVAL;
133
134 dmabuf = file->private_data;
135
136 /* check if buffer supports mmap */
137 if (!dmabuf->ops->mmap)
138 return -EINVAL;
139
140 /* check for overflowing the buffer's size */
141 if (vma->vm_pgoff + vma_pages(vma) >
142 dmabuf->size >> PAGE_SHIFT)
143 return -EINVAL;
144
145 return dmabuf->ops->mmap(dmabuf, vma);
146 }
147
dma_buf_llseek(struct file * file,loff_t offset,int whence)148 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
149 {
150 struct dma_buf *dmabuf;
151 loff_t base;
152
153 if (!is_dma_buf_file(file))
154 return -EBADF;
155
156 dmabuf = file->private_data;
157
158 /* only support discovering the end of the buffer,
159 but also allow SEEK_SET to maintain the idiomatic
160 SEEK_END(0), SEEK_CUR(0) pattern */
161 if (whence == SEEK_END)
162 base = dmabuf->size;
163 else if (whence == SEEK_SET)
164 base = 0;
165 else
166 return -EINVAL;
167
168 if (offset != 0)
169 return -EINVAL;
170
171 return base + offset;
172 }
173
174 /**
175 * DOC: implicit fence polling
176 *
177 * To support cross-device and cross-driver synchronization of buffer access
178 * implicit fences (represented internally in the kernel with &struct dma_fence)
179 * can be attached to a &dma_buf. The glue for that and a few related things are
180 * provided in the &dma_resv structure.
181 *
182 * Userspace can query the state of these implicitly tracked fences using poll()
183 * and related system calls:
184 *
185 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
186 * most recent write or exclusive fence.
187 *
188 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
189 * all attached fences, shared and exclusive ones.
190 *
191 * Note that this only signals the completion of the respective fences, i.e. the
192 * DMA transfers are complete. Cache flushing and any other necessary
193 * preparations before CPU access can begin still need to happen.
194 */
195
dma_buf_poll_cb(struct dma_fence * fence,struct dma_fence_cb * cb)196 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
197 {
198 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
199 unsigned long flags;
200
201 spin_lock_irqsave(&dcb->poll->lock, flags);
202 wake_up_locked_poll(dcb->poll, dcb->active);
203 dcb->active = 0;
204 spin_unlock_irqrestore(&dcb->poll->lock, flags);
205 }
206
dma_buf_poll(struct file * file,poll_table * poll)207 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
208 {
209 struct dma_buf *dmabuf;
210 struct dma_resv *resv;
211 struct dma_resv_list *fobj;
212 struct dma_fence *fence_excl;
213 __poll_t events;
214 unsigned shared_count, seq;
215
216 dmabuf = file->private_data;
217 if (!dmabuf || !dmabuf->resv)
218 return EPOLLERR;
219
220 resv = dmabuf->resv;
221
222 poll_wait(file, &dmabuf->poll, poll);
223
224 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
225 if (!events)
226 return 0;
227
228 retry:
229 seq = read_seqcount_begin(&resv->seq);
230 rcu_read_lock();
231
232 fobj = rcu_dereference(resv->fence);
233 if (fobj)
234 shared_count = fobj->shared_count;
235 else
236 shared_count = 0;
237 fence_excl = rcu_dereference(resv->fence_excl);
238 if (read_seqcount_retry(&resv->seq, seq)) {
239 rcu_read_unlock();
240 goto retry;
241 }
242
243 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
244 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
245 __poll_t pevents = EPOLLIN;
246
247 if (shared_count == 0)
248 pevents |= EPOLLOUT;
249
250 spin_lock_irq(&dmabuf->poll.lock);
251 if (dcb->active) {
252 dcb->active |= pevents;
253 events &= ~pevents;
254 } else
255 dcb->active = pevents;
256 spin_unlock_irq(&dmabuf->poll.lock);
257
258 if (events & pevents) {
259 if (!dma_fence_get_rcu(fence_excl)) {
260 /* force a recheck */
261 events &= ~pevents;
262 dma_buf_poll_cb(NULL, &dcb->cb);
263 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
264 dma_buf_poll_cb)) {
265 events &= ~pevents;
266 dma_fence_put(fence_excl);
267 } else {
268 /*
269 * No callback queued, wake up any additional
270 * waiters.
271 */
272 dma_fence_put(fence_excl);
273 dma_buf_poll_cb(NULL, &dcb->cb);
274 }
275 }
276 }
277
278 if ((events & EPOLLOUT) && shared_count > 0) {
279 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
280 int i;
281
282 /* Only queue a new callback if no event has fired yet */
283 spin_lock_irq(&dmabuf->poll.lock);
284 if (dcb->active)
285 events &= ~EPOLLOUT;
286 else
287 dcb->active = EPOLLOUT;
288 spin_unlock_irq(&dmabuf->poll.lock);
289
290 if (!(events & EPOLLOUT))
291 goto out;
292
293 for (i = 0; i < shared_count; ++i) {
294 struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
295
296 if (!dma_fence_get_rcu(fence)) {
297 /*
298 * fence refcount dropped to zero, this means
299 * that fobj has been freed
300 *
301 * call dma_buf_poll_cb and force a recheck!
302 */
303 events &= ~EPOLLOUT;
304 dma_buf_poll_cb(NULL, &dcb->cb);
305 break;
306 }
307 if (!dma_fence_add_callback(fence, &dcb->cb,
308 dma_buf_poll_cb)) {
309 dma_fence_put(fence);
310 events &= ~EPOLLOUT;
311 break;
312 }
313 dma_fence_put(fence);
314 }
315
316 /* No callback queued, wake up any additional waiters. */
317 if (i == shared_count)
318 dma_buf_poll_cb(NULL, &dcb->cb);
319 }
320
321 out:
322 rcu_read_unlock();
323 return events;
324 }
325
326 /**
327 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
328 * The name of the dma-buf buffer can only be set when the dma-buf is not
329 * attached to any devices. It could theoritically support changing the
330 * name of the dma-buf if the same piece of memory is used for multiple
331 * purpose between different devices.
332 *
333 * @dmabuf: [in] dmabuf buffer that will be renamed.
334 * @buf: [in] A piece of userspace memory that contains the name of
335 * the dma-buf.
336 *
337 * Returns 0 on success. If the dma-buf buffer is already attached to
338 * devices, return -EBUSY.
339 *
340 */
dma_buf_set_name(struct dma_buf * dmabuf,const char __user * buf)341 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
342 {
343 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
344 long ret = 0;
345
346 if (IS_ERR(name))
347 return PTR_ERR(name);
348
349 dma_resv_lock(dmabuf->resv, NULL);
350 if (!list_empty(&dmabuf->attachments)) {
351 ret = -EBUSY;
352 kfree(name);
353 goto out_unlock;
354 }
355 spin_lock(&dmabuf->name_lock);
356 kfree(dmabuf->name);
357 dmabuf->name = name;
358 spin_unlock(&dmabuf->name_lock);
359
360 out_unlock:
361 dma_resv_unlock(dmabuf->resv);
362 return ret;
363 }
364
dma_buf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)365 static long dma_buf_ioctl(struct file *file,
366 unsigned int cmd, unsigned long arg)
367 {
368 struct dma_buf *dmabuf;
369 struct dma_buf_sync sync;
370 enum dma_data_direction direction;
371 int ret;
372
373 dmabuf = file->private_data;
374
375 switch (cmd) {
376 case DMA_BUF_IOCTL_SYNC:
377 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
378 return -EFAULT;
379
380 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
381 return -EINVAL;
382
383 switch (sync.flags & DMA_BUF_SYNC_RW) {
384 case DMA_BUF_SYNC_READ:
385 direction = DMA_FROM_DEVICE;
386 break;
387 case DMA_BUF_SYNC_WRITE:
388 direction = DMA_TO_DEVICE;
389 break;
390 case DMA_BUF_SYNC_RW:
391 direction = DMA_BIDIRECTIONAL;
392 break;
393 default:
394 return -EINVAL;
395 }
396
397 if (sync.flags & DMA_BUF_SYNC_END)
398 ret = dma_buf_end_cpu_access(dmabuf, direction);
399 else
400 ret = dma_buf_begin_cpu_access(dmabuf, direction);
401
402 return ret;
403
404 case DMA_BUF_SET_NAME_A:
405 case DMA_BUF_SET_NAME_B:
406 return dma_buf_set_name(dmabuf, (const char __user *)arg);
407
408 default:
409 return -ENOTTY;
410 }
411 }
412
dma_buf_show_fdinfo(struct seq_file * m,struct file * file)413 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
414 {
415 struct dma_buf *dmabuf = file->private_data;
416
417 seq_printf(m, "size:\t%zu\n", dmabuf->size);
418 /* Don't count the temporary reference taken inside procfs seq_show */
419 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
420 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
421 spin_lock(&dmabuf->name_lock);
422 if (dmabuf->name)
423 seq_printf(m, "name:\t%s\n", dmabuf->name);
424 spin_unlock(&dmabuf->name_lock);
425 }
426
427 static const struct file_operations dma_buf_fops = {
428 .release = dma_buf_file_release,
429 .mmap = dma_buf_mmap_internal,
430 .llseek = dma_buf_llseek,
431 .poll = dma_buf_poll,
432 .unlocked_ioctl = dma_buf_ioctl,
433 .compat_ioctl = compat_ptr_ioctl,
434 .show_fdinfo = dma_buf_show_fdinfo,
435 };
436
437 /*
438 * is_dma_buf_file - Check if struct file* is associated with dma_buf
439 */
is_dma_buf_file(struct file * file)440 static inline int is_dma_buf_file(struct file *file)
441 {
442 return file->f_op == &dma_buf_fops;
443 }
444
dma_buf_getfile(struct dma_buf * dmabuf,int flags)445 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
446 {
447 struct file *file;
448 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
449
450 if (IS_ERR(inode))
451 return ERR_CAST(inode);
452
453 inode->i_size = dmabuf->size;
454 inode_set_bytes(inode, dmabuf->size);
455
456 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
457 flags, &dma_buf_fops);
458 if (IS_ERR(file))
459 goto err_alloc_file;
460 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
461 file->private_data = dmabuf;
462 file->f_path.dentry->d_fsdata = dmabuf;
463
464 return file;
465
466 err_alloc_file:
467 iput(inode);
468 return file;
469 }
470
471 /**
472 * DOC: dma buf device access
473 *
474 * For device DMA access to a shared DMA buffer the usual sequence of operations
475 * is fairly simple:
476 *
477 * 1. The exporter defines his exporter instance using
478 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
479 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
480 * as a file descriptor by calling dma_buf_fd().
481 *
482 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
483 * to share with: First the filedescriptor is converted to a &dma_buf using
484 * dma_buf_get(). Then the buffer is attached to the device using
485 * dma_buf_attach().
486 *
487 * Up to this stage the exporter is still free to migrate or reallocate the
488 * backing storage.
489 *
490 * 3. Once the buffer is attached to all devices userspace can initiate DMA
491 * access to the shared buffer. In the kernel this is done by calling
492 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
493 *
494 * 4. Once a driver is done with a shared buffer it needs to call
495 * dma_buf_detach() (after cleaning up any mappings) and then release the
496 * reference acquired with dma_buf_get by calling dma_buf_put().
497 *
498 * For the detailed semantics exporters are expected to implement see
499 * &dma_buf_ops.
500 */
501
502 /**
503 * dma_buf_export - Creates a new dma_buf, and associates an anon file
504 * with this buffer, so it can be exported.
505 * Also connect the allocator specific data and ops to the buffer.
506 * Additionally, provide a name string for exporter; useful in debugging.
507 *
508 * @exp_info: [in] holds all the export related information provided
509 * by the exporter. see &struct dma_buf_export_info
510 * for further details.
511 *
512 * Returns, on success, a newly created dma_buf object, which wraps the
513 * supplied private data and operations for dma_buf_ops. On either missing
514 * ops, or error in allocating struct dma_buf, will return negative error.
515 *
516 * For most cases the easiest way to create @exp_info is through the
517 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
518 */
dma_buf_export(const struct dma_buf_export_info * exp_info)519 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
520 {
521 struct dma_buf *dmabuf;
522 struct dma_resv *resv = exp_info->resv;
523 struct file *file;
524 size_t alloc_size = sizeof(struct dma_buf);
525 int ret;
526
527 if (!exp_info->resv)
528 alloc_size += sizeof(struct dma_resv);
529 else
530 /* prevent &dma_buf[1] == dma_buf->resv */
531 alloc_size += 1;
532
533 if (WARN_ON(!exp_info->priv
534 || !exp_info->ops
535 || !exp_info->ops->map_dma_buf
536 || !exp_info->ops->unmap_dma_buf
537 || !exp_info->ops->release)) {
538 return ERR_PTR(-EINVAL);
539 }
540
541 if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
542 (exp_info->ops->pin || exp_info->ops->unpin)))
543 return ERR_PTR(-EINVAL);
544
545 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
546 return ERR_PTR(-EINVAL);
547
548 if (!try_module_get(exp_info->owner))
549 return ERR_PTR(-ENOENT);
550
551 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
552 if (!dmabuf) {
553 ret = -ENOMEM;
554 goto err_module;
555 }
556
557 dmabuf->priv = exp_info->priv;
558 dmabuf->ops = exp_info->ops;
559 dmabuf->size = exp_info->size;
560 dmabuf->exp_name = exp_info->exp_name;
561 dmabuf->owner = exp_info->owner;
562 spin_lock_init(&dmabuf->name_lock);
563 init_waitqueue_head(&dmabuf->poll);
564 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
565 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
566
567 if (!resv) {
568 resv = (struct dma_resv *)&dmabuf[1];
569 dma_resv_init(resv);
570 }
571 dmabuf->resv = resv;
572
573 file = dma_buf_getfile(dmabuf, exp_info->flags);
574 if (IS_ERR(file)) {
575 ret = PTR_ERR(file);
576 goto err_dmabuf;
577 }
578
579 file->f_mode |= FMODE_LSEEK;
580 dmabuf->file = file;
581
582 mutex_init(&dmabuf->lock);
583 INIT_LIST_HEAD(&dmabuf->attachments);
584
585 mutex_lock(&db_list.lock);
586 list_add(&dmabuf->list_node, &db_list.head);
587 mutex_unlock(&db_list.lock);
588
589 return dmabuf;
590
591 err_dmabuf:
592 kfree(dmabuf);
593 err_module:
594 module_put(exp_info->owner);
595 return ERR_PTR(ret);
596 }
597 EXPORT_SYMBOL_GPL(dma_buf_export);
598
599 /**
600 * dma_buf_fd - returns a file descriptor for the given dma_buf
601 * @dmabuf: [in] pointer to dma_buf for which fd is required.
602 * @flags: [in] flags to give to fd
603 *
604 * On success, returns an associated 'fd'. Else, returns error.
605 */
dma_buf_fd(struct dma_buf * dmabuf,int flags)606 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
607 {
608 int fd;
609
610 if (!dmabuf || !dmabuf->file)
611 return -EINVAL;
612
613 fd = get_unused_fd_flags(flags);
614 if (fd < 0)
615 return fd;
616
617 fd_install(fd, dmabuf->file);
618
619 return fd;
620 }
621 EXPORT_SYMBOL_GPL(dma_buf_fd);
622
623 /**
624 * dma_buf_get - returns the dma_buf structure related to an fd
625 * @fd: [in] fd associated with the dma_buf to be returned
626 *
627 * On success, returns the dma_buf structure associated with an fd; uses
628 * file's refcounting done by fget to increase refcount. returns ERR_PTR
629 * otherwise.
630 */
dma_buf_get(int fd)631 struct dma_buf *dma_buf_get(int fd)
632 {
633 struct file *file;
634
635 file = fget(fd);
636
637 if (!file)
638 return ERR_PTR(-EBADF);
639
640 if (!is_dma_buf_file(file)) {
641 fput(file);
642 return ERR_PTR(-EINVAL);
643 }
644
645 return file->private_data;
646 }
647 EXPORT_SYMBOL_GPL(dma_buf_get);
648
649 /**
650 * dma_buf_put - decreases refcount of the buffer
651 * @dmabuf: [in] buffer to reduce refcount of
652 *
653 * Uses file's refcounting done implicitly by fput().
654 *
655 * If, as a result of this call, the refcount becomes 0, the 'release' file
656 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
657 * in turn, and frees the memory allocated for dmabuf when exported.
658 */
dma_buf_put(struct dma_buf * dmabuf)659 void dma_buf_put(struct dma_buf *dmabuf)
660 {
661 if (WARN_ON(!dmabuf || !dmabuf->file))
662 return;
663
664 fput(dmabuf->file);
665 }
666 EXPORT_SYMBOL_GPL(dma_buf_put);
667
668 /**
669 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
670 * calls attach() of dma_buf_ops to allow device-specific attach functionality
671 * @dmabuf: [in] buffer to attach device to.
672 * @dev: [in] device to be attached.
673 * @importer_ops: [in] importer operations for the attachment
674 * @importer_priv: [in] importer private pointer for the attachment
675 *
676 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
677 * must be cleaned up by calling dma_buf_detach().
678 *
679 * Returns:
680 *
681 * A pointer to newly created &dma_buf_attachment on success, or a negative
682 * error code wrapped into a pointer on failure.
683 *
684 * Note that this can fail if the backing storage of @dmabuf is in a place not
685 * accessible to @dev, and cannot be moved to a more suitable place. This is
686 * indicated with the error code -EBUSY.
687 */
688 struct dma_buf_attachment *
dma_buf_dynamic_attach(struct dma_buf * dmabuf,struct device * dev,const struct dma_buf_attach_ops * importer_ops,void * importer_priv)689 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
690 const struct dma_buf_attach_ops *importer_ops,
691 void *importer_priv)
692 {
693 struct dma_buf_attachment *attach;
694 int ret;
695
696 if (WARN_ON(!dmabuf || !dev))
697 return ERR_PTR(-EINVAL);
698
699 if (WARN_ON(importer_ops && !importer_ops->move_notify))
700 return ERR_PTR(-EINVAL);
701
702 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
703 if (!attach)
704 return ERR_PTR(-ENOMEM);
705
706 attach->dev = dev;
707 attach->dmabuf = dmabuf;
708 if (importer_ops)
709 attach->peer2peer = importer_ops->allow_peer2peer;
710 attach->importer_ops = importer_ops;
711 attach->importer_priv = importer_priv;
712
713 if (dmabuf->ops->attach) {
714 ret = dmabuf->ops->attach(dmabuf, attach);
715 if (ret)
716 goto err_attach;
717 }
718 dma_resv_lock(dmabuf->resv, NULL);
719 list_add(&attach->node, &dmabuf->attachments);
720 dma_resv_unlock(dmabuf->resv);
721
722 /* When either the importer or the exporter can't handle dynamic
723 * mappings we cache the mapping here to avoid issues with the
724 * reservation object lock.
725 */
726 if (dma_buf_attachment_is_dynamic(attach) !=
727 dma_buf_is_dynamic(dmabuf)) {
728 struct sg_table *sgt;
729
730 if (dma_buf_is_dynamic(attach->dmabuf)) {
731 dma_resv_lock(attach->dmabuf->resv, NULL);
732 ret = dma_buf_pin(attach);
733 if (ret)
734 goto err_unlock;
735 }
736
737 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
738 if (!sgt)
739 sgt = ERR_PTR(-ENOMEM);
740 if (IS_ERR(sgt)) {
741 ret = PTR_ERR(sgt);
742 goto err_unpin;
743 }
744 if (dma_buf_is_dynamic(attach->dmabuf))
745 dma_resv_unlock(attach->dmabuf->resv);
746 attach->sgt = sgt;
747 attach->dir = DMA_BIDIRECTIONAL;
748 }
749
750 return attach;
751
752 err_attach:
753 kfree(attach);
754 return ERR_PTR(ret);
755
756 err_unpin:
757 if (dma_buf_is_dynamic(attach->dmabuf))
758 dma_buf_unpin(attach);
759
760 err_unlock:
761 if (dma_buf_is_dynamic(attach->dmabuf))
762 dma_resv_unlock(attach->dmabuf->resv);
763
764 dma_buf_detach(dmabuf, attach);
765 return ERR_PTR(ret);
766 }
767 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
768
769 /**
770 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
771 * @dmabuf: [in] buffer to attach device to.
772 * @dev: [in] device to be attached.
773 *
774 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
775 * mapping.
776 */
dma_buf_attach(struct dma_buf * dmabuf,struct device * dev)777 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
778 struct device *dev)
779 {
780 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
781 }
782 EXPORT_SYMBOL_GPL(dma_buf_attach);
783
784 /**
785 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
786 * optionally calls detach() of dma_buf_ops for device-specific detach
787 * @dmabuf: [in] buffer to detach from.
788 * @attach: [in] attachment to be detached; is free'd after this call.
789 *
790 * Clean up a device attachment obtained by calling dma_buf_attach().
791 */
dma_buf_detach(struct dma_buf * dmabuf,struct dma_buf_attachment * attach)792 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
793 {
794 if (WARN_ON(!dmabuf || !attach))
795 return;
796
797 if (attach->sgt) {
798 if (dma_buf_is_dynamic(attach->dmabuf))
799 dma_resv_lock(attach->dmabuf->resv, NULL);
800
801 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
802
803 if (dma_buf_is_dynamic(attach->dmabuf)) {
804 dma_buf_unpin(attach);
805 dma_resv_unlock(attach->dmabuf->resv);
806 }
807 }
808
809 dma_resv_lock(dmabuf->resv, NULL);
810 list_del(&attach->node);
811 dma_resv_unlock(dmabuf->resv);
812 if (dmabuf->ops->detach)
813 dmabuf->ops->detach(dmabuf, attach);
814
815 kfree(attach);
816 }
817 EXPORT_SYMBOL_GPL(dma_buf_detach);
818
819 /**
820 * dma_buf_pin - Lock down the DMA-buf
821 *
822 * @attach: [in] attachment which should be pinned
823 *
824 * Returns:
825 * 0 on success, negative error code on failure.
826 */
dma_buf_pin(struct dma_buf_attachment * attach)827 int dma_buf_pin(struct dma_buf_attachment *attach)
828 {
829 struct dma_buf *dmabuf = attach->dmabuf;
830 int ret = 0;
831
832 dma_resv_assert_held(dmabuf->resv);
833
834 if (dmabuf->ops->pin)
835 ret = dmabuf->ops->pin(attach);
836
837 return ret;
838 }
839 EXPORT_SYMBOL_GPL(dma_buf_pin);
840
841 /**
842 * dma_buf_unpin - Remove lock from DMA-buf
843 *
844 * @attach: [in] attachment which should be unpinned
845 */
dma_buf_unpin(struct dma_buf_attachment * attach)846 void dma_buf_unpin(struct dma_buf_attachment *attach)
847 {
848 struct dma_buf *dmabuf = attach->dmabuf;
849
850 dma_resv_assert_held(dmabuf->resv);
851
852 if (dmabuf->ops->unpin)
853 dmabuf->ops->unpin(attach);
854 }
855 EXPORT_SYMBOL_GPL(dma_buf_unpin);
856
857 /**
858 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
859 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
860 * dma_buf_ops.
861 * @attach: [in] attachment whose scatterlist is to be returned
862 * @direction: [in] direction of DMA transfer
863 *
864 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
865 * on error. May return -EINTR if it is interrupted by a signal.
866 *
867 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
868 * the underlying backing storage is pinned for as long as a mapping exists,
869 * therefore users/importers should not hold onto a mapping for undue amounts of
870 * time.
871 */
dma_buf_map_attachment(struct dma_buf_attachment * attach,enum dma_data_direction direction)872 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
873 enum dma_data_direction direction)
874 {
875 struct sg_table *sg_table;
876 int r;
877
878 might_sleep();
879
880 if (WARN_ON(!attach || !attach->dmabuf))
881 return ERR_PTR(-EINVAL);
882
883 if (dma_buf_attachment_is_dynamic(attach))
884 dma_resv_assert_held(attach->dmabuf->resv);
885
886 if (attach->sgt) {
887 /*
888 * Two mappings with different directions for the same
889 * attachment are not allowed.
890 */
891 if (attach->dir != direction &&
892 attach->dir != DMA_BIDIRECTIONAL)
893 return ERR_PTR(-EBUSY);
894
895 return attach->sgt;
896 }
897
898 if (dma_buf_is_dynamic(attach->dmabuf)) {
899 dma_resv_assert_held(attach->dmabuf->resv);
900 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
901 r = dma_buf_pin(attach);
902 if (r)
903 return ERR_PTR(r);
904 }
905 }
906
907 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
908 if (!sg_table)
909 sg_table = ERR_PTR(-ENOMEM);
910
911 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
912 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
913 dma_buf_unpin(attach);
914
915 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
916 attach->sgt = sg_table;
917 attach->dir = direction;
918 }
919
920 return sg_table;
921 }
922 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
923
924 /**
925 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
926 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
927 * dma_buf_ops.
928 * @attach: [in] attachment to unmap buffer from
929 * @sg_table: [in] scatterlist info of the buffer to unmap
930 * @direction: [in] direction of DMA transfer
931 *
932 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
933 */
dma_buf_unmap_attachment(struct dma_buf_attachment * attach,struct sg_table * sg_table,enum dma_data_direction direction)934 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
935 struct sg_table *sg_table,
936 enum dma_data_direction direction)
937 {
938 might_sleep();
939
940 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
941 return;
942
943 if (dma_buf_attachment_is_dynamic(attach))
944 dma_resv_assert_held(attach->dmabuf->resv);
945
946 if (attach->sgt == sg_table)
947 return;
948
949 if (dma_buf_is_dynamic(attach->dmabuf))
950 dma_resv_assert_held(attach->dmabuf->resv);
951
952 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
953
954 if (dma_buf_is_dynamic(attach->dmabuf) &&
955 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
956 dma_buf_unpin(attach);
957 }
958 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
959
960 /**
961 * dma_buf_move_notify - notify attachments that DMA-buf is moving
962 *
963 * @dmabuf: [in] buffer which is moving
964 *
965 * Informs all attachmenst that they need to destroy and recreated all their
966 * mappings.
967 */
dma_buf_move_notify(struct dma_buf * dmabuf)968 void dma_buf_move_notify(struct dma_buf *dmabuf)
969 {
970 struct dma_buf_attachment *attach;
971
972 dma_resv_assert_held(dmabuf->resv);
973
974 list_for_each_entry(attach, &dmabuf->attachments, node)
975 if (attach->importer_ops)
976 attach->importer_ops->move_notify(attach);
977 }
978 EXPORT_SYMBOL_GPL(dma_buf_move_notify);
979
980 /**
981 * DOC: cpu access
982 *
983 * There are mutliple reasons for supporting CPU access to a dma buffer object:
984 *
985 * - Fallback operations in the kernel, for example when a device is connected
986 * over USB and the kernel needs to shuffle the data around first before
987 * sending it away. Cache coherency is handled by braketing any transactions
988 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
989 * access.
990 *
991 * Since for most kernel internal dma-buf accesses need the entire buffer, a
992 * vmap interface is introduced. Note that on very old 32-bit architectures
993 * vmalloc space might be limited and result in vmap calls failing.
994 *
995 * Interfaces::
996 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
997 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
998 *
999 * The vmap call can fail if there is no vmap support in the exporter, or if
1000 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
1001 * that the dma-buf layer keeps a reference count for all vmap access and
1002 * calls down into the exporter's vmap function only when no vmapping exists,
1003 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
1004 * provided by taking the dma_buf->lock mutex.
1005 *
1006 * - For full compatibility on the importer side with existing userspace
1007 * interfaces, which might already support mmap'ing buffers. This is needed in
1008 * many processing pipelines (e.g. feeding a software rendered image into a
1009 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1010 * framework already supported this and for DMA buffer file descriptors to
1011 * replace ION buffers mmap support was needed.
1012 *
1013 * There is no special interfaces, userspace simply calls mmap on the dma-buf
1014 * fd. But like for CPU access there's a need to braket the actual access,
1015 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1016 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1017 * be restarted.
1018 *
1019 * Some systems might need some sort of cache coherency management e.g. when
1020 * CPU and GPU domains are being accessed through dma-buf at the same time.
1021 * To circumvent this problem there are begin/end coherency markers, that
1022 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1023 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1024 * sequence would be used like following:
1025 *
1026 * - mmap dma-buf fd
1027 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1028 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1029 * want (with the new data being consumed by say the GPU or the scanout
1030 * device)
1031 * - munmap once you don't need the buffer any more
1032 *
1033 * For correctness and optimal performance, it is always required to use
1034 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1035 * mapped address. Userspace cannot rely on coherent access, even when there
1036 * are systems where it just works without calling these ioctls.
1037 *
1038 * - And as a CPU fallback in userspace processing pipelines.
1039 *
1040 * Similar to the motivation for kernel cpu access it is again important that
1041 * the userspace code of a given importing subsystem can use the same
1042 * interfaces with a imported dma-buf buffer object as with a native buffer
1043 * object. This is especially important for drm where the userspace part of
1044 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1045 * use a different way to mmap a buffer rather invasive.
1046 *
1047 * The assumption in the current dma-buf interfaces is that redirecting the
1048 * initial mmap is all that's needed. A survey of some of the existing
1049 * subsystems shows that no driver seems to do any nefarious thing like
1050 * syncing up with outstanding asynchronous processing on the device or
1051 * allocating special resources at fault time. So hopefully this is good
1052 * enough, since adding interfaces to intercept pagefaults and allow pte
1053 * shootdowns would increase the complexity quite a bit.
1054 *
1055 * Interface::
1056 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1057 * unsigned long);
1058 *
1059 * If the importing subsystem simply provides a special-purpose mmap call to
1060 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
1061 * equally achieve that for a dma-buf object.
1062 */
1063
__dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1064 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1065 enum dma_data_direction direction)
1066 {
1067 bool write = (direction == DMA_BIDIRECTIONAL ||
1068 direction == DMA_TO_DEVICE);
1069 struct dma_resv *resv = dmabuf->resv;
1070 long ret;
1071
1072 /* Wait on any implicit rendering fences */
1073 ret = dma_resv_wait_timeout_rcu(resv, write, true,
1074 MAX_SCHEDULE_TIMEOUT);
1075 if (ret < 0)
1076 return ret;
1077
1078 return 0;
1079 }
1080
1081 /**
1082 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1083 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1084 * preparations. Coherency is only guaranteed in the specified range for the
1085 * specified access direction.
1086 * @dmabuf: [in] buffer to prepare cpu access for.
1087 * @direction: [in] length of range for cpu access.
1088 *
1089 * After the cpu access is complete the caller should call
1090 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1091 * it guaranteed to be coherent with other DMA access.
1092 *
1093 * Can return negative error values, returns 0 on success.
1094 */
dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1095 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1096 enum dma_data_direction direction)
1097 {
1098 int ret = 0;
1099
1100 if (WARN_ON(!dmabuf))
1101 return -EINVAL;
1102
1103 if (dmabuf->ops->begin_cpu_access)
1104 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1105
1106 /* Ensure that all fences are waited upon - but we first allow
1107 * the native handler the chance to do so more efficiently if it
1108 * chooses. A double invocation here will be reasonably cheap no-op.
1109 */
1110 if (ret == 0)
1111 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1112
1113 return ret;
1114 }
1115 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1116
1117 /**
1118 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1119 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1120 * actions. Coherency is only guaranteed in the specified range for the
1121 * specified access direction.
1122 * @dmabuf: [in] buffer to complete cpu access for.
1123 * @direction: [in] length of range for cpu access.
1124 *
1125 * This terminates CPU access started with dma_buf_begin_cpu_access().
1126 *
1127 * Can return negative error values, returns 0 on success.
1128 */
dma_buf_end_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1129 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1130 enum dma_data_direction direction)
1131 {
1132 int ret = 0;
1133
1134 WARN_ON(!dmabuf);
1135
1136 if (dmabuf->ops->end_cpu_access)
1137 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1138
1139 return ret;
1140 }
1141 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1142
1143
1144 /**
1145 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1146 * @dmabuf: [in] buffer that should back the vma
1147 * @vma: [in] vma for the mmap
1148 * @pgoff: [in] offset in pages where this mmap should start within the
1149 * dma-buf buffer.
1150 *
1151 * This function adjusts the passed in vma so that it points at the file of the
1152 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1153 * checking on the size of the vma. Then it calls the exporters mmap function to
1154 * set up the mapping.
1155 *
1156 * Can return negative error values, returns 0 on success.
1157 */
dma_buf_mmap(struct dma_buf * dmabuf,struct vm_area_struct * vma,unsigned long pgoff)1158 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1159 unsigned long pgoff)
1160 {
1161 struct file *oldfile;
1162 int ret;
1163
1164 if (WARN_ON(!dmabuf || !vma))
1165 return -EINVAL;
1166
1167 /* check if buffer supports mmap */
1168 if (!dmabuf->ops->mmap)
1169 return -EINVAL;
1170
1171 /* check for offset overflow */
1172 if (pgoff + vma_pages(vma) < pgoff)
1173 return -EOVERFLOW;
1174
1175 /* check for overflowing the buffer's size */
1176 if (pgoff + vma_pages(vma) >
1177 dmabuf->size >> PAGE_SHIFT)
1178 return -EINVAL;
1179
1180 /* readjust the vma */
1181 get_file(dmabuf->file);
1182 oldfile = vma->vm_file;
1183 vma->vm_file = dmabuf->file;
1184 vma->vm_pgoff = pgoff;
1185
1186 ret = dmabuf->ops->mmap(dmabuf, vma);
1187 if (ret) {
1188 /* restore old parameters on failure */
1189 vma->vm_file = oldfile;
1190 fput(dmabuf->file);
1191 } else {
1192 if (oldfile)
1193 fput(oldfile);
1194 }
1195 return ret;
1196
1197 }
1198 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1199
1200 /**
1201 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1202 * address space. Same restrictions as for vmap and friends apply.
1203 * @dmabuf: [in] buffer to vmap
1204 *
1205 * This call may fail due to lack of virtual mapping address space.
1206 * These calls are optional in drivers. The intended use for them
1207 * is for mapping objects linear in kernel space for high use objects.
1208 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1209 *
1210 * Returns NULL on error.
1211 */
dma_buf_vmap(struct dma_buf * dmabuf)1212 void *dma_buf_vmap(struct dma_buf *dmabuf)
1213 {
1214 void *ptr;
1215
1216 if (WARN_ON(!dmabuf))
1217 return NULL;
1218
1219 if (!dmabuf->ops->vmap)
1220 return NULL;
1221
1222 mutex_lock(&dmabuf->lock);
1223 if (dmabuf->vmapping_counter) {
1224 dmabuf->vmapping_counter++;
1225 BUG_ON(!dmabuf->vmap_ptr);
1226 ptr = dmabuf->vmap_ptr;
1227 goto out_unlock;
1228 }
1229
1230 BUG_ON(dmabuf->vmap_ptr);
1231
1232 ptr = dmabuf->ops->vmap(dmabuf);
1233 if (WARN_ON_ONCE(IS_ERR(ptr)))
1234 ptr = NULL;
1235 if (!ptr)
1236 goto out_unlock;
1237
1238 dmabuf->vmap_ptr = ptr;
1239 dmabuf->vmapping_counter = 1;
1240
1241 out_unlock:
1242 mutex_unlock(&dmabuf->lock);
1243 return ptr;
1244 }
1245 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1246
1247 /**
1248 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1249 * @dmabuf: [in] buffer to vunmap
1250 * @vaddr: [in] vmap to vunmap
1251 */
dma_buf_vunmap(struct dma_buf * dmabuf,void * vaddr)1252 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1253 {
1254 if (WARN_ON(!dmabuf))
1255 return;
1256
1257 BUG_ON(!dmabuf->vmap_ptr);
1258 BUG_ON(dmabuf->vmapping_counter == 0);
1259 BUG_ON(dmabuf->vmap_ptr != vaddr);
1260
1261 mutex_lock(&dmabuf->lock);
1262 if (--dmabuf->vmapping_counter == 0) {
1263 if (dmabuf->ops->vunmap)
1264 dmabuf->ops->vunmap(dmabuf, vaddr);
1265 dmabuf->vmap_ptr = NULL;
1266 }
1267 mutex_unlock(&dmabuf->lock);
1268 }
1269 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1270
1271 #ifdef CONFIG_DEBUG_FS
dma_buf_debug_show(struct seq_file * s,void * unused)1272 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1273 {
1274 int ret;
1275 struct dma_buf *buf_obj;
1276 struct dma_buf_attachment *attach_obj;
1277 struct dma_resv *robj;
1278 struct dma_resv_list *fobj;
1279 struct dma_fence *fence;
1280 unsigned seq;
1281 int count = 0, attach_count, shared_count, i;
1282 size_t size = 0;
1283
1284 ret = mutex_lock_interruptible(&db_list.lock);
1285
1286 if (ret)
1287 return ret;
1288
1289 seq_puts(s, "\nDma-buf Objects:\n");
1290 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1291 "size", "flags", "mode", "count", "ino");
1292
1293 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1294
1295 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1296 if (ret)
1297 goto error_unlock;
1298
1299 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1300 buf_obj->size,
1301 buf_obj->file->f_flags, buf_obj->file->f_mode,
1302 file_count(buf_obj->file),
1303 buf_obj->exp_name,
1304 file_inode(buf_obj->file)->i_ino,
1305 buf_obj->name ?: "");
1306
1307 robj = buf_obj->resv;
1308 while (true) {
1309 seq = read_seqcount_begin(&robj->seq);
1310 rcu_read_lock();
1311 fobj = rcu_dereference(robj->fence);
1312 shared_count = fobj ? fobj->shared_count : 0;
1313 fence = rcu_dereference(robj->fence_excl);
1314 if (!read_seqcount_retry(&robj->seq, seq))
1315 break;
1316 rcu_read_unlock();
1317 }
1318
1319 if (fence)
1320 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1321 fence->ops->get_driver_name(fence),
1322 fence->ops->get_timeline_name(fence),
1323 dma_fence_is_signaled(fence) ? "" : "un");
1324 for (i = 0; i < shared_count; i++) {
1325 fence = rcu_dereference(fobj->shared[i]);
1326 if (!dma_fence_get_rcu(fence))
1327 continue;
1328 seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1329 fence->ops->get_driver_name(fence),
1330 fence->ops->get_timeline_name(fence),
1331 dma_fence_is_signaled(fence) ? "" : "un");
1332 dma_fence_put(fence);
1333 }
1334 rcu_read_unlock();
1335
1336 seq_puts(s, "\tAttached Devices:\n");
1337 attach_count = 0;
1338
1339 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1340 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1341 attach_count++;
1342 }
1343 dma_resv_unlock(buf_obj->resv);
1344
1345 seq_printf(s, "Total %d devices attached\n\n",
1346 attach_count);
1347
1348 count++;
1349 size += buf_obj->size;
1350 }
1351
1352 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1353
1354 mutex_unlock(&db_list.lock);
1355 return 0;
1356
1357 error_unlock:
1358 mutex_unlock(&db_list.lock);
1359 return ret;
1360 }
1361
1362 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1363
1364 static struct dentry *dma_buf_debugfs_dir;
1365
dma_buf_init_debugfs(void)1366 static int dma_buf_init_debugfs(void)
1367 {
1368 struct dentry *d;
1369 int err = 0;
1370
1371 d = debugfs_create_dir("dma_buf", NULL);
1372 if (IS_ERR(d))
1373 return PTR_ERR(d);
1374
1375 dma_buf_debugfs_dir = d;
1376
1377 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1378 NULL, &dma_buf_debug_fops);
1379 if (IS_ERR(d)) {
1380 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1381 debugfs_remove_recursive(dma_buf_debugfs_dir);
1382 dma_buf_debugfs_dir = NULL;
1383 err = PTR_ERR(d);
1384 }
1385
1386 return err;
1387 }
1388
dma_buf_uninit_debugfs(void)1389 static void dma_buf_uninit_debugfs(void)
1390 {
1391 debugfs_remove_recursive(dma_buf_debugfs_dir);
1392 }
1393 #else
dma_buf_init_debugfs(void)1394 static inline int dma_buf_init_debugfs(void)
1395 {
1396 return 0;
1397 }
dma_buf_uninit_debugfs(void)1398 static inline void dma_buf_uninit_debugfs(void)
1399 {
1400 }
1401 #endif
1402
dma_buf_init(void)1403 static int __init dma_buf_init(void)
1404 {
1405 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1406 if (IS_ERR(dma_buf_mnt))
1407 return PTR_ERR(dma_buf_mnt);
1408
1409 mutex_init(&db_list.lock);
1410 INIT_LIST_HEAD(&db_list.head);
1411 dma_buf_init_debugfs();
1412 return 0;
1413 }
1414 subsys_initcall(dma_buf_init);
1415
dma_buf_deinit(void)1416 static void __exit dma_buf_deinit(void)
1417 {
1418 dma_buf_uninit_debugfs();
1419 kern_unmount(dma_buf_mnt);
1420 }
1421 __exitcall(dma_buf_deinit);
1422