1 /* bnx2x_sriov.c: QLogic Everest network driver.
2 *
3 * Copyright 2009-2013 Broadcom Corporation
4 * Copyright 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * Unless you and QLogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11 *
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other QLogic software provided under a
14 * license other than the GPL, without QLogic's express prior written
15 * consent.
16 *
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Shmulik Ravid
19 * Ariel Elior <ariel.elior@qlogic.com>
20 *
21 */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 struct bnx2x_virtf **vf,
31 struct pf_vf_bulletin_content **bulletin,
32 bool test_queue);
33
34 /* General service functions */
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 u16 pf_id)
37 {
38 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 pf_id);
40 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 pf_id);
42 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 pf_id);
44 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 pf_id);
46 }
47
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 u8 enable)
50 {
51 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 enable);
53 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 enable);
55 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 enable);
57 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 enable);
59 }
60
bnx2x_vf_idx_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 int idx;
64
65 for_each_vf(bp, idx)
66 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 break;
68 return idx;
69 }
70
71 static
bnx2x_vf_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77
bnx2x_vf_igu_ack_sb(struct bnx2x * bp,struct bnx2x_virtf * vf,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 u8 update)
81 {
82 /* acking a VF sb through the PF - use the GRC */
83 u32 ctl;
84 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 u32 func_encode = vf->abs_vfid;
87 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 struct igu_regular cmd_data = {0};
89
90 cmd_data.sb_id_and_flags =
91 ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95
96 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
97 func_encode << IGU_CTRL_REG_FID_SHIFT |
98 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99
100 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 cmd_data.sb_id_and_flags, igu_addr_data);
102 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 barrier();
104
105 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
106 ctl, igu_addr_ctl);
107 REG_WR(bp, igu_addr_ctl, ctl);
108 barrier();
109 }
110
bnx2x_validate_vf_sp_objs(struct bnx2x * bp,struct bnx2x_virtf * vf,bool print_err)111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
112 struct bnx2x_virtf *vf,
113 bool print_err)
114 {
115 if (!bnx2x_leading_vfq(vf, sp_initialized)) {
116 if (print_err)
117 BNX2X_ERR("Slowpath objects not yet initialized!\n");
118 else
119 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
120 return false;
121 }
122 return true;
123 }
124
125 /* VFOP operations states */
bnx2x_vfop_qctor_dump_tx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
127 struct bnx2x_queue_init_params *init_params,
128 struct bnx2x_queue_setup_params *setup_params,
129 u16 q_idx, u16 sb_idx)
130 {
131 DP(BNX2X_MSG_IOV,
132 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
133 vf->abs_vfid,
134 q_idx,
135 sb_idx,
136 init_params->tx.sb_cq_index,
137 init_params->tx.hc_rate,
138 setup_params->flags,
139 setup_params->txq_params.traffic_type);
140 }
141
bnx2x_vfop_qctor_dump_rx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
143 struct bnx2x_queue_init_params *init_params,
144 struct bnx2x_queue_setup_params *setup_params,
145 u16 q_idx, u16 sb_idx)
146 {
147 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
148
149 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
150 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
151 vf->abs_vfid,
152 q_idx,
153 sb_idx,
154 init_params->rx.sb_cq_index,
155 init_params->rx.hc_rate,
156 setup_params->gen_params.mtu,
157 rxq_params->buf_sz,
158 rxq_params->sge_buf_sz,
159 rxq_params->max_sges_pkt,
160 rxq_params->tpa_agg_sz,
161 setup_params->flags,
162 rxq_params->drop_flags,
163 rxq_params->cache_line_log);
164 }
165
bnx2x_vfop_qctor_prep(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q,struct bnx2x_vf_queue_construct_params * p,unsigned long q_type)166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
167 struct bnx2x_virtf *vf,
168 struct bnx2x_vf_queue *q,
169 struct bnx2x_vf_queue_construct_params *p,
170 unsigned long q_type)
171 {
172 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
173 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
174
175 /* INIT */
176
177 /* Enable host coalescing in the transition to INIT state */
178 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
179 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
180
181 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
182 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
183
184 /* FW SB ID */
185 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
186 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
187
188 /* context */
189 init_p->cxts[0] = q->cxt;
190
191 /* SETUP */
192
193 /* Setup-op general parameters */
194 setup_p->gen_params.spcl_id = vf->sp_cl_id;
195 setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
196 setup_p->gen_params.fp_hsi = vf->fp_hsi;
197
198 /* Setup-op flags:
199 * collect statistics, zero statistics, local-switching, security,
200 * OV for Flex10, RSS and MCAST for leading
201 */
202 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
203 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
204
205 /* for VFs, enable tx switching, bd coherency, and mac address
206 * anti-spoofing
207 */
208 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
209 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
210 if (vf->spoofchk)
211 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
212 else
213 __clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
214
215 /* Setup-op rx parameters */
216 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
217 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
218
219 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
220 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
221 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
222
223 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
224 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
225 }
226
227 /* Setup-op tx parameters */
228 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
229 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
230 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
231 }
232 }
233
bnx2x_vf_queue_create(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)234 static int bnx2x_vf_queue_create(struct bnx2x *bp,
235 struct bnx2x_virtf *vf, int qid,
236 struct bnx2x_vf_queue_construct_params *qctor)
237 {
238 struct bnx2x_queue_state_params *q_params;
239 int rc = 0;
240
241 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
242
243 /* Prepare ramrod information */
244 q_params = &qctor->qstate;
245 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
246 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
247
248 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
249 BNX2X_Q_LOGICAL_STATE_ACTIVE) {
250 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
251 goto out;
252 }
253
254 /* Run Queue 'construction' ramrods */
255 q_params->cmd = BNX2X_Q_CMD_INIT;
256 rc = bnx2x_queue_state_change(bp, q_params);
257 if (rc)
258 goto out;
259
260 memcpy(&q_params->params.setup, &qctor->prep_qsetup,
261 sizeof(struct bnx2x_queue_setup_params));
262 q_params->cmd = BNX2X_Q_CMD_SETUP;
263 rc = bnx2x_queue_state_change(bp, q_params);
264 if (rc)
265 goto out;
266
267 /* enable interrupts */
268 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
269 USTORM_ID, 0, IGU_INT_ENABLE, 0);
270 out:
271 return rc;
272 }
273
bnx2x_vf_queue_destroy(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)274 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
275 int qid)
276 {
277 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
278 BNX2X_Q_CMD_TERMINATE,
279 BNX2X_Q_CMD_CFC_DEL};
280 struct bnx2x_queue_state_params q_params;
281 int rc, i;
282
283 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
284
285 /* Prepare ramrod information */
286 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
287 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
288 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
289
290 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
291 BNX2X_Q_LOGICAL_STATE_STOPPED) {
292 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
293 goto out;
294 }
295
296 /* Run Queue 'destruction' ramrods */
297 for (i = 0; i < ARRAY_SIZE(cmds); i++) {
298 q_params.cmd = cmds[i];
299 rc = bnx2x_queue_state_change(bp, &q_params);
300 if (rc) {
301 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
302 return rc;
303 }
304 }
305 out:
306 /* Clean Context */
307 if (bnx2x_vfq(vf, qid, cxt)) {
308 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
309 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
310 }
311
312 return 0;
313 }
314
315 static void
bnx2x_vf_set_igu_info(struct bnx2x * bp,u8 igu_sb_id,u8 abs_vfid)316 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
317 {
318 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
319 if (vf) {
320 /* the first igu entry belonging to VFs of this PF */
321 if (!BP_VFDB(bp)->first_vf_igu_entry)
322 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
323
324 /* the first igu entry belonging to this VF */
325 if (!vf_sb_count(vf))
326 vf->igu_base_id = igu_sb_id;
327
328 ++vf_sb_count(vf);
329 ++vf->sb_count;
330 }
331 BP_VFDB(bp)->vf_sbs_pool++;
332 }
333
bnx2x_vf_vlan_mac_clear(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,bool drv_only,int type)334 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
335 int qid, bool drv_only, int type)
336 {
337 struct bnx2x_vlan_mac_ramrod_params ramrod;
338 int rc;
339
340 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
341 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
342 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
343
344 /* Prepare ramrod params */
345 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
346 if (type == BNX2X_VF_FILTER_VLAN_MAC) {
347 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
348 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
349 } else if (type == BNX2X_VF_FILTER_MAC) {
350 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
351 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
352 } else {
353 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
354 }
355 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
356
357 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
358 if (drv_only)
359 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
360 else
361 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
362
363 /* Start deleting */
364 rc = ramrod.vlan_mac_obj->delete_all(bp,
365 ramrod.vlan_mac_obj,
366 &ramrod.user_req.vlan_mac_flags,
367 &ramrod.ramrod_flags);
368 if (rc) {
369 BNX2X_ERR("Failed to delete all %s\n",
370 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
371 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
372 return rc;
373 }
374
375 return 0;
376 }
377
bnx2x_vf_mac_vlan_config(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_mac_vlan_filter * filter,bool drv_only)378 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
379 struct bnx2x_virtf *vf, int qid,
380 struct bnx2x_vf_mac_vlan_filter *filter,
381 bool drv_only)
382 {
383 struct bnx2x_vlan_mac_ramrod_params ramrod;
384 int rc;
385
386 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
387 vf->abs_vfid, filter->add ? "Adding" : "Deleting",
388 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
389 (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
390
391 /* Prepare ramrod params */
392 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
393 if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
394 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
395 ramrod.user_req.u.vlan.vlan = filter->vid;
396 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
397 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
398 } else if (filter->type == BNX2X_VF_FILTER_VLAN) {
399 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
400 ramrod.user_req.u.vlan.vlan = filter->vid;
401 } else {
402 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
403 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
404 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
405 }
406 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
407 BNX2X_VLAN_MAC_DEL;
408
409 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
410 if (drv_only)
411 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
412 else
413 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
414
415 /* Add/Remove the filter */
416 rc = bnx2x_config_vlan_mac(bp, &ramrod);
417 if (rc == -EEXIST)
418 return 0;
419 if (rc) {
420 BNX2X_ERR("Failed to %s %s\n",
421 filter->add ? "add" : "delete",
422 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
423 "VLAN-MAC" :
424 (filter->type == BNX2X_VF_FILTER_MAC) ?
425 "MAC" : "VLAN");
426 return rc;
427 }
428
429 filter->applied = true;
430
431 return 0;
432 }
433
bnx2x_vf_mac_vlan_config_list(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_mac_vlan_filters * filters,int qid,bool drv_only)434 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
435 struct bnx2x_vf_mac_vlan_filters *filters,
436 int qid, bool drv_only)
437 {
438 int rc = 0, i;
439
440 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
441
442 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
443 return -EINVAL;
444
445 /* Prepare ramrod params */
446 for (i = 0; i < filters->count; i++) {
447 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
448 &filters->filters[i], drv_only);
449 if (rc)
450 break;
451 }
452
453 /* Rollback if needed */
454 if (i != filters->count) {
455 BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
456 i, filters->count);
457 while (--i >= 0) {
458 if (!filters->filters[i].applied)
459 continue;
460 filters->filters[i].add = !filters->filters[i].add;
461 bnx2x_vf_mac_vlan_config(bp, vf, qid,
462 &filters->filters[i],
463 drv_only);
464 }
465 }
466
467 /* It's our responsibility to free the filters */
468 kfree(filters);
469
470 return rc;
471 }
472
bnx2x_vf_queue_setup(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)473 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
474 struct bnx2x_vf_queue_construct_params *qctor)
475 {
476 int rc;
477
478 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
479
480 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
481 if (rc)
482 goto op_err;
483
484 /* Schedule the configuration of any pending vlan filters */
485 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
486 BNX2X_MSG_IOV);
487 return 0;
488 op_err:
489 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
490 return rc;
491 }
492
bnx2x_vf_queue_flr(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)493 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
494 int qid)
495 {
496 int rc;
497
498 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
499
500 /* If needed, clean the filtering data base */
501 if ((qid == LEADING_IDX) &&
502 bnx2x_validate_vf_sp_objs(bp, vf, false)) {
503 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
504 BNX2X_VF_FILTER_VLAN_MAC);
505 if (rc)
506 goto op_err;
507 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
508 BNX2X_VF_FILTER_VLAN);
509 if (rc)
510 goto op_err;
511 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
512 BNX2X_VF_FILTER_MAC);
513 if (rc)
514 goto op_err;
515 }
516
517 /* Terminate queue */
518 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
519 struct bnx2x_queue_state_params qstate;
520
521 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
522 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
523 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
524 qstate.cmd = BNX2X_Q_CMD_TERMINATE;
525 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
526 rc = bnx2x_queue_state_change(bp, &qstate);
527 if (rc)
528 goto op_err;
529 }
530
531 return 0;
532 op_err:
533 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
534 return rc;
535 }
536
bnx2x_vf_mcast(struct bnx2x * bp,struct bnx2x_virtf * vf,bnx2x_mac_addr_t * mcasts,int mc_num,bool drv_only)537 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
538 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
539 {
540 struct bnx2x_mcast_list_elem *mc = NULL;
541 struct bnx2x_mcast_ramrod_params mcast;
542 int rc, i;
543
544 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
545
546 /* Prepare Multicast command */
547 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
548 mcast.mcast_obj = &vf->mcast_obj;
549 if (drv_only)
550 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
551 else
552 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
553 if (mc_num) {
554 mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem),
555 GFP_KERNEL);
556 if (!mc) {
557 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
558 return -ENOMEM;
559 }
560 }
561
562 if (mc_num) {
563 INIT_LIST_HEAD(&mcast.mcast_list);
564 for (i = 0; i < mc_num; i++) {
565 mc[i].mac = mcasts[i];
566 list_add_tail(&mc[i].link,
567 &mcast.mcast_list);
568 }
569
570 /* add new mcasts */
571 mcast.mcast_list_len = mc_num;
572 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
573 if (rc)
574 BNX2X_ERR("Failed to set multicasts\n");
575 } else {
576 /* clear existing mcasts */
577 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
578 if (rc)
579 BNX2X_ERR("Failed to remove multicasts\n");
580 }
581
582 kfree(mc);
583
584 return rc;
585 }
586
bnx2x_vf_prep_rx_mode(struct bnx2x * bp,u8 qid,struct bnx2x_rx_mode_ramrod_params * ramrod,struct bnx2x_virtf * vf,unsigned long accept_flags)587 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
588 struct bnx2x_rx_mode_ramrod_params *ramrod,
589 struct bnx2x_virtf *vf,
590 unsigned long accept_flags)
591 {
592 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
593
594 memset(ramrod, 0, sizeof(*ramrod));
595 ramrod->cid = vfq->cid;
596 ramrod->cl_id = vfq_cl_id(vf, vfq);
597 ramrod->rx_mode_obj = &bp->rx_mode_obj;
598 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
599 ramrod->rx_accept_flags = accept_flags;
600 ramrod->tx_accept_flags = accept_flags;
601 ramrod->pstate = &vf->filter_state;
602 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
603
604 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
605 set_bit(RAMROD_RX, &ramrod->ramrod_flags);
606 set_bit(RAMROD_TX, &ramrod->ramrod_flags);
607
608 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
609 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
610 }
611
bnx2x_vf_rxmode(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,unsigned long accept_flags)612 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
613 int qid, unsigned long accept_flags)
614 {
615 struct bnx2x_rx_mode_ramrod_params ramrod;
616
617 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
618
619 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
620 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
621 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
622 return bnx2x_config_rx_mode(bp, &ramrod);
623 }
624
bnx2x_vf_queue_teardown(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)625 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
626 {
627 int rc;
628
629 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
630
631 /* Remove all classification configuration for leading queue */
632 if (qid == LEADING_IDX) {
633 rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
634 if (rc)
635 goto op_err;
636
637 /* Remove filtering if feasible */
638 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
639 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
640 false,
641 BNX2X_VF_FILTER_VLAN_MAC);
642 if (rc)
643 goto op_err;
644 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
645 false,
646 BNX2X_VF_FILTER_VLAN);
647 if (rc)
648 goto op_err;
649 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
650 false,
651 BNX2X_VF_FILTER_MAC);
652 if (rc)
653 goto op_err;
654 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
655 if (rc)
656 goto op_err;
657 }
658 }
659
660 /* Destroy queue */
661 rc = bnx2x_vf_queue_destroy(bp, vf, qid);
662 if (rc)
663 goto op_err;
664 return rc;
665 op_err:
666 BNX2X_ERR("vf[%d:%d] error: rc %d\n",
667 vf->abs_vfid, qid, rc);
668 return rc;
669 }
670
671 /* VF enable primitives
672 * when pretend is required the caller is responsible
673 * for calling pretend prior to calling these routines
674 */
675
676 /* internal vf enable - until vf is enabled internally all transactions
677 * are blocked. This routine should always be called last with pretend.
678 */
bnx2x_vf_enable_internal(struct bnx2x * bp,u8 enable)679 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
680 {
681 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
682 }
683
684 /* clears vf error in all semi blocks */
bnx2x_vf_semi_clear_err(struct bnx2x * bp,u8 abs_vfid)685 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
686 {
687 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
688 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
689 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
690 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
691 }
692
bnx2x_vf_pglue_clear_err(struct bnx2x * bp,u8 abs_vfid)693 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
694 {
695 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
696 u32 was_err_reg = 0;
697
698 switch (was_err_group) {
699 case 0:
700 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
701 break;
702 case 1:
703 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
704 break;
705 case 2:
706 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
707 break;
708 case 3:
709 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
710 break;
711 }
712 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
713 }
714
bnx2x_vf_igu_reset(struct bnx2x * bp,struct bnx2x_virtf * vf)715 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
716 {
717 int i;
718 u32 val;
719
720 /* Set VF masks and configuration - pretend */
721 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
722
723 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
724 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
725 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
726 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
727 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
728 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
729
730 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
731 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
732 val &= ~IGU_VF_CONF_PARENT_MASK;
733 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
734 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
735
736 DP(BNX2X_MSG_IOV,
737 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
738 vf->abs_vfid, val);
739
740 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
741
742 /* iterate over all queues, clear sb consumer */
743 for (i = 0; i < vf_sb_count(vf); i++) {
744 u8 igu_sb_id = vf_igu_sb(vf, i);
745
746 /* zero prod memory */
747 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
748
749 /* clear sb state machine */
750 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
751 false /* VF */);
752
753 /* disable + update */
754 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
755 IGU_INT_DISABLE, 1);
756 }
757 }
758
bnx2x_vf_enable_access(struct bnx2x * bp,u8 abs_vfid)759 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
760 {
761 /* set the VF-PF association in the FW */
762 storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
763 storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
764
765 /* clear vf errors*/
766 bnx2x_vf_semi_clear_err(bp, abs_vfid);
767 bnx2x_vf_pglue_clear_err(bp, abs_vfid);
768
769 /* internal vf-enable - pretend */
770 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
771 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
772 bnx2x_vf_enable_internal(bp, true);
773 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
774 }
775
bnx2x_vf_enable_traffic(struct bnx2x * bp,struct bnx2x_virtf * vf)776 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
777 {
778 /* Reset vf in IGU interrupts are still disabled */
779 bnx2x_vf_igu_reset(bp, vf);
780
781 /* pretend to enable the vf with the PBF */
782 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
783 REG_WR(bp, PBF_REG_DISABLE_VF, 0);
784 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
785 }
786
bnx2x_vf_is_pcie_pending(struct bnx2x * bp,u8 abs_vfid)787 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
788 {
789 struct pci_dev *dev;
790 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
791
792 if (!vf)
793 return false;
794
795 dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn);
796 if (dev)
797 return bnx2x_is_pcie_pending(dev);
798 return false;
799 }
800
bnx2x_vf_flr_clnup_epilog(struct bnx2x * bp,u8 abs_vfid)801 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
802 {
803 /* Verify no pending pci transactions */
804 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
805 BNX2X_ERR("PCIE Transactions still pending\n");
806
807 return 0;
808 }
809
810 /* must be called after the number of PF queues and the number of VFs are
811 * both known
812 */
813 static void
bnx2x_iov_static_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)814 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
815 {
816 struct vf_pf_resc_request *resc = &vf->alloc_resc;
817
818 /* will be set only during VF-ACQUIRE */
819 resc->num_rxqs = 0;
820 resc->num_txqs = 0;
821
822 resc->num_mac_filters = VF_MAC_CREDIT_CNT;
823 resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
824
825 /* no real limitation */
826 resc->num_mc_filters = 0;
827
828 /* num_sbs already set */
829 resc->num_sbs = vf->sb_count;
830 }
831
832 /* FLR routines: */
bnx2x_vf_free_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)833 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
834 {
835 /* reset the state variables */
836 bnx2x_iov_static_resc(bp, vf);
837 vf->state = VF_FREE;
838 }
839
bnx2x_vf_flr_clnup_hw(struct bnx2x * bp,struct bnx2x_virtf * vf)840 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
841 {
842 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
843
844 /* DQ usage counter */
845 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
846 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
847 "DQ VF usage counter timed out",
848 poll_cnt);
849 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
850
851 /* FW cleanup command - poll for the results */
852 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
853 poll_cnt))
854 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
855
856 /* verify TX hw is flushed */
857 bnx2x_tx_hw_flushed(bp, poll_cnt);
858 }
859
bnx2x_vf_flr(struct bnx2x * bp,struct bnx2x_virtf * vf)860 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
861 {
862 int rc, i;
863
864 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
865
866 /* the cleanup operations are valid if and only if the VF
867 * was first acquired.
868 */
869 for (i = 0; i < vf_rxq_count(vf); i++) {
870 rc = bnx2x_vf_queue_flr(bp, vf, i);
871 if (rc)
872 goto out;
873 }
874
875 /* remove multicasts */
876 bnx2x_vf_mcast(bp, vf, NULL, 0, true);
877
878 /* dispatch final cleanup and wait for HW queues to flush */
879 bnx2x_vf_flr_clnup_hw(bp, vf);
880
881 /* release VF resources */
882 bnx2x_vf_free_resc(bp, vf);
883
884 vf->malicious = false;
885
886 /* re-open the mailbox */
887 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
888 return;
889 out:
890 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
891 vf->abs_vfid, i, rc);
892 }
893
bnx2x_vf_flr_clnup(struct bnx2x * bp)894 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
895 {
896 struct bnx2x_virtf *vf;
897 int i;
898
899 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
900 /* VF should be RESET & in FLR cleanup states */
901 if (bnx2x_vf(bp, i, state) != VF_RESET ||
902 !bnx2x_vf(bp, i, flr_clnup_stage))
903 continue;
904
905 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
906 i, BNX2X_NR_VIRTFN(bp));
907
908 vf = BP_VF(bp, i);
909
910 /* lock the vf pf channel */
911 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
912
913 /* invoke the VF FLR SM */
914 bnx2x_vf_flr(bp, vf);
915
916 /* mark the VF to be ACKED and continue */
917 vf->flr_clnup_stage = false;
918 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
919 }
920
921 /* Acknowledge the handled VFs.
922 * we are acknowledge all the vfs which an flr was requested for, even
923 * if amongst them there are such that we never opened, since the mcp
924 * will interrupt us immediately again if we only ack some of the bits,
925 * resulting in an endless loop. This can happen for example in KVM
926 * where an 'all ones' flr request is sometimes given by hyper visor
927 */
928 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
929 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
930 for (i = 0; i < FLRD_VFS_DWORDS; i++)
931 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
932 bp->vfdb->flrd_vfs[i]);
933
934 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
935
936 /* clear the acked bits - better yet if the MCP implemented
937 * write to clear semantics
938 */
939 for (i = 0; i < FLRD_VFS_DWORDS; i++)
940 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
941 }
942
bnx2x_vf_handle_flr_event(struct bnx2x * bp)943 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
944 {
945 int i;
946
947 /* Read FLR'd VFs */
948 for (i = 0; i < FLRD_VFS_DWORDS; i++)
949 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
950
951 DP(BNX2X_MSG_MCP,
952 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
953 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
954
955 for_each_vf(bp, i) {
956 struct bnx2x_virtf *vf = BP_VF(bp, i);
957 u32 reset = 0;
958
959 if (vf->abs_vfid < 32)
960 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
961 else
962 reset = bp->vfdb->flrd_vfs[1] &
963 (1 << (vf->abs_vfid - 32));
964
965 if (reset) {
966 /* set as reset and ready for cleanup */
967 vf->state = VF_RESET;
968 vf->flr_clnup_stage = true;
969
970 DP(BNX2X_MSG_IOV,
971 "Initiating Final cleanup for VF %d\n",
972 vf->abs_vfid);
973 }
974 }
975
976 /* do the FLR cleanup for all marked VFs*/
977 bnx2x_vf_flr_clnup(bp);
978 }
979
980 /* IOV global initialization routines */
bnx2x_iov_init_dq(struct bnx2x * bp)981 void bnx2x_iov_init_dq(struct bnx2x *bp)
982 {
983 if (!IS_SRIOV(bp))
984 return;
985
986 /* Set the DQ such that the CID reflect the abs_vfid */
987 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
988 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
989
990 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
991 * the PF L2 queues
992 */
993 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
994
995 /* The VF window size is the log2 of the max number of CIDs per VF */
996 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
997
998 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
999 * the Pf doorbell size although the 2 are independent.
1000 */
1001 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1002
1003 /* No security checks for now -
1004 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1005 * CID range 0 - 0x1ffff
1006 */
1007 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1008 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1009 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1010 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1011
1012 /* set the VF doorbell threshold. This threshold represents the amount
1013 * of doorbells allowed in the main DORQ fifo for a specific VF.
1014 */
1015 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1016 }
1017
bnx2x_iov_init_dmae(struct bnx2x * bp)1018 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1019 {
1020 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1021 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1022 }
1023
bnx2x_vf_domain(struct bnx2x * bp,int vfid)1024 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid)
1025 {
1026 struct pci_dev *dev = bp->pdev;
1027
1028 return pci_domain_nr(dev->bus);
1029 }
1030
bnx2x_vf_bus(struct bnx2x * bp,int vfid)1031 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1032 {
1033 struct pci_dev *dev = bp->pdev;
1034 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1035
1036 return dev->bus->number + ((dev->devfn + iov->offset +
1037 iov->stride * vfid) >> 8);
1038 }
1039
bnx2x_vf_devfn(struct bnx2x * bp,int vfid)1040 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1041 {
1042 struct pci_dev *dev = bp->pdev;
1043 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1044
1045 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1046 }
1047
bnx2x_vf_set_bars(struct bnx2x * bp,struct bnx2x_virtf * vf)1048 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1049 {
1050 int i, n;
1051 struct pci_dev *dev = bp->pdev;
1052 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1053
1054 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1055 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1056 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1057
1058 size /= iov->total;
1059 vf->bars[n].bar = start + size * vf->abs_vfid;
1060 vf->bars[n].size = size;
1061 }
1062 }
1063
1064 static int
bnx2x_get_vf_igu_cam_info(struct bnx2x * bp)1065 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1066 {
1067 int sb_id;
1068 u32 val;
1069 u8 fid, current_pf = 0;
1070
1071 /* IGU in normal mode - read CAM */
1072 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1073 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1074 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1075 continue;
1076 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1077 if (fid & IGU_FID_ENCODE_IS_PF)
1078 current_pf = fid & IGU_FID_PF_NUM_MASK;
1079 else if (current_pf == BP_FUNC(bp))
1080 bnx2x_vf_set_igu_info(bp, sb_id,
1081 (fid & IGU_FID_VF_NUM_MASK));
1082 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1083 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1084 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1085 (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1086 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1087 }
1088 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1089 return BP_VFDB(bp)->vf_sbs_pool;
1090 }
1091
__bnx2x_iov_free_vfdb(struct bnx2x * bp)1092 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1093 {
1094 if (bp->vfdb) {
1095 kfree(bp->vfdb->vfqs);
1096 kfree(bp->vfdb->vfs);
1097 kfree(bp->vfdb);
1098 }
1099 bp->vfdb = NULL;
1100 }
1101
bnx2x_sriov_pci_cfg_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1102 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1103 {
1104 int pos;
1105 struct pci_dev *dev = bp->pdev;
1106
1107 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1108 if (!pos) {
1109 BNX2X_ERR("failed to find SRIOV capability in device\n");
1110 return -ENODEV;
1111 }
1112
1113 iov->pos = pos;
1114 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1115 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1116 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1117 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1118 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1119 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1120 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1121 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1122 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1123
1124 return 0;
1125 }
1126
bnx2x_sriov_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1127 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1128 {
1129 u32 val;
1130
1131 /* read the SRIOV capability structure
1132 * The fields can be read via configuration read or
1133 * directly from the device (starting at offset PCICFG_OFFSET)
1134 */
1135 if (bnx2x_sriov_pci_cfg_info(bp, iov))
1136 return -ENODEV;
1137
1138 /* get the number of SRIOV bars */
1139 iov->nres = 0;
1140
1141 /* read the first_vfid */
1142 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1143 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1144 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1145
1146 DP(BNX2X_MSG_IOV,
1147 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1148 BP_FUNC(bp),
1149 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1150 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1151
1152 return 0;
1153 }
1154
1155 /* must be called after PF bars are mapped */
bnx2x_iov_init_one(struct bnx2x * bp,int int_mode_param,int num_vfs_param)1156 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1157 int num_vfs_param)
1158 {
1159 int err, i;
1160 struct bnx2x_sriov *iov;
1161 struct pci_dev *dev = bp->pdev;
1162
1163 bp->vfdb = NULL;
1164
1165 /* verify is pf */
1166 if (IS_VF(bp))
1167 return 0;
1168
1169 /* verify sriov capability is present in configuration space */
1170 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1171 return 0;
1172
1173 /* verify chip revision */
1174 if (CHIP_IS_E1x(bp))
1175 return 0;
1176
1177 /* check if SRIOV support is turned off */
1178 if (!num_vfs_param)
1179 return 0;
1180
1181 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1182 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1183 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1184 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1185 return 0;
1186 }
1187
1188 /* SRIOV can be enabled only with MSIX */
1189 if (int_mode_param == BNX2X_INT_MODE_MSI ||
1190 int_mode_param == BNX2X_INT_MODE_INTX) {
1191 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1192 return 0;
1193 }
1194
1195 err = -EIO;
1196 /* verify ari is enabled */
1197 if (!pci_ari_enabled(bp->pdev->bus)) {
1198 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1199 return 0;
1200 }
1201
1202 /* verify igu is in normal mode */
1203 if (CHIP_INT_MODE_IS_BC(bp)) {
1204 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
1205 return 0;
1206 }
1207
1208 /* allocate the vfs database */
1209 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1210 if (!bp->vfdb) {
1211 BNX2X_ERR("failed to allocate vf database\n");
1212 err = -ENOMEM;
1213 goto failed;
1214 }
1215
1216 /* get the sriov info - Linux already collected all the pertinent
1217 * information, however the sriov structure is for the private use
1218 * of the pci module. Also we want this information regardless
1219 * of the hyper-visor.
1220 */
1221 iov = &(bp->vfdb->sriov);
1222 err = bnx2x_sriov_info(bp, iov);
1223 if (err)
1224 goto failed;
1225
1226 /* SR-IOV capability was enabled but there are no VFs*/
1227 if (iov->total == 0) {
1228 err = 0;
1229 goto failed;
1230 }
1231
1232 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1233
1234 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1235 num_vfs_param, iov->nr_virtfn);
1236
1237 /* allocate the vf array */
1238 bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp),
1239 sizeof(struct bnx2x_virtf),
1240 GFP_KERNEL);
1241 if (!bp->vfdb->vfs) {
1242 BNX2X_ERR("failed to allocate vf array\n");
1243 err = -ENOMEM;
1244 goto failed;
1245 }
1246
1247 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1248 for_each_vf(bp, i) {
1249 bnx2x_vf(bp, i, index) = i;
1250 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1251 bnx2x_vf(bp, i, state) = VF_FREE;
1252 mutex_init(&bnx2x_vf(bp, i, op_mutex));
1253 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1254 /* enable spoofchk by default */
1255 bnx2x_vf(bp, i, spoofchk) = 1;
1256 }
1257
1258 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1259 if (!bnx2x_get_vf_igu_cam_info(bp)) {
1260 BNX2X_ERR("No entries in IGU CAM for vfs\n");
1261 err = -EINVAL;
1262 goto failed;
1263 }
1264
1265 /* allocate the queue arrays for all VFs */
1266 bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES,
1267 sizeof(struct bnx2x_vf_queue),
1268 GFP_KERNEL);
1269
1270 if (!bp->vfdb->vfqs) {
1271 BNX2X_ERR("failed to allocate vf queue array\n");
1272 err = -ENOMEM;
1273 goto failed;
1274 }
1275
1276 /* Prepare the VFs event synchronization mechanism */
1277 mutex_init(&bp->vfdb->event_mutex);
1278
1279 mutex_init(&bp->vfdb->bulletin_mutex);
1280
1281 if (SHMEM2_HAS(bp, sriov_switch_mode))
1282 SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1283
1284 return 0;
1285 failed:
1286 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1287 __bnx2x_iov_free_vfdb(bp);
1288 return err;
1289 }
1290
bnx2x_iov_remove_one(struct bnx2x * bp)1291 void bnx2x_iov_remove_one(struct bnx2x *bp)
1292 {
1293 int vf_idx;
1294
1295 /* if SRIOV is not enabled there's nothing to do */
1296 if (!IS_SRIOV(bp))
1297 return;
1298
1299 bnx2x_disable_sriov(bp);
1300
1301 /* disable access to all VFs */
1302 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1303 bnx2x_pretend_func(bp,
1304 HW_VF_HANDLE(bp,
1305 bp->vfdb->sriov.first_vf_in_pf +
1306 vf_idx));
1307 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1308 bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1309 bnx2x_vf_enable_internal(bp, 0);
1310 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1311 }
1312
1313 /* free vf database */
1314 __bnx2x_iov_free_vfdb(bp);
1315 }
1316
bnx2x_iov_free_mem(struct bnx2x * bp)1317 void bnx2x_iov_free_mem(struct bnx2x *bp)
1318 {
1319 int i;
1320
1321 if (!IS_SRIOV(bp))
1322 return;
1323
1324 /* free vfs hw contexts */
1325 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1326 struct hw_dma *cxt = &bp->vfdb->context[i];
1327 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1328 }
1329
1330 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1331 BP_VFDB(bp)->sp_dma.mapping,
1332 BP_VFDB(bp)->sp_dma.size);
1333
1334 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1335 BP_VF_MBX_DMA(bp)->mapping,
1336 BP_VF_MBX_DMA(bp)->size);
1337
1338 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1339 BP_VF_BULLETIN_DMA(bp)->mapping,
1340 BP_VF_BULLETIN_DMA(bp)->size);
1341 }
1342
bnx2x_iov_alloc_mem(struct bnx2x * bp)1343 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1344 {
1345 size_t tot_size;
1346 int i, rc = 0;
1347
1348 if (!IS_SRIOV(bp))
1349 return rc;
1350
1351 /* allocate vfs hw contexts */
1352 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1353 BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1354
1355 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1356 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1357 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1358
1359 if (cxt->size) {
1360 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1361 if (!cxt->addr)
1362 goto alloc_mem_err;
1363 } else {
1364 cxt->addr = NULL;
1365 cxt->mapping = 0;
1366 }
1367 tot_size -= cxt->size;
1368 }
1369
1370 /* allocate vfs ramrods dma memory - client_init and set_mac */
1371 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1372 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1373 tot_size);
1374 if (!BP_VFDB(bp)->sp_dma.addr)
1375 goto alloc_mem_err;
1376 BP_VFDB(bp)->sp_dma.size = tot_size;
1377
1378 /* allocate mailboxes */
1379 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1380 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1381 tot_size);
1382 if (!BP_VF_MBX_DMA(bp)->addr)
1383 goto alloc_mem_err;
1384
1385 BP_VF_MBX_DMA(bp)->size = tot_size;
1386
1387 /* allocate local bulletin boards */
1388 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1389 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1390 tot_size);
1391 if (!BP_VF_BULLETIN_DMA(bp)->addr)
1392 goto alloc_mem_err;
1393
1394 BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1395
1396 return 0;
1397
1398 alloc_mem_err:
1399 return -ENOMEM;
1400 }
1401
bnx2x_vfq_init(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q)1402 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1403 struct bnx2x_vf_queue *q)
1404 {
1405 u8 cl_id = vfq_cl_id(vf, q);
1406 u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1407 unsigned long q_type = 0;
1408
1409 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1410 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1411
1412 /* Queue State object */
1413 bnx2x_init_queue_obj(bp, &q->sp_obj,
1414 cl_id, &q->cid, 1, func_id,
1415 bnx2x_vf_sp(bp, vf, q_data),
1416 bnx2x_vf_sp_map(bp, vf, q_data),
1417 q_type);
1418
1419 /* sp indication is set only when vlan/mac/etc. are initialized */
1420 q->sp_initialized = false;
1421
1422 DP(BNX2X_MSG_IOV,
1423 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1424 vf->abs_vfid, q->sp_obj.func_id, q->cid);
1425 }
1426
bnx2x_max_speed_cap(struct bnx2x * bp)1427 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1428 {
1429 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1430
1431 if (supported &
1432 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1433 return 20000;
1434
1435 return 10000; /* assume lowest supported speed is 10G */
1436 }
1437
bnx2x_iov_link_update_vf(struct bnx2x * bp,int idx)1438 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1439 {
1440 struct bnx2x_link_report_data *state = &bp->last_reported_link;
1441 struct pf_vf_bulletin_content *bulletin;
1442 struct bnx2x_virtf *vf;
1443 bool update = true;
1444 int rc = 0;
1445
1446 /* sanity and init */
1447 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1448 if (rc)
1449 return rc;
1450
1451 mutex_lock(&bp->vfdb->bulletin_mutex);
1452
1453 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1454 bulletin->valid_bitmap |= 1 << LINK_VALID;
1455
1456 bulletin->link_speed = state->line_speed;
1457 bulletin->link_flags = 0;
1458 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1459 &state->link_report_flags))
1460 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1461 if (test_bit(BNX2X_LINK_REPORT_FD,
1462 &state->link_report_flags))
1463 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1464 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1465 &state->link_report_flags))
1466 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1467 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1468 &state->link_report_flags))
1469 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1470 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1471 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1472 bulletin->valid_bitmap |= 1 << LINK_VALID;
1473 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1474 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1475 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1476 bulletin->valid_bitmap |= 1 << LINK_VALID;
1477 bulletin->link_speed = bnx2x_max_speed_cap(bp);
1478 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1479 } else {
1480 update = false;
1481 }
1482
1483 if (update) {
1484 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1485 "vf %d mode %u speed %d flags %x\n", idx,
1486 vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1487
1488 /* Post update on VF's bulletin board */
1489 rc = bnx2x_post_vf_bulletin(bp, idx);
1490 if (rc) {
1491 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1492 goto out;
1493 }
1494 }
1495
1496 out:
1497 mutex_unlock(&bp->vfdb->bulletin_mutex);
1498 return rc;
1499 }
1500
bnx2x_set_vf_link_state(struct net_device * dev,int idx,int link_state)1501 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1502 {
1503 struct bnx2x *bp = netdev_priv(dev);
1504 struct bnx2x_virtf *vf = BP_VF(bp, idx);
1505
1506 if (!vf)
1507 return -EINVAL;
1508
1509 if (vf->link_cfg == link_state)
1510 return 0; /* nothing todo */
1511
1512 vf->link_cfg = link_state;
1513
1514 return bnx2x_iov_link_update_vf(bp, idx);
1515 }
1516
bnx2x_iov_link_update(struct bnx2x * bp)1517 void bnx2x_iov_link_update(struct bnx2x *bp)
1518 {
1519 int vfid;
1520
1521 if (!IS_SRIOV(bp))
1522 return;
1523
1524 for_each_vf(bp, vfid)
1525 bnx2x_iov_link_update_vf(bp, vfid);
1526 }
1527
1528 /* called by bnx2x_nic_load */
bnx2x_iov_nic_init(struct bnx2x * bp)1529 int bnx2x_iov_nic_init(struct bnx2x *bp)
1530 {
1531 int vfid;
1532
1533 if (!IS_SRIOV(bp)) {
1534 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1535 return 0;
1536 }
1537
1538 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1539
1540 /* let FLR complete ... */
1541 msleep(100);
1542
1543 /* initialize vf database */
1544 for_each_vf(bp, vfid) {
1545 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1546
1547 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1548 BNX2X_CIDS_PER_VF;
1549
1550 union cdu_context *base_cxt = (union cdu_context *)
1551 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1552 (base_vf_cid & (ILT_PAGE_CIDS-1));
1553
1554 DP(BNX2X_MSG_IOV,
1555 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1556 vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1557 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1558
1559 /* init statically provisioned resources */
1560 bnx2x_iov_static_resc(bp, vf);
1561
1562 /* queues are initialized during VF-ACQUIRE */
1563 vf->filter_state = 0;
1564 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1565
1566 bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1567 vf_vlan_rules_cnt(vf));
1568 bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1569 vf_mac_rules_cnt(vf));
1570
1571 /* init mcast object - This object will be re-initialized
1572 * during VF-ACQUIRE with the proper cl_id and cid.
1573 * It needs to be initialized here so that it can be safely
1574 * handled by a subsequent FLR flow.
1575 */
1576 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1577 0xFF, 0xFF, 0xFF,
1578 bnx2x_vf_sp(bp, vf, mcast_rdata),
1579 bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1580 BNX2X_FILTER_MCAST_PENDING,
1581 &vf->filter_state,
1582 BNX2X_OBJ_TYPE_RX_TX);
1583
1584 /* set the mailbox message addresses */
1585 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1586 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1587 MBX_MSG_ALIGNED_SIZE);
1588
1589 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1590 vfid * MBX_MSG_ALIGNED_SIZE;
1591
1592 /* Enable vf mailbox */
1593 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1594 }
1595
1596 /* Final VF init */
1597 for_each_vf(bp, vfid) {
1598 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1599
1600 /* fill in the BDF and bars */
1601 vf->domain = bnx2x_vf_domain(bp, vfid);
1602 vf->bus = bnx2x_vf_bus(bp, vfid);
1603 vf->devfn = bnx2x_vf_devfn(bp, vfid);
1604 bnx2x_vf_set_bars(bp, vf);
1605
1606 DP(BNX2X_MSG_IOV,
1607 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1608 vf->abs_vfid, vf->bus, vf->devfn,
1609 (unsigned)vf->bars[0].bar, vf->bars[0].size,
1610 (unsigned)vf->bars[1].bar, vf->bars[1].size,
1611 (unsigned)vf->bars[2].bar, vf->bars[2].size);
1612 }
1613
1614 return 0;
1615 }
1616
1617 /* called by bnx2x_chip_cleanup */
bnx2x_iov_chip_cleanup(struct bnx2x * bp)1618 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1619 {
1620 int i;
1621
1622 if (!IS_SRIOV(bp))
1623 return 0;
1624
1625 /* release all the VFs */
1626 for_each_vf(bp, i)
1627 bnx2x_vf_release(bp, BP_VF(bp, i));
1628
1629 return 0;
1630 }
1631
1632 /* called by bnx2x_init_hw_func, returns the next ilt line */
bnx2x_iov_init_ilt(struct bnx2x * bp,u16 line)1633 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1634 {
1635 int i;
1636 struct bnx2x_ilt *ilt = BP_ILT(bp);
1637
1638 if (!IS_SRIOV(bp))
1639 return line;
1640
1641 /* set vfs ilt lines */
1642 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1643 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1644
1645 ilt->lines[line+i].page = hw_cxt->addr;
1646 ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1647 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1648 }
1649 return line + i;
1650 }
1651
bnx2x_iov_is_vf_cid(struct bnx2x * bp,u16 cid)1652 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1653 {
1654 return ((cid >= BNX2X_FIRST_VF_CID) &&
1655 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1656 }
1657
1658 static
bnx2x_vf_handle_classification_eqe(struct bnx2x * bp,struct bnx2x_vf_queue * vfq,union event_ring_elem * elem)1659 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1660 struct bnx2x_vf_queue *vfq,
1661 union event_ring_elem *elem)
1662 {
1663 unsigned long ramrod_flags = 0;
1664 int rc = 0;
1665 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1666
1667 /* Always push next commands out, don't wait here */
1668 set_bit(RAMROD_CONT, &ramrod_flags);
1669
1670 switch (echo >> BNX2X_SWCID_SHIFT) {
1671 case BNX2X_FILTER_MAC_PENDING:
1672 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1673 &ramrod_flags);
1674 break;
1675 case BNX2X_FILTER_VLAN_PENDING:
1676 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1677 &ramrod_flags);
1678 break;
1679 default:
1680 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1681 return;
1682 }
1683 if (rc < 0)
1684 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1685 else if (rc > 0)
1686 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1687 }
1688
1689 static
bnx2x_vf_handle_mcast_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1690 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1691 struct bnx2x_virtf *vf)
1692 {
1693 struct bnx2x_mcast_ramrod_params rparam = {NULL};
1694 int rc;
1695
1696 rparam.mcast_obj = &vf->mcast_obj;
1697 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1698
1699 /* If there are pending mcast commands - send them */
1700 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1701 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1702 if (rc < 0)
1703 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1704 rc);
1705 }
1706 }
1707
1708 static
bnx2x_vf_handle_filters_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1709 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1710 struct bnx2x_virtf *vf)
1711 {
1712 smp_mb__before_atomic();
1713 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1714 smp_mb__after_atomic();
1715 }
1716
bnx2x_vf_handle_rss_update_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1717 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1718 struct bnx2x_virtf *vf)
1719 {
1720 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1721 }
1722
bnx2x_iov_eq_sp_event(struct bnx2x * bp,union event_ring_elem * elem)1723 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1724 {
1725 struct bnx2x_virtf *vf;
1726 int qidx = 0, abs_vfid;
1727 u8 opcode;
1728 u16 cid = 0xffff;
1729
1730 if (!IS_SRIOV(bp))
1731 return 1;
1732
1733 /* first get the cid - the only events we handle here are cfc-delete
1734 * and set-mac completion
1735 */
1736 opcode = elem->message.opcode;
1737
1738 switch (opcode) {
1739 case EVENT_RING_OPCODE_CFC_DEL:
1740 cid = SW_CID(elem->message.data.cfc_del_event.cid);
1741 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1742 break;
1743 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1744 case EVENT_RING_OPCODE_MULTICAST_RULES:
1745 case EVENT_RING_OPCODE_FILTERS_RULES:
1746 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1747 cid = SW_CID(elem->message.data.eth_event.echo);
1748 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1749 break;
1750 case EVENT_RING_OPCODE_VF_FLR:
1751 abs_vfid = elem->message.data.vf_flr_event.vf_id;
1752 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1753 abs_vfid);
1754 goto get_vf;
1755 case EVENT_RING_OPCODE_MALICIOUS_VF:
1756 abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1757 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1758 abs_vfid,
1759 elem->message.data.malicious_vf_event.err_id);
1760 goto get_vf;
1761 default:
1762 return 1;
1763 }
1764
1765 /* check if the cid is the VF range */
1766 if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1767 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1768 return 1;
1769 }
1770
1771 /* extract vf and rxq index from vf_cid - relies on the following:
1772 * 1. vfid on cid reflects the true abs_vfid
1773 * 2. The max number of VFs (per path) is 64
1774 */
1775 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1776 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1777 get_vf:
1778 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1779
1780 if (!vf) {
1781 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1782 cid, abs_vfid);
1783 return 0;
1784 }
1785
1786 switch (opcode) {
1787 case EVENT_RING_OPCODE_CFC_DEL:
1788 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1789 vf->abs_vfid, qidx);
1790 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1791 &vfq_get(vf,
1792 qidx)->sp_obj,
1793 BNX2X_Q_CMD_CFC_DEL);
1794 break;
1795 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1796 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1797 vf->abs_vfid, qidx);
1798 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1799 break;
1800 case EVENT_RING_OPCODE_MULTICAST_RULES:
1801 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1802 vf->abs_vfid, qidx);
1803 bnx2x_vf_handle_mcast_eqe(bp, vf);
1804 break;
1805 case EVENT_RING_OPCODE_FILTERS_RULES:
1806 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1807 vf->abs_vfid, qidx);
1808 bnx2x_vf_handle_filters_eqe(bp, vf);
1809 break;
1810 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1811 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1812 vf->abs_vfid, qidx);
1813 bnx2x_vf_handle_rss_update_eqe(bp, vf);
1814 fallthrough;
1815 case EVENT_RING_OPCODE_VF_FLR:
1816 /* Do nothing for now */
1817 return 0;
1818 case EVENT_RING_OPCODE_MALICIOUS_VF:
1819 vf->malicious = true;
1820 return 0;
1821 }
1822
1823 return 0;
1824 }
1825
bnx2x_vf_by_cid(struct bnx2x * bp,int vf_cid)1826 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1827 {
1828 /* extract the vf from vf_cid - relies on the following:
1829 * 1. vfid on cid reflects the true abs_vfid
1830 * 2. The max number of VFs (per path) is 64
1831 */
1832 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1833 return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1834 }
1835
bnx2x_iov_set_queue_sp_obj(struct bnx2x * bp,int vf_cid,struct bnx2x_queue_sp_obj ** q_obj)1836 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1837 struct bnx2x_queue_sp_obj **q_obj)
1838 {
1839 struct bnx2x_virtf *vf;
1840
1841 if (!IS_SRIOV(bp))
1842 return;
1843
1844 vf = bnx2x_vf_by_cid(bp, vf_cid);
1845
1846 if (vf) {
1847 /* extract queue index from vf_cid - relies on the following:
1848 * 1. vfid on cid reflects the true abs_vfid
1849 * 2. The max number of VFs (per path) is 64
1850 */
1851 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1852 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1853 } else {
1854 BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1855 }
1856 }
1857
bnx2x_iov_adjust_stats_req(struct bnx2x * bp)1858 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1859 {
1860 int i;
1861 int first_queue_query_index, num_queues_req;
1862 dma_addr_t cur_data_offset;
1863 struct stats_query_entry *cur_query_entry;
1864 u8 stats_count = 0;
1865 bool is_fcoe = false;
1866
1867 if (!IS_SRIOV(bp))
1868 return;
1869
1870 if (!NO_FCOE(bp))
1871 is_fcoe = true;
1872
1873 /* fcoe adds one global request and one queue request */
1874 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1875 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1876 (is_fcoe ? 0 : 1);
1877
1878 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1879 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1880 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1881 first_queue_query_index + num_queues_req);
1882
1883 cur_data_offset = bp->fw_stats_data_mapping +
1884 offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1885 num_queues_req * sizeof(struct per_queue_stats);
1886
1887 cur_query_entry = &bp->fw_stats_req->
1888 query[first_queue_query_index + num_queues_req];
1889
1890 for_each_vf(bp, i) {
1891 int j;
1892 struct bnx2x_virtf *vf = BP_VF(bp, i);
1893
1894 if (vf->state != VF_ENABLED) {
1895 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1896 "vf %d not enabled so no stats for it\n",
1897 vf->abs_vfid);
1898 continue;
1899 }
1900
1901 if (vf->malicious) {
1902 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1903 "vf %d malicious so no stats for it\n",
1904 vf->abs_vfid);
1905 continue;
1906 }
1907
1908 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1909 "add addresses for vf %d\n", vf->abs_vfid);
1910 for_each_vfq(vf, j) {
1911 struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1912
1913 dma_addr_t q_stats_addr =
1914 vf->fw_stat_map + j * vf->stats_stride;
1915
1916 /* collect stats fro active queues only */
1917 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1918 BNX2X_Q_LOGICAL_STATE_STOPPED)
1919 continue;
1920
1921 /* create stats query entry for this queue */
1922 cur_query_entry->kind = STATS_TYPE_QUEUE;
1923 cur_query_entry->index = vfq_stat_id(vf, rxq);
1924 cur_query_entry->funcID =
1925 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1926 cur_query_entry->address.hi =
1927 cpu_to_le32(U64_HI(q_stats_addr));
1928 cur_query_entry->address.lo =
1929 cpu_to_le32(U64_LO(q_stats_addr));
1930 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1931 "added address %x %x for vf %d queue %d client %d\n",
1932 cur_query_entry->address.hi,
1933 cur_query_entry->address.lo,
1934 cur_query_entry->funcID,
1935 j, cur_query_entry->index);
1936 cur_query_entry++;
1937 cur_data_offset += sizeof(struct per_queue_stats);
1938 stats_count++;
1939
1940 /* all stats are coalesced to the leading queue */
1941 if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1942 break;
1943 }
1944 }
1945 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1946 }
1947
1948 /* VF API helpers */
bnx2x_vf_qtbl_set_q(struct bnx2x * bp,u8 abs_vfid,u8 qid,u8 enable)1949 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1950 u8 enable)
1951 {
1952 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1953 u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1954
1955 REG_WR(bp, reg, val);
1956 }
1957
bnx2x_vf_clr_qtbl(struct bnx2x * bp,struct bnx2x_virtf * vf)1958 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1959 {
1960 int i;
1961
1962 for_each_vfq(vf, i)
1963 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1964 vfq_qzone_id(vf, vfq_get(vf, i)), false);
1965 }
1966
bnx2x_vf_igu_disable(struct bnx2x * bp,struct bnx2x_virtf * vf)1967 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1968 {
1969 u32 val;
1970
1971 /* clear the VF configuration - pretend */
1972 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1973 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1974 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1975 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1976 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1977 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1978 }
1979
bnx2x_vf_max_queue_cnt(struct bnx2x * bp,struct bnx2x_virtf * vf)1980 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1981 {
1982 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1983 BNX2X_VF_MAX_QUEUES);
1984 }
1985
1986 static
bnx2x_vf_chk_avail_resc(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * req_resc)1987 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1988 struct vf_pf_resc_request *req_resc)
1989 {
1990 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1991 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1992
1993 return ((req_resc->num_rxqs <= rxq_cnt) &&
1994 (req_resc->num_txqs <= txq_cnt) &&
1995 (req_resc->num_sbs <= vf_sb_count(vf)) &&
1996 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
1997 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
1998 }
1999
2000 /* CORE VF API */
bnx2x_vf_acquire(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * resc)2001 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2002 struct vf_pf_resc_request *resc)
2003 {
2004 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2005 BNX2X_CIDS_PER_VF;
2006
2007 union cdu_context *base_cxt = (union cdu_context *)
2008 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2009 (base_vf_cid & (ILT_PAGE_CIDS-1));
2010 int i;
2011
2012 /* if state is 'acquired' the VF was not released or FLR'd, in
2013 * this case the returned resources match the acquired already
2014 * acquired resources. Verify that the requested numbers do
2015 * not exceed the already acquired numbers.
2016 */
2017 if (vf->state == VF_ACQUIRED) {
2018 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2019 vf->abs_vfid);
2020
2021 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2022 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2023 vf->abs_vfid);
2024 return -EINVAL;
2025 }
2026 return 0;
2027 }
2028
2029 /* Otherwise vf state must be 'free' or 'reset' */
2030 if (vf->state != VF_FREE && vf->state != VF_RESET) {
2031 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2032 vf->abs_vfid, vf->state);
2033 return -EINVAL;
2034 }
2035
2036 /* static allocation:
2037 * the global maximum number are fixed per VF. Fail the request if
2038 * requested number exceed these globals
2039 */
2040 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2041 DP(BNX2X_MSG_IOV,
2042 "cannot fulfill vf resource request. Placing maximal available values in response\n");
2043 /* set the max resource in the vf */
2044 return -ENOMEM;
2045 }
2046
2047 /* Set resources counters - 0 request means max available */
2048 vf_sb_count(vf) = resc->num_sbs;
2049 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2050 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2051
2052 DP(BNX2X_MSG_IOV,
2053 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2054 vf_sb_count(vf), vf_rxq_count(vf),
2055 vf_txq_count(vf), vf_mac_rules_cnt(vf),
2056 vf_vlan_rules_cnt(vf));
2057
2058 /* Initialize the queues */
2059 if (!vf->vfqs) {
2060 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2061 return -EINVAL;
2062 }
2063
2064 for_each_vfq(vf, i) {
2065 struct bnx2x_vf_queue *q = vfq_get(vf, i);
2066
2067 if (!q) {
2068 BNX2X_ERR("q number %d was not allocated\n", i);
2069 return -EINVAL;
2070 }
2071
2072 q->index = i;
2073 q->cxt = &((base_cxt + i)->eth);
2074 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2075
2076 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2077 vf->abs_vfid, i, q->index, q->cid, q->cxt);
2078
2079 /* init SP objects */
2080 bnx2x_vfq_init(bp, vf, q);
2081 }
2082 vf->state = VF_ACQUIRED;
2083 return 0;
2084 }
2085
bnx2x_vf_init(struct bnx2x * bp,struct bnx2x_virtf * vf,dma_addr_t * sb_map)2086 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2087 {
2088 struct bnx2x_func_init_params func_init = {0};
2089 int i;
2090
2091 /* the sb resources are initialized at this point, do the
2092 * FW/HW initializations
2093 */
2094 for_each_vf_sb(vf, i)
2095 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2096 vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2097
2098 /* Sanity checks */
2099 if (vf->state != VF_ACQUIRED) {
2100 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2101 vf->abs_vfid, vf->state);
2102 return -EINVAL;
2103 }
2104
2105 /* let FLR complete ... */
2106 msleep(100);
2107
2108 /* FLR cleanup epilogue */
2109 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2110 return -EBUSY;
2111
2112 /* reset IGU VF statistics: MSIX */
2113 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2114
2115 /* function setup */
2116 func_init.pf_id = BP_FUNC(bp);
2117 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2118 bnx2x_func_init(bp, &func_init);
2119
2120 /* Enable the vf */
2121 bnx2x_vf_enable_access(bp, vf->abs_vfid);
2122 bnx2x_vf_enable_traffic(bp, vf);
2123
2124 /* queue protection table */
2125 for_each_vfq(vf, i)
2126 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2127 vfq_qzone_id(vf, vfq_get(vf, i)), true);
2128
2129 vf->state = VF_ENABLED;
2130
2131 /* update vf bulletin board */
2132 bnx2x_post_vf_bulletin(bp, vf->index);
2133
2134 return 0;
2135 }
2136
2137 struct set_vf_state_cookie {
2138 struct bnx2x_virtf *vf;
2139 u8 state;
2140 };
2141
bnx2x_set_vf_state(void * cookie)2142 static void bnx2x_set_vf_state(void *cookie)
2143 {
2144 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2145
2146 p->vf->state = p->state;
2147 }
2148
bnx2x_vf_close(struct bnx2x * bp,struct bnx2x_virtf * vf)2149 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2150 {
2151 int rc = 0, i;
2152
2153 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2154
2155 /* Close all queues */
2156 for (i = 0; i < vf_rxq_count(vf); i++) {
2157 rc = bnx2x_vf_queue_teardown(bp, vf, i);
2158 if (rc)
2159 goto op_err;
2160 }
2161
2162 /* disable the interrupts */
2163 DP(BNX2X_MSG_IOV, "disabling igu\n");
2164 bnx2x_vf_igu_disable(bp, vf);
2165
2166 /* disable the VF */
2167 DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2168 bnx2x_vf_clr_qtbl(bp, vf);
2169
2170 /* need to make sure there are no outstanding stats ramrods which may
2171 * cause the device to access the VF's stats buffer which it will free
2172 * as soon as we return from the close flow.
2173 */
2174 {
2175 struct set_vf_state_cookie cookie;
2176
2177 cookie.vf = vf;
2178 cookie.state = VF_ACQUIRED;
2179 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2180 if (rc)
2181 goto op_err;
2182 }
2183
2184 DP(BNX2X_MSG_IOV, "set state to acquired\n");
2185
2186 return 0;
2187 op_err:
2188 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2189 return rc;
2190 }
2191
2192 /* VF release can be called either: 1. The VF was acquired but
2193 * not enabled 2. the vf was enabled or in the process of being
2194 * enabled
2195 */
bnx2x_vf_free(struct bnx2x * bp,struct bnx2x_virtf * vf)2196 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2197 {
2198 int rc;
2199
2200 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2201 vf->state == VF_FREE ? "Free" :
2202 vf->state == VF_ACQUIRED ? "Acquired" :
2203 vf->state == VF_ENABLED ? "Enabled" :
2204 vf->state == VF_RESET ? "Reset" :
2205 "Unknown");
2206
2207 switch (vf->state) {
2208 case VF_ENABLED:
2209 rc = bnx2x_vf_close(bp, vf);
2210 if (rc)
2211 goto op_err;
2212 fallthrough; /* to release resources */
2213 case VF_ACQUIRED:
2214 DP(BNX2X_MSG_IOV, "about to free resources\n");
2215 bnx2x_vf_free_resc(bp, vf);
2216 break;
2217
2218 case VF_FREE:
2219 case VF_RESET:
2220 default:
2221 break;
2222 }
2223 return 0;
2224 op_err:
2225 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2226 return rc;
2227 }
2228
bnx2x_vf_rss_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_config_rss_params * rss)2229 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2230 struct bnx2x_config_rss_params *rss)
2231 {
2232 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2233 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2234 return bnx2x_config_rss(bp, rss);
2235 }
2236
bnx2x_vf_tpa_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vfpf_tpa_tlv * tlv,struct bnx2x_queue_update_tpa_params * params)2237 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2238 struct vfpf_tpa_tlv *tlv,
2239 struct bnx2x_queue_update_tpa_params *params)
2240 {
2241 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2242 struct bnx2x_queue_state_params qstate;
2243 int qid, rc = 0;
2244
2245 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2246
2247 /* Set ramrod params */
2248 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2249 memcpy(&qstate.params.update_tpa, params,
2250 sizeof(struct bnx2x_queue_update_tpa_params));
2251 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2252 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2253
2254 for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2255 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2256 qstate.params.update_tpa.sge_map = sge_addr[qid];
2257 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2258 vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2259 U64_LO(sge_addr[qid]));
2260 rc = bnx2x_queue_state_change(bp, &qstate);
2261 if (rc) {
2262 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2263 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2264 vf->abs_vfid, qid);
2265 return rc;
2266 }
2267 }
2268
2269 return rc;
2270 }
2271
2272 /* VF release ~ VF close + VF release-resources
2273 * Release is the ultimate SW shutdown and is called whenever an
2274 * irrecoverable error is encountered.
2275 */
bnx2x_vf_release(struct bnx2x * bp,struct bnx2x_virtf * vf)2276 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2277 {
2278 int rc;
2279
2280 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2281 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2282
2283 rc = bnx2x_vf_free(bp, vf);
2284 if (rc)
2285 WARN(rc,
2286 "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2287 vf->abs_vfid, rc);
2288 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2289 return rc;
2290 }
2291
bnx2x_lock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs tlv)2292 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2293 enum channel_tlvs tlv)
2294 {
2295 /* we don't lock the channel for unsupported tlvs */
2296 if (!bnx2x_tlv_supported(tlv)) {
2297 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2298 return;
2299 }
2300
2301 /* lock the channel */
2302 mutex_lock(&vf->op_mutex);
2303
2304 /* record the locking op */
2305 vf->op_current = tlv;
2306
2307 /* log the lock */
2308 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2309 vf->abs_vfid, tlv);
2310 }
2311
bnx2x_unlock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs expected_tlv)2312 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2313 enum channel_tlvs expected_tlv)
2314 {
2315 enum channel_tlvs current_tlv;
2316
2317 if (!vf) {
2318 BNX2X_ERR("VF was %p\n", vf);
2319 return;
2320 }
2321
2322 current_tlv = vf->op_current;
2323
2324 /* we don't unlock the channel for unsupported tlvs */
2325 if (!bnx2x_tlv_supported(expected_tlv))
2326 return;
2327
2328 WARN(expected_tlv != vf->op_current,
2329 "lock mismatch: expected %d found %d", expected_tlv,
2330 vf->op_current);
2331
2332 /* record the locking op */
2333 vf->op_current = CHANNEL_TLV_NONE;
2334
2335 /* lock the channel */
2336 mutex_unlock(&vf->op_mutex);
2337
2338 /* log the unlock */
2339 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2340 vf->abs_vfid, current_tlv);
2341 }
2342
bnx2x_set_pf_tx_switching(struct bnx2x * bp,bool enable)2343 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2344 {
2345 struct bnx2x_queue_state_params q_params;
2346 u32 prev_flags;
2347 int i, rc;
2348
2349 /* Verify changes are needed and record current Tx switching state */
2350 prev_flags = bp->flags;
2351 if (enable)
2352 bp->flags |= TX_SWITCHING;
2353 else
2354 bp->flags &= ~TX_SWITCHING;
2355 if (prev_flags == bp->flags)
2356 return 0;
2357
2358 /* Verify state enables the sending of queue ramrods */
2359 if ((bp->state != BNX2X_STATE_OPEN) ||
2360 (bnx2x_get_q_logical_state(bp,
2361 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2362 BNX2X_Q_LOGICAL_STATE_ACTIVE))
2363 return 0;
2364
2365 /* send q. update ramrod to configure Tx switching */
2366 memset(&q_params, 0, sizeof(q_params));
2367 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2368 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2369 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2370 &q_params.params.update.update_flags);
2371 if (enable)
2372 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2373 &q_params.params.update.update_flags);
2374 else
2375 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2376 &q_params.params.update.update_flags);
2377
2378 /* send the ramrod on all the queues of the PF */
2379 for_each_eth_queue(bp, i) {
2380 struct bnx2x_fastpath *fp = &bp->fp[i];
2381 int tx_idx;
2382
2383 /* Set the appropriate Queue object */
2384 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2385
2386 for (tx_idx = FIRST_TX_COS_INDEX;
2387 tx_idx < fp->max_cos; tx_idx++) {
2388 q_params.params.update.cid_index = tx_idx;
2389
2390 /* Update the Queue state */
2391 rc = bnx2x_queue_state_change(bp, &q_params);
2392 if (rc) {
2393 BNX2X_ERR("Failed to configure Tx switching\n");
2394 return rc;
2395 }
2396 }
2397 }
2398
2399 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2400 return 0;
2401 }
2402
bnx2x_sriov_configure(struct pci_dev * dev,int num_vfs_param)2403 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2404 {
2405 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2406
2407 if (!IS_SRIOV(bp)) {
2408 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2409 return -EINVAL;
2410 }
2411
2412 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2413 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2414
2415 /* HW channel is only operational when PF is up */
2416 if (bp->state != BNX2X_STATE_OPEN) {
2417 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2418 return -EINVAL;
2419 }
2420
2421 /* we are always bound by the total_vfs in the configuration space */
2422 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2423 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2424 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2425 num_vfs_param = BNX2X_NR_VIRTFN(bp);
2426 }
2427
2428 bp->requested_nr_virtfn = num_vfs_param;
2429 if (num_vfs_param == 0) {
2430 bnx2x_set_pf_tx_switching(bp, false);
2431 bnx2x_disable_sriov(bp);
2432 return 0;
2433 } else {
2434 return bnx2x_enable_sriov(bp);
2435 }
2436 }
2437
2438 #define IGU_ENTRY_SIZE 4
2439
bnx2x_enable_sriov(struct bnx2x * bp)2440 int bnx2x_enable_sriov(struct bnx2x *bp)
2441 {
2442 int rc = 0, req_vfs = bp->requested_nr_virtfn;
2443 int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2444 u32 igu_entry, address;
2445 u16 num_vf_queues;
2446
2447 if (req_vfs == 0)
2448 return 0;
2449
2450 first_vf = bp->vfdb->sriov.first_vf_in_pf;
2451
2452 /* statically distribute vf sb pool between VFs */
2453 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2454 BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2455
2456 /* zero previous values learned from igu cam */
2457 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2458 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2459
2460 vf->sb_count = 0;
2461 vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2462 }
2463 bp->vfdb->vf_sbs_pool = 0;
2464
2465 /* prepare IGU cam */
2466 sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2467 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2468 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2469 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2470 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2471 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2472 IGU_REG_MAPPING_MEMORY_VALID;
2473 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2474 sb_idx, vf_idx);
2475 REG_WR(bp, address, igu_entry);
2476 sb_idx++;
2477 address += IGU_ENTRY_SIZE;
2478 }
2479 }
2480
2481 /* Reinitialize vf database according to igu cam */
2482 bnx2x_get_vf_igu_cam_info(bp);
2483
2484 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2485 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2486
2487 qcount = 0;
2488 for_each_vf(bp, vf_idx) {
2489 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2490
2491 /* set local queue arrays */
2492 vf->vfqs = &bp->vfdb->vfqs[qcount];
2493 qcount += vf_sb_count(vf);
2494 bnx2x_iov_static_resc(bp, vf);
2495 }
2496
2497 /* prepare msix vectors in VF configuration space - the value in the
2498 * PCI configuration space should be the index of the last entry,
2499 * namely one less than the actual size of the table
2500 */
2501 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2502 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2503 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2504 num_vf_queues - 1);
2505 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2506 vf_idx, num_vf_queues - 1);
2507 }
2508 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2509
2510 /* enable sriov. This will probe all the VFs, and consequentially cause
2511 * the "acquire" messages to appear on the VF PF channel.
2512 */
2513 DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2514 bnx2x_disable_sriov(bp);
2515
2516 rc = bnx2x_set_pf_tx_switching(bp, true);
2517 if (rc)
2518 return rc;
2519
2520 rc = pci_enable_sriov(bp->pdev, req_vfs);
2521 if (rc) {
2522 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2523 return rc;
2524 }
2525 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2526 return req_vfs;
2527 }
2528
bnx2x_pf_set_vfs_vlan(struct bnx2x * bp)2529 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2530 {
2531 int vfidx;
2532 struct pf_vf_bulletin_content *bulletin;
2533
2534 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2535 for_each_vf(bp, vfidx) {
2536 bulletin = BP_VF_BULLETIN(bp, vfidx);
2537 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2538 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2539 htons(ETH_P_8021Q));
2540 }
2541 }
2542
bnx2x_disable_sriov(struct bnx2x * bp)2543 void bnx2x_disable_sriov(struct bnx2x *bp)
2544 {
2545 if (pci_vfs_assigned(bp->pdev)) {
2546 DP(BNX2X_MSG_IOV,
2547 "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2548 return;
2549 }
2550
2551 pci_disable_sriov(bp->pdev);
2552 }
2553
bnx2x_vf_op_prep(struct bnx2x * bp,int vfidx,struct bnx2x_virtf ** vf,struct pf_vf_bulletin_content ** bulletin,bool test_queue)2554 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2555 struct bnx2x_virtf **vf,
2556 struct pf_vf_bulletin_content **bulletin,
2557 bool test_queue)
2558 {
2559 if (bp->state != BNX2X_STATE_OPEN) {
2560 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2561 return -EINVAL;
2562 }
2563
2564 if (!IS_SRIOV(bp)) {
2565 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2566 return -EINVAL;
2567 }
2568
2569 if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2570 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2571 vfidx, BNX2X_NR_VIRTFN(bp));
2572 return -EINVAL;
2573 }
2574
2575 /* init members */
2576 *vf = BP_VF(bp, vfidx);
2577 *bulletin = BP_VF_BULLETIN(bp, vfidx);
2578
2579 if (!*vf) {
2580 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2581 return -EINVAL;
2582 }
2583
2584 if (test_queue && !(*vf)->vfqs) {
2585 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2586 vfidx);
2587 return -EINVAL;
2588 }
2589
2590 if (!*bulletin) {
2591 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2592 vfidx);
2593 return -EINVAL;
2594 }
2595
2596 return 0;
2597 }
2598
bnx2x_get_vf_config(struct net_device * dev,int vfidx,struct ifla_vf_info * ivi)2599 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2600 struct ifla_vf_info *ivi)
2601 {
2602 struct bnx2x *bp = netdev_priv(dev);
2603 struct bnx2x_virtf *vf = NULL;
2604 struct pf_vf_bulletin_content *bulletin = NULL;
2605 struct bnx2x_vlan_mac_obj *mac_obj;
2606 struct bnx2x_vlan_mac_obj *vlan_obj;
2607 int rc;
2608
2609 /* sanity and init */
2610 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2611 if (rc)
2612 return rc;
2613
2614 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2615 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2616 if (!mac_obj || !vlan_obj) {
2617 BNX2X_ERR("VF partially initialized\n");
2618 return -EINVAL;
2619 }
2620
2621 ivi->vf = vfidx;
2622 ivi->qos = 0;
2623 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2624 ivi->min_tx_rate = 0;
2625 ivi->spoofchk = vf->spoofchk ? 1 : 0;
2626 ivi->linkstate = vf->link_cfg;
2627 if (vf->state == VF_ENABLED) {
2628 /* mac and vlan are in vlan_mac objects */
2629 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2630 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2631 0, ETH_ALEN);
2632 vlan_obj->get_n_elements(bp, vlan_obj, 1,
2633 (u8 *)&ivi->vlan, 0,
2634 VLAN_HLEN);
2635 }
2636 } else {
2637 mutex_lock(&bp->vfdb->bulletin_mutex);
2638 /* mac */
2639 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2640 /* mac configured by ndo so its in bulletin board */
2641 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2642 else
2643 /* function has not been loaded yet. Show mac as 0s */
2644 eth_zero_addr(ivi->mac);
2645
2646 /* vlan */
2647 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2648 /* vlan configured by ndo so its in bulletin board */
2649 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2650 else
2651 /* function has not been loaded yet. Show vlans as 0s */
2652 memset(&ivi->vlan, 0, VLAN_HLEN);
2653
2654 mutex_unlock(&bp->vfdb->bulletin_mutex);
2655 }
2656
2657 return 0;
2658 }
2659
2660 /* New mac for VF. Consider these cases:
2661 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2662 * supply at acquire.
2663 * 2. VF has already been acquired but has not yet initialized - store in local
2664 * bulletin board. mac will be posted on VF bulletin board after VF init. VF
2665 * will configure this mac when it is ready.
2666 * 3. VF has already initialized but has not yet setup a queue - post the new
2667 * mac on VF's bulletin board right now. VF will configure this mac when it
2668 * is ready.
2669 * 4. VF has already set a queue - delete any macs already configured for this
2670 * queue and manually config the new mac.
2671 * In any event, once this function has been called refuse any attempts by the
2672 * VF to configure any mac for itself except for this mac. In case of a race
2673 * where the VF fails to see the new post on its bulletin board before sending a
2674 * mac configuration request, the PF will simply fail the request and VF can try
2675 * again after consulting its bulletin board.
2676 */
bnx2x_set_vf_mac(struct net_device * dev,int vfidx,u8 * mac)2677 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2678 {
2679 struct bnx2x *bp = netdev_priv(dev);
2680 int rc, q_logical_state;
2681 struct bnx2x_virtf *vf = NULL;
2682 struct pf_vf_bulletin_content *bulletin = NULL;
2683
2684 if (!is_valid_ether_addr(mac)) {
2685 BNX2X_ERR("mac address invalid\n");
2686 return -EINVAL;
2687 }
2688
2689 /* sanity and init */
2690 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2691 if (rc)
2692 return rc;
2693
2694 mutex_lock(&bp->vfdb->bulletin_mutex);
2695
2696 /* update PF's copy of the VF's bulletin. Will no longer accept mac
2697 * configuration requests from vf unless match this mac
2698 */
2699 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2700 memcpy(bulletin->mac, mac, ETH_ALEN);
2701
2702 /* Post update on VF's bulletin board */
2703 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2704
2705 /* release lock before checking return code */
2706 mutex_unlock(&bp->vfdb->bulletin_mutex);
2707
2708 if (rc) {
2709 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2710 return rc;
2711 }
2712
2713 q_logical_state =
2714 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2715 if (vf->state == VF_ENABLED &&
2716 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2717 /* configure the mac in device on this vf's queue */
2718 unsigned long ramrod_flags = 0;
2719 struct bnx2x_vlan_mac_obj *mac_obj;
2720
2721 /* User should be able to see failure reason in system logs */
2722 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2723 return -EINVAL;
2724
2725 /* must lock vfpf channel to protect against vf flows */
2726 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2727
2728 /* remove existing eth macs */
2729 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2730 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2731 if (rc) {
2732 BNX2X_ERR("failed to delete eth macs\n");
2733 rc = -EINVAL;
2734 goto out;
2735 }
2736
2737 /* remove existing uc list macs */
2738 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2739 if (rc) {
2740 BNX2X_ERR("failed to delete uc_list macs\n");
2741 rc = -EINVAL;
2742 goto out;
2743 }
2744
2745 /* configure the new mac to device */
2746 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2747 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2748 BNX2X_ETH_MAC, &ramrod_flags);
2749
2750 out:
2751 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2752 }
2753
2754 return rc;
2755 }
2756
bnx2x_set_vf_vlan_acceptance(struct bnx2x * bp,struct bnx2x_virtf * vf,bool accept)2757 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2758 struct bnx2x_virtf *vf, bool accept)
2759 {
2760 struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2761 unsigned long accept_flags;
2762
2763 /* need to remove/add the VF's accept_any_vlan bit */
2764 accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2765 if (accept)
2766 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2767 else
2768 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2769
2770 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2771 accept_flags);
2772 bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2773 bnx2x_config_rx_mode(bp, &rx_ramrod);
2774 }
2775
bnx2x_set_vf_vlan_filter(struct bnx2x * bp,struct bnx2x_virtf * vf,u16 vlan,bool add)2776 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2777 u16 vlan, bool add)
2778 {
2779 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2780 unsigned long ramrod_flags = 0;
2781 int rc = 0;
2782
2783 /* configure the new vlan to device */
2784 memset(&ramrod_param, 0, sizeof(ramrod_param));
2785 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2786 ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2787 ramrod_param.ramrod_flags = ramrod_flags;
2788 ramrod_param.user_req.u.vlan.vlan = vlan;
2789 ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2790 : BNX2X_VLAN_MAC_DEL;
2791 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2792 if (rc) {
2793 BNX2X_ERR("failed to configure vlan\n");
2794 return -EINVAL;
2795 }
2796
2797 return 0;
2798 }
2799
bnx2x_set_vf_vlan(struct net_device * dev,int vfidx,u16 vlan,u8 qos,__be16 vlan_proto)2800 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2801 __be16 vlan_proto)
2802 {
2803 struct pf_vf_bulletin_content *bulletin = NULL;
2804 struct bnx2x *bp = netdev_priv(dev);
2805 struct bnx2x_vlan_mac_obj *vlan_obj;
2806 unsigned long vlan_mac_flags = 0;
2807 unsigned long ramrod_flags = 0;
2808 struct bnx2x_virtf *vf = NULL;
2809 int i, rc;
2810
2811 if (vlan > 4095) {
2812 BNX2X_ERR("illegal vlan value %d\n", vlan);
2813 return -EINVAL;
2814 }
2815
2816 if (vlan_proto != htons(ETH_P_8021Q))
2817 return -EPROTONOSUPPORT;
2818
2819 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2820 vfidx, vlan, 0);
2821
2822 /* sanity and init */
2823 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2824 if (rc)
2825 return rc;
2826
2827 /* update PF's copy of the VF's bulletin. No point in posting the vlan
2828 * to the VF since it doesn't have anything to do with it. But it useful
2829 * to store it here in case the VF is not up yet and we can only
2830 * configure the vlan later when it does. Treat vlan id 0 as remove the
2831 * Host tag.
2832 */
2833 mutex_lock(&bp->vfdb->bulletin_mutex);
2834
2835 if (vlan > 0)
2836 bulletin->valid_bitmap |= 1 << VLAN_VALID;
2837 else
2838 bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2839 bulletin->vlan = vlan;
2840
2841 /* Post update on VF's bulletin board */
2842 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2843 if (rc)
2844 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2845 mutex_unlock(&bp->vfdb->bulletin_mutex);
2846
2847 /* is vf initialized and queue set up? */
2848 if (vf->state != VF_ENABLED ||
2849 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2850 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2851 return rc;
2852
2853 /* User should be able to see error in system logs */
2854 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2855 return -EINVAL;
2856
2857 /* must lock vfpf channel to protect against vf flows */
2858 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2859
2860 /* remove existing vlans */
2861 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2862 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2863 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2864 &ramrod_flags);
2865 if (rc) {
2866 BNX2X_ERR("failed to delete vlans\n");
2867 rc = -EINVAL;
2868 goto out;
2869 }
2870
2871 /* clear accept_any_vlan when HV forces vlan, otherwise
2872 * according to VF capabilities
2873 */
2874 if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2875 bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2876
2877 rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2878 if (rc)
2879 goto out;
2880
2881 /* send queue update ramrods to configure default vlan and
2882 * silent vlan removal
2883 */
2884 for_each_vfq(vf, i) {
2885 struct bnx2x_queue_state_params q_params = {NULL};
2886 struct bnx2x_queue_update_params *update_params;
2887
2888 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2889
2890 /* validate the Q is UP */
2891 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2892 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2893 continue;
2894
2895 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2896 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2897 update_params = &q_params.params.update;
2898 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2899 &update_params->update_flags);
2900 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2901 &update_params->update_flags);
2902 if (vlan == 0) {
2903 /* if vlan is 0 then we want to leave the VF traffic
2904 * untagged, and leave the incoming traffic untouched
2905 * (i.e. do not remove any vlan tags).
2906 */
2907 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2908 &update_params->update_flags);
2909 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2910 &update_params->update_flags);
2911 } else {
2912 /* configure default vlan to vf queue and set silent
2913 * vlan removal (the vf remains unaware of this vlan).
2914 */
2915 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2916 &update_params->update_flags);
2917 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2918 &update_params->update_flags);
2919 update_params->def_vlan = vlan;
2920 update_params->silent_removal_value =
2921 vlan & VLAN_VID_MASK;
2922 update_params->silent_removal_mask = VLAN_VID_MASK;
2923 }
2924
2925 /* Update the Queue state */
2926 rc = bnx2x_queue_state_change(bp, &q_params);
2927 if (rc) {
2928 BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2929 i);
2930 goto out;
2931 }
2932 }
2933 out:
2934 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2935
2936 if (rc)
2937 DP(BNX2X_MSG_IOV,
2938 "updated VF[%d] vlan configuration (vlan = %d)\n",
2939 vfidx, vlan);
2940
2941 return rc;
2942 }
2943
bnx2x_set_vf_spoofchk(struct net_device * dev,int idx,bool val)2944 int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val)
2945 {
2946 struct bnx2x *bp = netdev_priv(dev);
2947 struct bnx2x_virtf *vf;
2948 int i, rc = 0;
2949
2950 vf = BP_VF(bp, idx);
2951 if (!vf)
2952 return -EINVAL;
2953
2954 /* nothing to do */
2955 if (vf->spoofchk == val)
2956 return 0;
2957
2958 vf->spoofchk = val ? 1 : 0;
2959
2960 DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n",
2961 val ? "enabling" : "disabling", idx);
2962
2963 /* is vf initialized and queue set up? */
2964 if (vf->state != VF_ENABLED ||
2965 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2966 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2967 return rc;
2968
2969 /* User should be able to see error in system logs */
2970 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2971 return -EINVAL;
2972
2973 /* send queue update ramrods to configure spoofchk */
2974 for_each_vfq(vf, i) {
2975 struct bnx2x_queue_state_params q_params = {NULL};
2976 struct bnx2x_queue_update_params *update_params;
2977
2978 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2979
2980 /* validate the Q is UP */
2981 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2982 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2983 continue;
2984
2985 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2986 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2987 update_params = &q_params.params.update;
2988 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG,
2989 &update_params->update_flags);
2990 if (val) {
2991 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
2992 &update_params->update_flags);
2993 } else {
2994 __clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
2995 &update_params->update_flags);
2996 }
2997
2998 /* Update the Queue state */
2999 rc = bnx2x_queue_state_change(bp, &q_params);
3000 if (rc) {
3001 BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n",
3002 val ? "enable" : "disable", idx, i);
3003 goto out;
3004 }
3005 }
3006 out:
3007 if (!rc)
3008 DP(BNX2X_MSG_IOV,
3009 "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled",
3010 idx);
3011
3012 return rc;
3013 }
3014
3015 /* crc is the first field in the bulletin board. Compute the crc over the
3016 * entire bulletin board excluding the crc field itself. Use the length field
3017 * as the Bulletin Board was posted by a PF with possibly a different version
3018 * from the vf which will sample it. Therefore, the length is computed by the
3019 * PF and then used blindly by the VF.
3020 */
bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content * bulletin)3021 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
3022 {
3023 return crc32(BULLETIN_CRC_SEED,
3024 ((u8 *)bulletin) + sizeof(bulletin->crc),
3025 bulletin->length - sizeof(bulletin->crc));
3026 }
3027
3028 /* Check for new posts on the bulletin board */
bnx2x_sample_bulletin(struct bnx2x * bp)3029 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
3030 {
3031 struct pf_vf_bulletin_content *bulletin;
3032 int attempts;
3033
3034 /* sampling structure in mid post may result with corrupted data
3035 * validate crc to ensure coherency.
3036 */
3037 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
3038 u32 crc;
3039
3040 /* sample the bulletin board */
3041 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
3042 sizeof(union pf_vf_bulletin));
3043
3044 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
3045
3046 if (bp->shadow_bulletin.content.crc == crc)
3047 break;
3048
3049 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
3050 bp->shadow_bulletin.content.crc, crc);
3051 }
3052
3053 if (attempts >= BULLETIN_ATTEMPTS) {
3054 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
3055 attempts);
3056 return PFVF_BULLETIN_CRC_ERR;
3057 }
3058 bulletin = &bp->shadow_bulletin.content;
3059
3060 /* bulletin board hasn't changed since last sample */
3061 if (bp->old_bulletin.version == bulletin->version)
3062 return PFVF_BULLETIN_UNCHANGED;
3063
3064 /* the mac address in bulletin board is valid and is new */
3065 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3066 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3067 /* update new mac to net device */
3068 memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
3069 }
3070
3071 if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3072 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3073 bulletin->link_speed, bulletin->link_flags);
3074
3075 bp->vf_link_vars.line_speed = bulletin->link_speed;
3076 bp->vf_link_vars.link_report_flags = 0;
3077 /* Link is down */
3078 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3079 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3080 &bp->vf_link_vars.link_report_flags);
3081 /* Full DUPLEX */
3082 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3083 __set_bit(BNX2X_LINK_REPORT_FD,
3084 &bp->vf_link_vars.link_report_flags);
3085 /* Rx Flow Control is ON */
3086 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3087 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3088 &bp->vf_link_vars.link_report_flags);
3089 /* Tx Flow Control is ON */
3090 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3091 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3092 &bp->vf_link_vars.link_report_flags);
3093 __bnx2x_link_report(bp);
3094 }
3095
3096 /* copy new bulletin board to bp */
3097 memcpy(&bp->old_bulletin, bulletin,
3098 sizeof(struct pf_vf_bulletin_content));
3099
3100 return PFVF_BULLETIN_UPDATED;
3101 }
3102
bnx2x_timer_sriov(struct bnx2x * bp)3103 void bnx2x_timer_sriov(struct bnx2x *bp)
3104 {
3105 bnx2x_sample_bulletin(bp);
3106
3107 /* if channel is down we need to self destruct */
3108 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3109 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3110 BNX2X_MSG_IOV);
3111 }
3112
bnx2x_vf_doorbells(struct bnx2x * bp)3113 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3114 {
3115 /* vf doorbells are embedded within the regview */
3116 return bp->regview + PXP_VF_ADDR_DB_START;
3117 }
3118
bnx2x_vf_pci_dealloc(struct bnx2x * bp)3119 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3120 {
3121 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3122 sizeof(struct bnx2x_vf_mbx_msg));
3123 BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping,
3124 sizeof(union pf_vf_bulletin));
3125 }
3126
bnx2x_vf_pci_alloc(struct bnx2x * bp)3127 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3128 {
3129 mutex_init(&bp->vf2pf_mutex);
3130
3131 /* allocate vf2pf mailbox for vf to pf channel */
3132 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3133 sizeof(struct bnx2x_vf_mbx_msg));
3134 if (!bp->vf2pf_mbox)
3135 goto alloc_mem_err;
3136
3137 /* allocate pf 2 vf bulletin board */
3138 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3139 sizeof(union pf_vf_bulletin));
3140 if (!bp->pf2vf_bulletin)
3141 goto alloc_mem_err;
3142
3143 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3144
3145 return 0;
3146
3147 alloc_mem_err:
3148 bnx2x_vf_pci_dealloc(bp);
3149 return -ENOMEM;
3150 }
3151
bnx2x_iov_channel_down(struct bnx2x * bp)3152 void bnx2x_iov_channel_down(struct bnx2x *bp)
3153 {
3154 int vf_idx;
3155 struct pf_vf_bulletin_content *bulletin;
3156
3157 if (!IS_SRIOV(bp))
3158 return;
3159
3160 for_each_vf(bp, vf_idx) {
3161 /* locate this VFs bulletin board and update the channel down
3162 * bit
3163 */
3164 bulletin = BP_VF_BULLETIN(bp, vf_idx);
3165 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3166
3167 /* update vf bulletin board */
3168 bnx2x_post_vf_bulletin(bp, vf_idx);
3169 }
3170 }
3171
bnx2x_iov_task(struct work_struct * work)3172 void bnx2x_iov_task(struct work_struct *work)
3173 {
3174 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3175
3176 if (!netif_running(bp->dev))
3177 return;
3178
3179 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3180 &bp->iov_task_state))
3181 bnx2x_vf_handle_flr_event(bp);
3182
3183 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3184 &bp->iov_task_state))
3185 bnx2x_vf_mbx(bp);
3186 }
3187
bnx2x_schedule_iov_task(struct bnx2x * bp,enum bnx2x_iov_flag flag)3188 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3189 {
3190 smp_mb__before_atomic();
3191 set_bit(flag, &bp->iov_task_state);
3192 smp_mb__after_atomic();
3193 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3194 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3195 }
3196