• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched.h>
92 #include <linux/sched/autogroup.h>
93 #include <linux/sched/mm.h>
94 #include <linux/sched/coredump.h>
95 #include <linux/sched/debug.h>
96 #include <linux/sched/stat.h>
97 #include <linux/posix-timers.h>
98 #include <linux/time_namespace.h>
99 #include <linux/resctrl.h>
100 #include <trace/events/oom.h>
101 #include "internal.h"
102 #include "fd.h"
103 
104 #include "../../lib/kstrtox.h"
105 
106 /* NOTE:
107  *	Implementing inode permission operations in /proc is almost
108  *	certainly an error.  Permission checks need to happen during
109  *	each system call not at open time.  The reason is that most of
110  *	what we wish to check for permissions in /proc varies at runtime.
111  *
112  *	The classic example of a problem is opening file descriptors
113  *	in /proc for a task before it execs a suid executable.
114  */
115 
116 static u8 nlink_tid __ro_after_init;
117 static u8 nlink_tgid __ro_after_init;
118 
119 struct pid_entry {
120 	const char *name;
121 	unsigned int len;
122 	umode_t mode;
123 	const struct inode_operations *iop;
124 	const struct file_operations *fop;
125 	union proc_op op;
126 };
127 
128 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
129 	.name = (NAME),					\
130 	.len  = sizeof(NAME) - 1,			\
131 	.mode = MODE,					\
132 	.iop  = IOP,					\
133 	.fop  = FOP,					\
134 	.op   = OP,					\
135 }
136 
137 #define DIR(NAME, MODE, iops, fops)	\
138 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
139 #define LNK(NAME, get_link)					\
140 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
141 		&proc_pid_link_inode_operations, NULL,		\
142 		{ .proc_get_link = get_link } )
143 #define REG(NAME, MODE, fops)				\
144 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
145 #define ONE(NAME, MODE, show)				\
146 	NOD(NAME, (S_IFREG|(MODE)),			\
147 		NULL, &proc_single_file_operations,	\
148 		{ .proc_show = show } )
149 #define ATTR(LSM, NAME, MODE)				\
150 	NOD(NAME, (S_IFREG|(MODE)),			\
151 		NULL, &proc_pid_attr_operations,	\
152 		{ .lsm = LSM })
153 
154 /*
155  * Count the number of hardlinks for the pid_entry table, excluding the .
156  * and .. links.
157  */
pid_entry_nlink(const struct pid_entry * entries,unsigned int n)158 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
159 	unsigned int n)
160 {
161 	unsigned int i;
162 	unsigned int count;
163 
164 	count = 2;
165 	for (i = 0; i < n; ++i) {
166 		if (S_ISDIR(entries[i].mode))
167 			++count;
168 	}
169 
170 	return count;
171 }
172 
get_task_root(struct task_struct * task,struct path * root)173 static int get_task_root(struct task_struct *task, struct path *root)
174 {
175 	int result = -ENOENT;
176 
177 	task_lock(task);
178 	if (task->fs) {
179 		get_fs_root(task->fs, root);
180 		result = 0;
181 	}
182 	task_unlock(task);
183 	return result;
184 }
185 
proc_cwd_link(struct dentry * dentry,struct path * path)186 static int proc_cwd_link(struct dentry *dentry, struct path *path)
187 {
188 	struct task_struct *task = get_proc_task(d_inode(dentry));
189 	int result = -ENOENT;
190 
191 	if (task) {
192 		task_lock(task);
193 		if (task->fs) {
194 			get_fs_pwd(task->fs, path);
195 			result = 0;
196 		}
197 		task_unlock(task);
198 		put_task_struct(task);
199 	}
200 	return result;
201 }
202 
proc_root_link(struct dentry * dentry,struct path * path)203 static int proc_root_link(struct dentry *dentry, struct path *path)
204 {
205 	struct task_struct *task = get_proc_task(d_inode(dentry));
206 	int result = -ENOENT;
207 
208 	if (task) {
209 		result = get_task_root(task, path);
210 		put_task_struct(task);
211 	}
212 	return result;
213 }
214 
215 /*
216  * If the user used setproctitle(), we just get the string from
217  * user space at arg_start, and limit it to a maximum of one page.
218  */
get_mm_proctitle(struct mm_struct * mm,char __user * buf,size_t count,unsigned long pos,unsigned long arg_start)219 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
220 				size_t count, unsigned long pos,
221 				unsigned long arg_start)
222 {
223 	char *page;
224 	int ret, got;
225 
226 	if (pos >= PAGE_SIZE)
227 		return 0;
228 
229 	page = (char *)__get_free_page(GFP_KERNEL);
230 	if (!page)
231 		return -ENOMEM;
232 
233 	ret = 0;
234 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
235 	if (got > 0) {
236 		int len = strnlen(page, got);
237 
238 		/* Include the NUL character if it was found */
239 		if (len < got)
240 			len++;
241 
242 		if (len > pos) {
243 			len -= pos;
244 			if (len > count)
245 				len = count;
246 			len -= copy_to_user(buf, page+pos, len);
247 			if (!len)
248 				len = -EFAULT;
249 			ret = len;
250 		}
251 	}
252 	free_page((unsigned long)page);
253 	return ret;
254 }
255 
get_mm_cmdline(struct mm_struct * mm,char __user * buf,size_t count,loff_t * ppos)256 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
257 			      size_t count, loff_t *ppos)
258 {
259 	unsigned long arg_start, arg_end, env_start, env_end;
260 	unsigned long pos, len;
261 	char *page, c;
262 
263 	/* Check if process spawned far enough to have cmdline. */
264 	if (!mm->env_end)
265 		return 0;
266 
267 	spin_lock(&mm->arg_lock);
268 	arg_start = mm->arg_start;
269 	arg_end = mm->arg_end;
270 	env_start = mm->env_start;
271 	env_end = mm->env_end;
272 	spin_unlock(&mm->arg_lock);
273 
274 	if (arg_start >= arg_end)
275 		return 0;
276 
277 	/*
278 	 * We allow setproctitle() to overwrite the argument
279 	 * strings, and overflow past the original end. But
280 	 * only when it overflows into the environment area.
281 	 */
282 	if (env_start != arg_end || env_end < env_start)
283 		env_start = env_end = arg_end;
284 	len = env_end - arg_start;
285 
286 	/* We're not going to care if "*ppos" has high bits set */
287 	pos = *ppos;
288 	if (pos >= len)
289 		return 0;
290 	if (count > len - pos)
291 		count = len - pos;
292 	if (!count)
293 		return 0;
294 
295 	/*
296 	 * Magical special case: if the argv[] end byte is not
297 	 * zero, the user has overwritten it with setproctitle(3).
298 	 *
299 	 * Possible future enhancement: do this only once when
300 	 * pos is 0, and set a flag in the 'struct file'.
301 	 */
302 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
303 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
304 
305 	/*
306 	 * For the non-setproctitle() case we limit things strictly
307 	 * to the [arg_start, arg_end[ range.
308 	 */
309 	pos += arg_start;
310 	if (pos < arg_start || pos >= arg_end)
311 		return 0;
312 	if (count > arg_end - pos)
313 		count = arg_end - pos;
314 
315 	page = (char *)__get_free_page(GFP_KERNEL);
316 	if (!page)
317 		return -ENOMEM;
318 
319 	len = 0;
320 	while (count) {
321 		int got;
322 		size_t size = min_t(size_t, PAGE_SIZE, count);
323 
324 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
325 		if (got <= 0)
326 			break;
327 		got -= copy_to_user(buf, page, got);
328 		if (unlikely(!got)) {
329 			if (!len)
330 				len = -EFAULT;
331 			break;
332 		}
333 		pos += got;
334 		buf += got;
335 		len += got;
336 		count -= got;
337 	}
338 
339 	free_page((unsigned long)page);
340 	return len;
341 }
342 
get_task_cmdline(struct task_struct * tsk,char __user * buf,size_t count,loff_t * pos)343 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
344 				size_t count, loff_t *pos)
345 {
346 	struct mm_struct *mm;
347 	ssize_t ret;
348 
349 	mm = get_task_mm(tsk);
350 	if (!mm)
351 		return 0;
352 
353 	ret = get_mm_cmdline(mm, buf, count, pos);
354 	mmput(mm);
355 	return ret;
356 }
357 
proc_pid_cmdline_read(struct file * file,char __user * buf,size_t count,loff_t * pos)358 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
359 				     size_t count, loff_t *pos)
360 {
361 	struct task_struct *tsk;
362 	ssize_t ret;
363 
364 	BUG_ON(*pos < 0);
365 
366 	tsk = get_proc_task(file_inode(file));
367 	if (!tsk)
368 		return -ESRCH;
369 	ret = get_task_cmdline(tsk, buf, count, pos);
370 	put_task_struct(tsk);
371 	if (ret > 0)
372 		*pos += ret;
373 	return ret;
374 }
375 
376 static const struct file_operations proc_pid_cmdline_ops = {
377 	.read	= proc_pid_cmdline_read,
378 	.llseek	= generic_file_llseek,
379 };
380 
381 #ifdef CONFIG_KALLSYMS
382 /*
383  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
384  * Returns the resolved symbol.  If that fails, simply return the address.
385  */
proc_pid_wchan(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)386 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
387 			  struct pid *pid, struct task_struct *task)
388 {
389 	unsigned long wchan;
390 	char symname[KSYM_NAME_LEN];
391 
392 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
393 		goto print0;
394 
395 	wchan = get_wchan(task);
396 	if (wchan && !lookup_symbol_name(wchan, symname)) {
397 		seq_puts(m, symname);
398 		return 0;
399 	}
400 
401 print0:
402 	seq_putc(m, '0');
403 	return 0;
404 }
405 #endif /* CONFIG_KALLSYMS */
406 
lock_trace(struct task_struct * task)407 static int lock_trace(struct task_struct *task)
408 {
409 	int err = down_read_killable(&task->signal->exec_update_lock);
410 	if (err)
411 		return err;
412 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
413 		up_read(&task->signal->exec_update_lock);
414 		return -EPERM;
415 	}
416 	return 0;
417 }
418 
unlock_trace(struct task_struct * task)419 static void unlock_trace(struct task_struct *task)
420 {
421 	up_read(&task->signal->exec_update_lock);
422 }
423 
424 #ifdef CONFIG_STACKTRACE
425 
426 #define MAX_STACK_TRACE_DEPTH	64
427 
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)428 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
429 			  struct pid *pid, struct task_struct *task)
430 {
431 	unsigned long *entries;
432 	int err;
433 
434 	/*
435 	 * The ability to racily run the kernel stack unwinder on a running task
436 	 * and then observe the unwinder output is scary; while it is useful for
437 	 * debugging kernel issues, it can also allow an attacker to leak kernel
438 	 * stack contents.
439 	 * Doing this in a manner that is at least safe from races would require
440 	 * some work to ensure that the remote task can not be scheduled; and
441 	 * even then, this would still expose the unwinder as local attack
442 	 * surface.
443 	 * Therefore, this interface is restricted to root.
444 	 */
445 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
446 		return -EACCES;
447 
448 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
449 				GFP_KERNEL);
450 	if (!entries)
451 		return -ENOMEM;
452 
453 	err = lock_trace(task);
454 	if (!err) {
455 		unsigned int i, nr_entries;
456 
457 		nr_entries = stack_trace_save_tsk(task, entries,
458 						  MAX_STACK_TRACE_DEPTH, 0);
459 
460 		for (i = 0; i < nr_entries; i++) {
461 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
462 		}
463 
464 		unlock_trace(task);
465 	}
466 	kfree(entries);
467 
468 	return err;
469 }
470 #endif
471 
472 #ifdef CONFIG_SCHED_INFO
473 /*
474  * Provides /proc/PID/schedstat
475  */
proc_pid_schedstat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)476 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
477 			      struct pid *pid, struct task_struct *task)
478 {
479 	if (unlikely(!sched_info_on()))
480 		seq_puts(m, "0 0 0\n");
481 	else
482 		seq_printf(m, "%llu %llu %lu\n",
483 		   (unsigned long long)task->se.sum_exec_runtime,
484 		   (unsigned long long)task->sched_info.run_delay,
485 		   task->sched_info.pcount);
486 
487 	return 0;
488 }
489 #endif
490 
491 #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)492 static int lstats_show_proc(struct seq_file *m, void *v)
493 {
494 	int i;
495 	struct inode *inode = m->private;
496 	struct task_struct *task = get_proc_task(inode);
497 
498 	if (!task)
499 		return -ESRCH;
500 	seq_puts(m, "Latency Top version : v0.1\n");
501 	for (i = 0; i < LT_SAVECOUNT; i++) {
502 		struct latency_record *lr = &task->latency_record[i];
503 		if (lr->backtrace[0]) {
504 			int q;
505 			seq_printf(m, "%i %li %li",
506 				   lr->count, lr->time, lr->max);
507 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
508 				unsigned long bt = lr->backtrace[q];
509 
510 				if (!bt)
511 					break;
512 				seq_printf(m, " %ps", (void *)bt);
513 			}
514 			seq_putc(m, '\n');
515 		}
516 
517 	}
518 	put_task_struct(task);
519 	return 0;
520 }
521 
lstats_open(struct inode * inode,struct file * file)522 static int lstats_open(struct inode *inode, struct file *file)
523 {
524 	return single_open(file, lstats_show_proc, inode);
525 }
526 
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)527 static ssize_t lstats_write(struct file *file, const char __user *buf,
528 			    size_t count, loff_t *offs)
529 {
530 	struct task_struct *task = get_proc_task(file_inode(file));
531 
532 	if (!task)
533 		return -ESRCH;
534 	clear_tsk_latency_tracing(task);
535 	put_task_struct(task);
536 
537 	return count;
538 }
539 
540 static const struct file_operations proc_lstats_operations = {
541 	.open		= lstats_open,
542 	.read		= seq_read,
543 	.write		= lstats_write,
544 	.llseek		= seq_lseek,
545 	.release	= single_release,
546 };
547 
548 #endif
549 
proc_oom_score(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)550 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
551 			  struct pid *pid, struct task_struct *task)
552 {
553 	unsigned long totalpages = totalram_pages() + total_swap_pages;
554 	unsigned long points = 0;
555 	long badness;
556 
557 	badness = oom_badness(task, totalpages);
558 	/*
559 	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
560 	 * badness value into [0, 2000] range which we have been
561 	 * exporting for a long time so userspace might depend on it.
562 	 */
563 	if (badness != LONG_MIN)
564 		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
565 
566 	seq_printf(m, "%lu\n", points);
567 
568 	return 0;
569 }
570 
571 struct limit_names {
572 	const char *name;
573 	const char *unit;
574 };
575 
576 static const struct limit_names lnames[RLIM_NLIMITS] = {
577 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
578 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
579 	[RLIMIT_DATA] = {"Max data size", "bytes"},
580 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
581 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
582 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
583 	[RLIMIT_NPROC] = {"Max processes", "processes"},
584 	[RLIMIT_NOFILE] = {"Max open files", "files"},
585 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
586 	[RLIMIT_AS] = {"Max address space", "bytes"},
587 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
588 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
589 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
590 	[RLIMIT_NICE] = {"Max nice priority", NULL},
591 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
592 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
593 };
594 
595 /* Display limits for a process */
proc_pid_limits(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)596 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
597 			   struct pid *pid, struct task_struct *task)
598 {
599 	unsigned int i;
600 	unsigned long flags;
601 
602 	struct rlimit rlim[RLIM_NLIMITS];
603 
604 	if (!lock_task_sighand(task, &flags))
605 		return 0;
606 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
607 	unlock_task_sighand(task, &flags);
608 
609 	/*
610 	 * print the file header
611 	 */
612 	seq_puts(m, "Limit                     "
613 		"Soft Limit           "
614 		"Hard Limit           "
615 		"Units     \n");
616 
617 	for (i = 0; i < RLIM_NLIMITS; i++) {
618 		if (rlim[i].rlim_cur == RLIM_INFINITY)
619 			seq_printf(m, "%-25s %-20s ",
620 				   lnames[i].name, "unlimited");
621 		else
622 			seq_printf(m, "%-25s %-20lu ",
623 				   lnames[i].name, rlim[i].rlim_cur);
624 
625 		if (rlim[i].rlim_max == RLIM_INFINITY)
626 			seq_printf(m, "%-20s ", "unlimited");
627 		else
628 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
629 
630 		if (lnames[i].unit)
631 			seq_printf(m, "%-10s\n", lnames[i].unit);
632 		else
633 			seq_putc(m, '\n');
634 	}
635 
636 	return 0;
637 }
638 
639 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)640 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
641 			    struct pid *pid, struct task_struct *task)
642 {
643 	struct syscall_info info;
644 	u64 *args = &info.data.args[0];
645 	int res;
646 
647 	res = lock_trace(task);
648 	if (res)
649 		return res;
650 
651 	if (task_current_syscall(task, &info))
652 		seq_puts(m, "running\n");
653 	else if (info.data.nr < 0)
654 		seq_printf(m, "%d 0x%llx 0x%llx\n",
655 			   info.data.nr, info.sp, info.data.instruction_pointer);
656 	else
657 		seq_printf(m,
658 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
659 		       info.data.nr,
660 		       args[0], args[1], args[2], args[3], args[4], args[5],
661 		       info.sp, info.data.instruction_pointer);
662 	unlock_trace(task);
663 
664 	return 0;
665 }
666 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
667 
668 /************************************************************************/
669 /*                       Here the fs part begins                        */
670 /************************************************************************/
671 
672 /* permission checks */
proc_fd_access_allowed(struct inode * inode)673 static int proc_fd_access_allowed(struct inode *inode)
674 {
675 	struct task_struct *task;
676 	int allowed = 0;
677 	/* Allow access to a task's file descriptors if it is us or we
678 	 * may use ptrace attach to the process and find out that
679 	 * information.
680 	 */
681 	task = get_proc_task(inode);
682 	if (task) {
683 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
684 		put_task_struct(task);
685 	}
686 	return allowed;
687 }
688 
proc_setattr(struct dentry * dentry,struct iattr * attr)689 int proc_setattr(struct dentry *dentry, struct iattr *attr)
690 {
691 	int error;
692 	struct inode *inode = d_inode(dentry);
693 
694 	if (attr->ia_valid & ATTR_MODE)
695 		return -EPERM;
696 
697 	error = setattr_prepare(dentry, attr);
698 	if (error)
699 		return error;
700 
701 	setattr_copy(inode, attr);
702 	mark_inode_dirty(inode);
703 	return 0;
704 }
705 
706 /*
707  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
708  * or euid/egid (for hide_pid_min=2)?
709  */
has_pid_permissions(struct proc_fs_info * fs_info,struct task_struct * task,enum proc_hidepid hide_pid_min)710 static bool has_pid_permissions(struct proc_fs_info *fs_info,
711 				 struct task_struct *task,
712 				 enum proc_hidepid hide_pid_min)
713 {
714 	/*
715 	 * If 'hidpid' mount option is set force a ptrace check,
716 	 * we indicate that we are using a filesystem syscall
717 	 * by passing PTRACE_MODE_READ_FSCREDS
718 	 */
719 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
720 		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
721 
722 	if (fs_info->hide_pid < hide_pid_min)
723 		return true;
724 	if (in_group_p(fs_info->pid_gid))
725 		return true;
726 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
727 }
728 
729 
proc_pid_permission(struct inode * inode,int mask)730 static int proc_pid_permission(struct inode *inode, int mask)
731 {
732 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
733 	struct task_struct *task;
734 	bool has_perms;
735 
736 	task = get_proc_task(inode);
737 	if (!task)
738 		return -ESRCH;
739 	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
740 	put_task_struct(task);
741 
742 	if (!has_perms) {
743 		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
744 			/*
745 			 * Let's make getdents(), stat(), and open()
746 			 * consistent with each other.  If a process
747 			 * may not stat() a file, it shouldn't be seen
748 			 * in procfs at all.
749 			 */
750 			return -ENOENT;
751 		}
752 
753 		return -EPERM;
754 	}
755 	return generic_permission(inode, mask);
756 }
757 
758 
759 
760 static const struct inode_operations proc_def_inode_operations = {
761 	.setattr	= proc_setattr,
762 };
763 
proc_single_show(struct seq_file * m,void * v)764 static int proc_single_show(struct seq_file *m, void *v)
765 {
766 	struct inode *inode = m->private;
767 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
768 	struct pid *pid = proc_pid(inode);
769 	struct task_struct *task;
770 	int ret;
771 
772 	task = get_pid_task(pid, PIDTYPE_PID);
773 	if (!task)
774 		return -ESRCH;
775 
776 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
777 
778 	put_task_struct(task);
779 	return ret;
780 }
781 
proc_single_open(struct inode * inode,struct file * filp)782 static int proc_single_open(struct inode *inode, struct file *filp)
783 {
784 	return single_open(filp, proc_single_show, inode);
785 }
786 
787 static const struct file_operations proc_single_file_operations = {
788 	.open		= proc_single_open,
789 	.read		= seq_read,
790 	.llseek		= seq_lseek,
791 	.release	= single_release,
792 };
793 
794 
proc_mem_open(struct inode * inode,unsigned int mode)795 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
796 {
797 	struct task_struct *task = get_proc_task(inode);
798 	struct mm_struct *mm = ERR_PTR(-ESRCH);
799 
800 	if (task) {
801 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
802 		put_task_struct(task);
803 
804 		if (!IS_ERR_OR_NULL(mm)) {
805 			/* ensure this mm_struct can't be freed */
806 			mmgrab(mm);
807 			/* but do not pin its memory */
808 			mmput(mm);
809 		}
810 	}
811 
812 	return mm;
813 }
814 
__mem_open(struct inode * inode,struct file * file,unsigned int mode)815 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
816 {
817 	struct mm_struct *mm = proc_mem_open(inode, mode);
818 
819 	if (IS_ERR(mm))
820 		return PTR_ERR(mm);
821 
822 	file->private_data = mm;
823 	return 0;
824 }
825 
mem_open(struct inode * inode,struct file * file)826 static int mem_open(struct inode *inode, struct file *file)
827 {
828 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
829 
830 	/* OK to pass negative loff_t, we can catch out-of-range */
831 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
832 
833 	return ret;
834 }
835 
mem_rw(struct file * file,char __user * buf,size_t count,loff_t * ppos,int write)836 static ssize_t mem_rw(struct file *file, char __user *buf,
837 			size_t count, loff_t *ppos, int write)
838 {
839 	struct mm_struct *mm = file->private_data;
840 	unsigned long addr = *ppos;
841 	ssize_t copied;
842 	char *page;
843 	unsigned int flags;
844 
845 	if (!mm)
846 		return 0;
847 
848 	page = (char *)__get_free_page(GFP_KERNEL);
849 	if (!page)
850 		return -ENOMEM;
851 
852 	copied = 0;
853 	if (!mmget_not_zero(mm))
854 		goto free;
855 
856 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
857 
858 	while (count > 0) {
859 		size_t this_len = min_t(size_t, count, PAGE_SIZE);
860 
861 		if (write && copy_from_user(page, buf, this_len)) {
862 			copied = -EFAULT;
863 			break;
864 		}
865 
866 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
867 		if (!this_len) {
868 			if (!copied)
869 				copied = -EIO;
870 			break;
871 		}
872 
873 		if (!write && copy_to_user(buf, page, this_len)) {
874 			copied = -EFAULT;
875 			break;
876 		}
877 
878 		buf += this_len;
879 		addr += this_len;
880 		copied += this_len;
881 		count -= this_len;
882 	}
883 	*ppos = addr;
884 
885 	mmput(mm);
886 free:
887 	free_page((unsigned long) page);
888 	return copied;
889 }
890 
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)891 static ssize_t mem_read(struct file *file, char __user *buf,
892 			size_t count, loff_t *ppos)
893 {
894 	return mem_rw(file, buf, count, ppos, 0);
895 }
896 
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)897 static ssize_t mem_write(struct file *file, const char __user *buf,
898 			 size_t count, loff_t *ppos)
899 {
900 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
901 }
902 
mem_lseek(struct file * file,loff_t offset,int orig)903 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
904 {
905 	loff_t ret = 0;
906 
907 	spin_lock(&file->f_lock);
908 	switch (orig) {
909 	case SEEK_CUR:
910 		offset += file->f_pos;
911 		/* fall through */
912 	case SEEK_SET:
913 		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
914 		if ((unsigned long long)offset >= -MAX_ERRNO)
915 			ret = -EOVERFLOW;
916 		break;
917 	default:
918 		ret = -EINVAL;
919 	}
920 
921 	if (!ret) {
922 		if (offset < 0 && !(unsigned_offsets(file))) {
923 			ret = -EINVAL;
924 		} else {
925 			file->f_pos = offset;
926 			ret = file->f_pos;
927 			force_successful_syscall_return();
928 		}
929 	}
930 
931 	spin_unlock(&file->f_lock);
932 	return ret;
933 }
934 
mem_release(struct inode * inode,struct file * file)935 static int mem_release(struct inode *inode, struct file *file)
936 {
937 	struct mm_struct *mm = file->private_data;
938 	if (mm)
939 		mmdrop(mm);
940 	return 0;
941 }
942 
943 static const struct file_operations proc_mem_operations = {
944 	.llseek		= mem_lseek,
945 	.read		= mem_read,
946 	.write		= mem_write,
947 	.open		= mem_open,
948 	.release	= mem_release,
949 };
950 
environ_open(struct inode * inode,struct file * file)951 static int environ_open(struct inode *inode, struct file *file)
952 {
953 	return __mem_open(inode, file, PTRACE_MODE_READ);
954 }
955 
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)956 static ssize_t environ_read(struct file *file, char __user *buf,
957 			size_t count, loff_t *ppos)
958 {
959 	char *page;
960 	unsigned long src = *ppos;
961 	int ret = 0;
962 	struct mm_struct *mm = file->private_data;
963 	unsigned long env_start, env_end;
964 
965 	/* Ensure the process spawned far enough to have an environment. */
966 	if (!mm || !mm->env_end)
967 		return 0;
968 
969 	page = (char *)__get_free_page(GFP_KERNEL);
970 	if (!page)
971 		return -ENOMEM;
972 
973 	ret = 0;
974 	if (!mmget_not_zero(mm))
975 		goto free;
976 
977 	spin_lock(&mm->arg_lock);
978 	env_start = mm->env_start;
979 	env_end = mm->env_end;
980 	spin_unlock(&mm->arg_lock);
981 
982 	while (count > 0) {
983 		size_t this_len, max_len;
984 		int retval;
985 
986 		if (src >= (env_end - env_start))
987 			break;
988 
989 		this_len = env_end - (env_start + src);
990 
991 		max_len = min_t(size_t, PAGE_SIZE, count);
992 		this_len = min(max_len, this_len);
993 
994 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
995 
996 		if (retval <= 0) {
997 			ret = retval;
998 			break;
999 		}
1000 
1001 		if (copy_to_user(buf, page, retval)) {
1002 			ret = -EFAULT;
1003 			break;
1004 		}
1005 
1006 		ret += retval;
1007 		src += retval;
1008 		buf += retval;
1009 		count -= retval;
1010 	}
1011 	*ppos = src;
1012 	mmput(mm);
1013 
1014 free:
1015 	free_page((unsigned long) page);
1016 	return ret;
1017 }
1018 
1019 static const struct file_operations proc_environ_operations = {
1020 	.open		= environ_open,
1021 	.read		= environ_read,
1022 	.llseek		= generic_file_llseek,
1023 	.release	= mem_release,
1024 };
1025 
auxv_open(struct inode * inode,struct file * file)1026 static int auxv_open(struct inode *inode, struct file *file)
1027 {
1028 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1029 }
1030 
auxv_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1031 static ssize_t auxv_read(struct file *file, char __user *buf,
1032 			size_t count, loff_t *ppos)
1033 {
1034 	struct mm_struct *mm = file->private_data;
1035 	unsigned int nwords = 0;
1036 
1037 	if (!mm)
1038 		return 0;
1039 	do {
1040 		nwords += 2;
1041 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1042 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1043 				       nwords * sizeof(mm->saved_auxv[0]));
1044 }
1045 
1046 static const struct file_operations proc_auxv_operations = {
1047 	.open		= auxv_open,
1048 	.read		= auxv_read,
1049 	.llseek		= generic_file_llseek,
1050 	.release	= mem_release,
1051 };
1052 
oom_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1053 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1054 			    loff_t *ppos)
1055 {
1056 	struct task_struct *task = get_proc_task(file_inode(file));
1057 	char buffer[PROC_NUMBUF];
1058 	int oom_adj = OOM_ADJUST_MIN;
1059 	size_t len;
1060 
1061 	if (!task)
1062 		return -ESRCH;
1063 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1064 		oom_adj = OOM_ADJUST_MAX;
1065 	else
1066 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1067 			  OOM_SCORE_ADJ_MAX;
1068 	put_task_struct(task);
1069 	if (oom_adj > OOM_ADJUST_MAX)
1070 		oom_adj = OOM_ADJUST_MAX;
1071 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1072 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1073 }
1074 
__set_oom_adj(struct file * file,int oom_adj,bool legacy)1075 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1076 {
1077 	struct mm_struct *mm = NULL;
1078 	struct task_struct *task;
1079 	int err = 0;
1080 
1081 	task = get_proc_task(file_inode(file));
1082 	if (!task)
1083 		return -ESRCH;
1084 
1085 	mutex_lock(&oom_adj_mutex);
1086 	if (legacy) {
1087 		if (oom_adj < task->signal->oom_score_adj &&
1088 				!capable(CAP_SYS_RESOURCE)) {
1089 			err = -EACCES;
1090 			goto err_unlock;
1091 		}
1092 		/*
1093 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1094 		 * /proc/pid/oom_score_adj instead.
1095 		 */
1096 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1097 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1098 			  task_pid_nr(task));
1099 	} else {
1100 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1101 				!capable(CAP_SYS_RESOURCE)) {
1102 			err = -EACCES;
1103 			goto err_unlock;
1104 		}
1105 	}
1106 
1107 	/*
1108 	 * Make sure we will check other processes sharing the mm if this is
1109 	 * not vfrok which wants its own oom_score_adj.
1110 	 * pin the mm so it doesn't go away and get reused after task_unlock
1111 	 */
1112 	if (!task->vfork_done) {
1113 		struct task_struct *p = find_lock_task_mm(task);
1114 
1115 		if (p) {
1116 			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1117 				mm = p->mm;
1118 				mmgrab(mm);
1119 			}
1120 			task_unlock(p);
1121 		}
1122 	}
1123 
1124 	task->signal->oom_score_adj = oom_adj;
1125 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1126 		task->signal->oom_score_adj_min = (short)oom_adj;
1127 	trace_oom_score_adj_update(task);
1128 
1129 	if (mm) {
1130 		struct task_struct *p;
1131 
1132 		rcu_read_lock();
1133 		for_each_process(p) {
1134 			if (same_thread_group(task, p))
1135 				continue;
1136 
1137 			/* do not touch kernel threads or the global init */
1138 			if (p->flags & PF_KTHREAD || is_global_init(p))
1139 				continue;
1140 
1141 			task_lock(p);
1142 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1143 				p->signal->oom_score_adj = oom_adj;
1144 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1145 					p->signal->oom_score_adj_min = (short)oom_adj;
1146 			}
1147 			task_unlock(p);
1148 		}
1149 		rcu_read_unlock();
1150 		mmdrop(mm);
1151 	}
1152 err_unlock:
1153 	mutex_unlock(&oom_adj_mutex);
1154 	put_task_struct(task);
1155 	return err;
1156 }
1157 
1158 /*
1159  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1160  * kernels.  The effective policy is defined by oom_score_adj, which has a
1161  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1162  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1163  * Processes that become oom disabled via oom_adj will still be oom disabled
1164  * with this implementation.
1165  *
1166  * oom_adj cannot be removed since existing userspace binaries use it.
1167  */
oom_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1168 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1169 			     size_t count, loff_t *ppos)
1170 {
1171 	char buffer[PROC_NUMBUF];
1172 	int oom_adj;
1173 	int err;
1174 
1175 	memset(buffer, 0, sizeof(buffer));
1176 	if (count > sizeof(buffer) - 1)
1177 		count = sizeof(buffer) - 1;
1178 	if (copy_from_user(buffer, buf, count)) {
1179 		err = -EFAULT;
1180 		goto out;
1181 	}
1182 
1183 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1184 	if (err)
1185 		goto out;
1186 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1187 	     oom_adj != OOM_DISABLE) {
1188 		err = -EINVAL;
1189 		goto out;
1190 	}
1191 
1192 	/*
1193 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1194 	 * value is always attainable.
1195 	 */
1196 	if (oom_adj == OOM_ADJUST_MAX)
1197 		oom_adj = OOM_SCORE_ADJ_MAX;
1198 	else
1199 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1200 
1201 	err = __set_oom_adj(file, oom_adj, true);
1202 out:
1203 	return err < 0 ? err : count;
1204 }
1205 
1206 static const struct file_operations proc_oom_adj_operations = {
1207 	.read		= oom_adj_read,
1208 	.write		= oom_adj_write,
1209 	.llseek		= generic_file_llseek,
1210 };
1211 
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1212 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1213 					size_t count, loff_t *ppos)
1214 {
1215 	struct task_struct *task = get_proc_task(file_inode(file));
1216 	char buffer[PROC_NUMBUF];
1217 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1218 	size_t len;
1219 
1220 	if (!task)
1221 		return -ESRCH;
1222 	oom_score_adj = task->signal->oom_score_adj;
1223 	put_task_struct(task);
1224 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1225 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1226 }
1227 
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1228 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1229 					size_t count, loff_t *ppos)
1230 {
1231 	char buffer[PROC_NUMBUF];
1232 	int oom_score_adj;
1233 	int err;
1234 
1235 	memset(buffer, 0, sizeof(buffer));
1236 	if (count > sizeof(buffer) - 1)
1237 		count = sizeof(buffer) - 1;
1238 	if (copy_from_user(buffer, buf, count)) {
1239 		err = -EFAULT;
1240 		goto out;
1241 	}
1242 
1243 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1244 	if (err)
1245 		goto out;
1246 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1247 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1248 		err = -EINVAL;
1249 		goto out;
1250 	}
1251 
1252 	err = __set_oom_adj(file, oom_score_adj, false);
1253 out:
1254 	return err < 0 ? err : count;
1255 }
1256 
1257 static const struct file_operations proc_oom_score_adj_operations = {
1258 	.read		= oom_score_adj_read,
1259 	.write		= oom_score_adj_write,
1260 	.llseek		= default_llseek,
1261 };
1262 
1263 #ifdef CONFIG_AUDIT
1264 #define TMPBUFLEN 11
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1265 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1266 				  size_t count, loff_t *ppos)
1267 {
1268 	struct inode * inode = file_inode(file);
1269 	struct task_struct *task = get_proc_task(inode);
1270 	ssize_t length;
1271 	char tmpbuf[TMPBUFLEN];
1272 
1273 	if (!task)
1274 		return -ESRCH;
1275 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1276 			   from_kuid(file->f_cred->user_ns,
1277 				     audit_get_loginuid(task)));
1278 	put_task_struct(task);
1279 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1280 }
1281 
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1282 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1283 				   size_t count, loff_t *ppos)
1284 {
1285 	struct inode * inode = file_inode(file);
1286 	uid_t loginuid;
1287 	kuid_t kloginuid;
1288 	int rv;
1289 
1290 	/* Don't let kthreads write their own loginuid */
1291 	if (current->flags & PF_KTHREAD)
1292 		return -EPERM;
1293 
1294 	rcu_read_lock();
1295 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1296 		rcu_read_unlock();
1297 		return -EPERM;
1298 	}
1299 	rcu_read_unlock();
1300 
1301 	if (*ppos != 0) {
1302 		/* No partial writes. */
1303 		return -EINVAL;
1304 	}
1305 
1306 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1307 	if (rv < 0)
1308 		return rv;
1309 
1310 	/* is userspace tring to explicitly UNSET the loginuid? */
1311 	if (loginuid == AUDIT_UID_UNSET) {
1312 		kloginuid = INVALID_UID;
1313 	} else {
1314 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1315 		if (!uid_valid(kloginuid))
1316 			return -EINVAL;
1317 	}
1318 
1319 	rv = audit_set_loginuid(kloginuid);
1320 	if (rv < 0)
1321 		return rv;
1322 	return count;
1323 }
1324 
1325 static const struct file_operations proc_loginuid_operations = {
1326 	.read		= proc_loginuid_read,
1327 	.write		= proc_loginuid_write,
1328 	.llseek		= generic_file_llseek,
1329 };
1330 
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1331 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1332 				  size_t count, loff_t *ppos)
1333 {
1334 	struct inode * inode = file_inode(file);
1335 	struct task_struct *task = get_proc_task(inode);
1336 	ssize_t length;
1337 	char tmpbuf[TMPBUFLEN];
1338 
1339 	if (!task)
1340 		return -ESRCH;
1341 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1342 				audit_get_sessionid(task));
1343 	put_task_struct(task);
1344 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1345 }
1346 
1347 static const struct file_operations proc_sessionid_operations = {
1348 	.read		= proc_sessionid_read,
1349 	.llseek		= generic_file_llseek,
1350 };
1351 #endif
1352 
1353 #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1354 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1355 				      size_t count, loff_t *ppos)
1356 {
1357 	struct task_struct *task = get_proc_task(file_inode(file));
1358 	char buffer[PROC_NUMBUF];
1359 	size_t len;
1360 	int make_it_fail;
1361 
1362 	if (!task)
1363 		return -ESRCH;
1364 	make_it_fail = task->make_it_fail;
1365 	put_task_struct(task);
1366 
1367 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1368 
1369 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1370 }
1371 
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1372 static ssize_t proc_fault_inject_write(struct file * file,
1373 			const char __user * buf, size_t count, loff_t *ppos)
1374 {
1375 	struct task_struct *task;
1376 	char buffer[PROC_NUMBUF];
1377 	int make_it_fail;
1378 	int rv;
1379 
1380 	if (!capable(CAP_SYS_RESOURCE))
1381 		return -EPERM;
1382 	memset(buffer, 0, sizeof(buffer));
1383 	if (count > sizeof(buffer) - 1)
1384 		count = sizeof(buffer) - 1;
1385 	if (copy_from_user(buffer, buf, count))
1386 		return -EFAULT;
1387 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1388 	if (rv < 0)
1389 		return rv;
1390 	if (make_it_fail < 0 || make_it_fail > 1)
1391 		return -EINVAL;
1392 
1393 	task = get_proc_task(file_inode(file));
1394 	if (!task)
1395 		return -ESRCH;
1396 	task->make_it_fail = make_it_fail;
1397 	put_task_struct(task);
1398 
1399 	return count;
1400 }
1401 
1402 static const struct file_operations proc_fault_inject_operations = {
1403 	.read		= proc_fault_inject_read,
1404 	.write		= proc_fault_inject_write,
1405 	.llseek		= generic_file_llseek,
1406 };
1407 
proc_fail_nth_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1408 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1409 				   size_t count, loff_t *ppos)
1410 {
1411 	struct task_struct *task;
1412 	int err;
1413 	unsigned int n;
1414 
1415 	err = kstrtouint_from_user(buf, count, 0, &n);
1416 	if (err)
1417 		return err;
1418 
1419 	task = get_proc_task(file_inode(file));
1420 	if (!task)
1421 		return -ESRCH;
1422 	task->fail_nth = n;
1423 	put_task_struct(task);
1424 
1425 	return count;
1426 }
1427 
proc_fail_nth_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1428 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1429 				  size_t count, loff_t *ppos)
1430 {
1431 	struct task_struct *task;
1432 	char numbuf[PROC_NUMBUF];
1433 	ssize_t len;
1434 
1435 	task = get_proc_task(file_inode(file));
1436 	if (!task)
1437 		return -ESRCH;
1438 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1439 	put_task_struct(task);
1440 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1441 }
1442 
1443 static const struct file_operations proc_fail_nth_operations = {
1444 	.read		= proc_fail_nth_read,
1445 	.write		= proc_fail_nth_write,
1446 };
1447 #endif
1448 
1449 
1450 #ifdef CONFIG_SCHED_DEBUG
1451 /*
1452  * Print out various scheduling related per-task fields:
1453  */
sched_show(struct seq_file * m,void * v)1454 static int sched_show(struct seq_file *m, void *v)
1455 {
1456 	struct inode *inode = m->private;
1457 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1458 	struct task_struct *p;
1459 
1460 	p = get_proc_task(inode);
1461 	if (!p)
1462 		return -ESRCH;
1463 	proc_sched_show_task(p, ns, m);
1464 
1465 	put_task_struct(p);
1466 
1467 	return 0;
1468 }
1469 
1470 static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1471 sched_write(struct file *file, const char __user *buf,
1472 	    size_t count, loff_t *offset)
1473 {
1474 	struct inode *inode = file_inode(file);
1475 	struct task_struct *p;
1476 
1477 	p = get_proc_task(inode);
1478 	if (!p)
1479 		return -ESRCH;
1480 	proc_sched_set_task(p);
1481 
1482 	put_task_struct(p);
1483 
1484 	return count;
1485 }
1486 
sched_open(struct inode * inode,struct file * filp)1487 static int sched_open(struct inode *inode, struct file *filp)
1488 {
1489 	return single_open(filp, sched_show, inode);
1490 }
1491 
1492 static const struct file_operations proc_pid_sched_operations = {
1493 	.open		= sched_open,
1494 	.read		= seq_read,
1495 	.write		= sched_write,
1496 	.llseek		= seq_lseek,
1497 	.release	= single_release,
1498 };
1499 
1500 #endif
1501 
1502 #ifdef CONFIG_SCHED_RTG_DEBUG
sched_group_id_show(struct seq_file * m,void * v)1503 static int sched_group_id_show(struct seq_file *m, void *v)
1504 {
1505 	struct inode *inode = m->private;
1506 	struct task_struct *p;
1507 
1508 	p = get_proc_task(inode);
1509 	if (!p)
1510 		return -ESRCH;
1511 
1512 	seq_printf(m, "%d\n", sched_get_group_id(p));
1513 
1514 	put_task_struct(p);
1515 
1516 	return 0;
1517 }
1518 
1519 static ssize_t
sched_group_id_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1520 sched_group_id_write(struct file *file, const char __user *buf,
1521 	    size_t count, loff_t *offset)
1522 {
1523 	struct inode *inode = file_inode(file);
1524 	struct task_struct *p;
1525 	char buffer[PROC_NUMBUF];
1526 	int group_id, err;
1527 
1528 	memset(buffer, 0, sizeof(buffer));
1529 	if (count > sizeof(buffer) - 1)
1530 		count = sizeof(buffer) - 1;
1531 	if (copy_from_user(buffer, buf, count)) {
1532 		err = -EFAULT;
1533 		goto out;
1534 	}
1535 
1536 	err = kstrtoint(strstrip(buffer), 0, &group_id);
1537 	if (err)
1538 		goto out;
1539 
1540 	p = get_proc_task(inode);
1541 	if (!p)
1542 		return -ESRCH;
1543 
1544 	err = sched_set_group_id(p, group_id);
1545 
1546 	put_task_struct(p);
1547 
1548 out:
1549 	return err < 0 ? err : count;
1550 }
1551 
sched_group_id_open(struct inode * inode,struct file * filp)1552 static int sched_group_id_open(struct inode *inode, struct file *filp)
1553 {
1554 	return single_open(filp, sched_group_id_show, inode);
1555 }
1556 
1557 static const struct file_operations proc_pid_sched_group_id_operations = {
1558 	.open		= sched_group_id_open,
1559 	.read		= seq_read,
1560 	.write		= sched_group_id_write,
1561 	.llseek		= seq_lseek,
1562 	.release	= single_release,
1563 };
1564 #endif	/* CONFIG_SCHED_RTG_DEBUG */
1565 
1566 #ifdef CONFIG_SCHED_AUTOGROUP
1567 /*
1568  * Print out autogroup related information:
1569  */
sched_autogroup_show(struct seq_file * m,void * v)1570 static int sched_autogroup_show(struct seq_file *m, void *v)
1571 {
1572 	struct inode *inode = m->private;
1573 	struct task_struct *p;
1574 
1575 	p = get_proc_task(inode);
1576 	if (!p)
1577 		return -ESRCH;
1578 	proc_sched_autogroup_show_task(p, m);
1579 
1580 	put_task_struct(p);
1581 
1582 	return 0;
1583 }
1584 
1585 static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1586 sched_autogroup_write(struct file *file, const char __user *buf,
1587 	    size_t count, loff_t *offset)
1588 {
1589 	struct inode *inode = file_inode(file);
1590 	struct task_struct *p;
1591 	char buffer[PROC_NUMBUF];
1592 	int nice;
1593 	int err;
1594 
1595 	memset(buffer, 0, sizeof(buffer));
1596 	if (count > sizeof(buffer) - 1)
1597 		count = sizeof(buffer) - 1;
1598 	if (copy_from_user(buffer, buf, count))
1599 		return -EFAULT;
1600 
1601 	err = kstrtoint(strstrip(buffer), 0, &nice);
1602 	if (err < 0)
1603 		return err;
1604 
1605 	p = get_proc_task(inode);
1606 	if (!p)
1607 		return -ESRCH;
1608 
1609 	err = proc_sched_autogroup_set_nice(p, nice);
1610 	if (err)
1611 		count = err;
1612 
1613 	put_task_struct(p);
1614 
1615 	return count;
1616 }
1617 
sched_autogroup_open(struct inode * inode,struct file * filp)1618 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1619 {
1620 	int ret;
1621 
1622 	ret = single_open(filp, sched_autogroup_show, NULL);
1623 	if (!ret) {
1624 		struct seq_file *m = filp->private_data;
1625 
1626 		m->private = inode;
1627 	}
1628 	return ret;
1629 }
1630 
1631 static const struct file_operations proc_pid_sched_autogroup_operations = {
1632 	.open		= sched_autogroup_open,
1633 	.read		= seq_read,
1634 	.write		= sched_autogroup_write,
1635 	.llseek		= seq_lseek,
1636 	.release	= single_release,
1637 };
1638 
1639 #endif /* CONFIG_SCHED_AUTOGROUP */
1640 
1641 #ifdef CONFIG_SCHED_WALT
sched_init_task_load_show(struct seq_file * m,void * v)1642 static int sched_init_task_load_show(struct seq_file *m, void *v)
1643 {
1644 	struct inode *inode = m->private;
1645 	struct task_struct *p;
1646 
1647 	p = get_proc_task(inode);
1648 	if (!p)
1649 		return -ESRCH;
1650 
1651 	seq_printf(m, "%d\n", sched_get_init_task_load(p));
1652 
1653 	put_task_struct(p);
1654 
1655 	return 0;
1656 }
1657 
1658 static ssize_t
sched_init_task_load_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1659 sched_init_task_load_write(struct file *file, const char __user *buf,
1660 	    size_t count, loff_t *offset)
1661 {
1662 	struct inode *inode = file_inode(file);
1663 	struct task_struct *p;
1664 	char buffer[PROC_NUMBUF];
1665 	int init_task_load, err;
1666 
1667 	memset(buffer, 0, sizeof(buffer));
1668 	if (count > sizeof(buffer) - 1)
1669 		count = sizeof(buffer) - 1;
1670 	if (copy_from_user(buffer, buf, count)) {
1671 		err = -EFAULT;
1672 		goto out;
1673 	}
1674 
1675 	err = kstrtoint(strstrip(buffer), 0, &init_task_load);
1676 	if (err)
1677 		goto out;
1678 
1679 	p = get_proc_task(inode);
1680 	if (!p)
1681 		return -ESRCH;
1682 
1683 	err = sched_set_init_task_load(p, init_task_load);
1684 
1685 	put_task_struct(p);
1686 
1687 out:
1688 	return err < 0 ? err : count;
1689 }
1690 
sched_init_task_load_open(struct inode * inode,struct file * filp)1691 static int sched_init_task_load_open(struct inode *inode, struct file *filp)
1692 {
1693 	return single_open(filp, sched_init_task_load_show, inode);
1694 }
1695 
1696 static const struct file_operations proc_pid_sched_init_task_load_operations = {
1697 	.open		= sched_init_task_load_open,
1698 	.read		= seq_read,
1699 	.write		= sched_init_task_load_write,
1700 	.llseek		= seq_lseek,
1701 	.release	= single_release,
1702 };
1703 #endif	/* CONFIG_SCHED_WALT */
1704 
1705 #ifdef CONFIG_TIME_NS
timens_offsets_show(struct seq_file * m,void * v)1706 static int timens_offsets_show(struct seq_file *m, void *v)
1707 {
1708 	struct task_struct *p;
1709 
1710 	p = get_proc_task(file_inode(m->file));
1711 	if (!p)
1712 		return -ESRCH;
1713 	proc_timens_show_offsets(p, m);
1714 
1715 	put_task_struct(p);
1716 
1717 	return 0;
1718 }
1719 
timens_offsets_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1720 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1721 				    size_t count, loff_t *ppos)
1722 {
1723 	struct inode *inode = file_inode(file);
1724 	struct proc_timens_offset offsets[2];
1725 	char *kbuf = NULL, *pos, *next_line;
1726 	struct task_struct *p;
1727 	int ret, noffsets;
1728 
1729 	/* Only allow < page size writes at the beginning of the file */
1730 	if ((*ppos != 0) || (count >= PAGE_SIZE))
1731 		return -EINVAL;
1732 
1733 	/* Slurp in the user data */
1734 	kbuf = memdup_user_nul(buf, count);
1735 	if (IS_ERR(kbuf))
1736 		return PTR_ERR(kbuf);
1737 
1738 	/* Parse the user data */
1739 	ret = -EINVAL;
1740 	noffsets = 0;
1741 	for (pos = kbuf; pos; pos = next_line) {
1742 		struct proc_timens_offset *off = &offsets[noffsets];
1743 		char clock[10];
1744 		int err;
1745 
1746 		/* Find the end of line and ensure we don't look past it */
1747 		next_line = strchr(pos, '\n');
1748 		if (next_line) {
1749 			*next_line = '\0';
1750 			next_line++;
1751 			if (*next_line == '\0')
1752 				next_line = NULL;
1753 		}
1754 
1755 		err = sscanf(pos, "%9s %lld %lu", clock,
1756 				&off->val.tv_sec, &off->val.tv_nsec);
1757 		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1758 			goto out;
1759 
1760 		clock[sizeof(clock) - 1] = 0;
1761 		if (strcmp(clock, "monotonic") == 0 ||
1762 		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1763 			off->clockid = CLOCK_MONOTONIC;
1764 		else if (strcmp(clock, "boottime") == 0 ||
1765 			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1766 			off->clockid = CLOCK_BOOTTIME;
1767 		else
1768 			goto out;
1769 
1770 		noffsets++;
1771 		if (noffsets == ARRAY_SIZE(offsets)) {
1772 			if (next_line)
1773 				count = next_line - kbuf;
1774 			break;
1775 		}
1776 	}
1777 
1778 	ret = -ESRCH;
1779 	p = get_proc_task(inode);
1780 	if (!p)
1781 		goto out;
1782 	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1783 	put_task_struct(p);
1784 	if (ret)
1785 		goto out;
1786 
1787 	ret = count;
1788 out:
1789 	kfree(kbuf);
1790 	return ret;
1791 }
1792 
timens_offsets_open(struct inode * inode,struct file * filp)1793 static int timens_offsets_open(struct inode *inode, struct file *filp)
1794 {
1795 	return single_open(filp, timens_offsets_show, inode);
1796 }
1797 
1798 static const struct file_operations proc_timens_offsets_operations = {
1799 	.open		= timens_offsets_open,
1800 	.read		= seq_read,
1801 	.write		= timens_offsets_write,
1802 	.llseek		= seq_lseek,
1803 	.release	= single_release,
1804 };
1805 #endif /* CONFIG_TIME_NS */
1806 
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1807 static ssize_t comm_write(struct file *file, const char __user *buf,
1808 				size_t count, loff_t *offset)
1809 {
1810 	struct inode *inode = file_inode(file);
1811 	struct task_struct *p;
1812 	char buffer[TASK_COMM_LEN];
1813 	const size_t maxlen = sizeof(buffer) - 1;
1814 
1815 	memset(buffer, 0, sizeof(buffer));
1816 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1817 		return -EFAULT;
1818 
1819 	p = get_proc_task(inode);
1820 	if (!p)
1821 		return -ESRCH;
1822 
1823 	if (same_thread_group(current, p))
1824 		set_task_comm(p, buffer);
1825 	else
1826 		count = -EINVAL;
1827 
1828 	put_task_struct(p);
1829 
1830 	return count;
1831 }
1832 
comm_show(struct seq_file * m,void * v)1833 static int comm_show(struct seq_file *m, void *v)
1834 {
1835 	struct inode *inode = m->private;
1836 	struct task_struct *p;
1837 
1838 	p = get_proc_task(inode);
1839 	if (!p)
1840 		return -ESRCH;
1841 
1842 	proc_task_name(m, p, false);
1843 	seq_putc(m, '\n');
1844 
1845 	put_task_struct(p);
1846 
1847 	return 0;
1848 }
1849 
comm_open(struct inode * inode,struct file * filp)1850 static int comm_open(struct inode *inode, struct file *filp)
1851 {
1852 	return single_open(filp, comm_show, inode);
1853 }
1854 
1855 static const struct file_operations proc_pid_set_comm_operations = {
1856 	.open		= comm_open,
1857 	.read		= seq_read,
1858 	.write		= comm_write,
1859 	.llseek		= seq_lseek,
1860 	.release	= single_release,
1861 };
1862 
proc_exe_link(struct dentry * dentry,struct path * exe_path)1863 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1864 {
1865 	struct task_struct *task;
1866 	struct file *exe_file;
1867 
1868 	task = get_proc_task(d_inode(dentry));
1869 	if (!task)
1870 		return -ENOENT;
1871 	exe_file = get_task_exe_file(task);
1872 	put_task_struct(task);
1873 	if (exe_file) {
1874 		*exe_path = exe_file->f_path;
1875 		path_get(&exe_file->f_path);
1876 		fput(exe_file);
1877 		return 0;
1878 	} else
1879 		return -ENOENT;
1880 }
1881 
proc_pid_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1882 static const char *proc_pid_get_link(struct dentry *dentry,
1883 				     struct inode *inode,
1884 				     struct delayed_call *done)
1885 {
1886 	struct path path;
1887 	int error = -EACCES;
1888 
1889 	if (!dentry)
1890 		return ERR_PTR(-ECHILD);
1891 
1892 	/* Are we allowed to snoop on the tasks file descriptors? */
1893 	if (!proc_fd_access_allowed(inode))
1894 		goto out;
1895 
1896 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1897 	if (error)
1898 		goto out;
1899 
1900 	error = nd_jump_link(&path);
1901 out:
1902 	return ERR_PTR(error);
1903 }
1904 
do_proc_readlink(struct path * path,char __user * buffer,int buflen)1905 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1906 {
1907 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1908 	char *pathname;
1909 	int len;
1910 
1911 	if (!tmp)
1912 		return -ENOMEM;
1913 
1914 	pathname = d_path(path, tmp, PAGE_SIZE);
1915 	len = PTR_ERR(pathname);
1916 	if (IS_ERR(pathname))
1917 		goto out;
1918 	len = tmp + PAGE_SIZE - 1 - pathname;
1919 
1920 	if (len > buflen)
1921 		len = buflen;
1922 	if (copy_to_user(buffer, pathname, len))
1923 		len = -EFAULT;
1924  out:
1925 	free_page((unsigned long)tmp);
1926 	return len;
1927 }
1928 
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)1929 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1930 {
1931 	int error = -EACCES;
1932 	struct inode *inode = d_inode(dentry);
1933 	struct path path;
1934 
1935 	/* Are we allowed to snoop on the tasks file descriptors? */
1936 	if (!proc_fd_access_allowed(inode))
1937 		goto out;
1938 
1939 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1940 	if (error)
1941 		goto out;
1942 
1943 	error = do_proc_readlink(&path, buffer, buflen);
1944 	path_put(&path);
1945 out:
1946 	return error;
1947 }
1948 
1949 const struct inode_operations proc_pid_link_inode_operations = {
1950 	.readlink	= proc_pid_readlink,
1951 	.get_link	= proc_pid_get_link,
1952 	.setattr	= proc_setattr,
1953 };
1954 
1955 
1956 /* building an inode */
1957 
task_dump_owner(struct task_struct * task,umode_t mode,kuid_t * ruid,kgid_t * rgid)1958 void task_dump_owner(struct task_struct *task, umode_t mode,
1959 		     kuid_t *ruid, kgid_t *rgid)
1960 {
1961 	/* Depending on the state of dumpable compute who should own a
1962 	 * proc file for a task.
1963 	 */
1964 	const struct cred *cred;
1965 	kuid_t uid;
1966 	kgid_t gid;
1967 
1968 	if (unlikely(task->flags & PF_KTHREAD)) {
1969 		*ruid = GLOBAL_ROOT_UID;
1970 		*rgid = GLOBAL_ROOT_GID;
1971 		return;
1972 	}
1973 
1974 	/* Default to the tasks effective ownership */
1975 	rcu_read_lock();
1976 	cred = __task_cred(task);
1977 	uid = cred->euid;
1978 	gid = cred->egid;
1979 	rcu_read_unlock();
1980 
1981 	/*
1982 	 * Before the /proc/pid/status file was created the only way to read
1983 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1984 	 * /proc/pid/status is slow enough that procps and other packages
1985 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1986 	 * made this apply to all per process world readable and executable
1987 	 * directories.
1988 	 */
1989 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1990 		struct mm_struct *mm;
1991 		task_lock(task);
1992 		mm = task->mm;
1993 		/* Make non-dumpable tasks owned by some root */
1994 		if (mm) {
1995 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1996 				struct user_namespace *user_ns = mm->user_ns;
1997 
1998 				uid = make_kuid(user_ns, 0);
1999 				if (!uid_valid(uid))
2000 					uid = GLOBAL_ROOT_UID;
2001 
2002 				gid = make_kgid(user_ns, 0);
2003 				if (!gid_valid(gid))
2004 					gid = GLOBAL_ROOT_GID;
2005 			}
2006 		} else {
2007 			uid = GLOBAL_ROOT_UID;
2008 			gid = GLOBAL_ROOT_GID;
2009 		}
2010 		task_unlock(task);
2011 	}
2012 	*ruid = uid;
2013 	*rgid = gid;
2014 }
2015 
proc_pid_evict_inode(struct proc_inode * ei)2016 void proc_pid_evict_inode(struct proc_inode *ei)
2017 {
2018 	struct pid *pid = ei->pid;
2019 
2020 	if (S_ISDIR(ei->vfs_inode.i_mode)) {
2021 		spin_lock(&pid->lock);
2022 		hlist_del_init_rcu(&ei->sibling_inodes);
2023 		spin_unlock(&pid->lock);
2024 	}
2025 
2026 	put_pid(pid);
2027 }
2028 
proc_pid_make_inode(struct super_block * sb,struct task_struct * task,umode_t mode)2029 struct inode *proc_pid_make_inode(struct super_block * sb,
2030 				  struct task_struct *task, umode_t mode)
2031 {
2032 	struct inode * inode;
2033 	struct proc_inode *ei;
2034 	struct pid *pid;
2035 
2036 	/* We need a new inode */
2037 
2038 	inode = new_inode(sb);
2039 	if (!inode)
2040 		goto out;
2041 
2042 	/* Common stuff */
2043 	ei = PROC_I(inode);
2044 	inode->i_mode = mode;
2045 	inode->i_ino = get_next_ino();
2046 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
2047 	inode->i_op = &proc_def_inode_operations;
2048 
2049 	/*
2050 	 * grab the reference to task.
2051 	 */
2052 	pid = get_task_pid(task, PIDTYPE_PID);
2053 	if (!pid)
2054 		goto out_unlock;
2055 
2056 	/* Let the pid remember us for quick removal */
2057 	ei->pid = pid;
2058 	if (S_ISDIR(mode)) {
2059 		spin_lock(&pid->lock);
2060 		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2061 		spin_unlock(&pid->lock);
2062 	}
2063 
2064 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2065 	security_task_to_inode(task, inode);
2066 
2067 out:
2068 	return inode;
2069 
2070 out_unlock:
2071 	iput(inode);
2072 	return NULL;
2073 }
2074 
pid_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)2075 int pid_getattr(const struct path *path, struct kstat *stat,
2076 		u32 request_mask, unsigned int query_flags)
2077 {
2078 	struct inode *inode = d_inode(path->dentry);
2079 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2080 	struct task_struct *task;
2081 
2082 	generic_fillattr(inode, stat);
2083 
2084 	stat->uid = GLOBAL_ROOT_UID;
2085 	stat->gid = GLOBAL_ROOT_GID;
2086 	rcu_read_lock();
2087 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2088 	if (task) {
2089 		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2090 			rcu_read_unlock();
2091 			/*
2092 			 * This doesn't prevent learning whether PID exists,
2093 			 * it only makes getattr() consistent with readdir().
2094 			 */
2095 			return -ENOENT;
2096 		}
2097 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
2098 	}
2099 	rcu_read_unlock();
2100 	return 0;
2101 }
2102 
2103 /* dentry stuff */
2104 
2105 /*
2106  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2107  */
pid_update_inode(struct task_struct * task,struct inode * inode)2108 void pid_update_inode(struct task_struct *task, struct inode *inode)
2109 {
2110 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2111 
2112 	inode->i_mode &= ~(S_ISUID | S_ISGID);
2113 	security_task_to_inode(task, inode);
2114 }
2115 
2116 /*
2117  * Rewrite the inode's ownerships here because the owning task may have
2118  * performed a setuid(), etc.
2119  *
2120  */
pid_revalidate(struct dentry * dentry,unsigned int flags)2121 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2122 {
2123 	struct inode *inode;
2124 	struct task_struct *task;
2125 
2126 	if (flags & LOOKUP_RCU)
2127 		return -ECHILD;
2128 
2129 	inode = d_inode(dentry);
2130 	task = get_proc_task(inode);
2131 
2132 	if (task) {
2133 		pid_update_inode(task, inode);
2134 		put_task_struct(task);
2135 		return 1;
2136 	}
2137 	return 0;
2138 }
2139 
proc_inode_is_dead(struct inode * inode)2140 static inline bool proc_inode_is_dead(struct inode *inode)
2141 {
2142 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2143 }
2144 
pid_delete_dentry(const struct dentry * dentry)2145 int pid_delete_dentry(const struct dentry *dentry)
2146 {
2147 	/* Is the task we represent dead?
2148 	 * If so, then don't put the dentry on the lru list,
2149 	 * kill it immediately.
2150 	 */
2151 	return proc_inode_is_dead(d_inode(dentry));
2152 }
2153 
2154 const struct dentry_operations pid_dentry_operations =
2155 {
2156 	.d_revalidate	= pid_revalidate,
2157 	.d_delete	= pid_delete_dentry,
2158 };
2159 
2160 /* Lookups */
2161 
2162 /*
2163  * Fill a directory entry.
2164  *
2165  * If possible create the dcache entry and derive our inode number and
2166  * file type from dcache entry.
2167  *
2168  * Since all of the proc inode numbers are dynamically generated, the inode
2169  * numbers do not exist until the inode is cache.  This means creating the
2170  * the dcache entry in readdir is necessary to keep the inode numbers
2171  * reported by readdir in sync with the inode numbers reported
2172  * by stat.
2173  */
proc_fill_cache(struct file * file,struct dir_context * ctx,const char * name,unsigned int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)2174 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2175 	const char *name, unsigned int len,
2176 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2177 {
2178 	struct dentry *child, *dir = file->f_path.dentry;
2179 	struct qstr qname = QSTR_INIT(name, len);
2180 	struct inode *inode;
2181 	unsigned type = DT_UNKNOWN;
2182 	ino_t ino = 1;
2183 
2184 	child = d_hash_and_lookup(dir, &qname);
2185 	if (!child) {
2186 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2187 		child = d_alloc_parallel(dir, &qname, &wq);
2188 		if (IS_ERR(child))
2189 			goto end_instantiate;
2190 		if (d_in_lookup(child)) {
2191 			struct dentry *res;
2192 			res = instantiate(child, task, ptr);
2193 			d_lookup_done(child);
2194 			if (unlikely(res)) {
2195 				dput(child);
2196 				child = res;
2197 				if (IS_ERR(child))
2198 					goto end_instantiate;
2199 			}
2200 		}
2201 	}
2202 	inode = d_inode(child);
2203 	ino = inode->i_ino;
2204 	type = inode->i_mode >> 12;
2205 	dput(child);
2206 end_instantiate:
2207 	return dir_emit(ctx, name, len, ino, type);
2208 }
2209 
2210 /*
2211  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2212  * which represent vma start and end addresses.
2213  */
dname_to_vma_addr(struct dentry * dentry,unsigned long * start,unsigned long * end)2214 static int dname_to_vma_addr(struct dentry *dentry,
2215 			     unsigned long *start, unsigned long *end)
2216 {
2217 	const char *str = dentry->d_name.name;
2218 	unsigned long long sval, eval;
2219 	unsigned int len;
2220 
2221 	if (str[0] == '0' && str[1] != '-')
2222 		return -EINVAL;
2223 	len = _parse_integer(str, 16, &sval);
2224 	if (len & KSTRTOX_OVERFLOW)
2225 		return -EINVAL;
2226 	if (sval != (unsigned long)sval)
2227 		return -EINVAL;
2228 	str += len;
2229 
2230 	if (*str != '-')
2231 		return -EINVAL;
2232 	str++;
2233 
2234 	if (str[0] == '0' && str[1])
2235 		return -EINVAL;
2236 	len = _parse_integer(str, 16, &eval);
2237 	if (len & KSTRTOX_OVERFLOW)
2238 		return -EINVAL;
2239 	if (eval != (unsigned long)eval)
2240 		return -EINVAL;
2241 	str += len;
2242 
2243 	if (*str != '\0')
2244 		return -EINVAL;
2245 
2246 	*start = sval;
2247 	*end = eval;
2248 
2249 	return 0;
2250 }
2251 
map_files_d_revalidate(struct dentry * dentry,unsigned int flags)2252 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2253 {
2254 	unsigned long vm_start, vm_end;
2255 	bool exact_vma_exists = false;
2256 	struct mm_struct *mm = NULL;
2257 	struct task_struct *task;
2258 	struct inode *inode;
2259 	int status = 0;
2260 
2261 	if (flags & LOOKUP_RCU)
2262 		return -ECHILD;
2263 
2264 	inode = d_inode(dentry);
2265 	task = get_proc_task(inode);
2266 	if (!task)
2267 		goto out_notask;
2268 
2269 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2270 	if (IS_ERR_OR_NULL(mm))
2271 		goto out;
2272 
2273 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2274 		status = mmap_read_lock_killable(mm);
2275 		if (!status) {
2276 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2277 							    vm_end);
2278 			mmap_read_unlock(mm);
2279 		}
2280 	}
2281 
2282 	mmput(mm);
2283 
2284 	if (exact_vma_exists) {
2285 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2286 
2287 		security_task_to_inode(task, inode);
2288 		status = 1;
2289 	}
2290 
2291 out:
2292 	put_task_struct(task);
2293 
2294 out_notask:
2295 	return status;
2296 }
2297 
2298 static const struct dentry_operations tid_map_files_dentry_operations = {
2299 	.d_revalidate	= map_files_d_revalidate,
2300 	.d_delete	= pid_delete_dentry,
2301 };
2302 
map_files_get_link(struct dentry * dentry,struct path * path)2303 static int map_files_get_link(struct dentry *dentry, struct path *path)
2304 {
2305 	unsigned long vm_start, vm_end;
2306 	struct vm_area_struct *vma;
2307 	struct task_struct *task;
2308 	struct mm_struct *mm;
2309 	int rc;
2310 
2311 	rc = -ENOENT;
2312 	task = get_proc_task(d_inode(dentry));
2313 	if (!task)
2314 		goto out;
2315 
2316 	mm = get_task_mm(task);
2317 	put_task_struct(task);
2318 	if (!mm)
2319 		goto out;
2320 
2321 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2322 	if (rc)
2323 		goto out_mmput;
2324 
2325 	rc = mmap_read_lock_killable(mm);
2326 	if (rc)
2327 		goto out_mmput;
2328 
2329 	rc = -ENOENT;
2330 	vma = find_exact_vma(mm, vm_start, vm_end);
2331 	if (vma && vma->vm_file) {
2332 		*path = vma->vm_file->f_path;
2333 		path_get(path);
2334 		rc = 0;
2335 	}
2336 	mmap_read_unlock(mm);
2337 
2338 out_mmput:
2339 	mmput(mm);
2340 out:
2341 	return rc;
2342 }
2343 
2344 struct map_files_info {
2345 	unsigned long	start;
2346 	unsigned long	end;
2347 	fmode_t		mode;
2348 };
2349 
2350 /*
2351  * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2352  * to concerns about how the symlinks may be used to bypass permissions on
2353  * ancestor directories in the path to the file in question.
2354  */
2355 static const char *
proc_map_files_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)2356 proc_map_files_get_link(struct dentry *dentry,
2357 			struct inode *inode,
2358 		        struct delayed_call *done)
2359 {
2360 	if (!checkpoint_restore_ns_capable(&init_user_ns))
2361 		return ERR_PTR(-EPERM);
2362 
2363 	return proc_pid_get_link(dentry, inode, done);
2364 }
2365 
2366 /*
2367  * Identical to proc_pid_link_inode_operations except for get_link()
2368  */
2369 static const struct inode_operations proc_map_files_link_inode_operations = {
2370 	.readlink	= proc_pid_readlink,
2371 	.get_link	= proc_map_files_get_link,
2372 	.setattr	= proc_setattr,
2373 };
2374 
2375 static struct dentry *
proc_map_files_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2376 proc_map_files_instantiate(struct dentry *dentry,
2377 			   struct task_struct *task, const void *ptr)
2378 {
2379 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2380 	struct proc_inode *ei;
2381 	struct inode *inode;
2382 
2383 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2384 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2385 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2386 	if (!inode)
2387 		return ERR_PTR(-ENOENT);
2388 
2389 	ei = PROC_I(inode);
2390 	ei->op.proc_get_link = map_files_get_link;
2391 
2392 	inode->i_op = &proc_map_files_link_inode_operations;
2393 	inode->i_size = 64;
2394 
2395 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2396 	return d_splice_alias(inode, dentry);
2397 }
2398 
proc_map_files_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2399 static struct dentry *proc_map_files_lookup(struct inode *dir,
2400 		struct dentry *dentry, unsigned int flags)
2401 {
2402 	unsigned long vm_start, vm_end;
2403 	struct vm_area_struct *vma;
2404 	struct task_struct *task;
2405 	struct dentry *result;
2406 	struct mm_struct *mm;
2407 
2408 	result = ERR_PTR(-ENOENT);
2409 	task = get_proc_task(dir);
2410 	if (!task)
2411 		goto out;
2412 
2413 	result = ERR_PTR(-EACCES);
2414 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2415 		goto out_put_task;
2416 
2417 	result = ERR_PTR(-ENOENT);
2418 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2419 		goto out_put_task;
2420 
2421 	mm = get_task_mm(task);
2422 	if (!mm)
2423 		goto out_put_task;
2424 
2425 	result = ERR_PTR(-EINTR);
2426 	if (mmap_read_lock_killable(mm))
2427 		goto out_put_mm;
2428 
2429 	result = ERR_PTR(-ENOENT);
2430 	vma = find_exact_vma(mm, vm_start, vm_end);
2431 	if (!vma)
2432 		goto out_no_vma;
2433 
2434 	if (vma->vm_file)
2435 		result = proc_map_files_instantiate(dentry, task,
2436 				(void *)(unsigned long)vma->vm_file->f_mode);
2437 
2438 out_no_vma:
2439 	mmap_read_unlock(mm);
2440 out_put_mm:
2441 	mmput(mm);
2442 out_put_task:
2443 	put_task_struct(task);
2444 out:
2445 	return result;
2446 }
2447 
2448 static const struct inode_operations proc_map_files_inode_operations = {
2449 	.lookup		= proc_map_files_lookup,
2450 	.permission	= proc_fd_permission,
2451 	.setattr	= proc_setattr,
2452 };
2453 
2454 static int
proc_map_files_readdir(struct file * file,struct dir_context * ctx)2455 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2456 {
2457 	struct vm_area_struct *vma;
2458 	struct task_struct *task;
2459 	struct mm_struct *mm;
2460 	unsigned long nr_files, pos, i;
2461 	GENRADIX(struct map_files_info) fa;
2462 	struct map_files_info *p;
2463 	int ret;
2464 
2465 	genradix_init(&fa);
2466 
2467 	ret = -ENOENT;
2468 	task = get_proc_task(file_inode(file));
2469 	if (!task)
2470 		goto out;
2471 
2472 	ret = -EACCES;
2473 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2474 		goto out_put_task;
2475 
2476 	ret = 0;
2477 	if (!dir_emit_dots(file, ctx))
2478 		goto out_put_task;
2479 
2480 	mm = get_task_mm(task);
2481 	if (!mm)
2482 		goto out_put_task;
2483 
2484 	ret = mmap_read_lock_killable(mm);
2485 	if (ret) {
2486 		mmput(mm);
2487 		goto out_put_task;
2488 	}
2489 
2490 	nr_files = 0;
2491 
2492 	/*
2493 	 * We need two passes here:
2494 	 *
2495 	 *  1) Collect vmas of mapped files with mmap_lock taken
2496 	 *  2) Release mmap_lock and instantiate entries
2497 	 *
2498 	 * otherwise we get lockdep complained, since filldir()
2499 	 * routine might require mmap_lock taken in might_fault().
2500 	 */
2501 
2502 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2503 		if (!vma->vm_file)
2504 			continue;
2505 		if (++pos <= ctx->pos)
2506 			continue;
2507 
2508 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2509 		if (!p) {
2510 			ret = -ENOMEM;
2511 			mmap_read_unlock(mm);
2512 			mmput(mm);
2513 			goto out_put_task;
2514 		}
2515 
2516 		p->start = vma->vm_start;
2517 		p->end = vma->vm_end;
2518 		p->mode = vma->vm_file->f_mode;
2519 	}
2520 	mmap_read_unlock(mm);
2521 	mmput(mm);
2522 
2523 	for (i = 0; i < nr_files; i++) {
2524 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2525 		unsigned int len;
2526 
2527 		p = genradix_ptr(&fa, i);
2528 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2529 		if (!proc_fill_cache(file, ctx,
2530 				      buf, len,
2531 				      proc_map_files_instantiate,
2532 				      task,
2533 				      (void *)(unsigned long)p->mode))
2534 			break;
2535 		ctx->pos++;
2536 	}
2537 
2538 out_put_task:
2539 	put_task_struct(task);
2540 out:
2541 	genradix_free(&fa);
2542 	return ret;
2543 }
2544 
2545 static const struct file_operations proc_map_files_operations = {
2546 	.read		= generic_read_dir,
2547 	.iterate_shared	= proc_map_files_readdir,
2548 	.llseek		= generic_file_llseek,
2549 };
2550 
2551 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2552 struct timers_private {
2553 	struct pid *pid;
2554 	struct task_struct *task;
2555 	struct sighand_struct *sighand;
2556 	struct pid_namespace *ns;
2557 	unsigned long flags;
2558 };
2559 
timers_start(struct seq_file * m,loff_t * pos)2560 static void *timers_start(struct seq_file *m, loff_t *pos)
2561 {
2562 	struct timers_private *tp = m->private;
2563 
2564 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2565 	if (!tp->task)
2566 		return ERR_PTR(-ESRCH);
2567 
2568 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2569 	if (!tp->sighand)
2570 		return ERR_PTR(-ESRCH);
2571 
2572 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2573 }
2574 
timers_next(struct seq_file * m,void * v,loff_t * pos)2575 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2576 {
2577 	struct timers_private *tp = m->private;
2578 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2579 }
2580 
timers_stop(struct seq_file * m,void * v)2581 static void timers_stop(struct seq_file *m, void *v)
2582 {
2583 	struct timers_private *tp = m->private;
2584 
2585 	if (tp->sighand) {
2586 		unlock_task_sighand(tp->task, &tp->flags);
2587 		tp->sighand = NULL;
2588 	}
2589 
2590 	if (tp->task) {
2591 		put_task_struct(tp->task);
2592 		tp->task = NULL;
2593 	}
2594 }
2595 
show_timer(struct seq_file * m,void * v)2596 static int show_timer(struct seq_file *m, void *v)
2597 {
2598 	struct k_itimer *timer;
2599 	struct timers_private *tp = m->private;
2600 	int notify;
2601 	static const char * const nstr[] = {
2602 		[SIGEV_SIGNAL] = "signal",
2603 		[SIGEV_NONE] = "none",
2604 		[SIGEV_THREAD] = "thread",
2605 	};
2606 
2607 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2608 	notify = timer->it_sigev_notify;
2609 
2610 	seq_printf(m, "ID: %d\n", timer->it_id);
2611 	seq_printf(m, "signal: %d/%px\n",
2612 		   timer->sigq->info.si_signo,
2613 		   timer->sigq->info.si_value.sival_ptr);
2614 	seq_printf(m, "notify: %s/%s.%d\n",
2615 		   nstr[notify & ~SIGEV_THREAD_ID],
2616 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2617 		   pid_nr_ns(timer->it_pid, tp->ns));
2618 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2619 
2620 	return 0;
2621 }
2622 
2623 static const struct seq_operations proc_timers_seq_ops = {
2624 	.start	= timers_start,
2625 	.next	= timers_next,
2626 	.stop	= timers_stop,
2627 	.show	= show_timer,
2628 };
2629 
proc_timers_open(struct inode * inode,struct file * file)2630 static int proc_timers_open(struct inode *inode, struct file *file)
2631 {
2632 	struct timers_private *tp;
2633 
2634 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2635 			sizeof(struct timers_private));
2636 	if (!tp)
2637 		return -ENOMEM;
2638 
2639 	tp->pid = proc_pid(inode);
2640 	tp->ns = proc_pid_ns(inode->i_sb);
2641 	return 0;
2642 }
2643 
2644 static const struct file_operations proc_timers_operations = {
2645 	.open		= proc_timers_open,
2646 	.read		= seq_read,
2647 	.llseek		= seq_lseek,
2648 	.release	= seq_release_private,
2649 };
2650 #endif
2651 
timerslack_ns_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)2652 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2653 					size_t count, loff_t *offset)
2654 {
2655 	struct inode *inode = file_inode(file);
2656 	struct task_struct *p;
2657 	u64 slack_ns;
2658 	int err;
2659 
2660 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2661 	if (err < 0)
2662 		return err;
2663 
2664 	p = get_proc_task(inode);
2665 	if (!p)
2666 		return -ESRCH;
2667 
2668 	if (p != current) {
2669 		rcu_read_lock();
2670 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2671 			rcu_read_unlock();
2672 			count = -EPERM;
2673 			goto out;
2674 		}
2675 		rcu_read_unlock();
2676 
2677 		err = security_task_setscheduler(p);
2678 		if (err) {
2679 			count = err;
2680 			goto out;
2681 		}
2682 	}
2683 
2684 	task_lock(p);
2685 	if (slack_ns == 0)
2686 		p->timer_slack_ns = p->default_timer_slack_ns;
2687 	else
2688 		p->timer_slack_ns = slack_ns;
2689 	task_unlock(p);
2690 
2691 out:
2692 	put_task_struct(p);
2693 
2694 	return count;
2695 }
2696 
timerslack_ns_show(struct seq_file * m,void * v)2697 static int timerslack_ns_show(struct seq_file *m, void *v)
2698 {
2699 	struct inode *inode = m->private;
2700 	struct task_struct *p;
2701 	int err = 0;
2702 
2703 	p = get_proc_task(inode);
2704 	if (!p)
2705 		return -ESRCH;
2706 
2707 	if (p != current) {
2708 		rcu_read_lock();
2709 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2710 			rcu_read_unlock();
2711 			err = -EPERM;
2712 			goto out;
2713 		}
2714 		rcu_read_unlock();
2715 
2716 		err = security_task_getscheduler(p);
2717 		if (err)
2718 			goto out;
2719 	}
2720 
2721 	task_lock(p);
2722 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2723 	task_unlock(p);
2724 
2725 out:
2726 	put_task_struct(p);
2727 
2728 	return err;
2729 }
2730 
timerslack_ns_open(struct inode * inode,struct file * filp)2731 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2732 {
2733 	return single_open(filp, timerslack_ns_show, inode);
2734 }
2735 
2736 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2737 	.open		= timerslack_ns_open,
2738 	.read		= seq_read,
2739 	.write		= timerslack_ns_write,
2740 	.llseek		= seq_lseek,
2741 	.release	= single_release,
2742 };
2743 
proc_pident_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2744 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2745 	struct task_struct *task, const void *ptr)
2746 {
2747 	const struct pid_entry *p = ptr;
2748 	struct inode *inode;
2749 	struct proc_inode *ei;
2750 
2751 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2752 	if (!inode)
2753 		return ERR_PTR(-ENOENT);
2754 
2755 	ei = PROC_I(inode);
2756 	if (S_ISDIR(inode->i_mode))
2757 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2758 	if (p->iop)
2759 		inode->i_op = p->iop;
2760 	if (p->fop)
2761 		inode->i_fop = p->fop;
2762 	ei->op = p->op;
2763 	pid_update_inode(task, inode);
2764 	d_set_d_op(dentry, &pid_dentry_operations);
2765 	return d_splice_alias(inode, dentry);
2766 }
2767 
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * p,const struct pid_entry * end)2768 static struct dentry *proc_pident_lookup(struct inode *dir,
2769 					 struct dentry *dentry,
2770 					 const struct pid_entry *p,
2771 					 const struct pid_entry *end)
2772 {
2773 	struct task_struct *task = get_proc_task(dir);
2774 	struct dentry *res = ERR_PTR(-ENOENT);
2775 
2776 	if (!task)
2777 		goto out_no_task;
2778 
2779 	/*
2780 	 * Yes, it does not scale. And it should not. Don't add
2781 	 * new entries into /proc/<tgid>/ without very good reasons.
2782 	 */
2783 	for (; p < end; p++) {
2784 		if (p->len != dentry->d_name.len)
2785 			continue;
2786 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2787 			res = proc_pident_instantiate(dentry, task, p);
2788 			break;
2789 		}
2790 	}
2791 	put_task_struct(task);
2792 out_no_task:
2793 	return res;
2794 }
2795 
proc_pident_readdir(struct file * file,struct dir_context * ctx,const struct pid_entry * ents,unsigned int nents)2796 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2797 		const struct pid_entry *ents, unsigned int nents)
2798 {
2799 	struct task_struct *task = get_proc_task(file_inode(file));
2800 	const struct pid_entry *p;
2801 
2802 	if (!task)
2803 		return -ENOENT;
2804 
2805 	if (!dir_emit_dots(file, ctx))
2806 		goto out;
2807 
2808 	if (ctx->pos >= nents + 2)
2809 		goto out;
2810 
2811 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2812 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2813 				proc_pident_instantiate, task, p))
2814 			break;
2815 		ctx->pos++;
2816 	}
2817 out:
2818 	put_task_struct(task);
2819 	return 0;
2820 }
2821 
2822 #ifdef CONFIG_SECURITY
proc_pid_attr_open(struct inode * inode,struct file * file)2823 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2824 {
2825 	file->private_data = NULL;
2826 	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2827 	return 0;
2828 }
2829 
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2830 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2831 				  size_t count, loff_t *ppos)
2832 {
2833 	struct inode * inode = file_inode(file);
2834 	char *p = NULL;
2835 	ssize_t length;
2836 	struct task_struct *task = get_proc_task(inode);
2837 
2838 	if (!task)
2839 		return -ESRCH;
2840 
2841 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2842 				      (char*)file->f_path.dentry->d_name.name,
2843 				      &p);
2844 	put_task_struct(task);
2845 	if (length > 0)
2846 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2847 	kfree(p);
2848 	return length;
2849 }
2850 
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2851 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2852 				   size_t count, loff_t *ppos)
2853 {
2854 	struct inode * inode = file_inode(file);
2855 	struct task_struct *task;
2856 	void *page;
2857 	int rv;
2858 
2859 	/* A task may only write when it was the opener. */
2860 	if (file->private_data != current->mm)
2861 		return -EPERM;
2862 
2863 	rcu_read_lock();
2864 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2865 	if (!task) {
2866 		rcu_read_unlock();
2867 		return -ESRCH;
2868 	}
2869 	/* A task may only write its own attributes. */
2870 	if (current != task) {
2871 		rcu_read_unlock();
2872 		return -EACCES;
2873 	}
2874 	/* Prevent changes to overridden credentials. */
2875 	if (current_cred() != current_real_cred()) {
2876 		rcu_read_unlock();
2877 		return -EBUSY;
2878 	}
2879 	rcu_read_unlock();
2880 
2881 	if (count > PAGE_SIZE)
2882 		count = PAGE_SIZE;
2883 
2884 	/* No partial writes. */
2885 	if (*ppos != 0)
2886 		return -EINVAL;
2887 
2888 	page = memdup_user(buf, count);
2889 	if (IS_ERR(page)) {
2890 		rv = PTR_ERR(page);
2891 		goto out;
2892 	}
2893 
2894 	/* Guard against adverse ptrace interaction */
2895 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2896 	if (rv < 0)
2897 		goto out_free;
2898 
2899 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2900 				  file->f_path.dentry->d_name.name, page,
2901 				  count);
2902 	mutex_unlock(&current->signal->cred_guard_mutex);
2903 out_free:
2904 	kfree(page);
2905 out:
2906 	return rv;
2907 }
2908 
2909 static const struct file_operations proc_pid_attr_operations = {
2910 	.open		= proc_pid_attr_open,
2911 	.read		= proc_pid_attr_read,
2912 	.write		= proc_pid_attr_write,
2913 	.llseek		= generic_file_llseek,
2914 	.release	= mem_release,
2915 };
2916 
2917 #define LSM_DIR_OPS(LSM) \
2918 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2919 			     struct dir_context *ctx) \
2920 { \
2921 	return proc_pident_readdir(filp, ctx, \
2922 				   LSM##_attr_dir_stuff, \
2923 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2924 } \
2925 \
2926 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2927 	.read		= generic_read_dir, \
2928 	.iterate	= proc_##LSM##_attr_dir_iterate, \
2929 	.llseek		= default_llseek, \
2930 }; \
2931 \
2932 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2933 				struct dentry *dentry, unsigned int flags) \
2934 { \
2935 	return proc_pident_lookup(dir, dentry, \
2936 				  LSM##_attr_dir_stuff, \
2937 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2938 } \
2939 \
2940 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2941 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2942 	.getattr	= pid_getattr, \
2943 	.setattr	= proc_setattr, \
2944 }
2945 
2946 #ifdef CONFIG_SECURITY_SMACK
2947 static const struct pid_entry smack_attr_dir_stuff[] = {
2948 	ATTR("smack", "current",	0666),
2949 };
2950 LSM_DIR_OPS(smack);
2951 #endif
2952 
2953 #ifdef CONFIG_SECURITY_APPARMOR
2954 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2955 	ATTR("apparmor", "current",	0666),
2956 	ATTR("apparmor", "prev",	0444),
2957 	ATTR("apparmor", "exec",	0666),
2958 };
2959 LSM_DIR_OPS(apparmor);
2960 #endif
2961 
2962 static const struct pid_entry attr_dir_stuff[] = {
2963 	ATTR(NULL, "current",		0666),
2964 	ATTR(NULL, "prev",		0444),
2965 	ATTR(NULL, "exec",		0666),
2966 	ATTR(NULL, "fscreate",		0666),
2967 	ATTR(NULL, "keycreate",		0666),
2968 	ATTR(NULL, "sockcreate",	0666),
2969 #ifdef CONFIG_SECURITY_SMACK
2970 	DIR("smack",			0555,
2971 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2972 #endif
2973 #ifdef CONFIG_SECURITY_APPARMOR
2974 	DIR("apparmor",			0555,
2975 	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2976 #endif
2977 };
2978 
proc_attr_dir_readdir(struct file * file,struct dir_context * ctx)2979 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2980 {
2981 	return proc_pident_readdir(file, ctx,
2982 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2983 }
2984 
2985 static const struct file_operations proc_attr_dir_operations = {
2986 	.read		= generic_read_dir,
2987 	.iterate_shared	= proc_attr_dir_readdir,
2988 	.llseek		= generic_file_llseek,
2989 };
2990 
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2991 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2992 				struct dentry *dentry, unsigned int flags)
2993 {
2994 	return proc_pident_lookup(dir, dentry,
2995 				  attr_dir_stuff,
2996 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2997 }
2998 
2999 static const struct inode_operations proc_attr_dir_inode_operations = {
3000 	.lookup		= proc_attr_dir_lookup,
3001 	.getattr	= pid_getattr,
3002 	.setattr	= proc_setattr,
3003 };
3004 
3005 #endif
3006 
3007 #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3008 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
3009 					 size_t count, loff_t *ppos)
3010 {
3011 	struct task_struct *task = get_proc_task(file_inode(file));
3012 	struct mm_struct *mm;
3013 	char buffer[PROC_NUMBUF];
3014 	size_t len;
3015 	int ret;
3016 
3017 	if (!task)
3018 		return -ESRCH;
3019 
3020 	ret = 0;
3021 	mm = get_task_mm(task);
3022 	if (mm) {
3023 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
3024 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
3025 				MMF_DUMP_FILTER_SHIFT));
3026 		mmput(mm);
3027 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
3028 	}
3029 
3030 	put_task_struct(task);
3031 
3032 	return ret;
3033 }
3034 
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)3035 static ssize_t proc_coredump_filter_write(struct file *file,
3036 					  const char __user *buf,
3037 					  size_t count,
3038 					  loff_t *ppos)
3039 {
3040 	struct task_struct *task;
3041 	struct mm_struct *mm;
3042 	unsigned int val;
3043 	int ret;
3044 	int i;
3045 	unsigned long mask;
3046 
3047 	ret = kstrtouint_from_user(buf, count, 0, &val);
3048 	if (ret < 0)
3049 		return ret;
3050 
3051 	ret = -ESRCH;
3052 	task = get_proc_task(file_inode(file));
3053 	if (!task)
3054 		goto out_no_task;
3055 
3056 	mm = get_task_mm(task);
3057 	if (!mm)
3058 		goto out_no_mm;
3059 	ret = 0;
3060 
3061 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3062 		if (val & mask)
3063 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3064 		else
3065 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3066 	}
3067 
3068 	mmput(mm);
3069  out_no_mm:
3070 	put_task_struct(task);
3071  out_no_task:
3072 	if (ret < 0)
3073 		return ret;
3074 	return count;
3075 }
3076 
3077 static const struct file_operations proc_coredump_filter_operations = {
3078 	.read		= proc_coredump_filter_read,
3079 	.write		= proc_coredump_filter_write,
3080 	.llseek		= generic_file_llseek,
3081 };
3082 #endif
3083 
3084 #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,struct seq_file * m,int whole)3085 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3086 {
3087 	struct task_io_accounting acct = task->ioac;
3088 	unsigned long flags;
3089 	int result;
3090 
3091 	result = down_read_killable(&task->signal->exec_update_lock);
3092 	if (result)
3093 		return result;
3094 
3095 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3096 		result = -EACCES;
3097 		goto out_unlock;
3098 	}
3099 
3100 	if (whole && lock_task_sighand(task, &flags)) {
3101 		struct task_struct *t = task;
3102 
3103 		task_io_accounting_add(&acct, &task->signal->ioac);
3104 		while_each_thread(task, t)
3105 			task_io_accounting_add(&acct, &t->ioac);
3106 
3107 		unlock_task_sighand(task, &flags);
3108 	}
3109 	seq_printf(m,
3110 		   "rchar: %llu\n"
3111 		   "wchar: %llu\n"
3112 		   "syscr: %llu\n"
3113 		   "syscw: %llu\n"
3114 		   "read_bytes: %llu\n"
3115 		   "write_bytes: %llu\n"
3116 		   "cancelled_write_bytes: %llu\n",
3117 		   (unsigned long long)acct.rchar,
3118 		   (unsigned long long)acct.wchar,
3119 		   (unsigned long long)acct.syscr,
3120 		   (unsigned long long)acct.syscw,
3121 		   (unsigned long long)acct.read_bytes,
3122 		   (unsigned long long)acct.write_bytes,
3123 		   (unsigned long long)acct.cancelled_write_bytes);
3124 	result = 0;
3125 
3126 out_unlock:
3127 	up_read(&task->signal->exec_update_lock);
3128 	return result;
3129 }
3130 
proc_tid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3131 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3132 				  struct pid *pid, struct task_struct *task)
3133 {
3134 	return do_io_accounting(task, m, 0);
3135 }
3136 
proc_tgid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3137 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3138 				   struct pid *pid, struct task_struct *task)
3139 {
3140 	return do_io_accounting(task, m, 1);
3141 }
3142 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3143 
3144 #ifdef CONFIG_USER_NS
proc_id_map_open(struct inode * inode,struct file * file,const struct seq_operations * seq_ops)3145 static int proc_id_map_open(struct inode *inode, struct file *file,
3146 	const struct seq_operations *seq_ops)
3147 {
3148 	struct user_namespace *ns = NULL;
3149 	struct task_struct *task;
3150 	struct seq_file *seq;
3151 	int ret = -EINVAL;
3152 
3153 	task = get_proc_task(inode);
3154 	if (task) {
3155 		rcu_read_lock();
3156 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3157 		rcu_read_unlock();
3158 		put_task_struct(task);
3159 	}
3160 	if (!ns)
3161 		goto err;
3162 
3163 	ret = seq_open(file, seq_ops);
3164 	if (ret)
3165 		goto err_put_ns;
3166 
3167 	seq = file->private_data;
3168 	seq->private = ns;
3169 
3170 	return 0;
3171 err_put_ns:
3172 	put_user_ns(ns);
3173 err:
3174 	return ret;
3175 }
3176 
proc_id_map_release(struct inode * inode,struct file * file)3177 static int proc_id_map_release(struct inode *inode, struct file *file)
3178 {
3179 	struct seq_file *seq = file->private_data;
3180 	struct user_namespace *ns = seq->private;
3181 	put_user_ns(ns);
3182 	return seq_release(inode, file);
3183 }
3184 
proc_uid_map_open(struct inode * inode,struct file * file)3185 static int proc_uid_map_open(struct inode *inode, struct file *file)
3186 {
3187 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3188 }
3189 
proc_gid_map_open(struct inode * inode,struct file * file)3190 static int proc_gid_map_open(struct inode *inode, struct file *file)
3191 {
3192 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3193 }
3194 
proc_projid_map_open(struct inode * inode,struct file * file)3195 static int proc_projid_map_open(struct inode *inode, struct file *file)
3196 {
3197 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3198 }
3199 
3200 static const struct file_operations proc_uid_map_operations = {
3201 	.open		= proc_uid_map_open,
3202 	.write		= proc_uid_map_write,
3203 	.read		= seq_read,
3204 	.llseek		= seq_lseek,
3205 	.release	= proc_id_map_release,
3206 };
3207 
3208 static const struct file_operations proc_gid_map_operations = {
3209 	.open		= proc_gid_map_open,
3210 	.write		= proc_gid_map_write,
3211 	.read		= seq_read,
3212 	.llseek		= seq_lseek,
3213 	.release	= proc_id_map_release,
3214 };
3215 
3216 static const struct file_operations proc_projid_map_operations = {
3217 	.open		= proc_projid_map_open,
3218 	.write		= proc_projid_map_write,
3219 	.read		= seq_read,
3220 	.llseek		= seq_lseek,
3221 	.release	= proc_id_map_release,
3222 };
3223 
proc_setgroups_open(struct inode * inode,struct file * file)3224 static int proc_setgroups_open(struct inode *inode, struct file *file)
3225 {
3226 	struct user_namespace *ns = NULL;
3227 	struct task_struct *task;
3228 	int ret;
3229 
3230 	ret = -ESRCH;
3231 	task = get_proc_task(inode);
3232 	if (task) {
3233 		rcu_read_lock();
3234 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3235 		rcu_read_unlock();
3236 		put_task_struct(task);
3237 	}
3238 	if (!ns)
3239 		goto err;
3240 
3241 	if (file->f_mode & FMODE_WRITE) {
3242 		ret = -EACCES;
3243 		if (!ns_capable(ns, CAP_SYS_ADMIN))
3244 			goto err_put_ns;
3245 	}
3246 
3247 	ret = single_open(file, &proc_setgroups_show, ns);
3248 	if (ret)
3249 		goto err_put_ns;
3250 
3251 	return 0;
3252 err_put_ns:
3253 	put_user_ns(ns);
3254 err:
3255 	return ret;
3256 }
3257 
proc_setgroups_release(struct inode * inode,struct file * file)3258 static int proc_setgroups_release(struct inode *inode, struct file *file)
3259 {
3260 	struct seq_file *seq = file->private_data;
3261 	struct user_namespace *ns = seq->private;
3262 	int ret = single_release(inode, file);
3263 	put_user_ns(ns);
3264 	return ret;
3265 }
3266 
3267 static const struct file_operations proc_setgroups_operations = {
3268 	.open		= proc_setgroups_open,
3269 	.write		= proc_setgroups_write,
3270 	.read		= seq_read,
3271 	.llseek		= seq_lseek,
3272 	.release	= proc_setgroups_release,
3273 };
3274 #endif /* CONFIG_USER_NS */
3275 
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3276 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3277 				struct pid *pid, struct task_struct *task)
3278 {
3279 	int err = lock_trace(task);
3280 	if (!err) {
3281 		seq_printf(m, "%08x\n", task->personality);
3282 		unlock_trace(task);
3283 	}
3284 	return err;
3285 }
3286 
3287 #ifdef CONFIG_LIVEPATCH
proc_pid_patch_state(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3288 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3289 				struct pid *pid, struct task_struct *task)
3290 {
3291 	seq_printf(m, "%d\n", task->patch_state);
3292 	return 0;
3293 }
3294 #endif /* CONFIG_LIVEPATCH */
3295 
3296 #ifdef CONFIG_STACKLEAK_METRICS
proc_stack_depth(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3297 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3298 				struct pid *pid, struct task_struct *task)
3299 {
3300 	unsigned long prev_depth = THREAD_SIZE -
3301 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3302 	unsigned long depth = THREAD_SIZE -
3303 				(task->lowest_stack & (THREAD_SIZE - 1));
3304 
3305 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3306 							prev_depth, depth);
3307 	return 0;
3308 }
3309 #endif /* CONFIG_STACKLEAK_METRICS */
3310 
3311 #ifdef CONFIG_ACCESS_TOKENID
proc_token_operations(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3312 static int proc_token_operations(struct seq_file *m, struct pid_namespace *ns,
3313 				 struct pid *pid, struct task_struct *task)
3314 {
3315 	seq_printf(m, "%#llx %#llx\n", task->token, task->ftoken);
3316 	return 0;
3317 }
3318 #endif /* CONFIG_ACCESS_TOKENID */
3319 
3320 /*
3321  * Thread groups
3322  */
3323 static const struct file_operations proc_task_operations;
3324 static const struct inode_operations proc_task_inode_operations;
3325 
3326 static const struct pid_entry tgid_base_stuff[] = {
3327 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3328 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3329 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3330 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3331 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3332 #ifdef CONFIG_NET
3333 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3334 #endif
3335 	REG("environ",    S_IRUSR, proc_environ_operations),
3336 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3337 	ONE("status",     S_IRUGO, proc_pid_status),
3338 	ONE("personality", S_IRUSR, proc_pid_personality),
3339 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3340 #ifdef CONFIG_SCHED_WALT
3341 	REG("sched_init_task_load", 00644, proc_pid_sched_init_task_load_operations),
3342 #endif
3343 #ifdef CONFIG_SCHED_DEBUG
3344 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3345 #endif
3346 #ifdef CONFIG_SCHED_AUTOGROUP
3347 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3348 #endif
3349 #ifdef CONFIG_TIME_NS
3350 	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3351 #endif
3352 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3353 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3354 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3355 #endif
3356 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3357 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3358 	ONE("statm",      S_IRUGO, proc_pid_statm),
3359 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3360 #ifdef CONFIG_NUMA
3361 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3362 #endif
3363 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3364 	LNK("cwd",        proc_cwd_link),
3365 	LNK("root",       proc_root_link),
3366 	LNK("exe",        proc_exe_link),
3367 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3368 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3369 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3370 #ifdef CONFIG_PROC_PAGE_MONITOR
3371 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3372 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3373 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3374 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3375 #endif
3376 #ifdef CONFIG_SECURITY
3377 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3378 #endif
3379 #ifdef CONFIG_KALLSYMS
3380 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3381 #endif
3382 #ifdef CONFIG_STACKTRACE
3383 	ONE("stack",      S_IRUSR, proc_pid_stack),
3384 #endif
3385 #ifdef CONFIG_SCHED_INFO
3386 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3387 #endif
3388 #ifdef CONFIG_LATENCYTOP
3389 	REG("latency",  S_IRUGO, proc_lstats_operations),
3390 #endif
3391 #ifdef CONFIG_PROC_PID_CPUSET
3392 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3393 #endif
3394 #ifdef CONFIG_CGROUPS
3395 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3396 #endif
3397 #ifdef CONFIG_PROC_CPU_RESCTRL
3398 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3399 #endif
3400 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3401 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3402 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3403 #ifdef CONFIG_AUDIT
3404 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3405 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3406 #endif
3407 #ifdef CONFIG_FAULT_INJECTION
3408 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3409 	REG("fail-nth", 0644, proc_fail_nth_operations),
3410 #endif
3411 #ifdef CONFIG_ELF_CORE
3412 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3413 #endif
3414 #ifdef CONFIG_TASK_IO_ACCOUNTING
3415 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3416 #endif
3417 #ifdef CONFIG_USER_NS
3418 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3419 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3420 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3421 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3422 #endif
3423 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3424 	REG("timers",	  S_IRUGO, proc_timers_operations),
3425 #endif
3426 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3427 #ifdef CONFIG_LIVEPATCH
3428 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3429 #endif
3430 #ifdef CONFIG_STACKLEAK_METRICS
3431 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3432 #endif
3433 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3434 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3435 #endif
3436 #ifdef CONFIG_ACCESS_TOKENID
3437 	ONE("tokenid", S_IRUSR, proc_token_operations),
3438 #endif
3439 #ifdef CONFIG_SCHED_RTG_DEBUG
3440 	REG("sched_group_id", S_IRUGO|S_IWUGO, proc_pid_sched_group_id_operations),
3441 #endif
3442 };
3443 
proc_tgid_base_readdir(struct file * file,struct dir_context * ctx)3444 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3445 {
3446 	return proc_pident_readdir(file, ctx,
3447 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3448 }
3449 
3450 static const struct file_operations proc_tgid_base_operations = {
3451 	.read		= generic_read_dir,
3452 	.iterate_shared	= proc_tgid_base_readdir,
3453 	.llseek		= generic_file_llseek,
3454 };
3455 
tgid_pidfd_to_pid(const struct file * file)3456 struct pid *tgid_pidfd_to_pid(const struct file *file)
3457 {
3458 	if (file->f_op != &proc_tgid_base_operations)
3459 		return ERR_PTR(-EBADF);
3460 
3461 	return proc_pid(file_inode(file));
3462 }
3463 
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3464 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3465 {
3466 	return proc_pident_lookup(dir, dentry,
3467 				  tgid_base_stuff,
3468 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3469 }
3470 
3471 static const struct inode_operations proc_tgid_base_inode_operations = {
3472 	.lookup		= proc_tgid_base_lookup,
3473 	.getattr	= pid_getattr,
3474 	.setattr	= proc_setattr,
3475 	.permission	= proc_pid_permission,
3476 };
3477 
3478 /**
3479  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3480  * @pid: pid that should be flushed.
3481  *
3482  * This function walks a list of inodes (that belong to any proc
3483  * filesystem) that are attached to the pid and flushes them from
3484  * the dentry cache.
3485  *
3486  * It is safe and reasonable to cache /proc entries for a task until
3487  * that task exits.  After that they just clog up the dcache with
3488  * useless entries, possibly causing useful dcache entries to be
3489  * flushed instead.  This routine is provided to flush those useless
3490  * dcache entries when a process is reaped.
3491  *
3492  * NOTE: This routine is just an optimization so it does not guarantee
3493  *       that no dcache entries will exist after a process is reaped
3494  *       it just makes it very unlikely that any will persist.
3495  */
3496 
proc_flush_pid(struct pid * pid)3497 void proc_flush_pid(struct pid *pid)
3498 {
3499 	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3500 }
3501 
proc_pid_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3502 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3503 				   struct task_struct *task, const void *ptr)
3504 {
3505 	struct inode *inode;
3506 
3507 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3508 	if (!inode)
3509 		return ERR_PTR(-ENOENT);
3510 
3511 	inode->i_op = &proc_tgid_base_inode_operations;
3512 	inode->i_fop = &proc_tgid_base_operations;
3513 	inode->i_flags|=S_IMMUTABLE;
3514 
3515 	set_nlink(inode, nlink_tgid);
3516 	pid_update_inode(task, inode);
3517 
3518 	d_set_d_op(dentry, &pid_dentry_operations);
3519 	return d_splice_alias(inode, dentry);
3520 }
3521 
proc_pid_lookup(struct dentry * dentry,unsigned int flags)3522 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3523 {
3524 	struct task_struct *task;
3525 	unsigned tgid;
3526 	struct proc_fs_info *fs_info;
3527 	struct pid_namespace *ns;
3528 	struct dentry *result = ERR_PTR(-ENOENT);
3529 
3530 	tgid = name_to_int(&dentry->d_name);
3531 	if (tgid == ~0U)
3532 		goto out;
3533 
3534 	fs_info = proc_sb_info(dentry->d_sb);
3535 	ns = fs_info->pid_ns;
3536 	rcu_read_lock();
3537 	task = find_task_by_pid_ns(tgid, ns);
3538 	if (task)
3539 		get_task_struct(task);
3540 	rcu_read_unlock();
3541 	if (!task)
3542 		goto out;
3543 
3544 	/* Limit procfs to only ptraceable tasks */
3545 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3546 		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3547 			goto out_put_task;
3548 	}
3549 
3550 	result = proc_pid_instantiate(dentry, task, NULL);
3551 out_put_task:
3552 	put_task_struct(task);
3553 out:
3554 	return result;
3555 }
3556 
3557 /*
3558  * Find the first task with tgid >= tgid
3559  *
3560  */
3561 struct tgid_iter {
3562 	unsigned int tgid;
3563 	struct task_struct *task;
3564 };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)3565 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3566 {
3567 	struct pid *pid;
3568 
3569 	if (iter.task)
3570 		put_task_struct(iter.task);
3571 	rcu_read_lock();
3572 retry:
3573 	iter.task = NULL;
3574 	pid = find_ge_pid(iter.tgid, ns);
3575 	if (pid) {
3576 		iter.tgid = pid_nr_ns(pid, ns);
3577 		iter.task = pid_task(pid, PIDTYPE_TGID);
3578 		if (!iter.task) {
3579 			iter.tgid += 1;
3580 			goto retry;
3581 		}
3582 		get_task_struct(iter.task);
3583 	}
3584 	rcu_read_unlock();
3585 	return iter;
3586 }
3587 
3588 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3589 
3590 /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * file,struct dir_context * ctx)3591 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3592 {
3593 	struct tgid_iter iter;
3594 	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3595 	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3596 	loff_t pos = ctx->pos;
3597 
3598 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3599 		return 0;
3600 
3601 	if (pos == TGID_OFFSET - 2) {
3602 		struct inode *inode = d_inode(fs_info->proc_self);
3603 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3604 			return 0;
3605 		ctx->pos = pos = pos + 1;
3606 	}
3607 	if (pos == TGID_OFFSET - 1) {
3608 		struct inode *inode = d_inode(fs_info->proc_thread_self);
3609 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3610 			return 0;
3611 		ctx->pos = pos = pos + 1;
3612 	}
3613 	iter.tgid = pos - TGID_OFFSET;
3614 	iter.task = NULL;
3615 	for (iter = next_tgid(ns, iter);
3616 	     iter.task;
3617 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3618 		char name[10 + 1];
3619 		unsigned int len;
3620 
3621 		cond_resched();
3622 		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3623 			continue;
3624 
3625 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3626 		ctx->pos = iter.tgid + TGID_OFFSET;
3627 		if (!proc_fill_cache(file, ctx, name, len,
3628 				     proc_pid_instantiate, iter.task, NULL)) {
3629 			put_task_struct(iter.task);
3630 			return 0;
3631 		}
3632 	}
3633 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3634 	return 0;
3635 }
3636 
3637 /*
3638  * proc_tid_comm_permission is a special permission function exclusively
3639  * used for the node /proc/<pid>/task/<tid>/comm.
3640  * It bypasses generic permission checks in the case where a task of the same
3641  * task group attempts to access the node.
3642  * The rationale behind this is that glibc and bionic access this node for
3643  * cross thread naming (pthread_set/getname_np(!self)). However, if
3644  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3645  * which locks out the cross thread naming implementation.
3646  * This function makes sure that the node is always accessible for members of
3647  * same thread group.
3648  */
proc_tid_comm_permission(struct inode * inode,int mask)3649 static int proc_tid_comm_permission(struct inode *inode, int mask)
3650 {
3651 	bool is_same_tgroup;
3652 	struct task_struct *task;
3653 
3654 	task = get_proc_task(inode);
3655 	if (!task)
3656 		return -ESRCH;
3657 	is_same_tgroup = same_thread_group(current, task);
3658 	put_task_struct(task);
3659 
3660 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3661 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3662 		 * read or written by the members of the corresponding
3663 		 * thread group.
3664 		 */
3665 		return 0;
3666 	}
3667 
3668 	return generic_permission(inode, mask);
3669 }
3670 
3671 static const struct inode_operations proc_tid_comm_inode_operations = {
3672 		.permission = proc_tid_comm_permission,
3673 };
3674 
3675 /*
3676  * Tasks
3677  */
3678 static const struct pid_entry tid_base_stuff[] = {
3679 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3680 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3681 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3682 #ifdef CONFIG_NET
3683 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3684 #endif
3685 	REG("environ",   S_IRUSR, proc_environ_operations),
3686 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3687 	ONE("status",    S_IRUGO, proc_pid_status),
3688 	ONE("personality", S_IRUSR, proc_pid_personality),
3689 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3690 #ifdef CONFIG_SCHED_DEBUG
3691 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3692 #endif
3693 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3694 			 &proc_tid_comm_inode_operations,
3695 			 &proc_pid_set_comm_operations, {}),
3696 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3697 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3698 #endif
3699 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3700 	ONE("stat",      S_IRUGO, proc_tid_stat),
3701 	ONE("statm",     S_IRUGO, proc_pid_statm),
3702 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3703 #ifdef CONFIG_PROC_CHILDREN
3704 	REG("children",  S_IRUGO, proc_tid_children_operations),
3705 #endif
3706 #ifdef CONFIG_NUMA
3707 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3708 #endif
3709 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3710 	LNK("cwd",       proc_cwd_link),
3711 	LNK("root",      proc_root_link),
3712 	LNK("exe",       proc_exe_link),
3713 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3714 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3715 #ifdef CONFIG_PROC_PAGE_MONITOR
3716 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3717 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3718 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3719 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3720 #endif
3721 #ifdef CONFIG_SECURITY
3722 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3723 #endif
3724 #ifdef CONFIG_KALLSYMS
3725 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3726 #endif
3727 #ifdef CONFIG_STACKTRACE
3728 	ONE("stack",      S_IRUSR, proc_pid_stack),
3729 #endif
3730 #ifdef CONFIG_SCHED_INFO
3731 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3732 #endif
3733 #ifdef CONFIG_LATENCYTOP
3734 	REG("latency",  S_IRUGO, proc_lstats_operations),
3735 #endif
3736 #ifdef CONFIG_PROC_PID_CPUSET
3737 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3738 #endif
3739 #ifdef CONFIG_CGROUPS
3740 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3741 #endif
3742 #ifdef CONFIG_PROC_CPU_RESCTRL
3743 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3744 #endif
3745 	ONE("oom_score", S_IRUGO, proc_oom_score),
3746 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3747 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3748 #ifdef CONFIG_AUDIT
3749 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3750 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3751 #endif
3752 #ifdef CONFIG_FAULT_INJECTION
3753 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3754 	REG("fail-nth", 0644, proc_fail_nth_operations),
3755 #endif
3756 #ifdef CONFIG_TASK_IO_ACCOUNTING
3757 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3758 #endif
3759 #ifdef CONFIG_USER_NS
3760 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3761 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3762 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3763 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3764 #endif
3765 #ifdef CONFIG_LIVEPATCH
3766 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3767 #endif
3768 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3769 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3770 #endif
3771 #ifdef CONFIG_ACCESS_TOKENID
3772 	ONE("tokenid", S_IRUSR, proc_token_operations),
3773 #endif
3774 #ifdef CONFIG_SCHED_RTG_DEBUG
3775 	REG("sched_group_id", S_IRUGO|S_IWUGO, proc_pid_sched_group_id_operations),
3776 #endif
3777 };
3778 
proc_tid_base_readdir(struct file * file,struct dir_context * ctx)3779 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3780 {
3781 	return proc_pident_readdir(file, ctx,
3782 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3783 }
3784 
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3785 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3786 {
3787 	return proc_pident_lookup(dir, dentry,
3788 				  tid_base_stuff,
3789 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3790 }
3791 
3792 static const struct file_operations proc_tid_base_operations = {
3793 	.read		= generic_read_dir,
3794 	.iterate_shared	= proc_tid_base_readdir,
3795 	.llseek		= generic_file_llseek,
3796 };
3797 
3798 static const struct inode_operations proc_tid_base_inode_operations = {
3799 	.lookup		= proc_tid_base_lookup,
3800 	.getattr	= pid_getattr,
3801 	.setattr	= proc_setattr,
3802 };
3803 
proc_task_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3804 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3805 	struct task_struct *task, const void *ptr)
3806 {
3807 	struct inode *inode;
3808 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3809 	if (!inode)
3810 		return ERR_PTR(-ENOENT);
3811 
3812 	inode->i_op = &proc_tid_base_inode_operations;
3813 	inode->i_fop = &proc_tid_base_operations;
3814 	inode->i_flags |= S_IMMUTABLE;
3815 
3816 	set_nlink(inode, nlink_tid);
3817 	pid_update_inode(task, inode);
3818 
3819 	d_set_d_op(dentry, &pid_dentry_operations);
3820 	return d_splice_alias(inode, dentry);
3821 }
3822 
proc_task_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3823 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3824 {
3825 	struct task_struct *task;
3826 	struct task_struct *leader = get_proc_task(dir);
3827 	unsigned tid;
3828 	struct proc_fs_info *fs_info;
3829 	struct pid_namespace *ns;
3830 	struct dentry *result = ERR_PTR(-ENOENT);
3831 
3832 	if (!leader)
3833 		goto out_no_task;
3834 
3835 	tid = name_to_int(&dentry->d_name);
3836 	if (tid == ~0U)
3837 		goto out;
3838 
3839 	fs_info = proc_sb_info(dentry->d_sb);
3840 	ns = fs_info->pid_ns;
3841 	rcu_read_lock();
3842 	task = find_task_by_pid_ns(tid, ns);
3843 	if (task)
3844 		get_task_struct(task);
3845 	rcu_read_unlock();
3846 	if (!task)
3847 		goto out;
3848 	if (!same_thread_group(leader, task))
3849 		goto out_drop_task;
3850 
3851 	result = proc_task_instantiate(dentry, task, NULL);
3852 out_drop_task:
3853 	put_task_struct(task);
3854 out:
3855 	put_task_struct(leader);
3856 out_no_task:
3857 	return result;
3858 }
3859 
3860 /*
3861  * Find the first tid of a thread group to return to user space.
3862  *
3863  * Usually this is just the thread group leader, but if the users
3864  * buffer was too small or there was a seek into the middle of the
3865  * directory we have more work todo.
3866  *
3867  * In the case of a short read we start with find_task_by_pid.
3868  *
3869  * In the case of a seek we start with the leader and walk nr
3870  * threads past it.
3871  */
first_tid(struct pid * pid,int tid,loff_t f_pos,struct pid_namespace * ns)3872 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3873 					struct pid_namespace *ns)
3874 {
3875 	struct task_struct *pos, *task;
3876 	unsigned long nr = f_pos;
3877 
3878 	if (nr != f_pos)	/* 32bit overflow? */
3879 		return NULL;
3880 
3881 	rcu_read_lock();
3882 	task = pid_task(pid, PIDTYPE_PID);
3883 	if (!task)
3884 		goto fail;
3885 
3886 	/* Attempt to start with the tid of a thread */
3887 	if (tid && nr) {
3888 		pos = find_task_by_pid_ns(tid, ns);
3889 		if (pos && same_thread_group(pos, task))
3890 			goto found;
3891 	}
3892 
3893 	/* If nr exceeds the number of threads there is nothing todo */
3894 	if (nr >= get_nr_threads(task))
3895 		goto fail;
3896 
3897 	/* If we haven't found our starting place yet start
3898 	 * with the leader and walk nr threads forward.
3899 	 */
3900 	pos = task = task->group_leader;
3901 	do {
3902 		if (!nr--)
3903 			goto found;
3904 	} while_each_thread(task, pos);
3905 fail:
3906 	pos = NULL;
3907 	goto out;
3908 found:
3909 	get_task_struct(pos);
3910 out:
3911 	rcu_read_unlock();
3912 	return pos;
3913 }
3914 
3915 /*
3916  * Find the next thread in the thread list.
3917  * Return NULL if there is an error or no next thread.
3918  *
3919  * The reference to the input task_struct is released.
3920  */
next_tid(struct task_struct * start)3921 static struct task_struct *next_tid(struct task_struct *start)
3922 {
3923 	struct task_struct *pos = NULL;
3924 	rcu_read_lock();
3925 	if (pid_alive(start)) {
3926 		pos = next_thread(start);
3927 		if (thread_group_leader(pos))
3928 			pos = NULL;
3929 		else
3930 			get_task_struct(pos);
3931 	}
3932 	rcu_read_unlock();
3933 	put_task_struct(start);
3934 	return pos;
3935 }
3936 
3937 /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * file,struct dir_context * ctx)3938 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3939 {
3940 	struct inode *inode = file_inode(file);
3941 	struct task_struct *task;
3942 	struct pid_namespace *ns;
3943 	int tid;
3944 
3945 	if (proc_inode_is_dead(inode))
3946 		return -ENOENT;
3947 
3948 	if (!dir_emit_dots(file, ctx))
3949 		return 0;
3950 
3951 	/* f_version caches the tgid value that the last readdir call couldn't
3952 	 * return. lseek aka telldir automagically resets f_version to 0.
3953 	 */
3954 	ns = proc_pid_ns(inode->i_sb);
3955 	tid = (int)file->f_version;
3956 	file->f_version = 0;
3957 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3958 	     task;
3959 	     task = next_tid(task), ctx->pos++) {
3960 		char name[10 + 1];
3961 		unsigned int len;
3962 		tid = task_pid_nr_ns(task, ns);
3963 		len = snprintf(name, sizeof(name), "%u", tid);
3964 		if (!proc_fill_cache(file, ctx, name, len,
3965 				proc_task_instantiate, task, NULL)) {
3966 			/* returning this tgid failed, save it as the first
3967 			 * pid for the next readir call */
3968 			file->f_version = (u64)tid;
3969 			put_task_struct(task);
3970 			break;
3971 		}
3972 	}
3973 
3974 	return 0;
3975 }
3976 
proc_task_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)3977 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3978 			     u32 request_mask, unsigned int query_flags)
3979 {
3980 	struct inode *inode = d_inode(path->dentry);
3981 	struct task_struct *p = get_proc_task(inode);
3982 	generic_fillattr(inode, stat);
3983 
3984 	if (p) {
3985 		stat->nlink += get_nr_threads(p);
3986 		put_task_struct(p);
3987 	}
3988 
3989 	return 0;
3990 }
3991 
3992 static const struct inode_operations proc_task_inode_operations = {
3993 	.lookup		= proc_task_lookup,
3994 	.getattr	= proc_task_getattr,
3995 	.setattr	= proc_setattr,
3996 	.permission	= proc_pid_permission,
3997 };
3998 
3999 static const struct file_operations proc_task_operations = {
4000 	.read		= generic_read_dir,
4001 	.iterate_shared	= proc_task_readdir,
4002 	.llseek		= generic_file_llseek,
4003 };
4004 
set_proc_pid_nlink(void)4005 void __init set_proc_pid_nlink(void)
4006 {
4007 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
4008 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
4009 }
4010