1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11
12 /**
13 * ice_vsi_type_str - maps VSI type enum to string equivalents
14 * @vsi_type: VSI type enum
15 */
ice_vsi_type_str(enum ice_vsi_type vsi_type)16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
17 {
18 switch (vsi_type) {
19 case ICE_VSI_PF:
20 return "ICE_VSI_PF";
21 case ICE_VSI_VF:
22 return "ICE_VSI_VF";
23 case ICE_VSI_CTRL:
24 return "ICE_VSI_CTRL";
25 case ICE_VSI_LB:
26 return "ICE_VSI_LB";
27 default:
28 return "unknown";
29 }
30 }
31
32 /**
33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
34 * @vsi: the VSI being configured
35 * @ena: start or stop the Rx rings
36 *
37 * First enable/disable all of the Rx rings, flush any remaining writes, and
38 * then verify that they have all been enabled/disabled successfully. This will
39 * let all of the register writes complete when enabling/disabling the Rx rings
40 * before waiting for the change in hardware to complete.
41 */
ice_vsi_ctrl_all_rx_rings(struct ice_vsi * vsi,bool ena)42 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
43 {
44 int ret = 0;
45 u16 i;
46
47 for (i = 0; i < vsi->num_rxq; i++)
48 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
49
50 ice_flush(&vsi->back->hw);
51
52 for (i = 0; i < vsi->num_rxq; i++) {
53 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
54 if (ret)
55 break;
56 }
57
58 return ret;
59 }
60
61 /**
62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
63 * @vsi: VSI pointer
64 *
65 * On error: returns error code (negative)
66 * On success: returns 0
67 */
ice_vsi_alloc_arrays(struct ice_vsi * vsi)68 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
69 {
70 struct ice_pf *pf = vsi->back;
71 struct device *dev;
72
73 dev = ice_pf_to_dev(pf);
74
75 /* allocate memory for both Tx and Rx ring pointers */
76 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
77 sizeof(*vsi->tx_rings), GFP_KERNEL);
78 if (!vsi->tx_rings)
79 return -ENOMEM;
80
81 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
82 sizeof(*vsi->rx_rings), GFP_KERNEL);
83 if (!vsi->rx_rings)
84 goto err_rings;
85
86 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */
87 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq),
88 sizeof(*vsi->txq_map), GFP_KERNEL);
89
90 if (!vsi->txq_map)
91 goto err_txq_map;
92
93 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
94 sizeof(*vsi->rxq_map), GFP_KERNEL);
95 if (!vsi->rxq_map)
96 goto err_rxq_map;
97
98 /* There is no need to allocate q_vectors for a loopback VSI. */
99 if (vsi->type == ICE_VSI_LB)
100 return 0;
101
102 /* allocate memory for q_vector pointers */
103 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
104 sizeof(*vsi->q_vectors), GFP_KERNEL);
105 if (!vsi->q_vectors)
106 goto err_vectors;
107
108 return 0;
109
110 err_vectors:
111 devm_kfree(dev, vsi->rxq_map);
112 err_rxq_map:
113 devm_kfree(dev, vsi->txq_map);
114 err_txq_map:
115 devm_kfree(dev, vsi->rx_rings);
116 err_rings:
117 devm_kfree(dev, vsi->tx_rings);
118 return -ENOMEM;
119 }
120
121 /**
122 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
123 * @vsi: the VSI being configured
124 */
ice_vsi_set_num_desc(struct ice_vsi * vsi)125 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
126 {
127 switch (vsi->type) {
128 case ICE_VSI_PF:
129 case ICE_VSI_CTRL:
130 case ICE_VSI_LB:
131 /* a user could change the values of num_[tr]x_desc using
132 * ethtool -G so we should keep those values instead of
133 * overwriting them with the defaults.
134 */
135 if (!vsi->num_rx_desc)
136 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
137 if (!vsi->num_tx_desc)
138 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
139 break;
140 default:
141 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
142 vsi->type);
143 break;
144 }
145 }
146
147 /**
148 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
149 * @vsi: the VSI being configured
150 * @vf_id: ID of the VF being configured
151 *
152 * Return 0 on success and a negative value on error
153 */
ice_vsi_set_num_qs(struct ice_vsi * vsi,u16 vf_id)154 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
155 {
156 struct ice_pf *pf = vsi->back;
157 struct ice_vf *vf = NULL;
158
159 if (vsi->type == ICE_VSI_VF)
160 vsi->vf_id = vf_id;
161
162 switch (vsi->type) {
163 case ICE_VSI_PF:
164 vsi->alloc_txq = min3(pf->num_lan_msix,
165 ice_get_avail_txq_count(pf),
166 (u16)num_online_cpus());
167 if (vsi->req_txq) {
168 vsi->alloc_txq = vsi->req_txq;
169 vsi->num_txq = vsi->req_txq;
170 }
171
172 pf->num_lan_tx = vsi->alloc_txq;
173
174 /* only 1 Rx queue unless RSS is enabled */
175 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
176 vsi->alloc_rxq = 1;
177 } else {
178 vsi->alloc_rxq = min3(pf->num_lan_msix,
179 ice_get_avail_rxq_count(pf),
180 (u16)num_online_cpus());
181 if (vsi->req_rxq) {
182 vsi->alloc_rxq = vsi->req_rxq;
183 vsi->num_rxq = vsi->req_rxq;
184 }
185 }
186
187 pf->num_lan_rx = vsi->alloc_rxq;
188
189 vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
190 max_t(int, vsi->alloc_rxq,
191 vsi->alloc_txq));
192 break;
193 case ICE_VSI_VF:
194 vf = &pf->vf[vsi->vf_id];
195 if (vf->num_req_qs)
196 vf->num_vf_qs = vf->num_req_qs;
197 vsi->alloc_txq = vf->num_vf_qs;
198 vsi->alloc_rxq = vf->num_vf_qs;
199 /* pf->num_msix_per_vf includes (VF miscellaneous vector +
200 * data queue interrupts). Since vsi->num_q_vectors is number
201 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
202 * original vector count
203 */
204 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF;
205 break;
206 case ICE_VSI_CTRL:
207 vsi->alloc_txq = 1;
208 vsi->alloc_rxq = 1;
209 vsi->num_q_vectors = 1;
210 break;
211 case ICE_VSI_LB:
212 vsi->alloc_txq = 1;
213 vsi->alloc_rxq = 1;
214 break;
215 default:
216 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type);
217 break;
218 }
219
220 ice_vsi_set_num_desc(vsi);
221 }
222
223 /**
224 * ice_get_free_slot - get the next non-NULL location index in array
225 * @array: array to search
226 * @size: size of the array
227 * @curr: last known occupied index to be used as a search hint
228 *
229 * void * is being used to keep the functionality generic. This lets us use this
230 * function on any array of pointers.
231 */
ice_get_free_slot(void * array,int size,int curr)232 static int ice_get_free_slot(void *array, int size, int curr)
233 {
234 int **tmp_array = (int **)array;
235 int next;
236
237 if (curr < (size - 1) && !tmp_array[curr + 1]) {
238 next = curr + 1;
239 } else {
240 int i = 0;
241
242 while ((i < size) && (tmp_array[i]))
243 i++;
244 if (i == size)
245 next = ICE_NO_VSI;
246 else
247 next = i;
248 }
249 return next;
250 }
251
252 /**
253 * ice_vsi_delete - delete a VSI from the switch
254 * @vsi: pointer to VSI being removed
255 */
ice_vsi_delete(struct ice_vsi * vsi)256 static void ice_vsi_delete(struct ice_vsi *vsi)
257 {
258 struct ice_pf *pf = vsi->back;
259 struct ice_vsi_ctx *ctxt;
260 enum ice_status status;
261
262 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
263 if (!ctxt)
264 return;
265
266 if (vsi->type == ICE_VSI_VF)
267 ctxt->vf_num = vsi->vf_id;
268 ctxt->vsi_num = vsi->vsi_num;
269
270 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
271
272 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
273 if (status)
274 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n",
275 vsi->vsi_num, ice_stat_str(status));
276
277 kfree(ctxt);
278 }
279
280 /**
281 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
282 * @vsi: pointer to VSI being cleared
283 */
ice_vsi_free_arrays(struct ice_vsi * vsi)284 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
285 {
286 struct ice_pf *pf = vsi->back;
287 struct device *dev;
288
289 dev = ice_pf_to_dev(pf);
290
291 /* free the ring and vector containers */
292 if (vsi->q_vectors) {
293 devm_kfree(dev, vsi->q_vectors);
294 vsi->q_vectors = NULL;
295 }
296 if (vsi->tx_rings) {
297 devm_kfree(dev, vsi->tx_rings);
298 vsi->tx_rings = NULL;
299 }
300 if (vsi->rx_rings) {
301 devm_kfree(dev, vsi->rx_rings);
302 vsi->rx_rings = NULL;
303 }
304 if (vsi->txq_map) {
305 devm_kfree(dev, vsi->txq_map);
306 vsi->txq_map = NULL;
307 }
308 if (vsi->rxq_map) {
309 devm_kfree(dev, vsi->rxq_map);
310 vsi->rxq_map = NULL;
311 }
312 }
313
314 /**
315 * ice_vsi_clear - clean up and deallocate the provided VSI
316 * @vsi: pointer to VSI being cleared
317 *
318 * This deallocates the VSI's queue resources, removes it from the PF's
319 * VSI array if necessary, and deallocates the VSI
320 *
321 * Returns 0 on success, negative on failure
322 */
ice_vsi_clear(struct ice_vsi * vsi)323 static int ice_vsi_clear(struct ice_vsi *vsi)
324 {
325 struct ice_pf *pf = NULL;
326 struct device *dev;
327
328 if (!vsi)
329 return 0;
330
331 if (!vsi->back)
332 return -EINVAL;
333
334 pf = vsi->back;
335 dev = ice_pf_to_dev(pf);
336
337 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
338 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
339 return -EINVAL;
340 }
341
342 mutex_lock(&pf->sw_mutex);
343 /* updates the PF for this cleared VSI */
344
345 pf->vsi[vsi->idx] = NULL;
346 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
347 pf->next_vsi = vsi->idx;
348
349 ice_vsi_free_arrays(vsi);
350 mutex_unlock(&pf->sw_mutex);
351 devm_kfree(dev, vsi);
352
353 return 0;
354 }
355
356 /**
357 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
358 * @irq: interrupt number
359 * @data: pointer to a q_vector
360 */
ice_msix_clean_ctrl_vsi(int __always_unused irq,void * data)361 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
362 {
363 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
364
365 if (!q_vector->tx.ring)
366 return IRQ_HANDLED;
367
368 #define FDIR_RX_DESC_CLEAN_BUDGET 64
369 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET);
370 ice_clean_ctrl_tx_irq(q_vector->tx.ring);
371
372 return IRQ_HANDLED;
373 }
374
375 /**
376 * ice_msix_clean_rings - MSIX mode Interrupt Handler
377 * @irq: interrupt number
378 * @data: pointer to a q_vector
379 */
ice_msix_clean_rings(int __always_unused irq,void * data)380 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
381 {
382 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
383
384 if (!q_vector->tx.ring && !q_vector->rx.ring)
385 return IRQ_HANDLED;
386
387 napi_schedule(&q_vector->napi);
388
389 return IRQ_HANDLED;
390 }
391
392 /**
393 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
394 * @pf: board private structure
395 * @vsi_type: type of VSI
396 * @vf_id: ID of the VF being configured
397 *
398 * returns a pointer to a VSI on success, NULL on failure.
399 */
400 static struct ice_vsi *
ice_vsi_alloc(struct ice_pf * pf,enum ice_vsi_type vsi_type,u16 vf_id)401 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id)
402 {
403 struct device *dev = ice_pf_to_dev(pf);
404 struct ice_vsi *vsi = NULL;
405
406 /* Need to protect the allocation of the VSIs at the PF level */
407 mutex_lock(&pf->sw_mutex);
408
409 /* If we have already allocated our maximum number of VSIs,
410 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
411 * is available to be populated
412 */
413 if (pf->next_vsi == ICE_NO_VSI) {
414 dev_dbg(dev, "out of VSI slots!\n");
415 goto unlock_pf;
416 }
417
418 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
419 if (!vsi)
420 goto unlock_pf;
421
422 vsi->type = vsi_type;
423 vsi->back = pf;
424 set_bit(__ICE_DOWN, vsi->state);
425
426 if (vsi_type == ICE_VSI_VF)
427 ice_vsi_set_num_qs(vsi, vf_id);
428 else
429 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
430
431 switch (vsi->type) {
432 case ICE_VSI_PF:
433 if (ice_vsi_alloc_arrays(vsi))
434 goto err_rings;
435
436 /* Setup default MSIX irq handler for VSI */
437 vsi->irq_handler = ice_msix_clean_rings;
438 break;
439 case ICE_VSI_CTRL:
440 if (ice_vsi_alloc_arrays(vsi))
441 goto err_rings;
442
443 /* Setup ctrl VSI MSIX irq handler */
444 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
445 break;
446 case ICE_VSI_VF:
447 if (ice_vsi_alloc_arrays(vsi))
448 goto err_rings;
449 break;
450 case ICE_VSI_LB:
451 if (ice_vsi_alloc_arrays(vsi))
452 goto err_rings;
453 break;
454 default:
455 dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
456 goto unlock_pf;
457 }
458
459 if (vsi->type == ICE_VSI_CTRL) {
460 /* Use the last VSI slot as the index for the control VSI */
461 vsi->idx = pf->num_alloc_vsi - 1;
462 pf->ctrl_vsi_idx = vsi->idx;
463 pf->vsi[vsi->idx] = vsi;
464 } else {
465 /* fill slot and make note of the index */
466 vsi->idx = pf->next_vsi;
467 pf->vsi[pf->next_vsi] = vsi;
468
469 /* prepare pf->next_vsi for next use */
470 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
471 pf->next_vsi);
472 }
473 goto unlock_pf;
474
475 err_rings:
476 devm_kfree(dev, vsi);
477 vsi = NULL;
478 unlock_pf:
479 mutex_unlock(&pf->sw_mutex);
480 return vsi;
481 }
482
483 /**
484 * ice_alloc_fd_res - Allocate FD resource for a VSI
485 * @vsi: pointer to the ice_vsi
486 *
487 * This allocates the FD resources
488 *
489 * Returns 0 on success, -EPERM on no-op or -EIO on failure
490 */
ice_alloc_fd_res(struct ice_vsi * vsi)491 static int ice_alloc_fd_res(struct ice_vsi *vsi)
492 {
493 struct ice_pf *pf = vsi->back;
494 u32 g_val, b_val;
495
496 /* Flow Director filters are only allocated/assigned to the PF VSI which
497 * passes the traffic. The CTRL VSI is only used to add/delete filters
498 * so we don't allocate resources to it
499 */
500
501 /* FD filters from guaranteed pool per VSI */
502 g_val = pf->hw.func_caps.fd_fltr_guar;
503 if (!g_val)
504 return -EPERM;
505
506 /* FD filters from best effort pool */
507 b_val = pf->hw.func_caps.fd_fltr_best_effort;
508 if (!b_val)
509 return -EPERM;
510
511 if (vsi->type != ICE_VSI_PF)
512 return -EPERM;
513
514 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
515 return -EPERM;
516
517 vsi->num_gfltr = g_val / pf->num_alloc_vsi;
518
519 /* each VSI gets same "best_effort" quota */
520 vsi->num_bfltr = b_val;
521
522 return 0;
523 }
524
525 /**
526 * ice_vsi_get_qs - Assign queues from PF to VSI
527 * @vsi: the VSI to assign queues to
528 *
529 * Returns 0 on success and a negative value on error
530 */
ice_vsi_get_qs(struct ice_vsi * vsi)531 static int ice_vsi_get_qs(struct ice_vsi *vsi)
532 {
533 struct ice_pf *pf = vsi->back;
534 struct ice_qs_cfg tx_qs_cfg = {
535 .qs_mutex = &pf->avail_q_mutex,
536 .pf_map = pf->avail_txqs,
537 .pf_map_size = pf->max_pf_txqs,
538 .q_count = vsi->alloc_txq,
539 .scatter_count = ICE_MAX_SCATTER_TXQS,
540 .vsi_map = vsi->txq_map,
541 .vsi_map_offset = 0,
542 .mapping_mode = ICE_VSI_MAP_CONTIG
543 };
544 struct ice_qs_cfg rx_qs_cfg = {
545 .qs_mutex = &pf->avail_q_mutex,
546 .pf_map = pf->avail_rxqs,
547 .pf_map_size = pf->max_pf_rxqs,
548 .q_count = vsi->alloc_rxq,
549 .scatter_count = ICE_MAX_SCATTER_RXQS,
550 .vsi_map = vsi->rxq_map,
551 .vsi_map_offset = 0,
552 .mapping_mode = ICE_VSI_MAP_CONTIG
553 };
554 int ret;
555
556 ret = __ice_vsi_get_qs(&tx_qs_cfg);
557 if (ret)
558 return ret;
559 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
560
561 ret = __ice_vsi_get_qs(&rx_qs_cfg);
562 if (ret)
563 return ret;
564 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
565
566 return 0;
567 }
568
569 /**
570 * ice_vsi_put_qs - Release queues from VSI to PF
571 * @vsi: the VSI that is going to release queues
572 */
ice_vsi_put_qs(struct ice_vsi * vsi)573 static void ice_vsi_put_qs(struct ice_vsi *vsi)
574 {
575 struct ice_pf *pf = vsi->back;
576 int i;
577
578 mutex_lock(&pf->avail_q_mutex);
579
580 for (i = 0; i < vsi->alloc_txq; i++) {
581 clear_bit(vsi->txq_map[i], pf->avail_txqs);
582 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
583 }
584
585 for (i = 0; i < vsi->alloc_rxq; i++) {
586 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
587 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
588 }
589
590 mutex_unlock(&pf->avail_q_mutex);
591 }
592
593 /**
594 * ice_is_safe_mode
595 * @pf: pointer to the PF struct
596 *
597 * returns true if driver is in safe mode, false otherwise
598 */
ice_is_safe_mode(struct ice_pf * pf)599 bool ice_is_safe_mode(struct ice_pf *pf)
600 {
601 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
602 }
603
604 /**
605 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
606 * @vsi: the VSI being cleaned up
607 *
608 * This function deletes RSS input set for all flows that were configured
609 * for this VSI
610 */
ice_vsi_clean_rss_flow_fld(struct ice_vsi * vsi)611 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
612 {
613 struct ice_pf *pf = vsi->back;
614 enum ice_status status;
615
616 if (ice_is_safe_mode(pf))
617 return;
618
619 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
620 if (status)
621 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n",
622 vsi->vsi_num, ice_stat_str(status));
623 }
624
625 /**
626 * ice_rss_clean - Delete RSS related VSI structures and configuration
627 * @vsi: the VSI being removed
628 */
ice_rss_clean(struct ice_vsi * vsi)629 static void ice_rss_clean(struct ice_vsi *vsi)
630 {
631 struct ice_pf *pf = vsi->back;
632 struct device *dev;
633
634 dev = ice_pf_to_dev(pf);
635
636 if (vsi->rss_hkey_user)
637 devm_kfree(dev, vsi->rss_hkey_user);
638 if (vsi->rss_lut_user)
639 devm_kfree(dev, vsi->rss_lut_user);
640
641 ice_vsi_clean_rss_flow_fld(vsi);
642 /* remove RSS replay list */
643 if (!ice_is_safe_mode(pf))
644 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
645 }
646
647 /**
648 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
649 * @vsi: the VSI being configured
650 */
ice_vsi_set_rss_params(struct ice_vsi * vsi)651 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
652 {
653 struct ice_hw_common_caps *cap;
654 struct ice_pf *pf = vsi->back;
655
656 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
657 vsi->rss_size = 1;
658 return;
659 }
660
661 cap = &pf->hw.func_caps.common_cap;
662 switch (vsi->type) {
663 case ICE_VSI_PF:
664 /* PF VSI will inherit RSS instance of PF */
665 vsi->rss_table_size = (u16)cap->rss_table_size;
666 vsi->rss_size = min_t(u16, num_online_cpus(),
667 BIT(cap->rss_table_entry_width));
668 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
669 break;
670 case ICE_VSI_VF:
671 /* VF VSI will get a small RSS table.
672 * For VSI_LUT, LUT size should be set to 64 bytes.
673 */
674 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
675 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
676 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
677 break;
678 case ICE_VSI_LB:
679 break;
680 default:
681 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
682 ice_vsi_type_str(vsi->type));
683 break;
684 }
685 }
686
687 /**
688 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
689 * @ctxt: the VSI context being set
690 *
691 * This initializes a default VSI context for all sections except the Queues.
692 */
ice_set_dflt_vsi_ctx(struct ice_vsi_ctx * ctxt)693 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
694 {
695 u32 table = 0;
696
697 memset(&ctxt->info, 0, sizeof(ctxt->info));
698 /* VSI's should be allocated from shared pool */
699 ctxt->alloc_from_pool = true;
700 /* Src pruning enabled by default */
701 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
702 /* Traffic from VSI can be sent to LAN */
703 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
704 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
705 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
706 * packets untagged/tagged.
707 */
708 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
709 ICE_AQ_VSI_VLAN_MODE_M) >>
710 ICE_AQ_VSI_VLAN_MODE_S);
711 /* Have 1:1 UP mapping for both ingress/egress tables */
712 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
713 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
714 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
715 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
716 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
717 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
718 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
719 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
720 ctxt->info.ingress_table = cpu_to_le32(table);
721 ctxt->info.egress_table = cpu_to_le32(table);
722 /* Have 1:1 UP mapping for outer to inner UP table */
723 ctxt->info.outer_up_table = cpu_to_le32(table);
724 /* No Outer tag support outer_tag_flags remains to zero */
725 }
726
727 /**
728 * ice_vsi_setup_q_map - Setup a VSI queue map
729 * @vsi: the VSI being configured
730 * @ctxt: VSI context structure
731 */
ice_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)732 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
733 {
734 u16 offset = 0, qmap = 0, tx_count = 0;
735 u16 qcount_tx = vsi->alloc_txq;
736 u16 qcount_rx = vsi->alloc_rxq;
737 u16 tx_numq_tc, rx_numq_tc;
738 u16 pow = 0, max_rss = 0;
739 bool ena_tc0 = false;
740 u8 netdev_tc = 0;
741 int i;
742
743 /* at least TC0 should be enabled by default */
744 if (vsi->tc_cfg.numtc) {
745 if (!(vsi->tc_cfg.ena_tc & BIT(0)))
746 ena_tc0 = true;
747 } else {
748 ena_tc0 = true;
749 }
750
751 if (ena_tc0) {
752 vsi->tc_cfg.numtc++;
753 vsi->tc_cfg.ena_tc |= 1;
754 }
755
756 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
757 if (!rx_numq_tc)
758 rx_numq_tc = 1;
759 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
760 if (!tx_numq_tc)
761 tx_numq_tc = 1;
762
763 /* TC mapping is a function of the number of Rx queues assigned to the
764 * VSI for each traffic class and the offset of these queues.
765 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
766 * queues allocated to TC0. No:of queues is a power-of-2.
767 *
768 * If TC is not enabled, the queue offset is set to 0, and allocate one
769 * queue, this way, traffic for the given TC will be sent to the default
770 * queue.
771 *
772 * Setup number and offset of Rx queues for all TCs for the VSI
773 */
774
775 qcount_rx = rx_numq_tc;
776
777 /* qcount will change if RSS is enabled */
778 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
779 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
780 if (vsi->type == ICE_VSI_PF)
781 max_rss = ICE_MAX_LG_RSS_QS;
782 else
783 max_rss = ICE_MAX_RSS_QS_PER_VF;
784 qcount_rx = min_t(u16, rx_numq_tc, max_rss);
785 if (!vsi->req_rxq)
786 qcount_rx = min_t(u16, qcount_rx,
787 vsi->rss_size);
788 }
789 }
790
791 /* find the (rounded up) power-of-2 of qcount */
792 pow = (u16)order_base_2(qcount_rx);
793
794 ice_for_each_traffic_class(i) {
795 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
796 /* TC is not enabled */
797 vsi->tc_cfg.tc_info[i].qoffset = 0;
798 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
799 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
800 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
801 ctxt->info.tc_mapping[i] = 0;
802 continue;
803 }
804
805 /* TC is enabled */
806 vsi->tc_cfg.tc_info[i].qoffset = offset;
807 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
808 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
809 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
810
811 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
812 ICE_AQ_VSI_TC_Q_OFFSET_M) |
813 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
814 ICE_AQ_VSI_TC_Q_NUM_M);
815 offset += qcount_rx;
816 tx_count += tx_numq_tc;
817 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
818 }
819
820 /* if offset is non-zero, means it is calculated correctly based on
821 * enabled TCs for a given VSI otherwise qcount_rx will always
822 * be correct and non-zero because it is based off - VSI's
823 * allocated Rx queues which is at least 1 (hence qcount_tx will be
824 * at least 1)
825 */
826 if (offset)
827 vsi->num_rxq = offset;
828 else
829 vsi->num_rxq = qcount_rx;
830
831 vsi->num_txq = tx_count;
832
833 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
834 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
835 /* since there is a chance that num_rxq could have been changed
836 * in the above for loop, make num_txq equal to num_rxq.
837 */
838 vsi->num_txq = vsi->num_rxq;
839 }
840
841 /* Rx queue mapping */
842 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
843 /* q_mapping buffer holds the info for the first queue allocated for
844 * this VSI in the PF space and also the number of queues associated
845 * with this VSI.
846 */
847 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
848 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
849 }
850
851 /**
852 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
853 * @ctxt: the VSI context being set
854 * @vsi: the VSI being configured
855 */
ice_set_fd_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)856 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
857 {
858 u8 dflt_q_group, dflt_q_prio;
859 u16 dflt_q, report_q, val;
860
861 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL)
862 return;
863
864 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
865 ctxt->info.valid_sections |= cpu_to_le16(val);
866 dflt_q = 0;
867 dflt_q_group = 0;
868 report_q = 0;
869 dflt_q_prio = 0;
870
871 /* enable flow director filtering/programming */
872 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
873 ctxt->info.fd_options = cpu_to_le16(val);
874 /* max of allocated flow director filters */
875 ctxt->info.max_fd_fltr_dedicated =
876 cpu_to_le16(vsi->num_gfltr);
877 /* max of shared flow director filters any VSI may program */
878 ctxt->info.max_fd_fltr_shared =
879 cpu_to_le16(vsi->num_bfltr);
880 /* default queue index within the VSI of the default FD */
881 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
882 ICE_AQ_VSI_FD_DEF_Q_M);
883 /* target queue or queue group to the FD filter */
884 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
885 ICE_AQ_VSI_FD_DEF_GRP_M);
886 ctxt->info.fd_def_q = cpu_to_le16(val);
887 /* queue index on which FD filter completion is reported */
888 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
889 ICE_AQ_VSI_FD_REPORT_Q_M);
890 /* priority of the default qindex action */
891 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
892 ICE_AQ_VSI_FD_DEF_PRIORITY_M);
893 ctxt->info.fd_report_opt = cpu_to_le16(val);
894 }
895
896 /**
897 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
898 * @ctxt: the VSI context being set
899 * @vsi: the VSI being configured
900 */
ice_set_rss_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)901 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
902 {
903 u8 lut_type, hash_type;
904 struct device *dev;
905 struct ice_pf *pf;
906
907 pf = vsi->back;
908 dev = ice_pf_to_dev(pf);
909
910 switch (vsi->type) {
911 case ICE_VSI_PF:
912 /* PF VSI will inherit RSS instance of PF */
913 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
914 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
915 break;
916 case ICE_VSI_VF:
917 /* VF VSI will gets a small RSS table which is a VSI LUT type */
918 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
919 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
920 break;
921 default:
922 dev_dbg(dev, "Unsupported VSI type %s\n",
923 ice_vsi_type_str(vsi->type));
924 return;
925 }
926
927 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
928 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
929 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
930 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
931 }
932
933 /**
934 * ice_vsi_init - Create and initialize a VSI
935 * @vsi: the VSI being configured
936 * @init_vsi: is this call creating a VSI
937 *
938 * This initializes a VSI context depending on the VSI type to be added and
939 * passes it down to the add_vsi aq command to create a new VSI.
940 */
ice_vsi_init(struct ice_vsi * vsi,bool init_vsi)941 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
942 {
943 struct ice_pf *pf = vsi->back;
944 struct ice_hw *hw = &pf->hw;
945 struct ice_vsi_ctx *ctxt;
946 struct device *dev;
947 int ret = 0;
948
949 dev = ice_pf_to_dev(pf);
950 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
951 if (!ctxt)
952 return -ENOMEM;
953
954 switch (vsi->type) {
955 case ICE_VSI_CTRL:
956 case ICE_VSI_LB:
957 case ICE_VSI_PF:
958 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
959 break;
960 case ICE_VSI_VF:
961 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
962 /* VF number here is the absolute VF number (0-255) */
963 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
964 break;
965 default:
966 ret = -ENODEV;
967 goto out;
968 }
969
970 ice_set_dflt_vsi_ctx(ctxt);
971 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
972 ice_set_fd_vsi_ctx(ctxt, vsi);
973 /* if the switch is in VEB mode, allow VSI loopback */
974 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
975 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
976
977 /* Set LUT type and HASH type if RSS is enabled */
978 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
979 vsi->type != ICE_VSI_CTRL) {
980 ice_set_rss_vsi_ctx(ctxt, vsi);
981 /* if updating VSI context, make sure to set valid_section:
982 * to indicate which section of VSI context being updated
983 */
984 if (!init_vsi)
985 ctxt->info.valid_sections |=
986 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
987 }
988
989 ctxt->info.sw_id = vsi->port_info->sw_id;
990 ice_vsi_setup_q_map(vsi, ctxt);
991 if (!init_vsi) /* means VSI being updated */
992 /* must to indicate which section of VSI context are
993 * being modified
994 */
995 ctxt->info.valid_sections |=
996 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
997
998 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off
999 * respectively
1000 */
1001 if (vsi->type == ICE_VSI_VF) {
1002 ctxt->info.valid_sections |=
1003 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1004 if (pf->vf[vsi->vf_id].spoofchk) {
1005 ctxt->info.sec_flags |=
1006 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1007 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1008 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
1009 } else {
1010 ctxt->info.sec_flags &=
1011 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1012 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1013 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
1014 }
1015 }
1016
1017 /* Allow control frames out of main VSI */
1018 if (vsi->type == ICE_VSI_PF) {
1019 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1020 ctxt->info.valid_sections |=
1021 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1022 }
1023
1024 if (init_vsi) {
1025 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1026 if (ret) {
1027 dev_err(dev, "Add VSI failed, err %d\n", ret);
1028 ret = -EIO;
1029 goto out;
1030 }
1031 } else {
1032 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1033 if (ret) {
1034 dev_err(dev, "Update VSI failed, err %d\n", ret);
1035 ret = -EIO;
1036 goto out;
1037 }
1038 }
1039
1040 /* keep context for update VSI operations */
1041 vsi->info = ctxt->info;
1042
1043 /* record VSI number returned */
1044 vsi->vsi_num = ctxt->vsi_num;
1045
1046 out:
1047 kfree(ctxt);
1048 return ret;
1049 }
1050
1051 /**
1052 * ice_free_res - free a block of resources
1053 * @res: pointer to the resource
1054 * @index: starting index previously returned by ice_get_res
1055 * @id: identifier to track owner
1056 *
1057 * Returns number of resources freed
1058 */
ice_free_res(struct ice_res_tracker * res,u16 index,u16 id)1059 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1060 {
1061 int count = 0;
1062 int i;
1063
1064 if (!res || index >= res->end)
1065 return -EINVAL;
1066
1067 id |= ICE_RES_VALID_BIT;
1068 for (i = index; i < res->end && res->list[i] == id; i++) {
1069 res->list[i] = 0;
1070 count++;
1071 }
1072
1073 return count;
1074 }
1075
1076 /**
1077 * ice_search_res - Search the tracker for a block of resources
1078 * @res: pointer to the resource
1079 * @needed: size of the block needed
1080 * @id: identifier to track owner
1081 *
1082 * Returns the base item index of the block, or -ENOMEM for error
1083 */
ice_search_res(struct ice_res_tracker * res,u16 needed,u16 id)1084 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1085 {
1086 u16 start = 0, end = 0;
1087
1088 if (needed > res->end)
1089 return -ENOMEM;
1090
1091 id |= ICE_RES_VALID_BIT;
1092
1093 do {
1094 /* skip already allocated entries */
1095 if (res->list[end++] & ICE_RES_VALID_BIT) {
1096 start = end;
1097 if ((start + needed) > res->end)
1098 break;
1099 }
1100
1101 if (end == (start + needed)) {
1102 int i = start;
1103
1104 /* there was enough, so assign it to the requestor */
1105 while (i != end)
1106 res->list[i++] = id;
1107
1108 return start;
1109 }
1110 } while (end < res->end);
1111
1112 return -ENOMEM;
1113 }
1114
1115 /**
1116 * ice_get_free_res_count - Get free count from a resource tracker
1117 * @res: Resource tracker instance
1118 */
ice_get_free_res_count(struct ice_res_tracker * res)1119 static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1120 {
1121 u16 i, count = 0;
1122
1123 for (i = 0; i < res->end; i++)
1124 if (!(res->list[i] & ICE_RES_VALID_BIT))
1125 count++;
1126
1127 return count;
1128 }
1129
1130 /**
1131 * ice_get_res - get a block of resources
1132 * @pf: board private structure
1133 * @res: pointer to the resource
1134 * @needed: size of the block needed
1135 * @id: identifier to track owner
1136 *
1137 * Returns the base item index of the block, or negative for error
1138 */
1139 int
ice_get_res(struct ice_pf * pf,struct ice_res_tracker * res,u16 needed,u16 id)1140 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1141 {
1142 if (!res || !pf)
1143 return -EINVAL;
1144
1145 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1146 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1147 needed, res->num_entries, id);
1148 return -EINVAL;
1149 }
1150
1151 return ice_search_res(res, needed, id);
1152 }
1153
1154 /**
1155 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1156 * @vsi: ptr to the VSI
1157 *
1158 * This should only be called after ice_vsi_alloc() which allocates the
1159 * corresponding SW VSI structure and initializes num_queue_pairs for the
1160 * newly allocated VSI.
1161 *
1162 * Returns 0 on success or negative on failure
1163 */
ice_vsi_setup_vector_base(struct ice_vsi * vsi)1164 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1165 {
1166 struct ice_pf *pf = vsi->back;
1167 struct device *dev;
1168 u16 num_q_vectors;
1169 int base;
1170
1171 dev = ice_pf_to_dev(pf);
1172 /* SRIOV doesn't grab irq_tracker entries for each VSI */
1173 if (vsi->type == ICE_VSI_VF)
1174 return 0;
1175
1176 if (vsi->base_vector) {
1177 dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1178 vsi->vsi_num, vsi->base_vector);
1179 return -EEXIST;
1180 }
1181
1182 num_q_vectors = vsi->num_q_vectors;
1183 /* reserve slots from OS requested IRQs */
1184 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, vsi->idx);
1185
1186 if (base < 0) {
1187 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1188 ice_get_free_res_count(pf->irq_tracker),
1189 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1190 return -ENOENT;
1191 }
1192 vsi->base_vector = (u16)base;
1193 pf->num_avail_sw_msix -= num_q_vectors;
1194
1195 return 0;
1196 }
1197
1198 /**
1199 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1200 * @vsi: the VSI having rings deallocated
1201 */
ice_vsi_clear_rings(struct ice_vsi * vsi)1202 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1203 {
1204 int i;
1205
1206 /* Avoid stale references by clearing map from vector to ring */
1207 if (vsi->q_vectors) {
1208 ice_for_each_q_vector(vsi, i) {
1209 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1210
1211 if (q_vector) {
1212 q_vector->tx.ring = NULL;
1213 q_vector->rx.ring = NULL;
1214 }
1215 }
1216 }
1217
1218 if (vsi->tx_rings) {
1219 for (i = 0; i < vsi->alloc_txq; i++) {
1220 if (vsi->tx_rings[i]) {
1221 kfree_rcu(vsi->tx_rings[i], rcu);
1222 WRITE_ONCE(vsi->tx_rings[i], NULL);
1223 }
1224 }
1225 }
1226 if (vsi->rx_rings) {
1227 for (i = 0; i < vsi->alloc_rxq; i++) {
1228 if (vsi->rx_rings[i]) {
1229 kfree_rcu(vsi->rx_rings[i], rcu);
1230 WRITE_ONCE(vsi->rx_rings[i], NULL);
1231 }
1232 }
1233 }
1234 }
1235
1236 /**
1237 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1238 * @vsi: VSI which is having rings allocated
1239 */
ice_vsi_alloc_rings(struct ice_vsi * vsi)1240 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1241 {
1242 struct ice_pf *pf = vsi->back;
1243 struct device *dev;
1244 u16 i;
1245
1246 dev = ice_pf_to_dev(pf);
1247 /* Allocate Tx rings */
1248 for (i = 0; i < vsi->alloc_txq; i++) {
1249 struct ice_ring *ring;
1250
1251 /* allocate with kzalloc(), free with kfree_rcu() */
1252 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1253
1254 if (!ring)
1255 goto err_out;
1256
1257 ring->q_index = i;
1258 ring->reg_idx = vsi->txq_map[i];
1259 ring->ring_active = false;
1260 ring->vsi = vsi;
1261 ring->dev = dev;
1262 ring->count = vsi->num_tx_desc;
1263 WRITE_ONCE(vsi->tx_rings[i], ring);
1264 }
1265
1266 /* Allocate Rx rings */
1267 for (i = 0; i < vsi->alloc_rxq; i++) {
1268 struct ice_ring *ring;
1269
1270 /* allocate with kzalloc(), free with kfree_rcu() */
1271 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1272 if (!ring)
1273 goto err_out;
1274
1275 ring->q_index = i;
1276 ring->reg_idx = vsi->rxq_map[i];
1277 ring->ring_active = false;
1278 ring->vsi = vsi;
1279 ring->netdev = vsi->netdev;
1280 ring->dev = dev;
1281 ring->count = vsi->num_rx_desc;
1282 WRITE_ONCE(vsi->rx_rings[i], ring);
1283 }
1284
1285 return 0;
1286
1287 err_out:
1288 ice_vsi_clear_rings(vsi);
1289 return -ENOMEM;
1290 }
1291
1292 /**
1293 * ice_vsi_manage_rss_lut - disable/enable RSS
1294 * @vsi: the VSI being changed
1295 * @ena: boolean value indicating if this is an enable or disable request
1296 *
1297 * In the event of disable request for RSS, this function will zero out RSS
1298 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1299 * LUT.
1300 */
ice_vsi_manage_rss_lut(struct ice_vsi * vsi,bool ena)1301 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1302 {
1303 int err = 0;
1304 u8 *lut;
1305
1306 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1307 if (!lut)
1308 return -ENOMEM;
1309
1310 if (ena) {
1311 if (vsi->rss_lut_user)
1312 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1313 else
1314 ice_fill_rss_lut(lut, vsi->rss_table_size,
1315 vsi->rss_size);
1316 }
1317
1318 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1319 kfree(lut);
1320 return err;
1321 }
1322
1323 /**
1324 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1325 * @vsi: VSI to be configured
1326 */
ice_vsi_cfg_rss_lut_key(struct ice_vsi * vsi)1327 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1328 {
1329 struct ice_aqc_get_set_rss_keys *key;
1330 struct ice_pf *pf = vsi->back;
1331 enum ice_status status;
1332 struct device *dev;
1333 int err = 0;
1334 u8 *lut;
1335
1336 dev = ice_pf_to_dev(pf);
1337 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1338
1339 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1340 if (!lut)
1341 return -ENOMEM;
1342
1343 if (vsi->rss_lut_user)
1344 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1345 else
1346 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1347
1348 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1349 vsi->rss_table_size);
1350
1351 if (status) {
1352 dev_err(dev, "set_rss_lut failed, error %s\n",
1353 ice_stat_str(status));
1354 err = -EIO;
1355 goto ice_vsi_cfg_rss_exit;
1356 }
1357
1358 key = kzalloc(sizeof(*key), GFP_KERNEL);
1359 if (!key) {
1360 err = -ENOMEM;
1361 goto ice_vsi_cfg_rss_exit;
1362 }
1363
1364 if (vsi->rss_hkey_user)
1365 memcpy(key,
1366 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1367 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1368 else
1369 netdev_rss_key_fill((void *)key,
1370 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1371
1372 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1373
1374 if (status) {
1375 dev_err(dev, "set_rss_key failed, error %s\n",
1376 ice_stat_str(status));
1377 err = -EIO;
1378 }
1379
1380 kfree(key);
1381 ice_vsi_cfg_rss_exit:
1382 kfree(lut);
1383 return err;
1384 }
1385
1386 /**
1387 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1388 * @vsi: VSI to be configured
1389 *
1390 * This function will only be called during the VF VSI setup. Upon successful
1391 * completion of package download, this function will configure default RSS
1392 * input sets for VF VSI.
1393 */
ice_vsi_set_vf_rss_flow_fld(struct ice_vsi * vsi)1394 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1395 {
1396 struct ice_pf *pf = vsi->back;
1397 enum ice_status status;
1398 struct device *dev;
1399
1400 dev = ice_pf_to_dev(pf);
1401 if (ice_is_safe_mode(pf)) {
1402 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1403 vsi->vsi_num);
1404 return;
1405 }
1406
1407 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1408 if (status)
1409 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n",
1410 vsi->vsi_num, ice_stat_str(status));
1411 }
1412
1413 /**
1414 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1415 * @vsi: VSI to be configured
1416 *
1417 * This function will only be called after successful download package call
1418 * during initialization of PF. Since the downloaded package will erase the
1419 * RSS section, this function will configure RSS input sets for different
1420 * flow types. The last profile added has the highest priority, therefore 2
1421 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1422 * (i.e. IPv4 src/dst TCP src/dst port).
1423 */
ice_vsi_set_rss_flow_fld(struct ice_vsi * vsi)1424 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1425 {
1426 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1427 struct ice_pf *pf = vsi->back;
1428 struct ice_hw *hw = &pf->hw;
1429 enum ice_status status;
1430 struct device *dev;
1431
1432 dev = ice_pf_to_dev(pf);
1433 if (ice_is_safe_mode(pf)) {
1434 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1435 vsi_num);
1436 return;
1437 }
1438 /* configure RSS for IPv4 with input set IP src/dst */
1439 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1440 ICE_FLOW_SEG_HDR_IPV4);
1441 if (status)
1442 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n",
1443 vsi_num, ice_stat_str(status));
1444
1445 /* configure RSS for IPv6 with input set IPv6 src/dst */
1446 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1447 ICE_FLOW_SEG_HDR_IPV6);
1448 if (status)
1449 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n",
1450 vsi_num, ice_stat_str(status));
1451
1452 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1453 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1454 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1455 if (status)
1456 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n",
1457 vsi_num, ice_stat_str(status));
1458
1459 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1460 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1461 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1462 if (status)
1463 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n",
1464 vsi_num, ice_stat_str(status));
1465
1466 /* configure RSS for sctp4 with input set IP src/dst */
1467 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1468 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1469 if (status)
1470 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n",
1471 vsi_num, ice_stat_str(status));
1472
1473 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1474 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1475 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1476 if (status)
1477 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n",
1478 vsi_num, ice_stat_str(status));
1479
1480 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1481 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1482 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1483 if (status)
1484 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n",
1485 vsi_num, ice_stat_str(status));
1486
1487 /* configure RSS for sctp6 with input set IPv6 src/dst */
1488 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1489 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1490 if (status)
1491 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n",
1492 vsi_num, ice_stat_str(status));
1493 }
1494
1495 /**
1496 * ice_pf_state_is_nominal - checks the PF for nominal state
1497 * @pf: pointer to PF to check
1498 *
1499 * Check the PF's state for a collection of bits that would indicate
1500 * the PF is in a state that would inhibit normal operation for
1501 * driver functionality.
1502 *
1503 * Returns true if PF is in a nominal state, false otherwise
1504 */
ice_pf_state_is_nominal(struct ice_pf * pf)1505 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1506 {
1507 DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 };
1508
1509 if (!pf)
1510 return false;
1511
1512 bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS);
1513 if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS))
1514 return false;
1515
1516 return true;
1517 }
1518
1519 /**
1520 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1521 * @vsi: the VSI to be updated
1522 */
ice_update_eth_stats(struct ice_vsi * vsi)1523 void ice_update_eth_stats(struct ice_vsi *vsi)
1524 {
1525 struct ice_eth_stats *prev_es, *cur_es;
1526 struct ice_hw *hw = &vsi->back->hw;
1527 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1528
1529 prev_es = &vsi->eth_stats_prev;
1530 cur_es = &vsi->eth_stats;
1531
1532 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1533 &prev_es->rx_bytes, &cur_es->rx_bytes);
1534
1535 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1536 &prev_es->rx_unicast, &cur_es->rx_unicast);
1537
1538 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1539 &prev_es->rx_multicast, &cur_es->rx_multicast);
1540
1541 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1542 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1543
1544 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1545 &prev_es->rx_discards, &cur_es->rx_discards);
1546
1547 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1548 &prev_es->tx_bytes, &cur_es->tx_bytes);
1549
1550 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1551 &prev_es->tx_unicast, &cur_es->tx_unicast);
1552
1553 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1554 &prev_es->tx_multicast, &cur_es->tx_multicast);
1555
1556 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1557 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1558
1559 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1560 &prev_es->tx_errors, &cur_es->tx_errors);
1561
1562 vsi->stat_offsets_loaded = true;
1563 }
1564
1565 /**
1566 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1567 * @vsi: the VSI being configured
1568 * @vid: VLAN ID to be added
1569 * @action: filter action to be performed on match
1570 */
1571 int
ice_vsi_add_vlan(struct ice_vsi * vsi,u16 vid,enum ice_sw_fwd_act_type action)1572 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action)
1573 {
1574 struct ice_pf *pf = vsi->back;
1575 struct device *dev;
1576 int err = 0;
1577
1578 dev = ice_pf_to_dev(pf);
1579
1580 if (!ice_fltr_add_vlan(vsi, vid, action)) {
1581 vsi->num_vlan++;
1582 } else {
1583 err = -ENODEV;
1584 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid,
1585 vsi->vsi_num);
1586 }
1587
1588 return err;
1589 }
1590
1591 /**
1592 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1593 * @vsi: the VSI being configured
1594 * @vid: VLAN ID to be removed
1595 *
1596 * Returns 0 on success and negative on failure
1597 */
ice_vsi_kill_vlan(struct ice_vsi * vsi,u16 vid)1598 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1599 {
1600 struct ice_pf *pf = vsi->back;
1601 enum ice_status status;
1602 struct device *dev;
1603 int err = 0;
1604
1605 dev = ice_pf_to_dev(pf);
1606
1607 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI);
1608 if (!status) {
1609 vsi->num_vlan--;
1610 } else if (status == ICE_ERR_DOES_NOT_EXIST) {
1611 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n",
1612 vid, vsi->vsi_num, ice_stat_str(status));
1613 } else {
1614 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n",
1615 vid, vsi->vsi_num, ice_stat_str(status));
1616 err = -EIO;
1617 }
1618
1619 return err;
1620 }
1621
1622 /**
1623 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1624 * @vsi: VSI
1625 */
ice_vsi_cfg_frame_size(struct ice_vsi * vsi)1626 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1627 {
1628 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1629 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1630 vsi->rx_buf_len = ICE_RXBUF_2048;
1631 #if (PAGE_SIZE < 8192)
1632 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1633 (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1634 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1635 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1636 #endif
1637 } else {
1638 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1639 #if (PAGE_SIZE < 8192)
1640 vsi->rx_buf_len = ICE_RXBUF_3072;
1641 #else
1642 vsi->rx_buf_len = ICE_RXBUF_2048;
1643 #endif
1644 }
1645 }
1646
1647 /**
1648 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1649 * @hw: HW pointer
1650 * @pf_q: index of the Rx queue in the PF's queue space
1651 * @rxdid: flexible descriptor RXDID
1652 * @prio: priority for the RXDID for this queue
1653 */
1654 void
ice_write_qrxflxp_cntxt(struct ice_hw * hw,u16 pf_q,u32 rxdid,u32 prio)1655 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio)
1656 {
1657 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1658
1659 /* clear any previous values */
1660 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1661 QRXFLXP_CNTXT_RXDID_PRIO_M |
1662 QRXFLXP_CNTXT_TS_M);
1663
1664 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1665 QRXFLXP_CNTXT_RXDID_IDX_M;
1666
1667 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1668 QRXFLXP_CNTXT_RXDID_PRIO_M;
1669
1670 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1671 }
1672
1673 /**
1674 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1675 * @vsi: the VSI being configured
1676 *
1677 * Return 0 on success and a negative value on error
1678 * Configure the Rx VSI for operation.
1679 */
ice_vsi_cfg_rxqs(struct ice_vsi * vsi)1680 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1681 {
1682 u16 i;
1683
1684 if (vsi->type == ICE_VSI_VF)
1685 goto setup_rings;
1686
1687 ice_vsi_cfg_frame_size(vsi);
1688 setup_rings:
1689 /* set up individual rings */
1690 for (i = 0; i < vsi->num_rxq; i++) {
1691 int err;
1692
1693 err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1694 if (err) {
1695 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1696 i, err);
1697 return err;
1698 }
1699 }
1700
1701 return 0;
1702 }
1703
1704 /**
1705 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1706 * @vsi: the VSI being configured
1707 * @rings: Tx ring array to be configured
1708 * @count: number of Tx ring array elements
1709 *
1710 * Return 0 on success and a negative value on error
1711 * Configure the Tx VSI for operation.
1712 */
1713 static int
ice_vsi_cfg_txqs(struct ice_vsi * vsi,struct ice_ring ** rings,u16 count)1714 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, u16 count)
1715 {
1716 struct ice_aqc_add_tx_qgrp *qg_buf;
1717 u16 q_idx = 0;
1718 int err = 0;
1719
1720 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1721 if (!qg_buf)
1722 return -ENOMEM;
1723
1724 qg_buf->num_txqs = 1;
1725
1726 for (q_idx = 0; q_idx < count; q_idx++) {
1727 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1728 if (err)
1729 goto err_cfg_txqs;
1730 }
1731
1732 err_cfg_txqs:
1733 kfree(qg_buf);
1734 return err;
1735 }
1736
1737 /**
1738 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1739 * @vsi: the VSI being configured
1740 *
1741 * Return 0 on success and a negative value on error
1742 * Configure the Tx VSI for operation.
1743 */
ice_vsi_cfg_lan_txqs(struct ice_vsi * vsi)1744 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1745 {
1746 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1747 }
1748
1749 /**
1750 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1751 * @vsi: the VSI being configured
1752 *
1753 * Return 0 on success and a negative value on error
1754 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1755 */
ice_vsi_cfg_xdp_txqs(struct ice_vsi * vsi)1756 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1757 {
1758 int ret;
1759 int i;
1760
1761 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1762 if (ret)
1763 return ret;
1764
1765 for (i = 0; i < vsi->num_xdp_txq; i++)
1766 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]);
1767
1768 return ret;
1769 }
1770
1771 /**
1772 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1773 * @intrl: interrupt rate limit in usecs
1774 * @gran: interrupt rate limit granularity in usecs
1775 *
1776 * This function converts a decimal interrupt rate limit in usecs to the format
1777 * expected by firmware.
1778 */
ice_intrl_usec_to_reg(u8 intrl,u8 gran)1779 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1780 {
1781 u32 val = intrl / gran;
1782
1783 if (val)
1784 return val | GLINT_RATE_INTRL_ENA_M;
1785 return 0;
1786 }
1787
1788 /**
1789 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1790 * @vsi: the VSI being configured
1791 *
1792 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1793 * for the VF VSI.
1794 */
ice_vsi_cfg_msix(struct ice_vsi * vsi)1795 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1796 {
1797 struct ice_pf *pf = vsi->back;
1798 struct ice_hw *hw = &pf->hw;
1799 u16 txq = 0, rxq = 0;
1800 int i, q;
1801
1802 for (i = 0; i < vsi->num_q_vectors; i++) {
1803 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1804 u16 reg_idx = q_vector->reg_idx;
1805
1806 ice_cfg_itr(hw, q_vector);
1807
1808 wr32(hw, GLINT_RATE(reg_idx),
1809 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1810
1811 /* Both Transmit Queue Interrupt Cause Control register
1812 * and Receive Queue Interrupt Cause control register
1813 * expects MSIX_INDX field to be the vector index
1814 * within the function space and not the absolute
1815 * vector index across PF or across device.
1816 * For SR-IOV VF VSIs queue vector index always starts
1817 * with 1 since first vector index(0) is used for OICR
1818 * in VF space. Since VMDq and other PF VSIs are within
1819 * the PF function space, use the vector index that is
1820 * tracked for this PF.
1821 */
1822 for (q = 0; q < q_vector->num_ring_tx; q++) {
1823 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1824 q_vector->tx.itr_idx);
1825 txq++;
1826 }
1827
1828 for (q = 0; q < q_vector->num_ring_rx; q++) {
1829 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1830 q_vector->rx.itr_idx);
1831 rxq++;
1832 }
1833 }
1834 }
1835
1836 /**
1837 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
1838 * @vsi: the VSI being changed
1839 */
ice_vsi_manage_vlan_insertion(struct ice_vsi * vsi)1840 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
1841 {
1842 struct ice_hw *hw = &vsi->back->hw;
1843 struct ice_vsi_ctx *ctxt;
1844 enum ice_status status;
1845 int ret = 0;
1846
1847 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1848 if (!ctxt)
1849 return -ENOMEM;
1850
1851 /* Here we are configuring the VSI to let the driver add VLAN tags by
1852 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
1853 * insertion happens in the Tx hot path, in ice_tx_map.
1854 */
1855 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
1856
1857 /* Preserve existing VLAN strip setting */
1858 ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
1859 ICE_AQ_VSI_VLAN_EMOD_M);
1860
1861 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1862
1863 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1864 if (status) {
1865 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n",
1866 ice_stat_str(status),
1867 ice_aq_str(hw->adminq.sq_last_status));
1868 ret = -EIO;
1869 goto out;
1870 }
1871
1872 vsi->info.vlan_flags = ctxt->info.vlan_flags;
1873 out:
1874 kfree(ctxt);
1875 return ret;
1876 }
1877
1878 /**
1879 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
1880 * @vsi: the VSI being changed
1881 * @ena: boolean value indicating if this is a enable or disable request
1882 */
ice_vsi_manage_vlan_stripping(struct ice_vsi * vsi,bool ena)1883 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
1884 {
1885 struct ice_hw *hw = &vsi->back->hw;
1886 struct ice_vsi_ctx *ctxt;
1887 enum ice_status status;
1888 int ret = 0;
1889
1890 /* do not allow modifying VLAN stripping when a port VLAN is configured
1891 * on this VSI
1892 */
1893 if (vsi->info.pvid)
1894 return 0;
1895
1896 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1897 if (!ctxt)
1898 return -ENOMEM;
1899
1900 /* Here we are configuring what the VSI should do with the VLAN tag in
1901 * the Rx packet. We can either leave the tag in the packet or put it in
1902 * the Rx descriptor.
1903 */
1904 if (ena)
1905 /* Strip VLAN tag from Rx packet and put it in the desc */
1906 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
1907 else
1908 /* Disable stripping. Leave tag in packet */
1909 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
1910
1911 /* Allow all packets untagged/tagged */
1912 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
1913
1914 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1915
1916 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1917 if (status) {
1918 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n",
1919 ena, ice_stat_str(status),
1920 ice_aq_str(hw->adminq.sq_last_status));
1921 ret = -EIO;
1922 goto out;
1923 }
1924
1925 vsi->info.vlan_flags = ctxt->info.vlan_flags;
1926 out:
1927 kfree(ctxt);
1928 return ret;
1929 }
1930
1931 /**
1932 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1933 * @vsi: the VSI whose rings are to be enabled
1934 *
1935 * Returns 0 on success and a negative value on error
1936 */
ice_vsi_start_all_rx_rings(struct ice_vsi * vsi)1937 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1938 {
1939 return ice_vsi_ctrl_all_rx_rings(vsi, true);
1940 }
1941
1942 /**
1943 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1944 * @vsi: the VSI whose rings are to be disabled
1945 *
1946 * Returns 0 on success and a negative value on error
1947 */
ice_vsi_stop_all_rx_rings(struct ice_vsi * vsi)1948 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1949 {
1950 return ice_vsi_ctrl_all_rx_rings(vsi, false);
1951 }
1952
1953 /**
1954 * ice_vsi_stop_tx_rings - Disable Tx rings
1955 * @vsi: the VSI being configured
1956 * @rst_src: reset source
1957 * @rel_vmvf_num: Relative ID of VF/VM
1958 * @rings: Tx ring array to be stopped
1959 * @count: number of Tx ring array elements
1960 */
1961 static int
ice_vsi_stop_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_ring ** rings,u16 count)1962 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1963 u16 rel_vmvf_num, struct ice_ring **rings, u16 count)
1964 {
1965 u16 q_idx;
1966
1967 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1968 return -EINVAL;
1969
1970 for (q_idx = 0; q_idx < count; q_idx++) {
1971 struct ice_txq_meta txq_meta = { };
1972 int status;
1973
1974 if (!rings || !rings[q_idx])
1975 return -EINVAL;
1976
1977 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
1978 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
1979 rings[q_idx], &txq_meta);
1980
1981 if (status)
1982 return status;
1983 }
1984
1985 return 0;
1986 }
1987
1988 /**
1989 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
1990 * @vsi: the VSI being configured
1991 * @rst_src: reset source
1992 * @rel_vmvf_num: Relative ID of VF/VM
1993 */
1994 int
ice_vsi_stop_lan_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num)1995 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1996 u16 rel_vmvf_num)
1997 {
1998 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
1999 }
2000
2001 /**
2002 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2003 * @vsi: the VSI being configured
2004 */
ice_vsi_stop_xdp_tx_rings(struct ice_vsi * vsi)2005 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2006 {
2007 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2008 }
2009
2010 /**
2011 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2012 * @vsi: VSI to check whether or not VLAN pruning is enabled.
2013 *
2014 * returns true if Rx VLAN pruning is enabled and false otherwise.
2015 */
ice_vsi_is_vlan_pruning_ena(struct ice_vsi * vsi)2016 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2017 {
2018 if (!vsi)
2019 return false;
2020
2021 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2022 }
2023
2024 /**
2025 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2026 * @vsi: VSI to enable or disable VLAN pruning on
2027 * @ena: set to true to enable VLAN pruning and false to disable it
2028 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2029 *
2030 * returns 0 if VSI is updated, negative otherwise
2031 */
ice_cfg_vlan_pruning(struct ice_vsi * vsi,bool ena,bool vlan_promisc)2032 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2033 {
2034 struct ice_vsi_ctx *ctxt;
2035 struct ice_pf *pf;
2036 int status;
2037
2038 if (!vsi)
2039 return -EINVAL;
2040
2041 /* Don't enable VLAN pruning if the netdev is currently in promiscuous
2042 * mode. VLAN pruning will be enabled when the interface exits
2043 * promiscuous mode if any VLAN filters are active.
2044 */
2045 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena)
2046 return 0;
2047
2048 pf = vsi->back;
2049 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
2050 if (!ctxt)
2051 return -ENOMEM;
2052
2053 ctxt->info = vsi->info;
2054
2055 if (ena)
2056 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2057 else
2058 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2059
2060 if (!vlan_promisc)
2061 ctxt->info.valid_sections =
2062 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
2063
2064 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2065 if (status) {
2066 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n",
2067 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num,
2068 ice_stat_str(status),
2069 ice_aq_str(pf->hw.adminq.sq_last_status));
2070 goto err_out;
2071 }
2072
2073 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2074
2075 kfree(ctxt);
2076 return 0;
2077
2078 err_out:
2079 kfree(ctxt);
2080 return -EIO;
2081 }
2082
ice_vsi_set_tc_cfg(struct ice_vsi * vsi)2083 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2084 {
2085 struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg;
2086
2087 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2088 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2089 }
2090
2091 /**
2092 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2093 * @vsi: VSI to set the q_vectors register index on
2094 */
2095 static int
ice_vsi_set_q_vectors_reg_idx(struct ice_vsi * vsi)2096 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2097 {
2098 u16 i;
2099
2100 if (!vsi || !vsi->q_vectors)
2101 return -EINVAL;
2102
2103 ice_for_each_q_vector(vsi, i) {
2104 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2105
2106 if (!q_vector) {
2107 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2108 i, vsi->vsi_num);
2109 goto clear_reg_idx;
2110 }
2111
2112 if (vsi->type == ICE_VSI_VF) {
2113 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2114
2115 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2116 } else {
2117 q_vector->reg_idx =
2118 q_vector->v_idx + vsi->base_vector;
2119 }
2120 }
2121
2122 return 0;
2123
2124 clear_reg_idx:
2125 ice_for_each_q_vector(vsi, i) {
2126 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2127
2128 if (q_vector)
2129 q_vector->reg_idx = 0;
2130 }
2131
2132 return -EINVAL;
2133 }
2134
2135 /**
2136 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2137 * @vsi: the VSI being configured
2138 * @tx: bool to determine Tx or Rx rule
2139 * @create: bool to determine create or remove Rule
2140 */
ice_cfg_sw_lldp(struct ice_vsi * vsi,bool tx,bool create)2141 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2142 {
2143 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2144 enum ice_sw_fwd_act_type act);
2145 struct ice_pf *pf = vsi->back;
2146 enum ice_status status;
2147 struct device *dev;
2148
2149 dev = ice_pf_to_dev(pf);
2150 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2151
2152 if (tx)
2153 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2154 ICE_DROP_PACKET);
2155 else
2156 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, ICE_FWD_TO_VSI);
2157
2158 if (status)
2159 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n",
2160 create ? "adding" : "removing", tx ? "TX" : "RX",
2161 vsi->vsi_num, ice_stat_str(status));
2162 }
2163
2164 /**
2165 * ice_vsi_setup - Set up a VSI by a given type
2166 * @pf: board private structure
2167 * @pi: pointer to the port_info instance
2168 * @vsi_type: VSI type
2169 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2170 * used only for ICE_VSI_VF VSI type. For other VSI types, should
2171 * fill-in ICE_INVAL_VFID as input.
2172 *
2173 * This allocates the sw VSI structure and its queue resources.
2174 *
2175 * Returns pointer to the successfully allocated and configured VSI sw struct on
2176 * success, NULL on failure.
2177 */
2178 struct ice_vsi *
ice_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,enum ice_vsi_type vsi_type,u16 vf_id)2179 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2180 enum ice_vsi_type vsi_type, u16 vf_id)
2181 {
2182 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2183 struct device *dev = ice_pf_to_dev(pf);
2184 enum ice_status status;
2185 struct ice_vsi *vsi;
2186 int ret, i;
2187
2188 if (vsi_type == ICE_VSI_VF)
2189 vsi = ice_vsi_alloc(pf, vsi_type, vf_id);
2190 else
2191 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID);
2192
2193 if (!vsi) {
2194 dev_err(dev, "could not allocate VSI\n");
2195 return NULL;
2196 }
2197
2198 vsi->port_info = pi;
2199 vsi->vsw = pf->first_sw;
2200 if (vsi->type == ICE_VSI_PF)
2201 vsi->ethtype = ETH_P_PAUSE;
2202
2203 if (vsi->type == ICE_VSI_VF)
2204 vsi->vf_id = vf_id;
2205
2206 ice_alloc_fd_res(vsi);
2207
2208 if (ice_vsi_get_qs(vsi)) {
2209 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2210 vsi->idx);
2211 goto unroll_vsi_alloc;
2212 }
2213
2214 /* set RSS capabilities */
2215 ice_vsi_set_rss_params(vsi);
2216
2217 /* set TC configuration */
2218 ice_vsi_set_tc_cfg(vsi);
2219
2220 /* create the VSI */
2221 ret = ice_vsi_init(vsi, true);
2222 if (ret)
2223 goto unroll_get_qs;
2224
2225 switch (vsi->type) {
2226 case ICE_VSI_CTRL:
2227 case ICE_VSI_PF:
2228 ret = ice_vsi_alloc_q_vectors(vsi);
2229 if (ret)
2230 goto unroll_vsi_init;
2231
2232 ret = ice_vsi_setup_vector_base(vsi);
2233 if (ret)
2234 goto unroll_alloc_q_vector;
2235
2236 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2237 if (ret)
2238 goto unroll_vector_base;
2239
2240 ret = ice_vsi_alloc_rings(vsi);
2241 if (ret)
2242 goto unroll_vector_base;
2243
2244 /* Always add VLAN ID 0 switch rule by default. This is needed
2245 * in order to allow all untagged and 0 tagged priority traffic
2246 * if Rx VLAN pruning is enabled. Also there are cases where we
2247 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid()
2248 * so this handles those cases (i.e. adding the PF to a bridge
2249 * without the 8021q module loaded).
2250 */
2251 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
2252 if (ret)
2253 goto unroll_clear_rings;
2254
2255 ice_vsi_map_rings_to_vectors(vsi);
2256
2257 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2258 if (vsi->type != ICE_VSI_CTRL)
2259 /* Do not exit if configuring RSS had an issue, at
2260 * least receive traffic on first queue. Hence no
2261 * need to capture return value
2262 */
2263 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2264 ice_vsi_cfg_rss_lut_key(vsi);
2265 ice_vsi_set_rss_flow_fld(vsi);
2266 }
2267 ice_init_arfs(vsi);
2268 break;
2269 case ICE_VSI_VF:
2270 /* VF driver will take care of creating netdev for this type and
2271 * map queues to vectors through Virtchnl, PF driver only
2272 * creates a VSI and corresponding structures for bookkeeping
2273 * purpose
2274 */
2275 ret = ice_vsi_alloc_q_vectors(vsi);
2276 if (ret)
2277 goto unroll_vsi_init;
2278
2279 ret = ice_vsi_alloc_rings(vsi);
2280 if (ret)
2281 goto unroll_alloc_q_vector;
2282
2283 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2284 if (ret)
2285 goto unroll_vector_base;
2286
2287 /* Do not exit if configuring RSS had an issue, at least
2288 * receive traffic on first queue. Hence no need to capture
2289 * return value
2290 */
2291 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2292 ice_vsi_cfg_rss_lut_key(vsi);
2293 ice_vsi_set_vf_rss_flow_fld(vsi);
2294 }
2295 break;
2296 case ICE_VSI_LB:
2297 ret = ice_vsi_alloc_rings(vsi);
2298 if (ret)
2299 goto unroll_vsi_init;
2300 break;
2301 default:
2302 /* clean up the resources and exit */
2303 goto unroll_vsi_init;
2304 }
2305
2306 /* configure VSI nodes based on number of queues and TC's */
2307 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2308 max_txqs[i] = vsi->alloc_txq;
2309
2310 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2311 max_txqs);
2312 if (status) {
2313 dev_err(dev, "VSI %d failed lan queue config, error %s\n",
2314 vsi->vsi_num, ice_stat_str(status));
2315 goto unroll_clear_rings;
2316 }
2317
2318 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2319 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2320 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2321 * The rule is added once for PF VSI in order to create appropriate
2322 * recipe, since VSI/VSI list is ignored with drop action...
2323 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2324 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2325 * settings in the HW.
2326 */
2327 if (!ice_is_safe_mode(pf))
2328 if (vsi->type == ICE_VSI_PF) {
2329 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2330 ICE_DROP_PACKET);
2331 ice_cfg_sw_lldp(vsi, true, true);
2332 }
2333
2334 return vsi;
2335
2336 unroll_clear_rings:
2337 ice_vsi_clear_rings(vsi);
2338 unroll_vector_base:
2339 /* reclaim SW interrupts back to the common pool */
2340 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2341 pf->num_avail_sw_msix += vsi->num_q_vectors;
2342 unroll_alloc_q_vector:
2343 ice_vsi_free_q_vectors(vsi);
2344 unroll_vsi_init:
2345 ice_vsi_delete(vsi);
2346 unroll_get_qs:
2347 ice_vsi_put_qs(vsi);
2348 unroll_vsi_alloc:
2349 ice_vsi_clear(vsi);
2350
2351 return NULL;
2352 }
2353
2354 /**
2355 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2356 * @vsi: the VSI being cleaned up
2357 */
ice_vsi_release_msix(struct ice_vsi * vsi)2358 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2359 {
2360 struct ice_pf *pf = vsi->back;
2361 struct ice_hw *hw = &pf->hw;
2362 u32 txq = 0;
2363 u32 rxq = 0;
2364 int i, q;
2365
2366 for (i = 0; i < vsi->num_q_vectors; i++) {
2367 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2368 u16 reg_idx = q_vector->reg_idx;
2369
2370 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2371 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2372 for (q = 0; q < q_vector->num_ring_tx; q++) {
2373 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2374 if (ice_is_xdp_ena_vsi(vsi)) {
2375 u32 xdp_txq = txq + vsi->num_xdp_txq;
2376
2377 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2378 }
2379 txq++;
2380 }
2381
2382 for (q = 0; q < q_vector->num_ring_rx; q++) {
2383 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2384 rxq++;
2385 }
2386 }
2387
2388 ice_flush(hw);
2389 }
2390
2391 /**
2392 * ice_vsi_free_irq - Free the IRQ association with the OS
2393 * @vsi: the VSI being configured
2394 */
ice_vsi_free_irq(struct ice_vsi * vsi)2395 void ice_vsi_free_irq(struct ice_vsi *vsi)
2396 {
2397 struct ice_pf *pf = vsi->back;
2398 int base = vsi->base_vector;
2399 int i;
2400
2401 if (!vsi->q_vectors || !vsi->irqs_ready)
2402 return;
2403
2404 ice_vsi_release_msix(vsi);
2405 if (vsi->type == ICE_VSI_VF)
2406 return;
2407
2408 vsi->irqs_ready = false;
2409 ice_for_each_q_vector(vsi, i) {
2410 u16 vector = i + base;
2411 int irq_num;
2412
2413 irq_num = pf->msix_entries[vector].vector;
2414
2415 /* free only the irqs that were actually requested */
2416 if (!vsi->q_vectors[i] ||
2417 !(vsi->q_vectors[i]->num_ring_tx ||
2418 vsi->q_vectors[i]->num_ring_rx))
2419 continue;
2420
2421 /* clear the affinity notifier in the IRQ descriptor */
2422 irq_set_affinity_notifier(irq_num, NULL);
2423
2424 /* clear the affinity_mask in the IRQ descriptor */
2425 irq_set_affinity_hint(irq_num, NULL);
2426 synchronize_irq(irq_num);
2427 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2428 }
2429 }
2430
2431 /**
2432 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2433 * @vsi: the VSI having resources freed
2434 */
ice_vsi_free_tx_rings(struct ice_vsi * vsi)2435 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2436 {
2437 int i;
2438
2439 if (!vsi->tx_rings)
2440 return;
2441
2442 ice_for_each_txq(vsi, i)
2443 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2444 ice_free_tx_ring(vsi->tx_rings[i]);
2445 }
2446
2447 /**
2448 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2449 * @vsi: the VSI having resources freed
2450 */
ice_vsi_free_rx_rings(struct ice_vsi * vsi)2451 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2452 {
2453 int i;
2454
2455 if (!vsi->rx_rings)
2456 return;
2457
2458 ice_for_each_rxq(vsi, i)
2459 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2460 ice_free_rx_ring(vsi->rx_rings[i]);
2461 }
2462
2463 /**
2464 * ice_vsi_close - Shut down a VSI
2465 * @vsi: the VSI being shut down
2466 */
ice_vsi_close(struct ice_vsi * vsi)2467 void ice_vsi_close(struct ice_vsi *vsi)
2468 {
2469 if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2470 ice_down(vsi);
2471
2472 ice_vsi_free_irq(vsi);
2473 ice_vsi_free_tx_rings(vsi);
2474 ice_vsi_free_rx_rings(vsi);
2475 }
2476
2477 /**
2478 * ice_ena_vsi - resume a VSI
2479 * @vsi: the VSI being resume
2480 * @locked: is the rtnl_lock already held
2481 */
ice_ena_vsi(struct ice_vsi * vsi,bool locked)2482 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2483 {
2484 int err = 0;
2485
2486 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state))
2487 return 0;
2488
2489 clear_bit(__ICE_NEEDS_RESTART, vsi->state);
2490
2491 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2492 if (netif_running(vsi->netdev)) {
2493 if (!locked)
2494 rtnl_lock();
2495
2496 err = ice_open_internal(vsi->netdev);
2497
2498 if (!locked)
2499 rtnl_unlock();
2500 }
2501 } else if (vsi->type == ICE_VSI_CTRL) {
2502 err = ice_vsi_open_ctrl(vsi);
2503 }
2504
2505 return err;
2506 }
2507
2508 /**
2509 * ice_dis_vsi - pause a VSI
2510 * @vsi: the VSI being paused
2511 * @locked: is the rtnl_lock already held
2512 */
ice_dis_vsi(struct ice_vsi * vsi,bool locked)2513 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2514 {
2515 if (test_bit(__ICE_DOWN, vsi->state))
2516 return;
2517
2518 set_bit(__ICE_NEEDS_RESTART, vsi->state);
2519
2520 if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2521 if (netif_running(vsi->netdev)) {
2522 if (!locked)
2523 rtnl_lock();
2524
2525 ice_vsi_close(vsi);
2526
2527 if (!locked)
2528 rtnl_unlock();
2529 } else {
2530 ice_vsi_close(vsi);
2531 }
2532 } else if (vsi->type == ICE_VSI_CTRL) {
2533 ice_vsi_close(vsi);
2534 }
2535 }
2536
2537 /**
2538 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2539 * @vsi: the VSI being un-configured
2540 */
ice_vsi_dis_irq(struct ice_vsi * vsi)2541 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2542 {
2543 int base = vsi->base_vector;
2544 struct ice_pf *pf = vsi->back;
2545 struct ice_hw *hw = &pf->hw;
2546 u32 val;
2547 int i;
2548
2549 /* disable interrupt causation from each queue */
2550 if (vsi->tx_rings) {
2551 ice_for_each_txq(vsi, i) {
2552 if (vsi->tx_rings[i]) {
2553 u16 reg;
2554
2555 reg = vsi->tx_rings[i]->reg_idx;
2556 val = rd32(hw, QINT_TQCTL(reg));
2557 val &= ~QINT_TQCTL_CAUSE_ENA_M;
2558 wr32(hw, QINT_TQCTL(reg), val);
2559 }
2560 }
2561 }
2562
2563 if (vsi->rx_rings) {
2564 ice_for_each_rxq(vsi, i) {
2565 if (vsi->rx_rings[i]) {
2566 u16 reg;
2567
2568 reg = vsi->rx_rings[i]->reg_idx;
2569 val = rd32(hw, QINT_RQCTL(reg));
2570 val &= ~QINT_RQCTL_CAUSE_ENA_M;
2571 wr32(hw, QINT_RQCTL(reg), val);
2572 }
2573 }
2574 }
2575
2576 /* disable each interrupt */
2577 ice_for_each_q_vector(vsi, i) {
2578 if (!vsi->q_vectors[i])
2579 continue;
2580 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2581 }
2582
2583 ice_flush(hw);
2584
2585 /* don't call synchronize_irq() for VF's from the host */
2586 if (vsi->type == ICE_VSI_VF)
2587 return;
2588
2589 ice_for_each_q_vector(vsi, i)
2590 synchronize_irq(pf->msix_entries[i + base].vector);
2591 }
2592
2593 /**
2594 * ice_napi_del - Remove NAPI handler for the VSI
2595 * @vsi: VSI for which NAPI handler is to be removed
2596 */
ice_napi_del(struct ice_vsi * vsi)2597 void ice_napi_del(struct ice_vsi *vsi)
2598 {
2599 int v_idx;
2600
2601 if (!vsi->netdev)
2602 return;
2603
2604 ice_for_each_q_vector(vsi, v_idx)
2605 netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2606 }
2607
2608 /**
2609 * ice_vsi_release - Delete a VSI and free its resources
2610 * @vsi: the VSI being removed
2611 *
2612 * Returns 0 on success or < 0 on error
2613 */
ice_vsi_release(struct ice_vsi * vsi)2614 int ice_vsi_release(struct ice_vsi *vsi)
2615 {
2616 struct ice_pf *pf;
2617
2618 if (!vsi->back)
2619 return -ENODEV;
2620 pf = vsi->back;
2621
2622 /* do not unregister while driver is in the reset recovery pending
2623 * state. Since reset/rebuild happens through PF service task workqueue,
2624 * it's not a good idea to unregister netdev that is associated to the
2625 * PF that is running the work queue items currently. This is done to
2626 * avoid check_flush_dependency() warning on this wq
2627 */
2628 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) {
2629 unregister_netdev(vsi->netdev);
2630 ice_devlink_destroy_port(vsi);
2631 }
2632
2633 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2634 ice_rss_clean(vsi);
2635
2636 /* Disable VSI and free resources */
2637 if (vsi->type != ICE_VSI_LB)
2638 ice_vsi_dis_irq(vsi);
2639 ice_vsi_close(vsi);
2640
2641 /* SR-IOV determines needed MSIX resources all at once instead of per
2642 * VSI since when VFs are spawned we know how many VFs there are and how
2643 * many interrupts each VF needs. SR-IOV MSIX resources are also
2644 * cleared in the same manner.
2645 */
2646 if (vsi->type != ICE_VSI_VF) {
2647 /* reclaim SW interrupts back to the common pool */
2648 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2649 pf->num_avail_sw_msix += vsi->num_q_vectors;
2650 }
2651
2652 if (!ice_is_safe_mode(pf)) {
2653 if (vsi->type == ICE_VSI_PF) {
2654 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2655 ICE_DROP_PACKET);
2656 ice_cfg_sw_lldp(vsi, true, false);
2657 /* The Rx rule will only exist to remove if the LLDP FW
2658 * engine is currently stopped
2659 */
2660 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2661 ice_cfg_sw_lldp(vsi, false, false);
2662 }
2663 }
2664
2665 ice_fltr_remove_all(vsi);
2666 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2667 ice_vsi_delete(vsi);
2668 ice_vsi_free_q_vectors(vsi);
2669
2670 /* make sure unregister_netdev() was called by checking __ICE_DOWN */
2671 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
2672 free_netdev(vsi->netdev);
2673 vsi->netdev = NULL;
2674 }
2675
2676 ice_vsi_clear_rings(vsi);
2677
2678 ice_vsi_put_qs(vsi);
2679
2680 /* retain SW VSI data structure since it is needed to unregister and
2681 * free VSI netdev when PF is not in reset recovery pending state,\
2682 * for ex: during rmmod.
2683 */
2684 if (!ice_is_reset_in_progress(pf->state))
2685 ice_vsi_clear(vsi);
2686
2687 return 0;
2688 }
2689
2690 /**
2691 * ice_vsi_rebuild_update_coalesce_intrl - set interrupt rate limit for a q_vector
2692 * @q_vector: pointer to q_vector which is being updated
2693 * @stored_intrl_setting: original INTRL setting
2694 *
2695 * Set coalesce param in q_vector and update these parameters in HW.
2696 */
2697 static void
ice_vsi_rebuild_update_coalesce_intrl(struct ice_q_vector * q_vector,u16 stored_intrl_setting)2698 ice_vsi_rebuild_update_coalesce_intrl(struct ice_q_vector *q_vector,
2699 u16 stored_intrl_setting)
2700 {
2701 struct ice_hw *hw = &q_vector->vsi->back->hw;
2702
2703 q_vector->intrl = stored_intrl_setting;
2704 wr32(hw, GLINT_RATE(q_vector->reg_idx),
2705 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
2706 }
2707
2708 /**
2709 * ice_vsi_rebuild_update_coalesce_itr - set coalesce for a q_vector
2710 * @q_vector: pointer to q_vector which is being updated
2711 * @rc: pointer to ring container
2712 * @stored_itr_setting: original ITR setting
2713 *
2714 * Set coalesce param in q_vector and update these parameters in HW.
2715 */
2716 static void
ice_vsi_rebuild_update_coalesce_itr(struct ice_q_vector * q_vector,struct ice_ring_container * rc,u16 stored_itr_setting)2717 ice_vsi_rebuild_update_coalesce_itr(struct ice_q_vector *q_vector,
2718 struct ice_ring_container *rc,
2719 u16 stored_itr_setting)
2720 {
2721 struct ice_hw *hw = &q_vector->vsi->back->hw;
2722
2723 rc->itr_setting = stored_itr_setting;
2724
2725 /* dynamic ITR values will be updated during Tx/Rx */
2726 if (!ITR_IS_DYNAMIC(rc->itr_setting))
2727 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2728 ITR_REG_ALIGN(rc->itr_setting) >> ICE_ITR_GRAN_S);
2729 }
2730
2731 /**
2732 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2733 * @vsi: VSI connected with q_vectors
2734 * @coalesce: array of struct with stored coalesce
2735 *
2736 * Returns array size.
2737 */
2738 static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce)2739 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2740 struct ice_coalesce_stored *coalesce)
2741 {
2742 int i;
2743
2744 ice_for_each_q_vector(vsi, i) {
2745 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2746
2747 coalesce[i].itr_tx = q_vector->tx.itr_setting;
2748 coalesce[i].itr_rx = q_vector->rx.itr_setting;
2749 coalesce[i].intrl = q_vector->intrl;
2750
2751 if (i < vsi->num_txq)
2752 coalesce[i].tx_valid = true;
2753 if (i < vsi->num_rxq)
2754 coalesce[i].rx_valid = true;
2755 }
2756
2757 return vsi->num_q_vectors;
2758 }
2759
2760 /**
2761 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2762 * @vsi: VSI connected with q_vectors
2763 * @coalesce: pointer to array of struct with stored coalesce
2764 * @size: size of coalesce array
2765 *
2766 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2767 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2768 * to default value.
2769 */
2770 static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce,int size)2771 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2772 struct ice_coalesce_stored *coalesce, int size)
2773 {
2774 int i;
2775
2776 if ((size && !coalesce) || !vsi)
2777 return;
2778
2779 /* There are a couple of cases that have to be handled here:
2780 * 1. The case where the number of queue vectors stays the same, but
2781 * the number of Tx or Rx rings changes (the first for loop)
2782 * 2. The case where the number of queue vectors increased (the
2783 * second for loop)
2784 */
2785 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2786 /* There are 2 cases to handle here and they are the same for
2787 * both Tx and Rx:
2788 * if the entry was valid previously (coalesce[i].[tr]x_valid
2789 * and the loop variable is less than the number of rings
2790 * allocated, then write the previous values
2791 *
2792 * if the entry was not valid previously, but the number of
2793 * rings is less than are allocated (this means the number of
2794 * rings increased from previously), then write out the
2795 * values in the first element
2796 */
2797 if (i < vsi->alloc_rxq && coalesce[i].rx_valid)
2798 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2799 &vsi->q_vectors[i]->rx,
2800 coalesce[i].itr_rx);
2801 else if (i < vsi->alloc_rxq)
2802 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2803 &vsi->q_vectors[i]->rx,
2804 coalesce[0].itr_rx);
2805
2806 if (i < vsi->alloc_txq && coalesce[i].tx_valid)
2807 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2808 &vsi->q_vectors[i]->tx,
2809 coalesce[i].itr_tx);
2810 else if (i < vsi->alloc_txq)
2811 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2812 &vsi->q_vectors[i]->tx,
2813 coalesce[0].itr_tx);
2814
2815 ice_vsi_rebuild_update_coalesce_intrl(vsi->q_vectors[i],
2816 coalesce[i].intrl);
2817 }
2818
2819 /* the number of queue vectors increased so write whatever is in
2820 * the first element
2821 */
2822 for (; i < vsi->num_q_vectors; i++) {
2823 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2824 &vsi->q_vectors[i]->tx,
2825 coalesce[0].itr_tx);
2826 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2827 &vsi->q_vectors[i]->rx,
2828 coalesce[0].itr_rx);
2829 ice_vsi_rebuild_update_coalesce_intrl(vsi->q_vectors[i],
2830 coalesce[0].intrl);
2831 }
2832 }
2833
2834 /**
2835 * ice_vsi_rebuild - Rebuild VSI after reset
2836 * @vsi: VSI to be rebuild
2837 * @init_vsi: is this an initialization or a reconfigure of the VSI
2838 *
2839 * Returns 0 on success and negative value on failure
2840 */
ice_vsi_rebuild(struct ice_vsi * vsi,bool init_vsi)2841 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
2842 {
2843 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2844 struct ice_coalesce_stored *coalesce;
2845 int prev_num_q_vectors = 0;
2846 struct ice_vf *vf = NULL;
2847 enum ice_status status;
2848 struct ice_pf *pf;
2849 int ret, i;
2850
2851 if (!vsi)
2852 return -EINVAL;
2853
2854 pf = vsi->back;
2855 if (vsi->type == ICE_VSI_VF)
2856 vf = &pf->vf[vsi->vf_id];
2857
2858 coalesce = kcalloc(vsi->num_q_vectors,
2859 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
2860 if (!coalesce)
2861 return -ENOMEM;
2862
2863 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
2864
2865 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2866 ice_vsi_free_q_vectors(vsi);
2867
2868 /* SR-IOV determines needed MSIX resources all at once instead of per
2869 * VSI since when VFs are spawned we know how many VFs there are and how
2870 * many interrupts each VF needs. SR-IOV MSIX resources are also
2871 * cleared in the same manner.
2872 */
2873 if (vsi->type != ICE_VSI_VF) {
2874 /* reclaim SW interrupts back to the common pool */
2875 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2876 pf->num_avail_sw_msix += vsi->num_q_vectors;
2877 vsi->base_vector = 0;
2878 }
2879
2880 if (ice_is_xdp_ena_vsi(vsi))
2881 /* return value check can be skipped here, it always returns
2882 * 0 if reset is in progress
2883 */
2884 ice_destroy_xdp_rings(vsi);
2885 ice_vsi_put_qs(vsi);
2886 ice_vsi_clear_rings(vsi);
2887 ice_vsi_free_arrays(vsi);
2888 if (vsi->type == ICE_VSI_VF)
2889 ice_vsi_set_num_qs(vsi, vf->vf_id);
2890 else
2891 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
2892
2893 ret = ice_vsi_alloc_arrays(vsi);
2894 if (ret < 0)
2895 goto err_vsi;
2896
2897 ice_vsi_get_qs(vsi);
2898
2899 ice_alloc_fd_res(vsi);
2900 ice_vsi_set_tc_cfg(vsi);
2901
2902 /* Initialize VSI struct elements and create VSI in FW */
2903 ret = ice_vsi_init(vsi, init_vsi);
2904 if (ret < 0)
2905 goto err_vsi;
2906
2907 switch (vsi->type) {
2908 case ICE_VSI_CTRL:
2909 case ICE_VSI_PF:
2910 ret = ice_vsi_alloc_q_vectors(vsi);
2911 if (ret)
2912 goto err_rings;
2913
2914 ret = ice_vsi_setup_vector_base(vsi);
2915 if (ret)
2916 goto err_vectors;
2917
2918 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2919 if (ret)
2920 goto err_vectors;
2921
2922 ret = ice_vsi_alloc_rings(vsi);
2923 if (ret)
2924 goto err_vectors;
2925
2926 ice_vsi_map_rings_to_vectors(vsi);
2927 if (ice_is_xdp_ena_vsi(vsi)) {
2928 vsi->num_xdp_txq = vsi->alloc_rxq;
2929 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2930 if (ret)
2931 goto err_vectors;
2932 }
2933 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2934 if (vsi->type != ICE_VSI_CTRL)
2935 /* Do not exit if configuring RSS had an issue, at
2936 * least receive traffic on first queue. Hence no
2937 * need to capture return value
2938 */
2939 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2940 ice_vsi_cfg_rss_lut_key(vsi);
2941 break;
2942 case ICE_VSI_VF:
2943 ret = ice_vsi_alloc_q_vectors(vsi);
2944 if (ret)
2945 goto err_rings;
2946
2947 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2948 if (ret)
2949 goto err_vectors;
2950
2951 ret = ice_vsi_alloc_rings(vsi);
2952 if (ret)
2953 goto err_vectors;
2954
2955 break;
2956 default:
2957 break;
2958 }
2959
2960 /* configure VSI nodes based on number of queues and TC's */
2961 for (i = 0; i < vsi->tc_cfg.numtc; i++) {
2962 max_txqs[i] = vsi->alloc_txq;
2963
2964 if (ice_is_xdp_ena_vsi(vsi))
2965 max_txqs[i] += vsi->num_xdp_txq;
2966 }
2967
2968 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2969 max_txqs);
2970 if (status) {
2971 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n",
2972 vsi->vsi_num, ice_stat_str(status));
2973 if (init_vsi) {
2974 ret = -EIO;
2975 goto err_vectors;
2976 } else {
2977 return ice_schedule_reset(pf, ICE_RESET_PFR);
2978 }
2979 }
2980 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
2981 kfree(coalesce);
2982
2983 return 0;
2984
2985 err_vectors:
2986 ice_vsi_free_q_vectors(vsi);
2987 err_rings:
2988 if (vsi->netdev) {
2989 vsi->current_netdev_flags = 0;
2990 unregister_netdev(vsi->netdev);
2991 free_netdev(vsi->netdev);
2992 vsi->netdev = NULL;
2993 }
2994 err_vsi:
2995 ice_vsi_clear(vsi);
2996 set_bit(__ICE_RESET_FAILED, pf->state);
2997 kfree(coalesce);
2998 return ret;
2999 }
3000
3001 /**
3002 * ice_is_reset_in_progress - check for a reset in progress
3003 * @state: PF state field
3004 */
ice_is_reset_in_progress(unsigned long * state)3005 bool ice_is_reset_in_progress(unsigned long *state)
3006 {
3007 return test_bit(__ICE_RESET_OICR_RECV, state) ||
3008 test_bit(__ICE_PFR_REQ, state) ||
3009 test_bit(__ICE_CORER_REQ, state) ||
3010 test_bit(__ICE_GLOBR_REQ, state);
3011 }
3012
3013 #ifdef CONFIG_DCB
3014 /**
3015 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3016 * @vsi: VSI being configured
3017 * @ctx: the context buffer returned from AQ VSI update command
3018 */
ice_vsi_update_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctx)3019 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3020 {
3021 vsi->info.mapping_flags = ctx->info.mapping_flags;
3022 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3023 sizeof(vsi->info.q_mapping));
3024 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3025 sizeof(vsi->info.tc_mapping));
3026 }
3027
3028 /**
3029 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3030 * @vsi: VSI to be configured
3031 * @ena_tc: TC bitmap
3032 *
3033 * VSI queues expected to be quiesced before calling this function
3034 */
ice_vsi_cfg_tc(struct ice_vsi * vsi,u8 ena_tc)3035 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3036 {
3037 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3038 struct ice_pf *pf = vsi->back;
3039 struct ice_vsi_ctx *ctx;
3040 enum ice_status status;
3041 struct device *dev;
3042 int i, ret = 0;
3043 u8 num_tc = 0;
3044
3045 dev = ice_pf_to_dev(pf);
3046
3047 ice_for_each_traffic_class(i) {
3048 /* build bitmap of enabled TCs */
3049 if (ena_tc & BIT(i))
3050 num_tc++;
3051 /* populate max_txqs per TC */
3052 max_txqs[i] = vsi->alloc_txq;
3053 }
3054
3055 vsi->tc_cfg.ena_tc = ena_tc;
3056 vsi->tc_cfg.numtc = num_tc;
3057
3058 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3059 if (!ctx)
3060 return -ENOMEM;
3061
3062 ctx->vf_num = 0;
3063 ctx->info = vsi->info;
3064
3065 ice_vsi_setup_q_map(vsi, ctx);
3066
3067 /* must to indicate which section of VSI context are being modified */
3068 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3069 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3070 if (status) {
3071 dev_info(dev, "Failed VSI Update\n");
3072 ret = -EIO;
3073 goto out;
3074 }
3075
3076 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3077 max_txqs);
3078
3079 if (status) {
3080 dev_err(dev, "VSI %d failed TC config, error %s\n",
3081 vsi->vsi_num, ice_stat_str(status));
3082 ret = -EIO;
3083 goto out;
3084 }
3085 ice_vsi_update_q_map(vsi, ctx);
3086 vsi->info.valid_sections = 0;
3087
3088 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3089 out:
3090 kfree(ctx);
3091 return ret;
3092 }
3093 #endif /* CONFIG_DCB */
3094
3095 /**
3096 * ice_update_ring_stats - Update ring statistics
3097 * @ring: ring to update
3098 * @cont: used to increment per-vector counters
3099 * @pkts: number of processed packets
3100 * @bytes: number of processed bytes
3101 *
3102 * This function assumes that caller has acquired a u64_stats_sync lock.
3103 */
3104 static void
ice_update_ring_stats(struct ice_ring * ring,struct ice_ring_container * cont,u64 pkts,u64 bytes)3105 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont,
3106 u64 pkts, u64 bytes)
3107 {
3108 ring->stats.bytes += bytes;
3109 ring->stats.pkts += pkts;
3110 cont->total_bytes += bytes;
3111 cont->total_pkts += pkts;
3112 }
3113
3114 /**
3115 * ice_update_tx_ring_stats - Update Tx ring specific counters
3116 * @tx_ring: ring to update
3117 * @pkts: number of processed packets
3118 * @bytes: number of processed bytes
3119 */
ice_update_tx_ring_stats(struct ice_ring * tx_ring,u64 pkts,u64 bytes)3120 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes)
3121 {
3122 u64_stats_update_begin(&tx_ring->syncp);
3123 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes);
3124 u64_stats_update_end(&tx_ring->syncp);
3125 }
3126
3127 /**
3128 * ice_update_rx_ring_stats - Update Rx ring specific counters
3129 * @rx_ring: ring to update
3130 * @pkts: number of processed packets
3131 * @bytes: number of processed bytes
3132 */
ice_update_rx_ring_stats(struct ice_ring * rx_ring,u64 pkts,u64 bytes)3133 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes)
3134 {
3135 u64_stats_update_begin(&rx_ring->syncp);
3136 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes);
3137 u64_stats_update_end(&rx_ring->syncp);
3138 }
3139
3140 /**
3141 * ice_status_to_errno - convert from enum ice_status to Linux errno
3142 * @err: ice_status value to convert
3143 */
ice_status_to_errno(enum ice_status err)3144 int ice_status_to_errno(enum ice_status err)
3145 {
3146 switch (err) {
3147 case ICE_SUCCESS:
3148 return 0;
3149 case ICE_ERR_DOES_NOT_EXIST:
3150 return -ENOENT;
3151 case ICE_ERR_OUT_OF_RANGE:
3152 return -ENOTTY;
3153 case ICE_ERR_PARAM:
3154 return -EINVAL;
3155 case ICE_ERR_NO_MEMORY:
3156 return -ENOMEM;
3157 case ICE_ERR_MAX_LIMIT:
3158 return -EAGAIN;
3159 default:
3160 return -EINVAL;
3161 }
3162 }
3163
3164 /**
3165 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3166 * @sw: switch to check if its default forwarding VSI is free
3167 *
3168 * Return true if the default forwarding VSI is already being used, else returns
3169 * false signalling that it's available to use.
3170 */
ice_is_dflt_vsi_in_use(struct ice_sw * sw)3171 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
3172 {
3173 return (sw->dflt_vsi && sw->dflt_vsi_ena);
3174 }
3175
3176 /**
3177 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3178 * @sw: switch for the default forwarding VSI to compare against
3179 * @vsi: VSI to compare against default forwarding VSI
3180 *
3181 * If this VSI passed in is the default forwarding VSI then return true, else
3182 * return false
3183 */
ice_is_vsi_dflt_vsi(struct ice_sw * sw,struct ice_vsi * vsi)3184 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3185 {
3186 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
3187 }
3188
3189 /**
3190 * ice_set_dflt_vsi - set the default forwarding VSI
3191 * @sw: switch used to assign the default forwarding VSI
3192 * @vsi: VSI getting set as the default forwarding VSI on the switch
3193 *
3194 * If the VSI passed in is already the default VSI and it's enabled just return
3195 * success.
3196 *
3197 * If there is already a default VSI on the switch and it's enabled then return
3198 * -EEXIST since there can only be one default VSI per switch.
3199 *
3200 * Otherwise try to set the VSI passed in as the switch's default VSI and
3201 * return the result.
3202 */
ice_set_dflt_vsi(struct ice_sw * sw,struct ice_vsi * vsi)3203 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3204 {
3205 enum ice_status status;
3206 struct device *dev;
3207
3208 if (!sw || !vsi)
3209 return -EINVAL;
3210
3211 dev = ice_pf_to_dev(vsi->back);
3212
3213 /* the VSI passed in is already the default VSI */
3214 if (ice_is_vsi_dflt_vsi(sw, vsi)) {
3215 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3216 vsi->vsi_num);
3217 return 0;
3218 }
3219
3220 /* another VSI is already the default VSI for this switch */
3221 if (ice_is_dflt_vsi_in_use(sw)) {
3222 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
3223 sw->dflt_vsi->vsi_num);
3224 return -EEXIST;
3225 }
3226
3227 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
3228 if (status) {
3229 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n",
3230 vsi->vsi_num, ice_stat_str(status));
3231 return -EIO;
3232 }
3233
3234 sw->dflt_vsi = vsi;
3235 sw->dflt_vsi_ena = true;
3236
3237 return 0;
3238 }
3239
3240 /**
3241 * ice_clear_dflt_vsi - clear the default forwarding VSI
3242 * @sw: switch used to clear the default VSI
3243 *
3244 * If the switch has no default VSI or it's not enabled then return error.
3245 *
3246 * Otherwise try to clear the default VSI and return the result.
3247 */
ice_clear_dflt_vsi(struct ice_sw * sw)3248 int ice_clear_dflt_vsi(struct ice_sw *sw)
3249 {
3250 struct ice_vsi *dflt_vsi;
3251 enum ice_status status;
3252 struct device *dev;
3253
3254 if (!sw)
3255 return -EINVAL;
3256
3257 dev = ice_pf_to_dev(sw->pf);
3258
3259 dflt_vsi = sw->dflt_vsi;
3260
3261 /* there is no default VSI configured */
3262 if (!ice_is_dflt_vsi_in_use(sw))
3263 return -ENODEV;
3264
3265 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
3266 ICE_FLTR_RX);
3267 if (status) {
3268 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n",
3269 dflt_vsi->vsi_num, ice_stat_str(status));
3270 return -EIO;
3271 }
3272
3273 sw->dflt_vsi = NULL;
3274 sw->dflt_vsi_ena = false;
3275
3276 return 0;
3277 }
3278