• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
alloc_nfs_open_dir_context(struct inode * dir,const struct cred * cred)71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		ctx->cred = get_cred(cred);
82 		spin_lock(&dir->i_lock);
83 		if (list_empty(&nfsi->open_files) &&
84 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 			nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 				NFS_INO_REVAL_FORCED;
87 		list_add(&ctx->list, &nfsi->open_files);
88 		spin_unlock(&dir->i_lock);
89 		return ctx;
90 	}
91 	return  ERR_PTR(-ENOMEM);
92 }
93 
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96 	spin_lock(&dir->i_lock);
97 	list_del(&ctx->list);
98 	spin_unlock(&dir->i_lock);
99 	put_cred(ctx->cred);
100 	kfree(ctx);
101 }
102 
103 /*
104  * Open file
105  */
106 static int
nfs_opendir(struct inode * inode,struct file * filp)107 nfs_opendir(struct inode *inode, struct file *filp)
108 {
109 	int res = 0;
110 	struct nfs_open_dir_context *ctx;
111 
112 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113 
114 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115 
116 	ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 	if (IS_ERR(ctx)) {
118 		res = PTR_ERR(ctx);
119 		goto out;
120 	}
121 	filp->private_data = ctx;
122 out:
123 	return res;
124 }
125 
126 static int
nfs_closedir(struct inode * inode,struct file * filp)127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	int size;
142 	int eof_index;
143 	u64 last_cookie;
144 	struct nfs_cache_array_entry array[];
145 };
146 
147 typedef struct {
148 	struct file	*file;
149 	struct page	*page;
150 	struct dir_context *ctx;
151 	unsigned long	page_index;
152 	u64		*dir_cookie;
153 	u64		last_cookie;
154 	loff_t		current_index;
155 	loff_t		prev_index;
156 
157 	unsigned long	dir_verifier;
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	unsigned int	cache_entry_index;
161 	bool plus;
162 	bool eof;
163 } nfs_readdir_descriptor_t;
164 
165 static
nfs_readdir_init_array(struct page * page)166 void nfs_readdir_init_array(struct page *page)
167 {
168 	struct nfs_cache_array *array;
169 
170 	array = kmap_atomic(page);
171 	memset(array, 0, sizeof(struct nfs_cache_array));
172 	array->eof_index = -1;
173 	kunmap_atomic(array);
174 }
175 
176 /*
177  * we are freeing strings created by nfs_add_to_readdir_array()
178  */
179 static
nfs_readdir_clear_array(struct page * page)180 void nfs_readdir_clear_array(struct page *page)
181 {
182 	struct nfs_cache_array *array;
183 	int i;
184 
185 	array = kmap_atomic(page);
186 	for (i = 0; i < array->size; i++)
187 		kfree(array->array[i].string.name);
188 	array->size = 0;
189 	kunmap_atomic(array);
190 }
191 
192 /*
193  * the caller is responsible for freeing qstr.name
194  * when called by nfs_readdir_add_to_array, the strings will be freed in
195  * nfs_clear_readdir_array()
196  */
197 static
nfs_readdir_make_qstr(struct qstr * string,const char * name,unsigned int len)198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
199 {
200 	string->len = len;
201 	string->name = kmemdup_nul(name, len, GFP_KERNEL);
202 	if (string->name == NULL)
203 		return -ENOMEM;
204 	/*
205 	 * Avoid a kmemleak false positive. The pointer to the name is stored
206 	 * in a page cache page which kmemleak does not scan.
207 	 */
208 	kmemleak_not_leak(string->name);
209 	string->hash = full_name_hash(NULL, name, len);
210 	return 0;
211 }
212 
213 static
nfs_readdir_add_to_array(struct nfs_entry * entry,struct page * page)214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
215 {
216 	struct nfs_cache_array *array = kmap(page);
217 	struct nfs_cache_array_entry *cache_entry;
218 	int ret;
219 
220 	cache_entry = &array->array[array->size];
221 
222 	/* Check that this entry lies within the page bounds */
223 	ret = -ENOSPC;
224 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
225 		goto out;
226 
227 	cache_entry->cookie = entry->prev_cookie;
228 	cache_entry->ino = entry->ino;
229 	cache_entry->d_type = entry->d_type;
230 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
231 	if (ret)
232 		goto out;
233 	array->last_cookie = entry->cookie;
234 	array->size++;
235 	if (entry->eof != 0)
236 		array->eof_index = array->size;
237 out:
238 	kunmap(page);
239 	return ret;
240 }
241 
242 static inline
is_32bit_api(void)243 int is_32bit_api(void)
244 {
245 #ifdef CONFIG_COMPAT
246 	return in_compat_syscall();
247 #else
248 	return (BITS_PER_LONG == 32);
249 #endif
250 }
251 
252 static
nfs_readdir_use_cookie(const struct file * filp)253 bool nfs_readdir_use_cookie(const struct file *filp)
254 {
255 	if ((filp->f_mode & FMODE_32BITHASH) ||
256 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
257 		return false;
258 	return true;
259 }
260 
261 static
nfs_readdir_search_for_pos(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263 {
264 	loff_t diff = desc->ctx->pos - desc->current_index;
265 	unsigned int index;
266 
267 	if (diff < 0)
268 		goto out_eof;
269 	if (diff >= array->size) {
270 		if (array->eof_index >= 0)
271 			goto out_eof;
272 		return -EAGAIN;
273 	}
274 
275 	index = (unsigned int)diff;
276 	*desc->dir_cookie = array->array[index].cookie;
277 	desc->cache_entry_index = index;
278 	return 0;
279 out_eof:
280 	desc->eof = true;
281 	return -EBADCOOKIE;
282 }
283 
284 static bool
nfs_readdir_inode_mapping_valid(struct nfs_inode * nfsi)285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286 {
287 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 		return false;
289 	smp_rmb();
290 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291 }
292 
293 static
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295 {
296 	int i;
297 	loff_t new_pos;
298 	int status = -EAGAIN;
299 
300 	for (i = 0; i < array->size; i++) {
301 		if (array->array[i].cookie == *desc->dir_cookie) {
302 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 			struct nfs_open_dir_context *ctx = desc->file->private_data;
304 
305 			new_pos = desc->current_index + i;
306 			if (ctx->attr_gencount != nfsi->attr_gencount ||
307 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
308 				ctx->duped = 0;
309 				ctx->attr_gencount = nfsi->attr_gencount;
310 			} else if (new_pos < desc->prev_index) {
311 				if (ctx->duped > 0
312 				    && ctx->dup_cookie == *desc->dir_cookie) {
313 					if (printk_ratelimit()) {
314 						pr_notice("NFS: directory %pD2 contains a readdir loop."
315 								"Please contact your server vendor.  "
316 								"The file: %.*s has duplicate cookie %llu\n",
317 								desc->file, array->array[i].string.len,
318 								array->array[i].string.name, *desc->dir_cookie);
319 					}
320 					status = -ELOOP;
321 					goto out;
322 				}
323 				ctx->dup_cookie = *desc->dir_cookie;
324 				ctx->duped = -1;
325 			}
326 			if (nfs_readdir_use_cookie(desc->file))
327 				desc->ctx->pos = *desc->dir_cookie;
328 			else
329 				desc->ctx->pos = new_pos;
330 			desc->prev_index = new_pos;
331 			desc->cache_entry_index = i;
332 			return 0;
333 		}
334 	}
335 	if (array->eof_index >= 0) {
336 		status = -EBADCOOKIE;
337 		if (*desc->dir_cookie == array->last_cookie)
338 			desc->eof = true;
339 	}
340 out:
341 	return status;
342 }
343 
344 static
nfs_readdir_search_array(nfs_readdir_descriptor_t * desc)345 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
346 {
347 	struct nfs_cache_array *array;
348 	int status;
349 
350 	array = kmap(desc->page);
351 
352 	if (*desc->dir_cookie == 0)
353 		status = nfs_readdir_search_for_pos(array, desc);
354 	else
355 		status = nfs_readdir_search_for_cookie(array, desc);
356 
357 	if (status == -EAGAIN) {
358 		desc->last_cookie = array->last_cookie;
359 		desc->current_index += array->size;
360 		desc->page_index++;
361 	}
362 	kunmap(desc->page);
363 	return status;
364 }
365 
366 /* Fill a page with xdr information before transferring to the cache page */
367 static
nfs_readdir_xdr_filler(struct page ** pages,nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct file * file,struct inode * inode)368 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
369 			struct nfs_entry *entry, struct file *file, struct inode *inode)
370 {
371 	struct nfs_open_dir_context *ctx = file->private_data;
372 	const struct cred *cred = ctx->cred;
373 	unsigned long	timestamp, gencount;
374 	int		error;
375 
376  again:
377 	timestamp = jiffies;
378 	gencount = nfs_inc_attr_generation_counter();
379 	desc->dir_verifier = nfs_save_change_attribute(inode);
380 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
381 					  NFS_SERVER(inode)->dtsize, desc->plus);
382 	if (error < 0) {
383 		/* We requested READDIRPLUS, but the server doesn't grok it */
384 		if (error == -ENOTSUPP && desc->plus) {
385 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 			desc->plus = false;
388 			goto again;
389 		}
390 		goto error;
391 	}
392 	desc->timestamp = timestamp;
393 	desc->gencount = gencount;
394 error:
395 	return error;
396 }
397 
xdr_decode(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct xdr_stream * xdr)398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 		      struct nfs_entry *entry, struct xdr_stream *xdr)
400 {
401 	struct inode *inode = file_inode(desc->file);
402 	int error;
403 
404 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
405 	if (error)
406 		return error;
407 	entry->fattr->time_start = desc->timestamp;
408 	entry->fattr->gencount = desc->gencount;
409 	return 0;
410 }
411 
412 /* Match file and dirent using either filehandle or fileid
413  * Note: caller is responsible for checking the fsid
414  */
415 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)416 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
417 {
418 	struct inode *inode;
419 	struct nfs_inode *nfsi;
420 
421 	if (d_really_is_negative(dentry))
422 		return 0;
423 
424 	inode = d_inode(dentry);
425 	if (is_bad_inode(inode) || NFS_STALE(inode))
426 		return 0;
427 
428 	nfsi = NFS_I(inode);
429 	if (entry->fattr->fileid != nfsi->fileid)
430 		return 0;
431 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
432 		return 0;
433 	return 1;
434 }
435 
436 static
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx)437 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
438 {
439 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
440 		return false;
441 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
442 		return true;
443 	if (ctx->pos == 0)
444 		return true;
445 	return false;
446 }
447 
448 /*
449  * This function is called by the lookup and getattr code to request the
450  * use of readdirplus to accelerate any future lookups in the same
451  * directory.
452  */
nfs_advise_use_readdirplus(struct inode * dir)453 void nfs_advise_use_readdirplus(struct inode *dir)
454 {
455 	struct nfs_inode *nfsi = NFS_I(dir);
456 
457 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
458 	    !list_empty(&nfsi->open_files))
459 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
460 }
461 
462 /*
463  * This function is mainly for use by nfs_getattr().
464  *
465  * If this is an 'ls -l', we want to force use of readdirplus.
466  * Do this by checking if there is an active file descriptor
467  * and calling nfs_advise_use_readdirplus, then forcing a
468  * cache flush.
469  */
nfs_force_use_readdirplus(struct inode * dir)470 void nfs_force_use_readdirplus(struct inode *dir)
471 {
472 	struct nfs_inode *nfsi = NFS_I(dir);
473 
474 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
475 	    !list_empty(&nfsi->open_files)) {
476 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
477 		invalidate_mapping_pages(dir->i_mapping,
478 			nfsi->page_index + 1, -1);
479 	}
480 }
481 
482 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)483 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
484 		unsigned long dir_verifier)
485 {
486 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
487 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
488 	struct dentry *dentry;
489 	struct dentry *alias;
490 	struct inode *inode;
491 	int status;
492 
493 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
494 		return;
495 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
496 		return;
497 	if (filename.len == 0)
498 		return;
499 	/* Validate that the name doesn't contain any illegal '\0' */
500 	if (strnlen(filename.name, filename.len) != filename.len)
501 		return;
502 	/* ...or '/' */
503 	if (strnchr(filename.name, filename.len, '/'))
504 		return;
505 	if (filename.name[0] == '.') {
506 		if (filename.len == 1)
507 			return;
508 		if (filename.len == 2 && filename.name[1] == '.')
509 			return;
510 	}
511 	filename.hash = full_name_hash(parent, filename.name, filename.len);
512 
513 	dentry = d_lookup(parent, &filename);
514 again:
515 	if (!dentry) {
516 		dentry = d_alloc_parallel(parent, &filename, &wq);
517 		if (IS_ERR(dentry))
518 			return;
519 	}
520 	if (!d_in_lookup(dentry)) {
521 		/* Is there a mountpoint here? If so, just exit */
522 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
523 					&entry->fattr->fsid))
524 			goto out;
525 		if (nfs_same_file(dentry, entry)) {
526 			if (!entry->fh->size)
527 				goto out;
528 			nfs_set_verifier(dentry, dir_verifier);
529 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
530 			if (!status)
531 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
532 			goto out;
533 		} else {
534 			d_invalidate(dentry);
535 			dput(dentry);
536 			dentry = NULL;
537 			goto again;
538 		}
539 	}
540 	if (!entry->fh->size) {
541 		d_lookup_done(dentry);
542 		goto out;
543 	}
544 
545 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
546 	alias = d_splice_alias(inode, dentry);
547 	d_lookup_done(dentry);
548 	if (alias) {
549 		if (IS_ERR(alias))
550 			goto out;
551 		dput(dentry);
552 		dentry = alias;
553 	}
554 	nfs_set_verifier(dentry, dir_verifier);
555 out:
556 	dput(dentry);
557 }
558 
559 /* Perform conversion from xdr to cache array */
560 static
nfs_readdir_page_filler(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct page ** xdr_pages,struct page * page,unsigned int buflen)561 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
562 				struct page **xdr_pages, struct page *page, unsigned int buflen)
563 {
564 	struct xdr_stream stream;
565 	struct xdr_buf buf;
566 	struct page *scratch;
567 	struct nfs_cache_array *array;
568 	unsigned int count = 0;
569 	int status;
570 
571 	scratch = alloc_page(GFP_KERNEL);
572 	if (scratch == NULL)
573 		return -ENOMEM;
574 
575 	if (buflen == 0)
576 		goto out_nopages;
577 
578 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
579 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
580 
581 	do {
582 		if (entry->label)
583 			entry->label->len = NFS4_MAXLABELLEN;
584 
585 		status = xdr_decode(desc, entry, &stream);
586 		if (status != 0) {
587 			if (status == -EAGAIN)
588 				status = 0;
589 			break;
590 		}
591 
592 		count++;
593 
594 		if (desc->plus)
595 			nfs_prime_dcache(file_dentry(desc->file), entry,
596 					desc->dir_verifier);
597 
598 		status = nfs_readdir_add_to_array(entry, page);
599 		if (status != 0)
600 			break;
601 	} while (!entry->eof);
602 
603 out_nopages:
604 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
605 		array = kmap(page);
606 		array->eof_index = array->size;
607 		status = 0;
608 		kunmap(page);
609 	}
610 
611 	put_page(scratch);
612 	return status;
613 }
614 
615 static
nfs_readdir_free_pages(struct page ** pages,unsigned int npages)616 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
617 {
618 	unsigned int i;
619 	for (i = 0; i < npages; i++)
620 		put_page(pages[i]);
621 }
622 
623 /*
624  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
625  * to nfs_readdir_free_pages()
626  */
627 static
nfs_readdir_alloc_pages(struct page ** pages,unsigned int npages)628 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
629 {
630 	unsigned int i;
631 
632 	for (i = 0; i < npages; i++) {
633 		struct page *page = alloc_page(GFP_KERNEL);
634 		if (page == NULL)
635 			goto out_freepages;
636 		pages[i] = page;
637 	}
638 	return 0;
639 
640 out_freepages:
641 	nfs_readdir_free_pages(pages, i);
642 	return -ENOMEM;
643 }
644 
645 static
nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t * desc,struct page * page,struct inode * inode)646 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
647 {
648 	struct page *pages[NFS_MAX_READDIR_PAGES];
649 	struct nfs_entry entry;
650 	struct file	*file = desc->file;
651 	struct nfs_cache_array *array;
652 	int status = -ENOMEM;
653 	unsigned int array_size = ARRAY_SIZE(pages);
654 
655 	nfs_readdir_init_array(page);
656 
657 	entry.prev_cookie = 0;
658 	entry.cookie = desc->last_cookie;
659 	entry.eof = 0;
660 	entry.fh = nfs_alloc_fhandle();
661 	entry.fattr = nfs_alloc_fattr();
662 	entry.server = NFS_SERVER(inode);
663 	if (entry.fh == NULL || entry.fattr == NULL)
664 		goto out;
665 
666 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
667 	if (IS_ERR(entry.label)) {
668 		status = PTR_ERR(entry.label);
669 		goto out;
670 	}
671 
672 	array = kmap(page);
673 
674 	status = nfs_readdir_alloc_pages(pages, array_size);
675 	if (status < 0)
676 		goto out_release_array;
677 	do {
678 		unsigned int pglen;
679 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
680 
681 		if (status < 0)
682 			break;
683 		pglen = status;
684 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
685 		if (status < 0) {
686 			if (status == -ENOSPC)
687 				status = 0;
688 			break;
689 		}
690 	} while (array->eof_index < 0);
691 
692 	nfs_readdir_free_pages(pages, array_size);
693 out_release_array:
694 	kunmap(page);
695 	nfs4_label_free(entry.label);
696 out:
697 	nfs_free_fattr(entry.fattr);
698 	nfs_free_fhandle(entry.fh);
699 	return status;
700 }
701 
702 /*
703  * Now we cache directories properly, by converting xdr information
704  * to an array that can be used for lookups later.  This results in
705  * fewer cache pages, since we can store more information on each page.
706  * We only need to convert from xdr once so future lookups are much simpler
707  */
708 static
nfs_readdir_filler(void * data,struct page * page)709 int nfs_readdir_filler(void *data, struct page* page)
710 {
711 	nfs_readdir_descriptor_t *desc = data;
712 	struct inode	*inode = file_inode(desc->file);
713 	int ret;
714 
715 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
716 	if (ret < 0)
717 		goto error;
718 	SetPageUptodate(page);
719 
720 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
721 		/* Should never happen */
722 		nfs_zap_mapping(inode, inode->i_mapping);
723 	}
724 	unlock_page(page);
725 	return 0;
726  error:
727 	nfs_readdir_clear_array(page);
728 	unlock_page(page);
729 	return ret;
730 }
731 
732 static
cache_page_release(nfs_readdir_descriptor_t * desc)733 void cache_page_release(nfs_readdir_descriptor_t *desc)
734 {
735 	put_page(desc->page);
736 	desc->page = NULL;
737 }
738 
739 static
get_cache_page(nfs_readdir_descriptor_t * desc)740 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
741 {
742 	return read_cache_page(desc->file->f_mapping, desc->page_index,
743 			nfs_readdir_filler, desc);
744 }
745 
746 /*
747  * Returns 0 if desc->dir_cookie was found on page desc->page_index
748  * and locks the page to prevent removal from the page cache.
749  */
750 static
find_and_lock_cache_page(nfs_readdir_descriptor_t * desc)751 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
752 {
753 	struct inode *inode = file_inode(desc->file);
754 	struct nfs_inode *nfsi = NFS_I(inode);
755 	int res;
756 
757 	desc->page = get_cache_page(desc);
758 	if (IS_ERR(desc->page))
759 		return PTR_ERR(desc->page);
760 	res = lock_page_killable(desc->page);
761 	if (res != 0)
762 		goto error;
763 	res = -EAGAIN;
764 	if (desc->page->mapping != NULL) {
765 		res = nfs_readdir_search_array(desc);
766 		if (res == 0) {
767 			nfsi->page_index = desc->page_index;
768 			return 0;
769 		}
770 	}
771 	unlock_page(desc->page);
772 error:
773 	cache_page_release(desc);
774 	return res;
775 }
776 
777 /* Search for desc->dir_cookie from the beginning of the page cache */
778 static inline
readdir_search_pagecache(nfs_readdir_descriptor_t * desc)779 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
780 {
781 	int res;
782 
783 	if (desc->page_index == 0) {
784 		desc->current_index = 0;
785 		desc->prev_index = 0;
786 		desc->last_cookie = 0;
787 	}
788 	do {
789 		res = find_and_lock_cache_page(desc);
790 	} while (res == -EAGAIN);
791 	return res;
792 }
793 
794 /*
795  * Once we've found the start of the dirent within a page: fill 'er up...
796  */
797 static
nfs_do_filldir(nfs_readdir_descriptor_t * desc)798 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
799 {
800 	struct file	*file = desc->file;
801 	int i = 0;
802 	int res = 0;
803 	struct nfs_cache_array *array = NULL;
804 	struct nfs_open_dir_context *ctx = file->private_data;
805 
806 	array = kmap(desc->page);
807 	for (i = desc->cache_entry_index; i < array->size; i++) {
808 		struct nfs_cache_array_entry *ent;
809 
810 		ent = &array->array[i];
811 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
812 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
813 			desc->eof = true;
814 			break;
815 		}
816 		if (i < (array->size-1))
817 			*desc->dir_cookie = array->array[i+1].cookie;
818 		else
819 			*desc->dir_cookie = array->last_cookie;
820 		if (nfs_readdir_use_cookie(file))
821 			desc->ctx->pos = *desc->dir_cookie;
822 		else
823 			desc->ctx->pos++;
824 		if (ctx->duped != 0)
825 			ctx->duped = 1;
826 	}
827 	if (array->eof_index >= 0)
828 		desc->eof = true;
829 
830 	kunmap(desc->page);
831 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
832 			(unsigned long long)*desc->dir_cookie, res);
833 	return res;
834 }
835 
836 /*
837  * If we cannot find a cookie in our cache, we suspect that this is
838  * because it points to a deleted file, so we ask the server to return
839  * whatever it thinks is the next entry. We then feed this to filldir.
840  * If all goes well, we should then be able to find our way round the
841  * cache on the next call to readdir_search_pagecache();
842  *
843  * NOTE: we cannot add the anonymous page to the pagecache because
844  *	 the data it contains might not be page aligned. Besides,
845  *	 we should already have a complete representation of the
846  *	 directory in the page cache by the time we get here.
847  */
848 static inline
uncached_readdir(nfs_readdir_descriptor_t * desc)849 int uncached_readdir(nfs_readdir_descriptor_t *desc)
850 {
851 	struct page	*page = NULL;
852 	int		status;
853 	struct inode *inode = file_inode(desc->file);
854 	struct nfs_open_dir_context *ctx = desc->file->private_data;
855 
856 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
857 			(unsigned long long)*desc->dir_cookie);
858 
859 	page = alloc_page(GFP_HIGHUSER);
860 	if (!page) {
861 		status = -ENOMEM;
862 		goto out;
863 	}
864 
865 	desc->page_index = 0;
866 	desc->last_cookie = *desc->dir_cookie;
867 	desc->page = page;
868 	ctx->duped = 0;
869 
870 	status = nfs_readdir_xdr_to_array(desc, page, inode);
871 	if (status < 0)
872 		goto out_release;
873 
874 	status = nfs_do_filldir(desc);
875 
876  out_release:
877 	nfs_readdir_clear_array(desc->page);
878 	cache_page_release(desc);
879  out:
880 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
881 			__func__, status);
882 	return status;
883 }
884 
885 /* The file offset position represents the dirent entry number.  A
886    last cookie cache takes care of the common case of reading the
887    whole directory.
888  */
nfs_readdir(struct file * file,struct dir_context * ctx)889 static int nfs_readdir(struct file *file, struct dir_context *ctx)
890 {
891 	struct dentry	*dentry = file_dentry(file);
892 	struct inode	*inode = d_inode(dentry);
893 	struct nfs_open_dir_context *dir_ctx = file->private_data;
894 	nfs_readdir_descriptor_t my_desc = {
895 		.file = file,
896 		.ctx = ctx,
897 		.dir_cookie = &dir_ctx->dir_cookie,
898 		.plus = nfs_use_readdirplus(inode, ctx),
899 	},
900 			*desc = &my_desc;
901 	int res = 0;
902 
903 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
904 			file, (long long)ctx->pos);
905 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
906 
907 	/*
908 	 * ctx->pos points to the dirent entry number.
909 	 * *desc->dir_cookie has the cookie for the next entry. We have
910 	 * to either find the entry with the appropriate number or
911 	 * revalidate the cookie.
912 	 */
913 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
914 		res = nfs_revalidate_mapping(inode, file->f_mapping);
915 	if (res < 0)
916 		goto out;
917 
918 	do {
919 		res = readdir_search_pagecache(desc);
920 
921 		if (res == -EBADCOOKIE) {
922 			res = 0;
923 			/* This means either end of directory */
924 			if (*desc->dir_cookie && !desc->eof) {
925 				/* Or that the server has 'lost' a cookie */
926 				res = uncached_readdir(desc);
927 				if (res == 0)
928 					continue;
929 			}
930 			break;
931 		}
932 		if (res == -ETOOSMALL && desc->plus) {
933 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
934 			nfs_zap_caches(inode);
935 			desc->page_index = 0;
936 			desc->plus = false;
937 			desc->eof = false;
938 			continue;
939 		}
940 		if (res < 0)
941 			break;
942 
943 		res = nfs_do_filldir(desc);
944 		unlock_page(desc->page);
945 		cache_page_release(desc);
946 		if (res < 0)
947 			break;
948 	} while (!desc->eof);
949 out:
950 	if (res > 0)
951 		res = 0;
952 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
953 	return res;
954 }
955 
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)956 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
957 {
958 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
959 
960 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
961 			filp, offset, whence);
962 
963 	switch (whence) {
964 	default:
965 		return -EINVAL;
966 	case SEEK_SET:
967 		if (offset < 0)
968 			return -EINVAL;
969 		spin_lock(&filp->f_lock);
970 		break;
971 	case SEEK_CUR:
972 		if (offset == 0)
973 			return filp->f_pos;
974 		spin_lock(&filp->f_lock);
975 		offset += filp->f_pos;
976 		if (offset < 0) {
977 			spin_unlock(&filp->f_lock);
978 			return -EINVAL;
979 		}
980 	}
981 	if (offset != filp->f_pos) {
982 		filp->f_pos = offset;
983 		if (nfs_readdir_use_cookie(filp))
984 			dir_ctx->dir_cookie = offset;
985 		else
986 			dir_ctx->dir_cookie = 0;
987 		dir_ctx->duped = 0;
988 	}
989 	spin_unlock(&filp->f_lock);
990 	return offset;
991 }
992 
993 /*
994  * All directory operations under NFS are synchronous, so fsync()
995  * is a dummy operation.
996  */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)997 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
998 			 int datasync)
999 {
1000 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1001 
1002 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1003 	return 0;
1004 }
1005 
1006 /**
1007  * nfs_force_lookup_revalidate - Mark the directory as having changed
1008  * @dir: pointer to directory inode
1009  *
1010  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1011  * full lookup on all child dentries of 'dir' whenever a change occurs
1012  * on the server that might have invalidated our dcache.
1013  *
1014  * Note that we reserve bit '0' as a tag to let us know when a dentry
1015  * was revalidated while holding a delegation on its inode.
1016  *
1017  * The caller should be holding dir->i_lock
1018  */
nfs_force_lookup_revalidate(struct inode * dir)1019 void nfs_force_lookup_revalidate(struct inode *dir)
1020 {
1021 	NFS_I(dir)->cache_change_attribute += 2;
1022 }
1023 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1024 
1025 /**
1026  * nfs_verify_change_attribute - Detects NFS remote directory changes
1027  * @dir: pointer to parent directory inode
1028  * @verf: previously saved change attribute
1029  *
1030  * Return "false" if the verifiers doesn't match the change attribute.
1031  * This would usually indicate that the directory contents have changed on
1032  * the server, and that any dentries need revalidating.
1033  */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1034 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1035 {
1036 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1037 }
1038 
nfs_set_verifier_delegated(unsigned long * verf)1039 static void nfs_set_verifier_delegated(unsigned long *verf)
1040 {
1041 	*verf |= 1UL;
1042 }
1043 
1044 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1045 static void nfs_unset_verifier_delegated(unsigned long *verf)
1046 {
1047 	*verf &= ~1UL;
1048 }
1049 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1050 
nfs_test_verifier_delegated(unsigned long verf)1051 static bool nfs_test_verifier_delegated(unsigned long verf)
1052 {
1053 	return verf & 1;
1054 }
1055 
nfs_verifier_is_delegated(struct dentry * dentry)1056 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1057 {
1058 	return nfs_test_verifier_delegated(dentry->d_time);
1059 }
1060 
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1061 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1062 {
1063 	struct inode *inode = d_inode(dentry);
1064 
1065 	if (!nfs_verifier_is_delegated(dentry) &&
1066 	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1067 		goto out;
1068 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1069 		nfs_set_verifier_delegated(&verf);
1070 out:
1071 	dentry->d_time = verf;
1072 }
1073 
1074 /**
1075  * nfs_set_verifier - save a parent directory verifier in the dentry
1076  * @dentry: pointer to dentry
1077  * @verf: verifier to save
1078  *
1079  * Saves the parent directory verifier in @dentry. If the inode has
1080  * a delegation, we also tag the dentry as having been revalidated
1081  * while holding a delegation so that we know we don't have to
1082  * look it up again after a directory change.
1083  */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1084 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1085 {
1086 
1087 	spin_lock(&dentry->d_lock);
1088 	nfs_set_verifier_locked(dentry, verf);
1089 	spin_unlock(&dentry->d_lock);
1090 }
1091 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1092 
1093 #if IS_ENABLED(CONFIG_NFS_V4)
1094 /**
1095  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1096  * @inode: pointer to inode
1097  *
1098  * Iterates through the dentries in the inode alias list and clears
1099  * the tag used to indicate that the dentry has been revalidated
1100  * while holding a delegation.
1101  * This function is intended for use when the delegation is being
1102  * returned or revoked.
1103  */
nfs_clear_verifier_delegated(struct inode * inode)1104 void nfs_clear_verifier_delegated(struct inode *inode)
1105 {
1106 	struct dentry *alias;
1107 
1108 	if (!inode)
1109 		return;
1110 	spin_lock(&inode->i_lock);
1111 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1112 		spin_lock(&alias->d_lock);
1113 		nfs_unset_verifier_delegated(&alias->d_time);
1114 		spin_unlock(&alias->d_lock);
1115 	}
1116 	spin_unlock(&inode->i_lock);
1117 }
1118 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1119 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1120 
1121 /*
1122  * A check for whether or not the parent directory has changed.
1123  * In the case it has, we assume that the dentries are untrustworthy
1124  * and may need to be looked up again.
1125  * If rcu_walk prevents us from performing a full check, return 0.
1126  */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1127 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1128 			      int rcu_walk)
1129 {
1130 	if (IS_ROOT(dentry))
1131 		return 1;
1132 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1133 		return 0;
1134 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1135 		return 0;
1136 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1137 	if (nfs_mapping_need_revalidate_inode(dir)) {
1138 		if (rcu_walk)
1139 			return 0;
1140 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1141 			return 0;
1142 	}
1143 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1144 		return 0;
1145 	return 1;
1146 }
1147 
1148 /*
1149  * Use intent information to check whether or not we're going to do
1150  * an O_EXCL create using this path component.
1151  */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1152 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1153 {
1154 	if (NFS_PROTO(dir)->version == 2)
1155 		return 0;
1156 	return flags & LOOKUP_EXCL;
1157 }
1158 
1159 /*
1160  * Inode and filehandle revalidation for lookups.
1161  *
1162  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1163  * or if the intent information indicates that we're about to open this
1164  * particular file and the "nocto" mount flag is not set.
1165  *
1166  */
1167 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1168 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1169 {
1170 	struct nfs_server *server = NFS_SERVER(inode);
1171 	int ret;
1172 
1173 	if (IS_AUTOMOUNT(inode))
1174 		return 0;
1175 
1176 	if (flags & LOOKUP_OPEN) {
1177 		switch (inode->i_mode & S_IFMT) {
1178 		case S_IFREG:
1179 			/* A NFSv4 OPEN will revalidate later */
1180 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1181 				goto out;
1182 			fallthrough;
1183 		case S_IFDIR:
1184 			if (server->flags & NFS_MOUNT_NOCTO)
1185 				break;
1186 			/* NFS close-to-open cache consistency validation */
1187 			goto out_force;
1188 		}
1189 	}
1190 
1191 	/* VFS wants an on-the-wire revalidation */
1192 	if (flags & LOOKUP_REVAL)
1193 		goto out_force;
1194 out:
1195 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1196 out_force:
1197 	if (flags & LOOKUP_RCU)
1198 		return -ECHILD;
1199 	ret = __nfs_revalidate_inode(server, inode);
1200 	if (ret != 0)
1201 		return ret;
1202 	goto out;
1203 }
1204 
nfs_mark_dir_for_revalidate(struct inode * inode)1205 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1206 {
1207 	struct nfs_inode *nfsi = NFS_I(inode);
1208 
1209 	spin_lock(&inode->i_lock);
1210 	nfsi->cache_validity |= NFS_INO_REVAL_PAGECACHE;
1211 	spin_unlock(&inode->i_lock);
1212 }
1213 
1214 /*
1215  * We judge how long we want to trust negative
1216  * dentries by looking at the parent inode mtime.
1217  *
1218  * If parent mtime has changed, we revalidate, else we wait for a
1219  * period corresponding to the parent's attribute cache timeout value.
1220  *
1221  * If LOOKUP_RCU prevents us from performing a full check, return 1
1222  * suggesting a reval is needed.
1223  *
1224  * Note that when creating a new file, or looking up a rename target,
1225  * then it shouldn't be necessary to revalidate a negative dentry.
1226  */
1227 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1228 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1229 		       unsigned int flags)
1230 {
1231 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1232 		return 0;
1233 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1234 		return 1;
1235 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1236 }
1237 
1238 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1239 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1240 			   struct inode *inode, int error)
1241 {
1242 	switch (error) {
1243 	case 1:
1244 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1245 			__func__, dentry);
1246 		return 1;
1247 	case 0:
1248 		/*
1249 		 * We can't d_drop the root of a disconnected tree:
1250 		 * its d_hash is on the s_anon list and d_drop() would hide
1251 		 * it from shrink_dcache_for_unmount(), leading to busy
1252 		 * inodes on unmount and further oopses.
1253 		 */
1254 		if (inode && IS_ROOT(dentry))
1255 			return 1;
1256 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1257 				__func__, dentry);
1258 		return 0;
1259 	}
1260 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1261 				__func__, dentry, error);
1262 	return error;
1263 }
1264 
1265 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1266 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1267 			       unsigned int flags)
1268 {
1269 	int ret = 1;
1270 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1271 		if (flags & LOOKUP_RCU)
1272 			return -ECHILD;
1273 		ret = 0;
1274 	}
1275 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1276 }
1277 
1278 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1279 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1280 				struct inode *inode)
1281 {
1282 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1283 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1284 }
1285 
1286 static int
nfs_lookup_revalidate_dentry(struct inode * dir,struct dentry * dentry,struct inode * inode)1287 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1288 			     struct inode *inode)
1289 {
1290 	struct nfs_fh *fhandle;
1291 	struct nfs_fattr *fattr;
1292 	struct nfs4_label *label;
1293 	unsigned long dir_verifier;
1294 	int ret;
1295 
1296 	ret = -ENOMEM;
1297 	fhandle = nfs_alloc_fhandle();
1298 	fattr = nfs_alloc_fattr();
1299 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1300 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1301 		goto out;
1302 
1303 	dir_verifier = nfs_save_change_attribute(dir);
1304 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1305 	if (ret < 0) {
1306 		switch (ret) {
1307 		case -ESTALE:
1308 		case -ENOENT:
1309 			ret = 0;
1310 			break;
1311 		case -ETIMEDOUT:
1312 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1313 				ret = 1;
1314 		}
1315 		goto out;
1316 	}
1317 	ret = 0;
1318 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1319 		goto out;
1320 	if (nfs_refresh_inode(inode, fattr) < 0)
1321 		goto out;
1322 
1323 	nfs_setsecurity(inode, fattr, label);
1324 	nfs_set_verifier(dentry, dir_verifier);
1325 
1326 	/* set a readdirplus hint that we had a cache miss */
1327 	nfs_force_use_readdirplus(dir);
1328 	ret = 1;
1329 out:
1330 	nfs_free_fattr(fattr);
1331 	nfs_free_fhandle(fhandle);
1332 	nfs4_label_free(label);
1333 
1334 	/*
1335 	 * If the lookup failed despite the dentry change attribute being
1336 	 * a match, then we should revalidate the directory cache.
1337 	 */
1338 	if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1339 		nfs_mark_dir_for_revalidate(dir);
1340 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1341 }
1342 
1343 /*
1344  * This is called every time the dcache has a lookup hit,
1345  * and we should check whether we can really trust that
1346  * lookup.
1347  *
1348  * NOTE! The hit can be a negative hit too, don't assume
1349  * we have an inode!
1350  *
1351  * If the parent directory is seen to have changed, we throw out the
1352  * cached dentry and do a new lookup.
1353  */
1354 static int
nfs_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1355 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1356 			 unsigned int flags)
1357 {
1358 	struct inode *inode;
1359 	int error;
1360 
1361 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1362 	inode = d_inode(dentry);
1363 
1364 	if (!inode)
1365 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1366 
1367 	if (is_bad_inode(inode)) {
1368 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1369 				__func__, dentry);
1370 		goto out_bad;
1371 	}
1372 
1373 	if (nfs_verifier_is_delegated(dentry))
1374 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1375 
1376 	/* Force a full look up iff the parent directory has changed */
1377 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1378 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1379 		error = nfs_lookup_verify_inode(inode, flags);
1380 		if (error) {
1381 			if (error == -ESTALE)
1382 				nfs_mark_dir_for_revalidate(dir);
1383 			goto out_bad;
1384 		}
1385 		nfs_advise_use_readdirplus(dir);
1386 		goto out_valid;
1387 	}
1388 
1389 	if (flags & LOOKUP_RCU)
1390 		return -ECHILD;
1391 
1392 	if (NFS_STALE(inode))
1393 		goto out_bad;
1394 
1395 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1396 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1397 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1398 	return error;
1399 out_valid:
1400 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1401 out_bad:
1402 	if (flags & LOOKUP_RCU)
1403 		return -ECHILD;
1404 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1405 }
1406 
1407 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags,int (* reval)(struct inode *,struct dentry *,unsigned int))1408 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1409 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1410 {
1411 	struct dentry *parent;
1412 	struct inode *dir;
1413 	int ret;
1414 
1415 	if (flags & LOOKUP_RCU) {
1416 		parent = READ_ONCE(dentry->d_parent);
1417 		dir = d_inode_rcu(parent);
1418 		if (!dir)
1419 			return -ECHILD;
1420 		ret = reval(dir, dentry, flags);
1421 		if (parent != READ_ONCE(dentry->d_parent))
1422 			return -ECHILD;
1423 	} else {
1424 		parent = dget_parent(dentry);
1425 		ret = reval(d_inode(parent), dentry, flags);
1426 		dput(parent);
1427 	}
1428 	return ret;
1429 }
1430 
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1431 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1432 {
1433 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1434 }
1435 
1436 /*
1437  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1438  * when we don't really care about the dentry name. This is called when a
1439  * pathwalk ends on a dentry that was not found via a normal lookup in the
1440  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1441  *
1442  * In this situation, we just want to verify that the inode itself is OK
1443  * since the dentry might have changed on the server.
1444  */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1445 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1446 {
1447 	struct inode *inode = d_inode(dentry);
1448 	int error = 0;
1449 
1450 	/*
1451 	 * I believe we can only get a negative dentry here in the case of a
1452 	 * procfs-style symlink. Just assume it's correct for now, but we may
1453 	 * eventually need to do something more here.
1454 	 */
1455 	if (!inode) {
1456 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1457 				__func__, dentry);
1458 		return 1;
1459 	}
1460 
1461 	if (is_bad_inode(inode)) {
1462 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1463 				__func__, dentry);
1464 		return 0;
1465 	}
1466 
1467 	error = nfs_lookup_verify_inode(inode, flags);
1468 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1469 			__func__, inode->i_ino, error ? "invalid" : "valid");
1470 	return !error;
1471 }
1472 
1473 /*
1474  * This is called from dput() when d_count is going to 0.
1475  */
nfs_dentry_delete(const struct dentry * dentry)1476 static int nfs_dentry_delete(const struct dentry *dentry)
1477 {
1478 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1479 		dentry, dentry->d_flags);
1480 
1481 	/* Unhash any dentry with a stale inode */
1482 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1483 		return 1;
1484 
1485 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1486 		/* Unhash it, so that ->d_iput() would be called */
1487 		return 1;
1488 	}
1489 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1490 		/* Unhash it, so that ancestors of killed async unlink
1491 		 * files will be cleaned up during umount */
1492 		return 1;
1493 	}
1494 	return 0;
1495 
1496 }
1497 
1498 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1499 static void nfs_drop_nlink(struct inode *inode)
1500 {
1501 	spin_lock(&inode->i_lock);
1502 	/* drop the inode if we're reasonably sure this is the last link */
1503 	if (inode->i_nlink > 0)
1504 		drop_nlink(inode);
1505 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1506 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1507 		| NFS_INO_INVALID_CTIME
1508 		| NFS_INO_INVALID_OTHER
1509 		| NFS_INO_REVAL_FORCED;
1510 	spin_unlock(&inode->i_lock);
1511 }
1512 
1513 /*
1514  * Called when the dentry loses inode.
1515  * We use it to clean up silly-renamed files.
1516  */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1517 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1518 {
1519 	if (S_ISDIR(inode->i_mode))
1520 		/* drop any readdir cache as it could easily be old */
1521 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1522 
1523 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1524 		nfs_complete_unlink(dentry, inode);
1525 		nfs_drop_nlink(inode);
1526 	}
1527 	iput(inode);
1528 }
1529 
nfs_d_release(struct dentry * dentry)1530 static void nfs_d_release(struct dentry *dentry)
1531 {
1532 	/* free cached devname value, if it survived that far */
1533 	if (unlikely(dentry->d_fsdata)) {
1534 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1535 			WARN_ON(1);
1536 		else
1537 			kfree(dentry->d_fsdata);
1538 	}
1539 }
1540 
1541 const struct dentry_operations nfs_dentry_operations = {
1542 	.d_revalidate	= nfs_lookup_revalidate,
1543 	.d_weak_revalidate	= nfs_weak_revalidate,
1544 	.d_delete	= nfs_dentry_delete,
1545 	.d_iput		= nfs_dentry_iput,
1546 	.d_automount	= nfs_d_automount,
1547 	.d_release	= nfs_d_release,
1548 };
1549 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1550 
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1551 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1552 {
1553 	struct dentry *res;
1554 	struct inode *inode = NULL;
1555 	struct nfs_fh *fhandle = NULL;
1556 	struct nfs_fattr *fattr = NULL;
1557 	struct nfs4_label *label = NULL;
1558 	unsigned long dir_verifier;
1559 	int error;
1560 
1561 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1562 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1563 
1564 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1565 		return ERR_PTR(-ENAMETOOLONG);
1566 
1567 	/*
1568 	 * If we're doing an exclusive create, optimize away the lookup
1569 	 * but don't hash the dentry.
1570 	 */
1571 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1572 		return NULL;
1573 
1574 	res = ERR_PTR(-ENOMEM);
1575 	fhandle = nfs_alloc_fhandle();
1576 	fattr = nfs_alloc_fattr();
1577 	if (fhandle == NULL || fattr == NULL)
1578 		goto out;
1579 
1580 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1581 	if (IS_ERR(label))
1582 		goto out;
1583 
1584 	dir_verifier = nfs_save_change_attribute(dir);
1585 	trace_nfs_lookup_enter(dir, dentry, flags);
1586 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1587 	if (error == -ENOENT)
1588 		goto no_entry;
1589 	if (error < 0) {
1590 		res = ERR_PTR(error);
1591 		goto out_label;
1592 	}
1593 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1594 	res = ERR_CAST(inode);
1595 	if (IS_ERR(res))
1596 		goto out_label;
1597 
1598 	/* Notify readdir to use READDIRPLUS */
1599 	nfs_force_use_readdirplus(dir);
1600 
1601 no_entry:
1602 	res = d_splice_alias(inode, dentry);
1603 	if (res != NULL) {
1604 		if (IS_ERR(res))
1605 			goto out_label;
1606 		dentry = res;
1607 	}
1608 	nfs_set_verifier(dentry, dir_verifier);
1609 out_label:
1610 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1611 	nfs4_label_free(label);
1612 out:
1613 	nfs_free_fattr(fattr);
1614 	nfs_free_fhandle(fhandle);
1615 	return res;
1616 }
1617 EXPORT_SYMBOL_GPL(nfs_lookup);
1618 
1619 #if IS_ENABLED(CONFIG_NFS_V4)
1620 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1621 
1622 const struct dentry_operations nfs4_dentry_operations = {
1623 	.d_revalidate	= nfs4_lookup_revalidate,
1624 	.d_weak_revalidate	= nfs_weak_revalidate,
1625 	.d_delete	= nfs_dentry_delete,
1626 	.d_iput		= nfs_dentry_iput,
1627 	.d_automount	= nfs_d_automount,
1628 	.d_release	= nfs_d_release,
1629 };
1630 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1631 
flags_to_mode(int flags)1632 static fmode_t flags_to_mode(int flags)
1633 {
1634 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1635 	if ((flags & O_ACCMODE) != O_WRONLY)
1636 		res |= FMODE_READ;
1637 	if ((flags & O_ACCMODE) != O_RDONLY)
1638 		res |= FMODE_WRITE;
1639 	return res;
1640 }
1641 
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)1642 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1643 {
1644 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1645 }
1646 
do_open(struct inode * inode,struct file * filp)1647 static int do_open(struct inode *inode, struct file *filp)
1648 {
1649 	nfs_fscache_open_file(inode, filp);
1650 	return 0;
1651 }
1652 
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)1653 static int nfs_finish_open(struct nfs_open_context *ctx,
1654 			   struct dentry *dentry,
1655 			   struct file *file, unsigned open_flags)
1656 {
1657 	int err;
1658 
1659 	err = finish_open(file, dentry, do_open);
1660 	if (err)
1661 		goto out;
1662 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1663 		nfs_file_set_open_context(file, ctx);
1664 	else
1665 		err = -EOPENSTALE;
1666 out:
1667 	return err;
1668 }
1669 
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)1670 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1671 		    struct file *file, unsigned open_flags,
1672 		    umode_t mode)
1673 {
1674 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1675 	struct nfs_open_context *ctx;
1676 	struct dentry *res;
1677 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1678 	struct inode *inode;
1679 	unsigned int lookup_flags = 0;
1680 	bool switched = false;
1681 	int created = 0;
1682 	int err;
1683 
1684 	/* Expect a negative dentry */
1685 	BUG_ON(d_inode(dentry));
1686 
1687 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1688 			dir->i_sb->s_id, dir->i_ino, dentry);
1689 
1690 	err = nfs_check_flags(open_flags);
1691 	if (err)
1692 		return err;
1693 
1694 	/* NFS only supports OPEN on regular files */
1695 	if ((open_flags & O_DIRECTORY)) {
1696 		if (!d_in_lookup(dentry)) {
1697 			/*
1698 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1699 			 * revalidated and is fine, no need to perform lookup
1700 			 * again
1701 			 */
1702 			return -ENOENT;
1703 		}
1704 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1705 		goto no_open;
1706 	}
1707 
1708 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1709 		return -ENAMETOOLONG;
1710 
1711 	if (open_flags & O_CREAT) {
1712 		struct nfs_server *server = NFS_SERVER(dir);
1713 
1714 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1715 			mode &= ~current_umask();
1716 
1717 		attr.ia_valid |= ATTR_MODE;
1718 		attr.ia_mode = mode;
1719 	}
1720 	if (open_flags & O_TRUNC) {
1721 		attr.ia_valid |= ATTR_SIZE;
1722 		attr.ia_size = 0;
1723 	}
1724 
1725 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1726 		d_drop(dentry);
1727 		switched = true;
1728 		dentry = d_alloc_parallel(dentry->d_parent,
1729 					  &dentry->d_name, &wq);
1730 		if (IS_ERR(dentry))
1731 			return PTR_ERR(dentry);
1732 		if (unlikely(!d_in_lookup(dentry)))
1733 			return finish_no_open(file, dentry);
1734 	}
1735 
1736 	ctx = create_nfs_open_context(dentry, open_flags, file);
1737 	err = PTR_ERR(ctx);
1738 	if (IS_ERR(ctx))
1739 		goto out;
1740 
1741 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1742 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1743 	if (created)
1744 		file->f_mode |= FMODE_CREATED;
1745 	if (IS_ERR(inode)) {
1746 		err = PTR_ERR(inode);
1747 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1748 		put_nfs_open_context(ctx);
1749 		d_drop(dentry);
1750 		switch (err) {
1751 		case -ENOENT:
1752 			d_splice_alias(NULL, dentry);
1753 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1754 			break;
1755 		case -EISDIR:
1756 		case -ENOTDIR:
1757 			goto no_open;
1758 		case -ELOOP:
1759 			if (!(open_flags & O_NOFOLLOW))
1760 				goto no_open;
1761 			break;
1762 			/* case -EINVAL: */
1763 		default:
1764 			break;
1765 		}
1766 		goto out;
1767 	}
1768 
1769 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1770 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1771 	put_nfs_open_context(ctx);
1772 out:
1773 	if (unlikely(switched)) {
1774 		d_lookup_done(dentry);
1775 		dput(dentry);
1776 	}
1777 	return err;
1778 
1779 no_open:
1780 	res = nfs_lookup(dir, dentry, lookup_flags);
1781 	if (!res) {
1782 		inode = d_inode(dentry);
1783 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1784 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
1785 			res = ERR_PTR(-ENOTDIR);
1786 		else if (inode && S_ISREG(inode->i_mode))
1787 			res = ERR_PTR(-EOPENSTALE);
1788 	} else if (!IS_ERR(res)) {
1789 		inode = d_inode(res);
1790 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1791 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
1792 			dput(res);
1793 			res = ERR_PTR(-ENOTDIR);
1794 		} else if (inode && S_ISREG(inode->i_mode)) {
1795 			dput(res);
1796 			res = ERR_PTR(-EOPENSTALE);
1797 		}
1798 	}
1799 	if (switched) {
1800 		d_lookup_done(dentry);
1801 		if (!res)
1802 			res = dentry;
1803 		else
1804 			dput(dentry);
1805 	}
1806 	if (IS_ERR(res))
1807 		return PTR_ERR(res);
1808 	return finish_no_open(file, res);
1809 }
1810 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1811 
1812 static int
nfs4_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1813 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1814 			  unsigned int flags)
1815 {
1816 	struct inode *inode;
1817 
1818 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1819 		goto full_reval;
1820 	if (d_mountpoint(dentry))
1821 		goto full_reval;
1822 
1823 	inode = d_inode(dentry);
1824 
1825 	/* We can't create new files in nfs_open_revalidate(), so we
1826 	 * optimize away revalidation of negative dentries.
1827 	 */
1828 	if (inode == NULL)
1829 		goto full_reval;
1830 
1831 	if (nfs_verifier_is_delegated(dentry))
1832 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1833 
1834 	/* NFS only supports OPEN on regular files */
1835 	if (!S_ISREG(inode->i_mode))
1836 		goto full_reval;
1837 
1838 	/* We cannot do exclusive creation on a positive dentry */
1839 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1840 		goto reval_dentry;
1841 
1842 	/* Check if the directory changed */
1843 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1844 		goto reval_dentry;
1845 
1846 	/* Let f_op->open() actually open (and revalidate) the file */
1847 	return 1;
1848 reval_dentry:
1849 	if (flags & LOOKUP_RCU)
1850 		return -ECHILD;
1851 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1852 
1853 full_reval:
1854 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1855 }
1856 
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)1857 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1858 {
1859 	return __nfs_lookup_revalidate(dentry, flags,
1860 			nfs4_do_lookup_revalidate);
1861 }
1862 
1863 #endif /* CONFIG_NFSV4 */
1864 
1865 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)1866 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1867 				struct nfs_fattr *fattr,
1868 				struct nfs4_label *label)
1869 {
1870 	struct dentry *parent = dget_parent(dentry);
1871 	struct inode *dir = d_inode(parent);
1872 	struct inode *inode;
1873 	struct dentry *d;
1874 	int error;
1875 
1876 	d_drop(dentry);
1877 
1878 	if (fhandle->size == 0) {
1879 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1880 		if (error)
1881 			goto out_error;
1882 	}
1883 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1884 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1885 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1886 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1887 				fattr, NULL, NULL);
1888 		if (error < 0)
1889 			goto out_error;
1890 	}
1891 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1892 	d = d_splice_alias(inode, dentry);
1893 out:
1894 	dput(parent);
1895 	return d;
1896 out_error:
1897 	d = ERR_PTR(error);
1898 	goto out;
1899 }
1900 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1901 
1902 /*
1903  * Code common to create, mkdir, and mknod.
1904  */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)1905 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1906 				struct nfs_fattr *fattr,
1907 				struct nfs4_label *label)
1908 {
1909 	struct dentry *d;
1910 
1911 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1912 	if (IS_ERR(d))
1913 		return PTR_ERR(d);
1914 
1915 	/* Callers don't care */
1916 	dput(d);
1917 	return 0;
1918 }
1919 EXPORT_SYMBOL_GPL(nfs_instantiate);
1920 
1921 /*
1922  * Following a failed create operation, we drop the dentry rather
1923  * than retain a negative dentry. This avoids a problem in the event
1924  * that the operation succeeded on the server, but an error in the
1925  * reply path made it appear to have failed.
1926  */
nfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1927 int nfs_create(struct inode *dir, struct dentry *dentry,
1928 		umode_t mode, bool excl)
1929 {
1930 	struct iattr attr;
1931 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1932 	int error;
1933 
1934 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1935 			dir->i_sb->s_id, dir->i_ino, dentry);
1936 
1937 	attr.ia_mode = mode;
1938 	attr.ia_valid = ATTR_MODE;
1939 
1940 	trace_nfs_create_enter(dir, dentry, open_flags);
1941 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1942 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1943 	if (error != 0)
1944 		goto out_err;
1945 	return 0;
1946 out_err:
1947 	d_drop(dentry);
1948 	return error;
1949 }
1950 EXPORT_SYMBOL_GPL(nfs_create);
1951 
1952 /*
1953  * See comments for nfs_proc_create regarding failed operations.
1954  */
1955 int
nfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)1956 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1957 {
1958 	struct iattr attr;
1959 	int status;
1960 
1961 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1962 			dir->i_sb->s_id, dir->i_ino, dentry);
1963 
1964 	attr.ia_mode = mode;
1965 	attr.ia_valid = ATTR_MODE;
1966 
1967 	trace_nfs_mknod_enter(dir, dentry);
1968 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1969 	trace_nfs_mknod_exit(dir, dentry, status);
1970 	if (status != 0)
1971 		goto out_err;
1972 	return 0;
1973 out_err:
1974 	d_drop(dentry);
1975 	return status;
1976 }
1977 EXPORT_SYMBOL_GPL(nfs_mknod);
1978 
1979 /*
1980  * See comments for nfs_proc_create regarding failed operations.
1981  */
nfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1982 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1983 {
1984 	struct iattr attr;
1985 	int error;
1986 
1987 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1988 			dir->i_sb->s_id, dir->i_ino, dentry);
1989 
1990 	attr.ia_valid = ATTR_MODE;
1991 	attr.ia_mode = mode | S_IFDIR;
1992 
1993 	trace_nfs_mkdir_enter(dir, dentry);
1994 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1995 	trace_nfs_mkdir_exit(dir, dentry, error);
1996 	if (error != 0)
1997 		goto out_err;
1998 	return 0;
1999 out_err:
2000 	d_drop(dentry);
2001 	return error;
2002 }
2003 EXPORT_SYMBOL_GPL(nfs_mkdir);
2004 
nfs_dentry_handle_enoent(struct dentry * dentry)2005 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2006 {
2007 	if (simple_positive(dentry))
2008 		d_delete(dentry);
2009 }
2010 
nfs_rmdir(struct inode * dir,struct dentry * dentry)2011 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2012 {
2013 	int error;
2014 
2015 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2016 			dir->i_sb->s_id, dir->i_ino, dentry);
2017 
2018 	trace_nfs_rmdir_enter(dir, dentry);
2019 	if (d_really_is_positive(dentry)) {
2020 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2021 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2022 		/* Ensure the VFS deletes this inode */
2023 		switch (error) {
2024 		case 0:
2025 			clear_nlink(d_inode(dentry));
2026 			break;
2027 		case -ENOENT:
2028 			nfs_dentry_handle_enoent(dentry);
2029 		}
2030 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2031 	} else
2032 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2033 	trace_nfs_rmdir_exit(dir, dentry, error);
2034 
2035 	return error;
2036 }
2037 EXPORT_SYMBOL_GPL(nfs_rmdir);
2038 
2039 /*
2040  * Remove a file after making sure there are no pending writes,
2041  * and after checking that the file has only one user.
2042  *
2043  * We invalidate the attribute cache and free the inode prior to the operation
2044  * to avoid possible races if the server reuses the inode.
2045  */
nfs_safe_remove(struct dentry * dentry)2046 static int nfs_safe_remove(struct dentry *dentry)
2047 {
2048 	struct inode *dir = d_inode(dentry->d_parent);
2049 	struct inode *inode = d_inode(dentry);
2050 	int error = -EBUSY;
2051 
2052 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2053 
2054 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2055 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2056 		error = 0;
2057 		goto out;
2058 	}
2059 
2060 	trace_nfs_remove_enter(dir, dentry);
2061 	if (inode != NULL) {
2062 		error = NFS_PROTO(dir)->remove(dir, dentry);
2063 		if (error == 0)
2064 			nfs_drop_nlink(inode);
2065 	} else
2066 		error = NFS_PROTO(dir)->remove(dir, dentry);
2067 	if (error == -ENOENT)
2068 		nfs_dentry_handle_enoent(dentry);
2069 	trace_nfs_remove_exit(dir, dentry, error);
2070 out:
2071 	return error;
2072 }
2073 
2074 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2075  *  belongs to an active ".nfs..." file and we return -EBUSY.
2076  *
2077  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2078  */
nfs_unlink(struct inode * dir,struct dentry * dentry)2079 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2080 {
2081 	int error;
2082 	int need_rehash = 0;
2083 
2084 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2085 		dir->i_ino, dentry);
2086 
2087 	trace_nfs_unlink_enter(dir, dentry);
2088 	spin_lock(&dentry->d_lock);
2089 	if (d_count(dentry) > 1) {
2090 		spin_unlock(&dentry->d_lock);
2091 		/* Start asynchronous writeout of the inode */
2092 		write_inode_now(d_inode(dentry), 0);
2093 		error = nfs_sillyrename(dir, dentry);
2094 		goto out;
2095 	}
2096 	if (!d_unhashed(dentry)) {
2097 		__d_drop(dentry);
2098 		need_rehash = 1;
2099 	}
2100 	spin_unlock(&dentry->d_lock);
2101 	error = nfs_safe_remove(dentry);
2102 	if (!error || error == -ENOENT) {
2103 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2104 	} else if (need_rehash)
2105 		d_rehash(dentry);
2106 out:
2107 	trace_nfs_unlink_exit(dir, dentry, error);
2108 	return error;
2109 }
2110 EXPORT_SYMBOL_GPL(nfs_unlink);
2111 
2112 /*
2113  * To create a symbolic link, most file systems instantiate a new inode,
2114  * add a page to it containing the path, then write it out to the disk
2115  * using prepare_write/commit_write.
2116  *
2117  * Unfortunately the NFS client can't create the in-core inode first
2118  * because it needs a file handle to create an in-core inode (see
2119  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2120  * symlink request has completed on the server.
2121  *
2122  * So instead we allocate a raw page, copy the symname into it, then do
2123  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2124  * now have a new file handle and can instantiate an in-core NFS inode
2125  * and move the raw page into its mapping.
2126  */
nfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)2127 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2128 {
2129 	struct page *page;
2130 	char *kaddr;
2131 	struct iattr attr;
2132 	unsigned int pathlen = strlen(symname);
2133 	int error;
2134 
2135 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2136 		dir->i_ino, dentry, symname);
2137 
2138 	if (pathlen > PAGE_SIZE)
2139 		return -ENAMETOOLONG;
2140 
2141 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2142 	attr.ia_valid = ATTR_MODE;
2143 
2144 	page = alloc_page(GFP_USER);
2145 	if (!page)
2146 		return -ENOMEM;
2147 
2148 	kaddr = page_address(page);
2149 	memcpy(kaddr, symname, pathlen);
2150 	if (pathlen < PAGE_SIZE)
2151 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2152 
2153 	trace_nfs_symlink_enter(dir, dentry);
2154 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2155 	trace_nfs_symlink_exit(dir, dentry, error);
2156 	if (error != 0) {
2157 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2158 			dir->i_sb->s_id, dir->i_ino,
2159 			dentry, symname, error);
2160 		d_drop(dentry);
2161 		__free_page(page);
2162 		return error;
2163 	}
2164 
2165 	/*
2166 	 * No big deal if we can't add this page to the page cache here.
2167 	 * READLINK will get the missing page from the server if needed.
2168 	 */
2169 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2170 							GFP_KERNEL)) {
2171 		SetPageUptodate(page);
2172 		unlock_page(page);
2173 		/*
2174 		 * add_to_page_cache_lru() grabs an extra page refcount.
2175 		 * Drop it here to avoid leaking this page later.
2176 		 */
2177 		put_page(page);
2178 	} else
2179 		__free_page(page);
2180 
2181 	return 0;
2182 }
2183 EXPORT_SYMBOL_GPL(nfs_symlink);
2184 
2185 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2186 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2187 {
2188 	struct inode *inode = d_inode(old_dentry);
2189 	int error;
2190 
2191 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2192 		old_dentry, dentry);
2193 
2194 	trace_nfs_link_enter(inode, dir, dentry);
2195 	d_drop(dentry);
2196 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2197 	if (error == 0) {
2198 		ihold(inode);
2199 		d_add(dentry, inode);
2200 	}
2201 	trace_nfs_link_exit(inode, dir, dentry, error);
2202 	return error;
2203 }
2204 EXPORT_SYMBOL_GPL(nfs_link);
2205 
2206 /*
2207  * RENAME
2208  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2209  * different file handle for the same inode after a rename (e.g. when
2210  * moving to a different directory). A fail-safe method to do so would
2211  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2212  * rename the old file using the sillyrename stuff. This way, the original
2213  * file in old_dir will go away when the last process iput()s the inode.
2214  *
2215  * FIXED.
2216  *
2217  * It actually works quite well. One needs to have the possibility for
2218  * at least one ".nfs..." file in each directory the file ever gets
2219  * moved or linked to which happens automagically with the new
2220  * implementation that only depends on the dcache stuff instead of
2221  * using the inode layer
2222  *
2223  * Unfortunately, things are a little more complicated than indicated
2224  * above. For a cross-directory move, we want to make sure we can get
2225  * rid of the old inode after the operation.  This means there must be
2226  * no pending writes (if it's a file), and the use count must be 1.
2227  * If these conditions are met, we can drop the dentries before doing
2228  * the rename.
2229  */
nfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2230 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2231 	       struct inode *new_dir, struct dentry *new_dentry,
2232 	       unsigned int flags)
2233 {
2234 	struct inode *old_inode = d_inode(old_dentry);
2235 	struct inode *new_inode = d_inode(new_dentry);
2236 	struct dentry *dentry = NULL, *rehash = NULL;
2237 	struct rpc_task *task;
2238 	int error = -EBUSY;
2239 
2240 	if (flags)
2241 		return -EINVAL;
2242 
2243 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2244 		 old_dentry, new_dentry,
2245 		 d_count(new_dentry));
2246 
2247 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2248 	/*
2249 	 * For non-directories, check whether the target is busy and if so,
2250 	 * make a copy of the dentry and then do a silly-rename. If the
2251 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2252 	 * the new target.
2253 	 */
2254 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2255 		/*
2256 		 * To prevent any new references to the target during the
2257 		 * rename, we unhash the dentry in advance.
2258 		 */
2259 		if (!d_unhashed(new_dentry)) {
2260 			d_drop(new_dentry);
2261 			rehash = new_dentry;
2262 		}
2263 
2264 		if (d_count(new_dentry) > 2) {
2265 			int err;
2266 
2267 			/* copy the target dentry's name */
2268 			dentry = d_alloc(new_dentry->d_parent,
2269 					 &new_dentry->d_name);
2270 			if (!dentry)
2271 				goto out;
2272 
2273 			/* silly-rename the existing target ... */
2274 			err = nfs_sillyrename(new_dir, new_dentry);
2275 			if (err)
2276 				goto out;
2277 
2278 			new_dentry = dentry;
2279 			rehash = NULL;
2280 			new_inode = NULL;
2281 		}
2282 	}
2283 
2284 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2285 	if (IS_ERR(task)) {
2286 		error = PTR_ERR(task);
2287 		goto out;
2288 	}
2289 
2290 	error = rpc_wait_for_completion_task(task);
2291 	if (error != 0) {
2292 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2293 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2294 		smp_wmb();
2295 	} else
2296 		error = task->tk_status;
2297 	rpc_put_task(task);
2298 	/* Ensure the inode attributes are revalidated */
2299 	if (error == 0) {
2300 		spin_lock(&old_inode->i_lock);
2301 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2302 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2303 			| NFS_INO_INVALID_CTIME
2304 			| NFS_INO_REVAL_FORCED;
2305 		spin_unlock(&old_inode->i_lock);
2306 	}
2307 out:
2308 	if (rehash)
2309 		d_rehash(rehash);
2310 	trace_nfs_rename_exit(old_dir, old_dentry,
2311 			new_dir, new_dentry, error);
2312 	if (!error) {
2313 		if (new_inode != NULL)
2314 			nfs_drop_nlink(new_inode);
2315 		/*
2316 		 * The d_move() should be here instead of in an async RPC completion
2317 		 * handler because we need the proper locks to move the dentry.  If
2318 		 * we're interrupted by a signal, the async RPC completion handler
2319 		 * should mark the directories for revalidation.
2320 		 */
2321 		d_move(old_dentry, new_dentry);
2322 		nfs_set_verifier(old_dentry,
2323 					nfs_save_change_attribute(new_dir));
2324 	} else if (error == -ENOENT)
2325 		nfs_dentry_handle_enoent(old_dentry);
2326 
2327 	/* new dentry created? */
2328 	if (dentry)
2329 		dput(dentry);
2330 	return error;
2331 }
2332 EXPORT_SYMBOL_GPL(nfs_rename);
2333 
2334 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2335 static LIST_HEAD(nfs_access_lru_list);
2336 static atomic_long_t nfs_access_nr_entries;
2337 
2338 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2339 module_param(nfs_access_max_cachesize, ulong, 0644);
2340 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2341 
nfs_access_free_entry(struct nfs_access_entry * entry)2342 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2343 {
2344 	put_cred(entry->cred);
2345 	kfree_rcu(entry, rcu_head);
2346 	smp_mb__before_atomic();
2347 	atomic_long_dec(&nfs_access_nr_entries);
2348 	smp_mb__after_atomic();
2349 }
2350 
nfs_access_free_list(struct list_head * head)2351 static void nfs_access_free_list(struct list_head *head)
2352 {
2353 	struct nfs_access_entry *cache;
2354 
2355 	while (!list_empty(head)) {
2356 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2357 		list_del(&cache->lru);
2358 		nfs_access_free_entry(cache);
2359 	}
2360 }
2361 
2362 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2363 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2364 {
2365 	LIST_HEAD(head);
2366 	struct nfs_inode *nfsi, *next;
2367 	struct nfs_access_entry *cache;
2368 	long freed = 0;
2369 
2370 	spin_lock(&nfs_access_lru_lock);
2371 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2372 		struct inode *inode;
2373 
2374 		if (nr_to_scan-- == 0)
2375 			break;
2376 		inode = &nfsi->vfs_inode;
2377 		spin_lock(&inode->i_lock);
2378 		if (list_empty(&nfsi->access_cache_entry_lru))
2379 			goto remove_lru_entry;
2380 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2381 				struct nfs_access_entry, lru);
2382 		list_move(&cache->lru, &head);
2383 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2384 		freed++;
2385 		if (!list_empty(&nfsi->access_cache_entry_lru))
2386 			list_move_tail(&nfsi->access_cache_inode_lru,
2387 					&nfs_access_lru_list);
2388 		else {
2389 remove_lru_entry:
2390 			list_del_init(&nfsi->access_cache_inode_lru);
2391 			smp_mb__before_atomic();
2392 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2393 			smp_mb__after_atomic();
2394 		}
2395 		spin_unlock(&inode->i_lock);
2396 	}
2397 	spin_unlock(&nfs_access_lru_lock);
2398 	nfs_access_free_list(&head);
2399 	return freed;
2400 }
2401 
2402 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2403 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2404 {
2405 	int nr_to_scan = sc->nr_to_scan;
2406 	gfp_t gfp_mask = sc->gfp_mask;
2407 
2408 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2409 		return SHRINK_STOP;
2410 	return nfs_do_access_cache_scan(nr_to_scan);
2411 }
2412 
2413 
2414 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2415 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2416 {
2417 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2418 }
2419 
2420 static void
nfs_access_cache_enforce_limit(void)2421 nfs_access_cache_enforce_limit(void)
2422 {
2423 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2424 	unsigned long diff;
2425 	unsigned int nr_to_scan;
2426 
2427 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2428 		return;
2429 	nr_to_scan = 100;
2430 	diff = nr_entries - nfs_access_max_cachesize;
2431 	if (diff < nr_to_scan)
2432 		nr_to_scan = diff;
2433 	nfs_do_access_cache_scan(nr_to_scan);
2434 }
2435 
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2436 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2437 {
2438 	struct rb_root *root_node = &nfsi->access_cache;
2439 	struct rb_node *n;
2440 	struct nfs_access_entry *entry;
2441 
2442 	/* Unhook entries from the cache */
2443 	while ((n = rb_first(root_node)) != NULL) {
2444 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2445 		rb_erase(n, root_node);
2446 		list_move(&entry->lru, head);
2447 	}
2448 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2449 }
2450 
nfs_access_zap_cache(struct inode * inode)2451 void nfs_access_zap_cache(struct inode *inode)
2452 {
2453 	LIST_HEAD(head);
2454 
2455 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2456 		return;
2457 	/* Remove from global LRU init */
2458 	spin_lock(&nfs_access_lru_lock);
2459 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2460 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2461 
2462 	spin_lock(&inode->i_lock);
2463 	__nfs_access_zap_cache(NFS_I(inode), &head);
2464 	spin_unlock(&inode->i_lock);
2465 	spin_unlock(&nfs_access_lru_lock);
2466 	nfs_access_free_list(&head);
2467 }
2468 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2469 
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)2470 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2471 {
2472 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2473 
2474 	while (n != NULL) {
2475 		struct nfs_access_entry *entry =
2476 			rb_entry(n, struct nfs_access_entry, rb_node);
2477 		int cmp = cred_fscmp(cred, entry->cred);
2478 
2479 		if (cmp < 0)
2480 			n = n->rb_left;
2481 		else if (cmp > 0)
2482 			n = n->rb_right;
2483 		else
2484 			return entry;
2485 	}
2486 	return NULL;
2487 }
2488 
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,struct nfs_access_entry * res,bool may_block)2489 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2490 {
2491 	struct nfs_inode *nfsi = NFS_I(inode);
2492 	struct nfs_access_entry *cache;
2493 	bool retry = true;
2494 	int err;
2495 
2496 	spin_lock(&inode->i_lock);
2497 	for(;;) {
2498 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2499 			goto out_zap;
2500 		cache = nfs_access_search_rbtree(inode, cred);
2501 		err = -ENOENT;
2502 		if (cache == NULL)
2503 			goto out;
2504 		/* Found an entry, is our attribute cache valid? */
2505 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2506 			break;
2507 		if (!retry)
2508 			break;
2509 		err = -ECHILD;
2510 		if (!may_block)
2511 			goto out;
2512 		spin_unlock(&inode->i_lock);
2513 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2514 		if (err)
2515 			return err;
2516 		spin_lock(&inode->i_lock);
2517 		retry = false;
2518 	}
2519 	res->cred = cache->cred;
2520 	res->mask = cache->mask;
2521 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2522 	err = 0;
2523 out:
2524 	spin_unlock(&inode->i_lock);
2525 	return err;
2526 out_zap:
2527 	spin_unlock(&inode->i_lock);
2528 	nfs_access_zap_cache(inode);
2529 	return -ENOENT;
2530 }
2531 
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,struct nfs_access_entry * res)2532 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2533 {
2534 	/* Only check the most recently returned cache entry,
2535 	 * but do it without locking.
2536 	 */
2537 	struct nfs_inode *nfsi = NFS_I(inode);
2538 	struct nfs_access_entry *cache;
2539 	int err = -ECHILD;
2540 	struct list_head *lh;
2541 
2542 	rcu_read_lock();
2543 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2544 		goto out;
2545 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2546 	cache = list_entry(lh, struct nfs_access_entry, lru);
2547 	if (lh == &nfsi->access_cache_entry_lru ||
2548 	    cred_fscmp(cred, cache->cred) != 0)
2549 		cache = NULL;
2550 	if (cache == NULL)
2551 		goto out;
2552 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2553 		goto out;
2554 	res->cred = cache->cred;
2555 	res->mask = cache->mask;
2556 	err = 0;
2557 out:
2558 	rcu_read_unlock();
2559 	return err;
2560 }
2561 
nfs_access_get_cached(struct inode * inode,const struct cred * cred,struct nfs_access_entry * res,bool may_block)2562 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2563 nfs_access_entry *res, bool may_block)
2564 {
2565 	int status;
2566 
2567 	status = nfs_access_get_cached_rcu(inode, cred, res);
2568 	if (status != 0)
2569 		status = nfs_access_get_cached_locked(inode, cred, res,
2570 		    may_block);
2571 
2572 	return status;
2573 }
2574 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2575 
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set)2576 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2577 {
2578 	struct nfs_inode *nfsi = NFS_I(inode);
2579 	struct rb_root *root_node = &nfsi->access_cache;
2580 	struct rb_node **p = &root_node->rb_node;
2581 	struct rb_node *parent = NULL;
2582 	struct nfs_access_entry *entry;
2583 	int cmp;
2584 
2585 	spin_lock(&inode->i_lock);
2586 	while (*p != NULL) {
2587 		parent = *p;
2588 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2589 		cmp = cred_fscmp(set->cred, entry->cred);
2590 
2591 		if (cmp < 0)
2592 			p = &parent->rb_left;
2593 		else if (cmp > 0)
2594 			p = &parent->rb_right;
2595 		else
2596 			goto found;
2597 	}
2598 	rb_link_node(&set->rb_node, parent, p);
2599 	rb_insert_color(&set->rb_node, root_node);
2600 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2601 	spin_unlock(&inode->i_lock);
2602 	return;
2603 found:
2604 	rb_replace_node(parent, &set->rb_node, root_node);
2605 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2606 	list_del(&entry->lru);
2607 	spin_unlock(&inode->i_lock);
2608 	nfs_access_free_entry(entry);
2609 }
2610 
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set)2611 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2612 {
2613 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2614 	if (cache == NULL)
2615 		return;
2616 	RB_CLEAR_NODE(&cache->rb_node);
2617 	cache->cred = get_cred(set->cred);
2618 	cache->mask = set->mask;
2619 
2620 	/* The above field assignments must be visible
2621 	 * before this item appears on the lru.  We cannot easily
2622 	 * use rcu_assign_pointer, so just force the memory barrier.
2623 	 */
2624 	smp_wmb();
2625 	nfs_access_add_rbtree(inode, cache);
2626 
2627 	/* Update accounting */
2628 	smp_mb__before_atomic();
2629 	atomic_long_inc(&nfs_access_nr_entries);
2630 	smp_mb__after_atomic();
2631 
2632 	/* Add inode to global LRU list */
2633 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2634 		spin_lock(&nfs_access_lru_lock);
2635 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2636 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2637 					&nfs_access_lru_list);
2638 		spin_unlock(&nfs_access_lru_lock);
2639 	}
2640 	nfs_access_cache_enforce_limit();
2641 }
2642 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2643 
2644 #define NFS_MAY_READ (NFS_ACCESS_READ)
2645 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2646 		NFS_ACCESS_EXTEND | \
2647 		NFS_ACCESS_DELETE)
2648 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2649 		NFS_ACCESS_EXTEND)
2650 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2651 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2652 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2653 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)2654 nfs_access_calc_mask(u32 access_result, umode_t umode)
2655 {
2656 	int mask = 0;
2657 
2658 	if (access_result & NFS_MAY_READ)
2659 		mask |= MAY_READ;
2660 	if (S_ISDIR(umode)) {
2661 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2662 			mask |= MAY_WRITE;
2663 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2664 			mask |= MAY_EXEC;
2665 	} else if (S_ISREG(umode)) {
2666 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2667 			mask |= MAY_WRITE;
2668 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2669 			mask |= MAY_EXEC;
2670 	} else if (access_result & NFS_MAY_WRITE)
2671 			mask |= MAY_WRITE;
2672 	return mask;
2673 }
2674 
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)2675 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2676 {
2677 	entry->mask = access_result;
2678 }
2679 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2680 
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)2681 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2682 {
2683 	struct nfs_access_entry cache;
2684 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2685 	int cache_mask = -1;
2686 	int status;
2687 
2688 	trace_nfs_access_enter(inode);
2689 
2690 	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2691 	if (status == 0)
2692 		goto out_cached;
2693 
2694 	status = -ECHILD;
2695 	if (!may_block)
2696 		goto out;
2697 
2698 	/*
2699 	 * Determine which access bits we want to ask for...
2700 	 */
2701 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2702 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2703 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2704 		    NFS_ACCESS_XALIST;
2705 	}
2706 	if (S_ISDIR(inode->i_mode))
2707 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2708 	else
2709 		cache.mask |= NFS_ACCESS_EXECUTE;
2710 	cache.cred = cred;
2711 	status = NFS_PROTO(inode)->access(inode, &cache);
2712 	if (status != 0) {
2713 		if (status == -ESTALE) {
2714 			if (!S_ISDIR(inode->i_mode))
2715 				nfs_set_inode_stale(inode);
2716 			else
2717 				nfs_zap_caches(inode);
2718 		}
2719 		goto out;
2720 	}
2721 	nfs_access_add_cache(inode, &cache);
2722 out_cached:
2723 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2724 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2725 		status = -EACCES;
2726 out:
2727 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2728 	return status;
2729 }
2730 
nfs_open_permission_mask(int openflags)2731 static int nfs_open_permission_mask(int openflags)
2732 {
2733 	int mask = 0;
2734 
2735 	if (openflags & __FMODE_EXEC) {
2736 		/* ONLY check exec rights */
2737 		mask = MAY_EXEC;
2738 	} else {
2739 		if ((openflags & O_ACCMODE) != O_WRONLY)
2740 			mask |= MAY_READ;
2741 		if ((openflags & O_ACCMODE) != O_RDONLY)
2742 			mask |= MAY_WRITE;
2743 	}
2744 
2745 	return mask;
2746 }
2747 
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)2748 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2749 {
2750 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2751 }
2752 EXPORT_SYMBOL_GPL(nfs_may_open);
2753 
nfs_execute_ok(struct inode * inode,int mask)2754 static int nfs_execute_ok(struct inode *inode, int mask)
2755 {
2756 	struct nfs_server *server = NFS_SERVER(inode);
2757 	int ret = 0;
2758 
2759 	if (S_ISDIR(inode->i_mode))
2760 		return 0;
2761 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2762 		if (mask & MAY_NOT_BLOCK)
2763 			return -ECHILD;
2764 		ret = __nfs_revalidate_inode(server, inode);
2765 	}
2766 	if (ret == 0 && !execute_ok(inode))
2767 		ret = -EACCES;
2768 	return ret;
2769 }
2770 
nfs_permission(struct inode * inode,int mask)2771 int nfs_permission(struct inode *inode, int mask)
2772 {
2773 	const struct cred *cred = current_cred();
2774 	int res = 0;
2775 
2776 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2777 
2778 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2779 		goto out;
2780 	/* Is this sys_access() ? */
2781 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2782 		goto force_lookup;
2783 
2784 	switch (inode->i_mode & S_IFMT) {
2785 		case S_IFLNK:
2786 			goto out;
2787 		case S_IFREG:
2788 			if ((mask & MAY_OPEN) &&
2789 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2790 				return 0;
2791 			break;
2792 		case S_IFDIR:
2793 			/*
2794 			 * Optimize away all write operations, since the server
2795 			 * will check permissions when we perform the op.
2796 			 */
2797 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2798 				goto out;
2799 	}
2800 
2801 force_lookup:
2802 	if (!NFS_PROTO(inode)->access)
2803 		goto out_notsup;
2804 
2805 	res = nfs_do_access(inode, cred, mask);
2806 out:
2807 	if (!res && (mask & MAY_EXEC))
2808 		res = nfs_execute_ok(inode, mask);
2809 
2810 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2811 		inode->i_sb->s_id, inode->i_ino, mask, res);
2812 	return res;
2813 out_notsup:
2814 	if (mask & MAY_NOT_BLOCK)
2815 		return -ECHILD;
2816 
2817 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2818 	if (res == 0)
2819 		res = generic_permission(inode, mask);
2820 	goto out;
2821 }
2822 EXPORT_SYMBOL_GPL(nfs_permission);
2823 
2824 /*
2825  * Local variables:
2826  *  version-control: t
2827  *  kept-new-versions: 5
2828  * End:
2829  */
2830