1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46
47 #include "nfstrace.h"
48
49 /* #define NFS_DEBUG_VERBOSE 1 */
50
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57
58 const struct file_operations nfs_dir_operations = {
59 .llseek = nfs_llseek_dir,
60 .read = generic_read_dir,
61 .iterate_shared = nfs_readdir,
62 .open = nfs_opendir,
63 .release = nfs_closedir,
64 .fsync = nfs_fsync_dir,
65 };
66
67 const struct address_space_operations nfs_dir_aops = {
68 .freepage = nfs_readdir_clear_array,
69 };
70
alloc_nfs_open_dir_context(struct inode * dir,const struct cred * cred)71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 {
73 struct nfs_inode *nfsi = NFS_I(dir);
74 struct nfs_open_dir_context *ctx;
75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 if (ctx != NULL) {
77 ctx->duped = 0;
78 ctx->attr_gencount = nfsi->attr_gencount;
79 ctx->dir_cookie = 0;
80 ctx->dup_cookie = 0;
81 ctx->cred = get_cred(cred);
82 spin_lock(&dir->i_lock);
83 if (list_empty(&nfsi->open_files) &&
84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 NFS_INO_REVAL_FORCED;
87 list_add(&ctx->list, &nfsi->open_files);
88 spin_unlock(&dir->i_lock);
89 return ctx;
90 }
91 return ERR_PTR(-ENOMEM);
92 }
93
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96 spin_lock(&dir->i_lock);
97 list_del(&ctx->list);
98 spin_unlock(&dir->i_lock);
99 put_cred(ctx->cred);
100 kfree(ctx);
101 }
102
103 /*
104 * Open file
105 */
106 static int
nfs_opendir(struct inode * inode,struct file * filp)107 nfs_opendir(struct inode *inode, struct file *filp)
108 {
109 int res = 0;
110 struct nfs_open_dir_context *ctx;
111
112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113
114 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115
116 ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 if (IS_ERR(ctx)) {
118 res = PTR_ERR(ctx);
119 goto out;
120 }
121 filp->private_data = ctx;
122 out:
123 return res;
124 }
125
126 static int
nfs_closedir(struct inode * inode,struct file * filp)127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 return 0;
131 }
132
133 struct nfs_cache_array_entry {
134 u64 cookie;
135 u64 ino;
136 struct qstr string;
137 unsigned char d_type;
138 };
139
140 struct nfs_cache_array {
141 int size;
142 int eof_index;
143 u64 last_cookie;
144 struct nfs_cache_array_entry array[];
145 };
146
147 typedef struct {
148 struct file *file;
149 struct page *page;
150 struct dir_context *ctx;
151 unsigned long page_index;
152 u64 *dir_cookie;
153 u64 last_cookie;
154 loff_t current_index;
155 loff_t prev_index;
156
157 unsigned long dir_verifier;
158 unsigned long timestamp;
159 unsigned long gencount;
160 unsigned int cache_entry_index;
161 bool plus;
162 bool eof;
163 } nfs_readdir_descriptor_t;
164
165 static
nfs_readdir_init_array(struct page * page)166 void nfs_readdir_init_array(struct page *page)
167 {
168 struct nfs_cache_array *array;
169
170 array = kmap_atomic(page);
171 memset(array, 0, sizeof(struct nfs_cache_array));
172 array->eof_index = -1;
173 kunmap_atomic(array);
174 }
175
176 /*
177 * we are freeing strings created by nfs_add_to_readdir_array()
178 */
179 static
nfs_readdir_clear_array(struct page * page)180 void nfs_readdir_clear_array(struct page *page)
181 {
182 struct nfs_cache_array *array;
183 int i;
184
185 array = kmap_atomic(page);
186 for (i = 0; i < array->size; i++)
187 kfree(array->array[i].string.name);
188 array->size = 0;
189 kunmap_atomic(array);
190 }
191
192 /*
193 * the caller is responsible for freeing qstr.name
194 * when called by nfs_readdir_add_to_array, the strings will be freed in
195 * nfs_clear_readdir_array()
196 */
197 static
nfs_readdir_make_qstr(struct qstr * string,const char * name,unsigned int len)198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
199 {
200 string->len = len;
201 string->name = kmemdup_nul(name, len, GFP_KERNEL);
202 if (string->name == NULL)
203 return -ENOMEM;
204 /*
205 * Avoid a kmemleak false positive. The pointer to the name is stored
206 * in a page cache page which kmemleak does not scan.
207 */
208 kmemleak_not_leak(string->name);
209 string->hash = full_name_hash(NULL, name, len);
210 return 0;
211 }
212
213 static
nfs_readdir_add_to_array(struct nfs_entry * entry,struct page * page)214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
215 {
216 struct nfs_cache_array *array = kmap(page);
217 struct nfs_cache_array_entry *cache_entry;
218 int ret;
219
220 cache_entry = &array->array[array->size];
221
222 /* Check that this entry lies within the page bounds */
223 ret = -ENOSPC;
224 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
225 goto out;
226
227 cache_entry->cookie = entry->prev_cookie;
228 cache_entry->ino = entry->ino;
229 cache_entry->d_type = entry->d_type;
230 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
231 if (ret)
232 goto out;
233 array->last_cookie = entry->cookie;
234 array->size++;
235 if (entry->eof != 0)
236 array->eof_index = array->size;
237 out:
238 kunmap(page);
239 return ret;
240 }
241
242 static inline
is_32bit_api(void)243 int is_32bit_api(void)
244 {
245 #ifdef CONFIG_COMPAT
246 return in_compat_syscall();
247 #else
248 return (BITS_PER_LONG == 32);
249 #endif
250 }
251
252 static
nfs_readdir_use_cookie(const struct file * filp)253 bool nfs_readdir_use_cookie(const struct file *filp)
254 {
255 if ((filp->f_mode & FMODE_32BITHASH) ||
256 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
257 return false;
258 return true;
259 }
260
261 static
nfs_readdir_search_for_pos(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263 {
264 loff_t diff = desc->ctx->pos - desc->current_index;
265 unsigned int index;
266
267 if (diff < 0)
268 goto out_eof;
269 if (diff >= array->size) {
270 if (array->eof_index >= 0)
271 goto out_eof;
272 return -EAGAIN;
273 }
274
275 index = (unsigned int)diff;
276 *desc->dir_cookie = array->array[index].cookie;
277 desc->cache_entry_index = index;
278 return 0;
279 out_eof:
280 desc->eof = true;
281 return -EBADCOOKIE;
282 }
283
284 static bool
nfs_readdir_inode_mapping_valid(struct nfs_inode * nfsi)285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286 {
287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 return false;
289 smp_rmb();
290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291 }
292
293 static
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295 {
296 int i;
297 loff_t new_pos;
298 int status = -EAGAIN;
299
300 for (i = 0; i < array->size; i++) {
301 if (array->array[i].cookie == *desc->dir_cookie) {
302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 struct nfs_open_dir_context *ctx = desc->file->private_data;
304
305 new_pos = desc->current_index + i;
306 if (ctx->attr_gencount != nfsi->attr_gencount ||
307 !nfs_readdir_inode_mapping_valid(nfsi)) {
308 ctx->duped = 0;
309 ctx->attr_gencount = nfsi->attr_gencount;
310 } else if (new_pos < desc->prev_index) {
311 if (ctx->duped > 0
312 && ctx->dup_cookie == *desc->dir_cookie) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc->file, array->array[i].string.len,
318 array->array[i].string.name, *desc->dir_cookie);
319 }
320 status = -ELOOP;
321 goto out;
322 }
323 ctx->dup_cookie = *desc->dir_cookie;
324 ctx->duped = -1;
325 }
326 if (nfs_readdir_use_cookie(desc->file))
327 desc->ctx->pos = *desc->dir_cookie;
328 else
329 desc->ctx->pos = new_pos;
330 desc->prev_index = new_pos;
331 desc->cache_entry_index = i;
332 return 0;
333 }
334 }
335 if (array->eof_index >= 0) {
336 status = -EBADCOOKIE;
337 if (*desc->dir_cookie == array->last_cookie)
338 desc->eof = true;
339 }
340 out:
341 return status;
342 }
343
344 static
nfs_readdir_search_array(nfs_readdir_descriptor_t * desc)345 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
346 {
347 struct nfs_cache_array *array;
348 int status;
349
350 array = kmap(desc->page);
351
352 if (*desc->dir_cookie == 0)
353 status = nfs_readdir_search_for_pos(array, desc);
354 else
355 status = nfs_readdir_search_for_cookie(array, desc);
356
357 if (status == -EAGAIN) {
358 desc->last_cookie = array->last_cookie;
359 desc->current_index += array->size;
360 desc->page_index++;
361 }
362 kunmap(desc->page);
363 return status;
364 }
365
366 /* Fill a page with xdr information before transferring to the cache page */
367 static
nfs_readdir_xdr_filler(struct page ** pages,nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct file * file,struct inode * inode)368 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
369 struct nfs_entry *entry, struct file *file, struct inode *inode)
370 {
371 struct nfs_open_dir_context *ctx = file->private_data;
372 const struct cred *cred = ctx->cred;
373 unsigned long timestamp, gencount;
374 int error;
375
376 again:
377 timestamp = jiffies;
378 gencount = nfs_inc_attr_generation_counter();
379 desc->dir_verifier = nfs_save_change_attribute(inode);
380 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
381 NFS_SERVER(inode)->dtsize, desc->plus);
382 if (error < 0) {
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error == -ENOTSUPP && desc->plus) {
385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 desc->plus = false;
388 goto again;
389 }
390 goto error;
391 }
392 desc->timestamp = timestamp;
393 desc->gencount = gencount;
394 error:
395 return error;
396 }
397
xdr_decode(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct xdr_stream * xdr)398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 struct nfs_entry *entry, struct xdr_stream *xdr)
400 {
401 struct inode *inode = file_inode(desc->file);
402 int error;
403
404 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
405 if (error)
406 return error;
407 entry->fattr->time_start = desc->timestamp;
408 entry->fattr->gencount = desc->gencount;
409 return 0;
410 }
411
412 /* Match file and dirent using either filehandle or fileid
413 * Note: caller is responsible for checking the fsid
414 */
415 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)416 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
417 {
418 struct inode *inode;
419 struct nfs_inode *nfsi;
420
421 if (d_really_is_negative(dentry))
422 return 0;
423
424 inode = d_inode(dentry);
425 if (is_bad_inode(inode) || NFS_STALE(inode))
426 return 0;
427
428 nfsi = NFS_I(inode);
429 if (entry->fattr->fileid != nfsi->fileid)
430 return 0;
431 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
432 return 0;
433 return 1;
434 }
435
436 static
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx)437 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
438 {
439 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
440 return false;
441 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
442 return true;
443 if (ctx->pos == 0)
444 return true;
445 return false;
446 }
447
448 /*
449 * This function is called by the lookup and getattr code to request the
450 * use of readdirplus to accelerate any future lookups in the same
451 * directory.
452 */
nfs_advise_use_readdirplus(struct inode * dir)453 void nfs_advise_use_readdirplus(struct inode *dir)
454 {
455 struct nfs_inode *nfsi = NFS_I(dir);
456
457 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
458 !list_empty(&nfsi->open_files))
459 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
460 }
461
462 /*
463 * This function is mainly for use by nfs_getattr().
464 *
465 * If this is an 'ls -l', we want to force use of readdirplus.
466 * Do this by checking if there is an active file descriptor
467 * and calling nfs_advise_use_readdirplus, then forcing a
468 * cache flush.
469 */
nfs_force_use_readdirplus(struct inode * dir)470 void nfs_force_use_readdirplus(struct inode *dir)
471 {
472 struct nfs_inode *nfsi = NFS_I(dir);
473
474 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
475 !list_empty(&nfsi->open_files)) {
476 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
477 invalidate_mapping_pages(dir->i_mapping,
478 nfsi->page_index + 1, -1);
479 }
480 }
481
482 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)483 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
484 unsigned long dir_verifier)
485 {
486 struct qstr filename = QSTR_INIT(entry->name, entry->len);
487 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
488 struct dentry *dentry;
489 struct dentry *alias;
490 struct inode *inode;
491 int status;
492
493 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
494 return;
495 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
496 return;
497 if (filename.len == 0)
498 return;
499 /* Validate that the name doesn't contain any illegal '\0' */
500 if (strnlen(filename.name, filename.len) != filename.len)
501 return;
502 /* ...or '/' */
503 if (strnchr(filename.name, filename.len, '/'))
504 return;
505 if (filename.name[0] == '.') {
506 if (filename.len == 1)
507 return;
508 if (filename.len == 2 && filename.name[1] == '.')
509 return;
510 }
511 filename.hash = full_name_hash(parent, filename.name, filename.len);
512
513 dentry = d_lookup(parent, &filename);
514 again:
515 if (!dentry) {
516 dentry = d_alloc_parallel(parent, &filename, &wq);
517 if (IS_ERR(dentry))
518 return;
519 }
520 if (!d_in_lookup(dentry)) {
521 /* Is there a mountpoint here? If so, just exit */
522 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
523 &entry->fattr->fsid))
524 goto out;
525 if (nfs_same_file(dentry, entry)) {
526 if (!entry->fh->size)
527 goto out;
528 nfs_set_verifier(dentry, dir_verifier);
529 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
530 if (!status)
531 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
532 goto out;
533 } else {
534 d_invalidate(dentry);
535 dput(dentry);
536 dentry = NULL;
537 goto again;
538 }
539 }
540 if (!entry->fh->size) {
541 d_lookup_done(dentry);
542 goto out;
543 }
544
545 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
546 alias = d_splice_alias(inode, dentry);
547 d_lookup_done(dentry);
548 if (alias) {
549 if (IS_ERR(alias))
550 goto out;
551 dput(dentry);
552 dentry = alias;
553 }
554 nfs_set_verifier(dentry, dir_verifier);
555 out:
556 dput(dentry);
557 }
558
559 /* Perform conversion from xdr to cache array */
560 static
nfs_readdir_page_filler(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct page ** xdr_pages,struct page * page,unsigned int buflen)561 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
562 struct page **xdr_pages, struct page *page, unsigned int buflen)
563 {
564 struct xdr_stream stream;
565 struct xdr_buf buf;
566 struct page *scratch;
567 struct nfs_cache_array *array;
568 unsigned int count = 0;
569 int status;
570
571 scratch = alloc_page(GFP_KERNEL);
572 if (scratch == NULL)
573 return -ENOMEM;
574
575 if (buflen == 0)
576 goto out_nopages;
577
578 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
579 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
580
581 do {
582 if (entry->label)
583 entry->label->len = NFS4_MAXLABELLEN;
584
585 status = xdr_decode(desc, entry, &stream);
586 if (status != 0) {
587 if (status == -EAGAIN)
588 status = 0;
589 break;
590 }
591
592 count++;
593
594 if (desc->plus)
595 nfs_prime_dcache(file_dentry(desc->file), entry,
596 desc->dir_verifier);
597
598 status = nfs_readdir_add_to_array(entry, page);
599 if (status != 0)
600 break;
601 } while (!entry->eof);
602
603 out_nopages:
604 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
605 array = kmap(page);
606 array->eof_index = array->size;
607 status = 0;
608 kunmap(page);
609 }
610
611 put_page(scratch);
612 return status;
613 }
614
615 static
nfs_readdir_free_pages(struct page ** pages,unsigned int npages)616 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
617 {
618 unsigned int i;
619 for (i = 0; i < npages; i++)
620 put_page(pages[i]);
621 }
622
623 /*
624 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
625 * to nfs_readdir_free_pages()
626 */
627 static
nfs_readdir_alloc_pages(struct page ** pages,unsigned int npages)628 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
629 {
630 unsigned int i;
631
632 for (i = 0; i < npages; i++) {
633 struct page *page = alloc_page(GFP_KERNEL);
634 if (page == NULL)
635 goto out_freepages;
636 pages[i] = page;
637 }
638 return 0;
639
640 out_freepages:
641 nfs_readdir_free_pages(pages, i);
642 return -ENOMEM;
643 }
644
645 static
nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t * desc,struct page * page,struct inode * inode)646 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
647 {
648 struct page *pages[NFS_MAX_READDIR_PAGES];
649 struct nfs_entry entry;
650 struct file *file = desc->file;
651 struct nfs_cache_array *array;
652 int status = -ENOMEM;
653 unsigned int array_size = ARRAY_SIZE(pages);
654
655 nfs_readdir_init_array(page);
656
657 entry.prev_cookie = 0;
658 entry.cookie = desc->last_cookie;
659 entry.eof = 0;
660 entry.fh = nfs_alloc_fhandle();
661 entry.fattr = nfs_alloc_fattr();
662 entry.server = NFS_SERVER(inode);
663 if (entry.fh == NULL || entry.fattr == NULL)
664 goto out;
665
666 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
667 if (IS_ERR(entry.label)) {
668 status = PTR_ERR(entry.label);
669 goto out;
670 }
671
672 array = kmap(page);
673
674 status = nfs_readdir_alloc_pages(pages, array_size);
675 if (status < 0)
676 goto out_release_array;
677 do {
678 unsigned int pglen;
679 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
680
681 if (status < 0)
682 break;
683 pglen = status;
684 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
685 if (status < 0) {
686 if (status == -ENOSPC)
687 status = 0;
688 break;
689 }
690 } while (array->eof_index < 0);
691
692 nfs_readdir_free_pages(pages, array_size);
693 out_release_array:
694 kunmap(page);
695 nfs4_label_free(entry.label);
696 out:
697 nfs_free_fattr(entry.fattr);
698 nfs_free_fhandle(entry.fh);
699 return status;
700 }
701
702 /*
703 * Now we cache directories properly, by converting xdr information
704 * to an array that can be used for lookups later. This results in
705 * fewer cache pages, since we can store more information on each page.
706 * We only need to convert from xdr once so future lookups are much simpler
707 */
708 static
nfs_readdir_filler(void * data,struct page * page)709 int nfs_readdir_filler(void *data, struct page* page)
710 {
711 nfs_readdir_descriptor_t *desc = data;
712 struct inode *inode = file_inode(desc->file);
713 int ret;
714
715 ret = nfs_readdir_xdr_to_array(desc, page, inode);
716 if (ret < 0)
717 goto error;
718 SetPageUptodate(page);
719
720 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
721 /* Should never happen */
722 nfs_zap_mapping(inode, inode->i_mapping);
723 }
724 unlock_page(page);
725 return 0;
726 error:
727 nfs_readdir_clear_array(page);
728 unlock_page(page);
729 return ret;
730 }
731
732 static
cache_page_release(nfs_readdir_descriptor_t * desc)733 void cache_page_release(nfs_readdir_descriptor_t *desc)
734 {
735 put_page(desc->page);
736 desc->page = NULL;
737 }
738
739 static
get_cache_page(nfs_readdir_descriptor_t * desc)740 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
741 {
742 return read_cache_page(desc->file->f_mapping, desc->page_index,
743 nfs_readdir_filler, desc);
744 }
745
746 /*
747 * Returns 0 if desc->dir_cookie was found on page desc->page_index
748 * and locks the page to prevent removal from the page cache.
749 */
750 static
find_and_lock_cache_page(nfs_readdir_descriptor_t * desc)751 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
752 {
753 struct inode *inode = file_inode(desc->file);
754 struct nfs_inode *nfsi = NFS_I(inode);
755 int res;
756
757 desc->page = get_cache_page(desc);
758 if (IS_ERR(desc->page))
759 return PTR_ERR(desc->page);
760 res = lock_page_killable(desc->page);
761 if (res != 0)
762 goto error;
763 res = -EAGAIN;
764 if (desc->page->mapping != NULL) {
765 res = nfs_readdir_search_array(desc);
766 if (res == 0) {
767 nfsi->page_index = desc->page_index;
768 return 0;
769 }
770 }
771 unlock_page(desc->page);
772 error:
773 cache_page_release(desc);
774 return res;
775 }
776
777 /* Search for desc->dir_cookie from the beginning of the page cache */
778 static inline
readdir_search_pagecache(nfs_readdir_descriptor_t * desc)779 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
780 {
781 int res;
782
783 if (desc->page_index == 0) {
784 desc->current_index = 0;
785 desc->prev_index = 0;
786 desc->last_cookie = 0;
787 }
788 do {
789 res = find_and_lock_cache_page(desc);
790 } while (res == -EAGAIN);
791 return res;
792 }
793
794 /*
795 * Once we've found the start of the dirent within a page: fill 'er up...
796 */
797 static
nfs_do_filldir(nfs_readdir_descriptor_t * desc)798 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
799 {
800 struct file *file = desc->file;
801 int i = 0;
802 int res = 0;
803 struct nfs_cache_array *array = NULL;
804 struct nfs_open_dir_context *ctx = file->private_data;
805
806 array = kmap(desc->page);
807 for (i = desc->cache_entry_index; i < array->size; i++) {
808 struct nfs_cache_array_entry *ent;
809
810 ent = &array->array[i];
811 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
812 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
813 desc->eof = true;
814 break;
815 }
816 if (i < (array->size-1))
817 *desc->dir_cookie = array->array[i+1].cookie;
818 else
819 *desc->dir_cookie = array->last_cookie;
820 if (nfs_readdir_use_cookie(file))
821 desc->ctx->pos = *desc->dir_cookie;
822 else
823 desc->ctx->pos++;
824 if (ctx->duped != 0)
825 ctx->duped = 1;
826 }
827 if (array->eof_index >= 0)
828 desc->eof = true;
829
830 kunmap(desc->page);
831 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
832 (unsigned long long)*desc->dir_cookie, res);
833 return res;
834 }
835
836 /*
837 * If we cannot find a cookie in our cache, we suspect that this is
838 * because it points to a deleted file, so we ask the server to return
839 * whatever it thinks is the next entry. We then feed this to filldir.
840 * If all goes well, we should then be able to find our way round the
841 * cache on the next call to readdir_search_pagecache();
842 *
843 * NOTE: we cannot add the anonymous page to the pagecache because
844 * the data it contains might not be page aligned. Besides,
845 * we should already have a complete representation of the
846 * directory in the page cache by the time we get here.
847 */
848 static inline
uncached_readdir(nfs_readdir_descriptor_t * desc)849 int uncached_readdir(nfs_readdir_descriptor_t *desc)
850 {
851 struct page *page = NULL;
852 int status;
853 struct inode *inode = file_inode(desc->file);
854 struct nfs_open_dir_context *ctx = desc->file->private_data;
855
856 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
857 (unsigned long long)*desc->dir_cookie);
858
859 page = alloc_page(GFP_HIGHUSER);
860 if (!page) {
861 status = -ENOMEM;
862 goto out;
863 }
864
865 desc->page_index = 0;
866 desc->last_cookie = *desc->dir_cookie;
867 desc->page = page;
868 ctx->duped = 0;
869
870 status = nfs_readdir_xdr_to_array(desc, page, inode);
871 if (status < 0)
872 goto out_release;
873
874 status = nfs_do_filldir(desc);
875
876 out_release:
877 nfs_readdir_clear_array(desc->page);
878 cache_page_release(desc);
879 out:
880 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
881 __func__, status);
882 return status;
883 }
884
885 /* The file offset position represents the dirent entry number. A
886 last cookie cache takes care of the common case of reading the
887 whole directory.
888 */
nfs_readdir(struct file * file,struct dir_context * ctx)889 static int nfs_readdir(struct file *file, struct dir_context *ctx)
890 {
891 struct dentry *dentry = file_dentry(file);
892 struct inode *inode = d_inode(dentry);
893 struct nfs_open_dir_context *dir_ctx = file->private_data;
894 nfs_readdir_descriptor_t my_desc = {
895 .file = file,
896 .ctx = ctx,
897 .dir_cookie = &dir_ctx->dir_cookie,
898 .plus = nfs_use_readdirplus(inode, ctx),
899 },
900 *desc = &my_desc;
901 int res = 0;
902
903 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
904 file, (long long)ctx->pos);
905 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
906
907 /*
908 * ctx->pos points to the dirent entry number.
909 * *desc->dir_cookie has the cookie for the next entry. We have
910 * to either find the entry with the appropriate number or
911 * revalidate the cookie.
912 */
913 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
914 res = nfs_revalidate_mapping(inode, file->f_mapping);
915 if (res < 0)
916 goto out;
917
918 do {
919 res = readdir_search_pagecache(desc);
920
921 if (res == -EBADCOOKIE) {
922 res = 0;
923 /* This means either end of directory */
924 if (*desc->dir_cookie && !desc->eof) {
925 /* Or that the server has 'lost' a cookie */
926 res = uncached_readdir(desc);
927 if (res == 0)
928 continue;
929 }
930 break;
931 }
932 if (res == -ETOOSMALL && desc->plus) {
933 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
934 nfs_zap_caches(inode);
935 desc->page_index = 0;
936 desc->plus = false;
937 desc->eof = false;
938 continue;
939 }
940 if (res < 0)
941 break;
942
943 res = nfs_do_filldir(desc);
944 unlock_page(desc->page);
945 cache_page_release(desc);
946 if (res < 0)
947 break;
948 } while (!desc->eof);
949 out:
950 if (res > 0)
951 res = 0;
952 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
953 return res;
954 }
955
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)956 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
957 {
958 struct nfs_open_dir_context *dir_ctx = filp->private_data;
959
960 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
961 filp, offset, whence);
962
963 switch (whence) {
964 default:
965 return -EINVAL;
966 case SEEK_SET:
967 if (offset < 0)
968 return -EINVAL;
969 spin_lock(&filp->f_lock);
970 break;
971 case SEEK_CUR:
972 if (offset == 0)
973 return filp->f_pos;
974 spin_lock(&filp->f_lock);
975 offset += filp->f_pos;
976 if (offset < 0) {
977 spin_unlock(&filp->f_lock);
978 return -EINVAL;
979 }
980 }
981 if (offset != filp->f_pos) {
982 filp->f_pos = offset;
983 if (nfs_readdir_use_cookie(filp))
984 dir_ctx->dir_cookie = offset;
985 else
986 dir_ctx->dir_cookie = 0;
987 dir_ctx->duped = 0;
988 }
989 spin_unlock(&filp->f_lock);
990 return offset;
991 }
992
993 /*
994 * All directory operations under NFS are synchronous, so fsync()
995 * is a dummy operation.
996 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)997 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
998 int datasync)
999 {
1000 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1001
1002 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1003 return 0;
1004 }
1005
1006 /**
1007 * nfs_force_lookup_revalidate - Mark the directory as having changed
1008 * @dir: pointer to directory inode
1009 *
1010 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1011 * full lookup on all child dentries of 'dir' whenever a change occurs
1012 * on the server that might have invalidated our dcache.
1013 *
1014 * Note that we reserve bit '0' as a tag to let us know when a dentry
1015 * was revalidated while holding a delegation on its inode.
1016 *
1017 * The caller should be holding dir->i_lock
1018 */
nfs_force_lookup_revalidate(struct inode * dir)1019 void nfs_force_lookup_revalidate(struct inode *dir)
1020 {
1021 NFS_I(dir)->cache_change_attribute += 2;
1022 }
1023 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1024
1025 /**
1026 * nfs_verify_change_attribute - Detects NFS remote directory changes
1027 * @dir: pointer to parent directory inode
1028 * @verf: previously saved change attribute
1029 *
1030 * Return "false" if the verifiers doesn't match the change attribute.
1031 * This would usually indicate that the directory contents have changed on
1032 * the server, and that any dentries need revalidating.
1033 */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1034 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1035 {
1036 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1037 }
1038
nfs_set_verifier_delegated(unsigned long * verf)1039 static void nfs_set_verifier_delegated(unsigned long *verf)
1040 {
1041 *verf |= 1UL;
1042 }
1043
1044 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1045 static void nfs_unset_verifier_delegated(unsigned long *verf)
1046 {
1047 *verf &= ~1UL;
1048 }
1049 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1050
nfs_test_verifier_delegated(unsigned long verf)1051 static bool nfs_test_verifier_delegated(unsigned long verf)
1052 {
1053 return verf & 1;
1054 }
1055
nfs_verifier_is_delegated(struct dentry * dentry)1056 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1057 {
1058 return nfs_test_verifier_delegated(dentry->d_time);
1059 }
1060
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1061 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1062 {
1063 struct inode *inode = d_inode(dentry);
1064
1065 if (!nfs_verifier_is_delegated(dentry) &&
1066 !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1067 goto out;
1068 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1069 nfs_set_verifier_delegated(&verf);
1070 out:
1071 dentry->d_time = verf;
1072 }
1073
1074 /**
1075 * nfs_set_verifier - save a parent directory verifier in the dentry
1076 * @dentry: pointer to dentry
1077 * @verf: verifier to save
1078 *
1079 * Saves the parent directory verifier in @dentry. If the inode has
1080 * a delegation, we also tag the dentry as having been revalidated
1081 * while holding a delegation so that we know we don't have to
1082 * look it up again after a directory change.
1083 */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1084 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1085 {
1086
1087 spin_lock(&dentry->d_lock);
1088 nfs_set_verifier_locked(dentry, verf);
1089 spin_unlock(&dentry->d_lock);
1090 }
1091 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1092
1093 #if IS_ENABLED(CONFIG_NFS_V4)
1094 /**
1095 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1096 * @inode: pointer to inode
1097 *
1098 * Iterates through the dentries in the inode alias list and clears
1099 * the tag used to indicate that the dentry has been revalidated
1100 * while holding a delegation.
1101 * This function is intended for use when the delegation is being
1102 * returned or revoked.
1103 */
nfs_clear_verifier_delegated(struct inode * inode)1104 void nfs_clear_verifier_delegated(struct inode *inode)
1105 {
1106 struct dentry *alias;
1107
1108 if (!inode)
1109 return;
1110 spin_lock(&inode->i_lock);
1111 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1112 spin_lock(&alias->d_lock);
1113 nfs_unset_verifier_delegated(&alias->d_time);
1114 spin_unlock(&alias->d_lock);
1115 }
1116 spin_unlock(&inode->i_lock);
1117 }
1118 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1119 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1120
1121 /*
1122 * A check for whether or not the parent directory has changed.
1123 * In the case it has, we assume that the dentries are untrustworthy
1124 * and may need to be looked up again.
1125 * If rcu_walk prevents us from performing a full check, return 0.
1126 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1127 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1128 int rcu_walk)
1129 {
1130 if (IS_ROOT(dentry))
1131 return 1;
1132 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1133 return 0;
1134 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1135 return 0;
1136 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1137 if (nfs_mapping_need_revalidate_inode(dir)) {
1138 if (rcu_walk)
1139 return 0;
1140 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1141 return 0;
1142 }
1143 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1144 return 0;
1145 return 1;
1146 }
1147
1148 /*
1149 * Use intent information to check whether or not we're going to do
1150 * an O_EXCL create using this path component.
1151 */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1152 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1153 {
1154 if (NFS_PROTO(dir)->version == 2)
1155 return 0;
1156 return flags & LOOKUP_EXCL;
1157 }
1158
1159 /*
1160 * Inode and filehandle revalidation for lookups.
1161 *
1162 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1163 * or if the intent information indicates that we're about to open this
1164 * particular file and the "nocto" mount flag is not set.
1165 *
1166 */
1167 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1168 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1169 {
1170 struct nfs_server *server = NFS_SERVER(inode);
1171 int ret;
1172
1173 if (IS_AUTOMOUNT(inode))
1174 return 0;
1175
1176 if (flags & LOOKUP_OPEN) {
1177 switch (inode->i_mode & S_IFMT) {
1178 case S_IFREG:
1179 /* A NFSv4 OPEN will revalidate later */
1180 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1181 goto out;
1182 fallthrough;
1183 case S_IFDIR:
1184 if (server->flags & NFS_MOUNT_NOCTO)
1185 break;
1186 /* NFS close-to-open cache consistency validation */
1187 goto out_force;
1188 }
1189 }
1190
1191 /* VFS wants an on-the-wire revalidation */
1192 if (flags & LOOKUP_REVAL)
1193 goto out_force;
1194 out:
1195 return (inode->i_nlink == 0) ? -ESTALE : 0;
1196 out_force:
1197 if (flags & LOOKUP_RCU)
1198 return -ECHILD;
1199 ret = __nfs_revalidate_inode(server, inode);
1200 if (ret != 0)
1201 return ret;
1202 goto out;
1203 }
1204
nfs_mark_dir_for_revalidate(struct inode * inode)1205 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1206 {
1207 struct nfs_inode *nfsi = NFS_I(inode);
1208
1209 spin_lock(&inode->i_lock);
1210 nfsi->cache_validity |= NFS_INO_REVAL_PAGECACHE;
1211 spin_unlock(&inode->i_lock);
1212 }
1213
1214 /*
1215 * We judge how long we want to trust negative
1216 * dentries by looking at the parent inode mtime.
1217 *
1218 * If parent mtime has changed, we revalidate, else we wait for a
1219 * period corresponding to the parent's attribute cache timeout value.
1220 *
1221 * If LOOKUP_RCU prevents us from performing a full check, return 1
1222 * suggesting a reval is needed.
1223 *
1224 * Note that when creating a new file, or looking up a rename target,
1225 * then it shouldn't be necessary to revalidate a negative dentry.
1226 */
1227 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1228 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1229 unsigned int flags)
1230 {
1231 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1232 return 0;
1233 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1234 return 1;
1235 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1236 }
1237
1238 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1239 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1240 struct inode *inode, int error)
1241 {
1242 switch (error) {
1243 case 1:
1244 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1245 __func__, dentry);
1246 return 1;
1247 case 0:
1248 /*
1249 * We can't d_drop the root of a disconnected tree:
1250 * its d_hash is on the s_anon list and d_drop() would hide
1251 * it from shrink_dcache_for_unmount(), leading to busy
1252 * inodes on unmount and further oopses.
1253 */
1254 if (inode && IS_ROOT(dentry))
1255 return 1;
1256 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1257 __func__, dentry);
1258 return 0;
1259 }
1260 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1261 __func__, dentry, error);
1262 return error;
1263 }
1264
1265 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1266 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1267 unsigned int flags)
1268 {
1269 int ret = 1;
1270 if (nfs_neg_need_reval(dir, dentry, flags)) {
1271 if (flags & LOOKUP_RCU)
1272 return -ECHILD;
1273 ret = 0;
1274 }
1275 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1276 }
1277
1278 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1279 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1280 struct inode *inode)
1281 {
1282 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1283 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1284 }
1285
1286 static int
nfs_lookup_revalidate_dentry(struct inode * dir,struct dentry * dentry,struct inode * inode)1287 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1288 struct inode *inode)
1289 {
1290 struct nfs_fh *fhandle;
1291 struct nfs_fattr *fattr;
1292 struct nfs4_label *label;
1293 unsigned long dir_verifier;
1294 int ret;
1295
1296 ret = -ENOMEM;
1297 fhandle = nfs_alloc_fhandle();
1298 fattr = nfs_alloc_fattr();
1299 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1300 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1301 goto out;
1302
1303 dir_verifier = nfs_save_change_attribute(dir);
1304 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1305 if (ret < 0) {
1306 switch (ret) {
1307 case -ESTALE:
1308 case -ENOENT:
1309 ret = 0;
1310 break;
1311 case -ETIMEDOUT:
1312 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1313 ret = 1;
1314 }
1315 goto out;
1316 }
1317 ret = 0;
1318 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1319 goto out;
1320 if (nfs_refresh_inode(inode, fattr) < 0)
1321 goto out;
1322
1323 nfs_setsecurity(inode, fattr, label);
1324 nfs_set_verifier(dentry, dir_verifier);
1325
1326 /* set a readdirplus hint that we had a cache miss */
1327 nfs_force_use_readdirplus(dir);
1328 ret = 1;
1329 out:
1330 nfs_free_fattr(fattr);
1331 nfs_free_fhandle(fhandle);
1332 nfs4_label_free(label);
1333
1334 /*
1335 * If the lookup failed despite the dentry change attribute being
1336 * a match, then we should revalidate the directory cache.
1337 */
1338 if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1339 nfs_mark_dir_for_revalidate(dir);
1340 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1341 }
1342
1343 /*
1344 * This is called every time the dcache has a lookup hit,
1345 * and we should check whether we can really trust that
1346 * lookup.
1347 *
1348 * NOTE! The hit can be a negative hit too, don't assume
1349 * we have an inode!
1350 *
1351 * If the parent directory is seen to have changed, we throw out the
1352 * cached dentry and do a new lookup.
1353 */
1354 static int
nfs_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1355 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1356 unsigned int flags)
1357 {
1358 struct inode *inode;
1359 int error;
1360
1361 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1362 inode = d_inode(dentry);
1363
1364 if (!inode)
1365 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1366
1367 if (is_bad_inode(inode)) {
1368 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1369 __func__, dentry);
1370 goto out_bad;
1371 }
1372
1373 if (nfs_verifier_is_delegated(dentry))
1374 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1375
1376 /* Force a full look up iff the parent directory has changed */
1377 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1378 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1379 error = nfs_lookup_verify_inode(inode, flags);
1380 if (error) {
1381 if (error == -ESTALE)
1382 nfs_mark_dir_for_revalidate(dir);
1383 goto out_bad;
1384 }
1385 nfs_advise_use_readdirplus(dir);
1386 goto out_valid;
1387 }
1388
1389 if (flags & LOOKUP_RCU)
1390 return -ECHILD;
1391
1392 if (NFS_STALE(inode))
1393 goto out_bad;
1394
1395 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1396 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1397 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1398 return error;
1399 out_valid:
1400 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1401 out_bad:
1402 if (flags & LOOKUP_RCU)
1403 return -ECHILD;
1404 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1405 }
1406
1407 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags,int (* reval)(struct inode *,struct dentry *,unsigned int))1408 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1409 int (*reval)(struct inode *, struct dentry *, unsigned int))
1410 {
1411 struct dentry *parent;
1412 struct inode *dir;
1413 int ret;
1414
1415 if (flags & LOOKUP_RCU) {
1416 parent = READ_ONCE(dentry->d_parent);
1417 dir = d_inode_rcu(parent);
1418 if (!dir)
1419 return -ECHILD;
1420 ret = reval(dir, dentry, flags);
1421 if (parent != READ_ONCE(dentry->d_parent))
1422 return -ECHILD;
1423 } else {
1424 parent = dget_parent(dentry);
1425 ret = reval(d_inode(parent), dentry, flags);
1426 dput(parent);
1427 }
1428 return ret;
1429 }
1430
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1431 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1432 {
1433 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1434 }
1435
1436 /*
1437 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1438 * when we don't really care about the dentry name. This is called when a
1439 * pathwalk ends on a dentry that was not found via a normal lookup in the
1440 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1441 *
1442 * In this situation, we just want to verify that the inode itself is OK
1443 * since the dentry might have changed on the server.
1444 */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1445 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1446 {
1447 struct inode *inode = d_inode(dentry);
1448 int error = 0;
1449
1450 /*
1451 * I believe we can only get a negative dentry here in the case of a
1452 * procfs-style symlink. Just assume it's correct for now, but we may
1453 * eventually need to do something more here.
1454 */
1455 if (!inode) {
1456 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1457 __func__, dentry);
1458 return 1;
1459 }
1460
1461 if (is_bad_inode(inode)) {
1462 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1463 __func__, dentry);
1464 return 0;
1465 }
1466
1467 error = nfs_lookup_verify_inode(inode, flags);
1468 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1469 __func__, inode->i_ino, error ? "invalid" : "valid");
1470 return !error;
1471 }
1472
1473 /*
1474 * This is called from dput() when d_count is going to 0.
1475 */
nfs_dentry_delete(const struct dentry * dentry)1476 static int nfs_dentry_delete(const struct dentry *dentry)
1477 {
1478 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1479 dentry, dentry->d_flags);
1480
1481 /* Unhash any dentry with a stale inode */
1482 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1483 return 1;
1484
1485 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1486 /* Unhash it, so that ->d_iput() would be called */
1487 return 1;
1488 }
1489 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1490 /* Unhash it, so that ancestors of killed async unlink
1491 * files will be cleaned up during umount */
1492 return 1;
1493 }
1494 return 0;
1495
1496 }
1497
1498 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1499 static void nfs_drop_nlink(struct inode *inode)
1500 {
1501 spin_lock(&inode->i_lock);
1502 /* drop the inode if we're reasonably sure this is the last link */
1503 if (inode->i_nlink > 0)
1504 drop_nlink(inode);
1505 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1506 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1507 | NFS_INO_INVALID_CTIME
1508 | NFS_INO_INVALID_OTHER
1509 | NFS_INO_REVAL_FORCED;
1510 spin_unlock(&inode->i_lock);
1511 }
1512
1513 /*
1514 * Called when the dentry loses inode.
1515 * We use it to clean up silly-renamed files.
1516 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1517 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1518 {
1519 if (S_ISDIR(inode->i_mode))
1520 /* drop any readdir cache as it could easily be old */
1521 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1522
1523 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1524 nfs_complete_unlink(dentry, inode);
1525 nfs_drop_nlink(inode);
1526 }
1527 iput(inode);
1528 }
1529
nfs_d_release(struct dentry * dentry)1530 static void nfs_d_release(struct dentry *dentry)
1531 {
1532 /* free cached devname value, if it survived that far */
1533 if (unlikely(dentry->d_fsdata)) {
1534 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1535 WARN_ON(1);
1536 else
1537 kfree(dentry->d_fsdata);
1538 }
1539 }
1540
1541 const struct dentry_operations nfs_dentry_operations = {
1542 .d_revalidate = nfs_lookup_revalidate,
1543 .d_weak_revalidate = nfs_weak_revalidate,
1544 .d_delete = nfs_dentry_delete,
1545 .d_iput = nfs_dentry_iput,
1546 .d_automount = nfs_d_automount,
1547 .d_release = nfs_d_release,
1548 };
1549 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1550
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1551 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1552 {
1553 struct dentry *res;
1554 struct inode *inode = NULL;
1555 struct nfs_fh *fhandle = NULL;
1556 struct nfs_fattr *fattr = NULL;
1557 struct nfs4_label *label = NULL;
1558 unsigned long dir_verifier;
1559 int error;
1560
1561 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1562 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1563
1564 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1565 return ERR_PTR(-ENAMETOOLONG);
1566
1567 /*
1568 * If we're doing an exclusive create, optimize away the lookup
1569 * but don't hash the dentry.
1570 */
1571 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1572 return NULL;
1573
1574 res = ERR_PTR(-ENOMEM);
1575 fhandle = nfs_alloc_fhandle();
1576 fattr = nfs_alloc_fattr();
1577 if (fhandle == NULL || fattr == NULL)
1578 goto out;
1579
1580 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1581 if (IS_ERR(label))
1582 goto out;
1583
1584 dir_verifier = nfs_save_change_attribute(dir);
1585 trace_nfs_lookup_enter(dir, dentry, flags);
1586 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1587 if (error == -ENOENT)
1588 goto no_entry;
1589 if (error < 0) {
1590 res = ERR_PTR(error);
1591 goto out_label;
1592 }
1593 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1594 res = ERR_CAST(inode);
1595 if (IS_ERR(res))
1596 goto out_label;
1597
1598 /* Notify readdir to use READDIRPLUS */
1599 nfs_force_use_readdirplus(dir);
1600
1601 no_entry:
1602 res = d_splice_alias(inode, dentry);
1603 if (res != NULL) {
1604 if (IS_ERR(res))
1605 goto out_label;
1606 dentry = res;
1607 }
1608 nfs_set_verifier(dentry, dir_verifier);
1609 out_label:
1610 trace_nfs_lookup_exit(dir, dentry, flags, error);
1611 nfs4_label_free(label);
1612 out:
1613 nfs_free_fattr(fattr);
1614 nfs_free_fhandle(fhandle);
1615 return res;
1616 }
1617 EXPORT_SYMBOL_GPL(nfs_lookup);
1618
1619 #if IS_ENABLED(CONFIG_NFS_V4)
1620 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1621
1622 const struct dentry_operations nfs4_dentry_operations = {
1623 .d_revalidate = nfs4_lookup_revalidate,
1624 .d_weak_revalidate = nfs_weak_revalidate,
1625 .d_delete = nfs_dentry_delete,
1626 .d_iput = nfs_dentry_iput,
1627 .d_automount = nfs_d_automount,
1628 .d_release = nfs_d_release,
1629 };
1630 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1631
flags_to_mode(int flags)1632 static fmode_t flags_to_mode(int flags)
1633 {
1634 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1635 if ((flags & O_ACCMODE) != O_WRONLY)
1636 res |= FMODE_READ;
1637 if ((flags & O_ACCMODE) != O_RDONLY)
1638 res |= FMODE_WRITE;
1639 return res;
1640 }
1641
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)1642 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1643 {
1644 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1645 }
1646
do_open(struct inode * inode,struct file * filp)1647 static int do_open(struct inode *inode, struct file *filp)
1648 {
1649 nfs_fscache_open_file(inode, filp);
1650 return 0;
1651 }
1652
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)1653 static int nfs_finish_open(struct nfs_open_context *ctx,
1654 struct dentry *dentry,
1655 struct file *file, unsigned open_flags)
1656 {
1657 int err;
1658
1659 err = finish_open(file, dentry, do_open);
1660 if (err)
1661 goto out;
1662 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1663 nfs_file_set_open_context(file, ctx);
1664 else
1665 err = -EOPENSTALE;
1666 out:
1667 return err;
1668 }
1669
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)1670 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1671 struct file *file, unsigned open_flags,
1672 umode_t mode)
1673 {
1674 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1675 struct nfs_open_context *ctx;
1676 struct dentry *res;
1677 struct iattr attr = { .ia_valid = ATTR_OPEN };
1678 struct inode *inode;
1679 unsigned int lookup_flags = 0;
1680 bool switched = false;
1681 int created = 0;
1682 int err;
1683
1684 /* Expect a negative dentry */
1685 BUG_ON(d_inode(dentry));
1686
1687 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1688 dir->i_sb->s_id, dir->i_ino, dentry);
1689
1690 err = nfs_check_flags(open_flags);
1691 if (err)
1692 return err;
1693
1694 /* NFS only supports OPEN on regular files */
1695 if ((open_flags & O_DIRECTORY)) {
1696 if (!d_in_lookup(dentry)) {
1697 /*
1698 * Hashed negative dentry with O_DIRECTORY: dentry was
1699 * revalidated and is fine, no need to perform lookup
1700 * again
1701 */
1702 return -ENOENT;
1703 }
1704 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1705 goto no_open;
1706 }
1707
1708 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1709 return -ENAMETOOLONG;
1710
1711 if (open_flags & O_CREAT) {
1712 struct nfs_server *server = NFS_SERVER(dir);
1713
1714 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1715 mode &= ~current_umask();
1716
1717 attr.ia_valid |= ATTR_MODE;
1718 attr.ia_mode = mode;
1719 }
1720 if (open_flags & O_TRUNC) {
1721 attr.ia_valid |= ATTR_SIZE;
1722 attr.ia_size = 0;
1723 }
1724
1725 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1726 d_drop(dentry);
1727 switched = true;
1728 dentry = d_alloc_parallel(dentry->d_parent,
1729 &dentry->d_name, &wq);
1730 if (IS_ERR(dentry))
1731 return PTR_ERR(dentry);
1732 if (unlikely(!d_in_lookup(dentry)))
1733 return finish_no_open(file, dentry);
1734 }
1735
1736 ctx = create_nfs_open_context(dentry, open_flags, file);
1737 err = PTR_ERR(ctx);
1738 if (IS_ERR(ctx))
1739 goto out;
1740
1741 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1742 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1743 if (created)
1744 file->f_mode |= FMODE_CREATED;
1745 if (IS_ERR(inode)) {
1746 err = PTR_ERR(inode);
1747 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1748 put_nfs_open_context(ctx);
1749 d_drop(dentry);
1750 switch (err) {
1751 case -ENOENT:
1752 d_splice_alias(NULL, dentry);
1753 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1754 break;
1755 case -EISDIR:
1756 case -ENOTDIR:
1757 goto no_open;
1758 case -ELOOP:
1759 if (!(open_flags & O_NOFOLLOW))
1760 goto no_open;
1761 break;
1762 /* case -EINVAL: */
1763 default:
1764 break;
1765 }
1766 goto out;
1767 }
1768
1769 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1770 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1771 put_nfs_open_context(ctx);
1772 out:
1773 if (unlikely(switched)) {
1774 d_lookup_done(dentry);
1775 dput(dentry);
1776 }
1777 return err;
1778
1779 no_open:
1780 res = nfs_lookup(dir, dentry, lookup_flags);
1781 if (!res) {
1782 inode = d_inode(dentry);
1783 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1784 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
1785 res = ERR_PTR(-ENOTDIR);
1786 else if (inode && S_ISREG(inode->i_mode))
1787 res = ERR_PTR(-EOPENSTALE);
1788 } else if (!IS_ERR(res)) {
1789 inode = d_inode(res);
1790 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1791 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
1792 dput(res);
1793 res = ERR_PTR(-ENOTDIR);
1794 } else if (inode && S_ISREG(inode->i_mode)) {
1795 dput(res);
1796 res = ERR_PTR(-EOPENSTALE);
1797 }
1798 }
1799 if (switched) {
1800 d_lookup_done(dentry);
1801 if (!res)
1802 res = dentry;
1803 else
1804 dput(dentry);
1805 }
1806 if (IS_ERR(res))
1807 return PTR_ERR(res);
1808 return finish_no_open(file, res);
1809 }
1810 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1811
1812 static int
nfs4_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1813 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1814 unsigned int flags)
1815 {
1816 struct inode *inode;
1817
1818 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1819 goto full_reval;
1820 if (d_mountpoint(dentry))
1821 goto full_reval;
1822
1823 inode = d_inode(dentry);
1824
1825 /* We can't create new files in nfs_open_revalidate(), so we
1826 * optimize away revalidation of negative dentries.
1827 */
1828 if (inode == NULL)
1829 goto full_reval;
1830
1831 if (nfs_verifier_is_delegated(dentry))
1832 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1833
1834 /* NFS only supports OPEN on regular files */
1835 if (!S_ISREG(inode->i_mode))
1836 goto full_reval;
1837
1838 /* We cannot do exclusive creation on a positive dentry */
1839 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1840 goto reval_dentry;
1841
1842 /* Check if the directory changed */
1843 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1844 goto reval_dentry;
1845
1846 /* Let f_op->open() actually open (and revalidate) the file */
1847 return 1;
1848 reval_dentry:
1849 if (flags & LOOKUP_RCU)
1850 return -ECHILD;
1851 return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1852
1853 full_reval:
1854 return nfs_do_lookup_revalidate(dir, dentry, flags);
1855 }
1856
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)1857 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1858 {
1859 return __nfs_lookup_revalidate(dentry, flags,
1860 nfs4_do_lookup_revalidate);
1861 }
1862
1863 #endif /* CONFIG_NFSV4 */
1864
1865 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)1866 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1867 struct nfs_fattr *fattr,
1868 struct nfs4_label *label)
1869 {
1870 struct dentry *parent = dget_parent(dentry);
1871 struct inode *dir = d_inode(parent);
1872 struct inode *inode;
1873 struct dentry *d;
1874 int error;
1875
1876 d_drop(dentry);
1877
1878 if (fhandle->size == 0) {
1879 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1880 if (error)
1881 goto out_error;
1882 }
1883 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1884 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1885 struct nfs_server *server = NFS_SB(dentry->d_sb);
1886 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1887 fattr, NULL, NULL);
1888 if (error < 0)
1889 goto out_error;
1890 }
1891 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1892 d = d_splice_alias(inode, dentry);
1893 out:
1894 dput(parent);
1895 return d;
1896 out_error:
1897 d = ERR_PTR(error);
1898 goto out;
1899 }
1900 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1901
1902 /*
1903 * Code common to create, mkdir, and mknod.
1904 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)1905 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1906 struct nfs_fattr *fattr,
1907 struct nfs4_label *label)
1908 {
1909 struct dentry *d;
1910
1911 d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1912 if (IS_ERR(d))
1913 return PTR_ERR(d);
1914
1915 /* Callers don't care */
1916 dput(d);
1917 return 0;
1918 }
1919 EXPORT_SYMBOL_GPL(nfs_instantiate);
1920
1921 /*
1922 * Following a failed create operation, we drop the dentry rather
1923 * than retain a negative dentry. This avoids a problem in the event
1924 * that the operation succeeded on the server, but an error in the
1925 * reply path made it appear to have failed.
1926 */
nfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1927 int nfs_create(struct inode *dir, struct dentry *dentry,
1928 umode_t mode, bool excl)
1929 {
1930 struct iattr attr;
1931 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1932 int error;
1933
1934 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1935 dir->i_sb->s_id, dir->i_ino, dentry);
1936
1937 attr.ia_mode = mode;
1938 attr.ia_valid = ATTR_MODE;
1939
1940 trace_nfs_create_enter(dir, dentry, open_flags);
1941 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1942 trace_nfs_create_exit(dir, dentry, open_flags, error);
1943 if (error != 0)
1944 goto out_err;
1945 return 0;
1946 out_err:
1947 d_drop(dentry);
1948 return error;
1949 }
1950 EXPORT_SYMBOL_GPL(nfs_create);
1951
1952 /*
1953 * See comments for nfs_proc_create regarding failed operations.
1954 */
1955 int
nfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)1956 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1957 {
1958 struct iattr attr;
1959 int status;
1960
1961 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1962 dir->i_sb->s_id, dir->i_ino, dentry);
1963
1964 attr.ia_mode = mode;
1965 attr.ia_valid = ATTR_MODE;
1966
1967 trace_nfs_mknod_enter(dir, dentry);
1968 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1969 trace_nfs_mknod_exit(dir, dentry, status);
1970 if (status != 0)
1971 goto out_err;
1972 return 0;
1973 out_err:
1974 d_drop(dentry);
1975 return status;
1976 }
1977 EXPORT_SYMBOL_GPL(nfs_mknod);
1978
1979 /*
1980 * See comments for nfs_proc_create regarding failed operations.
1981 */
nfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1982 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1983 {
1984 struct iattr attr;
1985 int error;
1986
1987 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1988 dir->i_sb->s_id, dir->i_ino, dentry);
1989
1990 attr.ia_valid = ATTR_MODE;
1991 attr.ia_mode = mode | S_IFDIR;
1992
1993 trace_nfs_mkdir_enter(dir, dentry);
1994 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1995 trace_nfs_mkdir_exit(dir, dentry, error);
1996 if (error != 0)
1997 goto out_err;
1998 return 0;
1999 out_err:
2000 d_drop(dentry);
2001 return error;
2002 }
2003 EXPORT_SYMBOL_GPL(nfs_mkdir);
2004
nfs_dentry_handle_enoent(struct dentry * dentry)2005 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2006 {
2007 if (simple_positive(dentry))
2008 d_delete(dentry);
2009 }
2010
nfs_rmdir(struct inode * dir,struct dentry * dentry)2011 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2012 {
2013 int error;
2014
2015 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2016 dir->i_sb->s_id, dir->i_ino, dentry);
2017
2018 trace_nfs_rmdir_enter(dir, dentry);
2019 if (d_really_is_positive(dentry)) {
2020 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2021 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2022 /* Ensure the VFS deletes this inode */
2023 switch (error) {
2024 case 0:
2025 clear_nlink(d_inode(dentry));
2026 break;
2027 case -ENOENT:
2028 nfs_dentry_handle_enoent(dentry);
2029 }
2030 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2031 } else
2032 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2033 trace_nfs_rmdir_exit(dir, dentry, error);
2034
2035 return error;
2036 }
2037 EXPORT_SYMBOL_GPL(nfs_rmdir);
2038
2039 /*
2040 * Remove a file after making sure there are no pending writes,
2041 * and after checking that the file has only one user.
2042 *
2043 * We invalidate the attribute cache and free the inode prior to the operation
2044 * to avoid possible races if the server reuses the inode.
2045 */
nfs_safe_remove(struct dentry * dentry)2046 static int nfs_safe_remove(struct dentry *dentry)
2047 {
2048 struct inode *dir = d_inode(dentry->d_parent);
2049 struct inode *inode = d_inode(dentry);
2050 int error = -EBUSY;
2051
2052 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2053
2054 /* If the dentry was sillyrenamed, we simply call d_delete() */
2055 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2056 error = 0;
2057 goto out;
2058 }
2059
2060 trace_nfs_remove_enter(dir, dentry);
2061 if (inode != NULL) {
2062 error = NFS_PROTO(dir)->remove(dir, dentry);
2063 if (error == 0)
2064 nfs_drop_nlink(inode);
2065 } else
2066 error = NFS_PROTO(dir)->remove(dir, dentry);
2067 if (error == -ENOENT)
2068 nfs_dentry_handle_enoent(dentry);
2069 trace_nfs_remove_exit(dir, dentry, error);
2070 out:
2071 return error;
2072 }
2073
2074 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2075 * belongs to an active ".nfs..." file and we return -EBUSY.
2076 *
2077 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2078 */
nfs_unlink(struct inode * dir,struct dentry * dentry)2079 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2080 {
2081 int error;
2082 int need_rehash = 0;
2083
2084 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2085 dir->i_ino, dentry);
2086
2087 trace_nfs_unlink_enter(dir, dentry);
2088 spin_lock(&dentry->d_lock);
2089 if (d_count(dentry) > 1) {
2090 spin_unlock(&dentry->d_lock);
2091 /* Start asynchronous writeout of the inode */
2092 write_inode_now(d_inode(dentry), 0);
2093 error = nfs_sillyrename(dir, dentry);
2094 goto out;
2095 }
2096 if (!d_unhashed(dentry)) {
2097 __d_drop(dentry);
2098 need_rehash = 1;
2099 }
2100 spin_unlock(&dentry->d_lock);
2101 error = nfs_safe_remove(dentry);
2102 if (!error || error == -ENOENT) {
2103 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2104 } else if (need_rehash)
2105 d_rehash(dentry);
2106 out:
2107 trace_nfs_unlink_exit(dir, dentry, error);
2108 return error;
2109 }
2110 EXPORT_SYMBOL_GPL(nfs_unlink);
2111
2112 /*
2113 * To create a symbolic link, most file systems instantiate a new inode,
2114 * add a page to it containing the path, then write it out to the disk
2115 * using prepare_write/commit_write.
2116 *
2117 * Unfortunately the NFS client can't create the in-core inode first
2118 * because it needs a file handle to create an in-core inode (see
2119 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2120 * symlink request has completed on the server.
2121 *
2122 * So instead we allocate a raw page, copy the symname into it, then do
2123 * the SYMLINK request with the page as the buffer. If it succeeds, we
2124 * now have a new file handle and can instantiate an in-core NFS inode
2125 * and move the raw page into its mapping.
2126 */
nfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)2127 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2128 {
2129 struct page *page;
2130 char *kaddr;
2131 struct iattr attr;
2132 unsigned int pathlen = strlen(symname);
2133 int error;
2134
2135 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2136 dir->i_ino, dentry, symname);
2137
2138 if (pathlen > PAGE_SIZE)
2139 return -ENAMETOOLONG;
2140
2141 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2142 attr.ia_valid = ATTR_MODE;
2143
2144 page = alloc_page(GFP_USER);
2145 if (!page)
2146 return -ENOMEM;
2147
2148 kaddr = page_address(page);
2149 memcpy(kaddr, symname, pathlen);
2150 if (pathlen < PAGE_SIZE)
2151 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2152
2153 trace_nfs_symlink_enter(dir, dentry);
2154 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2155 trace_nfs_symlink_exit(dir, dentry, error);
2156 if (error != 0) {
2157 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2158 dir->i_sb->s_id, dir->i_ino,
2159 dentry, symname, error);
2160 d_drop(dentry);
2161 __free_page(page);
2162 return error;
2163 }
2164
2165 /*
2166 * No big deal if we can't add this page to the page cache here.
2167 * READLINK will get the missing page from the server if needed.
2168 */
2169 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2170 GFP_KERNEL)) {
2171 SetPageUptodate(page);
2172 unlock_page(page);
2173 /*
2174 * add_to_page_cache_lru() grabs an extra page refcount.
2175 * Drop it here to avoid leaking this page later.
2176 */
2177 put_page(page);
2178 } else
2179 __free_page(page);
2180
2181 return 0;
2182 }
2183 EXPORT_SYMBOL_GPL(nfs_symlink);
2184
2185 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2186 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2187 {
2188 struct inode *inode = d_inode(old_dentry);
2189 int error;
2190
2191 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2192 old_dentry, dentry);
2193
2194 trace_nfs_link_enter(inode, dir, dentry);
2195 d_drop(dentry);
2196 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2197 if (error == 0) {
2198 ihold(inode);
2199 d_add(dentry, inode);
2200 }
2201 trace_nfs_link_exit(inode, dir, dentry, error);
2202 return error;
2203 }
2204 EXPORT_SYMBOL_GPL(nfs_link);
2205
2206 /*
2207 * RENAME
2208 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2209 * different file handle for the same inode after a rename (e.g. when
2210 * moving to a different directory). A fail-safe method to do so would
2211 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2212 * rename the old file using the sillyrename stuff. This way, the original
2213 * file in old_dir will go away when the last process iput()s the inode.
2214 *
2215 * FIXED.
2216 *
2217 * It actually works quite well. One needs to have the possibility for
2218 * at least one ".nfs..." file in each directory the file ever gets
2219 * moved or linked to which happens automagically with the new
2220 * implementation that only depends on the dcache stuff instead of
2221 * using the inode layer
2222 *
2223 * Unfortunately, things are a little more complicated than indicated
2224 * above. For a cross-directory move, we want to make sure we can get
2225 * rid of the old inode after the operation. This means there must be
2226 * no pending writes (if it's a file), and the use count must be 1.
2227 * If these conditions are met, we can drop the dentries before doing
2228 * the rename.
2229 */
nfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2230 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2231 struct inode *new_dir, struct dentry *new_dentry,
2232 unsigned int flags)
2233 {
2234 struct inode *old_inode = d_inode(old_dentry);
2235 struct inode *new_inode = d_inode(new_dentry);
2236 struct dentry *dentry = NULL, *rehash = NULL;
2237 struct rpc_task *task;
2238 int error = -EBUSY;
2239
2240 if (flags)
2241 return -EINVAL;
2242
2243 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2244 old_dentry, new_dentry,
2245 d_count(new_dentry));
2246
2247 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2248 /*
2249 * For non-directories, check whether the target is busy and if so,
2250 * make a copy of the dentry and then do a silly-rename. If the
2251 * silly-rename succeeds, the copied dentry is hashed and becomes
2252 * the new target.
2253 */
2254 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2255 /*
2256 * To prevent any new references to the target during the
2257 * rename, we unhash the dentry in advance.
2258 */
2259 if (!d_unhashed(new_dentry)) {
2260 d_drop(new_dentry);
2261 rehash = new_dentry;
2262 }
2263
2264 if (d_count(new_dentry) > 2) {
2265 int err;
2266
2267 /* copy the target dentry's name */
2268 dentry = d_alloc(new_dentry->d_parent,
2269 &new_dentry->d_name);
2270 if (!dentry)
2271 goto out;
2272
2273 /* silly-rename the existing target ... */
2274 err = nfs_sillyrename(new_dir, new_dentry);
2275 if (err)
2276 goto out;
2277
2278 new_dentry = dentry;
2279 rehash = NULL;
2280 new_inode = NULL;
2281 }
2282 }
2283
2284 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2285 if (IS_ERR(task)) {
2286 error = PTR_ERR(task);
2287 goto out;
2288 }
2289
2290 error = rpc_wait_for_completion_task(task);
2291 if (error != 0) {
2292 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2293 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2294 smp_wmb();
2295 } else
2296 error = task->tk_status;
2297 rpc_put_task(task);
2298 /* Ensure the inode attributes are revalidated */
2299 if (error == 0) {
2300 spin_lock(&old_inode->i_lock);
2301 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2302 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2303 | NFS_INO_INVALID_CTIME
2304 | NFS_INO_REVAL_FORCED;
2305 spin_unlock(&old_inode->i_lock);
2306 }
2307 out:
2308 if (rehash)
2309 d_rehash(rehash);
2310 trace_nfs_rename_exit(old_dir, old_dentry,
2311 new_dir, new_dentry, error);
2312 if (!error) {
2313 if (new_inode != NULL)
2314 nfs_drop_nlink(new_inode);
2315 /*
2316 * The d_move() should be here instead of in an async RPC completion
2317 * handler because we need the proper locks to move the dentry. If
2318 * we're interrupted by a signal, the async RPC completion handler
2319 * should mark the directories for revalidation.
2320 */
2321 d_move(old_dentry, new_dentry);
2322 nfs_set_verifier(old_dentry,
2323 nfs_save_change_attribute(new_dir));
2324 } else if (error == -ENOENT)
2325 nfs_dentry_handle_enoent(old_dentry);
2326
2327 /* new dentry created? */
2328 if (dentry)
2329 dput(dentry);
2330 return error;
2331 }
2332 EXPORT_SYMBOL_GPL(nfs_rename);
2333
2334 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2335 static LIST_HEAD(nfs_access_lru_list);
2336 static atomic_long_t nfs_access_nr_entries;
2337
2338 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2339 module_param(nfs_access_max_cachesize, ulong, 0644);
2340 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2341
nfs_access_free_entry(struct nfs_access_entry * entry)2342 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2343 {
2344 put_cred(entry->cred);
2345 kfree_rcu(entry, rcu_head);
2346 smp_mb__before_atomic();
2347 atomic_long_dec(&nfs_access_nr_entries);
2348 smp_mb__after_atomic();
2349 }
2350
nfs_access_free_list(struct list_head * head)2351 static void nfs_access_free_list(struct list_head *head)
2352 {
2353 struct nfs_access_entry *cache;
2354
2355 while (!list_empty(head)) {
2356 cache = list_entry(head->next, struct nfs_access_entry, lru);
2357 list_del(&cache->lru);
2358 nfs_access_free_entry(cache);
2359 }
2360 }
2361
2362 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2363 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2364 {
2365 LIST_HEAD(head);
2366 struct nfs_inode *nfsi, *next;
2367 struct nfs_access_entry *cache;
2368 long freed = 0;
2369
2370 spin_lock(&nfs_access_lru_lock);
2371 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2372 struct inode *inode;
2373
2374 if (nr_to_scan-- == 0)
2375 break;
2376 inode = &nfsi->vfs_inode;
2377 spin_lock(&inode->i_lock);
2378 if (list_empty(&nfsi->access_cache_entry_lru))
2379 goto remove_lru_entry;
2380 cache = list_entry(nfsi->access_cache_entry_lru.next,
2381 struct nfs_access_entry, lru);
2382 list_move(&cache->lru, &head);
2383 rb_erase(&cache->rb_node, &nfsi->access_cache);
2384 freed++;
2385 if (!list_empty(&nfsi->access_cache_entry_lru))
2386 list_move_tail(&nfsi->access_cache_inode_lru,
2387 &nfs_access_lru_list);
2388 else {
2389 remove_lru_entry:
2390 list_del_init(&nfsi->access_cache_inode_lru);
2391 smp_mb__before_atomic();
2392 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2393 smp_mb__after_atomic();
2394 }
2395 spin_unlock(&inode->i_lock);
2396 }
2397 spin_unlock(&nfs_access_lru_lock);
2398 nfs_access_free_list(&head);
2399 return freed;
2400 }
2401
2402 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2403 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2404 {
2405 int nr_to_scan = sc->nr_to_scan;
2406 gfp_t gfp_mask = sc->gfp_mask;
2407
2408 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2409 return SHRINK_STOP;
2410 return nfs_do_access_cache_scan(nr_to_scan);
2411 }
2412
2413
2414 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2415 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2416 {
2417 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2418 }
2419
2420 static void
nfs_access_cache_enforce_limit(void)2421 nfs_access_cache_enforce_limit(void)
2422 {
2423 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2424 unsigned long diff;
2425 unsigned int nr_to_scan;
2426
2427 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2428 return;
2429 nr_to_scan = 100;
2430 diff = nr_entries - nfs_access_max_cachesize;
2431 if (diff < nr_to_scan)
2432 nr_to_scan = diff;
2433 nfs_do_access_cache_scan(nr_to_scan);
2434 }
2435
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2436 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2437 {
2438 struct rb_root *root_node = &nfsi->access_cache;
2439 struct rb_node *n;
2440 struct nfs_access_entry *entry;
2441
2442 /* Unhook entries from the cache */
2443 while ((n = rb_first(root_node)) != NULL) {
2444 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2445 rb_erase(n, root_node);
2446 list_move(&entry->lru, head);
2447 }
2448 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2449 }
2450
nfs_access_zap_cache(struct inode * inode)2451 void nfs_access_zap_cache(struct inode *inode)
2452 {
2453 LIST_HEAD(head);
2454
2455 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2456 return;
2457 /* Remove from global LRU init */
2458 spin_lock(&nfs_access_lru_lock);
2459 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2460 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2461
2462 spin_lock(&inode->i_lock);
2463 __nfs_access_zap_cache(NFS_I(inode), &head);
2464 spin_unlock(&inode->i_lock);
2465 spin_unlock(&nfs_access_lru_lock);
2466 nfs_access_free_list(&head);
2467 }
2468 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2469
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)2470 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2471 {
2472 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2473
2474 while (n != NULL) {
2475 struct nfs_access_entry *entry =
2476 rb_entry(n, struct nfs_access_entry, rb_node);
2477 int cmp = cred_fscmp(cred, entry->cred);
2478
2479 if (cmp < 0)
2480 n = n->rb_left;
2481 else if (cmp > 0)
2482 n = n->rb_right;
2483 else
2484 return entry;
2485 }
2486 return NULL;
2487 }
2488
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,struct nfs_access_entry * res,bool may_block)2489 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2490 {
2491 struct nfs_inode *nfsi = NFS_I(inode);
2492 struct nfs_access_entry *cache;
2493 bool retry = true;
2494 int err;
2495
2496 spin_lock(&inode->i_lock);
2497 for(;;) {
2498 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2499 goto out_zap;
2500 cache = nfs_access_search_rbtree(inode, cred);
2501 err = -ENOENT;
2502 if (cache == NULL)
2503 goto out;
2504 /* Found an entry, is our attribute cache valid? */
2505 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2506 break;
2507 if (!retry)
2508 break;
2509 err = -ECHILD;
2510 if (!may_block)
2511 goto out;
2512 spin_unlock(&inode->i_lock);
2513 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2514 if (err)
2515 return err;
2516 spin_lock(&inode->i_lock);
2517 retry = false;
2518 }
2519 res->cred = cache->cred;
2520 res->mask = cache->mask;
2521 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2522 err = 0;
2523 out:
2524 spin_unlock(&inode->i_lock);
2525 return err;
2526 out_zap:
2527 spin_unlock(&inode->i_lock);
2528 nfs_access_zap_cache(inode);
2529 return -ENOENT;
2530 }
2531
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,struct nfs_access_entry * res)2532 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2533 {
2534 /* Only check the most recently returned cache entry,
2535 * but do it without locking.
2536 */
2537 struct nfs_inode *nfsi = NFS_I(inode);
2538 struct nfs_access_entry *cache;
2539 int err = -ECHILD;
2540 struct list_head *lh;
2541
2542 rcu_read_lock();
2543 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2544 goto out;
2545 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2546 cache = list_entry(lh, struct nfs_access_entry, lru);
2547 if (lh == &nfsi->access_cache_entry_lru ||
2548 cred_fscmp(cred, cache->cred) != 0)
2549 cache = NULL;
2550 if (cache == NULL)
2551 goto out;
2552 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2553 goto out;
2554 res->cred = cache->cred;
2555 res->mask = cache->mask;
2556 err = 0;
2557 out:
2558 rcu_read_unlock();
2559 return err;
2560 }
2561
nfs_access_get_cached(struct inode * inode,const struct cred * cred,struct nfs_access_entry * res,bool may_block)2562 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2563 nfs_access_entry *res, bool may_block)
2564 {
2565 int status;
2566
2567 status = nfs_access_get_cached_rcu(inode, cred, res);
2568 if (status != 0)
2569 status = nfs_access_get_cached_locked(inode, cred, res,
2570 may_block);
2571
2572 return status;
2573 }
2574 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2575
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set)2576 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2577 {
2578 struct nfs_inode *nfsi = NFS_I(inode);
2579 struct rb_root *root_node = &nfsi->access_cache;
2580 struct rb_node **p = &root_node->rb_node;
2581 struct rb_node *parent = NULL;
2582 struct nfs_access_entry *entry;
2583 int cmp;
2584
2585 spin_lock(&inode->i_lock);
2586 while (*p != NULL) {
2587 parent = *p;
2588 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2589 cmp = cred_fscmp(set->cred, entry->cred);
2590
2591 if (cmp < 0)
2592 p = &parent->rb_left;
2593 else if (cmp > 0)
2594 p = &parent->rb_right;
2595 else
2596 goto found;
2597 }
2598 rb_link_node(&set->rb_node, parent, p);
2599 rb_insert_color(&set->rb_node, root_node);
2600 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2601 spin_unlock(&inode->i_lock);
2602 return;
2603 found:
2604 rb_replace_node(parent, &set->rb_node, root_node);
2605 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2606 list_del(&entry->lru);
2607 spin_unlock(&inode->i_lock);
2608 nfs_access_free_entry(entry);
2609 }
2610
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set)2611 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2612 {
2613 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2614 if (cache == NULL)
2615 return;
2616 RB_CLEAR_NODE(&cache->rb_node);
2617 cache->cred = get_cred(set->cred);
2618 cache->mask = set->mask;
2619
2620 /* The above field assignments must be visible
2621 * before this item appears on the lru. We cannot easily
2622 * use rcu_assign_pointer, so just force the memory barrier.
2623 */
2624 smp_wmb();
2625 nfs_access_add_rbtree(inode, cache);
2626
2627 /* Update accounting */
2628 smp_mb__before_atomic();
2629 atomic_long_inc(&nfs_access_nr_entries);
2630 smp_mb__after_atomic();
2631
2632 /* Add inode to global LRU list */
2633 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2634 spin_lock(&nfs_access_lru_lock);
2635 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2636 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2637 &nfs_access_lru_list);
2638 spin_unlock(&nfs_access_lru_lock);
2639 }
2640 nfs_access_cache_enforce_limit();
2641 }
2642 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2643
2644 #define NFS_MAY_READ (NFS_ACCESS_READ)
2645 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2646 NFS_ACCESS_EXTEND | \
2647 NFS_ACCESS_DELETE)
2648 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2649 NFS_ACCESS_EXTEND)
2650 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2651 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2652 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2653 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)2654 nfs_access_calc_mask(u32 access_result, umode_t umode)
2655 {
2656 int mask = 0;
2657
2658 if (access_result & NFS_MAY_READ)
2659 mask |= MAY_READ;
2660 if (S_ISDIR(umode)) {
2661 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2662 mask |= MAY_WRITE;
2663 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2664 mask |= MAY_EXEC;
2665 } else if (S_ISREG(umode)) {
2666 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2667 mask |= MAY_WRITE;
2668 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2669 mask |= MAY_EXEC;
2670 } else if (access_result & NFS_MAY_WRITE)
2671 mask |= MAY_WRITE;
2672 return mask;
2673 }
2674
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)2675 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2676 {
2677 entry->mask = access_result;
2678 }
2679 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2680
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)2681 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2682 {
2683 struct nfs_access_entry cache;
2684 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2685 int cache_mask = -1;
2686 int status;
2687
2688 trace_nfs_access_enter(inode);
2689
2690 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2691 if (status == 0)
2692 goto out_cached;
2693
2694 status = -ECHILD;
2695 if (!may_block)
2696 goto out;
2697
2698 /*
2699 * Determine which access bits we want to ask for...
2700 */
2701 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2702 if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2703 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2704 NFS_ACCESS_XALIST;
2705 }
2706 if (S_ISDIR(inode->i_mode))
2707 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2708 else
2709 cache.mask |= NFS_ACCESS_EXECUTE;
2710 cache.cred = cred;
2711 status = NFS_PROTO(inode)->access(inode, &cache);
2712 if (status != 0) {
2713 if (status == -ESTALE) {
2714 if (!S_ISDIR(inode->i_mode))
2715 nfs_set_inode_stale(inode);
2716 else
2717 nfs_zap_caches(inode);
2718 }
2719 goto out;
2720 }
2721 nfs_access_add_cache(inode, &cache);
2722 out_cached:
2723 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2724 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2725 status = -EACCES;
2726 out:
2727 trace_nfs_access_exit(inode, mask, cache_mask, status);
2728 return status;
2729 }
2730
nfs_open_permission_mask(int openflags)2731 static int nfs_open_permission_mask(int openflags)
2732 {
2733 int mask = 0;
2734
2735 if (openflags & __FMODE_EXEC) {
2736 /* ONLY check exec rights */
2737 mask = MAY_EXEC;
2738 } else {
2739 if ((openflags & O_ACCMODE) != O_WRONLY)
2740 mask |= MAY_READ;
2741 if ((openflags & O_ACCMODE) != O_RDONLY)
2742 mask |= MAY_WRITE;
2743 }
2744
2745 return mask;
2746 }
2747
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)2748 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2749 {
2750 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2751 }
2752 EXPORT_SYMBOL_GPL(nfs_may_open);
2753
nfs_execute_ok(struct inode * inode,int mask)2754 static int nfs_execute_ok(struct inode *inode, int mask)
2755 {
2756 struct nfs_server *server = NFS_SERVER(inode);
2757 int ret = 0;
2758
2759 if (S_ISDIR(inode->i_mode))
2760 return 0;
2761 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2762 if (mask & MAY_NOT_BLOCK)
2763 return -ECHILD;
2764 ret = __nfs_revalidate_inode(server, inode);
2765 }
2766 if (ret == 0 && !execute_ok(inode))
2767 ret = -EACCES;
2768 return ret;
2769 }
2770
nfs_permission(struct inode * inode,int mask)2771 int nfs_permission(struct inode *inode, int mask)
2772 {
2773 const struct cred *cred = current_cred();
2774 int res = 0;
2775
2776 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2777
2778 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2779 goto out;
2780 /* Is this sys_access() ? */
2781 if (mask & (MAY_ACCESS | MAY_CHDIR))
2782 goto force_lookup;
2783
2784 switch (inode->i_mode & S_IFMT) {
2785 case S_IFLNK:
2786 goto out;
2787 case S_IFREG:
2788 if ((mask & MAY_OPEN) &&
2789 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2790 return 0;
2791 break;
2792 case S_IFDIR:
2793 /*
2794 * Optimize away all write operations, since the server
2795 * will check permissions when we perform the op.
2796 */
2797 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2798 goto out;
2799 }
2800
2801 force_lookup:
2802 if (!NFS_PROTO(inode)->access)
2803 goto out_notsup;
2804
2805 res = nfs_do_access(inode, cred, mask);
2806 out:
2807 if (!res && (mask & MAY_EXEC))
2808 res = nfs_execute_ok(inode, mask);
2809
2810 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2811 inode->i_sb->s_id, inode->i_ino, mask, res);
2812 return res;
2813 out_notsup:
2814 if (mask & MAY_NOT_BLOCK)
2815 return -ECHILD;
2816
2817 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2818 if (res == 0)
2819 res = generic_permission(inode, mask);
2820 goto out;
2821 }
2822 EXPORT_SYMBOL_GPL(nfs_permission);
2823
2824 /*
2825 * Local variables:
2826 * version-control: t
2827 * kept-new-versions: 5
2828 * End:
2829 */
2830