1 /* bnx2x_cmn.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
33 #include "bnx2x_sp.h"
34
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
38 static int bnx2x_poll(struct napi_struct *napi, int budget);
39
bnx2x_add_all_napi_cnic(struct bnx2x * bp)40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
41 {
42 int i;
43
44 /* Add NAPI objects */
45 for_each_rx_queue_cnic(bp, i) {
46 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
47 bnx2x_poll, NAPI_POLL_WEIGHT);
48 }
49 }
50
bnx2x_add_all_napi(struct bnx2x * bp)51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 int i;
54
55 /* Add NAPI objects */
56 for_each_eth_queue(bp, i) {
57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
58 bnx2x_poll, NAPI_POLL_WEIGHT);
59 }
60 }
61
bnx2x_calc_num_queues(struct bnx2x * bp)62 static int bnx2x_calc_num_queues(struct bnx2x *bp)
63 {
64 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
65
66 /* Reduce memory usage in kdump environment by using only one queue */
67 if (is_kdump_kernel())
68 nq = 1;
69
70 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
71 return nq;
72 }
73
74 /**
75 * bnx2x_move_fp - move content of the fastpath structure.
76 *
77 * @bp: driver handle
78 * @from: source FP index
79 * @to: destination FP index
80 *
81 * Makes sure the contents of the bp->fp[to].napi is kept
82 * intact. This is done by first copying the napi struct from
83 * the target to the source, and then mem copying the entire
84 * source onto the target. Update txdata pointers and related
85 * content.
86 */
bnx2x_move_fp(struct bnx2x * bp,int from,int to)87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
88 {
89 struct bnx2x_fastpath *from_fp = &bp->fp[from];
90 struct bnx2x_fastpath *to_fp = &bp->fp[to];
91 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
92 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
93 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
94 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
95 int old_max_eth_txqs, new_max_eth_txqs;
96 int old_txdata_index = 0, new_txdata_index = 0;
97 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
98
99 /* Copy the NAPI object as it has been already initialized */
100 from_fp->napi = to_fp->napi;
101
102 /* Move bnx2x_fastpath contents */
103 memcpy(to_fp, from_fp, sizeof(*to_fp));
104 to_fp->index = to;
105
106 /* Retain the tpa_info of the original `to' version as we don't want
107 * 2 FPs to contain the same tpa_info pointer.
108 */
109 to_fp->tpa_info = old_tpa_info;
110
111 /* move sp_objs contents as well, as their indices match fp ones */
112 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
113
114 /* move fp_stats contents as well, as their indices match fp ones */
115 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
116
117 /* Update txdata pointers in fp and move txdata content accordingly:
118 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 * decremented by max_cos x delta.
120 */
121
122 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
123 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
124 (bp)->max_cos;
125 if (from == FCOE_IDX(bp)) {
126 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 }
129
130 memcpy(&bp->bnx2x_txq[new_txdata_index],
131 &bp->bnx2x_txq[old_txdata_index],
132 sizeof(struct bnx2x_fp_txdata));
133 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
134 }
135
136 /**
137 * bnx2x_fill_fw_str - Fill buffer with FW version string.
138 *
139 * @bp: driver handle
140 * @buf: character buffer to fill with the fw name
141 * @buf_len: length of the above buffer
142 *
143 */
bnx2x_fill_fw_str(struct bnx2x * bp,char * buf,size_t buf_len)144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
145 {
146 if (IS_PF(bp)) {
147 u8 phy_fw_ver[PHY_FW_VER_LEN];
148
149 phy_fw_ver[0] = '\0';
150 bnx2x_get_ext_phy_fw_version(&bp->link_params,
151 phy_fw_ver, PHY_FW_VER_LEN);
152 strlcpy(buf, bp->fw_ver, buf_len);
153 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
154 "bc %d.%d.%d%s%s",
155 (bp->common.bc_ver & 0xff0000) >> 16,
156 (bp->common.bc_ver & 0xff00) >> 8,
157 (bp->common.bc_ver & 0xff),
158 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 } else {
160 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 }
162 }
163
164 /**
165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166 *
167 * @bp: driver handle
168 * @delta: number of eth queues which were not allocated
169 */
bnx2x_shrink_eth_fp(struct bnx2x * bp,int delta)170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173
174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 * backward along the array could cause memory to be overridden
176 */
177 for (cos = 1; cos < bp->max_cos; cos++) {
178 for (i = 0; i < old_eth_num - delta; i++) {
179 struct bnx2x_fastpath *fp = &bp->fp[i];
180 int new_idx = cos * (old_eth_num - delta) + i;
181
182 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 sizeof(struct bnx2x_fp_txdata));
184 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 }
186 }
187 }
188
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190
191 /* free skb in the packet ring at pos idx
192 * return idx of last bd freed
193 */
bnx2x_free_tx_pkt(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,u16 idx,unsigned int * pkts_compl,unsigned int * bytes_compl)194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 u16 idx, unsigned int *pkts_compl,
196 unsigned int *bytes_compl)
197 {
198 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 struct eth_tx_start_bd *tx_start_bd;
200 struct eth_tx_bd *tx_data_bd;
201 struct sk_buff *skb = tx_buf->skb;
202 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 int nbd;
204 u16 split_bd_len = 0;
205
206 /* prefetch skb end pointer to speedup dev_kfree_skb() */
207 prefetch(&skb->end);
208
209 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
210 txdata->txq_index, idx, tx_buf, skb);
211
212 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213
214 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 BNX2X_ERR("BAD nbd!\n");
218 bnx2x_panic();
219 }
220 #endif
221 new_cons = nbd + tx_buf->first_bd;
222
223 /* Get the next bd */
224 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225
226 /* Skip a parse bd... */
227 --nbd;
228 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229
230 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 /* Skip second parse bd... */
232 --nbd;
233 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 }
235
236 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 --nbd;
241 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 }
243
244 /* unmap first bd */
245 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 DMA_TO_DEVICE);
248
249 /* now free frags */
250 while (nbd > 0) {
251
252 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 if (--nbd)
256 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 }
258
259 /* release skb */
260 WARN_ON(!skb);
261 if (likely(skb)) {
262 (*pkts_compl)++;
263 (*bytes_compl) += skb->len;
264 dev_kfree_skb_any(skb);
265 }
266
267 tx_buf->first_bd = 0;
268 tx_buf->skb = NULL;
269
270 return new_cons;
271 }
272
bnx2x_tx_int(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata)273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 struct netdev_queue *txq;
276 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 unsigned int pkts_compl = 0, bytes_compl = 0;
278
279 #ifdef BNX2X_STOP_ON_ERROR
280 if (unlikely(bp->panic))
281 return -1;
282 #endif
283
284 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 sw_cons = txdata->tx_pkt_cons;
287
288 /* Ensure subsequent loads occur after hw_cons */
289 smp_rmb();
290
291 while (sw_cons != hw_cons) {
292 u16 pkt_cons;
293
294 pkt_cons = TX_BD(sw_cons);
295
296 DP(NETIF_MSG_TX_DONE,
297 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
298 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
299
300 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
301 &pkts_compl, &bytes_compl);
302
303 sw_cons++;
304 }
305
306 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
307
308 txdata->tx_pkt_cons = sw_cons;
309 txdata->tx_bd_cons = bd_cons;
310
311 /* Need to make the tx_bd_cons update visible to start_xmit()
312 * before checking for netif_tx_queue_stopped(). Without the
313 * memory barrier, there is a small possibility that
314 * start_xmit() will miss it and cause the queue to be stopped
315 * forever.
316 * On the other hand we need an rmb() here to ensure the proper
317 * ordering of bit testing in the following
318 * netif_tx_queue_stopped(txq) call.
319 */
320 smp_mb();
321
322 if (unlikely(netif_tx_queue_stopped(txq))) {
323 /* Taking tx_lock() is needed to prevent re-enabling the queue
324 * while it's empty. This could have happen if rx_action() gets
325 * suspended in bnx2x_tx_int() after the condition before
326 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
327 *
328 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 * sends some packets consuming the whole queue again->
330 * stops the queue
331 */
332
333 __netif_tx_lock(txq, smp_processor_id());
334
335 if ((netif_tx_queue_stopped(txq)) &&
336 (bp->state == BNX2X_STATE_OPEN) &&
337 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
338 netif_tx_wake_queue(txq);
339
340 __netif_tx_unlock(txq);
341 }
342 return 0;
343 }
344
bnx2x_update_last_max_sge(struct bnx2x_fastpath * fp,u16 idx)345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
346 u16 idx)
347 {
348 u16 last_max = fp->last_max_sge;
349
350 if (SUB_S16(idx, last_max) > 0)
351 fp->last_max_sge = idx;
352 }
353
bnx2x_update_sge_prod(struct bnx2x_fastpath * fp,u16 sge_len,struct eth_end_agg_rx_cqe * cqe)354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
355 u16 sge_len,
356 struct eth_end_agg_rx_cqe *cqe)
357 {
358 struct bnx2x *bp = fp->bp;
359 u16 last_max, last_elem, first_elem;
360 u16 delta = 0;
361 u16 i;
362
363 if (!sge_len)
364 return;
365
366 /* First mark all used pages */
367 for (i = 0; i < sge_len; i++)
368 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
369 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
370
371 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
372 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
373
374 /* Here we assume that the last SGE index is the biggest */
375 prefetch((void *)(fp->sge_mask));
376 bnx2x_update_last_max_sge(fp,
377 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
378
379 last_max = RX_SGE(fp->last_max_sge);
380 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
381 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
382
383 /* If ring is not full */
384 if (last_elem + 1 != first_elem)
385 last_elem++;
386
387 /* Now update the prod */
388 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
389 if (likely(fp->sge_mask[i]))
390 break;
391
392 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
393 delta += BIT_VEC64_ELEM_SZ;
394 }
395
396 if (delta > 0) {
397 fp->rx_sge_prod += delta;
398 /* clear page-end entries */
399 bnx2x_clear_sge_mask_next_elems(fp);
400 }
401
402 DP(NETIF_MSG_RX_STATUS,
403 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
404 fp->last_max_sge, fp->rx_sge_prod);
405 }
406
407 /* Get Toeplitz hash value in the skb using the value from the
408 * CQE (calculated by HW).
409 */
bnx2x_get_rxhash(const struct bnx2x * bp,const struct eth_fast_path_rx_cqe * cqe,enum pkt_hash_types * rxhash_type)410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
411 const struct eth_fast_path_rx_cqe *cqe,
412 enum pkt_hash_types *rxhash_type)
413 {
414 /* Get Toeplitz hash from CQE */
415 if ((bp->dev->features & NETIF_F_RXHASH) &&
416 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
417 enum eth_rss_hash_type htype;
418
419 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
420 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
421 (htype == TCP_IPV6_HASH_TYPE)) ?
422 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
423
424 return le32_to_cpu(cqe->rss_hash_result);
425 }
426 *rxhash_type = PKT_HASH_TYPE_NONE;
427 return 0;
428 }
429
bnx2x_tpa_start(struct bnx2x_fastpath * fp,u16 queue,u16 cons,u16 prod,struct eth_fast_path_rx_cqe * cqe)430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
431 u16 cons, u16 prod,
432 struct eth_fast_path_rx_cqe *cqe)
433 {
434 struct bnx2x *bp = fp->bp;
435 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
436 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
437 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
438 dma_addr_t mapping;
439 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
440 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
441
442 /* print error if current state != stop */
443 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
444 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
445
446 /* Try to map an empty data buffer from the aggregation info */
447 mapping = dma_map_single(&bp->pdev->dev,
448 first_buf->data + NET_SKB_PAD,
449 fp->rx_buf_size, DMA_FROM_DEVICE);
450 /*
451 * ...if it fails - move the skb from the consumer to the producer
452 * and set the current aggregation state as ERROR to drop it
453 * when TPA_STOP arrives.
454 */
455
456 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
457 /* Move the BD from the consumer to the producer */
458 bnx2x_reuse_rx_data(fp, cons, prod);
459 tpa_info->tpa_state = BNX2X_TPA_ERROR;
460 return;
461 }
462
463 /* move empty data from pool to prod */
464 prod_rx_buf->data = first_buf->data;
465 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
466 /* point prod_bd to new data */
467 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
468 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
469
470 /* move partial skb from cons to pool (don't unmap yet) */
471 *first_buf = *cons_rx_buf;
472
473 /* mark bin state as START */
474 tpa_info->parsing_flags =
475 le16_to_cpu(cqe->pars_flags.flags);
476 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
477 tpa_info->tpa_state = BNX2X_TPA_START;
478 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
479 tpa_info->placement_offset = cqe->placement_offset;
480 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
481 if (fp->mode == TPA_MODE_GRO) {
482 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
483 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
484 tpa_info->gro_size = gro_size;
485 }
486
487 #ifdef BNX2X_STOP_ON_ERROR
488 fp->tpa_queue_used |= (1 << queue);
489 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
490 fp->tpa_queue_used);
491 #endif
492 }
493
494 /* Timestamp option length allowed for TPA aggregation:
495 *
496 * nop nop kind length echo val
497 */
498 #define TPA_TSTAMP_OPT_LEN 12
499 /**
500 * bnx2x_set_gro_params - compute GRO values
501 *
502 * @skb: packet skb
503 * @parsing_flags: parsing flags from the START CQE
504 * @len_on_bd: total length of the first packet for the
505 * aggregation.
506 * @pkt_len: length of all segments
507 * @num_of_coalesced_segs: count of segments
508 *
509 * Approximate value of the MSS for this aggregation calculated using
510 * the first packet of it.
511 * Compute number of aggregated segments, and gso_type.
512 */
bnx2x_set_gro_params(struct sk_buff * skb,u16 parsing_flags,u16 len_on_bd,unsigned int pkt_len,u16 num_of_coalesced_segs)513 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
514 u16 len_on_bd, unsigned int pkt_len,
515 u16 num_of_coalesced_segs)
516 {
517 /* TPA aggregation won't have either IP options or TCP options
518 * other than timestamp or IPv6 extension headers.
519 */
520 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
521
522 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
523 PRS_FLAG_OVERETH_IPV6) {
524 hdrs_len += sizeof(struct ipv6hdr);
525 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
526 } else {
527 hdrs_len += sizeof(struct iphdr);
528 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
529 }
530
531 /* Check if there was a TCP timestamp, if there is it's will
532 * always be 12 bytes length: nop nop kind length echo val.
533 *
534 * Otherwise FW would close the aggregation.
535 */
536 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
537 hdrs_len += TPA_TSTAMP_OPT_LEN;
538
539 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
540
541 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
542 * to skb_shinfo(skb)->gso_segs
543 */
544 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
545 }
546
bnx2x_alloc_rx_sge(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)547 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
548 u16 index, gfp_t gfp_mask)
549 {
550 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
551 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
552 struct bnx2x_alloc_pool *pool = &fp->page_pool;
553 dma_addr_t mapping;
554
555 if (!pool->page) {
556 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
557 if (unlikely(!pool->page))
558 return -ENOMEM;
559
560 pool->offset = 0;
561 }
562
563 mapping = dma_map_page(&bp->pdev->dev, pool->page,
564 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
565 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
566 BNX2X_ERR("Can't map sge\n");
567 return -ENOMEM;
568 }
569
570 sw_buf->page = pool->page;
571 sw_buf->offset = pool->offset;
572
573 dma_unmap_addr_set(sw_buf, mapping, mapping);
574
575 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
576 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
577
578 pool->offset += SGE_PAGE_SIZE;
579 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
580 get_page(pool->page);
581 else
582 pool->page = NULL;
583 return 0;
584 }
585
bnx2x_fill_frag_skb(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct sk_buff * skb,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)586 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
587 struct bnx2x_agg_info *tpa_info,
588 u16 pages,
589 struct sk_buff *skb,
590 struct eth_end_agg_rx_cqe *cqe,
591 u16 cqe_idx)
592 {
593 struct sw_rx_page *rx_pg, old_rx_pg;
594 u32 i, frag_len, frag_size;
595 int err, j, frag_id = 0;
596 u16 len_on_bd = tpa_info->len_on_bd;
597 u16 full_page = 0, gro_size = 0;
598
599 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
600
601 if (fp->mode == TPA_MODE_GRO) {
602 gro_size = tpa_info->gro_size;
603 full_page = tpa_info->full_page;
604 }
605
606 /* This is needed in order to enable forwarding support */
607 if (frag_size)
608 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
609 le16_to_cpu(cqe->pkt_len),
610 le16_to_cpu(cqe->num_of_coalesced_segs));
611
612 #ifdef BNX2X_STOP_ON_ERROR
613 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
614 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
615 pages, cqe_idx);
616 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
617 bnx2x_panic();
618 return -EINVAL;
619 }
620 #endif
621
622 /* Run through the SGL and compose the fragmented skb */
623 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
624 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
625
626 /* FW gives the indices of the SGE as if the ring is an array
627 (meaning that "next" element will consume 2 indices) */
628 if (fp->mode == TPA_MODE_GRO)
629 frag_len = min_t(u32, frag_size, (u32)full_page);
630 else /* LRO */
631 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
632
633 rx_pg = &fp->rx_page_ring[sge_idx];
634 old_rx_pg = *rx_pg;
635
636 /* If we fail to allocate a substitute page, we simply stop
637 where we are and drop the whole packet */
638 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
639 if (unlikely(err)) {
640 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
641 return err;
642 }
643
644 dma_unmap_page(&bp->pdev->dev,
645 dma_unmap_addr(&old_rx_pg, mapping),
646 SGE_PAGE_SIZE, DMA_FROM_DEVICE);
647 /* Add one frag and update the appropriate fields in the skb */
648 if (fp->mode == TPA_MODE_LRO)
649 skb_fill_page_desc(skb, j, old_rx_pg.page,
650 old_rx_pg.offset, frag_len);
651 else { /* GRO */
652 int rem;
653 int offset = 0;
654 for (rem = frag_len; rem > 0; rem -= gro_size) {
655 int len = rem > gro_size ? gro_size : rem;
656 skb_fill_page_desc(skb, frag_id++,
657 old_rx_pg.page,
658 old_rx_pg.offset + offset,
659 len);
660 if (offset)
661 get_page(old_rx_pg.page);
662 offset += len;
663 }
664 }
665
666 skb->data_len += frag_len;
667 skb->truesize += SGE_PAGES;
668 skb->len += frag_len;
669
670 frag_size -= frag_len;
671 }
672
673 return 0;
674 }
675
bnx2x_frag_free(const struct bnx2x_fastpath * fp,void * data)676 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
677 {
678 if (fp->rx_frag_size)
679 skb_free_frag(data);
680 else
681 kfree(data);
682 }
683
bnx2x_frag_alloc(const struct bnx2x_fastpath * fp,gfp_t gfp_mask)684 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
685 {
686 if (fp->rx_frag_size) {
687 /* GFP_KERNEL allocations are used only during initialization */
688 if (unlikely(gfpflags_allow_blocking(gfp_mask)))
689 return (void *)__get_free_page(gfp_mask);
690
691 return napi_alloc_frag(fp->rx_frag_size);
692 }
693
694 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
695 }
696
697 #ifdef CONFIG_INET
bnx2x_gro_ip_csum(struct bnx2x * bp,struct sk_buff * skb)698 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
699 {
700 const struct iphdr *iph = ip_hdr(skb);
701 struct tcphdr *th;
702
703 skb_set_transport_header(skb, sizeof(struct iphdr));
704 th = tcp_hdr(skb);
705
706 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
707 iph->saddr, iph->daddr, 0);
708 }
709
bnx2x_gro_ipv6_csum(struct bnx2x * bp,struct sk_buff * skb)710 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
711 {
712 struct ipv6hdr *iph = ipv6_hdr(skb);
713 struct tcphdr *th;
714
715 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
716 th = tcp_hdr(skb);
717
718 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
719 &iph->saddr, &iph->daddr, 0);
720 }
721
bnx2x_gro_csum(struct bnx2x * bp,struct sk_buff * skb,void (* gro_func)(struct bnx2x *,struct sk_buff *))722 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
723 void (*gro_func)(struct bnx2x*, struct sk_buff*))
724 {
725 skb_reset_network_header(skb);
726 gro_func(bp, skb);
727 tcp_gro_complete(skb);
728 }
729 #endif
730
bnx2x_gro_receive(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct sk_buff * skb)731 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
732 struct sk_buff *skb)
733 {
734 #ifdef CONFIG_INET
735 if (skb_shinfo(skb)->gso_size) {
736 switch (be16_to_cpu(skb->protocol)) {
737 case ETH_P_IP:
738 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
739 break;
740 case ETH_P_IPV6:
741 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
742 break;
743 default:
744 netdev_WARN_ONCE(bp->dev,
745 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
746 be16_to_cpu(skb->protocol));
747 }
748 }
749 #endif
750 skb_record_rx_queue(skb, fp->rx_queue);
751 napi_gro_receive(&fp->napi, skb);
752 }
753
bnx2x_tpa_stop(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)754 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
755 struct bnx2x_agg_info *tpa_info,
756 u16 pages,
757 struct eth_end_agg_rx_cqe *cqe,
758 u16 cqe_idx)
759 {
760 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
761 u8 pad = tpa_info->placement_offset;
762 u16 len = tpa_info->len_on_bd;
763 struct sk_buff *skb = NULL;
764 u8 *new_data, *data = rx_buf->data;
765 u8 old_tpa_state = tpa_info->tpa_state;
766
767 tpa_info->tpa_state = BNX2X_TPA_STOP;
768
769 /* If we there was an error during the handling of the TPA_START -
770 * drop this aggregation.
771 */
772 if (old_tpa_state == BNX2X_TPA_ERROR)
773 goto drop;
774
775 /* Try to allocate the new data */
776 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
777 /* Unmap skb in the pool anyway, as we are going to change
778 pool entry status to BNX2X_TPA_STOP even if new skb allocation
779 fails. */
780 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
781 fp->rx_buf_size, DMA_FROM_DEVICE);
782 if (likely(new_data))
783 skb = build_skb(data, fp->rx_frag_size);
784
785 if (likely(skb)) {
786 #ifdef BNX2X_STOP_ON_ERROR
787 if (pad + len > fp->rx_buf_size) {
788 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
789 pad, len, fp->rx_buf_size);
790 bnx2x_panic();
791 bnx2x_frag_free(fp, new_data);
792 return;
793 }
794 #endif
795
796 skb_reserve(skb, pad + NET_SKB_PAD);
797 skb_put(skb, len);
798 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
799
800 skb->protocol = eth_type_trans(skb, bp->dev);
801 skb->ip_summed = CHECKSUM_UNNECESSARY;
802
803 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
804 skb, cqe, cqe_idx)) {
805 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
806 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
807 bnx2x_gro_receive(bp, fp, skb);
808 } else {
809 DP(NETIF_MSG_RX_STATUS,
810 "Failed to allocate new pages - dropping packet!\n");
811 dev_kfree_skb_any(skb);
812 }
813
814 /* put new data in bin */
815 rx_buf->data = new_data;
816
817 return;
818 }
819 if (new_data)
820 bnx2x_frag_free(fp, new_data);
821 drop:
822 /* drop the packet and keep the buffer in the bin */
823 DP(NETIF_MSG_RX_STATUS,
824 "Failed to allocate or map a new skb - dropping packet!\n");
825 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
826 }
827
bnx2x_alloc_rx_data(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)828 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
829 u16 index, gfp_t gfp_mask)
830 {
831 u8 *data;
832 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
833 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
834 dma_addr_t mapping;
835
836 data = bnx2x_frag_alloc(fp, gfp_mask);
837 if (unlikely(data == NULL))
838 return -ENOMEM;
839
840 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
841 fp->rx_buf_size,
842 DMA_FROM_DEVICE);
843 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
844 bnx2x_frag_free(fp, data);
845 BNX2X_ERR("Can't map rx data\n");
846 return -ENOMEM;
847 }
848
849 rx_buf->data = data;
850 dma_unmap_addr_set(rx_buf, mapping, mapping);
851
852 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
853 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
854
855 return 0;
856 }
857
858 static
bnx2x_csum_validate(struct sk_buff * skb,union eth_rx_cqe * cqe,struct bnx2x_fastpath * fp,struct bnx2x_eth_q_stats * qstats)859 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
860 struct bnx2x_fastpath *fp,
861 struct bnx2x_eth_q_stats *qstats)
862 {
863 /* Do nothing if no L4 csum validation was done.
864 * We do not check whether IP csum was validated. For IPv4 we assume
865 * that if the card got as far as validating the L4 csum, it also
866 * validated the IP csum. IPv6 has no IP csum.
867 */
868 if (cqe->fast_path_cqe.status_flags &
869 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
870 return;
871
872 /* If L4 validation was done, check if an error was found. */
873
874 if (cqe->fast_path_cqe.type_error_flags &
875 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
876 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
877 qstats->hw_csum_err++;
878 else
879 skb->ip_summed = CHECKSUM_UNNECESSARY;
880 }
881
bnx2x_rx_int(struct bnx2x_fastpath * fp,int budget)882 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
883 {
884 struct bnx2x *bp = fp->bp;
885 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
886 u16 sw_comp_cons, sw_comp_prod;
887 int rx_pkt = 0;
888 union eth_rx_cqe *cqe;
889 struct eth_fast_path_rx_cqe *cqe_fp;
890
891 #ifdef BNX2X_STOP_ON_ERROR
892 if (unlikely(bp->panic))
893 return 0;
894 #endif
895 if (budget <= 0)
896 return rx_pkt;
897
898 bd_cons = fp->rx_bd_cons;
899 bd_prod = fp->rx_bd_prod;
900 bd_prod_fw = bd_prod;
901 sw_comp_cons = fp->rx_comp_cons;
902 sw_comp_prod = fp->rx_comp_prod;
903
904 comp_ring_cons = RCQ_BD(sw_comp_cons);
905 cqe = &fp->rx_comp_ring[comp_ring_cons];
906 cqe_fp = &cqe->fast_path_cqe;
907
908 DP(NETIF_MSG_RX_STATUS,
909 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
910
911 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
912 struct sw_rx_bd *rx_buf = NULL;
913 struct sk_buff *skb;
914 u8 cqe_fp_flags;
915 enum eth_rx_cqe_type cqe_fp_type;
916 u16 len, pad, queue;
917 u8 *data;
918 u32 rxhash;
919 enum pkt_hash_types rxhash_type;
920
921 #ifdef BNX2X_STOP_ON_ERROR
922 if (unlikely(bp->panic))
923 return 0;
924 #endif
925
926 bd_prod = RX_BD(bd_prod);
927 bd_cons = RX_BD(bd_cons);
928
929 /* A rmb() is required to ensure that the CQE is not read
930 * before it is written by the adapter DMA. PCI ordering
931 * rules will make sure the other fields are written before
932 * the marker at the end of struct eth_fast_path_rx_cqe
933 * but without rmb() a weakly ordered processor can process
934 * stale data. Without the barrier TPA state-machine might
935 * enter inconsistent state and kernel stack might be
936 * provided with incorrect packet description - these lead
937 * to various kernel crashed.
938 */
939 rmb();
940
941 cqe_fp_flags = cqe_fp->type_error_flags;
942 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
943
944 DP(NETIF_MSG_RX_STATUS,
945 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
946 CQE_TYPE(cqe_fp_flags),
947 cqe_fp_flags, cqe_fp->status_flags,
948 le32_to_cpu(cqe_fp->rss_hash_result),
949 le16_to_cpu(cqe_fp->vlan_tag),
950 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
951
952 /* is this a slowpath msg? */
953 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
954 bnx2x_sp_event(fp, cqe);
955 goto next_cqe;
956 }
957
958 rx_buf = &fp->rx_buf_ring[bd_cons];
959 data = rx_buf->data;
960
961 if (!CQE_TYPE_FAST(cqe_fp_type)) {
962 struct bnx2x_agg_info *tpa_info;
963 u16 frag_size, pages;
964 #ifdef BNX2X_STOP_ON_ERROR
965 /* sanity check */
966 if (fp->mode == TPA_MODE_DISABLED &&
967 (CQE_TYPE_START(cqe_fp_type) ||
968 CQE_TYPE_STOP(cqe_fp_type)))
969 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
970 CQE_TYPE(cqe_fp_type));
971 #endif
972
973 if (CQE_TYPE_START(cqe_fp_type)) {
974 u16 queue = cqe_fp->queue_index;
975 DP(NETIF_MSG_RX_STATUS,
976 "calling tpa_start on queue %d\n",
977 queue);
978
979 bnx2x_tpa_start(fp, queue,
980 bd_cons, bd_prod,
981 cqe_fp);
982
983 goto next_rx;
984 }
985 queue = cqe->end_agg_cqe.queue_index;
986 tpa_info = &fp->tpa_info[queue];
987 DP(NETIF_MSG_RX_STATUS,
988 "calling tpa_stop on queue %d\n",
989 queue);
990
991 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
992 tpa_info->len_on_bd;
993
994 if (fp->mode == TPA_MODE_GRO)
995 pages = (frag_size + tpa_info->full_page - 1) /
996 tpa_info->full_page;
997 else
998 pages = SGE_PAGE_ALIGN(frag_size) >>
999 SGE_PAGE_SHIFT;
1000
1001 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1002 &cqe->end_agg_cqe, comp_ring_cons);
1003 #ifdef BNX2X_STOP_ON_ERROR
1004 if (bp->panic)
1005 return 0;
1006 #endif
1007
1008 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1009 goto next_cqe;
1010 }
1011 /* non TPA */
1012 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1013 pad = cqe_fp->placement_offset;
1014 dma_sync_single_for_cpu(&bp->pdev->dev,
1015 dma_unmap_addr(rx_buf, mapping),
1016 pad + RX_COPY_THRESH,
1017 DMA_FROM_DEVICE);
1018 pad += NET_SKB_PAD;
1019 prefetch(data + pad); /* speedup eth_type_trans() */
1020 /* is this an error packet? */
1021 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1022 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1023 "ERROR flags %x rx packet %u\n",
1024 cqe_fp_flags, sw_comp_cons);
1025 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1026 goto reuse_rx;
1027 }
1028
1029 /* Since we don't have a jumbo ring
1030 * copy small packets if mtu > 1500
1031 */
1032 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1033 (len <= RX_COPY_THRESH)) {
1034 skb = napi_alloc_skb(&fp->napi, len);
1035 if (skb == NULL) {
1036 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1037 "ERROR packet dropped because of alloc failure\n");
1038 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1039 goto reuse_rx;
1040 }
1041 memcpy(skb->data, data + pad, len);
1042 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1043 } else {
1044 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1045 GFP_ATOMIC) == 0)) {
1046 dma_unmap_single(&bp->pdev->dev,
1047 dma_unmap_addr(rx_buf, mapping),
1048 fp->rx_buf_size,
1049 DMA_FROM_DEVICE);
1050 skb = build_skb(data, fp->rx_frag_size);
1051 if (unlikely(!skb)) {
1052 bnx2x_frag_free(fp, data);
1053 bnx2x_fp_qstats(bp, fp)->
1054 rx_skb_alloc_failed++;
1055 goto next_rx;
1056 }
1057 skb_reserve(skb, pad);
1058 } else {
1059 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1060 "ERROR packet dropped because of alloc failure\n");
1061 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1062 reuse_rx:
1063 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1064 goto next_rx;
1065 }
1066 }
1067
1068 skb_put(skb, len);
1069 skb->protocol = eth_type_trans(skb, bp->dev);
1070
1071 /* Set Toeplitz hash for a none-LRO skb */
1072 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1073 skb_set_hash(skb, rxhash, rxhash_type);
1074
1075 skb_checksum_none_assert(skb);
1076
1077 if (bp->dev->features & NETIF_F_RXCSUM)
1078 bnx2x_csum_validate(skb, cqe, fp,
1079 bnx2x_fp_qstats(bp, fp));
1080
1081 skb_record_rx_queue(skb, fp->rx_queue);
1082
1083 /* Check if this packet was timestamped */
1084 if (unlikely(cqe->fast_path_cqe.type_error_flags &
1085 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1086 bnx2x_set_rx_ts(bp, skb);
1087
1088 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1089 PARSING_FLAGS_VLAN)
1090 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1091 le16_to_cpu(cqe_fp->vlan_tag));
1092
1093 napi_gro_receive(&fp->napi, skb);
1094 next_rx:
1095 rx_buf->data = NULL;
1096
1097 bd_cons = NEXT_RX_IDX(bd_cons);
1098 bd_prod = NEXT_RX_IDX(bd_prod);
1099 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1100 rx_pkt++;
1101 next_cqe:
1102 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1103 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1104
1105 /* mark CQE as free */
1106 BNX2X_SEED_CQE(cqe_fp);
1107
1108 if (rx_pkt == budget)
1109 break;
1110
1111 comp_ring_cons = RCQ_BD(sw_comp_cons);
1112 cqe = &fp->rx_comp_ring[comp_ring_cons];
1113 cqe_fp = &cqe->fast_path_cqe;
1114 } /* while */
1115
1116 fp->rx_bd_cons = bd_cons;
1117 fp->rx_bd_prod = bd_prod_fw;
1118 fp->rx_comp_cons = sw_comp_cons;
1119 fp->rx_comp_prod = sw_comp_prod;
1120
1121 /* Update producers */
1122 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1123 fp->rx_sge_prod);
1124
1125 return rx_pkt;
1126 }
1127
bnx2x_msix_fp_int(int irq,void * fp_cookie)1128 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1129 {
1130 struct bnx2x_fastpath *fp = fp_cookie;
1131 struct bnx2x *bp = fp->bp;
1132 u8 cos;
1133
1134 DP(NETIF_MSG_INTR,
1135 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1136 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1137
1138 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1139
1140 #ifdef BNX2X_STOP_ON_ERROR
1141 if (unlikely(bp->panic))
1142 return IRQ_HANDLED;
1143 #endif
1144
1145 /* Handle Rx and Tx according to MSI-X vector */
1146 for_each_cos_in_tx_queue(fp, cos)
1147 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1148
1149 prefetch(&fp->sb_running_index[SM_RX_ID]);
1150 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1151
1152 return IRQ_HANDLED;
1153 }
1154
1155 /* HW Lock for shared dual port PHYs */
bnx2x_acquire_phy_lock(struct bnx2x * bp)1156 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1157 {
1158 mutex_lock(&bp->port.phy_mutex);
1159
1160 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1161 }
1162
bnx2x_release_phy_lock(struct bnx2x * bp)1163 void bnx2x_release_phy_lock(struct bnx2x *bp)
1164 {
1165 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1166
1167 mutex_unlock(&bp->port.phy_mutex);
1168 }
1169
1170 /* calculates MF speed according to current linespeed and MF configuration */
bnx2x_get_mf_speed(struct bnx2x * bp)1171 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1172 {
1173 u16 line_speed = bp->link_vars.line_speed;
1174 if (IS_MF(bp)) {
1175 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1176 bp->mf_config[BP_VN(bp)]);
1177
1178 /* Calculate the current MAX line speed limit for the MF
1179 * devices
1180 */
1181 if (IS_MF_PERCENT_BW(bp))
1182 line_speed = (line_speed * maxCfg) / 100;
1183 else { /* SD mode */
1184 u16 vn_max_rate = maxCfg * 100;
1185
1186 if (vn_max_rate < line_speed)
1187 line_speed = vn_max_rate;
1188 }
1189 }
1190
1191 return line_speed;
1192 }
1193
1194 /**
1195 * bnx2x_fill_report_data - fill link report data to report
1196 *
1197 * @bp: driver handle
1198 * @data: link state to update
1199 *
1200 * It uses a none-atomic bit operations because is called under the mutex.
1201 */
bnx2x_fill_report_data(struct bnx2x * bp,struct bnx2x_link_report_data * data)1202 static void bnx2x_fill_report_data(struct bnx2x *bp,
1203 struct bnx2x_link_report_data *data)
1204 {
1205 memset(data, 0, sizeof(*data));
1206
1207 if (IS_PF(bp)) {
1208 /* Fill the report data: effective line speed */
1209 data->line_speed = bnx2x_get_mf_speed(bp);
1210
1211 /* Link is down */
1212 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1213 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1214 &data->link_report_flags);
1215
1216 if (!BNX2X_NUM_ETH_QUEUES(bp))
1217 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1218 &data->link_report_flags);
1219
1220 /* Full DUPLEX */
1221 if (bp->link_vars.duplex == DUPLEX_FULL)
1222 __set_bit(BNX2X_LINK_REPORT_FD,
1223 &data->link_report_flags);
1224
1225 /* Rx Flow Control is ON */
1226 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1227 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1228 &data->link_report_flags);
1229
1230 /* Tx Flow Control is ON */
1231 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1232 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1233 &data->link_report_flags);
1234 } else { /* VF */
1235 *data = bp->vf_link_vars;
1236 }
1237 }
1238
1239 /**
1240 * bnx2x_link_report - report link status to OS.
1241 *
1242 * @bp: driver handle
1243 *
1244 * Calls the __bnx2x_link_report() under the same locking scheme
1245 * as a link/PHY state managing code to ensure a consistent link
1246 * reporting.
1247 */
1248
bnx2x_link_report(struct bnx2x * bp)1249 void bnx2x_link_report(struct bnx2x *bp)
1250 {
1251 bnx2x_acquire_phy_lock(bp);
1252 __bnx2x_link_report(bp);
1253 bnx2x_release_phy_lock(bp);
1254 }
1255
1256 /**
1257 * __bnx2x_link_report - report link status to OS.
1258 *
1259 * @bp: driver handle
1260 *
1261 * None atomic implementation.
1262 * Should be called under the phy_lock.
1263 */
__bnx2x_link_report(struct bnx2x * bp)1264 void __bnx2x_link_report(struct bnx2x *bp)
1265 {
1266 struct bnx2x_link_report_data cur_data;
1267
1268 if (bp->force_link_down) {
1269 bp->link_vars.link_up = 0;
1270 return;
1271 }
1272
1273 /* reread mf_cfg */
1274 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1275 bnx2x_read_mf_cfg(bp);
1276
1277 /* Read the current link report info */
1278 bnx2x_fill_report_data(bp, &cur_data);
1279
1280 /* Don't report link down or exactly the same link status twice */
1281 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1282 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1283 &bp->last_reported_link.link_report_flags) &&
1284 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1285 &cur_data.link_report_flags)))
1286 return;
1287
1288 bp->link_cnt++;
1289
1290 /* We are going to report a new link parameters now -
1291 * remember the current data for the next time.
1292 */
1293 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1294
1295 /* propagate status to VFs */
1296 if (IS_PF(bp))
1297 bnx2x_iov_link_update(bp);
1298
1299 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1300 &cur_data.link_report_flags)) {
1301 netif_carrier_off(bp->dev);
1302 netdev_err(bp->dev, "NIC Link is Down\n");
1303 return;
1304 } else {
1305 const char *duplex;
1306 const char *flow;
1307
1308 netif_carrier_on(bp->dev);
1309
1310 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1311 &cur_data.link_report_flags))
1312 duplex = "full";
1313 else
1314 duplex = "half";
1315
1316 /* Handle the FC at the end so that only these flags would be
1317 * possibly set. This way we may easily check if there is no FC
1318 * enabled.
1319 */
1320 if (cur_data.link_report_flags) {
1321 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1322 &cur_data.link_report_flags)) {
1323 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1324 &cur_data.link_report_flags))
1325 flow = "ON - receive & transmit";
1326 else
1327 flow = "ON - receive";
1328 } else {
1329 flow = "ON - transmit";
1330 }
1331 } else {
1332 flow = "none";
1333 }
1334 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1335 cur_data.line_speed, duplex, flow);
1336 }
1337 }
1338
bnx2x_set_next_page_sgl(struct bnx2x_fastpath * fp)1339 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1340 {
1341 int i;
1342
1343 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1344 struct eth_rx_sge *sge;
1345
1346 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1347 sge->addr_hi =
1348 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1349 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1350
1351 sge->addr_lo =
1352 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1353 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1354 }
1355 }
1356
bnx2x_free_tpa_pool(struct bnx2x * bp,struct bnx2x_fastpath * fp,int last)1357 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1358 struct bnx2x_fastpath *fp, int last)
1359 {
1360 int i;
1361
1362 for (i = 0; i < last; i++) {
1363 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1364 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1365 u8 *data = first_buf->data;
1366
1367 if (data == NULL) {
1368 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1369 continue;
1370 }
1371 if (tpa_info->tpa_state == BNX2X_TPA_START)
1372 dma_unmap_single(&bp->pdev->dev,
1373 dma_unmap_addr(first_buf, mapping),
1374 fp->rx_buf_size, DMA_FROM_DEVICE);
1375 bnx2x_frag_free(fp, data);
1376 first_buf->data = NULL;
1377 }
1378 }
1379
bnx2x_init_rx_rings_cnic(struct bnx2x * bp)1380 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1381 {
1382 int j;
1383
1384 for_each_rx_queue_cnic(bp, j) {
1385 struct bnx2x_fastpath *fp = &bp->fp[j];
1386
1387 fp->rx_bd_cons = 0;
1388
1389 /* Activate BD ring */
1390 /* Warning!
1391 * this will generate an interrupt (to the TSTORM)
1392 * must only be done after chip is initialized
1393 */
1394 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1395 fp->rx_sge_prod);
1396 }
1397 }
1398
bnx2x_init_rx_rings(struct bnx2x * bp)1399 void bnx2x_init_rx_rings(struct bnx2x *bp)
1400 {
1401 int func = BP_FUNC(bp);
1402 u16 ring_prod;
1403 int i, j;
1404
1405 /* Allocate TPA resources */
1406 for_each_eth_queue(bp, j) {
1407 struct bnx2x_fastpath *fp = &bp->fp[j];
1408
1409 DP(NETIF_MSG_IFUP,
1410 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1411
1412 if (fp->mode != TPA_MODE_DISABLED) {
1413 /* Fill the per-aggregation pool */
1414 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1415 struct bnx2x_agg_info *tpa_info =
1416 &fp->tpa_info[i];
1417 struct sw_rx_bd *first_buf =
1418 &tpa_info->first_buf;
1419
1420 first_buf->data =
1421 bnx2x_frag_alloc(fp, GFP_KERNEL);
1422 if (!first_buf->data) {
1423 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1424 j);
1425 bnx2x_free_tpa_pool(bp, fp, i);
1426 fp->mode = TPA_MODE_DISABLED;
1427 break;
1428 }
1429 dma_unmap_addr_set(first_buf, mapping, 0);
1430 tpa_info->tpa_state = BNX2X_TPA_STOP;
1431 }
1432
1433 /* "next page" elements initialization */
1434 bnx2x_set_next_page_sgl(fp);
1435
1436 /* set SGEs bit mask */
1437 bnx2x_init_sge_ring_bit_mask(fp);
1438
1439 /* Allocate SGEs and initialize the ring elements */
1440 for (i = 0, ring_prod = 0;
1441 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1442
1443 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1444 GFP_KERNEL) < 0) {
1445 BNX2X_ERR("was only able to allocate %d rx sges\n",
1446 i);
1447 BNX2X_ERR("disabling TPA for queue[%d]\n",
1448 j);
1449 /* Cleanup already allocated elements */
1450 bnx2x_free_rx_sge_range(bp, fp,
1451 ring_prod);
1452 bnx2x_free_tpa_pool(bp, fp,
1453 MAX_AGG_QS(bp));
1454 fp->mode = TPA_MODE_DISABLED;
1455 ring_prod = 0;
1456 break;
1457 }
1458 ring_prod = NEXT_SGE_IDX(ring_prod);
1459 }
1460
1461 fp->rx_sge_prod = ring_prod;
1462 }
1463 }
1464
1465 for_each_eth_queue(bp, j) {
1466 struct bnx2x_fastpath *fp = &bp->fp[j];
1467
1468 fp->rx_bd_cons = 0;
1469
1470 /* Activate BD ring */
1471 /* Warning!
1472 * this will generate an interrupt (to the TSTORM)
1473 * must only be done after chip is initialized
1474 */
1475 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1476 fp->rx_sge_prod);
1477
1478 if (j != 0)
1479 continue;
1480
1481 if (CHIP_IS_E1(bp)) {
1482 REG_WR(bp, BAR_USTRORM_INTMEM +
1483 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1484 U64_LO(fp->rx_comp_mapping));
1485 REG_WR(bp, BAR_USTRORM_INTMEM +
1486 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1487 U64_HI(fp->rx_comp_mapping));
1488 }
1489 }
1490 }
1491
bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath * fp)1492 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1493 {
1494 u8 cos;
1495 struct bnx2x *bp = fp->bp;
1496
1497 for_each_cos_in_tx_queue(fp, cos) {
1498 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1499 unsigned pkts_compl = 0, bytes_compl = 0;
1500
1501 u16 sw_prod = txdata->tx_pkt_prod;
1502 u16 sw_cons = txdata->tx_pkt_cons;
1503
1504 while (sw_cons != sw_prod) {
1505 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1506 &pkts_compl, &bytes_compl);
1507 sw_cons++;
1508 }
1509
1510 netdev_tx_reset_queue(
1511 netdev_get_tx_queue(bp->dev,
1512 txdata->txq_index));
1513 }
1514 }
1515
bnx2x_free_tx_skbs_cnic(struct bnx2x * bp)1516 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1517 {
1518 int i;
1519
1520 for_each_tx_queue_cnic(bp, i) {
1521 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1522 }
1523 }
1524
bnx2x_free_tx_skbs(struct bnx2x * bp)1525 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1526 {
1527 int i;
1528
1529 for_each_eth_queue(bp, i) {
1530 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1531 }
1532 }
1533
bnx2x_free_rx_bds(struct bnx2x_fastpath * fp)1534 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1535 {
1536 struct bnx2x *bp = fp->bp;
1537 int i;
1538
1539 /* ring wasn't allocated */
1540 if (fp->rx_buf_ring == NULL)
1541 return;
1542
1543 for (i = 0; i < NUM_RX_BD; i++) {
1544 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1545 u8 *data = rx_buf->data;
1546
1547 if (data == NULL)
1548 continue;
1549 dma_unmap_single(&bp->pdev->dev,
1550 dma_unmap_addr(rx_buf, mapping),
1551 fp->rx_buf_size, DMA_FROM_DEVICE);
1552
1553 rx_buf->data = NULL;
1554 bnx2x_frag_free(fp, data);
1555 }
1556 }
1557
bnx2x_free_rx_skbs_cnic(struct bnx2x * bp)1558 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1559 {
1560 int j;
1561
1562 for_each_rx_queue_cnic(bp, j) {
1563 bnx2x_free_rx_bds(&bp->fp[j]);
1564 }
1565 }
1566
bnx2x_free_rx_skbs(struct bnx2x * bp)1567 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1568 {
1569 int j;
1570
1571 for_each_eth_queue(bp, j) {
1572 struct bnx2x_fastpath *fp = &bp->fp[j];
1573
1574 bnx2x_free_rx_bds(fp);
1575
1576 if (fp->mode != TPA_MODE_DISABLED)
1577 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1578 }
1579 }
1580
bnx2x_free_skbs_cnic(struct bnx2x * bp)1581 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1582 {
1583 bnx2x_free_tx_skbs_cnic(bp);
1584 bnx2x_free_rx_skbs_cnic(bp);
1585 }
1586
bnx2x_free_skbs(struct bnx2x * bp)1587 void bnx2x_free_skbs(struct bnx2x *bp)
1588 {
1589 bnx2x_free_tx_skbs(bp);
1590 bnx2x_free_rx_skbs(bp);
1591 }
1592
bnx2x_update_max_mf_config(struct bnx2x * bp,u32 value)1593 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1594 {
1595 /* load old values */
1596 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1597
1598 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1599 /* leave all but MAX value */
1600 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1601
1602 /* set new MAX value */
1603 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1604 & FUNC_MF_CFG_MAX_BW_MASK;
1605
1606 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1607 }
1608 }
1609
1610 /**
1611 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1612 *
1613 * @bp: driver handle
1614 * @nvecs: number of vectors to be released
1615 */
bnx2x_free_msix_irqs(struct bnx2x * bp,int nvecs)1616 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1617 {
1618 int i, offset = 0;
1619
1620 if (nvecs == offset)
1621 return;
1622
1623 /* VFs don't have a default SB */
1624 if (IS_PF(bp)) {
1625 free_irq(bp->msix_table[offset].vector, bp->dev);
1626 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1627 bp->msix_table[offset].vector);
1628 offset++;
1629 }
1630
1631 if (CNIC_SUPPORT(bp)) {
1632 if (nvecs == offset)
1633 return;
1634 offset++;
1635 }
1636
1637 for_each_eth_queue(bp, i) {
1638 if (nvecs == offset)
1639 return;
1640 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1641 i, bp->msix_table[offset].vector);
1642
1643 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1644 }
1645 }
1646
bnx2x_free_irq(struct bnx2x * bp)1647 void bnx2x_free_irq(struct bnx2x *bp)
1648 {
1649 if (bp->flags & USING_MSIX_FLAG &&
1650 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1651 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1652
1653 /* vfs don't have a default status block */
1654 if (IS_PF(bp))
1655 nvecs++;
1656
1657 bnx2x_free_msix_irqs(bp, nvecs);
1658 } else {
1659 free_irq(bp->dev->irq, bp->dev);
1660 }
1661 }
1662
bnx2x_enable_msix(struct bnx2x * bp)1663 int bnx2x_enable_msix(struct bnx2x *bp)
1664 {
1665 int msix_vec = 0, i, rc;
1666
1667 /* VFs don't have a default status block */
1668 if (IS_PF(bp)) {
1669 bp->msix_table[msix_vec].entry = msix_vec;
1670 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1671 bp->msix_table[0].entry);
1672 msix_vec++;
1673 }
1674
1675 /* Cnic requires an msix vector for itself */
1676 if (CNIC_SUPPORT(bp)) {
1677 bp->msix_table[msix_vec].entry = msix_vec;
1678 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1679 msix_vec, bp->msix_table[msix_vec].entry);
1680 msix_vec++;
1681 }
1682
1683 /* We need separate vectors for ETH queues only (not FCoE) */
1684 for_each_eth_queue(bp, i) {
1685 bp->msix_table[msix_vec].entry = msix_vec;
1686 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1687 msix_vec, msix_vec, i);
1688 msix_vec++;
1689 }
1690
1691 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1692 msix_vec);
1693
1694 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1695 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1696 /*
1697 * reconfigure number of tx/rx queues according to available
1698 * MSI-X vectors
1699 */
1700 if (rc == -ENOSPC) {
1701 /* Get by with single vector */
1702 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1703 if (rc < 0) {
1704 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1705 rc);
1706 goto no_msix;
1707 }
1708
1709 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1710 bp->flags |= USING_SINGLE_MSIX_FLAG;
1711
1712 BNX2X_DEV_INFO("set number of queues to 1\n");
1713 bp->num_ethernet_queues = 1;
1714 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1715 } else if (rc < 0) {
1716 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1717 goto no_msix;
1718 } else if (rc < msix_vec) {
1719 /* how less vectors we will have? */
1720 int diff = msix_vec - rc;
1721
1722 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1723
1724 /*
1725 * decrease number of queues by number of unallocated entries
1726 */
1727 bp->num_ethernet_queues -= diff;
1728 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1729
1730 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1731 bp->num_queues);
1732 }
1733
1734 bp->flags |= USING_MSIX_FLAG;
1735
1736 return 0;
1737
1738 no_msix:
1739 /* fall to INTx if not enough memory */
1740 if (rc == -ENOMEM)
1741 bp->flags |= DISABLE_MSI_FLAG;
1742
1743 return rc;
1744 }
1745
bnx2x_req_msix_irqs(struct bnx2x * bp)1746 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1747 {
1748 int i, rc, offset = 0;
1749
1750 /* no default status block for vf */
1751 if (IS_PF(bp)) {
1752 rc = request_irq(bp->msix_table[offset++].vector,
1753 bnx2x_msix_sp_int, 0,
1754 bp->dev->name, bp->dev);
1755 if (rc) {
1756 BNX2X_ERR("request sp irq failed\n");
1757 return -EBUSY;
1758 }
1759 }
1760
1761 if (CNIC_SUPPORT(bp))
1762 offset++;
1763
1764 for_each_eth_queue(bp, i) {
1765 struct bnx2x_fastpath *fp = &bp->fp[i];
1766 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1767 bp->dev->name, i);
1768
1769 rc = request_irq(bp->msix_table[offset].vector,
1770 bnx2x_msix_fp_int, 0, fp->name, fp);
1771 if (rc) {
1772 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1773 bp->msix_table[offset].vector, rc);
1774 bnx2x_free_msix_irqs(bp, offset);
1775 return -EBUSY;
1776 }
1777
1778 offset++;
1779 }
1780
1781 i = BNX2X_NUM_ETH_QUEUES(bp);
1782 if (IS_PF(bp)) {
1783 offset = 1 + CNIC_SUPPORT(bp);
1784 netdev_info(bp->dev,
1785 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1786 bp->msix_table[0].vector,
1787 0, bp->msix_table[offset].vector,
1788 i - 1, bp->msix_table[offset + i - 1].vector);
1789 } else {
1790 offset = CNIC_SUPPORT(bp);
1791 netdev_info(bp->dev,
1792 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1793 0, bp->msix_table[offset].vector,
1794 i - 1, bp->msix_table[offset + i - 1].vector);
1795 }
1796 return 0;
1797 }
1798
bnx2x_enable_msi(struct bnx2x * bp)1799 int bnx2x_enable_msi(struct bnx2x *bp)
1800 {
1801 int rc;
1802
1803 rc = pci_enable_msi(bp->pdev);
1804 if (rc) {
1805 BNX2X_DEV_INFO("MSI is not attainable\n");
1806 return -1;
1807 }
1808 bp->flags |= USING_MSI_FLAG;
1809
1810 return 0;
1811 }
1812
bnx2x_req_irq(struct bnx2x * bp)1813 static int bnx2x_req_irq(struct bnx2x *bp)
1814 {
1815 unsigned long flags;
1816 unsigned int irq;
1817
1818 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1819 flags = 0;
1820 else
1821 flags = IRQF_SHARED;
1822
1823 if (bp->flags & USING_MSIX_FLAG)
1824 irq = bp->msix_table[0].vector;
1825 else
1826 irq = bp->pdev->irq;
1827
1828 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1829 }
1830
bnx2x_setup_irqs(struct bnx2x * bp)1831 static int bnx2x_setup_irqs(struct bnx2x *bp)
1832 {
1833 int rc = 0;
1834 if (bp->flags & USING_MSIX_FLAG &&
1835 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1836 rc = bnx2x_req_msix_irqs(bp);
1837 if (rc)
1838 return rc;
1839 } else {
1840 rc = bnx2x_req_irq(bp);
1841 if (rc) {
1842 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1843 return rc;
1844 }
1845 if (bp->flags & USING_MSI_FLAG) {
1846 bp->dev->irq = bp->pdev->irq;
1847 netdev_info(bp->dev, "using MSI IRQ %d\n",
1848 bp->dev->irq);
1849 }
1850 if (bp->flags & USING_MSIX_FLAG) {
1851 bp->dev->irq = bp->msix_table[0].vector;
1852 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1853 bp->dev->irq);
1854 }
1855 }
1856
1857 return 0;
1858 }
1859
bnx2x_napi_enable_cnic(struct bnx2x * bp)1860 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1861 {
1862 int i;
1863
1864 for_each_rx_queue_cnic(bp, i) {
1865 napi_enable(&bnx2x_fp(bp, i, napi));
1866 }
1867 }
1868
bnx2x_napi_enable(struct bnx2x * bp)1869 static void bnx2x_napi_enable(struct bnx2x *bp)
1870 {
1871 int i;
1872
1873 for_each_eth_queue(bp, i) {
1874 napi_enable(&bnx2x_fp(bp, i, napi));
1875 }
1876 }
1877
bnx2x_napi_disable_cnic(struct bnx2x * bp)1878 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1879 {
1880 int i;
1881
1882 for_each_rx_queue_cnic(bp, i) {
1883 napi_disable(&bnx2x_fp(bp, i, napi));
1884 }
1885 }
1886
bnx2x_napi_disable(struct bnx2x * bp)1887 static void bnx2x_napi_disable(struct bnx2x *bp)
1888 {
1889 int i;
1890
1891 for_each_eth_queue(bp, i) {
1892 napi_disable(&bnx2x_fp(bp, i, napi));
1893 }
1894 }
1895
bnx2x_netif_start(struct bnx2x * bp)1896 void bnx2x_netif_start(struct bnx2x *bp)
1897 {
1898 if (netif_running(bp->dev)) {
1899 bnx2x_napi_enable(bp);
1900 if (CNIC_LOADED(bp))
1901 bnx2x_napi_enable_cnic(bp);
1902 bnx2x_int_enable(bp);
1903 if (bp->state == BNX2X_STATE_OPEN)
1904 netif_tx_wake_all_queues(bp->dev);
1905 }
1906 }
1907
bnx2x_netif_stop(struct bnx2x * bp,int disable_hw)1908 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1909 {
1910 bnx2x_int_disable_sync(bp, disable_hw);
1911 bnx2x_napi_disable(bp);
1912 if (CNIC_LOADED(bp))
1913 bnx2x_napi_disable_cnic(bp);
1914 }
1915
bnx2x_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1916 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1917 struct net_device *sb_dev)
1918 {
1919 struct bnx2x *bp = netdev_priv(dev);
1920
1921 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1922 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1923 u16 ether_type = ntohs(hdr->h_proto);
1924
1925 /* Skip VLAN tag if present */
1926 if (ether_type == ETH_P_8021Q) {
1927 struct vlan_ethhdr *vhdr =
1928 (struct vlan_ethhdr *)skb->data;
1929
1930 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1931 }
1932
1933 /* If ethertype is FCoE or FIP - use FCoE ring */
1934 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1935 return bnx2x_fcoe_tx(bp, txq_index);
1936 }
1937
1938 /* select a non-FCoE queue */
1939 return netdev_pick_tx(dev, skb, NULL) %
1940 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1941 }
1942
bnx2x_set_num_queues(struct bnx2x * bp)1943 void bnx2x_set_num_queues(struct bnx2x *bp)
1944 {
1945 /* RSS queues */
1946 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1947
1948 /* override in STORAGE SD modes */
1949 if (IS_MF_STORAGE_ONLY(bp))
1950 bp->num_ethernet_queues = 1;
1951
1952 /* Add special queues */
1953 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1954 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1955
1956 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1957 }
1958
1959 /**
1960 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1961 *
1962 * @bp: Driver handle
1963 * @include_cnic: handle cnic case
1964 *
1965 * We currently support for at most 16 Tx queues for each CoS thus we will
1966 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1967 * bp->max_cos.
1968 *
1969 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1970 * index after all ETH L2 indices.
1971 *
1972 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1973 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1974 * 16..31,...) with indices that are not coupled with any real Tx queue.
1975 *
1976 * The proper configuration of skb->queue_mapping is handled by
1977 * bnx2x_select_queue() and __skb_tx_hash().
1978 *
1979 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1980 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1981 */
bnx2x_set_real_num_queues(struct bnx2x * bp,int include_cnic)1982 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1983 {
1984 int rc, tx, rx;
1985
1986 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1987 rx = BNX2X_NUM_ETH_QUEUES(bp);
1988
1989 /* account for fcoe queue */
1990 if (include_cnic && !NO_FCOE(bp)) {
1991 rx++;
1992 tx++;
1993 }
1994
1995 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1996 if (rc) {
1997 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1998 return rc;
1999 }
2000 rc = netif_set_real_num_rx_queues(bp->dev, rx);
2001 if (rc) {
2002 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2003 return rc;
2004 }
2005
2006 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2007 tx, rx);
2008
2009 return rc;
2010 }
2011
bnx2x_set_rx_buf_size(struct bnx2x * bp)2012 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2013 {
2014 int i;
2015
2016 for_each_queue(bp, i) {
2017 struct bnx2x_fastpath *fp = &bp->fp[i];
2018 u32 mtu;
2019
2020 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2021 if (IS_FCOE_IDX(i))
2022 /*
2023 * Although there are no IP frames expected to arrive to
2024 * this ring we still want to add an
2025 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2026 * overrun attack.
2027 */
2028 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2029 else
2030 mtu = bp->dev->mtu;
2031 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2032 IP_HEADER_ALIGNMENT_PADDING +
2033 ETH_OVERHEAD +
2034 mtu +
2035 BNX2X_FW_RX_ALIGN_END;
2036 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2037 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2038 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2039 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2040 else
2041 fp->rx_frag_size = 0;
2042 }
2043 }
2044
bnx2x_init_rss(struct bnx2x * bp)2045 static int bnx2x_init_rss(struct bnx2x *bp)
2046 {
2047 int i;
2048 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2049
2050 /* Prepare the initial contents for the indirection table if RSS is
2051 * enabled
2052 */
2053 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2054 bp->rss_conf_obj.ind_table[i] =
2055 bp->fp->cl_id +
2056 ethtool_rxfh_indir_default(i, num_eth_queues);
2057
2058 /*
2059 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2060 * per-port, so if explicit configuration is needed , do it only
2061 * for a PMF.
2062 *
2063 * For 57712 and newer on the other hand it's a per-function
2064 * configuration.
2065 */
2066 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2067 }
2068
bnx2x_rss(struct bnx2x * bp,struct bnx2x_rss_config_obj * rss_obj,bool config_hash,bool enable)2069 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2070 bool config_hash, bool enable)
2071 {
2072 struct bnx2x_config_rss_params params = {NULL};
2073
2074 /* Although RSS is meaningless when there is a single HW queue we
2075 * still need it enabled in order to have HW Rx hash generated.
2076 *
2077 * if (!is_eth_multi(bp))
2078 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2079 */
2080
2081 params.rss_obj = rss_obj;
2082
2083 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags);
2084
2085 if (enable) {
2086 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags);
2087
2088 /* RSS configuration */
2089 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags);
2090 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags);
2091 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags);
2092 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags);
2093 if (rss_obj->udp_rss_v4)
2094 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags);
2095 if (rss_obj->udp_rss_v6)
2096 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags);
2097
2098 if (!CHIP_IS_E1x(bp)) {
2099 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2100 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags);
2101 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags);
2102
2103 /* valid only for TUNN_MODE_GRE tunnel mode */
2104 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags);
2105 }
2106 } else {
2107 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags);
2108 }
2109
2110 /* Hash bits */
2111 params.rss_result_mask = MULTI_MASK;
2112
2113 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2114
2115 if (config_hash) {
2116 /* RSS keys */
2117 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2118 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags);
2119 }
2120
2121 if (IS_PF(bp))
2122 return bnx2x_config_rss(bp, ¶ms);
2123 else
2124 return bnx2x_vfpf_config_rss(bp, ¶ms);
2125 }
2126
bnx2x_init_hw(struct bnx2x * bp,u32 load_code)2127 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2128 {
2129 struct bnx2x_func_state_params func_params = {NULL};
2130
2131 /* Prepare parameters for function state transitions */
2132 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2133
2134 func_params.f_obj = &bp->func_obj;
2135 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2136
2137 func_params.params.hw_init.load_phase = load_code;
2138
2139 return bnx2x_func_state_change(bp, &func_params);
2140 }
2141
2142 /*
2143 * Cleans the object that have internal lists without sending
2144 * ramrods. Should be run when interrupts are disabled.
2145 */
bnx2x_squeeze_objects(struct bnx2x * bp)2146 void bnx2x_squeeze_objects(struct bnx2x *bp)
2147 {
2148 int rc;
2149 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2150 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2151 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2152
2153 /***************** Cleanup MACs' object first *************************/
2154
2155 /* Wait for completion of requested */
2156 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2157 /* Perform a dry cleanup */
2158 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2159
2160 /* Clean ETH primary MAC */
2161 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2162 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2163 &ramrod_flags);
2164 if (rc != 0)
2165 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2166
2167 /* Cleanup UC list */
2168 vlan_mac_flags = 0;
2169 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2170 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2171 &ramrod_flags);
2172 if (rc != 0)
2173 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2174
2175 /***************** Now clean mcast object *****************************/
2176 rparam.mcast_obj = &bp->mcast_obj;
2177 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2178
2179 /* Add a DEL command... - Since we're doing a driver cleanup only,
2180 * we take a lock surrounding both the initial send and the CONTs,
2181 * as we don't want a true completion to disrupt us in the middle.
2182 */
2183 netif_addr_lock_bh(bp->dev);
2184 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2185 if (rc < 0)
2186 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2187 rc);
2188
2189 /* ...and wait until all pending commands are cleared */
2190 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2191 while (rc != 0) {
2192 if (rc < 0) {
2193 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2194 rc);
2195 netif_addr_unlock_bh(bp->dev);
2196 return;
2197 }
2198
2199 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2200 }
2201 netif_addr_unlock_bh(bp->dev);
2202 }
2203
2204 #ifndef BNX2X_STOP_ON_ERROR
2205 #define LOAD_ERROR_EXIT(bp, label) \
2206 do { \
2207 (bp)->state = BNX2X_STATE_ERROR; \
2208 goto label; \
2209 } while (0)
2210
2211 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2212 do { \
2213 bp->cnic_loaded = false; \
2214 goto label; \
2215 } while (0)
2216 #else /*BNX2X_STOP_ON_ERROR*/
2217 #define LOAD_ERROR_EXIT(bp, label) \
2218 do { \
2219 (bp)->state = BNX2X_STATE_ERROR; \
2220 (bp)->panic = 1; \
2221 return -EBUSY; \
2222 } while (0)
2223 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2224 do { \
2225 bp->cnic_loaded = false; \
2226 (bp)->panic = 1; \
2227 return -EBUSY; \
2228 } while (0)
2229 #endif /*BNX2X_STOP_ON_ERROR*/
2230
bnx2x_free_fw_stats_mem(struct bnx2x * bp)2231 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2232 {
2233 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2234 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2235 return;
2236 }
2237
bnx2x_alloc_fw_stats_mem(struct bnx2x * bp)2238 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2239 {
2240 int num_groups, vf_headroom = 0;
2241 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2242
2243 /* number of queues for statistics is number of eth queues + FCoE */
2244 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2245
2246 /* Total number of FW statistics requests =
2247 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2248 * and fcoe l2 queue) stats + num of queues (which includes another 1
2249 * for fcoe l2 queue if applicable)
2250 */
2251 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2252
2253 /* vf stats appear in the request list, but their data is allocated by
2254 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2255 * it is used to determine where to place the vf stats queries in the
2256 * request struct
2257 */
2258 if (IS_SRIOV(bp))
2259 vf_headroom = bnx2x_vf_headroom(bp);
2260
2261 /* Request is built from stats_query_header and an array of
2262 * stats_query_cmd_group each of which contains
2263 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2264 * configured in the stats_query_header.
2265 */
2266 num_groups =
2267 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2268 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2269 1 : 0));
2270
2271 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2272 bp->fw_stats_num, vf_headroom, num_groups);
2273 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2274 num_groups * sizeof(struct stats_query_cmd_group);
2275
2276 /* Data for statistics requests + stats_counter
2277 * stats_counter holds per-STORM counters that are incremented
2278 * when STORM has finished with the current request.
2279 * memory for FCoE offloaded statistics are counted anyway,
2280 * even if they will not be sent.
2281 * VF stats are not accounted for here as the data of VF stats is stored
2282 * in memory allocated by the VF, not here.
2283 */
2284 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2285 sizeof(struct per_pf_stats) +
2286 sizeof(struct fcoe_statistics_params) +
2287 sizeof(struct per_queue_stats) * num_queue_stats +
2288 sizeof(struct stats_counter);
2289
2290 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2291 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2292 if (!bp->fw_stats)
2293 goto alloc_mem_err;
2294
2295 /* Set shortcuts */
2296 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2297 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2298 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2299 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2300 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2301 bp->fw_stats_req_sz;
2302
2303 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2304 U64_HI(bp->fw_stats_req_mapping),
2305 U64_LO(bp->fw_stats_req_mapping));
2306 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2307 U64_HI(bp->fw_stats_data_mapping),
2308 U64_LO(bp->fw_stats_data_mapping));
2309 return 0;
2310
2311 alloc_mem_err:
2312 bnx2x_free_fw_stats_mem(bp);
2313 BNX2X_ERR("Can't allocate FW stats memory\n");
2314 return -ENOMEM;
2315 }
2316
2317 /* send load request to mcp and analyze response */
bnx2x_nic_load_request(struct bnx2x * bp,u32 * load_code)2318 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2319 {
2320 u32 param;
2321
2322 /* init fw_seq */
2323 bp->fw_seq =
2324 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2325 DRV_MSG_SEQ_NUMBER_MASK);
2326 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2327
2328 /* Get current FW pulse sequence */
2329 bp->fw_drv_pulse_wr_seq =
2330 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2331 DRV_PULSE_SEQ_MASK);
2332 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2333
2334 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2335
2336 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2337 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2338
2339 /* load request */
2340 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2341
2342 /* if mcp fails to respond we must abort */
2343 if (!(*load_code)) {
2344 BNX2X_ERR("MCP response failure, aborting\n");
2345 return -EBUSY;
2346 }
2347
2348 /* If mcp refused (e.g. other port is in diagnostic mode) we
2349 * must abort
2350 */
2351 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2352 BNX2X_ERR("MCP refused load request, aborting\n");
2353 return -EBUSY;
2354 }
2355 return 0;
2356 }
2357
2358 /* check whether another PF has already loaded FW to chip. In
2359 * virtualized environments a pf from another VM may have already
2360 * initialized the device including loading FW
2361 */
bnx2x_compare_fw_ver(struct bnx2x * bp,u32 load_code,bool print_err)2362 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2363 {
2364 /* is another pf loaded on this engine? */
2365 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2366 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2367 /* build my FW version dword */
2368 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2369 (BCM_5710_FW_MINOR_VERSION << 8) +
2370 (BCM_5710_FW_REVISION_VERSION << 16) +
2371 (BCM_5710_FW_ENGINEERING_VERSION << 24);
2372
2373 /* read loaded FW from chip */
2374 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2375
2376 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2377 loaded_fw, my_fw);
2378
2379 /* abort nic load if version mismatch */
2380 if (my_fw != loaded_fw) {
2381 if (print_err)
2382 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2383 loaded_fw, my_fw);
2384 else
2385 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2386 loaded_fw, my_fw);
2387 return -EBUSY;
2388 }
2389 }
2390 return 0;
2391 }
2392
2393 /* returns the "mcp load_code" according to global load_count array */
bnx2x_nic_load_no_mcp(struct bnx2x * bp,int port)2394 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2395 {
2396 int path = BP_PATH(bp);
2397
2398 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2399 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2400 bnx2x_load_count[path][2]);
2401 bnx2x_load_count[path][0]++;
2402 bnx2x_load_count[path][1 + port]++;
2403 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2404 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2405 bnx2x_load_count[path][2]);
2406 if (bnx2x_load_count[path][0] == 1)
2407 return FW_MSG_CODE_DRV_LOAD_COMMON;
2408 else if (bnx2x_load_count[path][1 + port] == 1)
2409 return FW_MSG_CODE_DRV_LOAD_PORT;
2410 else
2411 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2412 }
2413
2414 /* mark PMF if applicable */
bnx2x_nic_load_pmf(struct bnx2x * bp,u32 load_code)2415 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2416 {
2417 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2418 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2419 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2420 bp->port.pmf = 1;
2421 /* We need the barrier to ensure the ordering between the
2422 * writing to bp->port.pmf here and reading it from the
2423 * bnx2x_periodic_task().
2424 */
2425 smp_mb();
2426 } else {
2427 bp->port.pmf = 0;
2428 }
2429
2430 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2431 }
2432
bnx2x_nic_load_afex_dcc(struct bnx2x * bp,int load_code)2433 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2434 {
2435 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2436 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2437 (bp->common.shmem2_base)) {
2438 if (SHMEM2_HAS(bp, dcc_support))
2439 SHMEM2_WR(bp, dcc_support,
2440 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2441 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2442 if (SHMEM2_HAS(bp, afex_driver_support))
2443 SHMEM2_WR(bp, afex_driver_support,
2444 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2445 }
2446
2447 /* Set AFEX default VLAN tag to an invalid value */
2448 bp->afex_def_vlan_tag = -1;
2449 }
2450
2451 /**
2452 * bnx2x_bz_fp - zero content of the fastpath structure.
2453 *
2454 * @bp: driver handle
2455 * @index: fastpath index to be zeroed
2456 *
2457 * Makes sure the contents of the bp->fp[index].napi is kept
2458 * intact.
2459 */
bnx2x_bz_fp(struct bnx2x * bp,int index)2460 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2461 {
2462 struct bnx2x_fastpath *fp = &bp->fp[index];
2463 int cos;
2464 struct napi_struct orig_napi = fp->napi;
2465 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2466
2467 /* bzero bnx2x_fastpath contents */
2468 if (fp->tpa_info)
2469 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2470 sizeof(struct bnx2x_agg_info));
2471 memset(fp, 0, sizeof(*fp));
2472
2473 /* Restore the NAPI object as it has been already initialized */
2474 fp->napi = orig_napi;
2475 fp->tpa_info = orig_tpa_info;
2476 fp->bp = bp;
2477 fp->index = index;
2478 if (IS_ETH_FP(fp))
2479 fp->max_cos = bp->max_cos;
2480 else
2481 /* Special queues support only one CoS */
2482 fp->max_cos = 1;
2483
2484 /* Init txdata pointers */
2485 if (IS_FCOE_FP(fp))
2486 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2487 if (IS_ETH_FP(fp))
2488 for_each_cos_in_tx_queue(fp, cos)
2489 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2490 BNX2X_NUM_ETH_QUEUES(bp) + index];
2491
2492 /* set the tpa flag for each queue. The tpa flag determines the queue
2493 * minimal size so it must be set prior to queue memory allocation
2494 */
2495 if (bp->dev->features & NETIF_F_LRO)
2496 fp->mode = TPA_MODE_LRO;
2497 else if (bp->dev->features & NETIF_F_GRO_HW)
2498 fp->mode = TPA_MODE_GRO;
2499 else
2500 fp->mode = TPA_MODE_DISABLED;
2501
2502 /* We don't want TPA if it's disabled in bp
2503 * or if this is an FCoE L2 ring.
2504 */
2505 if (bp->disable_tpa || IS_FCOE_FP(fp))
2506 fp->mode = TPA_MODE_DISABLED;
2507 }
2508
bnx2x_set_os_driver_state(struct bnx2x * bp,u32 state)2509 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2510 {
2511 u32 cur;
2512
2513 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2514 return;
2515
2516 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2517 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2518 cur, state);
2519
2520 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2521 }
2522
bnx2x_load_cnic(struct bnx2x * bp)2523 int bnx2x_load_cnic(struct bnx2x *bp)
2524 {
2525 int i, rc, port = BP_PORT(bp);
2526
2527 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2528
2529 mutex_init(&bp->cnic_mutex);
2530
2531 if (IS_PF(bp)) {
2532 rc = bnx2x_alloc_mem_cnic(bp);
2533 if (rc) {
2534 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2535 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2536 }
2537 }
2538
2539 rc = bnx2x_alloc_fp_mem_cnic(bp);
2540 if (rc) {
2541 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2542 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2543 }
2544
2545 /* Update the number of queues with the cnic queues */
2546 rc = bnx2x_set_real_num_queues(bp, 1);
2547 if (rc) {
2548 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2549 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2550 }
2551
2552 /* Add all CNIC NAPI objects */
2553 bnx2x_add_all_napi_cnic(bp);
2554 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2555 bnx2x_napi_enable_cnic(bp);
2556
2557 rc = bnx2x_init_hw_func_cnic(bp);
2558 if (rc)
2559 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2560
2561 bnx2x_nic_init_cnic(bp);
2562
2563 if (IS_PF(bp)) {
2564 /* Enable Timer scan */
2565 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2566
2567 /* setup cnic queues */
2568 for_each_cnic_queue(bp, i) {
2569 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2570 if (rc) {
2571 BNX2X_ERR("Queue setup failed\n");
2572 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2573 }
2574 }
2575 }
2576
2577 /* Initialize Rx filter. */
2578 bnx2x_set_rx_mode_inner(bp);
2579
2580 /* re-read iscsi info */
2581 bnx2x_get_iscsi_info(bp);
2582 bnx2x_setup_cnic_irq_info(bp);
2583 bnx2x_setup_cnic_info(bp);
2584 bp->cnic_loaded = true;
2585 if (bp->state == BNX2X_STATE_OPEN)
2586 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2587
2588 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2589
2590 return 0;
2591
2592 #ifndef BNX2X_STOP_ON_ERROR
2593 load_error_cnic2:
2594 /* Disable Timer scan */
2595 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2596
2597 load_error_cnic1:
2598 bnx2x_napi_disable_cnic(bp);
2599 /* Update the number of queues without the cnic queues */
2600 if (bnx2x_set_real_num_queues(bp, 0))
2601 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2602 load_error_cnic0:
2603 BNX2X_ERR("CNIC-related load failed\n");
2604 bnx2x_free_fp_mem_cnic(bp);
2605 bnx2x_free_mem_cnic(bp);
2606 return rc;
2607 #endif /* ! BNX2X_STOP_ON_ERROR */
2608 }
2609
2610 /* must be called with rtnl_lock */
bnx2x_nic_load(struct bnx2x * bp,int load_mode)2611 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2612 {
2613 int port = BP_PORT(bp);
2614 int i, rc = 0, load_code = 0;
2615
2616 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2617 DP(NETIF_MSG_IFUP,
2618 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2619
2620 #ifdef BNX2X_STOP_ON_ERROR
2621 if (unlikely(bp->panic)) {
2622 BNX2X_ERR("Can't load NIC when there is panic\n");
2623 return -EPERM;
2624 }
2625 #endif
2626
2627 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2628
2629 /* zero the structure w/o any lock, before SP handler is initialized */
2630 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2631 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2632 &bp->last_reported_link.link_report_flags);
2633
2634 if (IS_PF(bp))
2635 /* must be called before memory allocation and HW init */
2636 bnx2x_ilt_set_info(bp);
2637
2638 /*
2639 * Zero fastpath structures preserving invariants like napi, which are
2640 * allocated only once, fp index, max_cos, bp pointer.
2641 * Also set fp->mode and txdata_ptr.
2642 */
2643 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2644 for_each_queue(bp, i)
2645 bnx2x_bz_fp(bp, i);
2646 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2647 bp->num_cnic_queues) *
2648 sizeof(struct bnx2x_fp_txdata));
2649
2650 bp->fcoe_init = false;
2651
2652 /* Set the receive queues buffer size */
2653 bnx2x_set_rx_buf_size(bp);
2654
2655 if (IS_PF(bp)) {
2656 rc = bnx2x_alloc_mem(bp);
2657 if (rc) {
2658 BNX2X_ERR("Unable to allocate bp memory\n");
2659 return rc;
2660 }
2661 }
2662
2663 /* need to be done after alloc mem, since it's self adjusting to amount
2664 * of memory available for RSS queues
2665 */
2666 rc = bnx2x_alloc_fp_mem(bp);
2667 if (rc) {
2668 BNX2X_ERR("Unable to allocate memory for fps\n");
2669 LOAD_ERROR_EXIT(bp, load_error0);
2670 }
2671
2672 /* Allocated memory for FW statistics */
2673 rc = bnx2x_alloc_fw_stats_mem(bp);
2674 if (rc)
2675 LOAD_ERROR_EXIT(bp, load_error0);
2676
2677 /* request pf to initialize status blocks */
2678 if (IS_VF(bp)) {
2679 rc = bnx2x_vfpf_init(bp);
2680 if (rc)
2681 LOAD_ERROR_EXIT(bp, load_error0);
2682 }
2683
2684 /* As long as bnx2x_alloc_mem() may possibly update
2685 * bp->num_queues, bnx2x_set_real_num_queues() should always
2686 * come after it. At this stage cnic queues are not counted.
2687 */
2688 rc = bnx2x_set_real_num_queues(bp, 0);
2689 if (rc) {
2690 BNX2X_ERR("Unable to set real_num_queues\n");
2691 LOAD_ERROR_EXIT(bp, load_error0);
2692 }
2693
2694 /* configure multi cos mappings in kernel.
2695 * this configuration may be overridden by a multi class queue
2696 * discipline or by a dcbx negotiation result.
2697 */
2698 bnx2x_setup_tc(bp->dev, bp->max_cos);
2699
2700 /* Add all NAPI objects */
2701 bnx2x_add_all_napi(bp);
2702 DP(NETIF_MSG_IFUP, "napi added\n");
2703 bnx2x_napi_enable(bp);
2704
2705 if (IS_PF(bp)) {
2706 /* set pf load just before approaching the MCP */
2707 bnx2x_set_pf_load(bp);
2708
2709 /* if mcp exists send load request and analyze response */
2710 if (!BP_NOMCP(bp)) {
2711 /* attempt to load pf */
2712 rc = bnx2x_nic_load_request(bp, &load_code);
2713 if (rc)
2714 LOAD_ERROR_EXIT(bp, load_error1);
2715
2716 /* what did mcp say? */
2717 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2718 if (rc) {
2719 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2720 LOAD_ERROR_EXIT(bp, load_error2);
2721 }
2722 } else {
2723 load_code = bnx2x_nic_load_no_mcp(bp, port);
2724 }
2725
2726 /* mark pmf if applicable */
2727 bnx2x_nic_load_pmf(bp, load_code);
2728
2729 /* Init Function state controlling object */
2730 bnx2x__init_func_obj(bp);
2731
2732 /* Initialize HW */
2733 rc = bnx2x_init_hw(bp, load_code);
2734 if (rc) {
2735 BNX2X_ERR("HW init failed, aborting\n");
2736 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2737 LOAD_ERROR_EXIT(bp, load_error2);
2738 }
2739 }
2740
2741 bnx2x_pre_irq_nic_init(bp);
2742
2743 /* Connect to IRQs */
2744 rc = bnx2x_setup_irqs(bp);
2745 if (rc) {
2746 BNX2X_ERR("setup irqs failed\n");
2747 if (IS_PF(bp))
2748 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2749 LOAD_ERROR_EXIT(bp, load_error2);
2750 }
2751
2752 /* Init per-function objects */
2753 if (IS_PF(bp)) {
2754 /* Setup NIC internals and enable interrupts */
2755 bnx2x_post_irq_nic_init(bp, load_code);
2756
2757 bnx2x_init_bp_objs(bp);
2758 bnx2x_iov_nic_init(bp);
2759
2760 /* Set AFEX default VLAN tag to an invalid value */
2761 bp->afex_def_vlan_tag = -1;
2762 bnx2x_nic_load_afex_dcc(bp, load_code);
2763 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2764 rc = bnx2x_func_start(bp);
2765 if (rc) {
2766 BNX2X_ERR("Function start failed!\n");
2767 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2768
2769 LOAD_ERROR_EXIT(bp, load_error3);
2770 }
2771
2772 /* Send LOAD_DONE command to MCP */
2773 if (!BP_NOMCP(bp)) {
2774 load_code = bnx2x_fw_command(bp,
2775 DRV_MSG_CODE_LOAD_DONE, 0);
2776 if (!load_code) {
2777 BNX2X_ERR("MCP response failure, aborting\n");
2778 rc = -EBUSY;
2779 LOAD_ERROR_EXIT(bp, load_error3);
2780 }
2781 }
2782
2783 /* initialize FW coalescing state machines in RAM */
2784 bnx2x_update_coalesce(bp);
2785 }
2786
2787 /* setup the leading queue */
2788 rc = bnx2x_setup_leading(bp);
2789 if (rc) {
2790 BNX2X_ERR("Setup leading failed!\n");
2791 LOAD_ERROR_EXIT(bp, load_error3);
2792 }
2793
2794 /* set up the rest of the queues */
2795 for_each_nondefault_eth_queue(bp, i) {
2796 if (IS_PF(bp))
2797 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2798 else /* VF */
2799 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2800 if (rc) {
2801 BNX2X_ERR("Queue %d setup failed\n", i);
2802 LOAD_ERROR_EXIT(bp, load_error3);
2803 }
2804 }
2805
2806 /* setup rss */
2807 rc = bnx2x_init_rss(bp);
2808 if (rc) {
2809 BNX2X_ERR("PF RSS init failed\n");
2810 LOAD_ERROR_EXIT(bp, load_error3);
2811 }
2812
2813 /* Now when Clients are configured we are ready to work */
2814 bp->state = BNX2X_STATE_OPEN;
2815
2816 /* Configure a ucast MAC */
2817 if (IS_PF(bp))
2818 rc = bnx2x_set_eth_mac(bp, true);
2819 else /* vf */
2820 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2821 true);
2822 if (rc) {
2823 BNX2X_ERR("Setting Ethernet MAC failed\n");
2824 LOAD_ERROR_EXIT(bp, load_error3);
2825 }
2826
2827 if (IS_PF(bp) && bp->pending_max) {
2828 bnx2x_update_max_mf_config(bp, bp->pending_max);
2829 bp->pending_max = 0;
2830 }
2831
2832 bp->force_link_down = false;
2833 if (bp->port.pmf) {
2834 rc = bnx2x_initial_phy_init(bp, load_mode);
2835 if (rc)
2836 LOAD_ERROR_EXIT(bp, load_error3);
2837 }
2838 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2839
2840 /* Start fast path */
2841
2842 /* Re-configure vlan filters */
2843 rc = bnx2x_vlan_reconfigure_vid(bp);
2844 if (rc)
2845 LOAD_ERROR_EXIT(bp, load_error3);
2846
2847 /* Initialize Rx filter. */
2848 bnx2x_set_rx_mode_inner(bp);
2849
2850 if (bp->flags & PTP_SUPPORTED) {
2851 bnx2x_register_phc(bp);
2852 bnx2x_init_ptp(bp);
2853 bnx2x_configure_ptp_filters(bp);
2854 }
2855 /* Start Tx */
2856 switch (load_mode) {
2857 case LOAD_NORMAL:
2858 /* Tx queue should be only re-enabled */
2859 netif_tx_wake_all_queues(bp->dev);
2860 break;
2861
2862 case LOAD_OPEN:
2863 netif_tx_start_all_queues(bp->dev);
2864 smp_mb__after_atomic();
2865 break;
2866
2867 case LOAD_DIAG:
2868 case LOAD_LOOPBACK_EXT:
2869 bp->state = BNX2X_STATE_DIAG;
2870 break;
2871
2872 default:
2873 break;
2874 }
2875
2876 if (bp->port.pmf)
2877 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2878 else
2879 bnx2x__link_status_update(bp);
2880
2881 /* start the timer */
2882 mod_timer(&bp->timer, jiffies + bp->current_interval);
2883
2884 if (CNIC_ENABLED(bp))
2885 bnx2x_load_cnic(bp);
2886
2887 if (IS_PF(bp))
2888 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2889
2890 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2891 /* mark driver is loaded in shmem2 */
2892 u32 val;
2893 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2894 val &= ~DRV_FLAGS_MTU_MASK;
2895 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2896 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2897 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2898 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2899 }
2900
2901 /* Wait for all pending SP commands to complete */
2902 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2903 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2904 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2905 return -EBUSY;
2906 }
2907
2908 /* Update driver data for On-Chip MFW dump. */
2909 if (IS_PF(bp))
2910 bnx2x_update_mfw_dump(bp);
2911
2912 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2913 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2914 bnx2x_dcbx_init(bp, false);
2915
2916 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2917 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2918
2919 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2920
2921 return 0;
2922
2923 #ifndef BNX2X_STOP_ON_ERROR
2924 load_error3:
2925 if (IS_PF(bp)) {
2926 bnx2x_int_disable_sync(bp, 1);
2927
2928 /* Clean queueable objects */
2929 bnx2x_squeeze_objects(bp);
2930 }
2931
2932 /* Free SKBs, SGEs, TPA pool and driver internals */
2933 bnx2x_free_skbs(bp);
2934 for_each_rx_queue(bp, i)
2935 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2936
2937 /* Release IRQs */
2938 bnx2x_free_irq(bp);
2939 load_error2:
2940 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2941 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2942 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2943 }
2944
2945 bp->port.pmf = 0;
2946 load_error1:
2947 bnx2x_napi_disable(bp);
2948 bnx2x_del_all_napi(bp);
2949
2950 /* clear pf_load status, as it was already set */
2951 if (IS_PF(bp))
2952 bnx2x_clear_pf_load(bp);
2953 load_error0:
2954 bnx2x_free_fw_stats_mem(bp);
2955 bnx2x_free_fp_mem(bp);
2956 bnx2x_free_mem(bp);
2957
2958 return rc;
2959 #endif /* ! BNX2X_STOP_ON_ERROR */
2960 }
2961
bnx2x_drain_tx_queues(struct bnx2x * bp)2962 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2963 {
2964 u8 rc = 0, cos, i;
2965
2966 /* Wait until tx fastpath tasks complete */
2967 for_each_tx_queue(bp, i) {
2968 struct bnx2x_fastpath *fp = &bp->fp[i];
2969
2970 for_each_cos_in_tx_queue(fp, cos)
2971 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2972 if (rc)
2973 return rc;
2974 }
2975 return 0;
2976 }
2977
2978 /* must be called with rtnl_lock */
bnx2x_nic_unload(struct bnx2x * bp,int unload_mode,bool keep_link)2979 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2980 {
2981 int i;
2982 bool global = false;
2983
2984 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2985
2986 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2987 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2988
2989 /* mark driver is unloaded in shmem2 */
2990 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2991 u32 val;
2992 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2993 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2994 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2995 }
2996
2997 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2998 (bp->state == BNX2X_STATE_CLOSED ||
2999 bp->state == BNX2X_STATE_ERROR)) {
3000 /* We can get here if the driver has been unloaded
3001 * during parity error recovery and is either waiting for a
3002 * leader to complete or for other functions to unload and
3003 * then ifdown has been issued. In this case we want to
3004 * unload and let other functions to complete a recovery
3005 * process.
3006 */
3007 bp->recovery_state = BNX2X_RECOVERY_DONE;
3008 bp->is_leader = 0;
3009 bnx2x_release_leader_lock(bp);
3010 smp_mb();
3011
3012 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3013 BNX2X_ERR("Can't unload in closed or error state\n");
3014 return -EINVAL;
3015 }
3016
3017 /* Nothing to do during unload if previous bnx2x_nic_load()
3018 * have not completed successfully - all resources are released.
3019 *
3020 * we can get here only after unsuccessful ndo_* callback, during which
3021 * dev->IFF_UP flag is still on.
3022 */
3023 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3024 return 0;
3025
3026 /* It's important to set the bp->state to the value different from
3027 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3028 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3029 */
3030 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3031 smp_mb();
3032
3033 /* indicate to VFs that the PF is going down */
3034 bnx2x_iov_channel_down(bp);
3035
3036 if (CNIC_LOADED(bp))
3037 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3038
3039 /* Stop Tx */
3040 bnx2x_tx_disable(bp);
3041 netdev_reset_tc(bp->dev);
3042
3043 bp->rx_mode = BNX2X_RX_MODE_NONE;
3044
3045 del_timer_sync(&bp->timer);
3046
3047 if (IS_PF(bp) && !BP_NOMCP(bp)) {
3048 /* Set ALWAYS_ALIVE bit in shmem */
3049 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3050 bnx2x_drv_pulse(bp);
3051 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3052 bnx2x_save_statistics(bp);
3053 }
3054
3055 /* wait till consumers catch up with producers in all queues.
3056 * If we're recovering, FW can't write to host so no reason
3057 * to wait for the queues to complete all Tx.
3058 */
3059 if (unload_mode != UNLOAD_RECOVERY)
3060 bnx2x_drain_tx_queues(bp);
3061
3062 /* if VF indicate to PF this function is going down (PF will delete sp
3063 * elements and clear initializations
3064 */
3065 if (IS_VF(bp)) {
3066 bnx2x_clear_vlan_info(bp);
3067 bnx2x_vfpf_close_vf(bp);
3068 } else if (unload_mode != UNLOAD_RECOVERY) {
3069 /* if this is a normal/close unload need to clean up chip*/
3070 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3071 } else {
3072 /* Send the UNLOAD_REQUEST to the MCP */
3073 bnx2x_send_unload_req(bp, unload_mode);
3074
3075 /* Prevent transactions to host from the functions on the
3076 * engine that doesn't reset global blocks in case of global
3077 * attention once global blocks are reset and gates are opened
3078 * (the engine which leader will perform the recovery
3079 * last).
3080 */
3081 if (!CHIP_IS_E1x(bp))
3082 bnx2x_pf_disable(bp);
3083
3084 /* Disable HW interrupts, NAPI */
3085 bnx2x_netif_stop(bp, 1);
3086 /* Delete all NAPI objects */
3087 bnx2x_del_all_napi(bp);
3088 if (CNIC_LOADED(bp))
3089 bnx2x_del_all_napi_cnic(bp);
3090 /* Release IRQs */
3091 bnx2x_free_irq(bp);
3092
3093 /* Report UNLOAD_DONE to MCP */
3094 bnx2x_send_unload_done(bp, false);
3095 }
3096
3097 /*
3098 * At this stage no more interrupts will arrive so we may safely clean
3099 * the queueable objects here in case they failed to get cleaned so far.
3100 */
3101 if (IS_PF(bp))
3102 bnx2x_squeeze_objects(bp);
3103
3104 /* There should be no more pending SP commands at this stage */
3105 bp->sp_state = 0;
3106
3107 bp->port.pmf = 0;
3108
3109 /* clear pending work in rtnl task */
3110 bp->sp_rtnl_state = 0;
3111 smp_mb();
3112
3113 /* Free SKBs, SGEs, TPA pool and driver internals */
3114 bnx2x_free_skbs(bp);
3115 if (CNIC_LOADED(bp))
3116 bnx2x_free_skbs_cnic(bp);
3117 for_each_rx_queue(bp, i)
3118 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3119
3120 bnx2x_free_fp_mem(bp);
3121 if (CNIC_LOADED(bp))
3122 bnx2x_free_fp_mem_cnic(bp);
3123
3124 if (IS_PF(bp)) {
3125 if (CNIC_LOADED(bp))
3126 bnx2x_free_mem_cnic(bp);
3127 }
3128 bnx2x_free_mem(bp);
3129
3130 bp->state = BNX2X_STATE_CLOSED;
3131 bp->cnic_loaded = false;
3132
3133 /* Clear driver version indication in shmem */
3134 if (IS_PF(bp) && !BP_NOMCP(bp))
3135 bnx2x_update_mng_version(bp);
3136
3137 /* Check if there are pending parity attentions. If there are - set
3138 * RECOVERY_IN_PROGRESS.
3139 */
3140 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3141 bnx2x_set_reset_in_progress(bp);
3142
3143 /* Set RESET_IS_GLOBAL if needed */
3144 if (global)
3145 bnx2x_set_reset_global(bp);
3146 }
3147
3148 /* The last driver must disable a "close the gate" if there is no
3149 * parity attention or "process kill" pending.
3150 */
3151 if (IS_PF(bp) &&
3152 !bnx2x_clear_pf_load(bp) &&
3153 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3154 bnx2x_disable_close_the_gate(bp);
3155
3156 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3157
3158 return 0;
3159 }
3160
bnx2x_set_power_state(struct bnx2x * bp,pci_power_t state)3161 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3162 {
3163 u16 pmcsr;
3164
3165 /* If there is no power capability, silently succeed */
3166 if (!bp->pdev->pm_cap) {
3167 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3168 return 0;
3169 }
3170
3171 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3172
3173 switch (state) {
3174 case PCI_D0:
3175 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3176 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3177 PCI_PM_CTRL_PME_STATUS));
3178
3179 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3180 /* delay required during transition out of D3hot */
3181 msleep(20);
3182 break;
3183
3184 case PCI_D3hot:
3185 /* If there are other clients above don't
3186 shut down the power */
3187 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3188 return 0;
3189 /* Don't shut down the power for emulation and FPGA */
3190 if (CHIP_REV_IS_SLOW(bp))
3191 return 0;
3192
3193 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3194 pmcsr |= 3;
3195
3196 if (bp->wol)
3197 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3198
3199 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3200 pmcsr);
3201
3202 /* No more memory access after this point until
3203 * device is brought back to D0.
3204 */
3205 break;
3206
3207 default:
3208 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3209 return -EINVAL;
3210 }
3211 return 0;
3212 }
3213
3214 /*
3215 * net_device service functions
3216 */
bnx2x_poll(struct napi_struct * napi,int budget)3217 static int bnx2x_poll(struct napi_struct *napi, int budget)
3218 {
3219 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3220 napi);
3221 struct bnx2x *bp = fp->bp;
3222 int rx_work_done;
3223 u8 cos;
3224
3225 #ifdef BNX2X_STOP_ON_ERROR
3226 if (unlikely(bp->panic)) {
3227 napi_complete(napi);
3228 return 0;
3229 }
3230 #endif
3231 for_each_cos_in_tx_queue(fp, cos)
3232 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3233 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3234
3235 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3236
3237 if (rx_work_done < budget) {
3238 /* No need to update SB for FCoE L2 ring as long as
3239 * it's connected to the default SB and the SB
3240 * has been updated when NAPI was scheduled.
3241 */
3242 if (IS_FCOE_FP(fp)) {
3243 napi_complete_done(napi, rx_work_done);
3244 } else {
3245 bnx2x_update_fpsb_idx(fp);
3246 /* bnx2x_has_rx_work() reads the status block,
3247 * thus we need to ensure that status block indices
3248 * have been actually read (bnx2x_update_fpsb_idx)
3249 * prior to this check (bnx2x_has_rx_work) so that
3250 * we won't write the "newer" value of the status block
3251 * to IGU (if there was a DMA right after
3252 * bnx2x_has_rx_work and if there is no rmb, the memory
3253 * reading (bnx2x_update_fpsb_idx) may be postponed
3254 * to right before bnx2x_ack_sb). In this case there
3255 * will never be another interrupt until there is
3256 * another update of the status block, while there
3257 * is still unhandled work.
3258 */
3259 rmb();
3260
3261 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3262 if (napi_complete_done(napi, rx_work_done)) {
3263 /* Re-enable interrupts */
3264 DP(NETIF_MSG_RX_STATUS,
3265 "Update index to %d\n", fp->fp_hc_idx);
3266 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3267 le16_to_cpu(fp->fp_hc_idx),
3268 IGU_INT_ENABLE, 1);
3269 }
3270 } else {
3271 rx_work_done = budget;
3272 }
3273 }
3274 }
3275
3276 return rx_work_done;
3277 }
3278
3279 /* we split the first BD into headers and data BDs
3280 * to ease the pain of our fellow microcode engineers
3281 * we use one mapping for both BDs
3282 */
bnx2x_tx_split(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,struct sw_tx_bd * tx_buf,struct eth_tx_start_bd ** tx_bd,u16 hlen,u16 bd_prod)3283 static u16 bnx2x_tx_split(struct bnx2x *bp,
3284 struct bnx2x_fp_txdata *txdata,
3285 struct sw_tx_bd *tx_buf,
3286 struct eth_tx_start_bd **tx_bd, u16 hlen,
3287 u16 bd_prod)
3288 {
3289 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3290 struct eth_tx_bd *d_tx_bd;
3291 dma_addr_t mapping;
3292 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3293
3294 /* first fix first BD */
3295 h_tx_bd->nbytes = cpu_to_le16(hlen);
3296
3297 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3298 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3299
3300 /* now get a new data BD
3301 * (after the pbd) and fill it */
3302 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3303 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3304
3305 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3306 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3307
3308 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3309 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3310 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3311
3312 /* this marks the BD as one that has no individual mapping */
3313 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3314
3315 DP(NETIF_MSG_TX_QUEUED,
3316 "TSO split data size is %d (%x:%x)\n",
3317 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3318
3319 /* update tx_bd */
3320 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3321
3322 return bd_prod;
3323 }
3324
3325 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3326 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
bnx2x_csum_fix(unsigned char * t_header,u16 csum,s8 fix)3327 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3328 {
3329 __sum16 tsum = (__force __sum16) csum;
3330
3331 if (fix > 0)
3332 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3333 csum_partial(t_header - fix, fix, 0)));
3334
3335 else if (fix < 0)
3336 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3337 csum_partial(t_header, -fix, 0)));
3338
3339 return bswab16(tsum);
3340 }
3341
bnx2x_xmit_type(struct bnx2x * bp,struct sk_buff * skb)3342 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3343 {
3344 u32 rc;
3345 __u8 prot = 0;
3346 __be16 protocol;
3347
3348 if (skb->ip_summed != CHECKSUM_PARTIAL)
3349 return XMIT_PLAIN;
3350
3351 protocol = vlan_get_protocol(skb);
3352 if (protocol == htons(ETH_P_IPV6)) {
3353 rc = XMIT_CSUM_V6;
3354 prot = ipv6_hdr(skb)->nexthdr;
3355 } else {
3356 rc = XMIT_CSUM_V4;
3357 prot = ip_hdr(skb)->protocol;
3358 }
3359
3360 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3361 if (inner_ip_hdr(skb)->version == 6) {
3362 rc |= XMIT_CSUM_ENC_V6;
3363 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3364 rc |= XMIT_CSUM_TCP;
3365 } else {
3366 rc |= XMIT_CSUM_ENC_V4;
3367 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3368 rc |= XMIT_CSUM_TCP;
3369 }
3370 }
3371 if (prot == IPPROTO_TCP)
3372 rc |= XMIT_CSUM_TCP;
3373
3374 if (skb_is_gso(skb)) {
3375 if (skb_is_gso_v6(skb)) {
3376 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3377 if (rc & XMIT_CSUM_ENC)
3378 rc |= XMIT_GSO_ENC_V6;
3379 } else {
3380 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3381 if (rc & XMIT_CSUM_ENC)
3382 rc |= XMIT_GSO_ENC_V4;
3383 }
3384 }
3385
3386 return rc;
3387 }
3388
3389 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3390 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3391
3392 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3393 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3394
3395 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3396 /* check if packet requires linearization (packet is too fragmented)
3397 no need to check fragmentation if page size > 8K (there will be no
3398 violation to FW restrictions) */
bnx2x_pkt_req_lin(struct bnx2x * bp,struct sk_buff * skb,u32 xmit_type)3399 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3400 u32 xmit_type)
3401 {
3402 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3403 int to_copy = 0, hlen = 0;
3404
3405 if (xmit_type & XMIT_GSO_ENC)
3406 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3407
3408 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3409 if (xmit_type & XMIT_GSO) {
3410 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3411 int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3412 /* Number of windows to check */
3413 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3414 int wnd_idx = 0;
3415 int frag_idx = 0;
3416 u32 wnd_sum = 0;
3417
3418 /* Headers length */
3419 if (xmit_type & XMIT_GSO_ENC)
3420 hlen = (int)(skb_inner_transport_header(skb) -
3421 skb->data) +
3422 inner_tcp_hdrlen(skb);
3423 else
3424 hlen = (int)(skb_transport_header(skb) -
3425 skb->data) + tcp_hdrlen(skb);
3426
3427 /* Amount of data (w/o headers) on linear part of SKB*/
3428 first_bd_sz = skb_headlen(skb) - hlen;
3429
3430 wnd_sum = first_bd_sz;
3431
3432 /* Calculate the first sum - it's special */
3433 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3434 wnd_sum +=
3435 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3436
3437 /* If there was data on linear skb data - check it */
3438 if (first_bd_sz > 0) {
3439 if (unlikely(wnd_sum < lso_mss)) {
3440 to_copy = 1;
3441 goto exit_lbl;
3442 }
3443
3444 wnd_sum -= first_bd_sz;
3445 }
3446
3447 /* Others are easier: run through the frag list and
3448 check all windows */
3449 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3450 wnd_sum +=
3451 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3452
3453 if (unlikely(wnd_sum < lso_mss)) {
3454 to_copy = 1;
3455 break;
3456 }
3457 wnd_sum -=
3458 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3459 }
3460 } else {
3461 /* in non-LSO too fragmented packet should always
3462 be linearized */
3463 to_copy = 1;
3464 }
3465 }
3466
3467 exit_lbl:
3468 if (unlikely(to_copy))
3469 DP(NETIF_MSG_TX_QUEUED,
3470 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3471 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3472 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3473
3474 return to_copy;
3475 }
3476 #endif
3477
3478 /**
3479 * bnx2x_set_pbd_gso - update PBD in GSO case.
3480 *
3481 * @skb: packet skb
3482 * @pbd: parse BD
3483 * @xmit_type: xmit flags
3484 */
bnx2x_set_pbd_gso(struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3485 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3486 struct eth_tx_parse_bd_e1x *pbd,
3487 u32 xmit_type)
3488 {
3489 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3490 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3491 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3492
3493 if (xmit_type & XMIT_GSO_V4) {
3494 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3495 pbd->tcp_pseudo_csum =
3496 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3497 ip_hdr(skb)->daddr,
3498 0, IPPROTO_TCP, 0));
3499 } else {
3500 pbd->tcp_pseudo_csum =
3501 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3502 &ipv6_hdr(skb)->daddr,
3503 0, IPPROTO_TCP, 0));
3504 }
3505
3506 pbd->global_data |=
3507 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3508 }
3509
3510 /**
3511 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3512 *
3513 * @bp: driver handle
3514 * @skb: packet skb
3515 * @parsing_data: data to be updated
3516 * @xmit_type: xmit flags
3517 *
3518 * 57712/578xx related, when skb has encapsulation
3519 */
bnx2x_set_pbd_csum_enc(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3520 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3521 u32 *parsing_data, u32 xmit_type)
3522 {
3523 *parsing_data |=
3524 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3525 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3526 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3527
3528 if (xmit_type & XMIT_CSUM_TCP) {
3529 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3530 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3531 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3532
3533 return skb_inner_transport_header(skb) +
3534 inner_tcp_hdrlen(skb) - skb->data;
3535 }
3536
3537 /* We support checksum offload for TCP and UDP only.
3538 * No need to pass the UDP header length - it's a constant.
3539 */
3540 return skb_inner_transport_header(skb) +
3541 sizeof(struct udphdr) - skb->data;
3542 }
3543
3544 /**
3545 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3546 *
3547 * @bp: driver handle
3548 * @skb: packet skb
3549 * @parsing_data: data to be updated
3550 * @xmit_type: xmit flags
3551 *
3552 * 57712/578xx related
3553 */
bnx2x_set_pbd_csum_e2(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3554 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3555 u32 *parsing_data, u32 xmit_type)
3556 {
3557 *parsing_data |=
3558 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3559 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3560 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3561
3562 if (xmit_type & XMIT_CSUM_TCP) {
3563 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3564 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3565 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3566
3567 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3568 }
3569 /* We support checksum offload for TCP and UDP only.
3570 * No need to pass the UDP header length - it's a constant.
3571 */
3572 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3573 }
3574
3575 /* set FW indication according to inner or outer protocols if tunneled */
bnx2x_set_sbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_start_bd * tx_start_bd,u32 xmit_type)3576 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3577 struct eth_tx_start_bd *tx_start_bd,
3578 u32 xmit_type)
3579 {
3580 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3581
3582 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3583 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3584
3585 if (!(xmit_type & XMIT_CSUM_TCP))
3586 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3587 }
3588
3589 /**
3590 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3591 *
3592 * @bp: driver handle
3593 * @skb: packet skb
3594 * @pbd: parse BD to be updated
3595 * @xmit_type: xmit flags
3596 */
bnx2x_set_pbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3597 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3598 struct eth_tx_parse_bd_e1x *pbd,
3599 u32 xmit_type)
3600 {
3601 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3602
3603 /* for now NS flag is not used in Linux */
3604 pbd->global_data =
3605 cpu_to_le16(hlen |
3606 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3607 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3608
3609 pbd->ip_hlen_w = (skb_transport_header(skb) -
3610 skb_network_header(skb)) >> 1;
3611
3612 hlen += pbd->ip_hlen_w;
3613
3614 /* We support checksum offload for TCP and UDP only */
3615 if (xmit_type & XMIT_CSUM_TCP)
3616 hlen += tcp_hdrlen(skb) / 2;
3617 else
3618 hlen += sizeof(struct udphdr) / 2;
3619
3620 pbd->total_hlen_w = cpu_to_le16(hlen);
3621 hlen = hlen*2;
3622
3623 if (xmit_type & XMIT_CSUM_TCP) {
3624 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3625
3626 } else {
3627 s8 fix = SKB_CS_OFF(skb); /* signed! */
3628
3629 DP(NETIF_MSG_TX_QUEUED,
3630 "hlen %d fix %d csum before fix %x\n",
3631 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3632
3633 /* HW bug: fixup the CSUM */
3634 pbd->tcp_pseudo_csum =
3635 bnx2x_csum_fix(skb_transport_header(skb),
3636 SKB_CS(skb), fix);
3637
3638 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3639 pbd->tcp_pseudo_csum);
3640 }
3641
3642 return hlen;
3643 }
3644
bnx2x_update_pbds_gso_enc(struct sk_buff * skb,struct eth_tx_parse_bd_e2 * pbd_e2,struct eth_tx_parse_2nd_bd * pbd2,u16 * global_data,u32 xmit_type)3645 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3646 struct eth_tx_parse_bd_e2 *pbd_e2,
3647 struct eth_tx_parse_2nd_bd *pbd2,
3648 u16 *global_data,
3649 u32 xmit_type)
3650 {
3651 u16 hlen_w = 0;
3652 u8 outerip_off, outerip_len = 0;
3653
3654 /* from outer IP to transport */
3655 hlen_w = (skb_inner_transport_header(skb) -
3656 skb_network_header(skb)) >> 1;
3657
3658 /* transport len */
3659 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3660
3661 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3662
3663 /* outer IP header info */
3664 if (xmit_type & XMIT_CSUM_V4) {
3665 struct iphdr *iph = ip_hdr(skb);
3666 u32 csum = (__force u32)(~iph->check) -
3667 (__force u32)iph->tot_len -
3668 (__force u32)iph->frag_off;
3669
3670 outerip_len = iph->ihl << 1;
3671
3672 pbd2->fw_ip_csum_wo_len_flags_frag =
3673 bswab16(csum_fold((__force __wsum)csum));
3674 } else {
3675 pbd2->fw_ip_hdr_to_payload_w =
3676 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3677 pbd_e2->data.tunnel_data.flags |=
3678 ETH_TUNNEL_DATA_IPV6_OUTER;
3679 }
3680
3681 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3682
3683 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3684
3685 /* inner IP header info */
3686 if (xmit_type & XMIT_CSUM_ENC_V4) {
3687 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3688
3689 pbd_e2->data.tunnel_data.pseudo_csum =
3690 bswab16(~csum_tcpudp_magic(
3691 inner_ip_hdr(skb)->saddr,
3692 inner_ip_hdr(skb)->daddr,
3693 0, IPPROTO_TCP, 0));
3694 } else {
3695 pbd_e2->data.tunnel_data.pseudo_csum =
3696 bswab16(~csum_ipv6_magic(
3697 &inner_ipv6_hdr(skb)->saddr,
3698 &inner_ipv6_hdr(skb)->daddr,
3699 0, IPPROTO_TCP, 0));
3700 }
3701
3702 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3703
3704 *global_data |=
3705 outerip_off |
3706 (outerip_len <<
3707 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3708 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3709 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3710
3711 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3712 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3713 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3714 }
3715 }
3716
bnx2x_set_ipv6_ext_e2(struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3717 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3718 u32 xmit_type)
3719 {
3720 struct ipv6hdr *ipv6;
3721
3722 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3723 return;
3724
3725 if (xmit_type & XMIT_GSO_ENC_V6)
3726 ipv6 = inner_ipv6_hdr(skb);
3727 else /* XMIT_GSO_V6 */
3728 ipv6 = ipv6_hdr(skb);
3729
3730 if (ipv6->nexthdr == NEXTHDR_IPV6)
3731 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3732 }
3733
3734 /* called with netif_tx_lock
3735 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3736 * netif_wake_queue()
3737 */
bnx2x_start_xmit(struct sk_buff * skb,struct net_device * dev)3738 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3739 {
3740 struct bnx2x *bp = netdev_priv(dev);
3741
3742 struct netdev_queue *txq;
3743 struct bnx2x_fp_txdata *txdata;
3744 struct sw_tx_bd *tx_buf;
3745 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3746 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3747 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3748 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3749 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3750 u32 pbd_e2_parsing_data = 0;
3751 u16 pkt_prod, bd_prod;
3752 int nbd, txq_index;
3753 dma_addr_t mapping;
3754 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3755 int i;
3756 u8 hlen = 0;
3757 __le16 pkt_size = 0;
3758 struct ethhdr *eth;
3759 u8 mac_type = UNICAST_ADDRESS;
3760
3761 #ifdef BNX2X_STOP_ON_ERROR
3762 if (unlikely(bp->panic))
3763 return NETDEV_TX_BUSY;
3764 #endif
3765
3766 txq_index = skb_get_queue_mapping(skb);
3767 txq = netdev_get_tx_queue(dev, txq_index);
3768
3769 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3770
3771 txdata = &bp->bnx2x_txq[txq_index];
3772
3773 /* enable this debug print to view the transmission queue being used
3774 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3775 txq_index, fp_index, txdata_index); */
3776
3777 /* enable this debug print to view the transmission details
3778 DP(NETIF_MSG_TX_QUEUED,
3779 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3780 txdata->cid, fp_index, txdata_index, txdata, fp); */
3781
3782 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3783 skb_shinfo(skb)->nr_frags +
3784 BDS_PER_TX_PKT +
3785 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3786 /* Handle special storage cases separately */
3787 if (txdata->tx_ring_size == 0) {
3788 struct bnx2x_eth_q_stats *q_stats =
3789 bnx2x_fp_qstats(bp, txdata->parent_fp);
3790 q_stats->driver_filtered_tx_pkt++;
3791 dev_kfree_skb(skb);
3792 return NETDEV_TX_OK;
3793 }
3794 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3795 netif_tx_stop_queue(txq);
3796 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3797
3798 return NETDEV_TX_BUSY;
3799 }
3800
3801 DP(NETIF_MSG_TX_QUEUED,
3802 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3803 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3804 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3805 skb->len);
3806
3807 eth = (struct ethhdr *)skb->data;
3808
3809 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3810 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3811 if (is_broadcast_ether_addr(eth->h_dest))
3812 mac_type = BROADCAST_ADDRESS;
3813 else
3814 mac_type = MULTICAST_ADDRESS;
3815 }
3816
3817 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3818 /* First, check if we need to linearize the skb (due to FW
3819 restrictions). No need to check fragmentation if page size > 8K
3820 (there will be no violation to FW restrictions) */
3821 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3822 /* Statistics of linearization */
3823 bp->lin_cnt++;
3824 if (skb_linearize(skb) != 0) {
3825 DP(NETIF_MSG_TX_QUEUED,
3826 "SKB linearization failed - silently dropping this SKB\n");
3827 dev_kfree_skb_any(skb);
3828 return NETDEV_TX_OK;
3829 }
3830 }
3831 #endif
3832 /* Map skb linear data for DMA */
3833 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3834 skb_headlen(skb), DMA_TO_DEVICE);
3835 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3836 DP(NETIF_MSG_TX_QUEUED,
3837 "SKB mapping failed - silently dropping this SKB\n");
3838 dev_kfree_skb_any(skb);
3839 return NETDEV_TX_OK;
3840 }
3841 /*
3842 Please read carefully. First we use one BD which we mark as start,
3843 then we have a parsing info BD (used for TSO or xsum),
3844 and only then we have the rest of the TSO BDs.
3845 (don't forget to mark the last one as last,
3846 and to unmap only AFTER you write to the BD ...)
3847 And above all, all pdb sizes are in words - NOT DWORDS!
3848 */
3849
3850 /* get current pkt produced now - advance it just before sending packet
3851 * since mapping of pages may fail and cause packet to be dropped
3852 */
3853 pkt_prod = txdata->tx_pkt_prod;
3854 bd_prod = TX_BD(txdata->tx_bd_prod);
3855
3856 /* get a tx_buf and first BD
3857 * tx_start_bd may be changed during SPLIT,
3858 * but first_bd will always stay first
3859 */
3860 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3861 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3862 first_bd = tx_start_bd;
3863
3864 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3865
3866 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3867 if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3868 bp->eth_stats.ptp_skip_tx_ts++;
3869 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3870 } else if (bp->ptp_tx_skb) {
3871 bp->eth_stats.ptp_skip_tx_ts++;
3872 netdev_err_once(bp->dev,
3873 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3874 } else {
3875 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3876 /* schedule check for Tx timestamp */
3877 bp->ptp_tx_skb = skb_get(skb);
3878 bp->ptp_tx_start = jiffies;
3879 schedule_work(&bp->ptp_task);
3880 }
3881 }
3882
3883 /* header nbd: indirectly zero other flags! */
3884 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3885
3886 /* remember the first BD of the packet */
3887 tx_buf->first_bd = txdata->tx_bd_prod;
3888 tx_buf->skb = skb;
3889 tx_buf->flags = 0;
3890
3891 DP(NETIF_MSG_TX_QUEUED,
3892 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3893 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3894
3895 if (skb_vlan_tag_present(skb)) {
3896 tx_start_bd->vlan_or_ethertype =
3897 cpu_to_le16(skb_vlan_tag_get(skb));
3898 tx_start_bd->bd_flags.as_bitfield |=
3899 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3900 } else {
3901 /* when transmitting in a vf, start bd must hold the ethertype
3902 * for fw to enforce it
3903 */
3904 u16 vlan_tci = 0;
3905 #ifndef BNX2X_STOP_ON_ERROR
3906 if (IS_VF(bp)) {
3907 #endif
3908 /* Still need to consider inband vlan for enforced */
3909 if (__vlan_get_tag(skb, &vlan_tci)) {
3910 tx_start_bd->vlan_or_ethertype =
3911 cpu_to_le16(ntohs(eth->h_proto));
3912 } else {
3913 tx_start_bd->bd_flags.as_bitfield |=
3914 (X_ETH_INBAND_VLAN <<
3915 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3916 tx_start_bd->vlan_or_ethertype =
3917 cpu_to_le16(vlan_tci);
3918 }
3919 #ifndef BNX2X_STOP_ON_ERROR
3920 } else {
3921 /* used by FW for packet accounting */
3922 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3923 }
3924 #endif
3925 }
3926
3927 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3928
3929 /* turn on parsing and get a BD */
3930 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3931
3932 if (xmit_type & XMIT_CSUM)
3933 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3934
3935 if (!CHIP_IS_E1x(bp)) {
3936 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3937 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3938
3939 if (xmit_type & XMIT_CSUM_ENC) {
3940 u16 global_data = 0;
3941
3942 /* Set PBD in enc checksum offload case */
3943 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3944 &pbd_e2_parsing_data,
3945 xmit_type);
3946
3947 /* turn on 2nd parsing and get a BD */
3948 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3949
3950 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3951
3952 memset(pbd2, 0, sizeof(*pbd2));
3953
3954 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3955 (skb_inner_network_header(skb) -
3956 skb->data) >> 1;
3957
3958 if (xmit_type & XMIT_GSO_ENC)
3959 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3960 &global_data,
3961 xmit_type);
3962
3963 pbd2->global_data = cpu_to_le16(global_data);
3964
3965 /* add addition parse BD indication to start BD */
3966 SET_FLAG(tx_start_bd->general_data,
3967 ETH_TX_START_BD_PARSE_NBDS, 1);
3968 /* set encapsulation flag in start BD */
3969 SET_FLAG(tx_start_bd->general_data,
3970 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3971
3972 tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3973
3974 nbd++;
3975 } else if (xmit_type & XMIT_CSUM) {
3976 /* Set PBD in checksum offload case w/o encapsulation */
3977 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3978 &pbd_e2_parsing_data,
3979 xmit_type);
3980 }
3981
3982 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3983 /* Add the macs to the parsing BD if this is a vf or if
3984 * Tx Switching is enabled.
3985 */
3986 if (IS_VF(bp)) {
3987 /* override GRE parameters in BD */
3988 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3989 &pbd_e2->data.mac_addr.src_mid,
3990 &pbd_e2->data.mac_addr.src_lo,
3991 eth->h_source);
3992
3993 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3994 &pbd_e2->data.mac_addr.dst_mid,
3995 &pbd_e2->data.mac_addr.dst_lo,
3996 eth->h_dest);
3997 } else {
3998 if (bp->flags & TX_SWITCHING)
3999 bnx2x_set_fw_mac_addr(
4000 &pbd_e2->data.mac_addr.dst_hi,
4001 &pbd_e2->data.mac_addr.dst_mid,
4002 &pbd_e2->data.mac_addr.dst_lo,
4003 eth->h_dest);
4004 #ifdef BNX2X_STOP_ON_ERROR
4005 /* Enforce security is always set in Stop on Error -
4006 * source mac should be present in the parsing BD
4007 */
4008 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4009 &pbd_e2->data.mac_addr.src_mid,
4010 &pbd_e2->data.mac_addr.src_lo,
4011 eth->h_source);
4012 #endif
4013 }
4014
4015 SET_FLAG(pbd_e2_parsing_data,
4016 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4017 } else {
4018 u16 global_data = 0;
4019 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4020 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4021 /* Set PBD in checksum offload case */
4022 if (xmit_type & XMIT_CSUM)
4023 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4024
4025 SET_FLAG(global_data,
4026 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4027 pbd_e1x->global_data |= cpu_to_le16(global_data);
4028 }
4029
4030 /* Setup the data pointer of the first BD of the packet */
4031 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4032 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4033 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4034 pkt_size = tx_start_bd->nbytes;
4035
4036 DP(NETIF_MSG_TX_QUEUED,
4037 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4038 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4039 le16_to_cpu(tx_start_bd->nbytes),
4040 tx_start_bd->bd_flags.as_bitfield,
4041 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4042
4043 if (xmit_type & XMIT_GSO) {
4044
4045 DP(NETIF_MSG_TX_QUEUED,
4046 "TSO packet len %d hlen %d total len %d tso size %d\n",
4047 skb->len, hlen, skb_headlen(skb),
4048 skb_shinfo(skb)->gso_size);
4049
4050 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4051
4052 if (unlikely(skb_headlen(skb) > hlen)) {
4053 nbd++;
4054 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4055 &tx_start_bd, hlen,
4056 bd_prod);
4057 }
4058 if (!CHIP_IS_E1x(bp))
4059 pbd_e2_parsing_data |=
4060 (skb_shinfo(skb)->gso_size <<
4061 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4062 ETH_TX_PARSE_BD_E2_LSO_MSS;
4063 else
4064 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4065 }
4066
4067 /* Set the PBD's parsing_data field if not zero
4068 * (for the chips newer than 57711).
4069 */
4070 if (pbd_e2_parsing_data)
4071 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4072
4073 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4074
4075 /* Handle fragmented skb */
4076 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4077 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4078
4079 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4080 skb_frag_size(frag), DMA_TO_DEVICE);
4081 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4082 unsigned int pkts_compl = 0, bytes_compl = 0;
4083
4084 DP(NETIF_MSG_TX_QUEUED,
4085 "Unable to map page - dropping packet...\n");
4086
4087 /* we need unmap all buffers already mapped
4088 * for this SKB;
4089 * first_bd->nbd need to be properly updated
4090 * before call to bnx2x_free_tx_pkt
4091 */
4092 first_bd->nbd = cpu_to_le16(nbd);
4093 bnx2x_free_tx_pkt(bp, txdata,
4094 TX_BD(txdata->tx_pkt_prod),
4095 &pkts_compl, &bytes_compl);
4096 return NETDEV_TX_OK;
4097 }
4098
4099 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4100 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4101 if (total_pkt_bd == NULL)
4102 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4103
4104 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4105 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4106 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4107 le16_add_cpu(&pkt_size, skb_frag_size(frag));
4108 nbd++;
4109
4110 DP(NETIF_MSG_TX_QUEUED,
4111 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4112 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4113 le16_to_cpu(tx_data_bd->nbytes));
4114 }
4115
4116 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4117
4118 /* update with actual num BDs */
4119 first_bd->nbd = cpu_to_le16(nbd);
4120
4121 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4122
4123 /* now send a tx doorbell, counting the next BD
4124 * if the packet contains or ends with it
4125 */
4126 if (TX_BD_POFF(bd_prod) < nbd)
4127 nbd++;
4128
4129 /* total_pkt_bytes should be set on the first data BD if
4130 * it's not an LSO packet and there is more than one
4131 * data BD. In this case pkt_size is limited by an MTU value.
4132 * However we prefer to set it for an LSO packet (while we don't
4133 * have to) in order to save some CPU cycles in a none-LSO
4134 * case, when we much more care about them.
4135 */
4136 if (total_pkt_bd != NULL)
4137 total_pkt_bd->total_pkt_bytes = pkt_size;
4138
4139 if (pbd_e1x)
4140 DP(NETIF_MSG_TX_QUEUED,
4141 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4142 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4143 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4144 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4145 le16_to_cpu(pbd_e1x->total_hlen_w));
4146 if (pbd_e2)
4147 DP(NETIF_MSG_TX_QUEUED,
4148 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4149 pbd_e2,
4150 pbd_e2->data.mac_addr.dst_hi,
4151 pbd_e2->data.mac_addr.dst_mid,
4152 pbd_e2->data.mac_addr.dst_lo,
4153 pbd_e2->data.mac_addr.src_hi,
4154 pbd_e2->data.mac_addr.src_mid,
4155 pbd_e2->data.mac_addr.src_lo,
4156 pbd_e2->parsing_data);
4157 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4158
4159 netdev_tx_sent_queue(txq, skb->len);
4160
4161 skb_tx_timestamp(skb);
4162
4163 txdata->tx_pkt_prod++;
4164 /*
4165 * Make sure that the BD data is updated before updating the producer
4166 * since FW might read the BD right after the producer is updated.
4167 * This is only applicable for weak-ordered memory model archs such
4168 * as IA-64. The following barrier is also mandatory since FW will
4169 * assumes packets must have BDs.
4170 */
4171 wmb();
4172
4173 txdata->tx_db.data.prod += nbd;
4174 /* make sure descriptor update is observed by HW */
4175 wmb();
4176
4177 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4178
4179 txdata->tx_bd_prod += nbd;
4180
4181 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4182 netif_tx_stop_queue(txq);
4183
4184 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4185 * ordering of set_bit() in netif_tx_stop_queue() and read of
4186 * fp->bd_tx_cons */
4187 smp_mb();
4188
4189 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4190 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4191 netif_tx_wake_queue(txq);
4192 }
4193 txdata->tx_pkt++;
4194
4195 return NETDEV_TX_OK;
4196 }
4197
bnx2x_get_c2s_mapping(struct bnx2x * bp,u8 * c2s_map,u8 * c2s_default)4198 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4199 {
4200 int mfw_vn = BP_FW_MB_IDX(bp);
4201 u32 tmp;
4202
4203 /* If the shmem shouldn't affect configuration, reflect */
4204 if (!IS_MF_BD(bp)) {
4205 int i;
4206
4207 for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4208 c2s_map[i] = i;
4209 *c2s_default = 0;
4210
4211 return;
4212 }
4213
4214 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4215 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4216 c2s_map[0] = tmp & 0xff;
4217 c2s_map[1] = (tmp >> 8) & 0xff;
4218 c2s_map[2] = (tmp >> 16) & 0xff;
4219 c2s_map[3] = (tmp >> 24) & 0xff;
4220
4221 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4222 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4223 c2s_map[4] = tmp & 0xff;
4224 c2s_map[5] = (tmp >> 8) & 0xff;
4225 c2s_map[6] = (tmp >> 16) & 0xff;
4226 c2s_map[7] = (tmp >> 24) & 0xff;
4227
4228 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4229 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4230 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4231 }
4232
4233 /**
4234 * bnx2x_setup_tc - routine to configure net_device for multi tc
4235 *
4236 * @dev: net device to configure
4237 * @num_tc: number of traffic classes to enable
4238 *
4239 * callback connected to the ndo_setup_tc function pointer
4240 */
bnx2x_setup_tc(struct net_device * dev,u8 num_tc)4241 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4242 {
4243 struct bnx2x *bp = netdev_priv(dev);
4244 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4245 int cos, prio, count, offset;
4246
4247 /* setup tc must be called under rtnl lock */
4248 ASSERT_RTNL();
4249
4250 /* no traffic classes requested. Aborting */
4251 if (!num_tc) {
4252 netdev_reset_tc(dev);
4253 return 0;
4254 }
4255
4256 /* requested to support too many traffic classes */
4257 if (num_tc > bp->max_cos) {
4258 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4259 num_tc, bp->max_cos);
4260 return -EINVAL;
4261 }
4262
4263 /* declare amount of supported traffic classes */
4264 if (netdev_set_num_tc(dev, num_tc)) {
4265 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4266 return -EINVAL;
4267 }
4268
4269 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4270
4271 /* configure priority to traffic class mapping */
4272 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4273 int outer_prio = c2s_map[prio];
4274
4275 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4276 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4277 "mapping priority %d to tc %d\n",
4278 outer_prio, bp->prio_to_cos[outer_prio]);
4279 }
4280
4281 /* Use this configuration to differentiate tc0 from other COSes
4282 This can be used for ets or pfc, and save the effort of setting
4283 up a multio class queue disc or negotiating DCBX with a switch
4284 netdev_set_prio_tc_map(dev, 0, 0);
4285 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4286 for (prio = 1; prio < 16; prio++) {
4287 netdev_set_prio_tc_map(dev, prio, 1);
4288 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4289 } */
4290
4291 /* configure traffic class to transmission queue mapping */
4292 for (cos = 0; cos < bp->max_cos; cos++) {
4293 count = BNX2X_NUM_ETH_QUEUES(bp);
4294 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4295 netdev_set_tc_queue(dev, cos, count, offset);
4296 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4297 "mapping tc %d to offset %d count %d\n",
4298 cos, offset, count);
4299 }
4300
4301 return 0;
4302 }
4303
__bnx2x_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)4304 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4305 void *type_data)
4306 {
4307 struct tc_mqprio_qopt *mqprio = type_data;
4308
4309 if (type != TC_SETUP_QDISC_MQPRIO)
4310 return -EOPNOTSUPP;
4311
4312 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4313
4314 return bnx2x_setup_tc(dev, mqprio->num_tc);
4315 }
4316
4317 /* called with rtnl_lock */
bnx2x_change_mac_addr(struct net_device * dev,void * p)4318 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4319 {
4320 struct sockaddr *addr = p;
4321 struct bnx2x *bp = netdev_priv(dev);
4322 int rc = 0;
4323
4324 if (!is_valid_ether_addr(addr->sa_data)) {
4325 BNX2X_ERR("Requested MAC address is not valid\n");
4326 return -EINVAL;
4327 }
4328
4329 if (IS_MF_STORAGE_ONLY(bp)) {
4330 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4331 return -EINVAL;
4332 }
4333
4334 if (netif_running(dev)) {
4335 rc = bnx2x_set_eth_mac(bp, false);
4336 if (rc)
4337 return rc;
4338 }
4339
4340 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4341
4342 if (netif_running(dev))
4343 rc = bnx2x_set_eth_mac(bp, true);
4344
4345 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4346 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4347
4348 return rc;
4349 }
4350
bnx2x_free_fp_mem_at(struct bnx2x * bp,int fp_index)4351 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4352 {
4353 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4354 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4355 u8 cos;
4356
4357 /* Common */
4358
4359 if (IS_FCOE_IDX(fp_index)) {
4360 memset(sb, 0, sizeof(union host_hc_status_block));
4361 fp->status_blk_mapping = 0;
4362 } else {
4363 /* status blocks */
4364 if (!CHIP_IS_E1x(bp))
4365 BNX2X_PCI_FREE(sb->e2_sb,
4366 bnx2x_fp(bp, fp_index,
4367 status_blk_mapping),
4368 sizeof(struct host_hc_status_block_e2));
4369 else
4370 BNX2X_PCI_FREE(sb->e1x_sb,
4371 bnx2x_fp(bp, fp_index,
4372 status_blk_mapping),
4373 sizeof(struct host_hc_status_block_e1x));
4374 }
4375
4376 /* Rx */
4377 if (!skip_rx_queue(bp, fp_index)) {
4378 bnx2x_free_rx_bds(fp);
4379
4380 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4381 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4382 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4383 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4384 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4385
4386 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4387 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4388 sizeof(struct eth_fast_path_rx_cqe) *
4389 NUM_RCQ_BD);
4390
4391 /* SGE ring */
4392 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4393 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4394 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4395 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4396 }
4397
4398 /* Tx */
4399 if (!skip_tx_queue(bp, fp_index)) {
4400 /* fastpath tx rings: tx_buf tx_desc */
4401 for_each_cos_in_tx_queue(fp, cos) {
4402 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4403
4404 DP(NETIF_MSG_IFDOWN,
4405 "freeing tx memory of fp %d cos %d cid %d\n",
4406 fp_index, cos, txdata->cid);
4407
4408 BNX2X_FREE(txdata->tx_buf_ring);
4409 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4410 txdata->tx_desc_mapping,
4411 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4412 }
4413 }
4414 /* end of fastpath */
4415 }
4416
bnx2x_free_fp_mem_cnic(struct bnx2x * bp)4417 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4418 {
4419 int i;
4420 for_each_cnic_queue(bp, i)
4421 bnx2x_free_fp_mem_at(bp, i);
4422 }
4423
bnx2x_free_fp_mem(struct bnx2x * bp)4424 void bnx2x_free_fp_mem(struct bnx2x *bp)
4425 {
4426 int i;
4427 for_each_eth_queue(bp, i)
4428 bnx2x_free_fp_mem_at(bp, i);
4429 }
4430
set_sb_shortcuts(struct bnx2x * bp,int index)4431 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4432 {
4433 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4434 if (!CHIP_IS_E1x(bp)) {
4435 bnx2x_fp(bp, index, sb_index_values) =
4436 (__le16 *)status_blk.e2_sb->sb.index_values;
4437 bnx2x_fp(bp, index, sb_running_index) =
4438 (__le16 *)status_blk.e2_sb->sb.running_index;
4439 } else {
4440 bnx2x_fp(bp, index, sb_index_values) =
4441 (__le16 *)status_blk.e1x_sb->sb.index_values;
4442 bnx2x_fp(bp, index, sb_running_index) =
4443 (__le16 *)status_blk.e1x_sb->sb.running_index;
4444 }
4445 }
4446
4447 /* Returns the number of actually allocated BDs */
bnx2x_alloc_rx_bds(struct bnx2x_fastpath * fp,int rx_ring_size)4448 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4449 int rx_ring_size)
4450 {
4451 struct bnx2x *bp = fp->bp;
4452 u16 ring_prod, cqe_ring_prod;
4453 int i, failure_cnt = 0;
4454
4455 fp->rx_comp_cons = 0;
4456 cqe_ring_prod = ring_prod = 0;
4457
4458 /* This routine is called only during fo init so
4459 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4460 */
4461 for (i = 0; i < rx_ring_size; i++) {
4462 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4463 failure_cnt++;
4464 continue;
4465 }
4466 ring_prod = NEXT_RX_IDX(ring_prod);
4467 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4468 WARN_ON(ring_prod <= (i - failure_cnt));
4469 }
4470
4471 if (failure_cnt)
4472 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4473 i - failure_cnt, fp->index);
4474
4475 fp->rx_bd_prod = ring_prod;
4476 /* Limit the CQE producer by the CQE ring size */
4477 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4478 cqe_ring_prod);
4479
4480 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4481
4482 return i - failure_cnt;
4483 }
4484
bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath * fp)4485 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4486 {
4487 int i;
4488
4489 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4490 struct eth_rx_cqe_next_page *nextpg;
4491
4492 nextpg = (struct eth_rx_cqe_next_page *)
4493 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4494 nextpg->addr_hi =
4495 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4496 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4497 nextpg->addr_lo =
4498 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4499 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4500 }
4501 }
4502
bnx2x_alloc_fp_mem_at(struct bnx2x * bp,int index)4503 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4504 {
4505 union host_hc_status_block *sb;
4506 struct bnx2x_fastpath *fp = &bp->fp[index];
4507 int ring_size = 0;
4508 u8 cos;
4509 int rx_ring_size = 0;
4510
4511 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4512 rx_ring_size = MIN_RX_SIZE_NONTPA;
4513 bp->rx_ring_size = rx_ring_size;
4514 } else if (!bp->rx_ring_size) {
4515 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4516
4517 if (CHIP_IS_E3(bp)) {
4518 u32 cfg = SHMEM_RD(bp,
4519 dev_info.port_hw_config[BP_PORT(bp)].
4520 default_cfg);
4521
4522 /* Decrease ring size for 1G functions */
4523 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4524 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4525 rx_ring_size /= 10;
4526 }
4527
4528 /* allocate at least number of buffers required by FW */
4529 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4530 MIN_RX_SIZE_TPA, rx_ring_size);
4531
4532 bp->rx_ring_size = rx_ring_size;
4533 } else /* if rx_ring_size specified - use it */
4534 rx_ring_size = bp->rx_ring_size;
4535
4536 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4537
4538 /* Common */
4539 sb = &bnx2x_fp(bp, index, status_blk);
4540
4541 if (!IS_FCOE_IDX(index)) {
4542 /* status blocks */
4543 if (!CHIP_IS_E1x(bp)) {
4544 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4545 sizeof(struct host_hc_status_block_e2));
4546 if (!sb->e2_sb)
4547 goto alloc_mem_err;
4548 } else {
4549 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4550 sizeof(struct host_hc_status_block_e1x));
4551 if (!sb->e1x_sb)
4552 goto alloc_mem_err;
4553 }
4554 }
4555
4556 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4557 * set shortcuts for it.
4558 */
4559 if (!IS_FCOE_IDX(index))
4560 set_sb_shortcuts(bp, index);
4561
4562 /* Tx */
4563 if (!skip_tx_queue(bp, index)) {
4564 /* fastpath tx rings: tx_buf tx_desc */
4565 for_each_cos_in_tx_queue(fp, cos) {
4566 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4567
4568 DP(NETIF_MSG_IFUP,
4569 "allocating tx memory of fp %d cos %d\n",
4570 index, cos);
4571
4572 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4573 sizeof(struct sw_tx_bd),
4574 GFP_KERNEL);
4575 if (!txdata->tx_buf_ring)
4576 goto alloc_mem_err;
4577 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4578 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4579 if (!txdata->tx_desc_ring)
4580 goto alloc_mem_err;
4581 }
4582 }
4583
4584 /* Rx */
4585 if (!skip_rx_queue(bp, index)) {
4586 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4587 bnx2x_fp(bp, index, rx_buf_ring) =
4588 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4589 if (!bnx2x_fp(bp, index, rx_buf_ring))
4590 goto alloc_mem_err;
4591 bnx2x_fp(bp, index, rx_desc_ring) =
4592 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4593 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4594 if (!bnx2x_fp(bp, index, rx_desc_ring))
4595 goto alloc_mem_err;
4596
4597 /* Seed all CQEs by 1s */
4598 bnx2x_fp(bp, index, rx_comp_ring) =
4599 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4600 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4601 if (!bnx2x_fp(bp, index, rx_comp_ring))
4602 goto alloc_mem_err;
4603
4604 /* SGE ring */
4605 bnx2x_fp(bp, index, rx_page_ring) =
4606 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4607 GFP_KERNEL);
4608 if (!bnx2x_fp(bp, index, rx_page_ring))
4609 goto alloc_mem_err;
4610 bnx2x_fp(bp, index, rx_sge_ring) =
4611 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4612 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4613 if (!bnx2x_fp(bp, index, rx_sge_ring))
4614 goto alloc_mem_err;
4615 /* RX BD ring */
4616 bnx2x_set_next_page_rx_bd(fp);
4617
4618 /* CQ ring */
4619 bnx2x_set_next_page_rx_cq(fp);
4620
4621 /* BDs */
4622 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4623 if (ring_size < rx_ring_size)
4624 goto alloc_mem_err;
4625 }
4626
4627 return 0;
4628
4629 /* handles low memory cases */
4630 alloc_mem_err:
4631 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4632 index, ring_size);
4633 /* FW will drop all packets if queue is not big enough,
4634 * In these cases we disable the queue
4635 * Min size is different for OOO, TPA and non-TPA queues
4636 */
4637 if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4638 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4639 /* release memory allocated for this queue */
4640 bnx2x_free_fp_mem_at(bp, index);
4641 return -ENOMEM;
4642 }
4643 return 0;
4644 }
4645
bnx2x_alloc_fp_mem_cnic(struct bnx2x * bp)4646 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4647 {
4648 if (!NO_FCOE(bp))
4649 /* FCoE */
4650 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4651 /* we will fail load process instead of mark
4652 * NO_FCOE_FLAG
4653 */
4654 return -ENOMEM;
4655
4656 return 0;
4657 }
4658
bnx2x_alloc_fp_mem(struct bnx2x * bp)4659 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4660 {
4661 int i;
4662
4663 /* 1. Allocate FP for leading - fatal if error
4664 * 2. Allocate RSS - fix number of queues if error
4665 */
4666
4667 /* leading */
4668 if (bnx2x_alloc_fp_mem_at(bp, 0))
4669 return -ENOMEM;
4670
4671 /* RSS */
4672 for_each_nondefault_eth_queue(bp, i)
4673 if (bnx2x_alloc_fp_mem_at(bp, i))
4674 break;
4675
4676 /* handle memory failures */
4677 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4678 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4679
4680 WARN_ON(delta < 0);
4681 bnx2x_shrink_eth_fp(bp, delta);
4682 if (CNIC_SUPPORT(bp))
4683 /* move non eth FPs next to last eth FP
4684 * must be done in that order
4685 * FCOE_IDX < FWD_IDX < OOO_IDX
4686 */
4687
4688 /* move FCoE fp even NO_FCOE_FLAG is on */
4689 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4690 bp->num_ethernet_queues -= delta;
4691 bp->num_queues = bp->num_ethernet_queues +
4692 bp->num_cnic_queues;
4693 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4694 bp->num_queues + delta, bp->num_queues);
4695 }
4696
4697 return 0;
4698 }
4699
bnx2x_free_mem_bp(struct bnx2x * bp)4700 void bnx2x_free_mem_bp(struct bnx2x *bp)
4701 {
4702 int i;
4703
4704 for (i = 0; i < bp->fp_array_size; i++)
4705 kfree(bp->fp[i].tpa_info);
4706 kfree(bp->fp);
4707 kfree(bp->sp_objs);
4708 kfree(bp->fp_stats);
4709 kfree(bp->bnx2x_txq);
4710 kfree(bp->msix_table);
4711 kfree(bp->ilt);
4712 }
4713
bnx2x_alloc_mem_bp(struct bnx2x * bp)4714 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4715 {
4716 struct bnx2x_fastpath *fp;
4717 struct msix_entry *tbl;
4718 struct bnx2x_ilt *ilt;
4719 int msix_table_size = 0;
4720 int fp_array_size, txq_array_size;
4721 int i;
4722
4723 /*
4724 * The biggest MSI-X table we might need is as a maximum number of fast
4725 * path IGU SBs plus default SB (for PF only).
4726 */
4727 msix_table_size = bp->igu_sb_cnt;
4728 if (IS_PF(bp))
4729 msix_table_size++;
4730 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4731
4732 /* fp array: RSS plus CNIC related L2 queues */
4733 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4734 bp->fp_array_size = fp_array_size;
4735 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4736
4737 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4738 if (!fp)
4739 goto alloc_err;
4740 for (i = 0; i < bp->fp_array_size; i++) {
4741 fp[i].tpa_info =
4742 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4743 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4744 if (!(fp[i].tpa_info))
4745 goto alloc_err;
4746 }
4747
4748 bp->fp = fp;
4749
4750 /* allocate sp objs */
4751 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4752 GFP_KERNEL);
4753 if (!bp->sp_objs)
4754 goto alloc_err;
4755
4756 /* allocate fp_stats */
4757 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4758 GFP_KERNEL);
4759 if (!bp->fp_stats)
4760 goto alloc_err;
4761
4762 /* Allocate memory for the transmission queues array */
4763 txq_array_size =
4764 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4765 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4766
4767 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4768 GFP_KERNEL);
4769 if (!bp->bnx2x_txq)
4770 goto alloc_err;
4771
4772 /* msix table */
4773 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4774 if (!tbl)
4775 goto alloc_err;
4776 bp->msix_table = tbl;
4777
4778 /* ilt */
4779 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4780 if (!ilt)
4781 goto alloc_err;
4782 bp->ilt = ilt;
4783
4784 return 0;
4785 alloc_err:
4786 bnx2x_free_mem_bp(bp);
4787 return -ENOMEM;
4788 }
4789
bnx2x_reload_if_running(struct net_device * dev)4790 int bnx2x_reload_if_running(struct net_device *dev)
4791 {
4792 struct bnx2x *bp = netdev_priv(dev);
4793
4794 if (unlikely(!netif_running(dev)))
4795 return 0;
4796
4797 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4798 return bnx2x_nic_load(bp, LOAD_NORMAL);
4799 }
4800
bnx2x_get_cur_phy_idx(struct bnx2x * bp)4801 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4802 {
4803 u32 sel_phy_idx = 0;
4804 if (bp->link_params.num_phys <= 1)
4805 return INT_PHY;
4806
4807 if (bp->link_vars.link_up) {
4808 sel_phy_idx = EXT_PHY1;
4809 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4810 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4811 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4812 sel_phy_idx = EXT_PHY2;
4813 } else {
4814
4815 switch (bnx2x_phy_selection(&bp->link_params)) {
4816 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4817 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4818 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4819 sel_phy_idx = EXT_PHY1;
4820 break;
4821 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4822 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4823 sel_phy_idx = EXT_PHY2;
4824 break;
4825 }
4826 }
4827
4828 return sel_phy_idx;
4829 }
bnx2x_get_link_cfg_idx(struct bnx2x * bp)4830 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4831 {
4832 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4833 /*
4834 * The selected activated PHY is always after swapping (in case PHY
4835 * swapping is enabled). So when swapping is enabled, we need to reverse
4836 * the configuration
4837 */
4838
4839 if (bp->link_params.multi_phy_config &
4840 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4841 if (sel_phy_idx == EXT_PHY1)
4842 sel_phy_idx = EXT_PHY2;
4843 else if (sel_phy_idx == EXT_PHY2)
4844 sel_phy_idx = EXT_PHY1;
4845 }
4846 return LINK_CONFIG_IDX(sel_phy_idx);
4847 }
4848
4849 #ifdef NETDEV_FCOE_WWNN
bnx2x_fcoe_get_wwn(struct net_device * dev,u64 * wwn,int type)4850 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4851 {
4852 struct bnx2x *bp = netdev_priv(dev);
4853 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4854
4855 switch (type) {
4856 case NETDEV_FCOE_WWNN:
4857 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4858 cp->fcoe_wwn_node_name_lo);
4859 break;
4860 case NETDEV_FCOE_WWPN:
4861 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4862 cp->fcoe_wwn_port_name_lo);
4863 break;
4864 default:
4865 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4866 return -EINVAL;
4867 }
4868
4869 return 0;
4870 }
4871 #endif
4872
4873 /* called with rtnl_lock */
bnx2x_change_mtu(struct net_device * dev,int new_mtu)4874 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4875 {
4876 struct bnx2x *bp = netdev_priv(dev);
4877
4878 if (pci_num_vf(bp->pdev)) {
4879 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4880 return -EPERM;
4881 }
4882
4883 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4884 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4885 return -EAGAIN;
4886 }
4887
4888 /* This does not race with packet allocation
4889 * because the actual alloc size is
4890 * only updated as part of load
4891 */
4892 dev->mtu = new_mtu;
4893
4894 if (!bnx2x_mtu_allows_gro(new_mtu))
4895 dev->features &= ~NETIF_F_GRO_HW;
4896
4897 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4898 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4899
4900 return bnx2x_reload_if_running(dev);
4901 }
4902
bnx2x_fix_features(struct net_device * dev,netdev_features_t features)4903 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4904 netdev_features_t features)
4905 {
4906 struct bnx2x *bp = netdev_priv(dev);
4907
4908 if (pci_num_vf(bp->pdev)) {
4909 netdev_features_t changed = dev->features ^ features;
4910
4911 /* Revert the requested changes in features if they
4912 * would require internal reload of PF in bnx2x_set_features().
4913 */
4914 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4915 features &= ~NETIF_F_RXCSUM;
4916 features |= dev->features & NETIF_F_RXCSUM;
4917 }
4918
4919 if (changed & NETIF_F_LOOPBACK) {
4920 features &= ~NETIF_F_LOOPBACK;
4921 features |= dev->features & NETIF_F_LOOPBACK;
4922 }
4923 }
4924
4925 /* TPA requires Rx CSUM offloading */
4926 if (!(features & NETIF_F_RXCSUM))
4927 features &= ~NETIF_F_LRO;
4928
4929 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4930 features &= ~NETIF_F_GRO_HW;
4931 if (features & NETIF_F_GRO_HW)
4932 features &= ~NETIF_F_LRO;
4933
4934 return features;
4935 }
4936
bnx2x_set_features(struct net_device * dev,netdev_features_t features)4937 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4938 {
4939 struct bnx2x *bp = netdev_priv(dev);
4940 netdev_features_t changes = features ^ dev->features;
4941 bool bnx2x_reload = false;
4942 int rc;
4943
4944 /* VFs or non SRIOV PFs should be able to change loopback feature */
4945 if (!pci_num_vf(bp->pdev)) {
4946 if (features & NETIF_F_LOOPBACK) {
4947 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4948 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4949 bnx2x_reload = true;
4950 }
4951 } else {
4952 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4953 bp->link_params.loopback_mode = LOOPBACK_NONE;
4954 bnx2x_reload = true;
4955 }
4956 }
4957 }
4958
4959 /* Don't care about GRO changes */
4960 changes &= ~NETIF_F_GRO;
4961
4962 if (changes)
4963 bnx2x_reload = true;
4964
4965 if (bnx2x_reload) {
4966 if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4967 dev->features = features;
4968 rc = bnx2x_reload_if_running(dev);
4969 return rc ? rc : 1;
4970 }
4971 /* else: bnx2x_nic_load() will be called at end of recovery */
4972 }
4973
4974 return 0;
4975 }
4976
bnx2x_tx_timeout(struct net_device * dev,unsigned int txqueue)4977 void bnx2x_tx_timeout(struct net_device *dev, unsigned int txqueue)
4978 {
4979 struct bnx2x *bp = netdev_priv(dev);
4980
4981 /* We want the information of the dump logged,
4982 * but calling bnx2x_panic() would kill all chances of recovery.
4983 */
4984 if (!bp->panic)
4985 #ifndef BNX2X_STOP_ON_ERROR
4986 bnx2x_panic_dump(bp, false);
4987 #else
4988 bnx2x_panic();
4989 #endif
4990
4991 /* This allows the netif to be shutdown gracefully before resetting */
4992 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4993 }
4994
bnx2x_suspend(struct device * dev_d)4995 static int __maybe_unused bnx2x_suspend(struct device *dev_d)
4996 {
4997 struct pci_dev *pdev = to_pci_dev(dev_d);
4998 struct net_device *dev = pci_get_drvdata(pdev);
4999 struct bnx2x *bp;
5000
5001 if (!dev) {
5002 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5003 return -ENODEV;
5004 }
5005 bp = netdev_priv(dev);
5006
5007 rtnl_lock();
5008
5009 if (!netif_running(dev)) {
5010 rtnl_unlock();
5011 return 0;
5012 }
5013
5014 netif_device_detach(dev);
5015
5016 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5017
5018 rtnl_unlock();
5019
5020 return 0;
5021 }
5022
bnx2x_resume(struct device * dev_d)5023 static int __maybe_unused bnx2x_resume(struct device *dev_d)
5024 {
5025 struct pci_dev *pdev = to_pci_dev(dev_d);
5026 struct net_device *dev = pci_get_drvdata(pdev);
5027 struct bnx2x *bp;
5028 int rc;
5029
5030 if (!dev) {
5031 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5032 return -ENODEV;
5033 }
5034 bp = netdev_priv(dev);
5035
5036 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5037 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5038 return -EAGAIN;
5039 }
5040
5041 rtnl_lock();
5042
5043 if (!netif_running(dev)) {
5044 rtnl_unlock();
5045 return 0;
5046 }
5047
5048 netif_device_attach(dev);
5049
5050 rc = bnx2x_nic_load(bp, LOAD_OPEN);
5051
5052 rtnl_unlock();
5053
5054 return rc;
5055 }
5056
5057 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops, bnx2x_suspend, bnx2x_resume);
5058
bnx2x_set_ctx_validation(struct bnx2x * bp,struct eth_context * cxt,u32 cid)5059 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5060 u32 cid)
5061 {
5062 if (!cxt) {
5063 BNX2X_ERR("bad context pointer %p\n", cxt);
5064 return;
5065 }
5066
5067 /* ustorm cxt validation */
5068 cxt->ustorm_ag_context.cdu_usage =
5069 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5070 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5071 /* xcontext validation */
5072 cxt->xstorm_ag_context.cdu_reserved =
5073 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5074 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5075 }
5076
storm_memset_hc_timeout(struct bnx2x * bp,u8 port,u8 fw_sb_id,u8 sb_index,u8 ticks)5077 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5078 u8 fw_sb_id, u8 sb_index,
5079 u8 ticks)
5080 {
5081 u32 addr = BAR_CSTRORM_INTMEM +
5082 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5083 REG_WR8(bp, addr, ticks);
5084 DP(NETIF_MSG_IFUP,
5085 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5086 port, fw_sb_id, sb_index, ticks);
5087 }
5088
storm_memset_hc_disable(struct bnx2x * bp,u8 port,u16 fw_sb_id,u8 sb_index,u8 disable)5089 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5090 u16 fw_sb_id, u8 sb_index,
5091 u8 disable)
5092 {
5093 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5094 u32 addr = BAR_CSTRORM_INTMEM +
5095 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5096 u8 flags = REG_RD8(bp, addr);
5097 /* clear and set */
5098 flags &= ~HC_INDEX_DATA_HC_ENABLED;
5099 flags |= enable_flag;
5100 REG_WR8(bp, addr, flags);
5101 DP(NETIF_MSG_IFUP,
5102 "port %x fw_sb_id %d sb_index %d disable %d\n",
5103 port, fw_sb_id, sb_index, disable);
5104 }
5105
bnx2x_update_coalesce_sb_index(struct bnx2x * bp,u8 fw_sb_id,u8 sb_index,u8 disable,u16 usec)5106 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5107 u8 sb_index, u8 disable, u16 usec)
5108 {
5109 int port = BP_PORT(bp);
5110 u8 ticks = usec / BNX2X_BTR;
5111
5112 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5113
5114 disable = disable ? 1 : (usec ? 0 : 1);
5115 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5116 }
5117
bnx2x_schedule_sp_rtnl(struct bnx2x * bp,enum sp_rtnl_flag flag,u32 verbose)5118 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5119 u32 verbose)
5120 {
5121 smp_mb__before_atomic();
5122 set_bit(flag, &bp->sp_rtnl_state);
5123 smp_mb__after_atomic();
5124 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5125 flag);
5126 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5127 }
5128