1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ip.h>
17 #include <linux/init.h>
18 #include <linux/moduleparam.h>
19 #include <linux/netfilter.h>
20 #include <linux/rtnetlink.h>
21 #include <net/rtnetlink.h>
22 #include <linux/u64_stats_sync.h>
23 #include <linux/hashtable.h>
24 #include <linux/spinlock_types.h>
25
26 #include <linux/inetdevice.h>
27 #include <net/arp.h>
28 #include <net/ip.h>
29 #include <net/ip_fib.h>
30 #include <net/ip6_fib.h>
31 #include <net/ip6_route.h>
32 #include <net/route.h>
33 #include <net/addrconf.h>
34 #include <net/l3mdev.h>
35 #include <net/fib_rules.h>
36 #include <net/netns/generic.h>
37
38 #define DRV_NAME "vrf"
39 #define DRV_VERSION "1.1"
40
41 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
42
43 #define HT_MAP_BITS 4
44 #define HASH_INITVAL ((u32)0xcafef00d)
45
46 struct vrf_map {
47 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
48 spinlock_t vmap_lock;
49
50 /* shared_tables:
51 * count how many distinct tables do not comply with the strict mode
52 * requirement.
53 * shared_tables value must be 0 in order to enable the strict mode.
54 *
55 * example of the evolution of shared_tables:
56 * | time
57 * add vrf0 --> table 100 shared_tables = 0 | t0
58 * add vrf1 --> table 101 shared_tables = 0 | t1
59 * add vrf2 --> table 100 shared_tables = 1 | t2
60 * add vrf3 --> table 100 shared_tables = 1 | t3
61 * add vrf4 --> table 101 shared_tables = 2 v t4
62 *
63 * shared_tables is a "step function" (or "staircase function")
64 * and it is increased by one when the second vrf is associated to a
65 * table.
66 *
67 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
68 *
69 * at t3, another dev (vrf3) is bound to the same table 100 but the
70 * value of shared_tables is still 1.
71 * This means that no matter how many new vrfs will register on the
72 * table 100, the shared_tables will not increase (considering only
73 * table 100).
74 *
75 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
76 *
77 * Looking at the value of shared_tables we can immediately know if
78 * the strict_mode can or cannot be enforced. Indeed, strict_mode
79 * can be enforced iff shared_tables = 0.
80 *
81 * Conversely, shared_tables is decreased when a vrf is de-associated
82 * from a table with exactly two associated vrfs.
83 */
84 u32 shared_tables;
85
86 bool strict_mode;
87 };
88
89 struct vrf_map_elem {
90 struct hlist_node hnode;
91 struct list_head vrf_list; /* VRFs registered to this table */
92
93 u32 table_id;
94 int users;
95 int ifindex;
96 };
97
98 static unsigned int vrf_net_id;
99
100 /* per netns vrf data */
101 struct netns_vrf {
102 /* protected by rtnl lock */
103 bool add_fib_rules;
104
105 struct vrf_map vmap;
106 struct ctl_table_header *ctl_hdr;
107 };
108
109 struct net_vrf {
110 struct rtable __rcu *rth;
111 struct rt6_info __rcu *rt6;
112 #if IS_ENABLED(CONFIG_IPV6)
113 struct fib6_table *fib6_table;
114 #endif
115 u32 tb_id;
116
117 struct list_head me_list; /* entry in vrf_map_elem */
118 int ifindex;
119 };
120
121 struct pcpu_dstats {
122 u64 tx_pkts;
123 u64 tx_bytes;
124 u64 tx_drps;
125 u64 rx_pkts;
126 u64 rx_bytes;
127 u64 rx_drps;
128 struct u64_stats_sync syncp;
129 };
130
vrf_rx_stats(struct net_device * dev,int len)131 static void vrf_rx_stats(struct net_device *dev, int len)
132 {
133 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
134
135 u64_stats_update_begin(&dstats->syncp);
136 dstats->rx_pkts++;
137 dstats->rx_bytes += len;
138 u64_stats_update_end(&dstats->syncp);
139 }
140
vrf_tx_error(struct net_device * vrf_dev,struct sk_buff * skb)141 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
142 {
143 vrf_dev->stats.tx_errors++;
144 kfree_skb(skb);
145 }
146
vrf_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)147 static void vrf_get_stats64(struct net_device *dev,
148 struct rtnl_link_stats64 *stats)
149 {
150 int i;
151
152 for_each_possible_cpu(i) {
153 const struct pcpu_dstats *dstats;
154 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
155 unsigned int start;
156
157 dstats = per_cpu_ptr(dev->dstats, i);
158 do {
159 start = u64_stats_fetch_begin_irq(&dstats->syncp);
160 tbytes = dstats->tx_bytes;
161 tpkts = dstats->tx_pkts;
162 tdrops = dstats->tx_drps;
163 rbytes = dstats->rx_bytes;
164 rpkts = dstats->rx_pkts;
165 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
166 stats->tx_bytes += tbytes;
167 stats->tx_packets += tpkts;
168 stats->tx_dropped += tdrops;
169 stats->rx_bytes += rbytes;
170 stats->rx_packets += rpkts;
171 }
172 }
173
netns_vrf_map(struct net * net)174 static struct vrf_map *netns_vrf_map(struct net *net)
175 {
176 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
177
178 return &nn_vrf->vmap;
179 }
180
netns_vrf_map_by_dev(struct net_device * dev)181 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
182 {
183 return netns_vrf_map(dev_net(dev));
184 }
185
vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem * me)186 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
187 {
188 struct list_head *me_head = &me->vrf_list;
189 struct net_vrf *vrf;
190
191 if (list_empty(me_head))
192 return -ENODEV;
193
194 vrf = list_first_entry(me_head, struct net_vrf, me_list);
195
196 return vrf->ifindex;
197 }
198
vrf_map_elem_alloc(gfp_t flags)199 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
200 {
201 struct vrf_map_elem *me;
202
203 me = kmalloc(sizeof(*me), flags);
204 if (!me)
205 return NULL;
206
207 return me;
208 }
209
vrf_map_elem_free(struct vrf_map_elem * me)210 static void vrf_map_elem_free(struct vrf_map_elem *me)
211 {
212 kfree(me);
213 }
214
vrf_map_elem_init(struct vrf_map_elem * me,int table_id,int ifindex,int users)215 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
216 int ifindex, int users)
217 {
218 me->table_id = table_id;
219 me->ifindex = ifindex;
220 me->users = users;
221 INIT_LIST_HEAD(&me->vrf_list);
222 }
223
vrf_map_lookup_elem(struct vrf_map * vmap,u32 table_id)224 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
225 u32 table_id)
226 {
227 struct vrf_map_elem *me;
228 u32 key;
229
230 key = jhash_1word(table_id, HASH_INITVAL);
231 hash_for_each_possible(vmap->ht, me, hnode, key) {
232 if (me->table_id == table_id)
233 return me;
234 }
235
236 return NULL;
237 }
238
vrf_map_add_elem(struct vrf_map * vmap,struct vrf_map_elem * me)239 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
240 {
241 u32 table_id = me->table_id;
242 u32 key;
243
244 key = jhash_1word(table_id, HASH_INITVAL);
245 hash_add(vmap->ht, &me->hnode, key);
246 }
247
vrf_map_del_elem(struct vrf_map_elem * me)248 static void vrf_map_del_elem(struct vrf_map_elem *me)
249 {
250 hash_del(&me->hnode);
251 }
252
vrf_map_lock(struct vrf_map * vmap)253 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
254 {
255 spin_lock(&vmap->vmap_lock);
256 }
257
vrf_map_unlock(struct vrf_map * vmap)258 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
259 {
260 spin_unlock(&vmap->vmap_lock);
261 }
262
263 /* called with rtnl lock held */
264 static int
vrf_map_register_dev(struct net_device * dev,struct netlink_ext_ack * extack)265 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
266 {
267 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
268 struct net_vrf *vrf = netdev_priv(dev);
269 struct vrf_map_elem *new_me, *me;
270 u32 table_id = vrf->tb_id;
271 bool free_new_me = false;
272 int users;
273 int res;
274
275 /* we pre-allocate elements used in the spin-locked section (so that we
276 * keep the spinlock as short as possibile).
277 */
278 new_me = vrf_map_elem_alloc(GFP_KERNEL);
279 if (!new_me)
280 return -ENOMEM;
281
282 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
283
284 vrf_map_lock(vmap);
285
286 me = vrf_map_lookup_elem(vmap, table_id);
287 if (!me) {
288 me = new_me;
289 vrf_map_add_elem(vmap, me);
290 goto link_vrf;
291 }
292
293 /* we already have an entry in the vrf_map, so it means there is (at
294 * least) a vrf registered on the specific table.
295 */
296 free_new_me = true;
297 if (vmap->strict_mode) {
298 /* vrfs cannot share the same table */
299 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
300 res = -EBUSY;
301 goto unlock;
302 }
303
304 link_vrf:
305 users = ++me->users;
306 if (users == 2)
307 ++vmap->shared_tables;
308
309 list_add(&vrf->me_list, &me->vrf_list);
310
311 res = 0;
312
313 unlock:
314 vrf_map_unlock(vmap);
315
316 /* clean-up, if needed */
317 if (free_new_me)
318 vrf_map_elem_free(new_me);
319
320 return res;
321 }
322
323 /* called with rtnl lock held */
vrf_map_unregister_dev(struct net_device * dev)324 static void vrf_map_unregister_dev(struct net_device *dev)
325 {
326 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
327 struct net_vrf *vrf = netdev_priv(dev);
328 u32 table_id = vrf->tb_id;
329 struct vrf_map_elem *me;
330 int users;
331
332 vrf_map_lock(vmap);
333
334 me = vrf_map_lookup_elem(vmap, table_id);
335 if (!me)
336 goto unlock;
337
338 list_del(&vrf->me_list);
339
340 users = --me->users;
341 if (users == 1) {
342 --vmap->shared_tables;
343 } else if (users == 0) {
344 vrf_map_del_elem(me);
345
346 /* no one will refer to this element anymore */
347 vrf_map_elem_free(me);
348 }
349
350 unlock:
351 vrf_map_unlock(vmap);
352 }
353
354 /* return the vrf device index associated with the table_id */
vrf_ifindex_lookup_by_table_id(struct net * net,u32 table_id)355 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
356 {
357 struct vrf_map *vmap = netns_vrf_map(net);
358 struct vrf_map_elem *me;
359 int ifindex;
360
361 vrf_map_lock(vmap);
362
363 if (!vmap->strict_mode) {
364 ifindex = -EPERM;
365 goto unlock;
366 }
367
368 me = vrf_map_lookup_elem(vmap, table_id);
369 if (!me) {
370 ifindex = -ENODEV;
371 goto unlock;
372 }
373
374 ifindex = vrf_map_elem_get_vrf_ifindex(me);
375
376 unlock:
377 vrf_map_unlock(vmap);
378
379 return ifindex;
380 }
381
382 /* by default VRF devices do not have a qdisc and are expected
383 * to be created with only a single queue.
384 */
qdisc_tx_is_default(const struct net_device * dev)385 static bool qdisc_tx_is_default(const struct net_device *dev)
386 {
387 struct netdev_queue *txq;
388 struct Qdisc *qdisc;
389
390 if (dev->num_tx_queues > 1)
391 return false;
392
393 txq = netdev_get_tx_queue(dev, 0);
394 qdisc = rcu_access_pointer(txq->qdisc);
395
396 return !qdisc->enqueue;
397 }
398
399 /* Local traffic destined to local address. Reinsert the packet to rx
400 * path, similar to loopback handling.
401 */
vrf_local_xmit(struct sk_buff * skb,struct net_device * dev,struct dst_entry * dst)402 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
403 struct dst_entry *dst)
404 {
405 int len = skb->len;
406
407 skb_orphan(skb);
408
409 skb_dst_set(skb, dst);
410
411 /* set pkt_type to avoid skb hitting packet taps twice -
412 * once on Tx and again in Rx processing
413 */
414 skb->pkt_type = PACKET_LOOPBACK;
415
416 skb->protocol = eth_type_trans(skb, dev);
417
418 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
419 vrf_rx_stats(dev, len);
420 else
421 this_cpu_inc(dev->dstats->rx_drps);
422
423 return NETDEV_TX_OK;
424 }
425
426 #if IS_ENABLED(CONFIG_IPV6)
vrf_ip6_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)427 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
428 struct sk_buff *skb)
429 {
430 int err;
431
432 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
433 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
434
435 if (likely(err == 1))
436 err = dst_output(net, sk, skb);
437
438 return err;
439 }
440
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)441 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
442 struct net_device *dev)
443 {
444 const struct ipv6hdr *iph;
445 struct net *net = dev_net(skb->dev);
446 struct flowi6 fl6;
447 int ret = NET_XMIT_DROP;
448 struct dst_entry *dst;
449 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
450
451 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
452 goto err;
453
454 iph = ipv6_hdr(skb);
455
456 memset(&fl6, 0, sizeof(fl6));
457 /* needed to match OIF rule */
458 fl6.flowi6_oif = dev->ifindex;
459 fl6.flowi6_iif = LOOPBACK_IFINDEX;
460 fl6.daddr = iph->daddr;
461 fl6.saddr = iph->saddr;
462 fl6.flowlabel = ip6_flowinfo(iph);
463 fl6.flowi6_mark = skb->mark;
464 fl6.flowi6_proto = iph->nexthdr;
465 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
466
467 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
468 if (IS_ERR(dst) || dst == dst_null)
469 goto err;
470
471 skb_dst_drop(skb);
472
473 /* if dst.dev is loopback or the VRF device again this is locally
474 * originated traffic destined to a local address. Short circuit
475 * to Rx path
476 */
477 if (dst->dev == dev)
478 return vrf_local_xmit(skb, dev, dst);
479
480 skb_dst_set(skb, dst);
481
482 /* strip the ethernet header added for pass through VRF device */
483 __skb_pull(skb, skb_network_offset(skb));
484
485 ret = vrf_ip6_local_out(net, skb->sk, skb);
486 if (unlikely(net_xmit_eval(ret)))
487 dev->stats.tx_errors++;
488 else
489 ret = NET_XMIT_SUCCESS;
490
491 return ret;
492 err:
493 vrf_tx_error(dev, skb);
494 return NET_XMIT_DROP;
495 }
496 #else
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)497 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
498 struct net_device *dev)
499 {
500 vrf_tx_error(dev, skb);
501 return NET_XMIT_DROP;
502 }
503 #endif
504
505 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
vrf_ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)506 static int vrf_ip_local_out(struct net *net, struct sock *sk,
507 struct sk_buff *skb)
508 {
509 int err;
510
511 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
512 skb, NULL, skb_dst(skb)->dev, dst_output);
513 if (likely(err == 1))
514 err = dst_output(net, sk, skb);
515
516 return err;
517 }
518
vrf_process_v4_outbound(struct sk_buff * skb,struct net_device * vrf_dev)519 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
520 struct net_device *vrf_dev)
521 {
522 struct iphdr *ip4h;
523 int ret = NET_XMIT_DROP;
524 struct flowi4 fl4;
525 struct net *net = dev_net(vrf_dev);
526 struct rtable *rt;
527
528 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
529 goto err;
530
531 ip4h = ip_hdr(skb);
532
533 memset(&fl4, 0, sizeof(fl4));
534 /* needed to match OIF rule */
535 fl4.flowi4_oif = vrf_dev->ifindex;
536 fl4.flowi4_iif = LOOPBACK_IFINDEX;
537 fl4.flowi4_tos = RT_TOS(ip4h->tos);
538 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
539 fl4.flowi4_proto = ip4h->protocol;
540 fl4.daddr = ip4h->daddr;
541 fl4.saddr = ip4h->saddr;
542
543 rt = ip_route_output_flow(net, &fl4, NULL);
544 if (IS_ERR(rt))
545 goto err;
546
547 skb_dst_drop(skb);
548
549 /* if dst.dev is loopback or the VRF device again this is locally
550 * originated traffic destined to a local address. Short circuit
551 * to Rx path
552 */
553 if (rt->dst.dev == vrf_dev)
554 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
555
556 skb_dst_set(skb, &rt->dst);
557
558 /* strip the ethernet header added for pass through VRF device */
559 __skb_pull(skb, skb_network_offset(skb));
560
561 if (!ip4h->saddr) {
562 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
563 RT_SCOPE_LINK);
564 }
565
566 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
567 if (unlikely(net_xmit_eval(ret)))
568 vrf_dev->stats.tx_errors++;
569 else
570 ret = NET_XMIT_SUCCESS;
571
572 out:
573 return ret;
574 err:
575 vrf_tx_error(vrf_dev, skb);
576 goto out;
577 }
578
is_ip_tx_frame(struct sk_buff * skb,struct net_device * dev)579 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
580 {
581 switch (skb->protocol) {
582 case htons(ETH_P_IP):
583 return vrf_process_v4_outbound(skb, dev);
584 case htons(ETH_P_IPV6):
585 return vrf_process_v6_outbound(skb, dev);
586 default:
587 vrf_tx_error(dev, skb);
588 return NET_XMIT_DROP;
589 }
590 }
591
vrf_xmit(struct sk_buff * skb,struct net_device * dev)592 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
593 {
594 int len = skb->len;
595 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
596
597 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
598 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
599
600 u64_stats_update_begin(&dstats->syncp);
601 dstats->tx_pkts++;
602 dstats->tx_bytes += len;
603 u64_stats_update_end(&dstats->syncp);
604 } else {
605 this_cpu_inc(dev->dstats->tx_drps);
606 }
607
608 return ret;
609 }
610
vrf_finish_direct(struct sk_buff * skb)611 static void vrf_finish_direct(struct sk_buff *skb)
612 {
613 struct net_device *vrf_dev = skb->dev;
614
615 if (!list_empty(&vrf_dev->ptype_all) &&
616 likely(skb_headroom(skb) >= ETH_HLEN)) {
617 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
618
619 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
620 eth_zero_addr(eth->h_dest);
621 eth->h_proto = skb->protocol;
622
623 rcu_read_lock_bh();
624 dev_queue_xmit_nit(skb, vrf_dev);
625 rcu_read_unlock_bh();
626
627 skb_pull(skb, ETH_HLEN);
628 }
629
630 /* reset skb device */
631 nf_reset_ct(skb);
632 }
633
634 #if IS_ENABLED(CONFIG_IPV6)
635 /* modelled after ip6_finish_output2 */
vrf_finish_output6(struct net * net,struct sock * sk,struct sk_buff * skb)636 static int vrf_finish_output6(struct net *net, struct sock *sk,
637 struct sk_buff *skb)
638 {
639 struct dst_entry *dst = skb_dst(skb);
640 struct net_device *dev = dst->dev;
641 const struct in6_addr *nexthop;
642 struct neighbour *neigh;
643 int ret;
644
645 nf_reset_ct(skb);
646
647 skb->protocol = htons(ETH_P_IPV6);
648 skb->dev = dev;
649
650 rcu_read_lock_bh();
651 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
652 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
653 if (unlikely(!neigh))
654 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
655 if (!IS_ERR(neigh)) {
656 sock_confirm_neigh(skb, neigh);
657 ret = neigh_output(neigh, skb, false);
658 rcu_read_unlock_bh();
659 return ret;
660 }
661 rcu_read_unlock_bh();
662
663 IP6_INC_STATS(dev_net(dst->dev),
664 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
665 kfree_skb(skb);
666 return -EINVAL;
667 }
668
669 /* modelled after ip6_output */
vrf_output6(struct net * net,struct sock * sk,struct sk_buff * skb)670 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
671 {
672 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
673 net, sk, skb, NULL, skb_dst(skb)->dev,
674 vrf_finish_output6,
675 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
676 }
677
678 /* set dst on skb to send packet to us via dev_xmit path. Allows
679 * packet to go through device based features such as qdisc, netfilter
680 * hooks and packet sockets with skb->dev set to vrf device.
681 */
vrf_ip6_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)682 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
683 struct sk_buff *skb)
684 {
685 struct net_vrf *vrf = netdev_priv(vrf_dev);
686 struct dst_entry *dst = NULL;
687 struct rt6_info *rt6;
688
689 rcu_read_lock();
690
691 rt6 = rcu_dereference(vrf->rt6);
692 if (likely(rt6)) {
693 dst = &rt6->dst;
694 dst_hold(dst);
695 }
696
697 rcu_read_unlock();
698
699 if (unlikely(!dst)) {
700 vrf_tx_error(vrf_dev, skb);
701 return NULL;
702 }
703
704 skb_dst_drop(skb);
705 skb_dst_set(skb, dst);
706
707 return skb;
708 }
709
vrf_output6_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)710 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
711 struct sk_buff *skb)
712 {
713 vrf_finish_direct(skb);
714
715 return vrf_ip6_local_out(net, sk, skb);
716 }
717
vrf_output6_direct(struct net * net,struct sock * sk,struct sk_buff * skb)718 static int vrf_output6_direct(struct net *net, struct sock *sk,
719 struct sk_buff *skb)
720 {
721 int err = 1;
722
723 skb->protocol = htons(ETH_P_IPV6);
724
725 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
726 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
727 NULL, skb->dev, vrf_output6_direct_finish);
728
729 if (likely(err == 1))
730 vrf_finish_direct(skb);
731
732 return err;
733 }
734
vrf_ip6_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)735 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
736 struct sk_buff *skb)
737 {
738 int err;
739
740 err = vrf_output6_direct(net, sk, skb);
741 if (likely(err == 1))
742 err = vrf_ip6_local_out(net, sk, skb);
743
744 return err;
745 }
746
vrf_ip6_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)747 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
748 struct sock *sk,
749 struct sk_buff *skb)
750 {
751 struct net *net = dev_net(vrf_dev);
752 int err;
753
754 skb->dev = vrf_dev;
755
756 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
757 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
758
759 if (likely(err == 1))
760 err = vrf_output6_direct(net, sk, skb);
761
762 if (likely(err == 1))
763 return skb;
764
765 return NULL;
766 }
767
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)768 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
769 struct sock *sk,
770 struct sk_buff *skb)
771 {
772 /* don't divert link scope packets */
773 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
774 return skb;
775
776 if (qdisc_tx_is_default(vrf_dev) ||
777 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
778 return vrf_ip6_out_direct(vrf_dev, sk, skb);
779
780 return vrf_ip6_out_redirect(vrf_dev, skb);
781 }
782
783 /* holding rtnl */
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)784 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
785 {
786 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
787 struct net *net = dev_net(dev);
788 struct dst_entry *dst;
789
790 RCU_INIT_POINTER(vrf->rt6, NULL);
791 synchronize_rcu();
792
793 /* move dev in dst's to loopback so this VRF device can be deleted
794 * - based on dst_ifdown
795 */
796 if (rt6) {
797 dst = &rt6->dst;
798 dev_put(dst->dev);
799 dst->dev = net->loopback_dev;
800 dev_hold(dst->dev);
801 dst_release(dst);
802 }
803 }
804
vrf_rt6_create(struct net_device * dev)805 static int vrf_rt6_create(struct net_device *dev)
806 {
807 int flags = DST_NOPOLICY | DST_NOXFRM;
808 struct net_vrf *vrf = netdev_priv(dev);
809 struct net *net = dev_net(dev);
810 struct rt6_info *rt6;
811 int rc = -ENOMEM;
812
813 /* IPv6 can be CONFIG enabled and then disabled runtime */
814 if (!ipv6_mod_enabled())
815 return 0;
816
817 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
818 if (!vrf->fib6_table)
819 goto out;
820
821 /* create a dst for routing packets out a VRF device */
822 rt6 = ip6_dst_alloc(net, dev, flags);
823 if (!rt6)
824 goto out;
825
826 rt6->dst.output = vrf_output6;
827
828 rcu_assign_pointer(vrf->rt6, rt6);
829
830 rc = 0;
831 out:
832 return rc;
833 }
834 #else
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)835 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
836 struct sock *sk,
837 struct sk_buff *skb)
838 {
839 return skb;
840 }
841
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)842 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
843 {
844 }
845
vrf_rt6_create(struct net_device * dev)846 static int vrf_rt6_create(struct net_device *dev)
847 {
848 return 0;
849 }
850 #endif
851
852 /* modelled after ip_finish_output2 */
vrf_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)853 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
854 {
855 struct dst_entry *dst = skb_dst(skb);
856 struct rtable *rt = (struct rtable *)dst;
857 struct net_device *dev = dst->dev;
858 unsigned int hh_len = LL_RESERVED_SPACE(dev);
859 struct neighbour *neigh;
860 bool is_v6gw = false;
861 int ret = -EINVAL;
862
863 nf_reset_ct(skb);
864
865 /* Be paranoid, rather than too clever. */
866 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
867 struct sk_buff *skb2;
868
869 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
870 if (!skb2) {
871 ret = -ENOMEM;
872 goto err;
873 }
874 if (skb->sk)
875 skb_set_owner_w(skb2, skb->sk);
876
877 consume_skb(skb);
878 skb = skb2;
879 }
880
881 rcu_read_lock_bh();
882
883 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
884 if (!IS_ERR(neigh)) {
885 sock_confirm_neigh(skb, neigh);
886 /* if crossing protocols, can not use the cached header */
887 ret = neigh_output(neigh, skb, is_v6gw);
888 rcu_read_unlock_bh();
889 return ret;
890 }
891
892 rcu_read_unlock_bh();
893 err:
894 vrf_tx_error(skb->dev, skb);
895 return ret;
896 }
897
vrf_output(struct net * net,struct sock * sk,struct sk_buff * skb)898 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
899 {
900 struct net_device *dev = skb_dst(skb)->dev;
901
902 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
903
904 skb->dev = dev;
905 skb->protocol = htons(ETH_P_IP);
906
907 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
908 net, sk, skb, NULL, dev,
909 vrf_finish_output,
910 !(IPCB(skb)->flags & IPSKB_REROUTED));
911 }
912
913 /* set dst on skb to send packet to us via dev_xmit path. Allows
914 * packet to go through device based features such as qdisc, netfilter
915 * hooks and packet sockets with skb->dev set to vrf device.
916 */
vrf_ip_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)917 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
918 struct sk_buff *skb)
919 {
920 struct net_vrf *vrf = netdev_priv(vrf_dev);
921 struct dst_entry *dst = NULL;
922 struct rtable *rth;
923
924 rcu_read_lock();
925
926 rth = rcu_dereference(vrf->rth);
927 if (likely(rth)) {
928 dst = &rth->dst;
929 dst_hold(dst);
930 }
931
932 rcu_read_unlock();
933
934 if (unlikely(!dst)) {
935 vrf_tx_error(vrf_dev, skb);
936 return NULL;
937 }
938
939 skb_dst_drop(skb);
940 skb_dst_set(skb, dst);
941
942 return skb;
943 }
944
vrf_output_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)945 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
946 struct sk_buff *skb)
947 {
948 vrf_finish_direct(skb);
949
950 return vrf_ip_local_out(net, sk, skb);
951 }
952
vrf_output_direct(struct net * net,struct sock * sk,struct sk_buff * skb)953 static int vrf_output_direct(struct net *net, struct sock *sk,
954 struct sk_buff *skb)
955 {
956 int err = 1;
957
958 skb->protocol = htons(ETH_P_IP);
959
960 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
961 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
962 NULL, skb->dev, vrf_output_direct_finish);
963
964 if (likely(err == 1))
965 vrf_finish_direct(skb);
966
967 return err;
968 }
969
vrf_ip_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)970 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
971 struct sk_buff *skb)
972 {
973 int err;
974
975 err = vrf_output_direct(net, sk, skb);
976 if (likely(err == 1))
977 err = vrf_ip_local_out(net, sk, skb);
978
979 return err;
980 }
981
vrf_ip_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)982 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
983 struct sock *sk,
984 struct sk_buff *skb)
985 {
986 struct net *net = dev_net(vrf_dev);
987 int err;
988
989 skb->dev = vrf_dev;
990
991 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
992 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
993
994 if (likely(err == 1))
995 err = vrf_output_direct(net, sk, skb);
996
997 if (likely(err == 1))
998 return skb;
999
1000 return NULL;
1001 }
1002
vrf_ip_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)1003 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1004 struct sock *sk,
1005 struct sk_buff *skb)
1006 {
1007 /* don't divert multicast or local broadcast */
1008 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1009 ipv4_is_lbcast(ip_hdr(skb)->daddr))
1010 return skb;
1011
1012 if (qdisc_tx_is_default(vrf_dev) ||
1013 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1014 return vrf_ip_out_direct(vrf_dev, sk, skb);
1015
1016 return vrf_ip_out_redirect(vrf_dev, skb);
1017 }
1018
1019 /* called with rcu lock held */
vrf_l3_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb,u16 proto)1020 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1021 struct sock *sk,
1022 struct sk_buff *skb,
1023 u16 proto)
1024 {
1025 switch (proto) {
1026 case AF_INET:
1027 return vrf_ip_out(vrf_dev, sk, skb);
1028 case AF_INET6:
1029 return vrf_ip6_out(vrf_dev, sk, skb);
1030 }
1031
1032 return skb;
1033 }
1034
1035 /* holding rtnl */
vrf_rtable_release(struct net_device * dev,struct net_vrf * vrf)1036 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1037 {
1038 struct rtable *rth = rtnl_dereference(vrf->rth);
1039 struct net *net = dev_net(dev);
1040 struct dst_entry *dst;
1041
1042 RCU_INIT_POINTER(vrf->rth, NULL);
1043 synchronize_rcu();
1044
1045 /* move dev in dst's to loopback so this VRF device can be deleted
1046 * - based on dst_ifdown
1047 */
1048 if (rth) {
1049 dst = &rth->dst;
1050 dev_put(dst->dev);
1051 dst->dev = net->loopback_dev;
1052 dev_hold(dst->dev);
1053 dst_release(dst);
1054 }
1055 }
1056
vrf_rtable_create(struct net_device * dev)1057 static int vrf_rtable_create(struct net_device *dev)
1058 {
1059 struct net_vrf *vrf = netdev_priv(dev);
1060 struct rtable *rth;
1061
1062 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1063 return -ENOMEM;
1064
1065 /* create a dst for routing packets out through a VRF device */
1066 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1067 if (!rth)
1068 return -ENOMEM;
1069
1070 rth->dst.output = vrf_output;
1071
1072 rcu_assign_pointer(vrf->rth, rth);
1073
1074 return 0;
1075 }
1076
1077 /**************************** device handling ********************/
1078
1079 /* cycle interface to flush neighbor cache and move routes across tables */
cycle_netdev(struct net_device * dev,struct netlink_ext_ack * extack)1080 static void cycle_netdev(struct net_device *dev,
1081 struct netlink_ext_ack *extack)
1082 {
1083 unsigned int flags = dev->flags;
1084 int ret;
1085
1086 if (!netif_running(dev))
1087 return;
1088
1089 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1090 if (ret >= 0)
1091 ret = dev_change_flags(dev, flags, extack);
1092
1093 if (ret < 0) {
1094 netdev_err(dev,
1095 "Failed to cycle device %s; route tables might be wrong!\n",
1096 dev->name);
1097 }
1098 }
1099
do_vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1100 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1101 struct netlink_ext_ack *extack)
1102 {
1103 int ret;
1104
1105 /* do not allow loopback device to be enslaved to a VRF.
1106 * The vrf device acts as the loopback for the vrf.
1107 */
1108 if (port_dev == dev_net(dev)->loopback_dev) {
1109 NL_SET_ERR_MSG(extack,
1110 "Can not enslave loopback device to a VRF");
1111 return -EOPNOTSUPP;
1112 }
1113
1114 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1115 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1116 if (ret < 0)
1117 goto err;
1118
1119 cycle_netdev(port_dev, extack);
1120
1121 return 0;
1122
1123 err:
1124 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1125 return ret;
1126 }
1127
vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1128 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1129 struct netlink_ext_ack *extack)
1130 {
1131 if (netif_is_l3_master(port_dev)) {
1132 NL_SET_ERR_MSG(extack,
1133 "Can not enslave an L3 master device to a VRF");
1134 return -EINVAL;
1135 }
1136
1137 if (netif_is_l3_slave(port_dev))
1138 return -EINVAL;
1139
1140 return do_vrf_add_slave(dev, port_dev, extack);
1141 }
1142
1143 /* inverse of do_vrf_add_slave */
do_vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1144 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1145 {
1146 netdev_upper_dev_unlink(port_dev, dev);
1147 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1148
1149 cycle_netdev(port_dev, NULL);
1150
1151 return 0;
1152 }
1153
vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1154 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1155 {
1156 return do_vrf_del_slave(dev, port_dev);
1157 }
1158
vrf_dev_uninit(struct net_device * dev)1159 static void vrf_dev_uninit(struct net_device *dev)
1160 {
1161 struct net_vrf *vrf = netdev_priv(dev);
1162
1163 vrf_rtable_release(dev, vrf);
1164 vrf_rt6_release(dev, vrf);
1165
1166 free_percpu(dev->dstats);
1167 dev->dstats = NULL;
1168 }
1169
vrf_dev_init(struct net_device * dev)1170 static int vrf_dev_init(struct net_device *dev)
1171 {
1172 struct net_vrf *vrf = netdev_priv(dev);
1173
1174 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1175 if (!dev->dstats)
1176 goto out_nomem;
1177
1178 /* create the default dst which points back to us */
1179 if (vrf_rtable_create(dev) != 0)
1180 goto out_stats;
1181
1182 if (vrf_rt6_create(dev) != 0)
1183 goto out_rth;
1184
1185 dev->flags = IFF_MASTER | IFF_NOARP;
1186
1187 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1188 dev->operstate = IF_OPER_UP;
1189 netdev_lockdep_set_classes(dev);
1190 return 0;
1191
1192 out_rth:
1193 vrf_rtable_release(dev, vrf);
1194 out_stats:
1195 free_percpu(dev->dstats);
1196 dev->dstats = NULL;
1197 out_nomem:
1198 return -ENOMEM;
1199 }
1200
1201 static const struct net_device_ops vrf_netdev_ops = {
1202 .ndo_init = vrf_dev_init,
1203 .ndo_uninit = vrf_dev_uninit,
1204 .ndo_start_xmit = vrf_xmit,
1205 .ndo_set_mac_address = eth_mac_addr,
1206 .ndo_get_stats64 = vrf_get_stats64,
1207 .ndo_add_slave = vrf_add_slave,
1208 .ndo_del_slave = vrf_del_slave,
1209 };
1210
vrf_fib_table(const struct net_device * dev)1211 static u32 vrf_fib_table(const struct net_device *dev)
1212 {
1213 struct net_vrf *vrf = netdev_priv(dev);
1214
1215 return vrf->tb_id;
1216 }
1217
vrf_rcv_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1218 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1219 {
1220 kfree_skb(skb);
1221 return 0;
1222 }
1223
vrf_rcv_nfhook(u8 pf,unsigned int hook,struct sk_buff * skb,struct net_device * dev)1224 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1225 struct sk_buff *skb,
1226 struct net_device *dev)
1227 {
1228 struct net *net = dev_net(dev);
1229
1230 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1231 skb = NULL; /* kfree_skb(skb) handled by nf code */
1232
1233 return skb;
1234 }
1235
1236 #if IS_ENABLED(CONFIG_IPV6)
1237 /* neighbor handling is done with actual device; do not want
1238 * to flip skb->dev for those ndisc packets. This really fails
1239 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1240 * a start.
1241 */
ipv6_ndisc_frame(const struct sk_buff * skb)1242 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1243 {
1244 const struct ipv6hdr *iph = ipv6_hdr(skb);
1245 bool rc = false;
1246
1247 if (iph->nexthdr == NEXTHDR_ICMP) {
1248 const struct icmp6hdr *icmph;
1249 struct icmp6hdr _icmph;
1250
1251 icmph = skb_header_pointer(skb, sizeof(*iph),
1252 sizeof(_icmph), &_icmph);
1253 if (!icmph)
1254 goto out;
1255
1256 switch (icmph->icmp6_type) {
1257 case NDISC_ROUTER_SOLICITATION:
1258 case NDISC_ROUTER_ADVERTISEMENT:
1259 case NDISC_NEIGHBOUR_SOLICITATION:
1260 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1261 case NDISC_REDIRECT:
1262 rc = true;
1263 break;
1264 }
1265 }
1266
1267 out:
1268 return rc;
1269 }
1270
vrf_ip6_route_lookup(struct net * net,const struct net_device * dev,struct flowi6 * fl6,int ifindex,const struct sk_buff * skb,int flags)1271 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1272 const struct net_device *dev,
1273 struct flowi6 *fl6,
1274 int ifindex,
1275 const struct sk_buff *skb,
1276 int flags)
1277 {
1278 struct net_vrf *vrf = netdev_priv(dev);
1279
1280 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1281 }
1282
vrf_ip6_input_dst(struct sk_buff * skb,struct net_device * vrf_dev,int ifindex)1283 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1284 int ifindex)
1285 {
1286 const struct ipv6hdr *iph = ipv6_hdr(skb);
1287 struct flowi6 fl6 = {
1288 .flowi6_iif = ifindex,
1289 .flowi6_mark = skb->mark,
1290 .flowi6_proto = iph->nexthdr,
1291 .daddr = iph->daddr,
1292 .saddr = iph->saddr,
1293 .flowlabel = ip6_flowinfo(iph),
1294 };
1295 struct net *net = dev_net(vrf_dev);
1296 struct rt6_info *rt6;
1297
1298 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1299 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1300 if (unlikely(!rt6))
1301 return;
1302
1303 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1304 return;
1305
1306 skb_dst_set(skb, &rt6->dst);
1307 }
1308
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1309 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1310 struct sk_buff *skb)
1311 {
1312 int orig_iif = skb->skb_iif;
1313 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1314 bool is_ndisc = ipv6_ndisc_frame(skb);
1315
1316 /* loopback, multicast & non-ND link-local traffic; do not push through
1317 * packet taps again. Reset pkt_type for upper layers to process skb.
1318 * For strict packets with a source LLA, determine the dst using the
1319 * original ifindex.
1320 */
1321 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1322 skb->dev = vrf_dev;
1323 skb->skb_iif = vrf_dev->ifindex;
1324 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1325
1326 if (skb->pkt_type == PACKET_LOOPBACK)
1327 skb->pkt_type = PACKET_HOST;
1328 else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)
1329 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1330
1331 goto out;
1332 }
1333
1334 /* if packet is NDISC then keep the ingress interface */
1335 if (!is_ndisc) {
1336 vrf_rx_stats(vrf_dev, skb->len);
1337 skb->dev = vrf_dev;
1338 skb->skb_iif = vrf_dev->ifindex;
1339
1340 if (!list_empty(&vrf_dev->ptype_all)) {
1341 skb_push(skb, skb->mac_len);
1342 dev_queue_xmit_nit(skb, vrf_dev);
1343 skb_pull(skb, skb->mac_len);
1344 }
1345
1346 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1347 }
1348
1349 if (need_strict)
1350 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1351
1352 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1353 out:
1354 return skb;
1355 }
1356
1357 #else
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1358 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1359 struct sk_buff *skb)
1360 {
1361 return skb;
1362 }
1363 #endif
1364
vrf_ip_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1365 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1366 struct sk_buff *skb)
1367 {
1368 skb->dev = vrf_dev;
1369 skb->skb_iif = vrf_dev->ifindex;
1370 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1371
1372 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1373 goto out;
1374
1375 /* loopback traffic; do not push through packet taps again.
1376 * Reset pkt_type for upper layers to process skb
1377 */
1378 if (skb->pkt_type == PACKET_LOOPBACK) {
1379 skb->pkt_type = PACKET_HOST;
1380 goto out;
1381 }
1382
1383 vrf_rx_stats(vrf_dev, skb->len);
1384
1385 if (!list_empty(&vrf_dev->ptype_all)) {
1386 skb_push(skb, skb->mac_len);
1387 dev_queue_xmit_nit(skb, vrf_dev);
1388 skb_pull(skb, skb->mac_len);
1389 }
1390
1391 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1392 out:
1393 return skb;
1394 }
1395
1396 /* called with rcu lock held */
vrf_l3_rcv(struct net_device * vrf_dev,struct sk_buff * skb,u16 proto)1397 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1398 struct sk_buff *skb,
1399 u16 proto)
1400 {
1401 switch (proto) {
1402 case AF_INET:
1403 return vrf_ip_rcv(vrf_dev, skb);
1404 case AF_INET6:
1405 return vrf_ip6_rcv(vrf_dev, skb);
1406 }
1407
1408 return skb;
1409 }
1410
1411 #if IS_ENABLED(CONFIG_IPV6)
1412 /* send to link-local or multicast address via interface enslaved to
1413 * VRF device. Force lookup to VRF table without changing flow struct
1414 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1415 * is taken on the dst by this function.
1416 */
vrf_link_scope_lookup(const struct net_device * dev,struct flowi6 * fl6)1417 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1418 struct flowi6 *fl6)
1419 {
1420 struct net *net = dev_net(dev);
1421 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1422 struct dst_entry *dst = NULL;
1423 struct rt6_info *rt;
1424
1425 /* VRF device does not have a link-local address and
1426 * sending packets to link-local or mcast addresses over
1427 * a VRF device does not make sense
1428 */
1429 if (fl6->flowi6_oif == dev->ifindex) {
1430 dst = &net->ipv6.ip6_null_entry->dst;
1431 return dst;
1432 }
1433
1434 if (!ipv6_addr_any(&fl6->saddr))
1435 flags |= RT6_LOOKUP_F_HAS_SADDR;
1436
1437 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1438 if (rt)
1439 dst = &rt->dst;
1440
1441 return dst;
1442 }
1443 #endif
1444
1445 static const struct l3mdev_ops vrf_l3mdev_ops = {
1446 .l3mdev_fib_table = vrf_fib_table,
1447 .l3mdev_l3_rcv = vrf_l3_rcv,
1448 .l3mdev_l3_out = vrf_l3_out,
1449 #if IS_ENABLED(CONFIG_IPV6)
1450 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1451 #endif
1452 };
1453
vrf_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1454 static void vrf_get_drvinfo(struct net_device *dev,
1455 struct ethtool_drvinfo *info)
1456 {
1457 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1458 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1459 }
1460
1461 static const struct ethtool_ops vrf_ethtool_ops = {
1462 .get_drvinfo = vrf_get_drvinfo,
1463 };
1464
vrf_fib_rule_nl_size(void)1465 static inline size_t vrf_fib_rule_nl_size(void)
1466 {
1467 size_t sz;
1468
1469 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1470 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1471 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1472 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1473
1474 return sz;
1475 }
1476
vrf_fib_rule(const struct net_device * dev,__u8 family,bool add_it)1477 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1478 {
1479 struct fib_rule_hdr *frh;
1480 struct nlmsghdr *nlh;
1481 struct sk_buff *skb;
1482 int err;
1483
1484 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1485 !ipv6_mod_enabled())
1486 return 0;
1487
1488 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1489 if (!skb)
1490 return -ENOMEM;
1491
1492 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1493 if (!nlh)
1494 goto nla_put_failure;
1495
1496 /* rule only needs to appear once */
1497 nlh->nlmsg_flags |= NLM_F_EXCL;
1498
1499 frh = nlmsg_data(nlh);
1500 memset(frh, 0, sizeof(*frh));
1501 frh->family = family;
1502 frh->action = FR_ACT_TO_TBL;
1503
1504 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1505 goto nla_put_failure;
1506
1507 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1508 goto nla_put_failure;
1509
1510 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1511 goto nla_put_failure;
1512
1513 nlmsg_end(skb, nlh);
1514
1515 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1516 skb->sk = dev_net(dev)->rtnl;
1517 if (add_it) {
1518 err = fib_nl_newrule(skb, nlh, NULL);
1519 if (err == -EEXIST)
1520 err = 0;
1521 } else {
1522 err = fib_nl_delrule(skb, nlh, NULL);
1523 if (err == -ENOENT)
1524 err = 0;
1525 }
1526 nlmsg_free(skb);
1527
1528 return err;
1529
1530 nla_put_failure:
1531 nlmsg_free(skb);
1532
1533 return -EMSGSIZE;
1534 }
1535
vrf_add_fib_rules(const struct net_device * dev)1536 static int vrf_add_fib_rules(const struct net_device *dev)
1537 {
1538 int err;
1539
1540 err = vrf_fib_rule(dev, AF_INET, true);
1541 if (err < 0)
1542 goto out_err;
1543
1544 err = vrf_fib_rule(dev, AF_INET6, true);
1545 if (err < 0)
1546 goto ipv6_err;
1547
1548 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1549 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1550 if (err < 0)
1551 goto ipmr_err;
1552 #endif
1553
1554 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1555 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1556 if (err < 0)
1557 goto ip6mr_err;
1558 #endif
1559
1560 return 0;
1561
1562 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1563 ip6mr_err:
1564 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1565 #endif
1566
1567 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1568 ipmr_err:
1569 vrf_fib_rule(dev, AF_INET6, false);
1570 #endif
1571
1572 ipv6_err:
1573 vrf_fib_rule(dev, AF_INET, false);
1574
1575 out_err:
1576 netdev_err(dev, "Failed to add FIB rules.\n");
1577 return err;
1578 }
1579
vrf_setup(struct net_device * dev)1580 static void vrf_setup(struct net_device *dev)
1581 {
1582 ether_setup(dev);
1583
1584 /* Initialize the device structure. */
1585 dev->netdev_ops = &vrf_netdev_ops;
1586 dev->l3mdev_ops = &vrf_l3mdev_ops;
1587 dev->ethtool_ops = &vrf_ethtool_ops;
1588 dev->needs_free_netdev = true;
1589
1590 /* Fill in device structure with ethernet-generic values. */
1591 eth_hw_addr_random(dev);
1592
1593 /* don't acquire vrf device's netif_tx_lock when transmitting */
1594 dev->features |= NETIF_F_LLTX;
1595
1596 /* don't allow vrf devices to change network namespaces. */
1597 dev->features |= NETIF_F_NETNS_LOCAL;
1598
1599 /* does not make sense for a VLAN to be added to a vrf device */
1600 dev->features |= NETIF_F_VLAN_CHALLENGED;
1601
1602 /* enable offload features */
1603 dev->features |= NETIF_F_GSO_SOFTWARE;
1604 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1605 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1606
1607 dev->hw_features = dev->features;
1608 dev->hw_enc_features = dev->features;
1609
1610 /* default to no qdisc; user can add if desired */
1611 dev->priv_flags |= IFF_NO_QUEUE;
1612 dev->priv_flags |= IFF_NO_RX_HANDLER;
1613 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1614
1615 /* VRF devices do not care about MTU, but if the MTU is set
1616 * too low then the ipv4 and ipv6 protocols are disabled
1617 * which breaks networking.
1618 */
1619 dev->min_mtu = IPV6_MIN_MTU;
1620 dev->max_mtu = IP6_MAX_MTU;
1621 dev->mtu = dev->max_mtu;
1622 }
1623
vrf_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1624 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1625 struct netlink_ext_ack *extack)
1626 {
1627 if (tb[IFLA_ADDRESS]) {
1628 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1629 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1630 return -EINVAL;
1631 }
1632 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1633 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1634 return -EADDRNOTAVAIL;
1635 }
1636 }
1637 return 0;
1638 }
1639
vrf_dellink(struct net_device * dev,struct list_head * head)1640 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1641 {
1642 struct net_device *port_dev;
1643 struct list_head *iter;
1644
1645 netdev_for_each_lower_dev(dev, port_dev, iter)
1646 vrf_del_slave(dev, port_dev);
1647
1648 vrf_map_unregister_dev(dev);
1649
1650 unregister_netdevice_queue(dev, head);
1651 }
1652
vrf_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1653 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1654 struct nlattr *tb[], struct nlattr *data[],
1655 struct netlink_ext_ack *extack)
1656 {
1657 struct net_vrf *vrf = netdev_priv(dev);
1658 struct netns_vrf *nn_vrf;
1659 bool *add_fib_rules;
1660 struct net *net;
1661 int err;
1662
1663 if (!data || !data[IFLA_VRF_TABLE]) {
1664 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1665 return -EINVAL;
1666 }
1667
1668 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1669 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1670 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1671 "Invalid VRF table id");
1672 return -EINVAL;
1673 }
1674
1675 dev->priv_flags |= IFF_L3MDEV_MASTER;
1676
1677 err = register_netdevice(dev);
1678 if (err)
1679 goto out;
1680
1681 /* mapping between table_id and vrf;
1682 * note: such binding could not be done in the dev init function
1683 * because dev->ifindex id is not available yet.
1684 */
1685 vrf->ifindex = dev->ifindex;
1686
1687 err = vrf_map_register_dev(dev, extack);
1688 if (err) {
1689 unregister_netdevice(dev);
1690 goto out;
1691 }
1692
1693 net = dev_net(dev);
1694 nn_vrf = net_generic(net, vrf_net_id);
1695
1696 add_fib_rules = &nn_vrf->add_fib_rules;
1697 if (*add_fib_rules) {
1698 err = vrf_add_fib_rules(dev);
1699 if (err) {
1700 vrf_map_unregister_dev(dev);
1701 unregister_netdevice(dev);
1702 goto out;
1703 }
1704 *add_fib_rules = false;
1705 }
1706
1707 out:
1708 return err;
1709 }
1710
vrf_nl_getsize(const struct net_device * dev)1711 static size_t vrf_nl_getsize(const struct net_device *dev)
1712 {
1713 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1714 }
1715
vrf_fillinfo(struct sk_buff * skb,const struct net_device * dev)1716 static int vrf_fillinfo(struct sk_buff *skb,
1717 const struct net_device *dev)
1718 {
1719 struct net_vrf *vrf = netdev_priv(dev);
1720
1721 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1722 }
1723
vrf_get_slave_size(const struct net_device * bond_dev,const struct net_device * slave_dev)1724 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1725 const struct net_device *slave_dev)
1726 {
1727 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1728 }
1729
vrf_fill_slave_info(struct sk_buff * skb,const struct net_device * vrf_dev,const struct net_device * slave_dev)1730 static int vrf_fill_slave_info(struct sk_buff *skb,
1731 const struct net_device *vrf_dev,
1732 const struct net_device *slave_dev)
1733 {
1734 struct net_vrf *vrf = netdev_priv(vrf_dev);
1735
1736 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1737 return -EMSGSIZE;
1738
1739 return 0;
1740 }
1741
1742 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1743 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1744 };
1745
1746 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1747 .kind = DRV_NAME,
1748 .priv_size = sizeof(struct net_vrf),
1749
1750 .get_size = vrf_nl_getsize,
1751 .policy = vrf_nl_policy,
1752 .validate = vrf_validate,
1753 .fill_info = vrf_fillinfo,
1754
1755 .get_slave_size = vrf_get_slave_size,
1756 .fill_slave_info = vrf_fill_slave_info,
1757
1758 .newlink = vrf_newlink,
1759 .dellink = vrf_dellink,
1760 .setup = vrf_setup,
1761 .maxtype = IFLA_VRF_MAX,
1762 };
1763
vrf_device_event(struct notifier_block * unused,unsigned long event,void * ptr)1764 static int vrf_device_event(struct notifier_block *unused,
1765 unsigned long event, void *ptr)
1766 {
1767 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1768
1769 /* only care about unregister events to drop slave references */
1770 if (event == NETDEV_UNREGISTER) {
1771 struct net_device *vrf_dev;
1772
1773 if (!netif_is_l3_slave(dev))
1774 goto out;
1775
1776 vrf_dev = netdev_master_upper_dev_get(dev);
1777 vrf_del_slave(vrf_dev, dev);
1778 }
1779 out:
1780 return NOTIFY_DONE;
1781 }
1782
1783 static struct notifier_block vrf_notifier_block __read_mostly = {
1784 .notifier_call = vrf_device_event,
1785 };
1786
vrf_map_init(struct vrf_map * vmap)1787 static int vrf_map_init(struct vrf_map *vmap)
1788 {
1789 spin_lock_init(&vmap->vmap_lock);
1790 hash_init(vmap->ht);
1791
1792 vmap->strict_mode = false;
1793
1794 return 0;
1795 }
1796
1797 #ifdef CONFIG_SYSCTL
vrf_strict_mode(struct vrf_map * vmap)1798 static bool vrf_strict_mode(struct vrf_map *vmap)
1799 {
1800 bool strict_mode;
1801
1802 vrf_map_lock(vmap);
1803 strict_mode = vmap->strict_mode;
1804 vrf_map_unlock(vmap);
1805
1806 return strict_mode;
1807 }
1808
vrf_strict_mode_change(struct vrf_map * vmap,bool new_mode)1809 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1810 {
1811 bool *cur_mode;
1812 int res = 0;
1813
1814 vrf_map_lock(vmap);
1815
1816 cur_mode = &vmap->strict_mode;
1817 if (*cur_mode == new_mode)
1818 goto unlock;
1819
1820 if (*cur_mode) {
1821 /* disable strict mode */
1822 *cur_mode = false;
1823 } else {
1824 if (vmap->shared_tables) {
1825 /* we cannot allow strict_mode because there are some
1826 * vrfs that share one or more tables.
1827 */
1828 res = -EBUSY;
1829 goto unlock;
1830 }
1831
1832 /* no tables are shared among vrfs, so we can go back
1833 * to 1:1 association between a vrf with its table.
1834 */
1835 *cur_mode = true;
1836 }
1837
1838 unlock:
1839 vrf_map_unlock(vmap);
1840
1841 return res;
1842 }
1843
vrf_shared_table_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1844 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1845 void *buffer, size_t *lenp, loff_t *ppos)
1846 {
1847 struct net *net = (struct net *)table->extra1;
1848 struct vrf_map *vmap = netns_vrf_map(net);
1849 int proc_strict_mode = 0;
1850 struct ctl_table tmp = {
1851 .procname = table->procname,
1852 .data = &proc_strict_mode,
1853 .maxlen = sizeof(int),
1854 .mode = table->mode,
1855 .extra1 = SYSCTL_ZERO,
1856 .extra2 = SYSCTL_ONE,
1857 };
1858 int ret;
1859
1860 if (!write)
1861 proc_strict_mode = vrf_strict_mode(vmap);
1862
1863 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1864
1865 if (write && ret == 0)
1866 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1867
1868 return ret;
1869 }
1870
1871 static const struct ctl_table vrf_table[] = {
1872 {
1873 .procname = "strict_mode",
1874 .data = NULL,
1875 .maxlen = sizeof(int),
1876 .mode = 0644,
1877 .proc_handler = vrf_shared_table_handler,
1878 /* set by the vrf_netns_init */
1879 .extra1 = NULL,
1880 },
1881 { },
1882 };
1883
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1884 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1885 {
1886 struct ctl_table *table;
1887
1888 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1889 if (!table)
1890 return -ENOMEM;
1891
1892 /* init the extra1 parameter with the reference to current netns */
1893 table[0].extra1 = net;
1894
1895 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1896 if (!nn_vrf->ctl_hdr) {
1897 kfree(table);
1898 return -ENOMEM;
1899 }
1900
1901 return 0;
1902 }
1903
vrf_netns_exit_sysctl(struct net * net)1904 static void vrf_netns_exit_sysctl(struct net *net)
1905 {
1906 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1907 struct ctl_table *table;
1908
1909 table = nn_vrf->ctl_hdr->ctl_table_arg;
1910 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1911 kfree(table);
1912 }
1913 #else
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1914 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1915 {
1916 return 0;
1917 }
1918
vrf_netns_exit_sysctl(struct net * net)1919 static void vrf_netns_exit_sysctl(struct net *net)
1920 {
1921 }
1922 #endif
1923
1924 /* Initialize per network namespace state */
vrf_netns_init(struct net * net)1925 static int __net_init vrf_netns_init(struct net *net)
1926 {
1927 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1928
1929 nn_vrf->add_fib_rules = true;
1930 vrf_map_init(&nn_vrf->vmap);
1931
1932 return vrf_netns_init_sysctl(net, nn_vrf);
1933 }
1934
vrf_netns_exit(struct net * net)1935 static void __net_exit vrf_netns_exit(struct net *net)
1936 {
1937 vrf_netns_exit_sysctl(net);
1938 }
1939
1940 static struct pernet_operations vrf_net_ops __net_initdata = {
1941 .init = vrf_netns_init,
1942 .exit = vrf_netns_exit,
1943 .id = &vrf_net_id,
1944 .size = sizeof(struct netns_vrf),
1945 };
1946
vrf_init_module(void)1947 static int __init vrf_init_module(void)
1948 {
1949 int rc;
1950
1951 register_netdevice_notifier(&vrf_notifier_block);
1952
1953 rc = register_pernet_subsys(&vrf_net_ops);
1954 if (rc < 0)
1955 goto error;
1956
1957 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1958 vrf_ifindex_lookup_by_table_id);
1959 if (rc < 0)
1960 goto unreg_pernet;
1961
1962 rc = rtnl_link_register(&vrf_link_ops);
1963 if (rc < 0)
1964 goto table_lookup_unreg;
1965
1966 return 0;
1967
1968 table_lookup_unreg:
1969 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1970 vrf_ifindex_lookup_by_table_id);
1971
1972 unreg_pernet:
1973 unregister_pernet_subsys(&vrf_net_ops);
1974
1975 error:
1976 unregister_netdevice_notifier(&vrf_notifier_block);
1977 return rc;
1978 }
1979
1980 module_init(vrf_init_module);
1981 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1982 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1983 MODULE_LICENSE("GPL");
1984 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1985 MODULE_VERSION(DRV_VERSION);
1986