1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2015 Linaro Limited. All rights reserved.
4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 */
6
7 #include <linux/coresight.h>
8 #include <linux/coresight-pmu.h>
9 #include <linux/cpumask.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/perf_event.h>
15 #include <linux/percpu-defs.h>
16 #include <linux/slab.h>
17 #include <linux/stringhash.h>
18 #include <linux/types.h>
19 #include <linux/workqueue.h>
20
21 #include "coresight-etm-perf.h"
22 #include "coresight-priv.h"
23
24 static struct pmu etm_pmu;
25 static bool etm_perf_up;
26
27 static DEFINE_PER_CPU(struct perf_output_handle, ctx_handle);
28 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
29
30 /* ETMv3.5/PTM's ETMCR is 'config' */
31 PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC));
32 PMU_FORMAT_ATTR(contextid, "config:" __stringify(ETM_OPT_CTXTID));
33 PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS));
34 PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK));
35 /* Sink ID - same for all ETMs */
36 PMU_FORMAT_ATTR(sinkid, "config2:0-31");
37
38 static struct attribute *etm_config_formats_attr[] = {
39 &format_attr_cycacc.attr,
40 &format_attr_contextid.attr,
41 &format_attr_timestamp.attr,
42 &format_attr_retstack.attr,
43 &format_attr_sinkid.attr,
44 NULL,
45 };
46
47 static const struct attribute_group etm_pmu_format_group = {
48 .name = "format",
49 .attrs = etm_config_formats_attr,
50 };
51
52 static struct attribute *etm_config_sinks_attr[] = {
53 NULL,
54 };
55
56 static const struct attribute_group etm_pmu_sinks_group = {
57 .name = "sinks",
58 .attrs = etm_config_sinks_attr,
59 };
60
61 static const struct attribute_group *etm_pmu_attr_groups[] = {
62 &etm_pmu_format_group,
63 &etm_pmu_sinks_group,
64 NULL,
65 };
66
67 static inline struct list_head **
etm_event_cpu_path_ptr(struct etm_event_data * data,int cpu)68 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
69 {
70 return per_cpu_ptr(data->path, cpu);
71 }
72
73 static inline struct list_head *
etm_event_cpu_path(struct etm_event_data * data,int cpu)74 etm_event_cpu_path(struct etm_event_data *data, int cpu)
75 {
76 return *etm_event_cpu_path_ptr(data, cpu);
77 }
78
etm_event_read(struct perf_event * event)79 static void etm_event_read(struct perf_event *event) {}
80
etm_addr_filters_alloc(struct perf_event * event)81 static int etm_addr_filters_alloc(struct perf_event *event)
82 {
83 struct etm_filters *filters;
84 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
85
86 filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
87 if (!filters)
88 return -ENOMEM;
89
90 if (event->parent)
91 memcpy(filters, event->parent->hw.addr_filters,
92 sizeof(*filters));
93
94 event->hw.addr_filters = filters;
95
96 return 0;
97 }
98
etm_event_destroy(struct perf_event * event)99 static void etm_event_destroy(struct perf_event *event)
100 {
101 kfree(event->hw.addr_filters);
102 event->hw.addr_filters = NULL;
103 }
104
etm_event_init(struct perf_event * event)105 static int etm_event_init(struct perf_event *event)
106 {
107 int ret = 0;
108
109 if (event->attr.type != etm_pmu.type) {
110 ret = -ENOENT;
111 goto out;
112 }
113
114 ret = etm_addr_filters_alloc(event);
115 if (ret)
116 goto out;
117
118 event->destroy = etm_event_destroy;
119 out:
120 return ret;
121 }
122
free_sink_buffer(struct etm_event_data * event_data)123 static void free_sink_buffer(struct etm_event_data *event_data)
124 {
125 int cpu;
126 cpumask_t *mask = &event_data->mask;
127 struct coresight_device *sink;
128
129 if (!event_data->snk_config)
130 return;
131
132 if (WARN_ON(cpumask_empty(mask)))
133 return;
134
135 cpu = cpumask_first(mask);
136 sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
137 sink_ops(sink)->free_buffer(event_data->snk_config);
138 }
139
free_event_data(struct work_struct * work)140 static void free_event_data(struct work_struct *work)
141 {
142 int cpu;
143 cpumask_t *mask;
144 struct etm_event_data *event_data;
145
146 event_data = container_of(work, struct etm_event_data, work);
147 mask = &event_data->mask;
148
149 /* Free the sink buffers, if there are any */
150 free_sink_buffer(event_data);
151
152 for_each_cpu(cpu, mask) {
153 struct list_head **ppath;
154
155 ppath = etm_event_cpu_path_ptr(event_data, cpu);
156 if (!(IS_ERR_OR_NULL(*ppath)))
157 coresight_release_path(*ppath);
158 *ppath = NULL;
159 }
160
161 free_percpu(event_data->path);
162 kfree(event_data);
163 }
164
alloc_event_data(int cpu)165 static void *alloc_event_data(int cpu)
166 {
167 cpumask_t *mask;
168 struct etm_event_data *event_data;
169
170 /* First get memory for the session's data */
171 event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
172 if (!event_data)
173 return NULL;
174
175
176 mask = &event_data->mask;
177 if (cpu != -1)
178 cpumask_set_cpu(cpu, mask);
179 else
180 cpumask_copy(mask, cpu_present_mask);
181
182 /*
183 * Each CPU has a single path between source and destination. As such
184 * allocate an array using CPU numbers as indexes. That way a path
185 * for any CPU can easily be accessed at any given time. We proceed
186 * the same way for sessions involving a single CPU. The cost of
187 * unused memory when dealing with single CPU trace scenarios is small
188 * compared to the cost of searching through an optimized array.
189 */
190 event_data->path = alloc_percpu(struct list_head *);
191
192 if (!event_data->path) {
193 kfree(event_data);
194 return NULL;
195 }
196
197 return event_data;
198 }
199
etm_free_aux(void * data)200 static void etm_free_aux(void *data)
201 {
202 struct etm_event_data *event_data = data;
203
204 schedule_work(&event_data->work);
205 }
206
etm_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool overwrite)207 static void *etm_setup_aux(struct perf_event *event, void **pages,
208 int nr_pages, bool overwrite)
209 {
210 u32 id;
211 int cpu = event->cpu;
212 cpumask_t *mask;
213 struct coresight_device *sink = NULL;
214 struct etm_event_data *event_data = NULL;
215
216 event_data = alloc_event_data(cpu);
217 if (!event_data)
218 return NULL;
219 INIT_WORK(&event_data->work, free_event_data);
220
221 /* First get the selected sink from user space. */
222 if (event->attr.config2) {
223 id = (u32)event->attr.config2;
224 sink = coresight_get_sink_by_id(id);
225 }
226
227 mask = &event_data->mask;
228
229 /*
230 * Setup the path for each CPU in a trace session. We try to build
231 * trace path for each CPU in the mask. If we don't find an ETM
232 * for the CPU or fail to build a path, we clear the CPU from the
233 * mask and continue with the rest. If ever we try to trace on those
234 * CPUs, we can handle it and fail the session.
235 */
236 for_each_cpu(cpu, mask) {
237 struct list_head *path;
238 struct coresight_device *csdev;
239
240 csdev = per_cpu(csdev_src, cpu);
241 /*
242 * If there is no ETM associated with this CPU clear it from
243 * the mask and continue with the rest. If ever we try to trace
244 * on this CPU, we handle it accordingly.
245 */
246 if (!csdev) {
247 cpumask_clear_cpu(cpu, mask);
248 continue;
249 }
250
251 /*
252 * No sink provided - look for a default sink for one of the
253 * devices. At present we only support topology where all CPUs
254 * use the same sink [N:1], so only need to find one sink. The
255 * coresight_build_path later will remove any CPU that does not
256 * attach to the sink, or if we have not found a sink.
257 */
258 if (!sink)
259 sink = coresight_find_default_sink(csdev);
260
261 /*
262 * Building a path doesn't enable it, it simply builds a
263 * list of devices from source to sink that can be
264 * referenced later when the path is actually needed.
265 */
266 path = coresight_build_path(csdev, sink);
267 if (IS_ERR(path)) {
268 cpumask_clear_cpu(cpu, mask);
269 continue;
270 }
271
272 *etm_event_cpu_path_ptr(event_data, cpu) = path;
273 }
274
275 /* no sink found for any CPU - cannot trace */
276 if (!sink)
277 goto err;
278
279 /* If we don't have any CPUs ready for tracing, abort */
280 cpu = cpumask_first(mask);
281 if (cpu >= nr_cpu_ids)
282 goto err;
283
284 if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
285 goto err;
286
287 /* Allocate the sink buffer for this session */
288 event_data->snk_config =
289 sink_ops(sink)->alloc_buffer(sink, event, pages,
290 nr_pages, overwrite);
291 if (!event_data->snk_config)
292 goto err;
293
294 out:
295 return event_data;
296
297 err:
298 etm_free_aux(event_data);
299 event_data = NULL;
300 goto out;
301 }
302
etm_event_start(struct perf_event * event,int flags)303 static void etm_event_start(struct perf_event *event, int flags)
304 {
305 int cpu = smp_processor_id();
306 struct etm_event_data *event_data;
307 struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
308 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
309 struct list_head *path;
310
311 if (!csdev)
312 goto fail;
313
314 /*
315 * Deal with the ring buffer API and get a handle on the
316 * session's information.
317 */
318 event_data = perf_aux_output_begin(handle, event);
319 if (!event_data)
320 goto fail;
321
322 /*
323 * Check if this ETM is allowed to trace, as decided
324 * at etm_setup_aux(). This could be due to an unreachable
325 * sink from this ETM. We can't do much in this case if
326 * the sink was specified or hinted to the driver. For
327 * now, simply don't record anything on this ETM.
328 */
329 if (!cpumask_test_cpu(cpu, &event_data->mask))
330 goto fail_end_stop;
331
332 path = etm_event_cpu_path(event_data, cpu);
333 /* We need a sink, no need to continue without one */
334 sink = coresight_get_sink(path);
335 if (WARN_ON_ONCE(!sink))
336 goto fail_end_stop;
337
338 /* Nothing will happen without a path */
339 if (coresight_enable_path(path, CS_MODE_PERF, handle))
340 goto fail_end_stop;
341
342 /* Tell the perf core the event is alive */
343 event->hw.state = 0;
344
345 /* Finally enable the tracer */
346 if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
347 goto fail_disable_path;
348
349 out:
350 return;
351
352 fail_disable_path:
353 coresight_disable_path(path);
354 fail_end_stop:
355 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
356 perf_aux_output_end(handle, 0);
357 fail:
358 event->hw.state = PERF_HES_STOPPED;
359 goto out;
360 }
361
etm_event_stop(struct perf_event * event,int mode)362 static void etm_event_stop(struct perf_event *event, int mode)
363 {
364 int cpu = smp_processor_id();
365 unsigned long size;
366 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
367 struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
368 struct etm_event_data *event_data = perf_get_aux(handle);
369 struct list_head *path;
370
371 if (event->hw.state == PERF_HES_STOPPED)
372 return;
373
374 if (!csdev)
375 return;
376
377 path = etm_event_cpu_path(event_data, cpu);
378 if (!path)
379 return;
380
381 sink = coresight_get_sink(path);
382 if (!sink)
383 return;
384
385 /* stop tracer */
386 source_ops(csdev)->disable(csdev, event);
387
388 /* tell the core */
389 event->hw.state = PERF_HES_STOPPED;
390
391 if (mode & PERF_EF_UPDATE) {
392 if (WARN_ON_ONCE(handle->event != event))
393 return;
394
395 /* update trace information */
396 if (!sink_ops(sink)->update_buffer)
397 return;
398
399 size = sink_ops(sink)->update_buffer(sink, handle,
400 event_data->snk_config);
401 perf_aux_output_end(handle, size);
402 }
403
404 /* Disabling the path make its elements available to other sessions */
405 coresight_disable_path(path);
406 }
407
etm_event_add(struct perf_event * event,int mode)408 static int etm_event_add(struct perf_event *event, int mode)
409 {
410 int ret = 0;
411 struct hw_perf_event *hwc = &event->hw;
412
413 if (mode & PERF_EF_START) {
414 etm_event_start(event, 0);
415 if (hwc->state & PERF_HES_STOPPED)
416 ret = -EINVAL;
417 } else {
418 hwc->state = PERF_HES_STOPPED;
419 }
420
421 return ret;
422 }
423
etm_event_del(struct perf_event * event,int mode)424 static void etm_event_del(struct perf_event *event, int mode)
425 {
426 etm_event_stop(event, PERF_EF_UPDATE);
427 }
428
etm_addr_filters_validate(struct list_head * filters)429 static int etm_addr_filters_validate(struct list_head *filters)
430 {
431 bool range = false, address = false;
432 int index = 0;
433 struct perf_addr_filter *filter;
434
435 list_for_each_entry(filter, filters, entry) {
436 /*
437 * No need to go further if there's no more
438 * room for filters.
439 */
440 if (++index > ETM_ADDR_CMP_MAX)
441 return -EOPNOTSUPP;
442
443 /* filter::size==0 means single address trigger */
444 if (filter->size) {
445 /*
446 * The existing code relies on START/STOP filters
447 * being address filters.
448 */
449 if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
450 filter->action == PERF_ADDR_FILTER_ACTION_STOP)
451 return -EOPNOTSUPP;
452
453 range = true;
454 } else
455 address = true;
456
457 /*
458 * At this time we don't allow range and start/stop filtering
459 * to cohabitate, they have to be mutually exclusive.
460 */
461 if (range && address)
462 return -EOPNOTSUPP;
463 }
464
465 return 0;
466 }
467
etm_addr_filters_sync(struct perf_event * event)468 static void etm_addr_filters_sync(struct perf_event *event)
469 {
470 struct perf_addr_filters_head *head = perf_event_addr_filters(event);
471 unsigned long start, stop;
472 struct perf_addr_filter_range *fr = event->addr_filter_ranges;
473 struct etm_filters *filters = event->hw.addr_filters;
474 struct etm_filter *etm_filter;
475 struct perf_addr_filter *filter;
476 int i = 0;
477
478 list_for_each_entry(filter, &head->list, entry) {
479 start = fr[i].start;
480 stop = start + fr[i].size;
481 etm_filter = &filters->etm_filter[i];
482
483 switch (filter->action) {
484 case PERF_ADDR_FILTER_ACTION_FILTER:
485 etm_filter->start_addr = start;
486 etm_filter->stop_addr = stop;
487 etm_filter->type = ETM_ADDR_TYPE_RANGE;
488 break;
489 case PERF_ADDR_FILTER_ACTION_START:
490 etm_filter->start_addr = start;
491 etm_filter->type = ETM_ADDR_TYPE_START;
492 break;
493 case PERF_ADDR_FILTER_ACTION_STOP:
494 etm_filter->stop_addr = stop;
495 etm_filter->type = ETM_ADDR_TYPE_STOP;
496 break;
497 }
498 i++;
499 }
500
501 filters->nr_filters = i;
502 }
503
etm_perf_symlink(struct coresight_device * csdev,bool link)504 int etm_perf_symlink(struct coresight_device *csdev, bool link)
505 {
506 char entry[sizeof("cpu9999999")];
507 int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
508 struct device *pmu_dev = etm_pmu.dev;
509 struct device *cs_dev = &csdev->dev;
510
511 sprintf(entry, "cpu%d", cpu);
512
513 if (!etm_perf_up)
514 return -EPROBE_DEFER;
515
516 if (link) {
517 ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
518 if (ret)
519 return ret;
520 per_cpu(csdev_src, cpu) = csdev;
521 } else {
522 sysfs_remove_link(&pmu_dev->kobj, entry);
523 per_cpu(csdev_src, cpu) = NULL;
524 }
525
526 return 0;
527 }
528 EXPORT_SYMBOL_GPL(etm_perf_symlink);
529
etm_perf_sink_name_show(struct device * dev,struct device_attribute * dattr,char * buf)530 static ssize_t etm_perf_sink_name_show(struct device *dev,
531 struct device_attribute *dattr,
532 char *buf)
533 {
534 struct dev_ext_attribute *ea;
535
536 ea = container_of(dattr, struct dev_ext_attribute, attr);
537 return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
538 }
539
etm_perf_add_symlink_sink(struct coresight_device * csdev)540 int etm_perf_add_symlink_sink(struct coresight_device *csdev)
541 {
542 int ret;
543 unsigned long hash;
544 const char *name;
545 struct device *pmu_dev = etm_pmu.dev;
546 struct device *dev = &csdev->dev;
547 struct dev_ext_attribute *ea;
548
549 if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
550 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
551 return -EINVAL;
552
553 if (csdev->ea != NULL)
554 return -EINVAL;
555
556 if (!etm_perf_up)
557 return -EPROBE_DEFER;
558
559 ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
560 if (!ea)
561 return -ENOMEM;
562
563 name = dev_name(dev);
564 /* See function coresight_get_sink_by_id() to know where this is used */
565 hash = hashlen_hash(hashlen_string(NULL, name));
566
567 sysfs_attr_init(&ea->attr.attr);
568 ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
569 if (!ea->attr.attr.name)
570 return -ENOMEM;
571
572 ea->attr.attr.mode = 0444;
573 ea->attr.show = etm_perf_sink_name_show;
574 ea->var = (unsigned long *)hash;
575
576 ret = sysfs_add_file_to_group(&pmu_dev->kobj,
577 &ea->attr.attr, "sinks");
578
579 if (!ret)
580 csdev->ea = ea;
581
582 return ret;
583 }
584
etm_perf_del_symlink_sink(struct coresight_device * csdev)585 void etm_perf_del_symlink_sink(struct coresight_device *csdev)
586 {
587 struct device *pmu_dev = etm_pmu.dev;
588 struct dev_ext_attribute *ea = csdev->ea;
589
590 if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
591 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
592 return;
593
594 if (!ea)
595 return;
596
597 sysfs_remove_file_from_group(&pmu_dev->kobj,
598 &ea->attr.attr, "sinks");
599 csdev->ea = NULL;
600 }
601
etm_perf_init(void)602 int __init etm_perf_init(void)
603 {
604 int ret;
605
606 etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE |
607 PERF_PMU_CAP_ITRACE);
608
609 etm_pmu.attr_groups = etm_pmu_attr_groups;
610 etm_pmu.task_ctx_nr = perf_sw_context;
611 etm_pmu.read = etm_event_read;
612 etm_pmu.event_init = etm_event_init;
613 etm_pmu.setup_aux = etm_setup_aux;
614 etm_pmu.free_aux = etm_free_aux;
615 etm_pmu.start = etm_event_start;
616 etm_pmu.stop = etm_event_stop;
617 etm_pmu.add = etm_event_add;
618 etm_pmu.del = etm_event_del;
619 etm_pmu.addr_filters_sync = etm_addr_filters_sync;
620 etm_pmu.addr_filters_validate = etm_addr_filters_validate;
621 etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX;
622
623 ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
624 if (ret == 0)
625 etm_perf_up = true;
626
627 return ret;
628 }
629
etm_perf_exit(void)630 void __exit etm_perf_exit(void)
631 {
632 perf_pmu_unregister(&etm_pmu);
633 }
634