1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (unlikely(condition)) { \
37 WARN_ON(1); \
38 set_sbi_flag(sbi, SBI_NEED_FSCK); \
39 } \
40 } while (0)
41 #endif
42
43 enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_MAX,
60 };
61
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
64
65 struct f2fs_fault_info {
66 atomic_t inject_ops;
67 unsigned int inject_rate;
68 unsigned int inject_type;
69 };
70
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74
75 /*
76 * For mount options
77 */
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
79 #define F2FS_MOUNT_DISCARD 0x00000004
80 #define F2FS_MOUNT_NOHEAP 0x00000008
81 #define F2FS_MOUNT_XATTR_USER 0x00000010
82 #define F2FS_MOUNT_POSIX_ACL 0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
85 #define F2FS_MOUNT_INLINE_DATA 0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
88 #define F2FS_MOUNT_NOBARRIER 0x00000800
89 #define F2FS_MOUNT_FASTBOOT 0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
91 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
93 #define F2FS_MOUNT_USRQUOTA 0x00080000
94 #define F2FS_MOUNT_GRPQUOTA 0x00100000
95 #define F2FS_MOUNT_PRJQUOTA 0x00200000
96 #define F2FS_MOUNT_QUOTA 0x00400000
97 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
98 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
99 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
100 #define F2FS_MOUNT_NORECOVERY 0x04000000
101 #define F2FS_MOUNT_ATGC 0x08000000
102 #define F2FS_MOUNT_GC_MERGE 0x20000000
103
104 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
105 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108
109 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
110 typecheck(unsigned long long, b) && \
111 ((long long)((a) - (b)) > 0))
112
113 typedef u32 block_t; /*
114 * should not change u32, since it is the on-disk block
115 * address format, __le32.
116 */
117 typedef u32 nid_t;
118
119 #define COMPRESS_EXT_NUM 16
120
121 struct f2fs_mount_info {
122 unsigned int opt;
123 int write_io_size_bits; /* Write IO size bits */
124 block_t root_reserved_blocks; /* root reserved blocks */
125 kuid_t s_resuid; /* reserved blocks for uid */
126 kgid_t s_resgid; /* reserved blocks for gid */
127 int active_logs; /* # of active logs */
128 int inline_xattr_size; /* inline xattr size */
129 #ifdef CONFIG_F2FS_FAULT_INJECTION
130 struct f2fs_fault_info fault_info; /* For fault injection */
131 #endif
132 #ifdef CONFIG_QUOTA
133 /* Names of quota files with journalled quota */
134 char *s_qf_names[MAXQUOTAS];
135 int s_jquota_fmt; /* Format of quota to use */
136 #endif
137 /* For which write hints are passed down to block layer */
138 int whint_mode;
139 int alloc_mode; /* segment allocation policy */
140 int fsync_mode; /* fsync policy */
141 int fs_mode; /* fs mode: LFS or ADAPTIVE */
142 int bggc_mode; /* bggc mode: off, on or sync */
143 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
144 block_t unusable_cap_perc; /* percentage for cap */
145 block_t unusable_cap; /* Amount of space allowed to be
146 * unusable when disabling checkpoint
147 */
148
149 /* For compression */
150 unsigned char compress_algorithm; /* algorithm type */
151 unsigned compress_log_size; /* cluster log size */
152 unsigned char compress_ext_cnt; /* extension count */
153 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
154 };
155
156 #define F2FS_FEATURE_ENCRYPT 0x0001
157 #define F2FS_FEATURE_BLKZONED 0x0002
158 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
159 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
160 #define F2FS_FEATURE_PRJQUOTA 0x0010
161 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
162 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
163 #define F2FS_FEATURE_QUOTA_INO 0x0080
164 #define F2FS_FEATURE_INODE_CRTIME 0x0100
165 #define F2FS_FEATURE_LOST_FOUND 0x0200
166 #define F2FS_FEATURE_VERITY 0x0400
167 #define F2FS_FEATURE_SB_CHKSUM 0x0800
168 #define F2FS_FEATURE_CASEFOLD 0x1000
169 #define F2FS_FEATURE_COMPRESSION 0x2000
170
171 #define __F2FS_HAS_FEATURE(raw_super, mask) \
172 ((raw_super->feature & cpu_to_le32(mask)) != 0)
173 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
174 #define F2FS_SET_FEATURE(sbi, mask) \
175 (sbi->raw_super->feature |= cpu_to_le32(mask))
176 #define F2FS_CLEAR_FEATURE(sbi, mask) \
177 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
178
179 /*
180 * Default values for user and/or group using reserved blocks
181 */
182 #define F2FS_DEF_RESUID 0
183 #define F2FS_DEF_RESGID 0
184
185 /*
186 * For checkpoint manager
187 */
188 enum {
189 NAT_BITMAP,
190 SIT_BITMAP
191 };
192
193 #define CP_UMOUNT 0x00000001
194 #define CP_FASTBOOT 0x00000002
195 #define CP_SYNC 0x00000004
196 #define CP_RECOVERY 0x00000008
197 #define CP_DISCARD 0x00000010
198 #define CP_TRIMMED 0x00000020
199 #define CP_PAUSE 0x00000040
200 #define CP_RESIZE 0x00000080
201
202 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
203 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
204 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
205 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
206 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
207 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
208 #define DEF_CP_INTERVAL 60 /* 60 secs */
209 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
210 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
211 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
212 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
213
214 struct cp_control {
215 int reason;
216 __u64 trim_start;
217 __u64 trim_end;
218 __u64 trim_minlen;
219 };
220
221 /*
222 * indicate meta/data type
223 */
224 enum {
225 META_CP,
226 META_NAT,
227 META_SIT,
228 META_SSA,
229 META_MAX,
230 META_POR,
231 DATA_GENERIC, /* check range only */
232 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
233 DATA_GENERIC_ENHANCE_READ, /*
234 * strong check on range and segment
235 * bitmap but no warning due to race
236 * condition of read on truncated area
237 * by extent_cache
238 */
239 META_GENERIC,
240 };
241
242 /* for the list of ino */
243 enum {
244 ORPHAN_INO, /* for orphan ino list */
245 APPEND_INO, /* for append ino list */
246 UPDATE_INO, /* for update ino list */
247 TRANS_DIR_INO, /* for trasactions dir ino list */
248 FLUSH_INO, /* for multiple device flushing */
249 MAX_INO_ENTRY, /* max. list */
250 };
251
252 struct ino_entry {
253 struct list_head list; /* list head */
254 nid_t ino; /* inode number */
255 unsigned int dirty_device; /* dirty device bitmap */
256 };
257
258 /* for the list of inodes to be GCed */
259 struct inode_entry {
260 struct list_head list; /* list head */
261 struct inode *inode; /* vfs inode pointer */
262 };
263
264 struct fsync_node_entry {
265 struct list_head list; /* list head */
266 struct page *page; /* warm node page pointer */
267 unsigned int seq_id; /* sequence id */
268 };
269
270 /* for the bitmap indicate blocks to be discarded */
271 struct discard_entry {
272 struct list_head list; /* list head */
273 block_t start_blkaddr; /* start blockaddr of current segment */
274 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
275 };
276
277 /* default discard granularity of inner discard thread, unit: block count */
278 #define DEFAULT_DISCARD_GRANULARITY 16
279 #define DISCARD_GRAN_BL 16
280 #define DISCARD_GRAN_BG 512
281 #define DISCARD_GRAN_FORCE 1
282
283 /* max discard pend list number */
284 #define MAX_PLIST_NUM 512
285 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
286 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
287 #define FS_FREE_SPACE_PERCENT 20
288 #define DEVICE_FREE_SPACE_PERCENT 10
289 #define HUNDRED_PERCENT 100
290
291 enum {
292 D_PREP, /* initial */
293 D_PARTIAL, /* partially submitted */
294 D_SUBMIT, /* all submitted */
295 D_DONE, /* finished */
296 };
297
298 struct discard_info {
299 block_t lstart; /* logical start address */
300 block_t len; /* length */
301 block_t start; /* actual start address in dev */
302 };
303
304 struct discard_cmd {
305 struct rb_node rb_node; /* rb node located in rb-tree */
306 union {
307 struct {
308 block_t lstart; /* logical start address */
309 block_t len; /* length */
310 block_t start; /* actual start address in dev */
311 };
312 struct discard_info di; /* discard info */
313
314 };
315 struct list_head list; /* command list */
316 struct completion wait; /* compleation */
317 struct block_device *bdev; /* bdev */
318 unsigned short ref; /* reference count */
319 unsigned char state; /* state */
320 unsigned char queued; /* queued discard */
321 int error; /* bio error */
322 spinlock_t lock; /* for state/bio_ref updating */
323 unsigned short bio_ref; /* bio reference count */
324 };
325
326 enum {
327 DPOLICY_BG,
328 DPOLICY_BALANCE,
329 DPOLICY_FORCE,
330 DPOLICY_FSTRIM,
331 DPOLICY_UMOUNT,
332 MAX_DPOLICY,
333 };
334
335 enum {
336 SUB_POLICY_BIG,
337 SUB_POLICY_MID,
338 SUB_POLICY_SMALL,
339 NR_SUB_POLICY,
340 };
341
342 struct discard_sub_policy {
343 unsigned int max_requests;
344 int interval;
345 };
346
347 struct discard_policy {
348 int type; /* type of discard */
349 unsigned int min_interval; /* used for candidates exist */
350 unsigned int mid_interval; /* used for device busy */
351 unsigned int max_interval; /* used for candidates not exist */
352 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
353 bool io_aware; /* issue discard in idle time */
354 bool sync; /* submit discard with REQ_SYNC flag */
355 bool ordered; /* issue discard by lba order */
356 bool timeout; /* discard timeout for put_super */
357 unsigned int granularity; /* discard granularity */
358 struct discard_sub_policy sub_policy[NR_SUB_POLICY];
359 };
360
361 struct discard_cmd_control {
362 struct task_struct *f2fs_issue_discard; /* discard thread */
363 struct list_head entry_list; /* 4KB discard entry list */
364 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
365 struct list_head wait_list; /* store on-flushing entries */
366 struct list_head fstrim_list; /* in-flight discard from fstrim */
367 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
368 unsigned int discard_wake; /* to wake up discard thread */
369 struct mutex cmd_lock;
370 unsigned int nr_discards; /* # of discards in the list */
371 unsigned int max_discards; /* max. discards to be issued */
372 unsigned int discard_granularity; /* discard granularity */
373 unsigned int undiscard_blks; /* # of undiscard blocks */
374 unsigned int next_pos; /* next discard position */
375 atomic_t issued_discard; /* # of issued discard */
376 atomic_t queued_discard; /* # of queued discard */
377 atomic_t discard_cmd_cnt; /* # of cached cmd count */
378 struct rb_root_cached root; /* root of discard rb-tree */
379 bool rbtree_check; /* config for consistence check */
380 int discard_type; /* discard type */
381 };
382
383 /* for the list of fsync inodes, used only during recovery */
384 struct fsync_inode_entry {
385 struct list_head list; /* list head */
386 struct inode *inode; /* vfs inode pointer */
387 block_t blkaddr; /* block address locating the last fsync */
388 block_t last_dentry; /* block address locating the last dentry */
389 };
390
391 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
392 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
393
394 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
395 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
396 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
397 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
398
399 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
400 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
401
update_nats_in_cursum(struct f2fs_journal * journal,int i)402 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
403 {
404 int before = nats_in_cursum(journal);
405
406 journal->n_nats = cpu_to_le16(before + i);
407 return before;
408 }
409
update_sits_in_cursum(struct f2fs_journal * journal,int i)410 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
411 {
412 int before = sits_in_cursum(journal);
413
414 journal->n_sits = cpu_to_le16(before + i);
415 return before;
416 }
417
__has_cursum_space(struct f2fs_journal * journal,int size,int type)418 static inline bool __has_cursum_space(struct f2fs_journal *journal,
419 int size, int type)
420 {
421 if (type == NAT_JOURNAL)
422 return size <= MAX_NAT_JENTRIES(journal);
423 return size <= MAX_SIT_JENTRIES(journal);
424 }
425
426 /* for inline stuff */
427 #define DEF_INLINE_RESERVED_SIZE 1
428 static inline int get_extra_isize(struct inode *inode);
429 static inline int get_inline_xattr_addrs(struct inode *inode);
430 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
431 (CUR_ADDRS_PER_INODE(inode) - \
432 get_inline_xattr_addrs(inode) - \
433 DEF_INLINE_RESERVED_SIZE))
434
435 /* for inline dir */
436 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
437 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
438 BITS_PER_BYTE + 1))
439 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
440 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
441 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
442 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
443 NR_INLINE_DENTRY(inode) + \
444 INLINE_DENTRY_BITMAP_SIZE(inode)))
445
446 /*
447 * For INODE and NODE manager
448 */
449 /* for directory operations */
450
451 struct f2fs_filename {
452 /*
453 * The filename the user specified. This is NULL for some
454 * filesystem-internal operations, e.g. converting an inline directory
455 * to a non-inline one, or roll-forward recovering an encrypted dentry.
456 */
457 const struct qstr *usr_fname;
458
459 /*
460 * The on-disk filename. For encrypted directories, this is encrypted.
461 * This may be NULL for lookups in an encrypted dir without the key.
462 */
463 struct fscrypt_str disk_name;
464
465 /* The dirhash of this filename */
466 f2fs_hash_t hash;
467
468 #ifdef CONFIG_FS_ENCRYPTION
469 /*
470 * For lookups in encrypted directories: either the buffer backing
471 * disk_name, or a buffer that holds the decoded no-key name.
472 */
473 struct fscrypt_str crypto_buf;
474 #endif
475 #ifdef CONFIG_UNICODE
476 /*
477 * For casefolded directories: the casefolded name, but it's left NULL
478 * if the original name is not valid Unicode or if the filesystem is
479 * doing an internal operation where usr_fname is also NULL. In these
480 * cases we fall back to treating the name as an opaque byte sequence.
481 */
482 struct fscrypt_str cf_name;
483 #endif
484 };
485
486 struct f2fs_dentry_ptr {
487 struct inode *inode;
488 void *bitmap;
489 struct f2fs_dir_entry *dentry;
490 __u8 (*filename)[F2FS_SLOT_LEN];
491 int max;
492 int nr_bitmap;
493 };
494
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)495 static inline void make_dentry_ptr_block(struct inode *inode,
496 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
497 {
498 d->inode = inode;
499 d->max = NR_DENTRY_IN_BLOCK;
500 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
501 d->bitmap = t->dentry_bitmap;
502 d->dentry = t->dentry;
503 d->filename = t->filename;
504 }
505
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)506 static inline void make_dentry_ptr_inline(struct inode *inode,
507 struct f2fs_dentry_ptr *d, void *t)
508 {
509 int entry_cnt = NR_INLINE_DENTRY(inode);
510 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
511 int reserved_size = INLINE_RESERVED_SIZE(inode);
512
513 d->inode = inode;
514 d->max = entry_cnt;
515 d->nr_bitmap = bitmap_size;
516 d->bitmap = t;
517 d->dentry = t + bitmap_size + reserved_size;
518 d->filename = t + bitmap_size + reserved_size +
519 SIZE_OF_DIR_ENTRY * entry_cnt;
520 }
521
522 /*
523 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
524 * as its node offset to distinguish from index node blocks.
525 * But some bits are used to mark the node block.
526 */
527 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
528 >> OFFSET_BIT_SHIFT)
529 enum {
530 ALLOC_NODE, /* allocate a new node page if needed */
531 LOOKUP_NODE, /* look up a node without readahead */
532 LOOKUP_NODE_RA, /*
533 * look up a node with readahead called
534 * by get_data_block.
535 */
536 };
537
538 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
539
540 /* congestion wait timeout value, default: 20ms */
541 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
542
543 /* maximum retry quota flush count */
544 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
545
546 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
547
548 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
549
550 /* for in-memory extent cache entry */
551 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
552
553 /* number of extent info in extent cache we try to shrink */
554 #define EXTENT_CACHE_SHRINK_NUMBER 128
555
556 struct rb_entry {
557 struct rb_node rb_node; /* rb node located in rb-tree */
558 union {
559 struct {
560 unsigned int ofs; /* start offset of the entry */
561 unsigned int len; /* length of the entry */
562 };
563 unsigned long long key; /* 64-bits key */
564 } __packed;
565 };
566
567 struct extent_info {
568 unsigned int fofs; /* start offset in a file */
569 unsigned int len; /* length of the extent */
570 u32 blk; /* start block address of the extent */
571 };
572
573 struct extent_node {
574 struct rb_node rb_node; /* rb node located in rb-tree */
575 struct extent_info ei; /* extent info */
576 struct list_head list; /* node in global extent list of sbi */
577 struct extent_tree *et; /* extent tree pointer */
578 };
579
580 struct extent_tree {
581 nid_t ino; /* inode number */
582 struct rb_root_cached root; /* root of extent info rb-tree */
583 struct extent_node *cached_en; /* recently accessed extent node */
584 struct extent_info largest; /* largested extent info */
585 struct list_head list; /* to be used by sbi->zombie_list */
586 rwlock_t lock; /* protect extent info rb-tree */
587 atomic_t node_cnt; /* # of extent node in rb-tree*/
588 bool largest_updated; /* largest extent updated */
589 };
590
591 /*
592 * This structure is taken from ext4_map_blocks.
593 *
594 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
595 */
596 #define F2FS_MAP_NEW (1 << BH_New)
597 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
598 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
599 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
600 F2FS_MAP_UNWRITTEN)
601
602 struct f2fs_map_blocks {
603 block_t m_pblk;
604 block_t m_lblk;
605 unsigned int m_len;
606 unsigned int m_flags;
607 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
608 pgoff_t *m_next_extent; /* point to next possible extent */
609 int m_seg_type;
610 bool m_may_create; /* indicate it is from write path */
611 };
612
613 /* for flag in get_data_block */
614 enum {
615 F2FS_GET_BLOCK_DEFAULT,
616 F2FS_GET_BLOCK_FIEMAP,
617 F2FS_GET_BLOCK_BMAP,
618 F2FS_GET_BLOCK_DIO,
619 F2FS_GET_BLOCK_PRE_DIO,
620 F2FS_GET_BLOCK_PRE_AIO,
621 F2FS_GET_BLOCK_PRECACHE,
622 };
623
624 /*
625 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
626 */
627 #define FADVISE_COLD_BIT 0x01
628 #define FADVISE_LOST_PINO_BIT 0x02
629 #define FADVISE_ENCRYPT_BIT 0x04
630 #define FADVISE_ENC_NAME_BIT 0x08
631 #define FADVISE_KEEP_SIZE_BIT 0x10
632 #define FADVISE_HOT_BIT 0x20
633 #define FADVISE_VERITY_BIT 0x40
634
635 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
636
637 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
638 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
639 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
640 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
641 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
642 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
643 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
644 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
645 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
646 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
647 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
648 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
649 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
650 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
651 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
652 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
653 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
654 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
655
656 #define DEF_DIR_LEVEL 0
657
658 enum {
659 GC_FAILURE_PIN,
660 GC_FAILURE_ATOMIC,
661 MAX_GC_FAILURE
662 };
663
664 /* used for f2fs_inode_info->flags */
665 enum {
666 FI_NEW_INODE, /* indicate newly allocated inode */
667 FI_DIRTY_INODE, /* indicate inode is dirty or not */
668 FI_AUTO_RECOVER, /* indicate inode is recoverable */
669 FI_DIRTY_DIR, /* indicate directory has dirty pages */
670 FI_INC_LINK, /* need to increment i_nlink */
671 FI_ACL_MODE, /* indicate acl mode */
672 FI_NO_ALLOC, /* should not allocate any blocks */
673 FI_FREE_NID, /* free allocated nide */
674 FI_NO_EXTENT, /* not to use the extent cache */
675 FI_INLINE_XATTR, /* used for inline xattr */
676 FI_INLINE_DATA, /* used for inline data*/
677 FI_INLINE_DENTRY, /* used for inline dentry */
678 FI_APPEND_WRITE, /* inode has appended data */
679 FI_UPDATE_WRITE, /* inode has in-place-update data */
680 FI_NEED_IPU, /* used for ipu per file */
681 FI_ATOMIC_FILE, /* indicate atomic file */
682 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
683 FI_VOLATILE_FILE, /* indicate volatile file */
684 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
685 FI_DROP_CACHE, /* drop dirty page cache */
686 FI_DATA_EXIST, /* indicate data exists */
687 FI_INLINE_DOTS, /* indicate inline dot dentries */
688 FI_DO_DEFRAG, /* indicate defragment is running */
689 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
690 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
691 FI_HOT_DATA, /* indicate file is hot */
692 FI_EXTRA_ATTR, /* indicate file has extra attribute */
693 FI_PROJ_INHERIT, /* indicate file inherits projectid */
694 FI_PIN_FILE, /* indicate file should not be gced */
695 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
696 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
697 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
698 FI_MMAP_FILE, /* indicate file was mmapped */
699 FI_MAX, /* max flag, never be used */
700 };
701
702 struct f2fs_inode_info {
703 struct inode vfs_inode; /* serve a vfs inode */
704 unsigned long i_flags; /* keep an inode flags for ioctl */
705 unsigned char i_advise; /* use to give file attribute hints */
706 unsigned char i_dir_level; /* use for dentry level for large dir */
707 unsigned int i_current_depth; /* only for directory depth */
708 /* for gc failure statistic */
709 unsigned int i_gc_failures[MAX_GC_FAILURE];
710 unsigned int i_pino; /* parent inode number */
711 umode_t i_acl_mode; /* keep file acl mode temporarily */
712
713 /* Use below internally in f2fs*/
714 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
715 struct rw_semaphore i_sem; /* protect fi info */
716 atomic_t dirty_pages; /* # of dirty pages */
717 f2fs_hash_t chash; /* hash value of given file name */
718 unsigned int clevel; /* maximum level of given file name */
719 struct task_struct *task; /* lookup and create consistency */
720 struct task_struct *cp_task; /* separate cp/wb IO stats*/
721 nid_t i_xattr_nid; /* node id that contains xattrs */
722 loff_t last_disk_size; /* lastly written file size */
723 spinlock_t i_size_lock; /* protect last_disk_size */
724
725 #ifdef CONFIG_QUOTA
726 struct dquot *i_dquot[MAXQUOTAS];
727
728 /* quota space reservation, managed internally by quota code */
729 qsize_t i_reserved_quota;
730 #endif
731 struct list_head dirty_list; /* dirty list for dirs and files */
732 struct list_head gdirty_list; /* linked in global dirty list */
733 struct list_head inmem_ilist; /* list for inmem inodes */
734 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
735 struct task_struct *inmem_task; /* store inmemory task */
736 struct mutex inmem_lock; /* lock for inmemory pages */
737 pgoff_t ra_offset; /* ongoing readahead offset */
738 struct extent_tree *extent_tree; /* cached extent_tree entry */
739
740 /* avoid racing between foreground op and gc */
741 struct rw_semaphore i_gc_rwsem[2];
742 struct rw_semaphore i_mmap_sem;
743 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
744
745 int i_extra_isize; /* size of extra space located in i_addr */
746 kprojid_t i_projid; /* id for project quota */
747 int i_inline_xattr_size; /* inline xattr size */
748 struct timespec64 i_crtime; /* inode creation time */
749 struct timespec64 i_disk_time[4];/* inode disk times */
750
751 /* for file compress */
752 atomic_t i_compr_blocks; /* # of compressed blocks */
753 unsigned char i_compress_algorithm; /* algorithm type */
754 unsigned char i_log_cluster_size; /* log of cluster size */
755 unsigned int i_cluster_size; /* cluster size */
756 };
757
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)758 static inline void get_extent_info(struct extent_info *ext,
759 struct f2fs_extent *i_ext)
760 {
761 ext->fofs = le32_to_cpu(i_ext->fofs);
762 ext->blk = le32_to_cpu(i_ext->blk);
763 ext->len = le32_to_cpu(i_ext->len);
764 }
765
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)766 static inline void set_raw_extent(struct extent_info *ext,
767 struct f2fs_extent *i_ext)
768 {
769 i_ext->fofs = cpu_to_le32(ext->fofs);
770 i_ext->blk = cpu_to_le32(ext->blk);
771 i_ext->len = cpu_to_le32(ext->len);
772 }
773
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)774 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
775 u32 blk, unsigned int len)
776 {
777 ei->fofs = fofs;
778 ei->blk = blk;
779 ei->len = len;
780 }
781
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)782 static inline bool __is_discard_mergeable(struct discard_info *back,
783 struct discard_info *front, unsigned int max_len)
784 {
785 return (back->lstart + back->len == front->lstart) &&
786 (back->len + front->len <= max_len);
787 }
788
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)789 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
790 struct discard_info *back, unsigned int max_len)
791 {
792 return __is_discard_mergeable(back, cur, max_len);
793 }
794
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)795 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
796 struct discard_info *front, unsigned int max_len)
797 {
798 return __is_discard_mergeable(cur, front, max_len);
799 }
800
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)801 static inline bool __is_extent_mergeable(struct extent_info *back,
802 struct extent_info *front)
803 {
804 return (back->fofs + back->len == front->fofs &&
805 back->blk + back->len == front->blk);
806 }
807
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)808 static inline bool __is_back_mergeable(struct extent_info *cur,
809 struct extent_info *back)
810 {
811 return __is_extent_mergeable(back, cur);
812 }
813
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)814 static inline bool __is_front_mergeable(struct extent_info *cur,
815 struct extent_info *front)
816 {
817 return __is_extent_mergeable(cur, front);
818 }
819
820 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)821 static inline void __try_update_largest_extent(struct extent_tree *et,
822 struct extent_node *en)
823 {
824 if (en->ei.len > et->largest.len) {
825 et->largest = en->ei;
826 et->largest_updated = true;
827 }
828 }
829
830 /*
831 * For free nid management
832 */
833 enum nid_state {
834 FREE_NID, /* newly added to free nid list */
835 PREALLOC_NID, /* it is preallocated */
836 MAX_NID_STATE,
837 };
838
839 enum nat_state {
840 TOTAL_NAT,
841 DIRTY_NAT,
842 RECLAIMABLE_NAT,
843 MAX_NAT_STATE,
844 };
845
846 struct f2fs_nm_info {
847 block_t nat_blkaddr; /* base disk address of NAT */
848 nid_t max_nid; /* maximum possible node ids */
849 nid_t available_nids; /* # of available node ids */
850 nid_t next_scan_nid; /* the next nid to be scanned */
851 unsigned int ram_thresh; /* control the memory footprint */
852 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
853 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
854
855 /* NAT cache management */
856 struct radix_tree_root nat_root;/* root of the nat entry cache */
857 struct radix_tree_root nat_set_root;/* root of the nat set cache */
858 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
859 struct list_head nat_entries; /* cached nat entry list (clean) */
860 spinlock_t nat_list_lock; /* protect clean nat entry list */
861 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
862 unsigned int nat_blocks; /* # of nat blocks */
863
864 /* free node ids management */
865 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
866 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
867 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
868 spinlock_t nid_list_lock; /* protect nid lists ops */
869 struct mutex build_lock; /* lock for build free nids */
870 unsigned char **free_nid_bitmap;
871 unsigned char *nat_block_bitmap;
872 unsigned short *free_nid_count; /* free nid count of NAT block */
873
874 /* for checkpoint */
875 char *nat_bitmap; /* NAT bitmap pointer */
876
877 unsigned int nat_bits_blocks; /* # of nat bits blocks */
878 unsigned char *nat_bits; /* NAT bits blocks */
879 unsigned char *full_nat_bits; /* full NAT pages */
880 unsigned char *empty_nat_bits; /* empty NAT pages */
881 #ifdef CONFIG_F2FS_CHECK_FS
882 char *nat_bitmap_mir; /* NAT bitmap mirror */
883 #endif
884 int bitmap_size; /* bitmap size */
885 };
886
887 /*
888 * this structure is used as one of function parameters.
889 * all the information are dedicated to a given direct node block determined
890 * by the data offset in a file.
891 */
892 struct dnode_of_data {
893 struct inode *inode; /* vfs inode pointer */
894 struct page *inode_page; /* its inode page, NULL is possible */
895 struct page *node_page; /* cached direct node page */
896 nid_t nid; /* node id of the direct node block */
897 unsigned int ofs_in_node; /* data offset in the node page */
898 bool inode_page_locked; /* inode page is locked or not */
899 bool node_changed; /* is node block changed */
900 char cur_level; /* level of hole node page */
901 char max_level; /* level of current page located */
902 block_t data_blkaddr; /* block address of the node block */
903 };
904
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)905 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
906 struct page *ipage, struct page *npage, nid_t nid)
907 {
908 memset(dn, 0, sizeof(*dn));
909 dn->inode = inode;
910 dn->inode_page = ipage;
911 dn->node_page = npage;
912 dn->nid = nid;
913 }
914
915 /*
916 * For SIT manager
917 *
918 * By default, there are 6 active log areas across the whole main area.
919 * When considering hot and cold data separation to reduce cleaning overhead,
920 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
921 * respectively.
922 * In the current design, you should not change the numbers intentionally.
923 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
924 * logs individually according to the underlying devices. (default: 6)
925 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
926 * data and 8 for node logs.
927 */
928 #define NR_CURSEG_DATA_TYPE (3)
929 #define NR_CURSEG_NODE_TYPE (3)
930 #define NR_CURSEG_INMEM_TYPE (2)
931 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
932 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
933
934 enum {
935 CURSEG_HOT_DATA = 0, /* directory entry blocks */
936 CURSEG_WARM_DATA, /* data blocks */
937 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
938 CURSEG_HOT_NODE, /* direct node blocks of directory files */
939 CURSEG_WARM_NODE, /* direct node blocks of normal files */
940 CURSEG_COLD_NODE, /* indirect node blocks */
941 NR_PERSISTENT_LOG, /* number of persistent log */
942 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
943 /* pinned file that needs consecutive block address */
944 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
945 NO_CHECK_TYPE, /* number of persistent & inmem log */
946 };
947
948 struct flush_cmd {
949 struct completion wait;
950 struct llist_node llnode;
951 nid_t ino;
952 int ret;
953 };
954
955 struct flush_cmd_control {
956 struct task_struct *f2fs_issue_flush; /* flush thread */
957 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
958 atomic_t issued_flush; /* # of issued flushes */
959 atomic_t queued_flush; /* # of queued flushes */
960 struct llist_head issue_list; /* list for command issue */
961 struct llist_node *dispatch_list; /* list for command dispatch */
962 };
963
964 struct f2fs_sm_info {
965 struct sit_info *sit_info; /* whole segment information */
966 struct free_segmap_info *free_info; /* free segment information */
967 struct dirty_seglist_info *dirty_info; /* dirty segment information */
968 struct curseg_info *curseg_array; /* active segment information */
969
970 struct rw_semaphore curseg_lock; /* for preventing curseg change */
971
972 block_t seg0_blkaddr; /* block address of 0'th segment */
973 block_t main_blkaddr; /* start block address of main area */
974 block_t ssa_blkaddr; /* start block address of SSA area */
975
976 unsigned int segment_count; /* total # of segments */
977 unsigned int main_segments; /* # of segments in main area */
978 unsigned int reserved_segments; /* # of reserved segments */
979 unsigned int ovp_segments; /* # of overprovision segments */
980
981 /* a threshold to reclaim prefree segments */
982 unsigned int rec_prefree_segments;
983
984 /* for batched trimming */
985 unsigned int trim_sections; /* # of sections to trim */
986
987 struct list_head sit_entry_set; /* sit entry set list */
988
989 unsigned int ipu_policy; /* in-place-update policy */
990 unsigned int min_ipu_util; /* in-place-update threshold */
991 unsigned int min_fsync_blocks; /* threshold for fsync */
992 unsigned int min_seq_blocks; /* threshold for sequential blocks */
993 unsigned int min_hot_blocks; /* threshold for hot block allocation */
994 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
995
996 /* for flush command control */
997 struct flush_cmd_control *fcc_info;
998
999 /* for discard command control */
1000 struct discard_cmd_control *dcc_info;
1001 };
1002
1003 /*
1004 * For superblock
1005 */
1006 /*
1007 * COUNT_TYPE for monitoring
1008 *
1009 * f2fs monitors the number of several block types such as on-writeback,
1010 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1011 */
1012 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1013 enum count_type {
1014 F2FS_DIRTY_DENTS,
1015 F2FS_DIRTY_DATA,
1016 F2FS_DIRTY_QDATA,
1017 F2FS_DIRTY_NODES,
1018 F2FS_DIRTY_META,
1019 F2FS_INMEM_PAGES,
1020 F2FS_DIRTY_IMETA,
1021 F2FS_WB_CP_DATA,
1022 F2FS_WB_DATA,
1023 F2FS_RD_DATA,
1024 F2FS_RD_NODE,
1025 F2FS_RD_META,
1026 F2FS_DIO_WRITE,
1027 F2FS_DIO_READ,
1028 NR_COUNT_TYPE,
1029 };
1030
1031 /*
1032 * The below are the page types of bios used in submit_bio().
1033 * The available types are:
1034 * DATA User data pages. It operates as async mode.
1035 * NODE Node pages. It operates as async mode.
1036 * META FS metadata pages such as SIT, NAT, CP.
1037 * NR_PAGE_TYPE The number of page types.
1038 * META_FLUSH Make sure the previous pages are written
1039 * with waiting the bio's completion
1040 * ... Only can be used with META.
1041 */
1042 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1043 enum page_type {
1044 DATA,
1045 NODE,
1046 META,
1047 NR_PAGE_TYPE,
1048 META_FLUSH,
1049 INMEM, /* the below types are used by tracepoints only. */
1050 INMEM_DROP,
1051 INMEM_INVALIDATE,
1052 INMEM_REVOKE,
1053 IPU,
1054 OPU,
1055 };
1056
1057 enum temp_type {
1058 HOT = 0, /* must be zero for meta bio */
1059 WARM,
1060 COLD,
1061 NR_TEMP_TYPE,
1062 };
1063
1064 enum need_lock_type {
1065 LOCK_REQ = 0,
1066 LOCK_DONE,
1067 LOCK_RETRY,
1068 };
1069
1070 enum cp_reason_type {
1071 CP_NO_NEEDED,
1072 CP_NON_REGULAR,
1073 CP_COMPRESSED,
1074 CP_HARDLINK,
1075 CP_SB_NEED_CP,
1076 CP_WRONG_PINO,
1077 CP_NO_SPC_ROLL,
1078 CP_NODE_NEED_CP,
1079 CP_FASTBOOT_MODE,
1080 CP_SPEC_LOG_NUM,
1081 CP_RECOVER_DIR,
1082 };
1083
1084 enum iostat_type {
1085 /* WRITE IO */
1086 APP_DIRECT_IO, /* app direct write IOs */
1087 APP_BUFFERED_IO, /* app buffered write IOs */
1088 APP_WRITE_IO, /* app write IOs */
1089 APP_MAPPED_IO, /* app mapped IOs */
1090 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1091 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1092 FS_META_IO, /* meta IOs from kworker/reclaimer */
1093 FS_GC_DATA_IO, /* data IOs from forground gc */
1094 FS_GC_NODE_IO, /* node IOs from forground gc */
1095 FS_CP_DATA_IO, /* data IOs from checkpoint */
1096 FS_CP_NODE_IO, /* node IOs from checkpoint */
1097 FS_CP_META_IO, /* meta IOs from checkpoint */
1098
1099 /* READ IO */
1100 APP_DIRECT_READ_IO, /* app direct read IOs */
1101 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1102 APP_READ_IO, /* app read IOs */
1103 APP_MAPPED_READ_IO, /* app mapped read IOs */
1104 FS_DATA_READ_IO, /* data read IOs */
1105 FS_GDATA_READ_IO, /* data read IOs from background gc */
1106 FS_CDATA_READ_IO, /* compressed data read IOs */
1107 FS_NODE_READ_IO, /* node read IOs */
1108 FS_META_READ_IO, /* meta read IOs */
1109
1110 /* other */
1111 FS_DISCARD, /* discard */
1112 NR_IO_TYPE,
1113 };
1114
1115 struct f2fs_io_info {
1116 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1117 nid_t ino; /* inode number */
1118 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1119 enum temp_type temp; /* contains HOT/WARM/COLD */
1120 int op; /* contains REQ_OP_ */
1121 int op_flags; /* req_flag_bits */
1122 block_t new_blkaddr; /* new block address to be written */
1123 block_t old_blkaddr; /* old block address before Cow */
1124 struct page *page; /* page to be written */
1125 struct page *encrypted_page; /* encrypted page */
1126 struct page *compressed_page; /* compressed page */
1127 struct list_head list; /* serialize IOs */
1128 bool submitted; /* indicate IO submission */
1129 int need_lock; /* indicate we need to lock cp_rwsem */
1130 bool in_list; /* indicate fio is in io_list */
1131 bool is_por; /* indicate IO is from recovery or not */
1132 bool retry; /* need to reallocate block address */
1133 int compr_blocks; /* # of compressed block addresses */
1134 bool encrypted; /* indicate file is encrypted */
1135 enum iostat_type io_type; /* io type */
1136 struct writeback_control *io_wbc; /* writeback control */
1137 struct bio **bio; /* bio for ipu */
1138 sector_t *last_block; /* last block number in bio */
1139 unsigned char version; /* version of the node */
1140 };
1141
1142 struct bio_entry {
1143 struct bio *bio;
1144 struct list_head list;
1145 };
1146
1147 #define is_read_io(rw) ((rw) == READ)
1148 struct f2fs_bio_info {
1149 struct f2fs_sb_info *sbi; /* f2fs superblock */
1150 struct bio *bio; /* bios to merge */
1151 sector_t last_block_in_bio; /* last block number */
1152 struct f2fs_io_info fio; /* store buffered io info. */
1153 struct rw_semaphore io_rwsem; /* blocking op for bio */
1154 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1155 struct list_head io_list; /* track fios */
1156 struct list_head bio_list; /* bio entry list head */
1157 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */
1158 };
1159
1160 #define FDEV(i) (sbi->devs[i])
1161 #define RDEV(i) (raw_super->devs[i])
1162 struct f2fs_dev_info {
1163 struct block_device *bdev;
1164 char path[MAX_PATH_LEN];
1165 unsigned int total_segments;
1166 block_t start_blk;
1167 block_t end_blk;
1168 #ifdef CONFIG_BLK_DEV_ZONED
1169 unsigned int nr_blkz; /* Total number of zones */
1170 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1171 block_t *zone_capacity_blocks; /* Array of zone capacity in blks */
1172 #endif
1173 };
1174
1175 enum inode_type {
1176 DIR_INODE, /* for dirty dir inode */
1177 FILE_INODE, /* for dirty regular/symlink inode */
1178 DIRTY_META, /* for all dirtied inode metadata */
1179 ATOMIC_FILE, /* for all atomic files */
1180 NR_INODE_TYPE,
1181 };
1182
1183 /* for inner inode cache management */
1184 struct inode_management {
1185 struct radix_tree_root ino_root; /* ino entry array */
1186 spinlock_t ino_lock; /* for ino entry lock */
1187 struct list_head ino_list; /* inode list head */
1188 unsigned long ino_num; /* number of entries */
1189 };
1190
1191 /* for GC_AT */
1192 struct atgc_management {
1193 bool atgc_enabled; /* ATGC is enabled or not */
1194 struct rb_root_cached root; /* root of victim rb-tree */
1195 struct list_head victim_list; /* linked with all victim entries */
1196 unsigned int victim_count; /* victim count in rb-tree */
1197 unsigned int candidate_ratio; /* candidate ratio */
1198 unsigned int max_candidate_count; /* max candidate count */
1199 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1200 unsigned long long age_threshold; /* age threshold */
1201 };
1202
1203 /* For s_flag in struct f2fs_sb_info */
1204 enum {
1205 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1206 SBI_IS_CLOSE, /* specify unmounting */
1207 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1208 SBI_POR_DOING, /* recovery is doing or not */
1209 SBI_NEED_SB_WRITE, /* need to recover superblock */
1210 SBI_NEED_CP, /* need to checkpoint */
1211 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1212 SBI_IS_RECOVERED, /* recovered orphan/data */
1213 SBI_CP_DISABLED, /* CP was disabled last mount */
1214 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1215 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1216 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1217 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1218 SBI_IS_RESIZEFS, /* resizefs is in process */
1219 };
1220
1221 enum {
1222 CP_TIME,
1223 REQ_TIME,
1224 DISCARD_TIME,
1225 GC_TIME,
1226 DISABLE_TIME,
1227 UMOUNT_DISCARD_TIMEOUT,
1228 MAX_TIME,
1229 };
1230
1231 enum {
1232 GC_NORMAL,
1233 GC_IDLE_CB,
1234 GC_IDLE_GREEDY,
1235 GC_IDLE_AT,
1236 GC_URGENT_HIGH,
1237 GC_URGENT_LOW,
1238 };
1239
1240 enum {
1241 BGGC_MODE_ON, /* background gc is on */
1242 BGGC_MODE_OFF, /* background gc is off */
1243 BGGC_MODE_SYNC, /*
1244 * background gc is on, migrating blocks
1245 * like foreground gc
1246 */
1247 };
1248
1249 enum {
1250 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1251 FS_MODE_LFS, /* use lfs allocation only */
1252 };
1253
1254 enum {
1255 WHINT_MODE_OFF, /* not pass down write hints */
1256 WHINT_MODE_USER, /* try to pass down hints given by users */
1257 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1258 };
1259
1260 enum {
1261 ALLOC_MODE_DEFAULT, /* stay default */
1262 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1263 };
1264
1265 enum fsync_mode {
1266 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1267 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1268 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1269 };
1270
1271 /*
1272 * this value is set in page as a private data which indicate that
1273 * the page is atomically written, and it is in inmem_pages list.
1274 */
1275 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
1276 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
1277
1278 #define IS_ATOMIC_WRITTEN_PAGE(page) \
1279 (page_private(page) == ATOMIC_WRITTEN_PAGE)
1280 #define IS_DUMMY_WRITTEN_PAGE(page) \
1281 (page_private(page) == DUMMY_WRITTEN_PAGE)
1282
1283 #ifdef CONFIG_F2FS_IO_TRACE
1284 #define IS_IO_TRACED_PAGE(page) \
1285 (page_private(page) > 0 && \
1286 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1287 #else
1288 #define IS_IO_TRACED_PAGE(page) (0)
1289 #endif
1290
1291 /* For compression */
1292 enum compress_algorithm_type {
1293 COMPRESS_LZO,
1294 COMPRESS_LZ4,
1295 COMPRESS_ZSTD,
1296 COMPRESS_LZORLE,
1297 COMPRESS_MAX,
1298 };
1299
1300 #define COMPRESS_DATA_RESERVED_SIZE 5
1301 struct compress_data {
1302 __le32 clen; /* compressed data size */
1303 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1304 u8 cdata[]; /* compressed data */
1305 };
1306
1307 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1308
1309 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1310
1311 /* compress context */
1312 struct compress_ctx {
1313 struct inode *inode; /* inode the context belong to */
1314 pgoff_t cluster_idx; /* cluster index number */
1315 unsigned int cluster_size; /* page count in cluster */
1316 unsigned int log_cluster_size; /* log of cluster size */
1317 struct page **rpages; /* pages store raw data in cluster */
1318 unsigned int nr_rpages; /* total page number in rpages */
1319 struct page **cpages; /* pages store compressed data in cluster */
1320 unsigned int nr_cpages; /* total page number in cpages */
1321 void *rbuf; /* virtual mapped address on rpages */
1322 struct compress_data *cbuf; /* virtual mapped address on cpages */
1323 size_t rlen; /* valid data length in rbuf */
1324 size_t clen; /* valid data length in cbuf */
1325 void *private; /* payload buffer for specified compression algorithm */
1326 void *private2; /* extra payload buffer */
1327 };
1328
1329 /* compress context for write IO path */
1330 struct compress_io_ctx {
1331 u32 magic; /* magic number to indicate page is compressed */
1332 struct inode *inode; /* inode the context belong to */
1333 struct page **rpages; /* pages store raw data in cluster */
1334 unsigned int nr_rpages; /* total page number in rpages */
1335 atomic_t pending_pages; /* in-flight compressed page count */
1336 };
1337
1338 /* decompress io context for read IO path */
1339 struct decompress_io_ctx {
1340 u32 magic; /* magic number to indicate page is compressed */
1341 struct inode *inode; /* inode the context belong to */
1342 pgoff_t cluster_idx; /* cluster index number */
1343 unsigned int cluster_size; /* page count in cluster */
1344 unsigned int log_cluster_size; /* log of cluster size */
1345 struct page **rpages; /* pages store raw data in cluster */
1346 unsigned int nr_rpages; /* total page number in rpages */
1347 struct page **cpages; /* pages store compressed data in cluster */
1348 unsigned int nr_cpages; /* total page number in cpages */
1349 struct page **tpages; /* temp pages to pad holes in cluster */
1350 void *rbuf; /* virtual mapped address on rpages */
1351 struct compress_data *cbuf; /* virtual mapped address on cpages */
1352 size_t rlen; /* valid data length in rbuf */
1353 size_t clen; /* valid data length in cbuf */
1354 atomic_t pending_pages; /* in-flight compressed page count */
1355 atomic_t verity_pages; /* in-flight page count for verity */
1356 bool failed; /* indicate IO error during decompression */
1357 void *private; /* payload buffer for specified decompression algorithm */
1358 void *private2; /* extra payload buffer */
1359 };
1360
1361 #define NULL_CLUSTER ((unsigned int)(~0))
1362 #define MIN_COMPRESS_LOG_SIZE 2
1363 #define MAX_COMPRESS_LOG_SIZE 8
1364 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1365
1366 #ifdef CONFIG_F2FS_GRADING_SSR
1367 struct f2fs_hot_cold_params {
1368 unsigned int enable;
1369 unsigned int hot_data_lower_limit;
1370 unsigned int hot_data_waterline;
1371 unsigned int warm_data_lower_limit;
1372 unsigned int warm_data_waterline;
1373 unsigned int hot_node_lower_limit;
1374 unsigned int hot_node_waterline;
1375 unsigned int warm_node_lower_limit;
1376 unsigned int warm_node_waterline;
1377 };
1378 #endif
1379
1380 struct f2fs_sb_info {
1381 struct super_block *sb; /* pointer to VFS super block */
1382 struct proc_dir_entry *s_proc; /* proc entry */
1383 struct f2fs_super_block *raw_super; /* raw super block pointer */
1384 struct rw_semaphore sb_lock; /* lock for raw super block */
1385 int valid_super_block; /* valid super block no */
1386 unsigned long s_flag; /* flags for sbi */
1387 struct mutex writepages; /* mutex for writepages() */
1388
1389 #ifdef CONFIG_BLK_DEV_ZONED
1390 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1391 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1392 #endif
1393
1394 /* for node-related operations */
1395 struct f2fs_nm_info *nm_info; /* node manager */
1396 struct inode *node_inode; /* cache node blocks */
1397
1398 /* for segment-related operations */
1399 struct f2fs_sm_info *sm_info; /* segment manager */
1400
1401 /* for bio operations */
1402 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1403 /* keep migration IO order for LFS mode */
1404 struct rw_semaphore io_order_lock;
1405 mempool_t *write_io_dummy; /* Dummy pages */
1406
1407 /* for checkpoint */
1408 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1409 int cur_cp_pack; /* remain current cp pack */
1410 spinlock_t cp_lock; /* for flag in ckpt */
1411 struct inode *meta_inode; /* cache meta blocks */
1412 struct mutex cp_mutex; /* checkpoint procedure lock */
1413 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1414 struct rw_semaphore node_write; /* locking node writes */
1415 struct rw_semaphore node_change; /* locking node change */
1416 wait_queue_head_t cp_wait;
1417 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1418 long interval_time[MAX_TIME]; /* to store thresholds */
1419
1420 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1421
1422 spinlock_t fsync_node_lock; /* for node entry lock */
1423 struct list_head fsync_node_list; /* node list head */
1424 unsigned int fsync_seg_id; /* sequence id */
1425 unsigned int fsync_node_num; /* number of node entries */
1426
1427 /* for orphan inode, use 0'th array */
1428 unsigned int max_orphans; /* max orphan inodes */
1429
1430 /* for inode management */
1431 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1432 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1433 struct mutex flush_lock; /* for flush exclusion */
1434
1435 /* for extent tree cache */
1436 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1437 struct mutex extent_tree_lock; /* locking extent radix tree */
1438 struct list_head extent_list; /* lru list for shrinker */
1439 spinlock_t extent_lock; /* locking extent lru list */
1440 atomic_t total_ext_tree; /* extent tree count */
1441 struct list_head zombie_list; /* extent zombie tree list */
1442 atomic_t total_zombie_tree; /* extent zombie tree count */
1443 atomic_t total_ext_node; /* extent info count */
1444
1445 /* basic filesystem units */
1446 unsigned int log_sectors_per_block; /* log2 sectors per block */
1447 unsigned int log_blocksize; /* log2 block size */
1448 unsigned int blocksize; /* block size */
1449 unsigned int root_ino_num; /* root inode number*/
1450 unsigned int node_ino_num; /* node inode number*/
1451 unsigned int meta_ino_num; /* meta inode number*/
1452 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1453 unsigned int blocks_per_seg; /* blocks per segment */
1454 unsigned int segs_per_sec; /* segments per section */
1455 unsigned int secs_per_zone; /* sections per zone */
1456 unsigned int total_sections; /* total section count */
1457 unsigned int total_node_count; /* total node block count */
1458 unsigned int total_valid_node_count; /* valid node block count */
1459 loff_t max_file_blocks; /* max block index of file */
1460 int dir_level; /* directory level */
1461 int readdir_ra; /* readahead inode in readdir */
1462
1463 block_t user_block_count; /* # of user blocks */
1464 block_t total_valid_block_count; /* # of valid blocks */
1465 block_t discard_blks; /* discard command candidats */
1466 block_t last_valid_block_count; /* for recovery */
1467 block_t reserved_blocks; /* configurable reserved blocks */
1468 block_t current_reserved_blocks; /* current reserved blocks */
1469
1470 /* Additional tracking for no checkpoint mode */
1471 block_t unusable_block_count; /* # of blocks saved by last cp */
1472
1473 unsigned int nquota_files; /* # of quota sysfile */
1474 struct rw_semaphore quota_sem; /* blocking cp for flags */
1475
1476 /* # of pages, see count_type */
1477 atomic_t nr_pages[NR_COUNT_TYPE];
1478 /* # of allocated blocks */
1479 struct percpu_counter alloc_valid_block_count;
1480
1481 /* writeback control */
1482 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1483
1484 /* valid inode count */
1485 struct percpu_counter total_valid_inode_count;
1486
1487 struct f2fs_mount_info mount_opt; /* mount options */
1488
1489 /* for cleaning operations */
1490 struct rw_semaphore gc_lock; /*
1491 * semaphore for GC, avoid
1492 * race between GC and GC or CP
1493 */
1494 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1495 struct atgc_management am; /* atgc management */
1496 unsigned int cur_victim_sec; /* current victim section num */
1497 unsigned int gc_mode; /* current GC state */
1498 unsigned int next_victim_seg[2]; /* next segment in victim section */
1499
1500 /* for skip statistic */
1501 unsigned int atomic_files; /* # of opened atomic file */
1502 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1503 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1504
1505 /* threshold for gc trials on pinned files */
1506 u64 gc_pin_file_threshold;
1507 struct rw_semaphore pin_sem;
1508
1509 /* maximum # of trials to find a victim segment for SSR and GC */
1510 unsigned int max_victim_search;
1511 /* migration granularity of garbage collection, unit: segment */
1512 unsigned int migration_granularity;
1513
1514 /*
1515 * for stat information.
1516 * one is for the LFS mode, and the other is for the SSR mode.
1517 */
1518 #ifdef CONFIG_F2FS_STAT_FS
1519 struct f2fs_stat_info *stat_info; /* FS status information */
1520 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1521 unsigned int segment_count[2]; /* # of allocated segments */
1522 unsigned int block_count[2]; /* # of allocated blocks */
1523 atomic_t inplace_count; /* # of inplace update */
1524 atomic64_t total_hit_ext; /* # of lookup extent cache */
1525 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1526 atomic64_t read_hit_largest; /* # of hit largest extent node */
1527 atomic64_t read_hit_cached; /* # of hit cached extent node */
1528 atomic_t inline_xattr; /* # of inline_xattr inodes */
1529 atomic_t inline_inode; /* # of inline_data inodes */
1530 atomic_t inline_dir; /* # of inline_dentry inodes */
1531 atomic_t compr_inode; /* # of compressed inodes */
1532 atomic64_t compr_blocks; /* # of compressed blocks */
1533 atomic_t vw_cnt; /* # of volatile writes */
1534 atomic_t max_aw_cnt; /* max # of atomic writes */
1535 atomic_t max_vw_cnt; /* max # of volatile writes */
1536 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1537 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1538 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1539 #endif
1540 spinlock_t stat_lock; /* lock for stat operations */
1541
1542 /* For app/fs IO statistics */
1543 spinlock_t iostat_lock;
1544 unsigned long long rw_iostat[NR_IO_TYPE];
1545 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1546 bool iostat_enable;
1547 unsigned long iostat_next_period;
1548 unsigned int iostat_period_ms;
1549
1550 /* to attach REQ_META|REQ_FUA flags */
1551 unsigned int data_io_flag;
1552 unsigned int node_io_flag;
1553
1554 /* For sysfs suppport */
1555 struct kobject s_kobj;
1556 struct completion s_kobj_unregister;
1557
1558 /* For shrinker support */
1559 struct list_head s_list;
1560 int s_ndevs; /* number of devices */
1561 struct f2fs_dev_info *devs; /* for device list */
1562 unsigned int dirty_device; /* for checkpoint data flush */
1563 spinlock_t dev_lock; /* protect dirty_device */
1564 struct mutex umount_mutex;
1565 unsigned int shrinker_run_no;
1566
1567 /* For write statistics */
1568 u64 sectors_written_start;
1569 u64 kbytes_written;
1570
1571 /* Reference to checksum algorithm driver via cryptoapi */
1572 struct crypto_shash *s_chksum_driver;
1573
1574 /* Precomputed FS UUID checksum for seeding other checksums */
1575 __u32 s_chksum_seed;
1576
1577 struct workqueue_struct *post_read_wq; /* post read workqueue */
1578
1579 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1580 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1581
1582 #ifdef CONFIG_F2FS_FS_COMPRESSION
1583 struct kmem_cache *page_array_slab; /* page array entry */
1584 unsigned int page_array_slab_size; /* default page array slab size */
1585 #endif
1586
1587 #ifdef CONFIG_F2FS_GRADING_SSR
1588 struct f2fs_hot_cold_params hot_cold_params;
1589 #endif
1590 };
1591
1592 struct f2fs_private_dio {
1593 struct inode *inode;
1594 void *orig_private;
1595 bio_end_io_t *orig_end_io;
1596 bool write;
1597 };
1598
1599 #ifdef CONFIG_F2FS_FAULT_INJECTION
1600 #define f2fs_show_injection_info(sbi, type) \
1601 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1602 KERN_INFO, sbi->sb->s_id, \
1603 f2fs_fault_name[type], \
1604 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1605 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1606 {
1607 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1608
1609 if (!ffi->inject_rate)
1610 return false;
1611
1612 if (!IS_FAULT_SET(ffi, type))
1613 return false;
1614
1615 atomic_inc(&ffi->inject_ops);
1616 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1617 atomic_set(&ffi->inject_ops, 0);
1618 return true;
1619 }
1620 return false;
1621 }
1622 #else
1623 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1624 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1625 {
1626 return false;
1627 }
1628 #endif
1629
1630 /*
1631 * Test if the mounted volume is a multi-device volume.
1632 * - For a single regular disk volume, sbi->s_ndevs is 0.
1633 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1634 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1635 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1636 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1637 {
1638 return sbi->s_ndevs > 1;
1639 }
1640
1641 /* For write statistics. Suppose sector size is 512 bytes,
1642 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1643 */
1644 #define BD_PART_WRITTEN(s) \
1645 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1646 (s)->sectors_written_start) >> 1)
1647
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1648 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1649 {
1650 unsigned long now = jiffies;
1651
1652 sbi->last_time[type] = now;
1653
1654 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1655 if (type == REQ_TIME) {
1656 sbi->last_time[DISCARD_TIME] = now;
1657 sbi->last_time[GC_TIME] = now;
1658 }
1659 }
1660
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1661 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1662 {
1663 unsigned long interval = sbi->interval_time[type] * HZ;
1664
1665 return time_after(jiffies, sbi->last_time[type] + interval);
1666 }
1667
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1668 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1669 int type)
1670 {
1671 unsigned long interval = sbi->interval_time[type] * HZ;
1672 unsigned int wait_ms = 0;
1673 long delta;
1674
1675 delta = (sbi->last_time[type] + interval) - jiffies;
1676 if (delta > 0)
1677 wait_ms = jiffies_to_msecs(delta);
1678
1679 return wait_ms;
1680 }
1681
1682 /*
1683 * Inline functions
1684 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1685 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1686 const void *address, unsigned int length)
1687 {
1688 struct {
1689 struct shash_desc shash;
1690 char ctx[4];
1691 } desc;
1692 int err;
1693
1694 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1695
1696 desc.shash.tfm = sbi->s_chksum_driver;
1697 *(u32 *)desc.ctx = crc;
1698
1699 err = crypto_shash_update(&desc.shash, address, length);
1700 BUG_ON(err);
1701
1702 return *(u32 *)desc.ctx;
1703 }
1704
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1705 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1706 unsigned int length)
1707 {
1708 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1709 }
1710
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1711 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1712 void *buf, size_t buf_size)
1713 {
1714 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1715 }
1716
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1717 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1718 const void *address, unsigned int length)
1719 {
1720 return __f2fs_crc32(sbi, crc, address, length);
1721 }
1722
F2FS_I(struct inode * inode)1723 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1724 {
1725 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1726 }
1727
F2FS_SB(struct super_block * sb)1728 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1729 {
1730 return sb->s_fs_info;
1731 }
1732
F2FS_I_SB(struct inode * inode)1733 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1734 {
1735 return F2FS_SB(inode->i_sb);
1736 }
1737
F2FS_M_SB(struct address_space * mapping)1738 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1739 {
1740 return F2FS_I_SB(mapping->host);
1741 }
1742
F2FS_P_SB(struct page * page)1743 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1744 {
1745 return F2FS_M_SB(page_file_mapping(page));
1746 }
1747
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1748 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1749 {
1750 return (struct f2fs_super_block *)(sbi->raw_super);
1751 }
1752
F2FS_CKPT(struct f2fs_sb_info * sbi)1753 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1754 {
1755 return (struct f2fs_checkpoint *)(sbi->ckpt);
1756 }
1757
F2FS_NODE(struct page * page)1758 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1759 {
1760 return (struct f2fs_node *)page_address(page);
1761 }
1762
F2FS_INODE(struct page * page)1763 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1764 {
1765 return &((struct f2fs_node *)page_address(page))->i;
1766 }
1767
NM_I(struct f2fs_sb_info * sbi)1768 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1769 {
1770 return (struct f2fs_nm_info *)(sbi->nm_info);
1771 }
1772
SM_I(struct f2fs_sb_info * sbi)1773 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1774 {
1775 return (struct f2fs_sm_info *)(sbi->sm_info);
1776 }
1777
SIT_I(struct f2fs_sb_info * sbi)1778 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1779 {
1780 return (struct sit_info *)(SM_I(sbi)->sit_info);
1781 }
1782
FREE_I(struct f2fs_sb_info * sbi)1783 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1784 {
1785 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1786 }
1787
DIRTY_I(struct f2fs_sb_info * sbi)1788 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1789 {
1790 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1791 }
1792
META_MAPPING(struct f2fs_sb_info * sbi)1793 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1794 {
1795 return sbi->meta_inode->i_mapping;
1796 }
1797
NODE_MAPPING(struct f2fs_sb_info * sbi)1798 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1799 {
1800 return sbi->node_inode->i_mapping;
1801 }
1802
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1803 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1804 {
1805 return test_bit(type, &sbi->s_flag);
1806 }
1807
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1808 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1809 {
1810 set_bit(type, &sbi->s_flag);
1811 }
1812
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1813 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1814 {
1815 clear_bit(type, &sbi->s_flag);
1816 }
1817
cur_cp_version(struct f2fs_checkpoint * cp)1818 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1819 {
1820 return le64_to_cpu(cp->checkpoint_ver);
1821 }
1822
f2fs_qf_ino(struct super_block * sb,int type)1823 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1824 {
1825 if (type < F2FS_MAX_QUOTAS)
1826 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1827 return 0;
1828 }
1829
cur_cp_crc(struct f2fs_checkpoint * cp)1830 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1831 {
1832 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1833 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1834 }
1835
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1836 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1837 {
1838 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1839
1840 return ckpt_flags & f;
1841 }
1842
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1843 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1844 {
1845 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1846 }
1847
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1848 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1849 {
1850 unsigned int ckpt_flags;
1851
1852 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1853 ckpt_flags |= f;
1854 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1855 }
1856
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1857 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1858 {
1859 unsigned long flags;
1860
1861 spin_lock_irqsave(&sbi->cp_lock, flags);
1862 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1863 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1864 }
1865
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1866 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1867 {
1868 unsigned int ckpt_flags;
1869
1870 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1871 ckpt_flags &= (~f);
1872 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1873 }
1874
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1875 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1876 {
1877 unsigned long flags;
1878
1879 spin_lock_irqsave(&sbi->cp_lock, flags);
1880 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1881 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1882 }
1883
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1884 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1885 {
1886 unsigned long flags;
1887 unsigned char *nat_bits;
1888
1889 /*
1890 * In order to re-enable nat_bits we need to call fsck.f2fs by
1891 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1892 * so let's rely on regular fsck or unclean shutdown.
1893 */
1894
1895 if (lock)
1896 spin_lock_irqsave(&sbi->cp_lock, flags);
1897 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1898 nat_bits = NM_I(sbi)->nat_bits;
1899 NM_I(sbi)->nat_bits = NULL;
1900 if (lock)
1901 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1902
1903 kvfree(nat_bits);
1904 }
1905
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1906 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1907 struct cp_control *cpc)
1908 {
1909 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1910
1911 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1912 }
1913
f2fs_lock_op(struct f2fs_sb_info * sbi)1914 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1915 {
1916 down_read(&sbi->cp_rwsem);
1917 }
1918
f2fs_trylock_op(struct f2fs_sb_info * sbi)1919 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1920 {
1921 return down_read_trylock(&sbi->cp_rwsem);
1922 }
1923
f2fs_unlock_op(struct f2fs_sb_info * sbi)1924 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1925 {
1926 up_read(&sbi->cp_rwsem);
1927 }
1928
f2fs_lock_all(struct f2fs_sb_info * sbi)1929 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1930 {
1931 down_write(&sbi->cp_rwsem);
1932 }
1933
f2fs_unlock_all(struct f2fs_sb_info * sbi)1934 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1935 {
1936 up_write(&sbi->cp_rwsem);
1937 }
1938
__get_cp_reason(struct f2fs_sb_info * sbi)1939 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1940 {
1941 int reason = CP_SYNC;
1942
1943 if (test_opt(sbi, FASTBOOT))
1944 reason = CP_FASTBOOT;
1945 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1946 reason = CP_UMOUNT;
1947 return reason;
1948 }
1949
__remain_node_summaries(int reason)1950 static inline bool __remain_node_summaries(int reason)
1951 {
1952 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1953 }
1954
__exist_node_summaries(struct f2fs_sb_info * sbi)1955 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1956 {
1957 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1958 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1959 }
1960
1961 /*
1962 * Check whether the inode has blocks or not
1963 */
F2FS_HAS_BLOCKS(struct inode * inode)1964 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1965 {
1966 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1967
1968 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1969 }
1970
f2fs_has_xattr_block(unsigned int ofs)1971 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1972 {
1973 return ofs == XATTR_NODE_OFFSET;
1974 }
1975
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1976 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1977 struct inode *inode, bool cap)
1978 {
1979 if (!inode)
1980 return true;
1981 if (!test_opt(sbi, RESERVE_ROOT))
1982 return false;
1983 if (IS_NOQUOTA(inode))
1984 return true;
1985 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1986 return true;
1987 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1988 in_group_p(F2FS_OPTION(sbi).s_resgid))
1989 return true;
1990 if (cap && capable(CAP_SYS_RESOURCE))
1991 return true;
1992 return false;
1993 }
1994
1995 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)1996 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1997 struct inode *inode, blkcnt_t *count)
1998 {
1999 blkcnt_t diff = 0, release = 0;
2000 block_t avail_user_block_count;
2001 int ret;
2002
2003 ret = dquot_reserve_block(inode, *count);
2004 if (ret)
2005 return ret;
2006
2007 if (time_to_inject(sbi, FAULT_BLOCK)) {
2008 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2009 release = *count;
2010 goto release_quota;
2011 }
2012
2013 /*
2014 * let's increase this in prior to actual block count change in order
2015 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2016 */
2017 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2018
2019 spin_lock(&sbi->stat_lock);
2020 sbi->total_valid_block_count += (block_t)(*count);
2021 avail_user_block_count = sbi->user_block_count -
2022 sbi->current_reserved_blocks;
2023
2024 if (!__allow_reserved_blocks(sbi, inode, true))
2025 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2026 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2027 if (avail_user_block_count > sbi->unusable_block_count)
2028 avail_user_block_count -= sbi->unusable_block_count;
2029 else
2030 avail_user_block_count = 0;
2031 }
2032 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2033 diff = sbi->total_valid_block_count - avail_user_block_count;
2034 if (diff > *count)
2035 diff = *count;
2036 *count -= diff;
2037 release = diff;
2038 sbi->total_valid_block_count -= diff;
2039 if (!*count) {
2040 spin_unlock(&sbi->stat_lock);
2041 goto enospc;
2042 }
2043 }
2044 spin_unlock(&sbi->stat_lock);
2045
2046 if (unlikely(release)) {
2047 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2048 dquot_release_reservation_block(inode, release);
2049 }
2050 f2fs_i_blocks_write(inode, *count, true, true);
2051 return 0;
2052
2053 enospc:
2054 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2055 release_quota:
2056 dquot_release_reservation_block(inode, release);
2057 return -ENOSPC;
2058 }
2059
2060 __printf(2, 3)
2061 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2062
2063 #define f2fs_err(sbi, fmt, ...) \
2064 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2065 #define f2fs_warn(sbi, fmt, ...) \
2066 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2067 #define f2fs_notice(sbi, fmt, ...) \
2068 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2069 #define f2fs_info(sbi, fmt, ...) \
2070 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2071 #define f2fs_debug(sbi, fmt, ...) \
2072 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2073
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2074 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2075 struct inode *inode,
2076 block_t count)
2077 {
2078 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2079
2080 spin_lock(&sbi->stat_lock);
2081 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2082 sbi->total_valid_block_count -= (block_t)count;
2083 if (sbi->reserved_blocks &&
2084 sbi->current_reserved_blocks < sbi->reserved_blocks)
2085 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2086 sbi->current_reserved_blocks + count);
2087 spin_unlock(&sbi->stat_lock);
2088 if (unlikely(inode->i_blocks < sectors)) {
2089 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2090 inode->i_ino,
2091 (unsigned long long)inode->i_blocks,
2092 (unsigned long long)sectors);
2093 set_sbi_flag(sbi, SBI_NEED_FSCK);
2094 return;
2095 }
2096 f2fs_i_blocks_write(inode, count, false, true);
2097 }
2098
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2099 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2100 {
2101 atomic_inc(&sbi->nr_pages[count_type]);
2102
2103 if (count_type == F2FS_DIRTY_DENTS ||
2104 count_type == F2FS_DIRTY_NODES ||
2105 count_type == F2FS_DIRTY_META ||
2106 count_type == F2FS_DIRTY_QDATA ||
2107 count_type == F2FS_DIRTY_IMETA)
2108 set_sbi_flag(sbi, SBI_IS_DIRTY);
2109 }
2110
inode_inc_dirty_pages(struct inode * inode)2111 static inline void inode_inc_dirty_pages(struct inode *inode)
2112 {
2113 atomic_inc(&F2FS_I(inode)->dirty_pages);
2114 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2115 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2116 if (IS_NOQUOTA(inode))
2117 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2118 }
2119
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2120 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2121 {
2122 atomic_dec(&sbi->nr_pages[count_type]);
2123 }
2124
inode_dec_dirty_pages(struct inode * inode)2125 static inline void inode_dec_dirty_pages(struct inode *inode)
2126 {
2127 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2128 !S_ISLNK(inode->i_mode))
2129 return;
2130
2131 atomic_dec(&F2FS_I(inode)->dirty_pages);
2132 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2133 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2134 if (IS_NOQUOTA(inode))
2135 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2136 }
2137
get_pages(struct f2fs_sb_info * sbi,int count_type)2138 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2139 {
2140 return atomic_read(&sbi->nr_pages[count_type]);
2141 }
2142
get_dirty_pages(struct inode * inode)2143 static inline int get_dirty_pages(struct inode *inode)
2144 {
2145 return atomic_read(&F2FS_I(inode)->dirty_pages);
2146 }
2147
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2148 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2149 {
2150 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2151 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2152 sbi->log_blocks_per_seg;
2153
2154 return segs / sbi->segs_per_sec;
2155 }
2156
valid_user_blocks(struct f2fs_sb_info * sbi)2157 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2158 {
2159 return sbi->total_valid_block_count;
2160 }
2161
discard_blocks(struct f2fs_sb_info * sbi)2162 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2163 {
2164 return sbi->discard_blks;
2165 }
2166
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2167 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2168 {
2169 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2170
2171 /* return NAT or SIT bitmap */
2172 if (flag == NAT_BITMAP)
2173 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2174 else if (flag == SIT_BITMAP)
2175 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2176
2177 return 0;
2178 }
2179
__cp_payload(struct f2fs_sb_info * sbi)2180 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2181 {
2182 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2183 }
2184
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2185 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2186 {
2187 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2188 int offset;
2189
2190 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2191 offset = (flag == SIT_BITMAP) ?
2192 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2193 /*
2194 * if large_nat_bitmap feature is enabled, leave checksum
2195 * protection for all nat/sit bitmaps.
2196 */
2197 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2198 }
2199
2200 if (__cp_payload(sbi) > 0) {
2201 if (flag == NAT_BITMAP)
2202 return &ckpt->sit_nat_version_bitmap;
2203 else
2204 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2205 } else {
2206 offset = (flag == NAT_BITMAP) ?
2207 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2208 return &ckpt->sit_nat_version_bitmap + offset;
2209 }
2210 }
2211
__start_cp_addr(struct f2fs_sb_info * sbi)2212 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2213 {
2214 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2215
2216 if (sbi->cur_cp_pack == 2)
2217 start_addr += sbi->blocks_per_seg;
2218 return start_addr;
2219 }
2220
__start_cp_next_addr(struct f2fs_sb_info * sbi)2221 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2222 {
2223 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2224
2225 if (sbi->cur_cp_pack == 1)
2226 start_addr += sbi->blocks_per_seg;
2227 return start_addr;
2228 }
2229
__set_cp_next_pack(struct f2fs_sb_info * sbi)2230 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2231 {
2232 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2233 }
2234
__start_sum_addr(struct f2fs_sb_info * sbi)2235 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2236 {
2237 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2238 }
2239
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2240 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2241 struct inode *inode, bool is_inode)
2242 {
2243 block_t valid_block_count;
2244 unsigned int valid_node_count, user_block_count;
2245 int err;
2246
2247 if (is_inode) {
2248 if (inode) {
2249 err = dquot_alloc_inode(inode);
2250 if (err)
2251 return err;
2252 }
2253 } else {
2254 err = dquot_reserve_block(inode, 1);
2255 if (err)
2256 return err;
2257 }
2258
2259 if (time_to_inject(sbi, FAULT_BLOCK)) {
2260 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2261 goto enospc;
2262 }
2263
2264 spin_lock(&sbi->stat_lock);
2265
2266 valid_block_count = sbi->total_valid_block_count +
2267 sbi->current_reserved_blocks + 1;
2268
2269 if (!__allow_reserved_blocks(sbi, inode, false))
2270 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2271 user_block_count = sbi->user_block_count;
2272 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2273 user_block_count -= sbi->unusable_block_count;
2274
2275 if (unlikely(valid_block_count > user_block_count)) {
2276 spin_unlock(&sbi->stat_lock);
2277 goto enospc;
2278 }
2279
2280 valid_node_count = sbi->total_valid_node_count + 1;
2281 if (unlikely(valid_node_count > sbi->total_node_count)) {
2282 spin_unlock(&sbi->stat_lock);
2283 goto enospc;
2284 }
2285
2286 sbi->total_valid_node_count++;
2287 sbi->total_valid_block_count++;
2288 spin_unlock(&sbi->stat_lock);
2289
2290 if (inode) {
2291 if (is_inode)
2292 f2fs_mark_inode_dirty_sync(inode, true);
2293 else
2294 f2fs_i_blocks_write(inode, 1, true, true);
2295 }
2296
2297 percpu_counter_inc(&sbi->alloc_valid_block_count);
2298 return 0;
2299
2300 enospc:
2301 if (is_inode) {
2302 if (inode)
2303 dquot_free_inode(inode);
2304 } else {
2305 dquot_release_reservation_block(inode, 1);
2306 }
2307 return -ENOSPC;
2308 }
2309
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2310 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2311 struct inode *inode, bool is_inode)
2312 {
2313 spin_lock(&sbi->stat_lock);
2314
2315 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2316 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2317
2318 sbi->total_valid_node_count--;
2319 sbi->total_valid_block_count--;
2320 if (sbi->reserved_blocks &&
2321 sbi->current_reserved_blocks < sbi->reserved_blocks)
2322 sbi->current_reserved_blocks++;
2323
2324 spin_unlock(&sbi->stat_lock);
2325
2326 if (is_inode) {
2327 dquot_free_inode(inode);
2328 } else {
2329 if (unlikely(inode->i_blocks == 0)) {
2330 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2331 inode->i_ino,
2332 (unsigned long long)inode->i_blocks);
2333 set_sbi_flag(sbi, SBI_NEED_FSCK);
2334 return;
2335 }
2336 f2fs_i_blocks_write(inode, 1, false, true);
2337 }
2338 }
2339
valid_node_count(struct f2fs_sb_info * sbi)2340 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2341 {
2342 return sbi->total_valid_node_count;
2343 }
2344
inc_valid_inode_count(struct f2fs_sb_info * sbi)2345 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2346 {
2347 percpu_counter_inc(&sbi->total_valid_inode_count);
2348 }
2349
dec_valid_inode_count(struct f2fs_sb_info * sbi)2350 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2351 {
2352 percpu_counter_dec(&sbi->total_valid_inode_count);
2353 }
2354
valid_inode_count(struct f2fs_sb_info * sbi)2355 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2356 {
2357 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2358 }
2359
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2360 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2361 pgoff_t index, bool for_write)
2362 {
2363 struct page *page;
2364
2365 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2366 if (!for_write)
2367 page = find_get_page_flags(mapping, index,
2368 FGP_LOCK | FGP_ACCESSED);
2369 else
2370 page = find_lock_page(mapping, index);
2371 if (page)
2372 return page;
2373
2374 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2375 f2fs_show_injection_info(F2FS_M_SB(mapping),
2376 FAULT_PAGE_ALLOC);
2377 return NULL;
2378 }
2379 }
2380
2381 if (!for_write)
2382 return grab_cache_page(mapping, index);
2383 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2384 }
2385
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2386 static inline struct page *f2fs_pagecache_get_page(
2387 struct address_space *mapping, pgoff_t index,
2388 int fgp_flags, gfp_t gfp_mask)
2389 {
2390 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2391 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2392 return NULL;
2393 }
2394
2395 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2396 }
2397
f2fs_copy_page(struct page * src,struct page * dst)2398 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2399 {
2400 char *src_kaddr = kmap(src);
2401 char *dst_kaddr = kmap(dst);
2402
2403 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2404 kunmap(dst);
2405 kunmap(src);
2406 }
2407
f2fs_put_page(struct page * page,int unlock)2408 static inline void f2fs_put_page(struct page *page, int unlock)
2409 {
2410 if (!page)
2411 return;
2412
2413 if (unlock) {
2414 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2415 unlock_page(page);
2416 }
2417 put_page(page);
2418 }
2419
f2fs_put_dnode(struct dnode_of_data * dn)2420 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2421 {
2422 if (dn->node_page)
2423 f2fs_put_page(dn->node_page, 1);
2424 if (dn->inode_page && dn->node_page != dn->inode_page)
2425 f2fs_put_page(dn->inode_page, 0);
2426 dn->node_page = NULL;
2427 dn->inode_page = NULL;
2428 }
2429
f2fs_kmem_cache_create(const char * name,size_t size)2430 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2431 size_t size)
2432 {
2433 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2434 }
2435
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2436 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2437 gfp_t flags)
2438 {
2439 void *entry;
2440
2441 entry = kmem_cache_alloc(cachep, flags);
2442 if (!entry)
2443 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2444 return entry;
2445 }
2446
is_idle(struct f2fs_sb_info * sbi,int type)2447 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2448 {
2449 if (sbi->gc_mode == GC_URGENT_HIGH)
2450 return true;
2451
2452 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2453 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2454 get_pages(sbi, F2FS_WB_CP_DATA) ||
2455 get_pages(sbi, F2FS_DIO_READ) ||
2456 get_pages(sbi, F2FS_DIO_WRITE))
2457 return false;
2458
2459 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2460 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2461 return false;
2462
2463 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2464 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2465 return false;
2466
2467 if (sbi->gc_mode == GC_URGENT_LOW &&
2468 (type == DISCARD_TIME || type == GC_TIME))
2469 return true;
2470
2471 return f2fs_time_over(sbi, type);
2472 }
2473
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2474 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2475 unsigned long index, void *item)
2476 {
2477 while (radix_tree_insert(root, index, item))
2478 cond_resched();
2479 }
2480
2481 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2482
IS_INODE(struct page * page)2483 static inline bool IS_INODE(struct page *page)
2484 {
2485 struct f2fs_node *p = F2FS_NODE(page);
2486
2487 return RAW_IS_INODE(p);
2488 }
2489
offset_in_addr(struct f2fs_inode * i)2490 static inline int offset_in_addr(struct f2fs_inode *i)
2491 {
2492 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2493 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2494 }
2495
blkaddr_in_node(struct f2fs_node * node)2496 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2497 {
2498 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2499 }
2500
2501 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2502 static inline block_t data_blkaddr(struct inode *inode,
2503 struct page *node_page, unsigned int offset)
2504 {
2505 struct f2fs_node *raw_node;
2506 __le32 *addr_array;
2507 int base = 0;
2508 bool is_inode = IS_INODE(node_page);
2509
2510 raw_node = F2FS_NODE(node_page);
2511
2512 if (is_inode) {
2513 if (!inode)
2514 /* from GC path only */
2515 base = offset_in_addr(&raw_node->i);
2516 else if (f2fs_has_extra_attr(inode))
2517 base = get_extra_isize(inode);
2518 }
2519
2520 addr_array = blkaddr_in_node(raw_node);
2521 return le32_to_cpu(addr_array[base + offset]);
2522 }
2523
f2fs_data_blkaddr(struct dnode_of_data * dn)2524 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2525 {
2526 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2527 }
2528
f2fs_test_bit(unsigned int nr,char * addr)2529 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2530 {
2531 int mask;
2532
2533 addr += (nr >> 3);
2534 mask = 1 << (7 - (nr & 0x07));
2535 return mask & *addr;
2536 }
2537
f2fs_set_bit(unsigned int nr,char * addr)2538 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2539 {
2540 int mask;
2541
2542 addr += (nr >> 3);
2543 mask = 1 << (7 - (nr & 0x07));
2544 *addr |= mask;
2545 }
2546
f2fs_clear_bit(unsigned int nr,char * addr)2547 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2548 {
2549 int mask;
2550
2551 addr += (nr >> 3);
2552 mask = 1 << (7 - (nr & 0x07));
2553 *addr &= ~mask;
2554 }
2555
f2fs_test_and_set_bit(unsigned int nr,char * addr)2556 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2557 {
2558 int mask;
2559 int ret;
2560
2561 addr += (nr >> 3);
2562 mask = 1 << (7 - (nr & 0x07));
2563 ret = mask & *addr;
2564 *addr |= mask;
2565 return ret;
2566 }
2567
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2568 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2569 {
2570 int mask;
2571 int ret;
2572
2573 addr += (nr >> 3);
2574 mask = 1 << (7 - (nr & 0x07));
2575 ret = mask & *addr;
2576 *addr &= ~mask;
2577 return ret;
2578 }
2579
f2fs_change_bit(unsigned int nr,char * addr)2580 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2581 {
2582 int mask;
2583
2584 addr += (nr >> 3);
2585 mask = 1 << (7 - (nr & 0x07));
2586 *addr ^= mask;
2587 }
2588
2589 /*
2590 * On-disk inode flags (f2fs_inode::i_flags)
2591 */
2592 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2593 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2594 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2595 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2596 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2597 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2598 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2599 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2600 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2601 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2602 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2603
2604 /* Flags that should be inherited by new inodes from their parent. */
2605 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2606 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2607 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2608
2609 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2610 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2611 F2FS_CASEFOLD_FL))
2612
2613 /* Flags that are appropriate for non-directories/regular files. */
2614 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2615
f2fs_mask_flags(umode_t mode,__u32 flags)2616 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2617 {
2618 if (S_ISDIR(mode))
2619 return flags;
2620 else if (S_ISREG(mode))
2621 return flags & F2FS_REG_FLMASK;
2622 else
2623 return flags & F2FS_OTHER_FLMASK;
2624 }
2625
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2626 static inline void __mark_inode_dirty_flag(struct inode *inode,
2627 int flag, bool set)
2628 {
2629 switch (flag) {
2630 case FI_INLINE_XATTR:
2631 case FI_INLINE_DATA:
2632 case FI_INLINE_DENTRY:
2633 case FI_NEW_INODE:
2634 if (set)
2635 return;
2636 fallthrough;
2637 case FI_DATA_EXIST:
2638 case FI_INLINE_DOTS:
2639 case FI_PIN_FILE:
2640 f2fs_mark_inode_dirty_sync(inode, true);
2641 }
2642 }
2643
set_inode_flag(struct inode * inode,int flag)2644 static inline void set_inode_flag(struct inode *inode, int flag)
2645 {
2646 set_bit(flag, F2FS_I(inode)->flags);
2647 __mark_inode_dirty_flag(inode, flag, true);
2648 }
2649
is_inode_flag_set(struct inode * inode,int flag)2650 static inline int is_inode_flag_set(struct inode *inode, int flag)
2651 {
2652 return test_bit(flag, F2FS_I(inode)->flags);
2653 }
2654
clear_inode_flag(struct inode * inode,int flag)2655 static inline void clear_inode_flag(struct inode *inode, int flag)
2656 {
2657 clear_bit(flag, F2FS_I(inode)->flags);
2658 __mark_inode_dirty_flag(inode, flag, false);
2659 }
2660
f2fs_verity_in_progress(struct inode * inode)2661 static inline bool f2fs_verity_in_progress(struct inode *inode)
2662 {
2663 return IS_ENABLED(CONFIG_FS_VERITY) &&
2664 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2665 }
2666
set_acl_inode(struct inode * inode,umode_t mode)2667 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2668 {
2669 F2FS_I(inode)->i_acl_mode = mode;
2670 set_inode_flag(inode, FI_ACL_MODE);
2671 f2fs_mark_inode_dirty_sync(inode, false);
2672 }
2673
f2fs_i_links_write(struct inode * inode,bool inc)2674 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2675 {
2676 if (inc)
2677 inc_nlink(inode);
2678 else
2679 drop_nlink(inode);
2680 f2fs_mark_inode_dirty_sync(inode, true);
2681 }
2682
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2683 static inline void f2fs_i_blocks_write(struct inode *inode,
2684 block_t diff, bool add, bool claim)
2685 {
2686 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2687 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2688
2689 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2690 if (add) {
2691 if (claim)
2692 dquot_claim_block(inode, diff);
2693 else
2694 dquot_alloc_block_nofail(inode, diff);
2695 } else {
2696 dquot_free_block(inode, diff);
2697 }
2698
2699 f2fs_mark_inode_dirty_sync(inode, true);
2700 if (clean || recover)
2701 set_inode_flag(inode, FI_AUTO_RECOVER);
2702 }
2703
f2fs_i_size_write(struct inode * inode,loff_t i_size)2704 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2705 {
2706 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2707 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2708
2709 if (i_size_read(inode) == i_size)
2710 return;
2711
2712 i_size_write(inode, i_size);
2713 f2fs_mark_inode_dirty_sync(inode, true);
2714 if (clean || recover)
2715 set_inode_flag(inode, FI_AUTO_RECOVER);
2716 }
2717
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2718 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2719 {
2720 F2FS_I(inode)->i_current_depth = depth;
2721 f2fs_mark_inode_dirty_sync(inode, true);
2722 }
2723
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2724 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2725 unsigned int count)
2726 {
2727 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2728 f2fs_mark_inode_dirty_sync(inode, true);
2729 }
2730
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2731 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2732 {
2733 F2FS_I(inode)->i_xattr_nid = xnid;
2734 f2fs_mark_inode_dirty_sync(inode, true);
2735 }
2736
f2fs_i_pino_write(struct inode * inode,nid_t pino)2737 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2738 {
2739 F2FS_I(inode)->i_pino = pino;
2740 f2fs_mark_inode_dirty_sync(inode, true);
2741 }
2742
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2743 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2744 {
2745 struct f2fs_inode_info *fi = F2FS_I(inode);
2746
2747 if (ri->i_inline & F2FS_INLINE_XATTR)
2748 set_bit(FI_INLINE_XATTR, fi->flags);
2749 if (ri->i_inline & F2FS_INLINE_DATA)
2750 set_bit(FI_INLINE_DATA, fi->flags);
2751 if (ri->i_inline & F2FS_INLINE_DENTRY)
2752 set_bit(FI_INLINE_DENTRY, fi->flags);
2753 if (ri->i_inline & F2FS_DATA_EXIST)
2754 set_bit(FI_DATA_EXIST, fi->flags);
2755 if (ri->i_inline & F2FS_INLINE_DOTS)
2756 set_bit(FI_INLINE_DOTS, fi->flags);
2757 if (ri->i_inline & F2FS_EXTRA_ATTR)
2758 set_bit(FI_EXTRA_ATTR, fi->flags);
2759 if (ri->i_inline & F2FS_PIN_FILE)
2760 set_bit(FI_PIN_FILE, fi->flags);
2761 }
2762
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2763 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2764 {
2765 ri->i_inline = 0;
2766
2767 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2768 ri->i_inline |= F2FS_INLINE_XATTR;
2769 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2770 ri->i_inline |= F2FS_INLINE_DATA;
2771 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2772 ri->i_inline |= F2FS_INLINE_DENTRY;
2773 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2774 ri->i_inline |= F2FS_DATA_EXIST;
2775 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2776 ri->i_inline |= F2FS_INLINE_DOTS;
2777 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2778 ri->i_inline |= F2FS_EXTRA_ATTR;
2779 if (is_inode_flag_set(inode, FI_PIN_FILE))
2780 ri->i_inline |= F2FS_PIN_FILE;
2781 }
2782
f2fs_has_extra_attr(struct inode * inode)2783 static inline int f2fs_has_extra_attr(struct inode *inode)
2784 {
2785 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2786 }
2787
f2fs_has_inline_xattr(struct inode * inode)2788 static inline int f2fs_has_inline_xattr(struct inode *inode)
2789 {
2790 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2791 }
2792
f2fs_compressed_file(struct inode * inode)2793 static inline int f2fs_compressed_file(struct inode *inode)
2794 {
2795 return S_ISREG(inode->i_mode) &&
2796 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2797 }
2798
addrs_per_inode(struct inode * inode)2799 static inline unsigned int addrs_per_inode(struct inode *inode)
2800 {
2801 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2802 get_inline_xattr_addrs(inode);
2803
2804 if (!f2fs_compressed_file(inode))
2805 return addrs;
2806 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2807 }
2808
addrs_per_block(struct inode * inode)2809 static inline unsigned int addrs_per_block(struct inode *inode)
2810 {
2811 if (!f2fs_compressed_file(inode))
2812 return DEF_ADDRS_PER_BLOCK;
2813 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2814 }
2815
inline_xattr_addr(struct inode * inode,struct page * page)2816 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2817 {
2818 struct f2fs_inode *ri = F2FS_INODE(page);
2819
2820 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2821 get_inline_xattr_addrs(inode)]);
2822 }
2823
inline_xattr_size(struct inode * inode)2824 static inline int inline_xattr_size(struct inode *inode)
2825 {
2826 if (f2fs_has_inline_xattr(inode))
2827 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2828 return 0;
2829 }
2830
f2fs_has_inline_data(struct inode * inode)2831 static inline int f2fs_has_inline_data(struct inode *inode)
2832 {
2833 return is_inode_flag_set(inode, FI_INLINE_DATA);
2834 }
2835
f2fs_exist_data(struct inode * inode)2836 static inline int f2fs_exist_data(struct inode *inode)
2837 {
2838 return is_inode_flag_set(inode, FI_DATA_EXIST);
2839 }
2840
f2fs_has_inline_dots(struct inode * inode)2841 static inline int f2fs_has_inline_dots(struct inode *inode)
2842 {
2843 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2844 }
2845
f2fs_is_mmap_file(struct inode * inode)2846 static inline int f2fs_is_mmap_file(struct inode *inode)
2847 {
2848 return is_inode_flag_set(inode, FI_MMAP_FILE);
2849 }
2850
f2fs_is_pinned_file(struct inode * inode)2851 static inline bool f2fs_is_pinned_file(struct inode *inode)
2852 {
2853 return is_inode_flag_set(inode, FI_PIN_FILE);
2854 }
2855
f2fs_is_atomic_file(struct inode * inode)2856 static inline bool f2fs_is_atomic_file(struct inode *inode)
2857 {
2858 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2859 }
2860
f2fs_is_commit_atomic_write(struct inode * inode)2861 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2862 {
2863 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2864 }
2865
f2fs_is_volatile_file(struct inode * inode)2866 static inline bool f2fs_is_volatile_file(struct inode *inode)
2867 {
2868 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2869 }
2870
f2fs_is_first_block_written(struct inode * inode)2871 static inline bool f2fs_is_first_block_written(struct inode *inode)
2872 {
2873 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2874 }
2875
f2fs_is_drop_cache(struct inode * inode)2876 static inline bool f2fs_is_drop_cache(struct inode *inode)
2877 {
2878 return is_inode_flag_set(inode, FI_DROP_CACHE);
2879 }
2880
inline_data_addr(struct inode * inode,struct page * page)2881 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2882 {
2883 struct f2fs_inode *ri = F2FS_INODE(page);
2884 int extra_size = get_extra_isize(inode);
2885
2886 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2887 }
2888
f2fs_has_inline_dentry(struct inode * inode)2889 static inline int f2fs_has_inline_dentry(struct inode *inode)
2890 {
2891 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2892 }
2893
is_file(struct inode * inode,int type)2894 static inline int is_file(struct inode *inode, int type)
2895 {
2896 return F2FS_I(inode)->i_advise & type;
2897 }
2898
set_file(struct inode * inode,int type)2899 static inline void set_file(struct inode *inode, int type)
2900 {
2901 F2FS_I(inode)->i_advise |= type;
2902 f2fs_mark_inode_dirty_sync(inode, true);
2903 }
2904
clear_file(struct inode * inode,int type)2905 static inline void clear_file(struct inode *inode, int type)
2906 {
2907 F2FS_I(inode)->i_advise &= ~type;
2908 f2fs_mark_inode_dirty_sync(inode, true);
2909 }
2910
f2fs_is_time_consistent(struct inode * inode)2911 static inline bool f2fs_is_time_consistent(struct inode *inode)
2912 {
2913 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2914 return false;
2915 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2916 return false;
2917 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2918 return false;
2919 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2920 &F2FS_I(inode)->i_crtime))
2921 return false;
2922 return true;
2923 }
2924
f2fs_skip_inode_update(struct inode * inode,int dsync)2925 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2926 {
2927 bool ret;
2928
2929 if (dsync) {
2930 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2931
2932 spin_lock(&sbi->inode_lock[DIRTY_META]);
2933 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2934 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2935 return ret;
2936 }
2937 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2938 file_keep_isize(inode) ||
2939 i_size_read(inode) & ~PAGE_MASK)
2940 return false;
2941
2942 if (!f2fs_is_time_consistent(inode))
2943 return false;
2944
2945 spin_lock(&F2FS_I(inode)->i_size_lock);
2946 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2947 spin_unlock(&F2FS_I(inode)->i_size_lock);
2948
2949 return ret;
2950 }
2951
f2fs_readonly(struct super_block * sb)2952 static inline bool f2fs_readonly(struct super_block *sb)
2953 {
2954 return sb_rdonly(sb);
2955 }
2956
f2fs_cp_error(struct f2fs_sb_info * sbi)2957 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2958 {
2959 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2960 }
2961
is_dot_dotdot(const u8 * name,size_t len)2962 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2963 {
2964 if (len == 1 && name[0] == '.')
2965 return true;
2966
2967 if (len == 2 && name[0] == '.' && name[1] == '.')
2968 return true;
2969
2970 return false;
2971 }
2972
f2fs_may_extent_tree(struct inode * inode)2973 static inline bool f2fs_may_extent_tree(struct inode *inode)
2974 {
2975 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2976
2977 if (!test_opt(sbi, EXTENT_CACHE) ||
2978 is_inode_flag_set(inode, FI_NO_EXTENT) ||
2979 is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2980 return false;
2981
2982 /*
2983 * for recovered files during mount do not create extents
2984 * if shrinker is not registered.
2985 */
2986 if (list_empty(&sbi->s_list))
2987 return false;
2988
2989 return S_ISREG(inode->i_mode);
2990 }
2991
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2992 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2993 size_t size, gfp_t flags)
2994 {
2995 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2996 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2997 return NULL;
2998 }
2999
3000 return kmalloc(size, flags);
3001 }
3002
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3003 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3004 size_t size, gfp_t flags)
3005 {
3006 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3007 }
3008
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3009 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3010 size_t size, gfp_t flags)
3011 {
3012 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3013 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3014 return NULL;
3015 }
3016
3017 return kvmalloc(size, flags);
3018 }
3019
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3020 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3021 size_t size, gfp_t flags)
3022 {
3023 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3024 }
3025
get_extra_isize(struct inode * inode)3026 static inline int get_extra_isize(struct inode *inode)
3027 {
3028 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3029 }
3030
get_inline_xattr_addrs(struct inode * inode)3031 static inline int get_inline_xattr_addrs(struct inode *inode)
3032 {
3033 return F2FS_I(inode)->i_inline_xattr_size;
3034 }
3035
3036 #define f2fs_get_inode_mode(i) \
3037 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3038 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3039
3040 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3041 (offsetof(struct f2fs_inode, i_extra_end) - \
3042 offsetof(struct f2fs_inode, i_extra_isize)) \
3043
3044 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3045 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3046 ((offsetof(typeof(*(f2fs_inode)), field) + \
3047 sizeof((f2fs_inode)->field)) \
3048 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3049
3050 #define DEFAULT_IOSTAT_PERIOD_MS 3000
3051 #define MIN_IOSTAT_PERIOD_MS 100
3052 /* maximum period of iostat tracing is 1 day */
3053 #define MAX_IOSTAT_PERIOD_MS 8640000
3054
f2fs_reset_iostat(struct f2fs_sb_info * sbi)3055 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3056 {
3057 int i;
3058
3059 spin_lock(&sbi->iostat_lock);
3060 for (i = 0; i < NR_IO_TYPE; i++) {
3061 sbi->rw_iostat[i] = 0;
3062 sbi->prev_rw_iostat[i] = 0;
3063 }
3064 spin_unlock(&sbi->iostat_lock);
3065 }
3066
3067 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3068
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)3069 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3070 enum iostat_type type, unsigned long long io_bytes)
3071 {
3072 if (!sbi->iostat_enable)
3073 return;
3074 spin_lock(&sbi->iostat_lock);
3075 sbi->rw_iostat[type] += io_bytes;
3076
3077 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3078 sbi->rw_iostat[APP_BUFFERED_IO] =
3079 sbi->rw_iostat[APP_WRITE_IO] -
3080 sbi->rw_iostat[APP_DIRECT_IO];
3081
3082 if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3083 sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3084 sbi->rw_iostat[APP_READ_IO] -
3085 sbi->rw_iostat[APP_DIRECT_READ_IO];
3086 spin_unlock(&sbi->iostat_lock);
3087
3088 f2fs_record_iostat(sbi);
3089 }
3090
fs_free_space_threshold(struct f2fs_sb_info * sbi)3091 static inline block_t fs_free_space_threshold(struct f2fs_sb_info *sbi)
3092 {
3093 return (block_t)(SM_I(sbi)->main_segments * sbi->blocks_per_seg *
3094 FS_FREE_SPACE_PERCENT) / HUNDRED_PERCENT;
3095 }
3096
device_free_space_threshold(struct f2fs_sb_info * sbi)3097 static inline block_t device_free_space_threshold(struct f2fs_sb_info *sbi)
3098 {
3099 return (block_t)(SM_I(sbi)->main_segments * sbi->blocks_per_seg *
3100 DEVICE_FREE_SPACE_PERCENT) / HUNDRED_PERCENT;
3101 }
3102
3103 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3104
3105 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3106
3107 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3108 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3109 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3110 block_t blkaddr, int type)
3111 {
3112 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3113 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3114 blkaddr, type);
3115 f2fs_bug_on(sbi, 1);
3116 }
3117 }
3118
__is_valid_data_blkaddr(block_t blkaddr)3119 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3120 {
3121 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3122 blkaddr == COMPRESS_ADDR)
3123 return false;
3124 return true;
3125 }
3126
f2fs_set_page_private(struct page * page,unsigned long data)3127 static inline void f2fs_set_page_private(struct page *page,
3128 unsigned long data)
3129 {
3130 if (PagePrivate(page))
3131 return;
3132
3133 attach_page_private(page, (void *)data);
3134 }
3135
f2fs_clear_page_private(struct page * page)3136 static inline void f2fs_clear_page_private(struct page *page)
3137 {
3138 detach_page_private(page);
3139 }
3140
3141 /*
3142 * file.c
3143 */
3144 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3145 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3146 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3147 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3148 int f2fs_truncate(struct inode *inode);
3149 int f2fs_getattr(const struct path *path, struct kstat *stat,
3150 u32 request_mask, unsigned int flags);
3151 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3152 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3153 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3154 int f2fs_precache_extents(struct inode *inode);
3155 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3156 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3157 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3158 int f2fs_pin_file_control(struct inode *inode, bool inc);
3159
3160 /*
3161 * inode.c
3162 */
3163 void f2fs_set_inode_flags(struct inode *inode);
3164 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3165 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3166 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3167 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3168 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3169 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3170 void f2fs_update_inode_page(struct inode *inode);
3171 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3172 void f2fs_evict_inode(struct inode *inode);
3173 void f2fs_handle_failed_inode(struct inode *inode);
3174
3175 /*
3176 * namei.c
3177 */
3178 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3179 bool hot, bool set);
3180 struct dentry *f2fs_get_parent(struct dentry *child);
3181
3182 /*
3183 * dir.c
3184 */
3185 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3186 int f2fs_init_casefolded_name(const struct inode *dir,
3187 struct f2fs_filename *fname);
3188 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3189 int lookup, struct f2fs_filename *fname);
3190 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3191 struct f2fs_filename *fname);
3192 void f2fs_free_filename(struct f2fs_filename *fname);
3193 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3194 const struct f2fs_filename *fname, int *max_slots);
3195 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3196 unsigned int start_pos, struct fscrypt_str *fstr);
3197 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3198 struct f2fs_dentry_ptr *d);
3199 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3200 const struct f2fs_filename *fname, struct page *dpage);
3201 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3202 unsigned int current_depth);
3203 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3204 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3205 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3206 const struct f2fs_filename *fname,
3207 struct page **res_page);
3208 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3209 const struct qstr *child, struct page **res_page);
3210 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3211 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3212 struct page **page);
3213 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3214 struct page *page, struct inode *inode);
3215 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3216 const struct f2fs_filename *fname);
3217 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3218 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3219 unsigned int bit_pos);
3220 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3221 struct inode *inode, nid_t ino, umode_t mode);
3222 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3223 struct inode *inode, nid_t ino, umode_t mode);
3224 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3225 struct inode *inode, nid_t ino, umode_t mode);
3226 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3227 struct inode *dir, struct inode *inode);
3228 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3229 bool f2fs_empty_dir(struct inode *dir);
3230
f2fs_add_link(struct dentry * dentry,struct inode * inode)3231 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3232 {
3233 if (fscrypt_is_nokey_name(dentry))
3234 return -ENOKEY;
3235 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3236 inode, inode->i_ino, inode->i_mode);
3237 }
3238
3239 /*
3240 * super.c
3241 */
3242 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3243 void f2fs_inode_synced(struct inode *inode);
3244 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3245 int f2fs_quota_sync(struct super_block *sb, int type);
3246 void f2fs_quota_off_umount(struct super_block *sb);
3247 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3248 int f2fs_sync_fs(struct super_block *sb, int sync);
3249 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3250
3251 /*
3252 * hash.c
3253 */
3254 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3255
3256 /*
3257 * node.c
3258 */
3259 struct dnode_of_data;
3260 struct node_info;
3261
3262 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3263 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3264 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3265 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3266 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3267 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3268 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3269 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3270 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3271 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3272 struct node_info *ni);
3273 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3274 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3275 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3276 int f2fs_truncate_xattr_node(struct inode *inode);
3277 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3278 unsigned int seq_id);
3279 int f2fs_remove_inode_page(struct inode *inode);
3280 struct page *f2fs_new_inode_page(struct inode *inode);
3281 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3282 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3283 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3284 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3285 int f2fs_move_node_page(struct page *node_page, int gc_type);
3286 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3287 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3288 struct writeback_control *wbc, bool atomic,
3289 unsigned int *seq_id);
3290 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3291 struct writeback_control *wbc,
3292 bool do_balance, enum iostat_type io_type);
3293 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3294 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3295 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3296 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3297 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3298 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3299 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3300 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3301 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3302 unsigned int segno, struct f2fs_summary_block *sum);
3303 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3304 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3305 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3306 int __init f2fs_create_node_manager_caches(void);
3307 void f2fs_destroy_node_manager_caches(void);
3308
3309 /*
3310 * segment.c
3311 */
3312 unsigned long find_rev_next_bit(const unsigned long *addr,
3313 unsigned long size, unsigned long offset);
3314 unsigned long find_rev_next_zero_bit(const unsigned long *addr,
3315 unsigned long size, unsigned long offset);
3316 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3317 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3318 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3319 void f2fs_drop_inmem_pages(struct inode *inode);
3320 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3321 int f2fs_commit_inmem_pages(struct inode *inode);
3322 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3323 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3324 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3325 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3326 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3327 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3328 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3329 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3330 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3331 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3332 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3333 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3334 struct cp_control *cpc);
3335 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3336 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3337 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3338 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3339 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3340 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3341 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3342 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3343 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3344 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3345 unsigned int *newseg, bool new_sec, int dir);
3346 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3347 unsigned int start, unsigned int end);
3348 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type);
3349 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3350 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3351 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3352 struct cp_control *cpc);
3353 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3354 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3355 block_t blk_addr);
3356 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3357 enum iostat_type io_type);
3358 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3359 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3360 struct f2fs_io_info *fio);
3361 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3362 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3363 block_t old_blkaddr, block_t new_blkaddr,
3364 bool recover_curseg, bool recover_newaddr,
3365 bool from_gc);
3366 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3367 block_t old_addr, block_t new_addr,
3368 unsigned char version, bool recover_curseg,
3369 bool recover_newaddr);
3370 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3371 block_t old_blkaddr, block_t *new_blkaddr,
3372 struct f2fs_summary *sum, int type,
3373 struct f2fs_io_info *fio, int contig_level);
3374 void f2fs_wait_on_page_writeback(struct page *page,
3375 enum page_type type, bool ordered, bool locked);
3376 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3377 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3378 block_t len);
3379 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3380 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3381 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3382 unsigned int val, int alloc);
3383 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3384 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3385 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3386 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3387 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3388 int __init f2fs_create_segment_manager_caches(void);
3389 void f2fs_destroy_segment_manager_caches(void);
3390 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3391 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3392 enum page_type type, enum temp_type temp);
3393 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3394 unsigned int segno);
3395 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3396 unsigned int segno);
3397
3398 /*
3399 * checkpoint.c
3400 */
3401 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3402 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3403 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3404 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3405 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3406 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3407 block_t blkaddr, int type);
3408 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3409 int type, bool sync);
3410 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3411 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3412 long nr_to_write, enum iostat_type io_type);
3413 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3414 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3415 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3416 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3417 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3418 unsigned int devidx, int type);
3419 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3420 unsigned int devidx, int type);
3421 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3422 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3423 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3424 void f2fs_add_orphan_inode(struct inode *inode);
3425 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3426 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3427 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3428 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3429 void f2fs_remove_dirty_inode(struct inode *inode);
3430 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3431 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3432 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3433 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3434 int __init f2fs_create_checkpoint_caches(void);
3435 void f2fs_destroy_checkpoint_caches(void);
3436
3437 /*
3438 * data.c
3439 */
3440 int __init f2fs_init_bioset(void);
3441 void f2fs_destroy_bioset(void);
3442 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3443 int f2fs_init_bio_entry_cache(void);
3444 void f2fs_destroy_bio_entry_cache(void);
3445 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3446 struct bio *bio, enum page_type type);
3447 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3448 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3449 struct inode *inode, struct page *page,
3450 nid_t ino, enum page_type type);
3451 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3452 struct bio **bio, struct page *page);
3453 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3454 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3455 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3456 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3457 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3458 block_t blk_addr, struct bio *bio);
3459 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3460 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3461 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3462 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3463 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3464 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3465 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3466 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3467 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3468 int op_flags, bool for_write);
3469 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3470 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3471 bool for_write);
3472 struct page *f2fs_get_new_data_page(struct inode *inode,
3473 struct page *ipage, pgoff_t index, bool new_i_size);
3474 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3475 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3476 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3477 int create, int flag);
3478 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3479 u64 start, u64 len);
3480 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3481 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3482 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3483 int f2fs_write_single_data_page(struct page *page, int *submitted,
3484 struct bio **bio, sector_t *last_block,
3485 struct writeback_control *wbc,
3486 enum iostat_type io_type,
3487 int compr_blocks, bool allow_balance);
3488 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3489 unsigned int length);
3490 int f2fs_release_page(struct page *page, gfp_t wait);
3491 #ifdef CONFIG_MIGRATION
3492 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3493 struct page *page, enum migrate_mode mode);
3494 #endif
3495 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3496 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3497 int f2fs_init_post_read_processing(void);
3498 void f2fs_destroy_post_read_processing(void);
3499 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3500 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3501
3502 /*
3503 * gc.c
3504 */
3505 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3506 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3507 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3508 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3509 unsigned int segno);
3510 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3511 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3512 int __init f2fs_create_garbage_collection_cache(void);
3513 void f2fs_destroy_garbage_collection_cache(void);
3514
3515 /*
3516 * recovery.c
3517 */
3518 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3519 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3520 int __init f2fs_create_recovery_cache(void);
3521 void f2fs_destroy_recovery_cache(void);
3522
3523 /*
3524 * debug.c
3525 */
3526 #ifdef CONFIG_F2FS_STAT_FS
3527 struct f2fs_stat_info {
3528 struct list_head stat_list;
3529 struct f2fs_sb_info *sbi;
3530 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3531 int main_area_segs, main_area_sections, main_area_zones;
3532 unsigned long long hit_largest, hit_cached, hit_rbtree;
3533 unsigned long long hit_total, total_ext;
3534 int ext_tree, zombie_tree, ext_node;
3535 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3536 int ndirty_data, ndirty_qdata;
3537 int inmem_pages;
3538 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3539 int nats, dirty_nats, sits, dirty_sits;
3540 int free_nids, avail_nids, alloc_nids;
3541 int total_count, utilization;
3542 int bg_gc, nr_wb_cp_data, nr_wb_data;
3543 int nr_rd_data, nr_rd_node, nr_rd_meta;
3544 int nr_dio_read, nr_dio_write;
3545 unsigned int io_skip_bggc, other_skip_bggc;
3546 int nr_flushing, nr_flushed, flush_list_empty;
3547 int nr_discarding, nr_discarded;
3548 int nr_discard_cmd;
3549 unsigned int undiscard_blks;
3550 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3551 int compr_inode;
3552 unsigned long long compr_blocks;
3553 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3554 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3555 unsigned int bimodal, avg_vblocks;
3556 int util_free, util_valid, util_invalid;
3557 int rsvd_segs, overp_segs;
3558 int dirty_count, node_pages, meta_pages;
3559 int prefree_count, call_count, cp_count, bg_cp_count;
3560 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3561 int bg_node_segs, bg_data_segs;
3562 int tot_blks, data_blks, node_blks;
3563 int bg_data_blks, bg_node_blks;
3564 unsigned long long skipped_atomic_files[2];
3565 int curseg[NR_CURSEG_TYPE];
3566 int cursec[NR_CURSEG_TYPE];
3567 int curzone[NR_CURSEG_TYPE];
3568 unsigned int dirty_seg[NR_CURSEG_TYPE];
3569 unsigned int full_seg[NR_CURSEG_TYPE];
3570 unsigned int valid_blks[NR_CURSEG_TYPE];
3571
3572 unsigned int meta_count[META_MAX];
3573 unsigned int segment_count[2];
3574 unsigned int block_count[2];
3575 unsigned int inplace_count;
3576 unsigned long long base_mem, cache_mem, page_mem;
3577 };
3578
F2FS_STAT(struct f2fs_sb_info * sbi)3579 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3580 {
3581 return (struct f2fs_stat_info *)sbi->stat_info;
3582 }
3583
3584 #define stat_inc_cp_count(si) ((si)->cp_count++)
3585 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3586 #define stat_inc_call_count(si) ((si)->call_count++)
3587 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3588 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3589 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3590 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3591 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3592 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3593 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3594 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3595 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3596 #define stat_inc_inline_xattr(inode) \
3597 do { \
3598 if (f2fs_has_inline_xattr(inode)) \
3599 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3600 } while (0)
3601 #define stat_dec_inline_xattr(inode) \
3602 do { \
3603 if (f2fs_has_inline_xattr(inode)) \
3604 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3605 } while (0)
3606 #define stat_inc_inline_inode(inode) \
3607 do { \
3608 if (f2fs_has_inline_data(inode)) \
3609 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3610 } while (0)
3611 #define stat_dec_inline_inode(inode) \
3612 do { \
3613 if (f2fs_has_inline_data(inode)) \
3614 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3615 } while (0)
3616 #define stat_inc_inline_dir(inode) \
3617 do { \
3618 if (f2fs_has_inline_dentry(inode)) \
3619 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3620 } while (0)
3621 #define stat_dec_inline_dir(inode) \
3622 do { \
3623 if (f2fs_has_inline_dentry(inode)) \
3624 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3625 } while (0)
3626 #define stat_inc_compr_inode(inode) \
3627 do { \
3628 if (f2fs_compressed_file(inode)) \
3629 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3630 } while (0)
3631 #define stat_dec_compr_inode(inode) \
3632 do { \
3633 if (f2fs_compressed_file(inode)) \
3634 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3635 } while (0)
3636 #define stat_add_compr_blocks(inode, blocks) \
3637 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3638 #define stat_sub_compr_blocks(inode, blocks) \
3639 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3640 #define stat_inc_meta_count(sbi, blkaddr) \
3641 do { \
3642 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3643 atomic_inc(&(sbi)->meta_count[META_CP]); \
3644 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3645 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3646 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3647 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3648 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3649 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3650 } while (0)
3651 #define stat_inc_seg_type(sbi, curseg) \
3652 ((sbi)->segment_count[(curseg)->alloc_type]++)
3653 #define stat_inc_block_count(sbi, curseg) \
3654 ((sbi)->block_count[(curseg)->alloc_type]++)
3655 #define stat_inc_inplace_blocks(sbi) \
3656 (atomic_inc(&(sbi)->inplace_count))
3657 #define stat_update_max_atomic_write(inode) \
3658 do { \
3659 int cur = F2FS_I_SB(inode)->atomic_files; \
3660 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3661 if (cur > max) \
3662 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3663 } while (0)
3664 #define stat_inc_volatile_write(inode) \
3665 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3666 #define stat_dec_volatile_write(inode) \
3667 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3668 #define stat_update_max_volatile_write(inode) \
3669 do { \
3670 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3671 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3672 if (cur > max) \
3673 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3674 } while (0)
3675 #define stat_inc_seg_count(sbi, type, gc_type) \
3676 do { \
3677 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3678 si->tot_segs++; \
3679 if ((type) == SUM_TYPE_DATA) { \
3680 si->data_segs++; \
3681 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3682 } else { \
3683 si->node_segs++; \
3684 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3685 } \
3686 } while (0)
3687
3688 #define stat_inc_tot_blk_count(si, blks) \
3689 ((si)->tot_blks += (blks))
3690
3691 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3692 do { \
3693 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3694 stat_inc_tot_blk_count(si, blks); \
3695 si->data_blks += (blks); \
3696 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3697 } while (0)
3698
3699 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3700 do { \
3701 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3702 stat_inc_tot_blk_count(si, blks); \
3703 si->node_blks += (blks); \
3704 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3705 } while (0)
3706
3707 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3708 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3709 void __init f2fs_create_root_stats(void);
3710 void f2fs_destroy_root_stats(void);
3711 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3712 #else
3713 #define stat_inc_cp_count(si) do { } while (0)
3714 #define stat_inc_bg_cp_count(si) do { } while (0)
3715 #define stat_inc_call_count(si) do { } while (0)
3716 #define stat_inc_bggc_count(si) do { } while (0)
3717 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3718 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3719 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3720 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3721 #define stat_inc_total_hit(sbi) do { } while (0)
3722 #define stat_inc_rbtree_node_hit(sbi) do { } while (0)
3723 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3724 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3725 #define stat_inc_inline_xattr(inode) do { } while (0)
3726 #define stat_dec_inline_xattr(inode) do { } while (0)
3727 #define stat_inc_inline_inode(inode) do { } while (0)
3728 #define stat_dec_inline_inode(inode) do { } while (0)
3729 #define stat_inc_inline_dir(inode) do { } while (0)
3730 #define stat_dec_inline_dir(inode) do { } while (0)
3731 #define stat_inc_compr_inode(inode) do { } while (0)
3732 #define stat_dec_compr_inode(inode) do { } while (0)
3733 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
3734 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
3735 #define stat_inc_atomic_write(inode) do { } while (0)
3736 #define stat_dec_atomic_write(inode) do { } while (0)
3737 #define stat_update_max_atomic_write(inode) do { } while (0)
3738 #define stat_inc_volatile_write(inode) do { } while (0)
3739 #define stat_dec_volatile_write(inode) do { } while (0)
3740 #define stat_update_max_volatile_write(inode) do { } while (0)
3741 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3742 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3743 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3744 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3745 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3746 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3747 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3748 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3749
f2fs_build_stats(struct f2fs_sb_info * sbi)3750 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3751 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3752 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3753 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)3754 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3755 #endif
3756
3757 extern const struct file_operations f2fs_dir_operations;
3758 #ifdef CONFIG_UNICODE
3759 extern const struct dentry_operations f2fs_dentry_ops;
3760 #endif
3761 extern const struct file_operations f2fs_file_operations;
3762 extern const struct inode_operations f2fs_file_inode_operations;
3763 extern const struct address_space_operations f2fs_dblock_aops;
3764 extern const struct address_space_operations f2fs_node_aops;
3765 extern const struct address_space_operations f2fs_meta_aops;
3766 extern const struct inode_operations f2fs_dir_inode_operations;
3767 extern const struct inode_operations f2fs_symlink_inode_operations;
3768 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3769 extern const struct inode_operations f2fs_special_inode_operations;
3770 extern struct kmem_cache *f2fs_inode_entry_slab;
3771
3772 /*
3773 * inline.c
3774 */
3775 bool f2fs_may_inline_data(struct inode *inode);
3776 bool f2fs_may_inline_dentry(struct inode *inode);
3777 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3778 void f2fs_truncate_inline_inode(struct inode *inode,
3779 struct page *ipage, u64 from);
3780 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3781 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3782 int f2fs_convert_inline_inode(struct inode *inode);
3783 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3784 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3785 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3786 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3787 const struct f2fs_filename *fname,
3788 struct page **res_page);
3789 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3790 struct page *ipage);
3791 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3792 struct inode *inode, nid_t ino, umode_t mode);
3793 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3794 struct page *page, struct inode *dir,
3795 struct inode *inode);
3796 bool f2fs_empty_inline_dir(struct inode *dir);
3797 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3798 struct fscrypt_str *fstr);
3799 int f2fs_inline_data_fiemap(struct inode *inode,
3800 struct fiemap_extent_info *fieinfo,
3801 __u64 start, __u64 len);
3802
3803 /*
3804 * shrinker.c
3805 */
3806 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3807 struct shrink_control *sc);
3808 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3809 struct shrink_control *sc);
3810 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3811 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3812
3813 /*
3814 * extent_cache.c
3815 */
3816 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3817 struct rb_entry *cached_re, unsigned int ofs);
3818 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3819 struct rb_root_cached *root,
3820 struct rb_node **parent,
3821 unsigned long long key, bool *left_most);
3822 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3823 struct rb_root_cached *root,
3824 struct rb_node **parent,
3825 unsigned int ofs, bool *leftmost);
3826 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3827 struct rb_entry *cached_re, unsigned int ofs,
3828 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3829 struct rb_node ***insert_p, struct rb_node **insert_parent,
3830 bool force, bool *leftmost);
3831 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3832 struct rb_root_cached *root, bool check_key);
3833 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3834 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3835 void f2fs_drop_extent_tree(struct inode *inode);
3836 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3837 void f2fs_destroy_extent_tree(struct inode *inode);
3838 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3839 struct extent_info *ei);
3840 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3841 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3842 pgoff_t fofs, block_t blkaddr, unsigned int len);
3843 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3844 int __init f2fs_create_extent_cache(void);
3845 void f2fs_destroy_extent_cache(void);
3846
3847 /*
3848 * sysfs.c
3849 */
3850 int __init f2fs_init_sysfs(void);
3851 void f2fs_exit_sysfs(void);
3852 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3853 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3854
3855 /* verity.c */
3856 extern const struct fsverity_operations f2fs_verityops;
3857
3858 /*
3859 * crypto support
3860 */
f2fs_encrypted_file(struct inode * inode)3861 static inline bool f2fs_encrypted_file(struct inode *inode)
3862 {
3863 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3864 }
3865
f2fs_set_encrypted_inode(struct inode * inode)3866 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3867 {
3868 #ifdef CONFIG_FS_ENCRYPTION
3869 file_set_encrypt(inode);
3870 f2fs_set_inode_flags(inode);
3871 #endif
3872 }
3873
3874 /*
3875 * Returns true if the reads of the inode's data need to undergo some
3876 * postprocessing step, like decryption or authenticity verification.
3877 */
f2fs_post_read_required(struct inode * inode)3878 static inline bool f2fs_post_read_required(struct inode *inode)
3879 {
3880 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3881 f2fs_compressed_file(inode);
3882 }
3883
3884 /*
3885 * compress.c
3886 */
3887 #ifdef CONFIG_F2FS_FS_COMPRESSION
3888 bool f2fs_is_compressed_page(struct page *page);
3889 struct page *f2fs_compress_control_page(struct page *page);
3890 int f2fs_prepare_compress_overwrite(struct inode *inode,
3891 struct page **pagep, pgoff_t index, void **fsdata);
3892 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3893 pgoff_t index, unsigned copied);
3894 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3895 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3896 bool f2fs_is_compress_backend_ready(struct inode *inode);
3897 int f2fs_init_compress_mempool(void);
3898 void f2fs_destroy_compress_mempool(void);
3899 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3900 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3901 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3902 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3903 int f2fs_write_multi_pages(struct compress_ctx *cc,
3904 int *submitted,
3905 struct writeback_control *wbc,
3906 enum iostat_type io_type);
3907 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3908 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3909 unsigned nr_pages, sector_t *last_block_in_bio,
3910 bool is_readahead, bool for_write);
3911 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3912 void f2fs_free_dic(struct decompress_io_ctx *dic);
3913 void f2fs_decompress_end_io(struct page **rpages,
3914 unsigned int cluster_size, bool err, bool verity);
3915 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3916 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
3917 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3918 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3919 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3920 int __init f2fs_init_compress_cache(void);
3921 void f2fs_destroy_compress_cache(void);
3922 #else
f2fs_is_compressed_page(struct page * page)3923 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)3924 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3925 {
3926 if (!f2fs_compressed_file(inode))
3927 return true;
3928 /* not support compression */
3929 return false;
3930 }
f2fs_compress_control_page(struct page * page)3931 static inline struct page *f2fs_compress_control_page(struct page *page)
3932 {
3933 WARN_ON_ONCE(1);
3934 return ERR_PTR(-EINVAL);
3935 }
f2fs_init_compress_mempool(void)3936 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)3937 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)3938 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)3939 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)3940 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)3941 static inline void f2fs_destroy_compress_cache(void) { }
3942 #endif
3943
set_compress_context(struct inode * inode)3944 static inline void set_compress_context(struct inode *inode)
3945 {
3946 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3947
3948 F2FS_I(inode)->i_compress_algorithm =
3949 F2FS_OPTION(sbi).compress_algorithm;
3950 F2FS_I(inode)->i_log_cluster_size =
3951 F2FS_OPTION(sbi).compress_log_size;
3952 F2FS_I(inode)->i_cluster_size =
3953 1 << F2FS_I(inode)->i_log_cluster_size;
3954 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3955 set_inode_flag(inode, FI_COMPRESSED_FILE);
3956 stat_inc_compr_inode(inode);
3957 f2fs_mark_inode_dirty_sync(inode, true);
3958 }
3959
f2fs_disable_compressed_file(struct inode * inode)3960 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3961 {
3962 struct f2fs_inode_info *fi = F2FS_I(inode);
3963
3964 if (!f2fs_compressed_file(inode))
3965 return true;
3966 if (S_ISREG(inode->i_mode) &&
3967 (get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3968 return false;
3969
3970 fi->i_flags &= ~F2FS_COMPR_FL;
3971 stat_dec_compr_inode(inode);
3972 clear_inode_flag(inode, FI_COMPRESSED_FILE);
3973 f2fs_mark_inode_dirty_sync(inode, true);
3974 return true;
3975 }
3976
3977 #define F2FS_FEATURE_FUNCS(name, flagname) \
3978 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3979 { \
3980 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3981 }
3982
3983 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3984 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3985 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3986 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3987 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3988 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3989 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3990 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3991 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3992 F2FS_FEATURE_FUNCS(verity, VERITY);
3993 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3994 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3995 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3996
3997 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)3998 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3999 block_t blkaddr)
4000 {
4001 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4002
4003 return test_bit(zno, FDEV(devi).blkz_seq);
4004 }
4005 #endif
4006
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4007 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4008 {
4009 return f2fs_sb_has_blkzoned(sbi);
4010 }
4011
f2fs_bdev_support_discard(struct block_device * bdev)4012 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4013 {
4014 return blk_queue_discard(bdev_get_queue(bdev)) ||
4015 bdev_is_zoned(bdev);
4016 }
4017
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4018 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4019 {
4020 int i;
4021
4022 if (!f2fs_is_multi_device(sbi))
4023 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4024
4025 for (i = 0; i < sbi->s_ndevs; i++)
4026 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4027 return true;
4028 return false;
4029 }
4030
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4031 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4032 {
4033 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4034 f2fs_hw_should_discard(sbi);
4035 }
4036
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4037 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4038 {
4039 int i;
4040
4041 if (!f2fs_is_multi_device(sbi))
4042 return bdev_read_only(sbi->sb->s_bdev);
4043
4044 for (i = 0; i < sbi->s_ndevs; i++)
4045 if (bdev_read_only(FDEV(i).bdev))
4046 return true;
4047 return false;
4048 }
4049
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4050 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4051 {
4052 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4053 }
4054
f2fs_may_compress(struct inode * inode)4055 static inline bool f2fs_may_compress(struct inode *inode)
4056 {
4057 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4058 f2fs_is_atomic_file(inode) ||
4059 f2fs_is_volatile_file(inode))
4060 return false;
4061 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4062 }
4063
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4064 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4065 u64 blocks, bool add)
4066 {
4067 int diff = F2FS_I(inode)->i_cluster_size - blocks;
4068 struct f2fs_inode_info *fi = F2FS_I(inode);
4069
4070 /* don't update i_compr_blocks if saved blocks were released */
4071 if (!add && !atomic_read(&fi->i_compr_blocks))
4072 return;
4073
4074 if (add) {
4075 atomic_add(diff, &fi->i_compr_blocks);
4076 stat_add_compr_blocks(inode, diff);
4077 } else {
4078 atomic_sub(diff, &fi->i_compr_blocks);
4079 stat_sub_compr_blocks(inode, diff);
4080 }
4081 f2fs_mark_inode_dirty_sync(inode, true);
4082 }
4083
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4084 static inline int block_unaligned_IO(struct inode *inode,
4085 struct kiocb *iocb, struct iov_iter *iter)
4086 {
4087 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4088 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4089 loff_t offset = iocb->ki_pos;
4090 unsigned long align = offset | iov_iter_alignment(iter);
4091
4092 return align & blocksize_mask;
4093 }
4094
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4095 static inline int allow_outplace_dio(struct inode *inode,
4096 struct kiocb *iocb, struct iov_iter *iter)
4097 {
4098 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4099 int rw = iov_iter_rw(iter);
4100
4101 return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4102 !block_unaligned_IO(inode, iocb, iter));
4103 }
4104
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4105 static inline bool f2fs_force_buffered_io(struct inode *inode,
4106 struct kiocb *iocb, struct iov_iter *iter)
4107 {
4108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4109 int rw = iov_iter_rw(iter);
4110
4111 if (f2fs_post_read_required(inode))
4112 return true;
4113 if (f2fs_is_multi_device(sbi))
4114 return true;
4115 /*
4116 * for blkzoned device, fallback direct IO to buffered IO, so
4117 * all IOs can be serialized by log-structured write.
4118 */
4119 if (f2fs_sb_has_blkzoned(sbi))
4120 return true;
4121 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4122 if (block_unaligned_IO(inode, iocb, iter))
4123 return true;
4124 if (F2FS_IO_ALIGNED(sbi))
4125 return true;
4126 }
4127 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4128 !IS_SWAPFILE(inode))
4129 return true;
4130
4131 return false;
4132 }
4133
4134 #ifdef CONFIG_F2FS_FAULT_INJECTION
4135 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4136 unsigned int type);
4137 #else
4138 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4139 #endif
4140
is_journalled_quota(struct f2fs_sb_info * sbi)4141 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4142 {
4143 #ifdef CONFIG_QUOTA
4144 if (f2fs_sb_has_quota_ino(sbi))
4145 return true;
4146 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4147 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4148 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4149 return true;
4150 #endif
4151 return false;
4152 }
4153
4154 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4155 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4156
4157 #endif /* _LINUX_F2FS_H */
4158