1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4 ST Ethernet IPs are built around a Synopsys IP Core.
5
6 Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11 Documentation available at:
12 http://www.stlinux.com
13 Support available at:
14 https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48
49 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
50 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
51
52 /* Module parameters */
53 #define TX_TIMEO 5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65
66 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4)
67 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4)
68
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81
82 #define DEFAULT_BUFSIZE 1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86
87 #define STMMAC_RX_COPYBREAK 256
88
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 NETIF_MSG_LINK | NETIF_MSG_IFUP |
91 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92
93 #define STMMAC_DEFAULT_LPI_TIMER 1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
98
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100 * but allow user to force to use the chain instead of the ring
101 */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107
108 #ifdef CONFIG_DEBUG_FS
109 static const struct net_device_ops stmmac_netdev_ops;
110 static void stmmac_init_fs(struct net_device *dev);
111 static void stmmac_exit_fs(struct net_device *dev);
112 #endif
113
114 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
115
116 /**
117 * stmmac_verify_args - verify the driver parameters.
118 * Description: it checks the driver parameters and set a default in case of
119 * errors.
120 */
stmmac_verify_args(void)121 static void stmmac_verify_args(void)
122 {
123 if (unlikely(watchdog < 0))
124 watchdog = TX_TIMEO;
125 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
126 buf_sz = DEFAULT_BUFSIZE;
127 if (unlikely(flow_ctrl > 1))
128 flow_ctrl = FLOW_AUTO;
129 else if (likely(flow_ctrl < 0))
130 flow_ctrl = FLOW_OFF;
131 if (unlikely((pause < 0) || (pause > 0xffff)))
132 pause = PAUSE_TIME;
133 if (eee_timer < 0)
134 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
135 }
136
137 /**
138 * stmmac_disable_all_queues - Disable all queues
139 * @priv: driver private structure
140 */
stmmac_disable_all_queues(struct stmmac_priv * priv)141 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
142 {
143 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
144 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
145 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
146 u32 queue;
147
148 for (queue = 0; queue < maxq; queue++) {
149 struct stmmac_channel *ch = &priv->channel[queue];
150
151 if (queue < rx_queues_cnt)
152 napi_disable(&ch->rx_napi);
153 if (queue < tx_queues_cnt)
154 napi_disable(&ch->tx_napi);
155 }
156 }
157
158 /**
159 * stmmac_enable_all_queues - Enable all queues
160 * @priv: driver private structure
161 */
stmmac_enable_all_queues(struct stmmac_priv * priv)162 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
163 {
164 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
165 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
166 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
167 u32 queue;
168
169 for (queue = 0; queue < maxq; queue++) {
170 struct stmmac_channel *ch = &priv->channel[queue];
171
172 if (queue < rx_queues_cnt)
173 napi_enable(&ch->rx_napi);
174 if (queue < tx_queues_cnt)
175 napi_enable(&ch->tx_napi);
176 }
177 }
178
stmmac_service_event_schedule(struct stmmac_priv * priv)179 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
180 {
181 if (!test_bit(STMMAC_DOWN, &priv->state) &&
182 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
183 queue_work(priv->wq, &priv->service_task);
184 }
185
stmmac_global_err(struct stmmac_priv * priv)186 static void stmmac_global_err(struct stmmac_priv *priv)
187 {
188 netif_carrier_off(priv->dev);
189 set_bit(STMMAC_RESET_REQUESTED, &priv->state);
190 stmmac_service_event_schedule(priv);
191 }
192
193 /**
194 * stmmac_clk_csr_set - dynamically set the MDC clock
195 * @priv: driver private structure
196 * Description: this is to dynamically set the MDC clock according to the csr
197 * clock input.
198 * Note:
199 * If a specific clk_csr value is passed from the platform
200 * this means that the CSR Clock Range selection cannot be
201 * changed at run-time and it is fixed (as reported in the driver
202 * documentation). Viceversa the driver will try to set the MDC
203 * clock dynamically according to the actual clock input.
204 */
stmmac_clk_csr_set(struct stmmac_priv * priv)205 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
206 {
207 u32 clk_rate;
208
209 clk_rate = clk_get_rate(priv->plat->stmmac_clk);
210
211 /* Platform provided default clk_csr would be assumed valid
212 * for all other cases except for the below mentioned ones.
213 * For values higher than the IEEE 802.3 specified frequency
214 * we can not estimate the proper divider as it is not known
215 * the frequency of clk_csr_i. So we do not change the default
216 * divider.
217 */
218 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
219 if (clk_rate < CSR_F_35M)
220 priv->clk_csr = STMMAC_CSR_20_35M;
221 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
222 priv->clk_csr = STMMAC_CSR_35_60M;
223 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
224 priv->clk_csr = STMMAC_CSR_60_100M;
225 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
226 priv->clk_csr = STMMAC_CSR_100_150M;
227 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
228 priv->clk_csr = STMMAC_CSR_150_250M;
229 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
230 priv->clk_csr = STMMAC_CSR_250_300M;
231 }
232
233 if (priv->plat->has_sun8i) {
234 if (clk_rate > 160000000)
235 priv->clk_csr = 0x03;
236 else if (clk_rate > 80000000)
237 priv->clk_csr = 0x02;
238 else if (clk_rate > 40000000)
239 priv->clk_csr = 0x01;
240 else
241 priv->clk_csr = 0;
242 }
243
244 if (priv->plat->has_xgmac) {
245 if (clk_rate > 400000000)
246 priv->clk_csr = 0x5;
247 else if (clk_rate > 350000000)
248 priv->clk_csr = 0x4;
249 else if (clk_rate > 300000000)
250 priv->clk_csr = 0x3;
251 else if (clk_rate > 250000000)
252 priv->clk_csr = 0x2;
253 else if (clk_rate > 150000000)
254 priv->clk_csr = 0x1;
255 else
256 priv->clk_csr = 0x0;
257 }
258 }
259
print_pkt(unsigned char * buf,int len)260 static void print_pkt(unsigned char *buf, int len)
261 {
262 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
263 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
264 }
265
stmmac_tx_avail(struct stmmac_priv * priv,u32 queue)266 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
267 {
268 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
269 u32 avail;
270
271 if (tx_q->dirty_tx > tx_q->cur_tx)
272 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
273 else
274 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
275
276 return avail;
277 }
278
279 /**
280 * stmmac_rx_dirty - Get RX queue dirty
281 * @priv: driver private structure
282 * @queue: RX queue index
283 */
stmmac_rx_dirty(struct stmmac_priv * priv,u32 queue)284 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
285 {
286 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
287 u32 dirty;
288
289 if (rx_q->dirty_rx <= rx_q->cur_rx)
290 dirty = rx_q->cur_rx - rx_q->dirty_rx;
291 else
292 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
293
294 return dirty;
295 }
296
297 /**
298 * stmmac_enable_eee_mode - check and enter in LPI mode
299 * @priv: driver private structure
300 * Description: this function is to verify and enter in LPI mode in case of
301 * EEE.
302 */
stmmac_enable_eee_mode(struct stmmac_priv * priv)303 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
304 {
305 u32 tx_cnt = priv->plat->tx_queues_to_use;
306 u32 queue;
307
308 /* check if all TX queues have the work finished */
309 for (queue = 0; queue < tx_cnt; queue++) {
310 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
311
312 if (tx_q->dirty_tx != tx_q->cur_tx)
313 return; /* still unfinished work */
314 }
315
316 /* Check and enter in LPI mode */
317 if (!priv->tx_path_in_lpi_mode)
318 stmmac_set_eee_mode(priv, priv->hw,
319 priv->plat->en_tx_lpi_clockgating);
320 }
321
322 /**
323 * stmmac_disable_eee_mode - disable and exit from LPI mode
324 * @priv: driver private structure
325 * Description: this function is to exit and disable EEE in case of
326 * LPI state is true. This is called by the xmit.
327 */
stmmac_disable_eee_mode(struct stmmac_priv * priv)328 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
329 {
330 stmmac_reset_eee_mode(priv, priv->hw);
331 del_timer_sync(&priv->eee_ctrl_timer);
332 priv->tx_path_in_lpi_mode = false;
333 }
334
335 /**
336 * stmmac_eee_ctrl_timer - EEE TX SW timer.
337 * @t: timer_list struct containing private info
338 * Description:
339 * if there is no data transfer and if we are not in LPI state,
340 * then MAC Transmitter can be moved to LPI state.
341 */
stmmac_eee_ctrl_timer(struct timer_list * t)342 static void stmmac_eee_ctrl_timer(struct timer_list *t)
343 {
344 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
345
346 stmmac_enable_eee_mode(priv);
347 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
348 }
349
350 /**
351 * stmmac_eee_init - init EEE
352 * @priv: driver private structure
353 * Description:
354 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
355 * can also manage EEE, this function enable the LPI state and start related
356 * timer.
357 */
stmmac_eee_init(struct stmmac_priv * priv)358 bool stmmac_eee_init(struct stmmac_priv *priv)
359 {
360 int eee_tw_timer = priv->eee_tw_timer;
361
362 /* Using PCS we cannot dial with the phy registers at this stage
363 * so we do not support extra feature like EEE.
364 */
365 if (priv->hw->pcs == STMMAC_PCS_TBI ||
366 priv->hw->pcs == STMMAC_PCS_RTBI)
367 return false;
368
369 /* Check if MAC core supports the EEE feature. */
370 if (!priv->dma_cap.eee)
371 return false;
372
373 mutex_lock(&priv->lock);
374
375 /* Check if it needs to be deactivated */
376 if (!priv->eee_active) {
377 if (priv->eee_enabled) {
378 netdev_dbg(priv->dev, "disable EEE\n");
379 del_timer_sync(&priv->eee_ctrl_timer);
380 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
381 }
382 mutex_unlock(&priv->lock);
383 return false;
384 }
385
386 if (priv->eee_active && !priv->eee_enabled) {
387 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
388 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
389 eee_tw_timer);
390 }
391
392 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
393
394 mutex_unlock(&priv->lock);
395 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
396 return true;
397 }
398
399 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
400 * @priv: driver private structure
401 * @p : descriptor pointer
402 * @skb : the socket buffer
403 * Description :
404 * This function will read timestamp from the descriptor & pass it to stack.
405 * and also perform some sanity checks.
406 */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct sk_buff * skb)407 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
408 struct dma_desc *p, struct sk_buff *skb)
409 {
410 struct skb_shared_hwtstamps shhwtstamp;
411 bool found = false;
412 u64 ns = 0;
413
414 if (!priv->hwts_tx_en)
415 return;
416
417 /* exit if skb doesn't support hw tstamp */
418 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
419 return;
420
421 /* check tx tstamp status */
422 if (stmmac_get_tx_timestamp_status(priv, p)) {
423 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
424 found = true;
425 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
426 found = true;
427 }
428
429 if (found) {
430 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
431 shhwtstamp.hwtstamp = ns_to_ktime(ns);
432
433 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
434 /* pass tstamp to stack */
435 skb_tstamp_tx(skb, &shhwtstamp);
436 }
437 }
438
439 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
440 * @priv: driver private structure
441 * @p : descriptor pointer
442 * @np : next descriptor pointer
443 * @skb : the socket buffer
444 * Description :
445 * This function will read received packet's timestamp from the descriptor
446 * and pass it to stack. It also perform some sanity checks.
447 */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct dma_desc * np,struct sk_buff * skb)448 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
449 struct dma_desc *np, struct sk_buff *skb)
450 {
451 struct skb_shared_hwtstamps *shhwtstamp = NULL;
452 struct dma_desc *desc = p;
453 u64 ns = 0;
454
455 if (!priv->hwts_rx_en)
456 return;
457 /* For GMAC4, the valid timestamp is from CTX next desc. */
458 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
459 desc = np;
460
461 /* Check if timestamp is available */
462 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
463 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
464 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
465 shhwtstamp = skb_hwtstamps(skb);
466 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
467 shhwtstamp->hwtstamp = ns_to_ktime(ns);
468 } else {
469 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
470 }
471 }
472
473 /**
474 * stmmac_hwtstamp_set - control hardware timestamping.
475 * @dev: device pointer.
476 * @ifr: An IOCTL specific structure, that can contain a pointer to
477 * a proprietary structure used to pass information to the driver.
478 * Description:
479 * This function configures the MAC to enable/disable both outgoing(TX)
480 * and incoming(RX) packets time stamping based on user input.
481 * Return Value:
482 * 0 on success and an appropriate -ve integer on failure.
483 */
stmmac_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)484 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
485 {
486 struct stmmac_priv *priv = netdev_priv(dev);
487 struct hwtstamp_config config;
488 struct timespec64 now;
489 u64 temp = 0;
490 u32 ptp_v2 = 0;
491 u32 tstamp_all = 0;
492 u32 ptp_over_ipv4_udp = 0;
493 u32 ptp_over_ipv6_udp = 0;
494 u32 ptp_over_ethernet = 0;
495 u32 snap_type_sel = 0;
496 u32 ts_master_en = 0;
497 u32 ts_event_en = 0;
498 u32 sec_inc = 0;
499 u32 value = 0;
500 bool xmac;
501
502 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
503
504 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
505 netdev_alert(priv->dev, "No support for HW time stamping\n");
506 priv->hwts_tx_en = 0;
507 priv->hwts_rx_en = 0;
508
509 return -EOPNOTSUPP;
510 }
511
512 if (copy_from_user(&config, ifr->ifr_data,
513 sizeof(config)))
514 return -EFAULT;
515
516 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
517 __func__, config.flags, config.tx_type, config.rx_filter);
518
519 /* reserved for future extensions */
520 if (config.flags)
521 return -EINVAL;
522
523 if (config.tx_type != HWTSTAMP_TX_OFF &&
524 config.tx_type != HWTSTAMP_TX_ON)
525 return -ERANGE;
526
527 if (priv->adv_ts) {
528 switch (config.rx_filter) {
529 case HWTSTAMP_FILTER_NONE:
530 /* time stamp no incoming packet at all */
531 config.rx_filter = HWTSTAMP_FILTER_NONE;
532 break;
533
534 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
535 /* PTP v1, UDP, any kind of event packet */
536 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
537 /* 'xmac' hardware can support Sync, Pdelay_Req and
538 * Pdelay_resp by setting bit14 and bits17/16 to 01
539 * This leaves Delay_Req timestamps out.
540 * Enable all events *and* general purpose message
541 * timestamping
542 */
543 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
544 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
545 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
546 break;
547
548 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
549 /* PTP v1, UDP, Sync packet */
550 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
551 /* take time stamp for SYNC messages only */
552 ts_event_en = PTP_TCR_TSEVNTENA;
553
554 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
555 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
556 break;
557
558 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
559 /* PTP v1, UDP, Delay_req packet */
560 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
561 /* take time stamp for Delay_Req messages only */
562 ts_master_en = PTP_TCR_TSMSTRENA;
563 ts_event_en = PTP_TCR_TSEVNTENA;
564
565 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
566 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
567 break;
568
569 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
570 /* PTP v2, UDP, any kind of event packet */
571 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
572 ptp_v2 = PTP_TCR_TSVER2ENA;
573 /* take time stamp for all event messages */
574 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
575
576 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
577 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
578 break;
579
580 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
581 /* PTP v2, UDP, Sync packet */
582 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
583 ptp_v2 = PTP_TCR_TSVER2ENA;
584 /* take time stamp for SYNC messages only */
585 ts_event_en = PTP_TCR_TSEVNTENA;
586
587 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
588 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
589 break;
590
591 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
592 /* PTP v2, UDP, Delay_req packet */
593 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
594 ptp_v2 = PTP_TCR_TSVER2ENA;
595 /* take time stamp for Delay_Req messages only */
596 ts_master_en = PTP_TCR_TSMSTRENA;
597 ts_event_en = PTP_TCR_TSEVNTENA;
598
599 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
600 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
601 break;
602
603 case HWTSTAMP_FILTER_PTP_V2_EVENT:
604 /* PTP v2/802.AS1 any layer, any kind of event packet */
605 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
606 ptp_v2 = PTP_TCR_TSVER2ENA;
607 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
608 if (priv->synopsys_id < DWMAC_CORE_4_10)
609 ts_event_en = PTP_TCR_TSEVNTENA;
610 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
611 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
612 ptp_over_ethernet = PTP_TCR_TSIPENA;
613 break;
614
615 case HWTSTAMP_FILTER_PTP_V2_SYNC:
616 /* PTP v2/802.AS1, any layer, Sync packet */
617 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
618 ptp_v2 = PTP_TCR_TSVER2ENA;
619 /* take time stamp for SYNC messages only */
620 ts_event_en = PTP_TCR_TSEVNTENA;
621
622 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
623 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
624 ptp_over_ethernet = PTP_TCR_TSIPENA;
625 break;
626
627 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
628 /* PTP v2/802.AS1, any layer, Delay_req packet */
629 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
630 ptp_v2 = PTP_TCR_TSVER2ENA;
631 /* take time stamp for Delay_Req messages only */
632 ts_master_en = PTP_TCR_TSMSTRENA;
633 ts_event_en = PTP_TCR_TSEVNTENA;
634
635 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
636 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
637 ptp_over_ethernet = PTP_TCR_TSIPENA;
638 break;
639
640 case HWTSTAMP_FILTER_NTP_ALL:
641 case HWTSTAMP_FILTER_ALL:
642 /* time stamp any incoming packet */
643 config.rx_filter = HWTSTAMP_FILTER_ALL;
644 tstamp_all = PTP_TCR_TSENALL;
645 break;
646
647 default:
648 return -ERANGE;
649 }
650 } else {
651 switch (config.rx_filter) {
652 case HWTSTAMP_FILTER_NONE:
653 config.rx_filter = HWTSTAMP_FILTER_NONE;
654 break;
655 default:
656 /* PTP v1, UDP, any kind of event packet */
657 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
658 break;
659 }
660 }
661 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
662 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
663
664 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
665 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
666 else {
667 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
668 tstamp_all | ptp_v2 | ptp_over_ethernet |
669 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
670 ts_master_en | snap_type_sel);
671 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
672
673 /* program Sub Second Increment reg */
674 stmmac_config_sub_second_increment(priv,
675 priv->ptpaddr, priv->plat->clk_ptp_rate,
676 xmac, &sec_inc);
677 temp = div_u64(1000000000ULL, sec_inc);
678
679 /* Store sub second increment and flags for later use */
680 priv->sub_second_inc = sec_inc;
681 priv->systime_flags = value;
682
683 /* calculate default added value:
684 * formula is :
685 * addend = (2^32)/freq_div_ratio;
686 * where, freq_div_ratio = 1e9ns/sec_inc
687 */
688 temp = (u64)(temp << 32);
689 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
690 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
691
692 /* initialize system time */
693 ktime_get_real_ts64(&now);
694
695 /* lower 32 bits of tv_sec are safe until y2106 */
696 stmmac_init_systime(priv, priv->ptpaddr,
697 (u32)now.tv_sec, now.tv_nsec);
698 }
699
700 memcpy(&priv->tstamp_config, &config, sizeof(config));
701
702 return copy_to_user(ifr->ifr_data, &config,
703 sizeof(config)) ? -EFAULT : 0;
704 }
705
706 /**
707 * stmmac_hwtstamp_get - read hardware timestamping.
708 * @dev: device pointer.
709 * @ifr: An IOCTL specific structure, that can contain a pointer to
710 * a proprietary structure used to pass information to the driver.
711 * Description:
712 * This function obtain the current hardware timestamping settings
713 * as requested.
714 */
stmmac_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)715 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
716 {
717 struct stmmac_priv *priv = netdev_priv(dev);
718 struct hwtstamp_config *config = &priv->tstamp_config;
719
720 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
721 return -EOPNOTSUPP;
722
723 return copy_to_user(ifr->ifr_data, config,
724 sizeof(*config)) ? -EFAULT : 0;
725 }
726
727 /**
728 * stmmac_init_ptp - init PTP
729 * @priv: driver private structure
730 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
731 * This is done by looking at the HW cap. register.
732 * This function also registers the ptp driver.
733 */
stmmac_init_ptp(struct stmmac_priv * priv)734 static int stmmac_init_ptp(struct stmmac_priv *priv)
735 {
736 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
737
738 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
739 return -EOPNOTSUPP;
740
741 priv->adv_ts = 0;
742 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
743 if (xmac && priv->dma_cap.atime_stamp)
744 priv->adv_ts = 1;
745 /* Dwmac 3.x core with extend_desc can support adv_ts */
746 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
747 priv->adv_ts = 1;
748
749 if (priv->dma_cap.time_stamp)
750 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
751
752 if (priv->adv_ts)
753 netdev_info(priv->dev,
754 "IEEE 1588-2008 Advanced Timestamp supported\n");
755
756 priv->hwts_tx_en = 0;
757 priv->hwts_rx_en = 0;
758
759 stmmac_ptp_register(priv);
760
761 return 0;
762 }
763
stmmac_release_ptp(struct stmmac_priv * priv)764 static void stmmac_release_ptp(struct stmmac_priv *priv)
765 {
766 clk_disable_unprepare(priv->plat->clk_ptp_ref);
767 stmmac_ptp_unregister(priv);
768 }
769
770 /**
771 * stmmac_mac_flow_ctrl - Configure flow control in all queues
772 * @priv: driver private structure
773 * @duplex: duplex passed to the next function
774 * Description: It is used for configuring the flow control in all queues
775 */
stmmac_mac_flow_ctrl(struct stmmac_priv * priv,u32 duplex)776 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
777 {
778 u32 tx_cnt = priv->plat->tx_queues_to_use;
779
780 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
781 priv->pause, tx_cnt);
782 }
783
stmmac_validate(struct phylink_config * config,unsigned long * supported,struct phylink_link_state * state)784 static void stmmac_validate(struct phylink_config *config,
785 unsigned long *supported,
786 struct phylink_link_state *state)
787 {
788 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
789 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
790 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
791 int tx_cnt = priv->plat->tx_queues_to_use;
792 int max_speed = priv->plat->max_speed;
793
794 phylink_set(mac_supported, 10baseT_Half);
795 phylink_set(mac_supported, 10baseT_Full);
796 phylink_set(mac_supported, 100baseT_Half);
797 phylink_set(mac_supported, 100baseT_Full);
798 phylink_set(mac_supported, 1000baseT_Half);
799 phylink_set(mac_supported, 1000baseT_Full);
800 phylink_set(mac_supported, 1000baseKX_Full);
801
802 phylink_set(mac_supported, Autoneg);
803 phylink_set(mac_supported, Pause);
804 phylink_set(mac_supported, Asym_Pause);
805 phylink_set_port_modes(mac_supported);
806
807 /* Cut down 1G if asked to */
808 if ((max_speed > 0) && (max_speed < 1000)) {
809 phylink_set(mask, 1000baseT_Full);
810 phylink_set(mask, 1000baseX_Full);
811 } else if (priv->plat->has_xgmac) {
812 if (!max_speed || (max_speed >= 2500)) {
813 phylink_set(mac_supported, 2500baseT_Full);
814 phylink_set(mac_supported, 2500baseX_Full);
815 }
816 if (!max_speed || (max_speed >= 5000)) {
817 phylink_set(mac_supported, 5000baseT_Full);
818 }
819 if (!max_speed || (max_speed >= 10000)) {
820 phylink_set(mac_supported, 10000baseSR_Full);
821 phylink_set(mac_supported, 10000baseLR_Full);
822 phylink_set(mac_supported, 10000baseER_Full);
823 phylink_set(mac_supported, 10000baseLRM_Full);
824 phylink_set(mac_supported, 10000baseT_Full);
825 phylink_set(mac_supported, 10000baseKX4_Full);
826 phylink_set(mac_supported, 10000baseKR_Full);
827 }
828 if (!max_speed || (max_speed >= 25000)) {
829 phylink_set(mac_supported, 25000baseCR_Full);
830 phylink_set(mac_supported, 25000baseKR_Full);
831 phylink_set(mac_supported, 25000baseSR_Full);
832 }
833 if (!max_speed || (max_speed >= 40000)) {
834 phylink_set(mac_supported, 40000baseKR4_Full);
835 phylink_set(mac_supported, 40000baseCR4_Full);
836 phylink_set(mac_supported, 40000baseSR4_Full);
837 phylink_set(mac_supported, 40000baseLR4_Full);
838 }
839 if (!max_speed || (max_speed >= 50000)) {
840 phylink_set(mac_supported, 50000baseCR2_Full);
841 phylink_set(mac_supported, 50000baseKR2_Full);
842 phylink_set(mac_supported, 50000baseSR2_Full);
843 phylink_set(mac_supported, 50000baseKR_Full);
844 phylink_set(mac_supported, 50000baseSR_Full);
845 phylink_set(mac_supported, 50000baseCR_Full);
846 phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
847 phylink_set(mac_supported, 50000baseDR_Full);
848 }
849 if (!max_speed || (max_speed >= 100000)) {
850 phylink_set(mac_supported, 100000baseKR4_Full);
851 phylink_set(mac_supported, 100000baseSR4_Full);
852 phylink_set(mac_supported, 100000baseCR4_Full);
853 phylink_set(mac_supported, 100000baseLR4_ER4_Full);
854 phylink_set(mac_supported, 100000baseKR2_Full);
855 phylink_set(mac_supported, 100000baseSR2_Full);
856 phylink_set(mac_supported, 100000baseCR2_Full);
857 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
858 phylink_set(mac_supported, 100000baseDR2_Full);
859 }
860 }
861
862 /* Half-Duplex can only work with single queue */
863 if (tx_cnt > 1) {
864 phylink_set(mask, 10baseT_Half);
865 phylink_set(mask, 100baseT_Half);
866 phylink_set(mask, 1000baseT_Half);
867 }
868
869 linkmode_and(supported, supported, mac_supported);
870 linkmode_andnot(supported, supported, mask);
871
872 linkmode_and(state->advertising, state->advertising, mac_supported);
873 linkmode_andnot(state->advertising, state->advertising, mask);
874
875 /* If PCS is supported, check which modes it supports. */
876 stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
877 }
878
stmmac_mac_pcs_get_state(struct phylink_config * config,struct phylink_link_state * state)879 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
880 struct phylink_link_state *state)
881 {
882 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
883
884 state->link = 0;
885 stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
886 }
887
stmmac_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)888 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
889 const struct phylink_link_state *state)
890 {
891 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
892
893 stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
894 }
895
stmmac_mac_an_restart(struct phylink_config * config)896 static void stmmac_mac_an_restart(struct phylink_config *config)
897 {
898 /* Not Supported */
899 }
900
stmmac_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)901 static void stmmac_mac_link_down(struct phylink_config *config,
902 unsigned int mode, phy_interface_t interface)
903 {
904 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
905
906 stmmac_mac_set(priv, priv->ioaddr, false);
907 priv->eee_active = false;
908 priv->tx_lpi_enabled = false;
909 stmmac_eee_init(priv);
910 stmmac_set_eee_pls(priv, priv->hw, false);
911 }
912
stmmac_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)913 static void stmmac_mac_link_up(struct phylink_config *config,
914 struct phy_device *phy,
915 unsigned int mode, phy_interface_t interface,
916 int speed, int duplex,
917 bool tx_pause, bool rx_pause)
918 {
919 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
920 u32 ctrl;
921
922 stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
923
924 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
925 ctrl &= ~priv->hw->link.speed_mask;
926
927 if (interface == PHY_INTERFACE_MODE_USXGMII) {
928 switch (speed) {
929 case SPEED_10000:
930 ctrl |= priv->hw->link.xgmii.speed10000;
931 break;
932 case SPEED_5000:
933 ctrl |= priv->hw->link.xgmii.speed5000;
934 break;
935 case SPEED_2500:
936 ctrl |= priv->hw->link.xgmii.speed2500;
937 break;
938 default:
939 return;
940 }
941 } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
942 switch (speed) {
943 case SPEED_100000:
944 ctrl |= priv->hw->link.xlgmii.speed100000;
945 break;
946 case SPEED_50000:
947 ctrl |= priv->hw->link.xlgmii.speed50000;
948 break;
949 case SPEED_40000:
950 ctrl |= priv->hw->link.xlgmii.speed40000;
951 break;
952 case SPEED_25000:
953 ctrl |= priv->hw->link.xlgmii.speed25000;
954 break;
955 case SPEED_10000:
956 ctrl |= priv->hw->link.xgmii.speed10000;
957 break;
958 case SPEED_2500:
959 ctrl |= priv->hw->link.speed2500;
960 break;
961 case SPEED_1000:
962 ctrl |= priv->hw->link.speed1000;
963 break;
964 default:
965 return;
966 }
967 } else {
968 switch (speed) {
969 case SPEED_2500:
970 ctrl |= priv->hw->link.speed2500;
971 break;
972 case SPEED_1000:
973 ctrl |= priv->hw->link.speed1000;
974 break;
975 case SPEED_100:
976 ctrl |= priv->hw->link.speed100;
977 break;
978 case SPEED_10:
979 ctrl |= priv->hw->link.speed10;
980 break;
981 default:
982 return;
983 }
984 }
985
986 priv->speed = speed;
987
988 if (priv->plat->fix_mac_speed)
989 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
990
991 if (!duplex)
992 ctrl &= ~priv->hw->link.duplex;
993 else
994 ctrl |= priv->hw->link.duplex;
995
996 /* Flow Control operation */
997 if (tx_pause && rx_pause)
998 stmmac_mac_flow_ctrl(priv, duplex);
999
1000 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1001
1002 stmmac_mac_set(priv, priv->ioaddr, true);
1003 if (phy && priv->dma_cap.eee) {
1004 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1005 priv->eee_enabled = stmmac_eee_init(priv);
1006 priv->tx_lpi_enabled = priv->eee_enabled;
1007 stmmac_set_eee_pls(priv, priv->hw, true);
1008 }
1009 }
1010
1011 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1012 .validate = stmmac_validate,
1013 .mac_pcs_get_state = stmmac_mac_pcs_get_state,
1014 .mac_config = stmmac_mac_config,
1015 .mac_an_restart = stmmac_mac_an_restart,
1016 .mac_link_down = stmmac_mac_link_down,
1017 .mac_link_up = stmmac_mac_link_up,
1018 };
1019
1020 /**
1021 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1022 * @priv: driver private structure
1023 * Description: this is to verify if the HW supports the PCS.
1024 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1025 * configured for the TBI, RTBI, or SGMII PHY interface.
1026 */
stmmac_check_pcs_mode(struct stmmac_priv * priv)1027 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1028 {
1029 int interface = priv->plat->interface;
1030
1031 if (priv->dma_cap.pcs) {
1032 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1033 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1034 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1035 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1036 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1037 priv->hw->pcs = STMMAC_PCS_RGMII;
1038 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1039 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1040 priv->hw->pcs = STMMAC_PCS_SGMII;
1041 }
1042 }
1043 }
1044
1045 /**
1046 * stmmac_init_phy - PHY initialization
1047 * @dev: net device structure
1048 * Description: it initializes the driver's PHY state, and attaches the PHY
1049 * to the mac driver.
1050 * Return value:
1051 * 0 on success
1052 */
stmmac_init_phy(struct net_device * dev)1053 static int stmmac_init_phy(struct net_device *dev)
1054 {
1055 struct stmmac_priv *priv = netdev_priv(dev);
1056 struct device_node *node;
1057 int ret;
1058
1059 node = priv->plat->phylink_node;
1060
1061 if (node)
1062 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1063
1064 /* Some DT bindings do not set-up the PHY handle. Let's try to
1065 * manually parse it
1066 */
1067 if (!node || ret) {
1068 int addr = priv->plat->phy_addr;
1069 struct phy_device *phydev;
1070
1071 phydev = mdiobus_get_phy(priv->mii, addr);
1072 if (!phydev) {
1073 netdev_err(priv->dev, "no phy at addr %d\n", addr);
1074 return -ENODEV;
1075 }
1076
1077 ret = phylink_connect_phy(priv->phylink, phydev);
1078 }
1079
1080 if (!priv->plat->pmt) {
1081 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1082
1083 phylink_ethtool_get_wol(priv->phylink, &wol);
1084 device_set_wakeup_capable(priv->device, !!wol.supported);
1085 }
1086
1087 return ret;
1088 }
1089
stmmac_phy_setup(struct stmmac_priv * priv)1090 static int stmmac_phy_setup(struct stmmac_priv *priv)
1091 {
1092 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1093 int mode = priv->plat->phy_interface;
1094 struct phylink *phylink;
1095
1096 priv->phylink_config.dev = &priv->dev->dev;
1097 priv->phylink_config.type = PHYLINK_NETDEV;
1098 priv->phylink_config.pcs_poll = true;
1099
1100 if (!fwnode)
1101 fwnode = dev_fwnode(priv->device);
1102
1103 phylink = phylink_create(&priv->phylink_config, fwnode,
1104 mode, &stmmac_phylink_mac_ops);
1105 if (IS_ERR(phylink))
1106 return PTR_ERR(phylink);
1107
1108 priv->phylink = phylink;
1109 return 0;
1110 }
1111
stmmac_display_rx_rings(struct stmmac_priv * priv)1112 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1113 {
1114 u32 rx_cnt = priv->plat->rx_queues_to_use;
1115 unsigned int desc_size;
1116 void *head_rx;
1117 u32 queue;
1118
1119 /* Display RX rings */
1120 for (queue = 0; queue < rx_cnt; queue++) {
1121 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1122
1123 pr_info("\tRX Queue %u rings\n", queue);
1124
1125 if (priv->extend_desc) {
1126 head_rx = (void *)rx_q->dma_erx;
1127 desc_size = sizeof(struct dma_extended_desc);
1128 } else {
1129 head_rx = (void *)rx_q->dma_rx;
1130 desc_size = sizeof(struct dma_desc);
1131 }
1132
1133 /* Display RX ring */
1134 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1135 rx_q->dma_rx_phy, desc_size);
1136 }
1137 }
1138
stmmac_display_tx_rings(struct stmmac_priv * priv)1139 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1140 {
1141 u32 tx_cnt = priv->plat->tx_queues_to_use;
1142 unsigned int desc_size;
1143 void *head_tx;
1144 u32 queue;
1145
1146 /* Display TX rings */
1147 for (queue = 0; queue < tx_cnt; queue++) {
1148 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1149
1150 pr_info("\tTX Queue %d rings\n", queue);
1151
1152 if (priv->extend_desc) {
1153 head_tx = (void *)tx_q->dma_etx;
1154 desc_size = sizeof(struct dma_extended_desc);
1155 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1156 head_tx = (void *)tx_q->dma_entx;
1157 desc_size = sizeof(struct dma_edesc);
1158 } else {
1159 head_tx = (void *)tx_q->dma_tx;
1160 desc_size = sizeof(struct dma_desc);
1161 }
1162
1163 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1164 tx_q->dma_tx_phy, desc_size);
1165 }
1166 }
1167
stmmac_display_rings(struct stmmac_priv * priv)1168 static void stmmac_display_rings(struct stmmac_priv *priv)
1169 {
1170 /* Display RX ring */
1171 stmmac_display_rx_rings(priv);
1172
1173 /* Display TX ring */
1174 stmmac_display_tx_rings(priv);
1175 }
1176
stmmac_set_bfsize(int mtu,int bufsize)1177 static int stmmac_set_bfsize(int mtu, int bufsize)
1178 {
1179 int ret = bufsize;
1180
1181 if (mtu >= BUF_SIZE_8KiB)
1182 ret = BUF_SIZE_16KiB;
1183 else if (mtu >= BUF_SIZE_4KiB)
1184 ret = BUF_SIZE_8KiB;
1185 else if (mtu >= BUF_SIZE_2KiB)
1186 ret = BUF_SIZE_4KiB;
1187 else if (mtu > DEFAULT_BUFSIZE)
1188 ret = BUF_SIZE_2KiB;
1189 else
1190 ret = DEFAULT_BUFSIZE;
1191
1192 return ret;
1193 }
1194
1195 /**
1196 * stmmac_clear_rx_descriptors - clear RX descriptors
1197 * @priv: driver private structure
1198 * @queue: RX queue index
1199 * Description: this function is called to clear the RX descriptors
1200 * in case of both basic and extended descriptors are used.
1201 */
stmmac_clear_rx_descriptors(struct stmmac_priv * priv,u32 queue)1202 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1203 {
1204 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1205 int i;
1206
1207 /* Clear the RX descriptors */
1208 for (i = 0; i < priv->dma_rx_size; i++)
1209 if (priv->extend_desc)
1210 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1211 priv->use_riwt, priv->mode,
1212 (i == priv->dma_rx_size - 1),
1213 priv->dma_buf_sz);
1214 else
1215 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1216 priv->use_riwt, priv->mode,
1217 (i == priv->dma_rx_size - 1),
1218 priv->dma_buf_sz);
1219 }
1220
1221 /**
1222 * stmmac_clear_tx_descriptors - clear tx descriptors
1223 * @priv: driver private structure
1224 * @queue: TX queue index.
1225 * Description: this function is called to clear the TX descriptors
1226 * in case of both basic and extended descriptors are used.
1227 */
stmmac_clear_tx_descriptors(struct stmmac_priv * priv,u32 queue)1228 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1229 {
1230 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1231 int i;
1232
1233 /* Clear the TX descriptors */
1234 for (i = 0; i < priv->dma_tx_size; i++) {
1235 int last = (i == (priv->dma_tx_size - 1));
1236 struct dma_desc *p;
1237
1238 if (priv->extend_desc)
1239 p = &tx_q->dma_etx[i].basic;
1240 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1241 p = &tx_q->dma_entx[i].basic;
1242 else
1243 p = &tx_q->dma_tx[i];
1244
1245 stmmac_init_tx_desc(priv, p, priv->mode, last);
1246 }
1247 }
1248
1249 /**
1250 * stmmac_clear_descriptors - clear descriptors
1251 * @priv: driver private structure
1252 * Description: this function is called to clear the TX and RX descriptors
1253 * in case of both basic and extended descriptors are used.
1254 */
stmmac_clear_descriptors(struct stmmac_priv * priv)1255 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1256 {
1257 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1258 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1259 u32 queue;
1260
1261 /* Clear the RX descriptors */
1262 for (queue = 0; queue < rx_queue_cnt; queue++)
1263 stmmac_clear_rx_descriptors(priv, queue);
1264
1265 /* Clear the TX descriptors */
1266 for (queue = 0; queue < tx_queue_cnt; queue++)
1267 stmmac_clear_tx_descriptors(priv, queue);
1268 }
1269
1270 /**
1271 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1272 * @priv: driver private structure
1273 * @p: descriptor pointer
1274 * @i: descriptor index
1275 * @flags: gfp flag
1276 * @queue: RX queue index
1277 * Description: this function is called to allocate a receive buffer, perform
1278 * the DMA mapping and init the descriptor.
1279 */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct dma_desc * p,int i,gfp_t flags,u32 queue)1280 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1281 int i, gfp_t flags, u32 queue)
1282 {
1283 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1284 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1285
1286 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1287 if (!buf->page)
1288 return -ENOMEM;
1289
1290 if (priv->sph) {
1291 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1292 if (!buf->sec_page)
1293 return -ENOMEM;
1294
1295 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1296 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1297 } else {
1298 buf->sec_page = NULL;
1299 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1300 }
1301
1302 buf->addr = page_pool_get_dma_addr(buf->page);
1303 stmmac_set_desc_addr(priv, p, buf->addr);
1304 if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1305 stmmac_init_desc3(priv, p);
1306
1307 return 0;
1308 }
1309
1310 /**
1311 * stmmac_free_rx_buffer - free RX dma buffers
1312 * @priv: private structure
1313 * @queue: RX queue index
1314 * @i: buffer index.
1315 */
stmmac_free_rx_buffer(struct stmmac_priv * priv,u32 queue,int i)1316 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1317 {
1318 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1319 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1320
1321 if (buf->page)
1322 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1323 buf->page = NULL;
1324
1325 if (buf->sec_page)
1326 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1327 buf->sec_page = NULL;
1328 }
1329
1330 /**
1331 * stmmac_free_tx_buffer - free RX dma buffers
1332 * @priv: private structure
1333 * @queue: RX queue index
1334 * @i: buffer index.
1335 */
stmmac_free_tx_buffer(struct stmmac_priv * priv,u32 queue,int i)1336 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1337 {
1338 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1339
1340 if (tx_q->tx_skbuff_dma[i].buf) {
1341 if (tx_q->tx_skbuff_dma[i].map_as_page)
1342 dma_unmap_page(priv->device,
1343 tx_q->tx_skbuff_dma[i].buf,
1344 tx_q->tx_skbuff_dma[i].len,
1345 DMA_TO_DEVICE);
1346 else
1347 dma_unmap_single(priv->device,
1348 tx_q->tx_skbuff_dma[i].buf,
1349 tx_q->tx_skbuff_dma[i].len,
1350 DMA_TO_DEVICE);
1351 }
1352
1353 if (tx_q->tx_skbuff[i]) {
1354 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1355 tx_q->tx_skbuff[i] = NULL;
1356 tx_q->tx_skbuff_dma[i].buf = 0;
1357 tx_q->tx_skbuff_dma[i].map_as_page = false;
1358 }
1359 }
1360
1361 /**
1362 * init_dma_rx_desc_rings - init the RX descriptor rings
1363 * @dev: net device structure
1364 * @flags: gfp flag.
1365 * Description: this function initializes the DMA RX descriptors
1366 * and allocates the socket buffers. It supports the chained and ring
1367 * modes.
1368 */
init_dma_rx_desc_rings(struct net_device * dev,gfp_t flags)1369 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1370 {
1371 struct stmmac_priv *priv = netdev_priv(dev);
1372 u32 rx_count = priv->plat->rx_queues_to_use;
1373 int ret = -ENOMEM;
1374 int queue;
1375 int i;
1376
1377 /* RX INITIALIZATION */
1378 netif_dbg(priv, probe, priv->dev,
1379 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1380
1381 for (queue = 0; queue < rx_count; queue++) {
1382 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1383
1384 netif_dbg(priv, probe, priv->dev,
1385 "(%s) dma_rx_phy=0x%08x\n", __func__,
1386 (u32)rx_q->dma_rx_phy);
1387
1388 stmmac_clear_rx_descriptors(priv, queue);
1389
1390 for (i = 0; i < priv->dma_rx_size; i++) {
1391 struct dma_desc *p;
1392
1393 if (priv->extend_desc)
1394 p = &((rx_q->dma_erx + i)->basic);
1395 else
1396 p = rx_q->dma_rx + i;
1397
1398 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1399 queue);
1400 if (ret)
1401 goto err_init_rx_buffers;
1402 }
1403
1404 rx_q->cur_rx = 0;
1405 rx_q->dirty_rx = (unsigned int)(i - priv->dma_rx_size);
1406
1407 /* Setup the chained descriptor addresses */
1408 if (priv->mode == STMMAC_CHAIN_MODE) {
1409 if (priv->extend_desc)
1410 stmmac_mode_init(priv, rx_q->dma_erx,
1411 rx_q->dma_rx_phy,
1412 priv->dma_rx_size, 1);
1413 else
1414 stmmac_mode_init(priv, rx_q->dma_rx,
1415 rx_q->dma_rx_phy,
1416 priv->dma_rx_size, 0);
1417 }
1418 }
1419
1420 return 0;
1421
1422 err_init_rx_buffers:
1423 while (queue >= 0) {
1424 while (--i >= 0)
1425 stmmac_free_rx_buffer(priv, queue, i);
1426
1427 if (queue == 0)
1428 break;
1429
1430 i = priv->dma_rx_size;
1431 queue--;
1432 }
1433
1434 return ret;
1435 }
1436
1437 /**
1438 * init_dma_tx_desc_rings - init the TX descriptor rings
1439 * @dev: net device structure.
1440 * Description: this function initializes the DMA TX descriptors
1441 * and allocates the socket buffers. It supports the chained and ring
1442 * modes.
1443 */
init_dma_tx_desc_rings(struct net_device * dev)1444 static int init_dma_tx_desc_rings(struct net_device *dev)
1445 {
1446 struct stmmac_priv *priv = netdev_priv(dev);
1447 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1448 u32 queue;
1449 int i;
1450
1451 for (queue = 0; queue < tx_queue_cnt; queue++) {
1452 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1453
1454 netif_dbg(priv, probe, priv->dev,
1455 "(%s) dma_tx_phy=0x%08x\n", __func__,
1456 (u32)tx_q->dma_tx_phy);
1457
1458 /* Setup the chained descriptor addresses */
1459 if (priv->mode == STMMAC_CHAIN_MODE) {
1460 if (priv->extend_desc)
1461 stmmac_mode_init(priv, tx_q->dma_etx,
1462 tx_q->dma_tx_phy,
1463 priv->dma_tx_size, 1);
1464 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1465 stmmac_mode_init(priv, tx_q->dma_tx,
1466 tx_q->dma_tx_phy,
1467 priv->dma_tx_size, 0);
1468 }
1469
1470 for (i = 0; i < priv->dma_tx_size; i++) {
1471 struct dma_desc *p;
1472 if (priv->extend_desc)
1473 p = &((tx_q->dma_etx + i)->basic);
1474 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1475 p = &((tx_q->dma_entx + i)->basic);
1476 else
1477 p = tx_q->dma_tx + i;
1478
1479 stmmac_clear_desc(priv, p);
1480
1481 tx_q->tx_skbuff_dma[i].buf = 0;
1482 tx_q->tx_skbuff_dma[i].map_as_page = false;
1483 tx_q->tx_skbuff_dma[i].len = 0;
1484 tx_q->tx_skbuff_dma[i].last_segment = false;
1485 tx_q->tx_skbuff[i] = NULL;
1486 }
1487
1488 tx_q->dirty_tx = 0;
1489 tx_q->cur_tx = 0;
1490 tx_q->mss = 0;
1491
1492 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1493 }
1494
1495 return 0;
1496 }
1497
1498 /**
1499 * init_dma_desc_rings - init the RX/TX descriptor rings
1500 * @dev: net device structure
1501 * @flags: gfp flag.
1502 * Description: this function initializes the DMA RX/TX descriptors
1503 * and allocates the socket buffers. It supports the chained and ring
1504 * modes.
1505 */
init_dma_desc_rings(struct net_device * dev,gfp_t flags)1506 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1507 {
1508 struct stmmac_priv *priv = netdev_priv(dev);
1509 int ret;
1510
1511 ret = init_dma_rx_desc_rings(dev, flags);
1512 if (ret)
1513 return ret;
1514
1515 ret = init_dma_tx_desc_rings(dev);
1516
1517 stmmac_clear_descriptors(priv);
1518
1519 if (netif_msg_hw(priv))
1520 stmmac_display_rings(priv);
1521
1522 return ret;
1523 }
1524
1525 /**
1526 * dma_free_rx_skbufs - free RX dma buffers
1527 * @priv: private structure
1528 * @queue: RX queue index
1529 */
dma_free_rx_skbufs(struct stmmac_priv * priv,u32 queue)1530 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1531 {
1532 int i;
1533
1534 for (i = 0; i < priv->dma_rx_size; i++)
1535 stmmac_free_rx_buffer(priv, queue, i);
1536 }
1537
1538 /**
1539 * dma_free_tx_skbufs - free TX dma buffers
1540 * @priv: private structure
1541 * @queue: TX queue index
1542 */
dma_free_tx_skbufs(struct stmmac_priv * priv,u32 queue)1543 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1544 {
1545 int i;
1546
1547 for (i = 0; i < priv->dma_tx_size; i++)
1548 stmmac_free_tx_buffer(priv, queue, i);
1549 }
1550
1551 /**
1552 * stmmac_free_tx_skbufs - free TX skb buffers
1553 * @priv: private structure
1554 */
stmmac_free_tx_skbufs(struct stmmac_priv * priv)1555 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1556 {
1557 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1558 u32 queue;
1559
1560 for (queue = 0; queue < tx_queue_cnt; queue++)
1561 dma_free_tx_skbufs(priv, queue);
1562 }
1563
1564 /**
1565 * free_dma_rx_desc_resources - free RX dma desc resources
1566 * @priv: private structure
1567 */
free_dma_rx_desc_resources(struct stmmac_priv * priv)1568 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1569 {
1570 u32 rx_count = priv->plat->rx_queues_to_use;
1571 u32 queue;
1572
1573 /* Free RX queue resources */
1574 for (queue = 0; queue < rx_count; queue++) {
1575 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1576
1577 /* Release the DMA RX socket buffers */
1578 dma_free_rx_skbufs(priv, queue);
1579
1580 /* Free DMA regions of consistent memory previously allocated */
1581 if (!priv->extend_desc)
1582 dma_free_coherent(priv->device, priv->dma_rx_size *
1583 sizeof(struct dma_desc),
1584 rx_q->dma_rx, rx_q->dma_rx_phy);
1585 else
1586 dma_free_coherent(priv->device, priv->dma_rx_size *
1587 sizeof(struct dma_extended_desc),
1588 rx_q->dma_erx, rx_q->dma_rx_phy);
1589
1590 kfree(rx_q->buf_pool);
1591 if (rx_q->page_pool)
1592 page_pool_destroy(rx_q->page_pool);
1593 }
1594 }
1595
1596 /**
1597 * free_dma_tx_desc_resources - free TX dma desc resources
1598 * @priv: private structure
1599 */
free_dma_tx_desc_resources(struct stmmac_priv * priv)1600 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1601 {
1602 u32 tx_count = priv->plat->tx_queues_to_use;
1603 u32 queue;
1604
1605 /* Free TX queue resources */
1606 for (queue = 0; queue < tx_count; queue++) {
1607 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1608 size_t size;
1609 void *addr;
1610
1611 /* Release the DMA TX socket buffers */
1612 dma_free_tx_skbufs(priv, queue);
1613
1614 if (priv->extend_desc) {
1615 size = sizeof(struct dma_extended_desc);
1616 addr = tx_q->dma_etx;
1617 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1618 size = sizeof(struct dma_edesc);
1619 addr = tx_q->dma_entx;
1620 } else {
1621 size = sizeof(struct dma_desc);
1622 addr = tx_q->dma_tx;
1623 }
1624
1625 size *= priv->dma_tx_size;
1626
1627 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1628
1629 kfree(tx_q->tx_skbuff_dma);
1630 kfree(tx_q->tx_skbuff);
1631 }
1632 }
1633
1634 /**
1635 * alloc_dma_rx_desc_resources - alloc RX resources.
1636 * @priv: private structure
1637 * Description: according to which descriptor can be used (extend or basic)
1638 * this function allocates the resources for TX and RX paths. In case of
1639 * reception, for example, it pre-allocated the RX socket buffer in order to
1640 * allow zero-copy mechanism.
1641 */
alloc_dma_rx_desc_resources(struct stmmac_priv * priv)1642 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1643 {
1644 u32 rx_count = priv->plat->rx_queues_to_use;
1645 int ret = -ENOMEM;
1646 u32 queue;
1647
1648 /* RX queues buffers and DMA */
1649 for (queue = 0; queue < rx_count; queue++) {
1650 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1651 struct page_pool_params pp_params = { 0 };
1652 unsigned int num_pages;
1653
1654 rx_q->queue_index = queue;
1655 rx_q->priv_data = priv;
1656
1657 pp_params.flags = PP_FLAG_DMA_MAP;
1658 pp_params.pool_size = priv->dma_rx_size;
1659 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1660 pp_params.order = ilog2(num_pages);
1661 pp_params.nid = dev_to_node(priv->device);
1662 pp_params.dev = priv->device;
1663 pp_params.dma_dir = DMA_FROM_DEVICE;
1664
1665 rx_q->page_pool = page_pool_create(&pp_params);
1666 if (IS_ERR(rx_q->page_pool)) {
1667 ret = PTR_ERR(rx_q->page_pool);
1668 rx_q->page_pool = NULL;
1669 goto err_dma;
1670 }
1671
1672 rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1673 sizeof(*rx_q->buf_pool),
1674 GFP_KERNEL);
1675 if (!rx_q->buf_pool)
1676 goto err_dma;
1677
1678 if (priv->extend_desc) {
1679 rx_q->dma_erx = dma_alloc_coherent(priv->device,
1680 priv->dma_rx_size *
1681 sizeof(struct dma_extended_desc),
1682 &rx_q->dma_rx_phy,
1683 GFP_KERNEL);
1684 if (!rx_q->dma_erx)
1685 goto err_dma;
1686
1687 } else {
1688 rx_q->dma_rx = dma_alloc_coherent(priv->device,
1689 priv->dma_rx_size *
1690 sizeof(struct dma_desc),
1691 &rx_q->dma_rx_phy,
1692 GFP_KERNEL);
1693 if (!rx_q->dma_rx)
1694 goto err_dma;
1695 }
1696 }
1697
1698 return 0;
1699
1700 err_dma:
1701 free_dma_rx_desc_resources(priv);
1702
1703 return ret;
1704 }
1705
1706 /**
1707 * alloc_dma_tx_desc_resources - alloc TX resources.
1708 * @priv: private structure
1709 * Description: according to which descriptor can be used (extend or basic)
1710 * this function allocates the resources for TX and RX paths. In case of
1711 * reception, for example, it pre-allocated the RX socket buffer in order to
1712 * allow zero-copy mechanism.
1713 */
alloc_dma_tx_desc_resources(struct stmmac_priv * priv)1714 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1715 {
1716 u32 tx_count = priv->plat->tx_queues_to_use;
1717 int ret = -ENOMEM;
1718 u32 queue;
1719
1720 /* TX queues buffers and DMA */
1721 for (queue = 0; queue < tx_count; queue++) {
1722 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1723 size_t size;
1724 void *addr;
1725
1726 tx_q->queue_index = queue;
1727 tx_q->priv_data = priv;
1728
1729 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
1730 sizeof(*tx_q->tx_skbuff_dma),
1731 GFP_KERNEL);
1732 if (!tx_q->tx_skbuff_dma)
1733 goto err_dma;
1734
1735 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
1736 sizeof(struct sk_buff *),
1737 GFP_KERNEL);
1738 if (!tx_q->tx_skbuff)
1739 goto err_dma;
1740
1741 if (priv->extend_desc)
1742 size = sizeof(struct dma_extended_desc);
1743 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1744 size = sizeof(struct dma_edesc);
1745 else
1746 size = sizeof(struct dma_desc);
1747
1748 size *= priv->dma_tx_size;
1749
1750 addr = dma_alloc_coherent(priv->device, size,
1751 &tx_q->dma_tx_phy, GFP_KERNEL);
1752 if (!addr)
1753 goto err_dma;
1754
1755 if (priv->extend_desc)
1756 tx_q->dma_etx = addr;
1757 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1758 tx_q->dma_entx = addr;
1759 else
1760 tx_q->dma_tx = addr;
1761 }
1762
1763 return 0;
1764
1765 err_dma:
1766 free_dma_tx_desc_resources(priv);
1767 return ret;
1768 }
1769
1770 /**
1771 * alloc_dma_desc_resources - alloc TX/RX resources.
1772 * @priv: private structure
1773 * Description: according to which descriptor can be used (extend or basic)
1774 * this function allocates the resources for TX and RX paths. In case of
1775 * reception, for example, it pre-allocated the RX socket buffer in order to
1776 * allow zero-copy mechanism.
1777 */
alloc_dma_desc_resources(struct stmmac_priv * priv)1778 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1779 {
1780 /* RX Allocation */
1781 int ret = alloc_dma_rx_desc_resources(priv);
1782
1783 if (ret)
1784 return ret;
1785
1786 ret = alloc_dma_tx_desc_resources(priv);
1787
1788 return ret;
1789 }
1790
1791 /**
1792 * free_dma_desc_resources - free dma desc resources
1793 * @priv: private structure
1794 */
free_dma_desc_resources(struct stmmac_priv * priv)1795 static void free_dma_desc_resources(struct stmmac_priv *priv)
1796 {
1797 /* Release the DMA RX socket buffers */
1798 free_dma_rx_desc_resources(priv);
1799
1800 /* Release the DMA TX socket buffers */
1801 free_dma_tx_desc_resources(priv);
1802 }
1803
1804 /**
1805 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
1806 * @priv: driver private structure
1807 * Description: It is used for enabling the rx queues in the MAC
1808 */
stmmac_mac_enable_rx_queues(struct stmmac_priv * priv)1809 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1810 {
1811 u32 rx_queues_count = priv->plat->rx_queues_to_use;
1812 int queue;
1813 u8 mode;
1814
1815 for (queue = 0; queue < rx_queues_count; queue++) {
1816 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1817 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1818 }
1819 }
1820
1821 /**
1822 * stmmac_start_rx_dma - start RX DMA channel
1823 * @priv: driver private structure
1824 * @chan: RX channel index
1825 * Description:
1826 * This starts a RX DMA channel
1827 */
stmmac_start_rx_dma(struct stmmac_priv * priv,u32 chan)1828 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1829 {
1830 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1831 stmmac_start_rx(priv, priv->ioaddr, chan);
1832 }
1833
1834 /**
1835 * stmmac_start_tx_dma - start TX DMA channel
1836 * @priv: driver private structure
1837 * @chan: TX channel index
1838 * Description:
1839 * This starts a TX DMA channel
1840 */
stmmac_start_tx_dma(struct stmmac_priv * priv,u32 chan)1841 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1842 {
1843 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1844 stmmac_start_tx(priv, priv->ioaddr, chan);
1845 }
1846
1847 /**
1848 * stmmac_stop_rx_dma - stop RX DMA channel
1849 * @priv: driver private structure
1850 * @chan: RX channel index
1851 * Description:
1852 * This stops a RX DMA channel
1853 */
stmmac_stop_rx_dma(struct stmmac_priv * priv,u32 chan)1854 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1855 {
1856 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1857 stmmac_stop_rx(priv, priv->ioaddr, chan);
1858 }
1859
1860 /**
1861 * stmmac_stop_tx_dma - stop TX DMA channel
1862 * @priv: driver private structure
1863 * @chan: TX channel index
1864 * Description:
1865 * This stops a TX DMA channel
1866 */
stmmac_stop_tx_dma(struct stmmac_priv * priv,u32 chan)1867 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1868 {
1869 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1870 stmmac_stop_tx(priv, priv->ioaddr, chan);
1871 }
1872
1873 /**
1874 * stmmac_start_all_dma - start all RX and TX DMA channels
1875 * @priv: driver private structure
1876 * Description:
1877 * This starts all the RX and TX DMA channels
1878 */
stmmac_start_all_dma(struct stmmac_priv * priv)1879 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1880 {
1881 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1882 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1883 u32 chan = 0;
1884
1885 for (chan = 0; chan < rx_channels_count; chan++)
1886 stmmac_start_rx_dma(priv, chan);
1887
1888 for (chan = 0; chan < tx_channels_count; chan++)
1889 stmmac_start_tx_dma(priv, chan);
1890 }
1891
1892 /**
1893 * stmmac_stop_all_dma - stop all RX and TX DMA channels
1894 * @priv: driver private structure
1895 * Description:
1896 * This stops the RX and TX DMA channels
1897 */
stmmac_stop_all_dma(struct stmmac_priv * priv)1898 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1899 {
1900 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1901 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1902 u32 chan = 0;
1903
1904 for (chan = 0; chan < rx_channels_count; chan++)
1905 stmmac_stop_rx_dma(priv, chan);
1906
1907 for (chan = 0; chan < tx_channels_count; chan++)
1908 stmmac_stop_tx_dma(priv, chan);
1909 }
1910
1911 /**
1912 * stmmac_dma_operation_mode - HW DMA operation mode
1913 * @priv: driver private structure
1914 * Description: it is used for configuring the DMA operation mode register in
1915 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1916 */
stmmac_dma_operation_mode(struct stmmac_priv * priv)1917 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1918 {
1919 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1920 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1921 int rxfifosz = priv->plat->rx_fifo_size;
1922 int txfifosz = priv->plat->tx_fifo_size;
1923 u32 txmode = 0;
1924 u32 rxmode = 0;
1925 u32 chan = 0;
1926 u8 qmode = 0;
1927
1928 if (rxfifosz == 0)
1929 rxfifosz = priv->dma_cap.rx_fifo_size;
1930 if (txfifosz == 0)
1931 txfifosz = priv->dma_cap.tx_fifo_size;
1932
1933 /* Adjust for real per queue fifo size */
1934 rxfifosz /= rx_channels_count;
1935 txfifosz /= tx_channels_count;
1936
1937 if (priv->plat->force_thresh_dma_mode) {
1938 txmode = tc;
1939 rxmode = tc;
1940 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1941 /*
1942 * In case of GMAC, SF mode can be enabled
1943 * to perform the TX COE in HW. This depends on:
1944 * 1) TX COE if actually supported
1945 * 2) There is no bugged Jumbo frame support
1946 * that needs to not insert csum in the TDES.
1947 */
1948 txmode = SF_DMA_MODE;
1949 rxmode = SF_DMA_MODE;
1950 priv->xstats.threshold = SF_DMA_MODE;
1951 } else {
1952 txmode = tc;
1953 rxmode = SF_DMA_MODE;
1954 }
1955
1956 /* configure all channels */
1957 for (chan = 0; chan < rx_channels_count; chan++) {
1958 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1959
1960 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1961 rxfifosz, qmode);
1962 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1963 chan);
1964 }
1965
1966 for (chan = 0; chan < tx_channels_count; chan++) {
1967 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1968
1969 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1970 txfifosz, qmode);
1971 }
1972 }
1973
1974 /**
1975 * stmmac_tx_clean - to manage the transmission completion
1976 * @priv: driver private structure
1977 * @budget: napi budget limiting this functions packet handling
1978 * @queue: TX queue index
1979 * Description: it reclaims the transmit resources after transmission completes.
1980 */
stmmac_tx_clean(struct stmmac_priv * priv,int budget,u32 queue)1981 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1982 {
1983 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1984 unsigned int bytes_compl = 0, pkts_compl = 0;
1985 unsigned int entry, count = 0;
1986
1987 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1988
1989 priv->xstats.tx_clean++;
1990
1991 entry = tx_q->dirty_tx;
1992 while ((entry != tx_q->cur_tx) && (count < budget)) {
1993 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1994 struct dma_desc *p;
1995 int status;
1996
1997 if (priv->extend_desc)
1998 p = (struct dma_desc *)(tx_q->dma_etx + entry);
1999 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2000 p = &tx_q->dma_entx[entry].basic;
2001 else
2002 p = tx_q->dma_tx + entry;
2003
2004 status = stmmac_tx_status(priv, &priv->dev->stats,
2005 &priv->xstats, p, priv->ioaddr);
2006 /* Check if the descriptor is owned by the DMA */
2007 if (unlikely(status & tx_dma_own))
2008 break;
2009
2010 count++;
2011
2012 /* Make sure descriptor fields are read after reading
2013 * the own bit.
2014 */
2015 dma_rmb();
2016
2017 /* Just consider the last segment and ...*/
2018 if (likely(!(status & tx_not_ls))) {
2019 /* ... verify the status error condition */
2020 if (unlikely(status & tx_err)) {
2021 priv->dev->stats.tx_errors++;
2022 } else {
2023 priv->dev->stats.tx_packets++;
2024 priv->xstats.tx_pkt_n++;
2025 }
2026 stmmac_get_tx_hwtstamp(priv, p, skb);
2027 }
2028
2029 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2030 if (tx_q->tx_skbuff_dma[entry].map_as_page)
2031 dma_unmap_page(priv->device,
2032 tx_q->tx_skbuff_dma[entry].buf,
2033 tx_q->tx_skbuff_dma[entry].len,
2034 DMA_TO_DEVICE);
2035 else
2036 dma_unmap_single(priv->device,
2037 tx_q->tx_skbuff_dma[entry].buf,
2038 tx_q->tx_skbuff_dma[entry].len,
2039 DMA_TO_DEVICE);
2040 tx_q->tx_skbuff_dma[entry].buf = 0;
2041 tx_q->tx_skbuff_dma[entry].len = 0;
2042 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2043 }
2044
2045 stmmac_clean_desc3(priv, tx_q, p);
2046
2047 tx_q->tx_skbuff_dma[entry].last_segment = false;
2048 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2049
2050 if (likely(skb != NULL)) {
2051 pkts_compl++;
2052 bytes_compl += skb->len;
2053 dev_consume_skb_any(skb);
2054 tx_q->tx_skbuff[entry] = NULL;
2055 }
2056
2057 stmmac_release_tx_desc(priv, p, priv->mode);
2058
2059 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2060 }
2061 tx_q->dirty_tx = entry;
2062
2063 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2064 pkts_compl, bytes_compl);
2065
2066 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2067 queue))) &&
2068 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2069
2070 netif_dbg(priv, tx_done, priv->dev,
2071 "%s: restart transmit\n", __func__);
2072 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2073 }
2074
2075 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
2076 stmmac_enable_eee_mode(priv);
2077 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2078 }
2079
2080 /* We still have pending packets, let's call for a new scheduling */
2081 if (tx_q->dirty_tx != tx_q->cur_tx)
2082 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2083
2084 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2085
2086 return count;
2087 }
2088
2089 /**
2090 * stmmac_tx_err - to manage the tx error
2091 * @priv: driver private structure
2092 * @chan: channel index
2093 * Description: it cleans the descriptors and restarts the transmission
2094 * in case of transmission errors.
2095 */
stmmac_tx_err(struct stmmac_priv * priv,u32 chan)2096 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2097 {
2098 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2099
2100 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2101
2102 stmmac_stop_tx_dma(priv, chan);
2103 dma_free_tx_skbufs(priv, chan);
2104 stmmac_clear_tx_descriptors(priv, chan);
2105 tx_q->dirty_tx = 0;
2106 tx_q->cur_tx = 0;
2107 tx_q->mss = 0;
2108 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2109 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2110 tx_q->dma_tx_phy, chan);
2111 stmmac_start_tx_dma(priv, chan);
2112
2113 priv->dev->stats.tx_errors++;
2114 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2115 }
2116
2117 /**
2118 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2119 * @priv: driver private structure
2120 * @txmode: TX operating mode
2121 * @rxmode: RX operating mode
2122 * @chan: channel index
2123 * Description: it is used for configuring of the DMA operation mode in
2124 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2125 * mode.
2126 */
stmmac_set_dma_operation_mode(struct stmmac_priv * priv,u32 txmode,u32 rxmode,u32 chan)2127 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2128 u32 rxmode, u32 chan)
2129 {
2130 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2131 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2132 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2133 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2134 int rxfifosz = priv->plat->rx_fifo_size;
2135 int txfifosz = priv->plat->tx_fifo_size;
2136
2137 if (rxfifosz == 0)
2138 rxfifosz = priv->dma_cap.rx_fifo_size;
2139 if (txfifosz == 0)
2140 txfifosz = priv->dma_cap.tx_fifo_size;
2141
2142 /* Adjust for real per queue fifo size */
2143 rxfifosz /= rx_channels_count;
2144 txfifosz /= tx_channels_count;
2145
2146 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2147 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2148 }
2149
stmmac_safety_feat_interrupt(struct stmmac_priv * priv)2150 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2151 {
2152 int ret;
2153
2154 ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2155 priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2156 if (ret && (ret != -EINVAL)) {
2157 stmmac_global_err(priv);
2158 return true;
2159 }
2160
2161 return false;
2162 }
2163
stmmac_napi_check(struct stmmac_priv * priv,u32 chan)2164 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2165 {
2166 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2167 &priv->xstats, chan);
2168 struct stmmac_channel *ch = &priv->channel[chan];
2169 unsigned long flags;
2170
2171 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2172 if (napi_schedule_prep(&ch->rx_napi)) {
2173 spin_lock_irqsave(&ch->lock, flags);
2174 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2175 spin_unlock_irqrestore(&ch->lock, flags);
2176 __napi_schedule(&ch->rx_napi);
2177 }
2178 }
2179
2180 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2181 if (napi_schedule_prep(&ch->tx_napi)) {
2182 spin_lock_irqsave(&ch->lock, flags);
2183 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2184 spin_unlock_irqrestore(&ch->lock, flags);
2185 __napi_schedule(&ch->tx_napi);
2186 }
2187 }
2188
2189 return status;
2190 }
2191
2192 /**
2193 * stmmac_dma_interrupt - DMA ISR
2194 * @priv: driver private structure
2195 * Description: this is the DMA ISR. It is called by the main ISR.
2196 * It calls the dwmac dma routine and schedule poll method in case of some
2197 * work can be done.
2198 */
stmmac_dma_interrupt(struct stmmac_priv * priv)2199 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2200 {
2201 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2202 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2203 u32 channels_to_check = tx_channel_count > rx_channel_count ?
2204 tx_channel_count : rx_channel_count;
2205 u32 chan;
2206 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2207
2208 /* Make sure we never check beyond our status buffer. */
2209 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2210 channels_to_check = ARRAY_SIZE(status);
2211
2212 for (chan = 0; chan < channels_to_check; chan++)
2213 status[chan] = stmmac_napi_check(priv, chan);
2214
2215 for (chan = 0; chan < tx_channel_count; chan++) {
2216 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2217 /* Try to bump up the dma threshold on this failure */
2218 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2219 (tc <= 256)) {
2220 tc += 64;
2221 if (priv->plat->force_thresh_dma_mode)
2222 stmmac_set_dma_operation_mode(priv,
2223 tc,
2224 tc,
2225 chan);
2226 else
2227 stmmac_set_dma_operation_mode(priv,
2228 tc,
2229 SF_DMA_MODE,
2230 chan);
2231 priv->xstats.threshold = tc;
2232 }
2233 } else if (unlikely(status[chan] == tx_hard_error)) {
2234 stmmac_tx_err(priv, chan);
2235 }
2236 }
2237 }
2238
2239 /**
2240 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2241 * @priv: driver private structure
2242 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2243 */
stmmac_mmc_setup(struct stmmac_priv * priv)2244 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2245 {
2246 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2247 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2248
2249 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2250
2251 if (priv->dma_cap.rmon) {
2252 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2253 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2254 } else
2255 netdev_info(priv->dev, "No MAC Management Counters available\n");
2256 }
2257
2258 /**
2259 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2260 * @priv: driver private structure
2261 * Description:
2262 * new GMAC chip generations have a new register to indicate the
2263 * presence of the optional feature/functions.
2264 * This can be also used to override the value passed through the
2265 * platform and necessary for old MAC10/100 and GMAC chips.
2266 */
stmmac_get_hw_features(struct stmmac_priv * priv)2267 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2268 {
2269 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2270 }
2271
2272 /**
2273 * stmmac_check_ether_addr - check if the MAC addr is valid
2274 * @priv: driver private structure
2275 * Description:
2276 * it is to verify if the MAC address is valid, in case of failures it
2277 * generates a random MAC address
2278 */
stmmac_check_ether_addr(struct stmmac_priv * priv)2279 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2280 {
2281 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2282 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2283 if (!is_valid_ether_addr(priv->dev->dev_addr))
2284 eth_hw_addr_random(priv->dev);
2285 dev_info(priv->device, "device MAC address %pM\n",
2286 priv->dev->dev_addr);
2287 }
2288 }
2289
2290 /**
2291 * stmmac_init_dma_engine - DMA init.
2292 * @priv: driver private structure
2293 * Description:
2294 * It inits the DMA invoking the specific MAC/GMAC callback.
2295 * Some DMA parameters can be passed from the platform;
2296 * in case of these are not passed a default is kept for the MAC or GMAC.
2297 */
stmmac_init_dma_engine(struct stmmac_priv * priv)2298 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2299 {
2300 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2301 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2302 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2303 struct stmmac_rx_queue *rx_q;
2304 struct stmmac_tx_queue *tx_q;
2305 u32 chan = 0;
2306 int atds = 0;
2307 int ret = 0;
2308
2309 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2310 dev_err(priv->device, "Invalid DMA configuration\n");
2311 return -EINVAL;
2312 }
2313
2314 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2315 atds = 1;
2316
2317 ret = stmmac_reset(priv, priv->ioaddr);
2318 if (ret) {
2319 dev_err(priv->device, "Failed to reset the dma\n");
2320 return ret;
2321 }
2322
2323 /* DMA Configuration */
2324 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2325
2326 if (priv->plat->axi)
2327 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2328
2329 /* DMA CSR Channel configuration */
2330 for (chan = 0; chan < dma_csr_ch; chan++)
2331 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2332
2333 /* DMA RX Channel Configuration */
2334 for (chan = 0; chan < rx_channels_count; chan++) {
2335 rx_q = &priv->rx_queue[chan];
2336
2337 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2338 rx_q->dma_rx_phy, chan);
2339
2340 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2341 (priv->dma_rx_size *
2342 sizeof(struct dma_desc));
2343 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2344 rx_q->rx_tail_addr, chan);
2345 }
2346
2347 /* DMA TX Channel Configuration */
2348 for (chan = 0; chan < tx_channels_count; chan++) {
2349 tx_q = &priv->tx_queue[chan];
2350
2351 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2352 tx_q->dma_tx_phy, chan);
2353
2354 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2355 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2356 tx_q->tx_tail_addr, chan);
2357 }
2358
2359 return ret;
2360 }
2361
stmmac_tx_timer_arm(struct stmmac_priv * priv,u32 queue)2362 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2363 {
2364 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2365
2366 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2367 }
2368
2369 /**
2370 * stmmac_tx_timer - mitigation sw timer for tx.
2371 * @t: data pointer
2372 * Description:
2373 * This is the timer handler to directly invoke the stmmac_tx_clean.
2374 */
stmmac_tx_timer(struct timer_list * t)2375 static void stmmac_tx_timer(struct timer_list *t)
2376 {
2377 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2378 struct stmmac_priv *priv = tx_q->priv_data;
2379 struct stmmac_channel *ch;
2380
2381 ch = &priv->channel[tx_q->queue_index];
2382
2383 if (likely(napi_schedule_prep(&ch->tx_napi))) {
2384 unsigned long flags;
2385
2386 spin_lock_irqsave(&ch->lock, flags);
2387 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2388 spin_unlock_irqrestore(&ch->lock, flags);
2389 __napi_schedule(&ch->tx_napi);
2390 }
2391 }
2392
2393 /**
2394 * stmmac_init_coalesce - init mitigation options.
2395 * @priv: driver private structure
2396 * Description:
2397 * This inits the coalesce parameters: i.e. timer rate,
2398 * timer handler and default threshold used for enabling the
2399 * interrupt on completion bit.
2400 */
stmmac_init_coalesce(struct stmmac_priv * priv)2401 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2402 {
2403 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2404 u32 chan;
2405
2406 priv->tx_coal_frames = STMMAC_TX_FRAMES;
2407 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2408 priv->rx_coal_frames = STMMAC_RX_FRAMES;
2409
2410 for (chan = 0; chan < tx_channel_count; chan++) {
2411 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2412
2413 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2414 }
2415 }
2416
stmmac_set_rings_length(struct stmmac_priv * priv)2417 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2418 {
2419 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2420 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2421 u32 chan;
2422
2423 /* set TX ring length */
2424 for (chan = 0; chan < tx_channels_count; chan++)
2425 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2426 (priv->dma_tx_size - 1), chan);
2427
2428 /* set RX ring length */
2429 for (chan = 0; chan < rx_channels_count; chan++)
2430 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2431 (priv->dma_rx_size - 1), chan);
2432 }
2433
2434 /**
2435 * stmmac_set_tx_queue_weight - Set TX queue weight
2436 * @priv: driver private structure
2437 * Description: It is used for setting TX queues weight
2438 */
stmmac_set_tx_queue_weight(struct stmmac_priv * priv)2439 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2440 {
2441 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2442 u32 weight;
2443 u32 queue;
2444
2445 for (queue = 0; queue < tx_queues_count; queue++) {
2446 weight = priv->plat->tx_queues_cfg[queue].weight;
2447 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2448 }
2449 }
2450
2451 /**
2452 * stmmac_configure_cbs - Configure CBS in TX queue
2453 * @priv: driver private structure
2454 * Description: It is used for configuring CBS in AVB TX queues
2455 */
stmmac_configure_cbs(struct stmmac_priv * priv)2456 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2457 {
2458 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2459 u32 mode_to_use;
2460 u32 queue;
2461
2462 /* queue 0 is reserved for legacy traffic */
2463 for (queue = 1; queue < tx_queues_count; queue++) {
2464 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2465 if (mode_to_use == MTL_QUEUE_DCB)
2466 continue;
2467
2468 stmmac_config_cbs(priv, priv->hw,
2469 priv->plat->tx_queues_cfg[queue].send_slope,
2470 priv->plat->tx_queues_cfg[queue].idle_slope,
2471 priv->plat->tx_queues_cfg[queue].high_credit,
2472 priv->plat->tx_queues_cfg[queue].low_credit,
2473 queue);
2474 }
2475 }
2476
2477 /**
2478 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2479 * @priv: driver private structure
2480 * Description: It is used for mapping RX queues to RX dma channels
2481 */
stmmac_rx_queue_dma_chan_map(struct stmmac_priv * priv)2482 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2483 {
2484 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2485 u32 queue;
2486 u32 chan;
2487
2488 for (queue = 0; queue < rx_queues_count; queue++) {
2489 chan = priv->plat->rx_queues_cfg[queue].chan;
2490 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2491 }
2492 }
2493
2494 /**
2495 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2496 * @priv: driver private structure
2497 * Description: It is used for configuring the RX Queue Priority
2498 */
stmmac_mac_config_rx_queues_prio(struct stmmac_priv * priv)2499 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2500 {
2501 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2502 u32 queue;
2503 u32 prio;
2504
2505 for (queue = 0; queue < rx_queues_count; queue++) {
2506 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2507 continue;
2508
2509 prio = priv->plat->rx_queues_cfg[queue].prio;
2510 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2511 }
2512 }
2513
2514 /**
2515 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2516 * @priv: driver private structure
2517 * Description: It is used for configuring the TX Queue Priority
2518 */
stmmac_mac_config_tx_queues_prio(struct stmmac_priv * priv)2519 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2520 {
2521 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2522 u32 queue;
2523 u32 prio;
2524
2525 for (queue = 0; queue < tx_queues_count; queue++) {
2526 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2527 continue;
2528
2529 prio = priv->plat->tx_queues_cfg[queue].prio;
2530 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2531 }
2532 }
2533
2534 /**
2535 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2536 * @priv: driver private structure
2537 * Description: It is used for configuring the RX queue routing
2538 */
stmmac_mac_config_rx_queues_routing(struct stmmac_priv * priv)2539 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2540 {
2541 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2542 u32 queue;
2543 u8 packet;
2544
2545 for (queue = 0; queue < rx_queues_count; queue++) {
2546 /* no specific packet type routing specified for the queue */
2547 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2548 continue;
2549
2550 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2551 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2552 }
2553 }
2554
stmmac_mac_config_rss(struct stmmac_priv * priv)2555 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2556 {
2557 if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2558 priv->rss.enable = false;
2559 return;
2560 }
2561
2562 if (priv->dev->features & NETIF_F_RXHASH)
2563 priv->rss.enable = true;
2564 else
2565 priv->rss.enable = false;
2566
2567 stmmac_rss_configure(priv, priv->hw, &priv->rss,
2568 priv->plat->rx_queues_to_use);
2569 }
2570
2571 /**
2572 * stmmac_mtl_configuration - Configure MTL
2573 * @priv: driver private structure
2574 * Description: It is used for configurring MTL
2575 */
stmmac_mtl_configuration(struct stmmac_priv * priv)2576 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2577 {
2578 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2579 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2580
2581 if (tx_queues_count > 1)
2582 stmmac_set_tx_queue_weight(priv);
2583
2584 /* Configure MTL RX algorithms */
2585 if (rx_queues_count > 1)
2586 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2587 priv->plat->rx_sched_algorithm);
2588
2589 /* Configure MTL TX algorithms */
2590 if (tx_queues_count > 1)
2591 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2592 priv->plat->tx_sched_algorithm);
2593
2594 /* Configure CBS in AVB TX queues */
2595 if (tx_queues_count > 1)
2596 stmmac_configure_cbs(priv);
2597
2598 /* Map RX MTL to DMA channels */
2599 stmmac_rx_queue_dma_chan_map(priv);
2600
2601 /* Enable MAC RX Queues */
2602 stmmac_mac_enable_rx_queues(priv);
2603
2604 /* Set RX priorities */
2605 if (rx_queues_count > 1)
2606 stmmac_mac_config_rx_queues_prio(priv);
2607
2608 /* Set TX priorities */
2609 if (tx_queues_count > 1)
2610 stmmac_mac_config_tx_queues_prio(priv);
2611
2612 /* Set RX routing */
2613 if (rx_queues_count > 1)
2614 stmmac_mac_config_rx_queues_routing(priv);
2615
2616 /* Receive Side Scaling */
2617 if (rx_queues_count > 1)
2618 stmmac_mac_config_rss(priv);
2619 }
2620
stmmac_safety_feat_configuration(struct stmmac_priv * priv)2621 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2622 {
2623 if (priv->dma_cap.asp) {
2624 netdev_info(priv->dev, "Enabling Safety Features\n");
2625 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2626 } else {
2627 netdev_info(priv->dev, "No Safety Features support found\n");
2628 }
2629 }
2630
2631 /**
2632 * stmmac_hw_setup - setup mac in a usable state.
2633 * @dev : pointer to the device structure.
2634 * @init_ptp: initialize PTP if set
2635 * Description:
2636 * this is the main function to setup the HW in a usable state because the
2637 * dma engine is reset, the core registers are configured (e.g. AXI,
2638 * Checksum features, timers). The DMA is ready to start receiving and
2639 * transmitting.
2640 * Return value:
2641 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2642 * file on failure.
2643 */
stmmac_hw_setup(struct net_device * dev,bool init_ptp)2644 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2645 {
2646 struct stmmac_priv *priv = netdev_priv(dev);
2647 u32 rx_cnt = priv->plat->rx_queues_to_use;
2648 u32 tx_cnt = priv->plat->tx_queues_to_use;
2649 u32 chan;
2650 int ret;
2651
2652 /* DMA initialization and SW reset */
2653 ret = stmmac_init_dma_engine(priv);
2654 if (ret < 0) {
2655 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2656 __func__);
2657 return ret;
2658 }
2659
2660 /* Copy the MAC addr into the HW */
2661 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2662
2663 /* PS and related bits will be programmed according to the speed */
2664 if (priv->hw->pcs) {
2665 int speed = priv->plat->mac_port_sel_speed;
2666
2667 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2668 (speed == SPEED_1000)) {
2669 priv->hw->ps = speed;
2670 } else {
2671 dev_warn(priv->device, "invalid port speed\n");
2672 priv->hw->ps = 0;
2673 }
2674 }
2675
2676 /* Initialize the MAC Core */
2677 stmmac_core_init(priv, priv->hw, dev);
2678
2679 /* Initialize MTL*/
2680 stmmac_mtl_configuration(priv);
2681
2682 /* Initialize Safety Features */
2683 stmmac_safety_feat_configuration(priv);
2684
2685 ret = stmmac_rx_ipc(priv, priv->hw);
2686 if (!ret) {
2687 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2688 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2689 priv->hw->rx_csum = 0;
2690 }
2691
2692 /* Enable the MAC Rx/Tx */
2693 stmmac_mac_set(priv, priv->ioaddr, true);
2694
2695 /* Set the HW DMA mode and the COE */
2696 stmmac_dma_operation_mode(priv);
2697
2698 stmmac_mmc_setup(priv);
2699
2700 if (init_ptp) {
2701 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2702 if (ret < 0)
2703 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2704
2705 ret = stmmac_init_ptp(priv);
2706 if (ret == -EOPNOTSUPP)
2707 netdev_warn(priv->dev, "PTP not supported by HW\n");
2708 else if (ret)
2709 netdev_warn(priv->dev, "PTP init failed\n");
2710 }
2711
2712 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
2713
2714 /* Convert the timer from msec to usec */
2715 if (!priv->tx_lpi_timer)
2716 priv->tx_lpi_timer = eee_timer * 1000;
2717
2718 if (priv->use_riwt) {
2719 if (!priv->rx_riwt)
2720 priv->rx_riwt = DEF_DMA_RIWT;
2721
2722 ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2723 }
2724
2725 if (priv->hw->pcs)
2726 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2727
2728 /* set TX and RX rings length */
2729 stmmac_set_rings_length(priv);
2730
2731 /* Enable TSO */
2732 if (priv->tso) {
2733 for (chan = 0; chan < tx_cnt; chan++) {
2734 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2735
2736 /* TSO and TBS cannot co-exist */
2737 if (tx_q->tbs & STMMAC_TBS_AVAIL)
2738 continue;
2739
2740 stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2741 }
2742 }
2743
2744 /* Enable Split Header */
2745 if (priv->sph && priv->hw->rx_csum) {
2746 for (chan = 0; chan < rx_cnt; chan++)
2747 stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2748 }
2749
2750 /* VLAN Tag Insertion */
2751 if (priv->dma_cap.vlins)
2752 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2753
2754 /* TBS */
2755 for (chan = 0; chan < tx_cnt; chan++) {
2756 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2757 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2758
2759 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2760 }
2761
2762 /* Configure real RX and TX queues */
2763 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
2764 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
2765
2766 /* Start the ball rolling... */
2767 stmmac_start_all_dma(priv);
2768
2769 return 0;
2770 }
2771
stmmac_hw_teardown(struct net_device * dev)2772 static void stmmac_hw_teardown(struct net_device *dev)
2773 {
2774 struct stmmac_priv *priv = netdev_priv(dev);
2775
2776 clk_disable_unprepare(priv->plat->clk_ptp_ref);
2777 }
2778
2779 /**
2780 * stmmac_open - open entry point of the driver
2781 * @dev : pointer to the device structure.
2782 * Description:
2783 * This function is the open entry point of the driver.
2784 * Return value:
2785 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2786 * file on failure.
2787 */
stmmac_open(struct net_device * dev)2788 static int stmmac_open(struct net_device *dev)
2789 {
2790 struct stmmac_priv *priv = netdev_priv(dev);
2791 int bfsize = 0;
2792 u32 chan;
2793 int ret;
2794
2795 if (priv->hw->pcs != STMMAC_PCS_TBI &&
2796 priv->hw->pcs != STMMAC_PCS_RTBI &&
2797 priv->hw->xpcs == NULL) {
2798 ret = stmmac_init_phy(dev);
2799 if (ret) {
2800 netdev_err(priv->dev,
2801 "%s: Cannot attach to PHY (error: %d)\n",
2802 __func__, ret);
2803 return ret;
2804 }
2805 }
2806
2807 /* Extra statistics */
2808 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2809 priv->xstats.threshold = tc;
2810
2811 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2812 if (bfsize < 0)
2813 bfsize = 0;
2814
2815 if (bfsize < BUF_SIZE_16KiB)
2816 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2817
2818 priv->dma_buf_sz = bfsize;
2819 buf_sz = bfsize;
2820
2821 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2822
2823 if (!priv->dma_tx_size)
2824 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
2825 if (!priv->dma_rx_size)
2826 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
2827
2828 /* Earlier check for TBS */
2829 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2830 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2831 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2832
2833 /* Setup per-TXQ tbs flag before TX descriptor alloc */
2834 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2835 }
2836
2837 ret = alloc_dma_desc_resources(priv);
2838 if (ret < 0) {
2839 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2840 __func__);
2841 goto dma_desc_error;
2842 }
2843
2844 ret = init_dma_desc_rings(dev, GFP_KERNEL);
2845 if (ret < 0) {
2846 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2847 __func__);
2848 goto init_error;
2849 }
2850
2851 ret = stmmac_hw_setup(dev, true);
2852 if (ret < 0) {
2853 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2854 goto init_error;
2855 }
2856
2857 stmmac_init_coalesce(priv);
2858
2859 phylink_start(priv->phylink);
2860 /* We may have called phylink_speed_down before */
2861 phylink_speed_up(priv->phylink);
2862
2863 /* Request the IRQ lines */
2864 ret = request_irq(dev->irq, stmmac_interrupt,
2865 IRQF_SHARED, dev->name, dev);
2866 if (unlikely(ret < 0)) {
2867 netdev_err(priv->dev,
2868 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2869 __func__, dev->irq, ret);
2870 goto irq_error;
2871 }
2872
2873 /* Request the Wake IRQ in case of another line is used for WoL */
2874 if (priv->wol_irq != dev->irq) {
2875 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2876 IRQF_SHARED, dev->name, dev);
2877 if (unlikely(ret < 0)) {
2878 netdev_err(priv->dev,
2879 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2880 __func__, priv->wol_irq, ret);
2881 goto wolirq_error;
2882 }
2883 }
2884
2885 /* Request the IRQ lines */
2886 if (priv->lpi_irq > 0) {
2887 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2888 dev->name, dev);
2889 if (unlikely(ret < 0)) {
2890 netdev_err(priv->dev,
2891 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2892 __func__, priv->lpi_irq, ret);
2893 goto lpiirq_error;
2894 }
2895 }
2896
2897 stmmac_enable_all_queues(priv);
2898 netif_tx_start_all_queues(priv->dev);
2899
2900 return 0;
2901
2902 lpiirq_error:
2903 if (priv->wol_irq != dev->irq)
2904 free_irq(priv->wol_irq, dev);
2905 wolirq_error:
2906 free_irq(dev->irq, dev);
2907 irq_error:
2908 phylink_stop(priv->phylink);
2909
2910 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2911 del_timer_sync(&priv->tx_queue[chan].txtimer);
2912
2913 stmmac_hw_teardown(dev);
2914 init_error:
2915 free_dma_desc_resources(priv);
2916 dma_desc_error:
2917 phylink_disconnect_phy(priv->phylink);
2918 return ret;
2919 }
2920
2921 /**
2922 * stmmac_release - close entry point of the driver
2923 * @dev : device pointer.
2924 * Description:
2925 * This is the stop entry point of the driver.
2926 */
stmmac_release(struct net_device * dev)2927 static int stmmac_release(struct net_device *dev)
2928 {
2929 struct stmmac_priv *priv = netdev_priv(dev);
2930 u32 chan;
2931
2932 if (device_may_wakeup(priv->device))
2933 phylink_speed_down(priv->phylink, false);
2934 /* Stop and disconnect the PHY */
2935 phylink_stop(priv->phylink);
2936 phylink_disconnect_phy(priv->phylink);
2937
2938 stmmac_disable_all_queues(priv);
2939
2940 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2941 del_timer_sync(&priv->tx_queue[chan].txtimer);
2942
2943 /* Free the IRQ lines */
2944 free_irq(dev->irq, dev);
2945 if (priv->wol_irq != dev->irq)
2946 free_irq(priv->wol_irq, dev);
2947 if (priv->lpi_irq > 0)
2948 free_irq(priv->lpi_irq, dev);
2949
2950 if (priv->eee_enabled) {
2951 priv->tx_path_in_lpi_mode = false;
2952 del_timer_sync(&priv->eee_ctrl_timer);
2953 }
2954
2955 /* Stop TX/RX DMA and clear the descriptors */
2956 stmmac_stop_all_dma(priv);
2957
2958 /* Release and free the Rx/Tx resources */
2959 free_dma_desc_resources(priv);
2960
2961 /* Disable the MAC Rx/Tx */
2962 stmmac_mac_set(priv, priv->ioaddr, false);
2963
2964 netif_carrier_off(dev);
2965
2966 stmmac_release_ptp(priv);
2967
2968 return 0;
2969 }
2970
stmmac_vlan_insert(struct stmmac_priv * priv,struct sk_buff * skb,struct stmmac_tx_queue * tx_q)2971 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2972 struct stmmac_tx_queue *tx_q)
2973 {
2974 u16 tag = 0x0, inner_tag = 0x0;
2975 u32 inner_type = 0x0;
2976 struct dma_desc *p;
2977
2978 if (!priv->dma_cap.vlins)
2979 return false;
2980 if (!skb_vlan_tag_present(skb))
2981 return false;
2982 if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2983 inner_tag = skb_vlan_tag_get(skb);
2984 inner_type = STMMAC_VLAN_INSERT;
2985 }
2986
2987 tag = skb_vlan_tag_get(skb);
2988
2989 if (tx_q->tbs & STMMAC_TBS_AVAIL)
2990 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
2991 else
2992 p = &tx_q->dma_tx[tx_q->cur_tx];
2993
2994 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2995 return false;
2996
2997 stmmac_set_tx_owner(priv, p);
2998 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2999 return true;
3000 }
3001
3002 /**
3003 * stmmac_tso_allocator - close entry point of the driver
3004 * @priv: driver private structure
3005 * @des: buffer start address
3006 * @total_len: total length to fill in descriptors
3007 * @last_segment: condition for the last descriptor
3008 * @queue: TX queue index
3009 * Description:
3010 * This function fills descriptor and request new descriptors according to
3011 * buffer length to fill
3012 */
stmmac_tso_allocator(struct stmmac_priv * priv,dma_addr_t des,int total_len,bool last_segment,u32 queue)3013 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3014 int total_len, bool last_segment, u32 queue)
3015 {
3016 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3017 struct dma_desc *desc;
3018 u32 buff_size;
3019 int tmp_len;
3020
3021 tmp_len = total_len;
3022
3023 while (tmp_len > 0) {
3024 dma_addr_t curr_addr;
3025
3026 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3027 priv->dma_tx_size);
3028 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3029
3030 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3031 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3032 else
3033 desc = &tx_q->dma_tx[tx_q->cur_tx];
3034
3035 curr_addr = des + (total_len - tmp_len);
3036 if (priv->dma_cap.addr64 <= 32)
3037 desc->des0 = cpu_to_le32(curr_addr);
3038 else
3039 stmmac_set_desc_addr(priv, desc, curr_addr);
3040
3041 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3042 TSO_MAX_BUFF_SIZE : tmp_len;
3043
3044 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3045 0, 1,
3046 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3047 0, 0);
3048
3049 tmp_len -= TSO_MAX_BUFF_SIZE;
3050 }
3051 }
3052
3053 /**
3054 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3055 * @skb : the socket buffer
3056 * @dev : device pointer
3057 * Description: this is the transmit function that is called on TSO frames
3058 * (support available on GMAC4 and newer chips).
3059 * Diagram below show the ring programming in case of TSO frames:
3060 *
3061 * First Descriptor
3062 * --------
3063 * | DES0 |---> buffer1 = L2/L3/L4 header
3064 * | DES1 |---> TCP Payload (can continue on next descr...)
3065 * | DES2 |---> buffer 1 and 2 len
3066 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3067 * --------
3068 * |
3069 * ...
3070 * |
3071 * --------
3072 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
3073 * | DES1 | --|
3074 * | DES2 | --> buffer 1 and 2 len
3075 * | DES3 |
3076 * --------
3077 *
3078 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3079 */
stmmac_tso_xmit(struct sk_buff * skb,struct net_device * dev)3080 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3081 {
3082 struct dma_desc *desc, *first, *mss_desc = NULL;
3083 struct stmmac_priv *priv = netdev_priv(dev);
3084 int desc_size, tmp_pay_len = 0, first_tx;
3085 int nfrags = skb_shinfo(skb)->nr_frags;
3086 u32 queue = skb_get_queue_mapping(skb);
3087 unsigned int first_entry, tx_packets;
3088 struct stmmac_tx_queue *tx_q;
3089 bool has_vlan, set_ic;
3090 u8 proto_hdr_len, hdr;
3091 u32 pay_len, mss;
3092 dma_addr_t des;
3093 int i;
3094
3095 tx_q = &priv->tx_queue[queue];
3096 first_tx = tx_q->cur_tx;
3097
3098 /* Compute header lengths */
3099 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3100 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3101 hdr = sizeof(struct udphdr);
3102 } else {
3103 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3104 hdr = tcp_hdrlen(skb);
3105 }
3106
3107 /* Desc availability based on threshold should be enough safe */
3108 if (unlikely(stmmac_tx_avail(priv, queue) <
3109 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3110 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3111 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3112 queue));
3113 /* This is a hard error, log it. */
3114 netdev_err(priv->dev,
3115 "%s: Tx Ring full when queue awake\n",
3116 __func__);
3117 }
3118 return NETDEV_TX_BUSY;
3119 }
3120
3121 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3122
3123 mss = skb_shinfo(skb)->gso_size;
3124
3125 /* set new MSS value if needed */
3126 if (mss != tx_q->mss) {
3127 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3128 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3129 else
3130 mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3131
3132 stmmac_set_mss(priv, mss_desc, mss);
3133 tx_q->mss = mss;
3134 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3135 priv->dma_tx_size);
3136 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3137 }
3138
3139 if (netif_msg_tx_queued(priv)) {
3140 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3141 __func__, hdr, proto_hdr_len, pay_len, mss);
3142 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3143 skb->data_len);
3144 }
3145
3146 /* Check if VLAN can be inserted by HW */
3147 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3148
3149 first_entry = tx_q->cur_tx;
3150 WARN_ON(tx_q->tx_skbuff[first_entry]);
3151
3152 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3153 desc = &tx_q->dma_entx[first_entry].basic;
3154 else
3155 desc = &tx_q->dma_tx[first_entry];
3156 first = desc;
3157
3158 if (has_vlan)
3159 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3160
3161 /* first descriptor: fill Headers on Buf1 */
3162 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3163 DMA_TO_DEVICE);
3164 if (dma_mapping_error(priv->device, des))
3165 goto dma_map_err;
3166
3167 tx_q->tx_skbuff_dma[first_entry].buf = des;
3168 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3169
3170 if (priv->dma_cap.addr64 <= 32) {
3171 first->des0 = cpu_to_le32(des);
3172
3173 /* Fill start of payload in buff2 of first descriptor */
3174 if (pay_len)
3175 first->des1 = cpu_to_le32(des + proto_hdr_len);
3176
3177 /* If needed take extra descriptors to fill the remaining payload */
3178 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3179 } else {
3180 stmmac_set_desc_addr(priv, first, des);
3181 tmp_pay_len = pay_len;
3182 des += proto_hdr_len;
3183 pay_len = 0;
3184 }
3185
3186 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3187
3188 /* Prepare fragments */
3189 for (i = 0; i < nfrags; i++) {
3190 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3191
3192 des = skb_frag_dma_map(priv->device, frag, 0,
3193 skb_frag_size(frag),
3194 DMA_TO_DEVICE);
3195 if (dma_mapping_error(priv->device, des))
3196 goto dma_map_err;
3197
3198 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3199 (i == nfrags - 1), queue);
3200
3201 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3202 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3203 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3204 }
3205
3206 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3207
3208 /* Only the last descriptor gets to point to the skb. */
3209 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3210
3211 /* Manage tx mitigation */
3212 tx_packets = (tx_q->cur_tx + 1) - first_tx;
3213 tx_q->tx_count_frames += tx_packets;
3214
3215 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3216 set_ic = true;
3217 else if (!priv->tx_coal_frames)
3218 set_ic = false;
3219 else if (tx_packets > priv->tx_coal_frames)
3220 set_ic = true;
3221 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3222 set_ic = true;
3223 else
3224 set_ic = false;
3225
3226 if (set_ic) {
3227 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3228 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3229 else
3230 desc = &tx_q->dma_tx[tx_q->cur_tx];
3231
3232 tx_q->tx_count_frames = 0;
3233 stmmac_set_tx_ic(priv, desc);
3234 priv->xstats.tx_set_ic_bit++;
3235 }
3236
3237 /* We've used all descriptors we need for this skb, however,
3238 * advance cur_tx so that it references a fresh descriptor.
3239 * ndo_start_xmit will fill this descriptor the next time it's
3240 * called and stmmac_tx_clean may clean up to this descriptor.
3241 */
3242 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3243
3244 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3245 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3246 __func__);
3247 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3248 }
3249
3250 dev->stats.tx_bytes += skb->len;
3251 priv->xstats.tx_tso_frames++;
3252 priv->xstats.tx_tso_nfrags += nfrags;
3253
3254 if (priv->sarc_type)
3255 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3256
3257 skb_tx_timestamp(skb);
3258
3259 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3260 priv->hwts_tx_en)) {
3261 /* declare that device is doing timestamping */
3262 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3263 stmmac_enable_tx_timestamp(priv, first);
3264 }
3265
3266 /* Complete the first descriptor before granting the DMA */
3267 stmmac_prepare_tso_tx_desc(priv, first, 1,
3268 proto_hdr_len,
3269 pay_len,
3270 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3271 hdr / 4, (skb->len - proto_hdr_len));
3272
3273 /* If context desc is used to change MSS */
3274 if (mss_desc) {
3275 /* Make sure that first descriptor has been completely
3276 * written, including its own bit. This is because MSS is
3277 * actually before first descriptor, so we need to make
3278 * sure that MSS's own bit is the last thing written.
3279 */
3280 dma_wmb();
3281 stmmac_set_tx_owner(priv, mss_desc);
3282 }
3283
3284 /* The own bit must be the latest setting done when prepare the
3285 * descriptor and then barrier is needed to make sure that
3286 * all is coherent before granting the DMA engine.
3287 */
3288 wmb();
3289
3290 if (netif_msg_pktdata(priv)) {
3291 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3292 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3293 tx_q->cur_tx, first, nfrags);
3294 pr_info(">>> frame to be transmitted: ");
3295 print_pkt(skb->data, skb_headlen(skb));
3296 }
3297
3298 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3299
3300 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3301 desc_size = sizeof(struct dma_edesc);
3302 else
3303 desc_size = sizeof(struct dma_desc);
3304
3305 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3306 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3307 stmmac_tx_timer_arm(priv, queue);
3308
3309 return NETDEV_TX_OK;
3310
3311 dma_map_err:
3312 dev_err(priv->device, "Tx dma map failed\n");
3313 dev_kfree_skb(skb);
3314 priv->dev->stats.tx_dropped++;
3315 return NETDEV_TX_OK;
3316 }
3317
3318 /**
3319 * stmmac_xmit - Tx entry point of the driver
3320 * @skb : the socket buffer
3321 * @dev : device pointer
3322 * Description : this is the tx entry point of the driver.
3323 * It programs the chain or the ring and supports oversized frames
3324 * and SG feature.
3325 */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)3326 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3327 {
3328 unsigned int first_entry, tx_packets, enh_desc;
3329 struct stmmac_priv *priv = netdev_priv(dev);
3330 unsigned int nopaged_len = skb_headlen(skb);
3331 int i, csum_insertion = 0, is_jumbo = 0;
3332 u32 queue = skb_get_queue_mapping(skb);
3333 int nfrags = skb_shinfo(skb)->nr_frags;
3334 int gso = skb_shinfo(skb)->gso_type;
3335 struct dma_edesc *tbs_desc = NULL;
3336 int entry, desc_size, first_tx;
3337 struct dma_desc *desc, *first;
3338 struct stmmac_tx_queue *tx_q;
3339 bool has_vlan, set_ic;
3340 dma_addr_t des;
3341
3342 tx_q = &priv->tx_queue[queue];
3343 first_tx = tx_q->cur_tx;
3344
3345 if (priv->tx_path_in_lpi_mode)
3346 stmmac_disable_eee_mode(priv);
3347
3348 /* Manage oversized TCP frames for GMAC4 device */
3349 if (skb_is_gso(skb) && priv->tso) {
3350 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3351 return stmmac_tso_xmit(skb, dev);
3352 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3353 return stmmac_tso_xmit(skb, dev);
3354 }
3355
3356 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3357 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3358 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3359 queue));
3360 /* This is a hard error, log it. */
3361 netdev_err(priv->dev,
3362 "%s: Tx Ring full when queue awake\n",
3363 __func__);
3364 }
3365 return NETDEV_TX_BUSY;
3366 }
3367
3368 /* Check if VLAN can be inserted by HW */
3369 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3370
3371 entry = tx_q->cur_tx;
3372 first_entry = entry;
3373 WARN_ON(tx_q->tx_skbuff[first_entry]);
3374
3375 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3376
3377 if (likely(priv->extend_desc))
3378 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3379 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3380 desc = &tx_q->dma_entx[entry].basic;
3381 else
3382 desc = tx_q->dma_tx + entry;
3383
3384 first = desc;
3385
3386 if (has_vlan)
3387 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3388
3389 enh_desc = priv->plat->enh_desc;
3390 /* To program the descriptors according to the size of the frame */
3391 if (enh_desc)
3392 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3393
3394 if (unlikely(is_jumbo)) {
3395 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3396 if (unlikely(entry < 0) && (entry != -EINVAL))
3397 goto dma_map_err;
3398 }
3399
3400 for (i = 0; i < nfrags; i++) {
3401 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3402 int len = skb_frag_size(frag);
3403 bool last_segment = (i == (nfrags - 1));
3404
3405 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3406 WARN_ON(tx_q->tx_skbuff[entry]);
3407
3408 if (likely(priv->extend_desc))
3409 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3410 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3411 desc = &tx_q->dma_entx[entry].basic;
3412 else
3413 desc = tx_q->dma_tx + entry;
3414
3415 des = skb_frag_dma_map(priv->device, frag, 0, len,
3416 DMA_TO_DEVICE);
3417 if (dma_mapping_error(priv->device, des))
3418 goto dma_map_err; /* should reuse desc w/o issues */
3419
3420 tx_q->tx_skbuff_dma[entry].buf = des;
3421
3422 stmmac_set_desc_addr(priv, desc, des);
3423
3424 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3425 tx_q->tx_skbuff_dma[entry].len = len;
3426 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3427
3428 /* Prepare the descriptor and set the own bit too */
3429 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3430 priv->mode, 1, last_segment, skb->len);
3431 }
3432
3433 /* Only the last descriptor gets to point to the skb. */
3434 tx_q->tx_skbuff[entry] = skb;
3435
3436 /* According to the coalesce parameter the IC bit for the latest
3437 * segment is reset and the timer re-started to clean the tx status.
3438 * This approach takes care about the fragments: desc is the first
3439 * element in case of no SG.
3440 */
3441 tx_packets = (entry + 1) - first_tx;
3442 tx_q->tx_count_frames += tx_packets;
3443
3444 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3445 set_ic = true;
3446 else if (!priv->tx_coal_frames)
3447 set_ic = false;
3448 else if (tx_packets > priv->tx_coal_frames)
3449 set_ic = true;
3450 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3451 set_ic = true;
3452 else
3453 set_ic = false;
3454
3455 if (set_ic) {
3456 if (likely(priv->extend_desc))
3457 desc = &tx_q->dma_etx[entry].basic;
3458 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3459 desc = &tx_q->dma_entx[entry].basic;
3460 else
3461 desc = &tx_q->dma_tx[entry];
3462
3463 tx_q->tx_count_frames = 0;
3464 stmmac_set_tx_ic(priv, desc);
3465 priv->xstats.tx_set_ic_bit++;
3466 }
3467
3468 /* We've used all descriptors we need for this skb, however,
3469 * advance cur_tx so that it references a fresh descriptor.
3470 * ndo_start_xmit will fill this descriptor the next time it's
3471 * called and stmmac_tx_clean may clean up to this descriptor.
3472 */
3473 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3474 tx_q->cur_tx = entry;
3475
3476 if (netif_msg_pktdata(priv)) {
3477 netdev_dbg(priv->dev,
3478 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3479 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3480 entry, first, nfrags);
3481
3482 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3483 print_pkt(skb->data, skb->len);
3484 }
3485
3486 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3487 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3488 __func__);
3489 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3490 }
3491
3492 dev->stats.tx_bytes += skb->len;
3493
3494 if (priv->sarc_type)
3495 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3496
3497 skb_tx_timestamp(skb);
3498
3499 /* Ready to fill the first descriptor and set the OWN bit w/o any
3500 * problems because all the descriptors are actually ready to be
3501 * passed to the DMA engine.
3502 */
3503 if (likely(!is_jumbo)) {
3504 bool last_segment = (nfrags == 0);
3505
3506 des = dma_map_single(priv->device, skb->data,
3507 nopaged_len, DMA_TO_DEVICE);
3508 if (dma_mapping_error(priv->device, des))
3509 goto dma_map_err;
3510
3511 tx_q->tx_skbuff_dma[first_entry].buf = des;
3512
3513 stmmac_set_desc_addr(priv, first, des);
3514
3515 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3516 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3517
3518 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3519 priv->hwts_tx_en)) {
3520 /* declare that device is doing timestamping */
3521 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3522 stmmac_enable_tx_timestamp(priv, first);
3523 }
3524
3525 /* Prepare the first descriptor setting the OWN bit too */
3526 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3527 csum_insertion, priv->mode, 0, last_segment,
3528 skb->len);
3529 }
3530
3531 if (tx_q->tbs & STMMAC_TBS_EN) {
3532 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3533
3534 tbs_desc = &tx_q->dma_entx[first_entry];
3535 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3536 }
3537
3538 stmmac_set_tx_owner(priv, first);
3539
3540 /* The own bit must be the latest setting done when prepare the
3541 * descriptor and then barrier is needed to make sure that
3542 * all is coherent before granting the DMA engine.
3543 */
3544 wmb();
3545
3546 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3547
3548 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3549
3550 if (likely(priv->extend_desc))
3551 desc_size = sizeof(struct dma_extended_desc);
3552 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3553 desc_size = sizeof(struct dma_edesc);
3554 else
3555 desc_size = sizeof(struct dma_desc);
3556
3557 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3558 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3559 stmmac_tx_timer_arm(priv, queue);
3560
3561 return NETDEV_TX_OK;
3562
3563 dma_map_err:
3564 netdev_err(priv->dev, "Tx DMA map failed\n");
3565 dev_kfree_skb(skb);
3566 priv->dev->stats.tx_dropped++;
3567 return NETDEV_TX_OK;
3568 }
3569
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)3570 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3571 {
3572 struct vlan_ethhdr *veth;
3573 __be16 vlan_proto;
3574 u16 vlanid;
3575
3576 veth = (struct vlan_ethhdr *)skb->data;
3577 vlan_proto = veth->h_vlan_proto;
3578
3579 if ((vlan_proto == htons(ETH_P_8021Q) &&
3580 dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3581 (vlan_proto == htons(ETH_P_8021AD) &&
3582 dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3583 /* pop the vlan tag */
3584 vlanid = ntohs(veth->h_vlan_TCI);
3585 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3586 skb_pull(skb, VLAN_HLEN);
3587 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3588 }
3589 }
3590
3591 /**
3592 * stmmac_rx_refill - refill used skb preallocated buffers
3593 * @priv: driver private structure
3594 * @queue: RX queue index
3595 * Description : this is to reallocate the skb for the reception process
3596 * that is based on zero-copy.
3597 */
stmmac_rx_refill(struct stmmac_priv * priv,u32 queue)3598 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3599 {
3600 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3601 int len, dirty = stmmac_rx_dirty(priv, queue);
3602 unsigned int entry = rx_q->dirty_rx;
3603
3604 len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3605
3606 while (dirty-- > 0) {
3607 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3608 struct dma_desc *p;
3609 bool use_rx_wd;
3610
3611 if (priv->extend_desc)
3612 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3613 else
3614 p = rx_q->dma_rx + entry;
3615
3616 if (!buf->page) {
3617 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3618 if (!buf->page)
3619 break;
3620 }
3621
3622 if (priv->sph && !buf->sec_page) {
3623 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3624 if (!buf->sec_page)
3625 break;
3626
3627 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3628
3629 dma_sync_single_for_device(priv->device, buf->sec_addr,
3630 len, DMA_FROM_DEVICE);
3631 }
3632
3633 buf->addr = page_pool_get_dma_addr(buf->page);
3634
3635 /* Sync whole allocation to device. This will invalidate old
3636 * data.
3637 */
3638 dma_sync_single_for_device(priv->device, buf->addr, len,
3639 DMA_FROM_DEVICE);
3640
3641 stmmac_set_desc_addr(priv, p, buf->addr);
3642 if (priv->sph)
3643 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
3644 else
3645 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
3646 stmmac_refill_desc3(priv, rx_q, p);
3647
3648 rx_q->rx_count_frames++;
3649 rx_q->rx_count_frames += priv->rx_coal_frames;
3650 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3651 rx_q->rx_count_frames = 0;
3652
3653 use_rx_wd = !priv->rx_coal_frames;
3654 use_rx_wd |= rx_q->rx_count_frames > 0;
3655 if (!priv->use_riwt)
3656 use_rx_wd = false;
3657
3658 dma_wmb();
3659 stmmac_set_rx_owner(priv, p, use_rx_wd);
3660
3661 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
3662 }
3663 rx_q->dirty_rx = entry;
3664 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3665 (rx_q->dirty_rx * sizeof(struct dma_desc));
3666 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3667 }
3668
stmmac_rx_buf1_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)3669 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3670 struct dma_desc *p,
3671 int status, unsigned int len)
3672 {
3673 unsigned int plen = 0, hlen = 0;
3674 int coe = priv->hw->rx_csum;
3675
3676 /* Not first descriptor, buffer is always zero */
3677 if (priv->sph && len)
3678 return 0;
3679
3680 /* First descriptor, get split header length */
3681 stmmac_get_rx_header_len(priv, p, &hlen);
3682 if (priv->sph && hlen) {
3683 priv->xstats.rx_split_hdr_pkt_n++;
3684 return hlen;
3685 }
3686
3687 /* First descriptor, not last descriptor and not split header */
3688 if (status & rx_not_ls)
3689 return priv->dma_buf_sz;
3690
3691 plen = stmmac_get_rx_frame_len(priv, p, coe);
3692
3693 /* First descriptor and last descriptor and not split header */
3694 return min_t(unsigned int, priv->dma_buf_sz, plen);
3695 }
3696
stmmac_rx_buf2_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)3697 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3698 struct dma_desc *p,
3699 int status, unsigned int len)
3700 {
3701 int coe = priv->hw->rx_csum;
3702 unsigned int plen = 0;
3703
3704 /* Not split header, buffer is not available */
3705 if (!priv->sph)
3706 return 0;
3707
3708 /* Not last descriptor */
3709 if (status & rx_not_ls)
3710 return priv->dma_buf_sz;
3711
3712 plen = stmmac_get_rx_frame_len(priv, p, coe);
3713
3714 /* Last descriptor */
3715 return plen - len;
3716 }
3717
3718 /**
3719 * stmmac_rx - manage the receive process
3720 * @priv: driver private structure
3721 * @limit: napi bugget
3722 * @queue: RX queue index.
3723 * Description : this the function called by the napi poll method.
3724 * It gets all the frames inside the ring.
3725 */
stmmac_rx(struct stmmac_priv * priv,int limit,u32 queue)3726 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3727 {
3728 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3729 struct stmmac_channel *ch = &priv->channel[queue];
3730 unsigned int count = 0, error = 0, len = 0;
3731 int status = 0, coe = priv->hw->rx_csum;
3732 unsigned int next_entry = rx_q->cur_rx;
3733 unsigned int desc_size;
3734 struct sk_buff *skb = NULL;
3735
3736 if (netif_msg_rx_status(priv)) {
3737 void *rx_head;
3738
3739 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3740 if (priv->extend_desc) {
3741 rx_head = (void *)rx_q->dma_erx;
3742 desc_size = sizeof(struct dma_extended_desc);
3743 } else {
3744 rx_head = (void *)rx_q->dma_rx;
3745 desc_size = sizeof(struct dma_desc);
3746 }
3747
3748 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
3749 rx_q->dma_rx_phy, desc_size);
3750 }
3751 while (count < limit) {
3752 unsigned int buf1_len = 0, buf2_len = 0;
3753 enum pkt_hash_types hash_type;
3754 struct stmmac_rx_buffer *buf;
3755 struct dma_desc *np, *p;
3756 int entry;
3757 u32 hash;
3758
3759 if (!count && rx_q->state_saved) {
3760 skb = rx_q->state.skb;
3761 error = rx_q->state.error;
3762 len = rx_q->state.len;
3763 } else {
3764 rx_q->state_saved = false;
3765 skb = NULL;
3766 error = 0;
3767 len = 0;
3768 }
3769
3770 if (count >= limit)
3771 break;
3772
3773 read_again:
3774 buf1_len = 0;
3775 buf2_len = 0;
3776 entry = next_entry;
3777 buf = &rx_q->buf_pool[entry];
3778
3779 if (priv->extend_desc)
3780 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3781 else
3782 p = rx_q->dma_rx + entry;
3783
3784 /* read the status of the incoming frame */
3785 status = stmmac_rx_status(priv, &priv->dev->stats,
3786 &priv->xstats, p);
3787 /* check if managed by the DMA otherwise go ahead */
3788 if (unlikely(status & dma_own))
3789 break;
3790
3791 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
3792 priv->dma_rx_size);
3793 next_entry = rx_q->cur_rx;
3794
3795 if (priv->extend_desc)
3796 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3797 else
3798 np = rx_q->dma_rx + next_entry;
3799
3800 prefetch(np);
3801
3802 if (priv->extend_desc)
3803 stmmac_rx_extended_status(priv, &priv->dev->stats,
3804 &priv->xstats, rx_q->dma_erx + entry);
3805 if (unlikely(status == discard_frame)) {
3806 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3807 buf->page = NULL;
3808 error = 1;
3809 if (!priv->hwts_rx_en)
3810 priv->dev->stats.rx_errors++;
3811 }
3812
3813 if (unlikely(error && (status & rx_not_ls)))
3814 goto read_again;
3815 if (unlikely(error)) {
3816 dev_kfree_skb(skb);
3817 skb = NULL;
3818 count++;
3819 continue;
3820 }
3821
3822 /* Buffer is good. Go on. */
3823
3824 prefetch(page_address(buf->page));
3825 if (buf->sec_page)
3826 prefetch(page_address(buf->sec_page));
3827
3828 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3829 len += buf1_len;
3830 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3831 len += buf2_len;
3832
3833 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3834 * Type frames (LLC/LLC-SNAP)
3835 *
3836 * llc_snap is never checked in GMAC >= 4, so this ACS
3837 * feature is always disabled and packets need to be
3838 * stripped manually.
3839 */
3840 if (likely(!(status & rx_not_ls)) &&
3841 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3842 unlikely(status != llc_snap))) {
3843 if (buf2_len)
3844 buf2_len -= ETH_FCS_LEN;
3845 else
3846 buf1_len -= ETH_FCS_LEN;
3847
3848 len -= ETH_FCS_LEN;
3849 }
3850
3851 if (!skb) {
3852 skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3853 if (!skb) {
3854 priv->dev->stats.rx_dropped++;
3855 count++;
3856 goto drain_data;
3857 }
3858
3859 dma_sync_single_for_cpu(priv->device, buf->addr,
3860 buf1_len, DMA_FROM_DEVICE);
3861 skb_copy_to_linear_data(skb, page_address(buf->page),
3862 buf1_len);
3863 skb_put(skb, buf1_len);
3864
3865 /* Data payload copied into SKB, page ready for recycle */
3866 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3867 buf->page = NULL;
3868 } else if (buf1_len) {
3869 dma_sync_single_for_cpu(priv->device, buf->addr,
3870 buf1_len, DMA_FROM_DEVICE);
3871 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3872 buf->page, 0, buf1_len,
3873 priv->dma_buf_sz);
3874
3875 /* Data payload appended into SKB */
3876 page_pool_release_page(rx_q->page_pool, buf->page);
3877 buf->page = NULL;
3878 }
3879
3880 if (buf2_len) {
3881 dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3882 buf2_len, DMA_FROM_DEVICE);
3883 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3884 buf->sec_page, 0, buf2_len,
3885 priv->dma_buf_sz);
3886
3887 /* Data payload appended into SKB */
3888 page_pool_release_page(rx_q->page_pool, buf->sec_page);
3889 buf->sec_page = NULL;
3890 }
3891
3892 drain_data:
3893 if (likely(status & rx_not_ls))
3894 goto read_again;
3895 if (!skb)
3896 continue;
3897
3898 /* Got entire packet into SKB. Finish it. */
3899
3900 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3901 stmmac_rx_vlan(priv->dev, skb);
3902 skb->protocol = eth_type_trans(skb, priv->dev);
3903
3904 if (unlikely(!coe))
3905 skb_checksum_none_assert(skb);
3906 else
3907 skb->ip_summed = CHECKSUM_UNNECESSARY;
3908
3909 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3910 skb_set_hash(skb, hash, hash_type);
3911
3912 skb_record_rx_queue(skb, queue);
3913 napi_gro_receive(&ch->rx_napi, skb);
3914 skb = NULL;
3915
3916 priv->dev->stats.rx_packets++;
3917 priv->dev->stats.rx_bytes += len;
3918 count++;
3919 }
3920
3921 if (status & rx_not_ls || skb) {
3922 rx_q->state_saved = true;
3923 rx_q->state.skb = skb;
3924 rx_q->state.error = error;
3925 rx_q->state.len = len;
3926 }
3927
3928 stmmac_rx_refill(priv, queue);
3929
3930 priv->xstats.rx_pkt_n += count;
3931
3932 return count;
3933 }
3934
stmmac_napi_poll_rx(struct napi_struct * napi,int budget)3935 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3936 {
3937 struct stmmac_channel *ch =
3938 container_of(napi, struct stmmac_channel, rx_napi);
3939 struct stmmac_priv *priv = ch->priv_data;
3940 u32 chan = ch->index;
3941 int work_done;
3942
3943 priv->xstats.napi_poll++;
3944
3945 work_done = stmmac_rx(priv, budget, chan);
3946 if (work_done < budget && napi_complete_done(napi, work_done)) {
3947 unsigned long flags;
3948
3949 spin_lock_irqsave(&ch->lock, flags);
3950 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
3951 spin_unlock_irqrestore(&ch->lock, flags);
3952 }
3953
3954 return work_done;
3955 }
3956
stmmac_napi_poll_tx(struct napi_struct * napi,int budget)3957 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3958 {
3959 struct stmmac_channel *ch =
3960 container_of(napi, struct stmmac_channel, tx_napi);
3961 struct stmmac_priv *priv = ch->priv_data;
3962 u32 chan = ch->index;
3963 int work_done;
3964
3965 priv->xstats.napi_poll++;
3966
3967 work_done = stmmac_tx_clean(priv, priv->dma_tx_size, chan);
3968 work_done = min(work_done, budget);
3969
3970 if (work_done < budget && napi_complete_done(napi, work_done)) {
3971 unsigned long flags;
3972
3973 spin_lock_irqsave(&ch->lock, flags);
3974 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
3975 spin_unlock_irqrestore(&ch->lock, flags);
3976 }
3977
3978 return work_done;
3979 }
3980
3981 /**
3982 * stmmac_tx_timeout
3983 * @dev : Pointer to net device structure
3984 * @txqueue: the index of the hanging transmit queue
3985 * Description: this function is called when a packet transmission fails to
3986 * complete within a reasonable time. The driver will mark the error in the
3987 * netdev structure and arrange for the device to be reset to a sane state
3988 * in order to transmit a new packet.
3989 */
stmmac_tx_timeout(struct net_device * dev,unsigned int txqueue)3990 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
3991 {
3992 struct stmmac_priv *priv = netdev_priv(dev);
3993
3994 stmmac_global_err(priv);
3995 }
3996
3997 /**
3998 * stmmac_set_rx_mode - entry point for multicast addressing
3999 * @dev : pointer to the device structure
4000 * Description:
4001 * This function is a driver entry point which gets called by the kernel
4002 * whenever multicast addresses must be enabled/disabled.
4003 * Return value:
4004 * void.
4005 */
stmmac_set_rx_mode(struct net_device * dev)4006 static void stmmac_set_rx_mode(struct net_device *dev)
4007 {
4008 struct stmmac_priv *priv = netdev_priv(dev);
4009
4010 stmmac_set_filter(priv, priv->hw, dev);
4011 }
4012
4013 /**
4014 * stmmac_change_mtu - entry point to change MTU size for the device.
4015 * @dev : device pointer.
4016 * @new_mtu : the new MTU size for the device.
4017 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
4018 * to drive packet transmission. Ethernet has an MTU of 1500 octets
4019 * (ETH_DATA_LEN). This value can be changed with ifconfig.
4020 * Return value:
4021 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4022 * file on failure.
4023 */
stmmac_change_mtu(struct net_device * dev,int new_mtu)4024 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
4025 {
4026 struct stmmac_priv *priv = netdev_priv(dev);
4027 int txfifosz = priv->plat->tx_fifo_size;
4028 const int mtu = new_mtu;
4029
4030 if (txfifosz == 0)
4031 txfifosz = priv->dma_cap.tx_fifo_size;
4032
4033 txfifosz /= priv->plat->tx_queues_to_use;
4034
4035 if (netif_running(dev)) {
4036 netdev_err(priv->dev, "must be stopped to change its MTU\n");
4037 return -EBUSY;
4038 }
4039
4040 new_mtu = STMMAC_ALIGN(new_mtu);
4041
4042 /* If condition true, FIFO is too small or MTU too large */
4043 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
4044 return -EINVAL;
4045
4046 dev->mtu = mtu;
4047
4048 netdev_update_features(dev);
4049
4050 return 0;
4051 }
4052
stmmac_fix_features(struct net_device * dev,netdev_features_t features)4053 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4054 netdev_features_t features)
4055 {
4056 struct stmmac_priv *priv = netdev_priv(dev);
4057
4058 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4059 features &= ~NETIF_F_RXCSUM;
4060
4061 if (!priv->plat->tx_coe)
4062 features &= ~NETIF_F_CSUM_MASK;
4063
4064 /* Some GMAC devices have a bugged Jumbo frame support that
4065 * needs to have the Tx COE disabled for oversized frames
4066 * (due to limited buffer sizes). In this case we disable
4067 * the TX csum insertion in the TDES and not use SF.
4068 */
4069 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4070 features &= ~NETIF_F_CSUM_MASK;
4071
4072 /* Disable tso if asked by ethtool */
4073 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4074 if (features & NETIF_F_TSO)
4075 priv->tso = true;
4076 else
4077 priv->tso = false;
4078 }
4079
4080 return features;
4081 }
4082
stmmac_set_features(struct net_device * netdev,netdev_features_t features)4083 static int stmmac_set_features(struct net_device *netdev,
4084 netdev_features_t features)
4085 {
4086 struct stmmac_priv *priv = netdev_priv(netdev);
4087 bool sph_en;
4088 u32 chan;
4089
4090 /* Keep the COE Type in case of csum is supporting */
4091 if (features & NETIF_F_RXCSUM)
4092 priv->hw->rx_csum = priv->plat->rx_coe;
4093 else
4094 priv->hw->rx_csum = 0;
4095 /* No check needed because rx_coe has been set before and it will be
4096 * fixed in case of issue.
4097 */
4098 stmmac_rx_ipc(priv, priv->hw);
4099
4100 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4101 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4102 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4103
4104 return 0;
4105 }
4106
4107 /**
4108 * stmmac_interrupt - main ISR
4109 * @irq: interrupt number.
4110 * @dev_id: to pass the net device pointer (must be valid).
4111 * Description: this is the main driver interrupt service routine.
4112 * It can call:
4113 * o DMA service routine (to manage incoming frame reception and transmission
4114 * status)
4115 * o Core interrupts to manage: remote wake-up, management counter, LPI
4116 * interrupts.
4117 */
stmmac_interrupt(int irq,void * dev_id)4118 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4119 {
4120 struct net_device *dev = (struct net_device *)dev_id;
4121 struct stmmac_priv *priv = netdev_priv(dev);
4122 u32 rx_cnt = priv->plat->rx_queues_to_use;
4123 u32 tx_cnt = priv->plat->tx_queues_to_use;
4124 u32 queues_count;
4125 u32 queue;
4126 bool xmac;
4127
4128 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4129 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4130
4131 if (priv->irq_wake)
4132 pm_wakeup_event(priv->device, 0);
4133
4134 /* Check if adapter is up */
4135 if (test_bit(STMMAC_DOWN, &priv->state))
4136 return IRQ_HANDLED;
4137 /* Check if a fatal error happened */
4138 if (stmmac_safety_feat_interrupt(priv))
4139 return IRQ_HANDLED;
4140
4141 /* To handle GMAC own interrupts */
4142 if ((priv->plat->has_gmac) || xmac) {
4143 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4144
4145 if (unlikely(status)) {
4146 /* For LPI we need to save the tx status */
4147 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4148 priv->tx_path_in_lpi_mode = true;
4149 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4150 priv->tx_path_in_lpi_mode = false;
4151 }
4152
4153 for (queue = 0; queue < queues_count; queue++) {
4154 status = stmmac_host_mtl_irq_status(priv, priv->hw,
4155 queue);
4156 }
4157
4158 /* PCS link status */
4159 if (priv->hw->pcs) {
4160 if (priv->xstats.pcs_link)
4161 netif_carrier_on(dev);
4162 else
4163 netif_carrier_off(dev);
4164 }
4165 }
4166
4167 /* To handle DMA interrupts */
4168 stmmac_dma_interrupt(priv);
4169
4170 return IRQ_HANDLED;
4171 }
4172
4173 #ifdef CONFIG_NET_POLL_CONTROLLER
4174 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4175 * to allow network I/O with interrupts disabled.
4176 */
stmmac_poll_controller(struct net_device * dev)4177 static void stmmac_poll_controller(struct net_device *dev)
4178 {
4179 disable_irq(dev->irq);
4180 stmmac_interrupt(dev->irq, dev);
4181 enable_irq(dev->irq);
4182 }
4183 #endif
4184
4185 /**
4186 * stmmac_ioctl - Entry point for the Ioctl
4187 * @dev: Device pointer.
4188 * @rq: An IOCTL specefic structure, that can contain a pointer to
4189 * a proprietary structure used to pass information to the driver.
4190 * @cmd: IOCTL command
4191 * Description:
4192 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4193 */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)4194 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4195 {
4196 struct stmmac_priv *priv = netdev_priv (dev);
4197 int ret = -EOPNOTSUPP;
4198
4199 if (!netif_running(dev))
4200 return -EINVAL;
4201
4202 switch (cmd) {
4203 case SIOCGMIIPHY:
4204 case SIOCGMIIREG:
4205 case SIOCSMIIREG:
4206 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4207 break;
4208 case SIOCSHWTSTAMP:
4209 ret = stmmac_hwtstamp_set(dev, rq);
4210 break;
4211 case SIOCGHWTSTAMP:
4212 ret = stmmac_hwtstamp_get(dev, rq);
4213 break;
4214 default:
4215 break;
4216 }
4217
4218 return ret;
4219 }
4220
stmmac_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)4221 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4222 void *cb_priv)
4223 {
4224 struct stmmac_priv *priv = cb_priv;
4225 int ret = -EOPNOTSUPP;
4226
4227 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4228 return ret;
4229
4230 stmmac_disable_all_queues(priv);
4231
4232 switch (type) {
4233 case TC_SETUP_CLSU32:
4234 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4235 break;
4236 case TC_SETUP_CLSFLOWER:
4237 ret = stmmac_tc_setup_cls(priv, priv, type_data);
4238 break;
4239 default:
4240 break;
4241 }
4242
4243 stmmac_enable_all_queues(priv);
4244 return ret;
4245 }
4246
4247 static LIST_HEAD(stmmac_block_cb_list);
4248
stmmac_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)4249 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4250 void *type_data)
4251 {
4252 struct stmmac_priv *priv = netdev_priv(ndev);
4253
4254 switch (type) {
4255 case TC_SETUP_BLOCK:
4256 return flow_block_cb_setup_simple(type_data,
4257 &stmmac_block_cb_list,
4258 stmmac_setup_tc_block_cb,
4259 priv, priv, true);
4260 case TC_SETUP_QDISC_CBS:
4261 return stmmac_tc_setup_cbs(priv, priv, type_data);
4262 case TC_SETUP_QDISC_TAPRIO:
4263 return stmmac_tc_setup_taprio(priv, priv, type_data);
4264 case TC_SETUP_QDISC_ETF:
4265 return stmmac_tc_setup_etf(priv, priv, type_data);
4266 default:
4267 return -EOPNOTSUPP;
4268 }
4269 }
4270
stmmac_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4271 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4272 struct net_device *sb_dev)
4273 {
4274 int gso = skb_shinfo(skb)->gso_type;
4275
4276 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4277 /*
4278 * There is no way to determine the number of TSO/USO
4279 * capable Queues. Let's use always the Queue 0
4280 * because if TSO/USO is supported then at least this
4281 * one will be capable.
4282 */
4283 return 0;
4284 }
4285
4286 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4287 }
4288
stmmac_set_mac_address(struct net_device * ndev,void * addr)4289 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4290 {
4291 struct stmmac_priv *priv = netdev_priv(ndev);
4292 int ret = 0;
4293
4294 ret = eth_mac_addr(ndev, addr);
4295 if (ret)
4296 return ret;
4297
4298 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4299
4300 return ret;
4301 }
4302
4303 #ifdef CONFIG_DEBUG_FS
4304 static struct dentry *stmmac_fs_dir;
4305
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq,dma_addr_t dma_phy_addr)4306 static void sysfs_display_ring(void *head, int size, int extend_desc,
4307 struct seq_file *seq, dma_addr_t dma_phy_addr)
4308 {
4309 int i;
4310 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4311 struct dma_desc *p = (struct dma_desc *)head;
4312 dma_addr_t dma_addr;
4313
4314 for (i = 0; i < size; i++) {
4315 if (extend_desc) {
4316 dma_addr = dma_phy_addr + i * sizeof(*ep);
4317 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4318 i, &dma_addr,
4319 le32_to_cpu(ep->basic.des0),
4320 le32_to_cpu(ep->basic.des1),
4321 le32_to_cpu(ep->basic.des2),
4322 le32_to_cpu(ep->basic.des3));
4323 ep++;
4324 } else {
4325 dma_addr = dma_phy_addr + i * sizeof(*p);
4326 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4327 i, &dma_addr,
4328 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4329 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4330 p++;
4331 }
4332 seq_printf(seq, "\n");
4333 }
4334 }
4335
stmmac_rings_status_show(struct seq_file * seq,void * v)4336 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4337 {
4338 struct net_device *dev = seq->private;
4339 struct stmmac_priv *priv = netdev_priv(dev);
4340 u32 rx_count = priv->plat->rx_queues_to_use;
4341 u32 tx_count = priv->plat->tx_queues_to_use;
4342 u32 queue;
4343
4344 if ((dev->flags & IFF_UP) == 0)
4345 return 0;
4346
4347 for (queue = 0; queue < rx_count; queue++) {
4348 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4349
4350 seq_printf(seq, "RX Queue %d:\n", queue);
4351
4352 if (priv->extend_desc) {
4353 seq_printf(seq, "Extended descriptor ring:\n");
4354 sysfs_display_ring((void *)rx_q->dma_erx,
4355 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
4356 } else {
4357 seq_printf(seq, "Descriptor ring:\n");
4358 sysfs_display_ring((void *)rx_q->dma_rx,
4359 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
4360 }
4361 }
4362
4363 for (queue = 0; queue < tx_count; queue++) {
4364 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4365
4366 seq_printf(seq, "TX Queue %d:\n", queue);
4367
4368 if (priv->extend_desc) {
4369 seq_printf(seq, "Extended descriptor ring:\n");
4370 sysfs_display_ring((void *)tx_q->dma_etx,
4371 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
4372 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4373 seq_printf(seq, "Descriptor ring:\n");
4374 sysfs_display_ring((void *)tx_q->dma_tx,
4375 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
4376 }
4377 }
4378
4379 return 0;
4380 }
4381 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4382
stmmac_dma_cap_show(struct seq_file * seq,void * v)4383 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4384 {
4385 struct net_device *dev = seq->private;
4386 struct stmmac_priv *priv = netdev_priv(dev);
4387
4388 if (!priv->hw_cap_support) {
4389 seq_printf(seq, "DMA HW features not supported\n");
4390 return 0;
4391 }
4392
4393 seq_printf(seq, "==============================\n");
4394 seq_printf(seq, "\tDMA HW features\n");
4395 seq_printf(seq, "==============================\n");
4396
4397 seq_printf(seq, "\t10/100 Mbps: %s\n",
4398 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4399 seq_printf(seq, "\t1000 Mbps: %s\n",
4400 (priv->dma_cap.mbps_1000) ? "Y" : "N");
4401 seq_printf(seq, "\tHalf duplex: %s\n",
4402 (priv->dma_cap.half_duplex) ? "Y" : "N");
4403 seq_printf(seq, "\tHash Filter: %s\n",
4404 (priv->dma_cap.hash_filter) ? "Y" : "N");
4405 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4406 (priv->dma_cap.multi_addr) ? "Y" : "N");
4407 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4408 (priv->dma_cap.pcs) ? "Y" : "N");
4409 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4410 (priv->dma_cap.sma_mdio) ? "Y" : "N");
4411 seq_printf(seq, "\tPMT Remote wake up: %s\n",
4412 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4413 seq_printf(seq, "\tPMT Magic Frame: %s\n",
4414 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4415 seq_printf(seq, "\tRMON module: %s\n",
4416 (priv->dma_cap.rmon) ? "Y" : "N");
4417 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4418 (priv->dma_cap.time_stamp) ? "Y" : "N");
4419 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4420 (priv->dma_cap.atime_stamp) ? "Y" : "N");
4421 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4422 (priv->dma_cap.eee) ? "Y" : "N");
4423 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4424 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4425 (priv->dma_cap.tx_coe) ? "Y" : "N");
4426 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4427 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4428 (priv->dma_cap.rx_coe) ? "Y" : "N");
4429 } else {
4430 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4431 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4432 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4433 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4434 }
4435 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4436 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4437 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4438 priv->dma_cap.number_rx_channel);
4439 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4440 priv->dma_cap.number_tx_channel);
4441 seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4442 priv->dma_cap.number_rx_queues);
4443 seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4444 priv->dma_cap.number_tx_queues);
4445 seq_printf(seq, "\tEnhanced descriptors: %s\n",
4446 (priv->dma_cap.enh_desc) ? "Y" : "N");
4447 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4448 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4449 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4450 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4451 seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4452 priv->dma_cap.pps_out_num);
4453 seq_printf(seq, "\tSafety Features: %s\n",
4454 priv->dma_cap.asp ? "Y" : "N");
4455 seq_printf(seq, "\tFlexible RX Parser: %s\n",
4456 priv->dma_cap.frpsel ? "Y" : "N");
4457 seq_printf(seq, "\tEnhanced Addressing: %d\n",
4458 priv->dma_cap.addr64);
4459 seq_printf(seq, "\tReceive Side Scaling: %s\n",
4460 priv->dma_cap.rssen ? "Y" : "N");
4461 seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4462 priv->dma_cap.vlhash ? "Y" : "N");
4463 seq_printf(seq, "\tSplit Header: %s\n",
4464 priv->dma_cap.sphen ? "Y" : "N");
4465 seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4466 priv->dma_cap.vlins ? "Y" : "N");
4467 seq_printf(seq, "\tDouble VLAN: %s\n",
4468 priv->dma_cap.dvlan ? "Y" : "N");
4469 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4470 priv->dma_cap.l3l4fnum);
4471 seq_printf(seq, "\tARP Offloading: %s\n",
4472 priv->dma_cap.arpoffsel ? "Y" : "N");
4473 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4474 priv->dma_cap.estsel ? "Y" : "N");
4475 seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4476 priv->dma_cap.fpesel ? "Y" : "N");
4477 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4478 priv->dma_cap.tbssel ? "Y" : "N");
4479 return 0;
4480 }
4481 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4482
4483 /* Use network device events to rename debugfs file entries.
4484 */
stmmac_device_event(struct notifier_block * unused,unsigned long event,void * ptr)4485 static int stmmac_device_event(struct notifier_block *unused,
4486 unsigned long event, void *ptr)
4487 {
4488 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4489 struct stmmac_priv *priv = netdev_priv(dev);
4490
4491 if (dev->netdev_ops != &stmmac_netdev_ops)
4492 goto done;
4493
4494 switch (event) {
4495 case NETDEV_CHANGENAME:
4496 if (priv->dbgfs_dir)
4497 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4498 priv->dbgfs_dir,
4499 stmmac_fs_dir,
4500 dev->name);
4501 break;
4502 }
4503 done:
4504 return NOTIFY_DONE;
4505 }
4506
4507 static struct notifier_block stmmac_notifier = {
4508 .notifier_call = stmmac_device_event,
4509 };
4510
stmmac_init_fs(struct net_device * dev)4511 static void stmmac_init_fs(struct net_device *dev)
4512 {
4513 struct stmmac_priv *priv = netdev_priv(dev);
4514
4515 rtnl_lock();
4516
4517 /* Create per netdev entries */
4518 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4519
4520 /* Entry to report DMA RX/TX rings */
4521 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4522 &stmmac_rings_status_fops);
4523
4524 /* Entry to report the DMA HW features */
4525 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4526 &stmmac_dma_cap_fops);
4527
4528 rtnl_unlock();
4529 }
4530
stmmac_exit_fs(struct net_device * dev)4531 static void stmmac_exit_fs(struct net_device *dev)
4532 {
4533 struct stmmac_priv *priv = netdev_priv(dev);
4534
4535 debugfs_remove_recursive(priv->dbgfs_dir);
4536 }
4537 #endif /* CONFIG_DEBUG_FS */
4538
stmmac_vid_crc32_le(__le16 vid_le)4539 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4540 {
4541 unsigned char *data = (unsigned char *)&vid_le;
4542 unsigned char data_byte = 0;
4543 u32 crc = ~0x0;
4544 u32 temp = 0;
4545 int i, bits;
4546
4547 bits = get_bitmask_order(VLAN_VID_MASK);
4548 for (i = 0; i < bits; i++) {
4549 if ((i % 8) == 0)
4550 data_byte = data[i / 8];
4551
4552 temp = ((crc & 1) ^ data_byte) & 1;
4553 crc >>= 1;
4554 data_byte >>= 1;
4555
4556 if (temp)
4557 crc ^= 0xedb88320;
4558 }
4559
4560 return crc;
4561 }
4562
stmmac_vlan_update(struct stmmac_priv * priv,bool is_double)4563 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4564 {
4565 u32 crc, hash = 0;
4566 __le16 pmatch = 0;
4567 int count = 0;
4568 u16 vid = 0;
4569
4570 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4571 __le16 vid_le = cpu_to_le16(vid);
4572 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4573 hash |= (1 << crc);
4574 count++;
4575 }
4576
4577 if (!priv->dma_cap.vlhash) {
4578 if (count > 2) /* VID = 0 always passes filter */
4579 return -EOPNOTSUPP;
4580
4581 pmatch = cpu_to_le16(vid);
4582 hash = 0;
4583 }
4584
4585 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4586 }
4587
stmmac_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)4588 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4589 {
4590 struct stmmac_priv *priv = netdev_priv(ndev);
4591 bool is_double = false;
4592 int ret;
4593
4594 if (be16_to_cpu(proto) == ETH_P_8021AD)
4595 is_double = true;
4596
4597 set_bit(vid, priv->active_vlans);
4598 ret = stmmac_vlan_update(priv, is_double);
4599 if (ret) {
4600 clear_bit(vid, priv->active_vlans);
4601 return ret;
4602 }
4603
4604 if (priv->hw->num_vlan) {
4605 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4606 if (ret)
4607 return ret;
4608 }
4609
4610 return 0;
4611 }
4612
stmmac_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)4613 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4614 {
4615 struct stmmac_priv *priv = netdev_priv(ndev);
4616 bool is_double = false;
4617 int ret;
4618
4619 if (be16_to_cpu(proto) == ETH_P_8021AD)
4620 is_double = true;
4621
4622 clear_bit(vid, priv->active_vlans);
4623
4624 if (priv->hw->num_vlan) {
4625 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4626 if (ret)
4627 return ret;
4628 }
4629
4630 return stmmac_vlan_update(priv, is_double);
4631 }
4632
4633 static const struct net_device_ops stmmac_netdev_ops = {
4634 .ndo_open = stmmac_open,
4635 .ndo_start_xmit = stmmac_xmit,
4636 .ndo_stop = stmmac_release,
4637 .ndo_change_mtu = stmmac_change_mtu,
4638 .ndo_fix_features = stmmac_fix_features,
4639 .ndo_set_features = stmmac_set_features,
4640 .ndo_set_rx_mode = stmmac_set_rx_mode,
4641 .ndo_tx_timeout = stmmac_tx_timeout,
4642 .ndo_do_ioctl = stmmac_ioctl,
4643 .ndo_setup_tc = stmmac_setup_tc,
4644 .ndo_select_queue = stmmac_select_queue,
4645 #ifdef CONFIG_NET_POLL_CONTROLLER
4646 .ndo_poll_controller = stmmac_poll_controller,
4647 #endif
4648 .ndo_set_mac_address = stmmac_set_mac_address,
4649 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4650 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4651 };
4652
stmmac_reset_subtask(struct stmmac_priv * priv)4653 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4654 {
4655 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4656 return;
4657 if (test_bit(STMMAC_DOWN, &priv->state))
4658 return;
4659
4660 netdev_err(priv->dev, "Reset adapter.\n");
4661
4662 rtnl_lock();
4663 netif_trans_update(priv->dev);
4664 while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4665 usleep_range(1000, 2000);
4666
4667 set_bit(STMMAC_DOWN, &priv->state);
4668 dev_close(priv->dev);
4669 dev_open(priv->dev, NULL);
4670 clear_bit(STMMAC_DOWN, &priv->state);
4671 clear_bit(STMMAC_RESETING, &priv->state);
4672 rtnl_unlock();
4673 }
4674
stmmac_service_task(struct work_struct * work)4675 static void stmmac_service_task(struct work_struct *work)
4676 {
4677 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4678 service_task);
4679
4680 stmmac_reset_subtask(priv);
4681 clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4682 }
4683
4684 /**
4685 * stmmac_hw_init - Init the MAC device
4686 * @priv: driver private structure
4687 * Description: this function is to configure the MAC device according to
4688 * some platform parameters or the HW capability register. It prepares the
4689 * driver to use either ring or chain modes and to setup either enhanced or
4690 * normal descriptors.
4691 */
stmmac_hw_init(struct stmmac_priv * priv)4692 static int stmmac_hw_init(struct stmmac_priv *priv)
4693 {
4694 int ret;
4695
4696 /* dwmac-sun8i only work in chain mode */
4697 if (priv->plat->has_sun8i)
4698 chain_mode = 1;
4699 priv->chain_mode = chain_mode;
4700
4701 /* Initialize HW Interface */
4702 ret = stmmac_hwif_init(priv);
4703 if (ret)
4704 return ret;
4705
4706 /* Get the HW capability (new GMAC newer than 3.50a) */
4707 priv->hw_cap_support = stmmac_get_hw_features(priv);
4708 if (priv->hw_cap_support) {
4709 dev_info(priv->device, "DMA HW capability register supported\n");
4710
4711 /* We can override some gmac/dma configuration fields: e.g.
4712 * enh_desc, tx_coe (e.g. that are passed through the
4713 * platform) with the values from the HW capability
4714 * register (if supported).
4715 */
4716 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4717 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4718 priv->hw->pmt = priv->plat->pmt;
4719 if (priv->dma_cap.hash_tb_sz) {
4720 priv->hw->multicast_filter_bins =
4721 (BIT(priv->dma_cap.hash_tb_sz) << 5);
4722 priv->hw->mcast_bits_log2 =
4723 ilog2(priv->hw->multicast_filter_bins);
4724 }
4725
4726 /* TXCOE doesn't work in thresh DMA mode */
4727 if (priv->plat->force_thresh_dma_mode)
4728 priv->plat->tx_coe = 0;
4729 else
4730 priv->plat->tx_coe = priv->dma_cap.tx_coe;
4731
4732 /* In case of GMAC4 rx_coe is from HW cap register. */
4733 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4734
4735 if (priv->dma_cap.rx_coe_type2)
4736 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4737 else if (priv->dma_cap.rx_coe_type1)
4738 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4739
4740 } else {
4741 dev_info(priv->device, "No HW DMA feature register supported\n");
4742 }
4743
4744 if (priv->plat->rx_coe) {
4745 priv->hw->rx_csum = priv->plat->rx_coe;
4746 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4747 if (priv->synopsys_id < DWMAC_CORE_4_00)
4748 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4749 }
4750 if (priv->plat->tx_coe)
4751 dev_info(priv->device, "TX Checksum insertion supported\n");
4752
4753 if (priv->plat->pmt) {
4754 dev_info(priv->device, "Wake-Up On Lan supported\n");
4755 device_set_wakeup_capable(priv->device, 1);
4756 }
4757
4758 if (priv->dma_cap.tsoen)
4759 dev_info(priv->device, "TSO supported\n");
4760
4761 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
4762 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
4763
4764 /* Run HW quirks, if any */
4765 if (priv->hwif_quirks) {
4766 ret = priv->hwif_quirks(priv);
4767 if (ret)
4768 return ret;
4769 }
4770
4771 /* Rx Watchdog is available in the COREs newer than the 3.40.
4772 * In some case, for example on bugged HW this feature
4773 * has to be disable and this can be done by passing the
4774 * riwt_off field from the platform.
4775 */
4776 if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4777 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4778 priv->use_riwt = 1;
4779 dev_info(priv->device,
4780 "Enable RX Mitigation via HW Watchdog Timer\n");
4781 }
4782
4783 return 0;
4784 }
4785
stmmac_napi_add(struct net_device * dev)4786 static void stmmac_napi_add(struct net_device *dev)
4787 {
4788 struct stmmac_priv *priv = netdev_priv(dev);
4789 u32 queue, maxq;
4790
4791 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4792
4793 for (queue = 0; queue < maxq; queue++) {
4794 struct stmmac_channel *ch = &priv->channel[queue];
4795
4796 ch->priv_data = priv;
4797 ch->index = queue;
4798 spin_lock_init(&ch->lock);
4799
4800 if (queue < priv->plat->rx_queues_to_use) {
4801 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
4802 NAPI_POLL_WEIGHT);
4803 }
4804 if (queue < priv->plat->tx_queues_to_use) {
4805 netif_tx_napi_add(dev, &ch->tx_napi,
4806 stmmac_napi_poll_tx,
4807 NAPI_POLL_WEIGHT);
4808 }
4809 }
4810 }
4811
stmmac_napi_del(struct net_device * dev)4812 static void stmmac_napi_del(struct net_device *dev)
4813 {
4814 struct stmmac_priv *priv = netdev_priv(dev);
4815 u32 queue, maxq;
4816
4817 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4818
4819 for (queue = 0; queue < maxq; queue++) {
4820 struct stmmac_channel *ch = &priv->channel[queue];
4821
4822 if (queue < priv->plat->rx_queues_to_use)
4823 netif_napi_del(&ch->rx_napi);
4824 if (queue < priv->plat->tx_queues_to_use)
4825 netif_napi_del(&ch->tx_napi);
4826 }
4827 }
4828
stmmac_reinit_queues(struct net_device * dev,u32 rx_cnt,u32 tx_cnt)4829 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
4830 {
4831 struct stmmac_priv *priv = netdev_priv(dev);
4832 int ret = 0;
4833
4834 if (netif_running(dev))
4835 stmmac_release(dev);
4836
4837 stmmac_napi_del(dev);
4838
4839 priv->plat->rx_queues_to_use = rx_cnt;
4840 priv->plat->tx_queues_to_use = tx_cnt;
4841
4842 stmmac_napi_add(dev);
4843
4844 if (netif_running(dev))
4845 ret = stmmac_open(dev);
4846
4847 return ret;
4848 }
4849
stmmac_reinit_ringparam(struct net_device * dev,u32 rx_size,u32 tx_size)4850 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
4851 {
4852 struct stmmac_priv *priv = netdev_priv(dev);
4853 int ret = 0;
4854
4855 if (netif_running(dev))
4856 stmmac_release(dev);
4857
4858 priv->dma_rx_size = rx_size;
4859 priv->dma_tx_size = tx_size;
4860
4861 if (netif_running(dev))
4862 ret = stmmac_open(dev);
4863
4864 return ret;
4865 }
4866
4867 /**
4868 * stmmac_dvr_probe
4869 * @device: device pointer
4870 * @plat_dat: platform data pointer
4871 * @res: stmmac resource pointer
4872 * Description: this is the main probe function used to
4873 * call the alloc_etherdev, allocate the priv structure.
4874 * Return:
4875 * returns 0 on success, otherwise errno.
4876 */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,struct stmmac_resources * res)4877 int stmmac_dvr_probe(struct device *device,
4878 struct plat_stmmacenet_data *plat_dat,
4879 struct stmmac_resources *res)
4880 {
4881 struct net_device *ndev = NULL;
4882 struct stmmac_priv *priv;
4883 u32 rxq;
4884 int i, ret = 0;
4885
4886 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4887 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4888 if (!ndev)
4889 return -ENOMEM;
4890
4891 SET_NETDEV_DEV(ndev, device);
4892
4893 priv = netdev_priv(ndev);
4894 priv->device = device;
4895 priv->dev = ndev;
4896
4897 stmmac_set_ethtool_ops(ndev);
4898 priv->pause = pause;
4899 priv->plat = plat_dat;
4900 priv->ioaddr = res->addr;
4901 priv->dev->base_addr = (unsigned long)res->addr;
4902
4903 priv->dev->irq = res->irq;
4904 priv->wol_irq = res->wol_irq;
4905 priv->lpi_irq = res->lpi_irq;
4906
4907 if (!IS_ERR_OR_NULL(res->mac))
4908 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4909
4910 dev_set_drvdata(device, priv->dev);
4911
4912 /* Verify driver arguments */
4913 stmmac_verify_args();
4914
4915 /* Allocate workqueue */
4916 priv->wq = create_singlethread_workqueue("stmmac_wq");
4917 if (!priv->wq) {
4918 dev_err(priv->device, "failed to create workqueue\n");
4919 return -ENOMEM;
4920 }
4921
4922 INIT_WORK(&priv->service_task, stmmac_service_task);
4923
4924 /* Override with kernel parameters if supplied XXX CRS XXX
4925 * this needs to have multiple instances
4926 */
4927 if ((phyaddr >= 0) && (phyaddr <= 31))
4928 priv->plat->phy_addr = phyaddr;
4929
4930 if (priv->plat->stmmac_rst) {
4931 ret = reset_control_assert(priv->plat->stmmac_rst);
4932 reset_control_deassert(priv->plat->stmmac_rst);
4933 /* Some reset controllers have only reset callback instead of
4934 * assert + deassert callbacks pair.
4935 */
4936 if (ret == -ENOTSUPP)
4937 reset_control_reset(priv->plat->stmmac_rst);
4938 }
4939
4940 /* Init MAC and get the capabilities */
4941 ret = stmmac_hw_init(priv);
4942 if (ret)
4943 goto error_hw_init;
4944
4945 stmmac_check_ether_addr(priv);
4946
4947 ndev->netdev_ops = &stmmac_netdev_ops;
4948
4949 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4950 NETIF_F_RXCSUM;
4951
4952 ret = stmmac_tc_init(priv, priv);
4953 if (!ret) {
4954 ndev->hw_features |= NETIF_F_HW_TC;
4955 }
4956
4957 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4958 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4959 if (priv->plat->has_gmac4)
4960 ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4961 priv->tso = true;
4962 dev_info(priv->device, "TSO feature enabled\n");
4963 }
4964
4965 if (priv->dma_cap.sphen) {
4966 ndev->hw_features |= NETIF_F_GRO;
4967 priv->sph = true;
4968 dev_info(priv->device, "SPH feature enabled\n");
4969 }
4970
4971 /* The current IP register MAC_HW_Feature1[ADDR64] only define
4972 * 32/40/64 bit width, but some SOC support others like i.MX8MP
4973 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
4974 * So overwrite dma_cap.addr64 according to HW real design.
4975 */
4976 if (priv->plat->addr64)
4977 priv->dma_cap.addr64 = priv->plat->addr64;
4978
4979 if (priv->dma_cap.addr64) {
4980 ret = dma_set_mask_and_coherent(device,
4981 DMA_BIT_MASK(priv->dma_cap.addr64));
4982 if (!ret) {
4983 dev_info(priv->device, "Using %d bits DMA width\n",
4984 priv->dma_cap.addr64);
4985
4986 /*
4987 * If more than 32 bits can be addressed, make sure to
4988 * enable enhanced addressing mode.
4989 */
4990 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4991 priv->plat->dma_cfg->eame = true;
4992 } else {
4993 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4994 if (ret) {
4995 dev_err(priv->device, "Failed to set DMA Mask\n");
4996 goto error_hw_init;
4997 }
4998
4999 priv->dma_cap.addr64 = 32;
5000 }
5001 }
5002
5003 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
5004 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
5005 #ifdef STMMAC_VLAN_TAG_USED
5006 /* Both mac100 and gmac support receive VLAN tag detection */
5007 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
5008 if (priv->dma_cap.vlhash) {
5009 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5010 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
5011 }
5012 if (priv->dma_cap.vlins) {
5013 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
5014 if (priv->dma_cap.dvlan)
5015 ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
5016 }
5017 #endif
5018 priv->msg_enable = netif_msg_init(debug, default_msg_level);
5019
5020 /* Initialize RSS */
5021 rxq = priv->plat->rx_queues_to_use;
5022 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
5023 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
5024 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
5025
5026 if (priv->dma_cap.rssen && priv->plat->rss_en)
5027 ndev->features |= NETIF_F_RXHASH;
5028
5029 /* MTU range: 46 - hw-specific max */
5030 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
5031 if (priv->plat->has_xgmac)
5032 ndev->max_mtu = XGMAC_JUMBO_LEN;
5033 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
5034 ndev->max_mtu = JUMBO_LEN;
5035 else
5036 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
5037 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
5038 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
5039 */
5040 if ((priv->plat->maxmtu < ndev->max_mtu) &&
5041 (priv->plat->maxmtu >= ndev->min_mtu))
5042 ndev->max_mtu = priv->plat->maxmtu;
5043 else if (priv->plat->maxmtu < ndev->min_mtu)
5044 dev_warn(priv->device,
5045 "%s: warning: maxmtu having invalid value (%d)\n",
5046 __func__, priv->plat->maxmtu);
5047
5048 if (flow_ctrl)
5049 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
5050
5051 /* Setup channels NAPI */
5052 stmmac_napi_add(ndev);
5053
5054 mutex_init(&priv->lock);
5055
5056 /* If a specific clk_csr value is passed from the platform
5057 * this means that the CSR Clock Range selection cannot be
5058 * changed at run-time and it is fixed. Viceversa the driver'll try to
5059 * set the MDC clock dynamically according to the csr actual
5060 * clock input.
5061 */
5062 if (priv->plat->clk_csr >= 0)
5063 priv->clk_csr = priv->plat->clk_csr;
5064 else
5065 stmmac_clk_csr_set(priv);
5066
5067 stmmac_check_pcs_mode(priv);
5068
5069 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5070 priv->hw->pcs != STMMAC_PCS_RTBI) {
5071 /* MDIO bus Registration */
5072 ret = stmmac_mdio_register(ndev);
5073 if (ret < 0) {
5074 dev_err(priv->device,
5075 "%s: MDIO bus (id: %d) registration failed",
5076 __func__, priv->plat->bus_id);
5077 goto error_mdio_register;
5078 }
5079 }
5080
5081 ret = stmmac_phy_setup(priv);
5082 if (ret) {
5083 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
5084 goto error_phy_setup;
5085 }
5086
5087 ret = register_netdev(ndev);
5088 if (ret) {
5089 dev_err(priv->device, "%s: ERROR %i registering the device\n",
5090 __func__, ret);
5091 goto error_netdev_register;
5092 }
5093
5094 if (priv->plat->serdes_powerup) {
5095 ret = priv->plat->serdes_powerup(ndev,
5096 priv->plat->bsp_priv);
5097
5098 if (ret < 0)
5099 goto error_serdes_powerup;
5100 }
5101
5102 #ifdef CONFIG_DEBUG_FS
5103 stmmac_init_fs(ndev);
5104 #endif
5105
5106 return ret;
5107
5108 error_serdes_powerup:
5109 unregister_netdev(ndev);
5110 error_netdev_register:
5111 phylink_destroy(priv->phylink);
5112 error_phy_setup:
5113 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5114 priv->hw->pcs != STMMAC_PCS_RTBI)
5115 stmmac_mdio_unregister(ndev);
5116 error_mdio_register:
5117 stmmac_napi_del(ndev);
5118 error_hw_init:
5119 destroy_workqueue(priv->wq);
5120
5121 return ret;
5122 }
5123 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5124
5125 /**
5126 * stmmac_dvr_remove
5127 * @dev: device pointer
5128 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5129 * changes the link status, releases the DMA descriptor rings.
5130 */
stmmac_dvr_remove(struct device * dev)5131 int stmmac_dvr_remove(struct device *dev)
5132 {
5133 struct net_device *ndev = dev_get_drvdata(dev);
5134 struct stmmac_priv *priv = netdev_priv(ndev);
5135
5136 netdev_info(priv->dev, "%s: removing driver", __func__);
5137
5138 stmmac_stop_all_dma(priv);
5139 stmmac_mac_set(priv, priv->ioaddr, false);
5140 netif_carrier_off(ndev);
5141 unregister_netdev(ndev);
5142
5143 /* Serdes power down needs to happen after VLAN filter
5144 * is deleted that is triggered by unregister_netdev().
5145 */
5146 if (priv->plat->serdes_powerdown)
5147 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5148
5149 #ifdef CONFIG_DEBUG_FS
5150 stmmac_exit_fs(ndev);
5151 #endif
5152 phylink_destroy(priv->phylink);
5153 if (priv->plat->stmmac_rst)
5154 reset_control_assert(priv->plat->stmmac_rst);
5155 clk_disable_unprepare(priv->plat->pclk);
5156 clk_disable_unprepare(priv->plat->stmmac_clk);
5157 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5158 priv->hw->pcs != STMMAC_PCS_RTBI)
5159 stmmac_mdio_unregister(ndev);
5160 destroy_workqueue(priv->wq);
5161 mutex_destroy(&priv->lock);
5162
5163 return 0;
5164 }
5165 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5166
5167 /**
5168 * stmmac_suspend - suspend callback
5169 * @dev: device pointer
5170 * Description: this is the function to suspend the device and it is called
5171 * by the platform driver to stop the network queue, release the resources,
5172 * program the PMT register (for WoL), clean and release driver resources.
5173 */
stmmac_suspend(struct device * dev)5174 int stmmac_suspend(struct device *dev)
5175 {
5176 struct net_device *ndev = dev_get_drvdata(dev);
5177 struct stmmac_priv *priv = netdev_priv(ndev);
5178 u32 chan;
5179
5180 if (!ndev || !netif_running(ndev))
5181 return 0;
5182
5183 phylink_mac_change(priv->phylink, false);
5184
5185 mutex_lock(&priv->lock);
5186
5187 netif_device_detach(ndev);
5188
5189 stmmac_disable_all_queues(priv);
5190
5191 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5192 del_timer_sync(&priv->tx_queue[chan].txtimer);
5193
5194 if (priv->eee_enabled) {
5195 priv->tx_path_in_lpi_mode = false;
5196 del_timer_sync(&priv->eee_ctrl_timer);
5197 }
5198
5199 /* Stop TX/RX DMA */
5200 stmmac_stop_all_dma(priv);
5201
5202 if (priv->plat->serdes_powerdown)
5203 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5204
5205 /* Enable Power down mode by programming the PMT regs */
5206 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5207 stmmac_pmt(priv, priv->hw, priv->wolopts);
5208 priv->irq_wake = 1;
5209 } else {
5210 mutex_unlock(&priv->lock);
5211 rtnl_lock();
5212 if (device_may_wakeup(priv->device))
5213 phylink_speed_down(priv->phylink, false);
5214 phylink_stop(priv->phylink);
5215 rtnl_unlock();
5216 mutex_lock(&priv->lock);
5217
5218 stmmac_mac_set(priv, priv->ioaddr, false);
5219 pinctrl_pm_select_sleep_state(priv->device);
5220 /* Disable clock in case of PWM is off */
5221 clk_disable_unprepare(priv->plat->clk_ptp_ref);
5222 clk_disable_unprepare(priv->plat->pclk);
5223 clk_disable_unprepare(priv->plat->stmmac_clk);
5224 }
5225 mutex_unlock(&priv->lock);
5226
5227 priv->speed = SPEED_UNKNOWN;
5228 return 0;
5229 }
5230 EXPORT_SYMBOL_GPL(stmmac_suspend);
5231
5232 /**
5233 * stmmac_reset_queues_param - reset queue parameters
5234 * @priv: device pointer
5235 */
stmmac_reset_queues_param(struct stmmac_priv * priv)5236 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5237 {
5238 u32 rx_cnt = priv->plat->rx_queues_to_use;
5239 u32 tx_cnt = priv->plat->tx_queues_to_use;
5240 u32 queue;
5241
5242 for (queue = 0; queue < rx_cnt; queue++) {
5243 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5244
5245 rx_q->cur_rx = 0;
5246 rx_q->dirty_rx = 0;
5247 }
5248
5249 for (queue = 0; queue < tx_cnt; queue++) {
5250 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5251
5252 tx_q->cur_tx = 0;
5253 tx_q->dirty_tx = 0;
5254 tx_q->mss = 0;
5255
5256 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
5257 }
5258 }
5259
5260 /**
5261 * stmmac_resume - resume callback
5262 * @dev: device pointer
5263 * Description: when resume this function is invoked to setup the DMA and CORE
5264 * in a usable state.
5265 */
stmmac_resume(struct device * dev)5266 int stmmac_resume(struct device *dev)
5267 {
5268 struct net_device *ndev = dev_get_drvdata(dev);
5269 struct stmmac_priv *priv = netdev_priv(ndev);
5270 int ret;
5271
5272 if (!netif_running(ndev))
5273 return 0;
5274
5275 /* Power Down bit, into the PM register, is cleared
5276 * automatically as soon as a magic packet or a Wake-up frame
5277 * is received. Anyway, it's better to manually clear
5278 * this bit because it can generate problems while resuming
5279 * from another devices (e.g. serial console).
5280 */
5281 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5282 mutex_lock(&priv->lock);
5283 stmmac_pmt(priv, priv->hw, 0);
5284 mutex_unlock(&priv->lock);
5285 priv->irq_wake = 0;
5286 } else {
5287 pinctrl_pm_select_default_state(priv->device);
5288 /* enable the clk previously disabled */
5289 clk_prepare_enable(priv->plat->stmmac_clk);
5290 clk_prepare_enable(priv->plat->pclk);
5291 if (priv->plat->clk_ptp_ref)
5292 clk_prepare_enable(priv->plat->clk_ptp_ref);
5293 /* reset the phy so that it's ready */
5294 if (priv->mii)
5295 stmmac_mdio_reset(priv->mii);
5296 }
5297
5298 if (priv->plat->serdes_powerup) {
5299 ret = priv->plat->serdes_powerup(ndev,
5300 priv->plat->bsp_priv);
5301
5302 if (ret < 0)
5303 return ret;
5304 }
5305
5306 if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
5307 rtnl_lock();
5308 phylink_start(priv->phylink);
5309 /* We may have called phylink_speed_down before */
5310 phylink_speed_up(priv->phylink);
5311 rtnl_unlock();
5312 }
5313
5314 rtnl_lock();
5315 mutex_lock(&priv->lock);
5316
5317 stmmac_reset_queues_param(priv);
5318
5319 stmmac_free_tx_skbufs(priv);
5320 stmmac_clear_descriptors(priv);
5321
5322 stmmac_hw_setup(ndev, false);
5323 stmmac_init_coalesce(priv);
5324 stmmac_set_rx_mode(ndev);
5325
5326 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5327
5328 stmmac_enable_all_queues(priv);
5329
5330 mutex_unlock(&priv->lock);
5331 rtnl_unlock();
5332
5333 phylink_mac_change(priv->phylink, true);
5334
5335 netif_device_attach(ndev);
5336
5337 return 0;
5338 }
5339 EXPORT_SYMBOL_GPL(stmmac_resume);
5340
5341 #ifndef MODULE
stmmac_cmdline_opt(char * str)5342 static int __init stmmac_cmdline_opt(char *str)
5343 {
5344 char *opt;
5345
5346 if (!str || !*str)
5347 return -EINVAL;
5348 while ((opt = strsep(&str, ",")) != NULL) {
5349 if (!strncmp(opt, "debug:", 6)) {
5350 if (kstrtoint(opt + 6, 0, &debug))
5351 goto err;
5352 } else if (!strncmp(opt, "phyaddr:", 8)) {
5353 if (kstrtoint(opt + 8, 0, &phyaddr))
5354 goto err;
5355 } else if (!strncmp(opt, "buf_sz:", 7)) {
5356 if (kstrtoint(opt + 7, 0, &buf_sz))
5357 goto err;
5358 } else if (!strncmp(opt, "tc:", 3)) {
5359 if (kstrtoint(opt + 3, 0, &tc))
5360 goto err;
5361 } else if (!strncmp(opt, "watchdog:", 9)) {
5362 if (kstrtoint(opt + 9, 0, &watchdog))
5363 goto err;
5364 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
5365 if (kstrtoint(opt + 10, 0, &flow_ctrl))
5366 goto err;
5367 } else if (!strncmp(opt, "pause:", 6)) {
5368 if (kstrtoint(opt + 6, 0, &pause))
5369 goto err;
5370 } else if (!strncmp(opt, "eee_timer:", 10)) {
5371 if (kstrtoint(opt + 10, 0, &eee_timer))
5372 goto err;
5373 } else if (!strncmp(opt, "chain_mode:", 11)) {
5374 if (kstrtoint(opt + 11, 0, &chain_mode))
5375 goto err;
5376 }
5377 }
5378 return 0;
5379
5380 err:
5381 pr_err("%s: ERROR broken module parameter conversion", __func__);
5382 return -EINVAL;
5383 }
5384
5385 __setup("stmmaceth=", stmmac_cmdline_opt);
5386 #endif /* MODULE */
5387
stmmac_init(void)5388 static int __init stmmac_init(void)
5389 {
5390 #ifdef CONFIG_DEBUG_FS
5391 /* Create debugfs main directory if it doesn't exist yet */
5392 if (!stmmac_fs_dir)
5393 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5394 register_netdevice_notifier(&stmmac_notifier);
5395 #endif
5396
5397 return 0;
5398 }
5399
stmmac_exit(void)5400 static void __exit stmmac_exit(void)
5401 {
5402 #ifdef CONFIG_DEBUG_FS
5403 unregister_netdevice_notifier(&stmmac_notifier);
5404 debugfs_remove_recursive(stmmac_fs_dir);
5405 #endif
5406 }
5407
5408 module_init(stmmac_init)
5409 module_exit(stmmac_exit)
5410
5411 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5412 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5413 MODULE_LICENSE("GPL");
5414