1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * https://www.ecma.ch/
15 * https://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68 VDS_POS_PRIMARY_VOL_DESC,
69 VDS_POS_UNALLOC_SPACE_DESC,
70 VDS_POS_LOGICAL_VOL_DESC,
71 VDS_POS_IMP_USE_VOL_DESC,
72 VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET 32768
76 #define VSD_MAX_SECTOR_OFFSET 0x800000
77
78 /*
79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
81 * hopefully don't limit any real use of rewritten inode on write-once media
82 * but avoid looping for too long on corrupted media.
83 */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
100
udf_sb_lvidiu(struct super_block * sb)101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102 {
103 struct logicalVolIntegrityDesc *lvid;
104 unsigned int partnum;
105 unsigned int offset;
106
107 if (!UDF_SB(sb)->s_lvid_bh)
108 return NULL;
109 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110 partnum = le32_to_cpu(lvid->numOfPartitions);
111 /* The offset is to skip freeSpaceTable and sizeTable arrays */
112 offset = partnum * 2 * sizeof(uint32_t);
113 return (struct logicalVolIntegrityDescImpUse *)
114 (((uint8_t *)(lvid + 1)) + offset);
115 }
116
117 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)118 static struct dentry *udf_mount(struct file_system_type *fs_type,
119 int flags, const char *dev_name, void *data)
120 {
121 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
122 }
123
124 static struct file_system_type udf_fstype = {
125 .owner = THIS_MODULE,
126 .name = "udf",
127 .mount = udf_mount,
128 .kill_sb = kill_block_super,
129 .fs_flags = FS_REQUIRES_DEV,
130 };
131 MODULE_ALIAS_FS("udf");
132
133 static struct kmem_cache *udf_inode_cachep;
134
udf_alloc_inode(struct super_block * sb)135 static struct inode *udf_alloc_inode(struct super_block *sb)
136 {
137 struct udf_inode_info *ei;
138 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
139 if (!ei)
140 return NULL;
141
142 ei->i_unique = 0;
143 ei->i_lenExtents = 0;
144 ei->i_lenStreams = 0;
145 ei->i_next_alloc_block = 0;
146 ei->i_next_alloc_goal = 0;
147 ei->i_strat4096 = 0;
148 ei->i_streamdir = 0;
149 init_rwsem(&ei->i_data_sem);
150 ei->cached_extent.lstart = -1;
151 spin_lock_init(&ei->i_extent_cache_lock);
152
153 return &ei->vfs_inode;
154 }
155
udf_free_in_core_inode(struct inode * inode)156 static void udf_free_in_core_inode(struct inode *inode)
157 {
158 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
159 }
160
init_once(void * foo)161 static void init_once(void *foo)
162 {
163 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
164
165 ei->i_data = NULL;
166 inode_init_once(&ei->vfs_inode);
167 }
168
init_inodecache(void)169 static int __init init_inodecache(void)
170 {
171 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
172 sizeof(struct udf_inode_info),
173 0, (SLAB_RECLAIM_ACCOUNT |
174 SLAB_MEM_SPREAD |
175 SLAB_ACCOUNT),
176 init_once);
177 if (!udf_inode_cachep)
178 return -ENOMEM;
179 return 0;
180 }
181
destroy_inodecache(void)182 static void destroy_inodecache(void)
183 {
184 /*
185 * Make sure all delayed rcu free inodes are flushed before we
186 * destroy cache.
187 */
188 rcu_barrier();
189 kmem_cache_destroy(udf_inode_cachep);
190 }
191
192 /* Superblock operations */
193 static const struct super_operations udf_sb_ops = {
194 .alloc_inode = udf_alloc_inode,
195 .free_inode = udf_free_in_core_inode,
196 .write_inode = udf_write_inode,
197 .evict_inode = udf_evict_inode,
198 .put_super = udf_put_super,
199 .sync_fs = udf_sync_fs,
200 .statfs = udf_statfs,
201 .remount_fs = udf_remount_fs,
202 .show_options = udf_show_options,
203 };
204
205 struct udf_options {
206 unsigned char novrs;
207 unsigned int blocksize;
208 unsigned int session;
209 unsigned int lastblock;
210 unsigned int anchor;
211 unsigned int flags;
212 umode_t umask;
213 kgid_t gid;
214 kuid_t uid;
215 umode_t fmode;
216 umode_t dmode;
217 struct nls_table *nls_map;
218 };
219
init_udf_fs(void)220 static int __init init_udf_fs(void)
221 {
222 int err;
223
224 err = init_inodecache();
225 if (err)
226 goto out1;
227 err = register_filesystem(&udf_fstype);
228 if (err)
229 goto out;
230
231 return 0;
232
233 out:
234 destroy_inodecache();
235
236 out1:
237 return err;
238 }
239
exit_udf_fs(void)240 static void __exit exit_udf_fs(void)
241 {
242 unregister_filesystem(&udf_fstype);
243 destroy_inodecache();
244 }
245
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)246 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
247 {
248 struct udf_sb_info *sbi = UDF_SB(sb);
249
250 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
251 if (!sbi->s_partmaps) {
252 sbi->s_partitions = 0;
253 return -ENOMEM;
254 }
255
256 sbi->s_partitions = count;
257 return 0;
258 }
259
udf_sb_free_bitmap(struct udf_bitmap * bitmap)260 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
261 {
262 int i;
263 int nr_groups = bitmap->s_nr_groups;
264
265 for (i = 0; i < nr_groups; i++)
266 brelse(bitmap->s_block_bitmap[i]);
267
268 kvfree(bitmap);
269 }
270
udf_free_partition(struct udf_part_map * map)271 static void udf_free_partition(struct udf_part_map *map)
272 {
273 int i;
274 struct udf_meta_data *mdata;
275
276 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
277 iput(map->s_uspace.s_table);
278 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
279 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
280 if (map->s_partition_type == UDF_SPARABLE_MAP15)
281 for (i = 0; i < 4; i++)
282 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
283 else if (map->s_partition_type == UDF_METADATA_MAP25) {
284 mdata = &map->s_type_specific.s_metadata;
285 iput(mdata->s_metadata_fe);
286 mdata->s_metadata_fe = NULL;
287
288 iput(mdata->s_mirror_fe);
289 mdata->s_mirror_fe = NULL;
290
291 iput(mdata->s_bitmap_fe);
292 mdata->s_bitmap_fe = NULL;
293 }
294 }
295
udf_sb_free_partitions(struct super_block * sb)296 static void udf_sb_free_partitions(struct super_block *sb)
297 {
298 struct udf_sb_info *sbi = UDF_SB(sb);
299 int i;
300
301 if (!sbi->s_partmaps)
302 return;
303 for (i = 0; i < sbi->s_partitions; i++)
304 udf_free_partition(&sbi->s_partmaps[i]);
305 kfree(sbi->s_partmaps);
306 sbi->s_partmaps = NULL;
307 }
308
udf_show_options(struct seq_file * seq,struct dentry * root)309 static int udf_show_options(struct seq_file *seq, struct dentry *root)
310 {
311 struct super_block *sb = root->d_sb;
312 struct udf_sb_info *sbi = UDF_SB(sb);
313
314 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
315 seq_puts(seq, ",nostrict");
316 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
317 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
318 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
319 seq_puts(seq, ",unhide");
320 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
321 seq_puts(seq, ",undelete");
322 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
323 seq_puts(seq, ",noadinicb");
324 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
325 seq_puts(seq, ",shortad");
326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
327 seq_puts(seq, ",uid=forget");
328 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
329 seq_puts(seq, ",gid=forget");
330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
331 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
333 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
334 if (sbi->s_umask != 0)
335 seq_printf(seq, ",umask=%ho", sbi->s_umask);
336 if (sbi->s_fmode != UDF_INVALID_MODE)
337 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
338 if (sbi->s_dmode != UDF_INVALID_MODE)
339 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
341 seq_printf(seq, ",session=%d", sbi->s_session);
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
343 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
344 if (sbi->s_anchor != 0)
345 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
346 if (sbi->s_nls_map)
347 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
348 else
349 seq_puts(seq, ",iocharset=utf8");
350
351 return 0;
352 }
353
354 /*
355 * udf_parse_options
356 *
357 * PURPOSE
358 * Parse mount options.
359 *
360 * DESCRIPTION
361 * The following mount options are supported:
362 *
363 * gid= Set the default group.
364 * umask= Set the default umask.
365 * mode= Set the default file permissions.
366 * dmode= Set the default directory permissions.
367 * uid= Set the default user.
368 * bs= Set the block size.
369 * unhide Show otherwise hidden files.
370 * undelete Show deleted files in lists.
371 * adinicb Embed data in the inode (default)
372 * noadinicb Don't embed data in the inode
373 * shortad Use short ad's
374 * longad Use long ad's (default)
375 * nostrict Unset strict conformance
376 * iocharset= Set the NLS character set
377 *
378 * The remaining are for debugging and disaster recovery:
379 *
380 * novrs Skip volume sequence recognition
381 *
382 * The following expect a offset from 0.
383 *
384 * session= Set the CDROM session (default= last session)
385 * anchor= Override standard anchor location. (default= 256)
386 * volume= Override the VolumeDesc location. (unused)
387 * partition= Override the PartitionDesc location. (unused)
388 * lastblock= Set the last block of the filesystem/
389 *
390 * The following expect a offset from the partition root.
391 *
392 * fileset= Override the fileset block location. (unused)
393 * rootdir= Override the root directory location. (unused)
394 * WARNING: overriding the rootdir to a non-directory may
395 * yield highly unpredictable results.
396 *
397 * PRE-CONDITIONS
398 * options Pointer to mount options string.
399 * uopts Pointer to mount options variable.
400 *
401 * POST-CONDITIONS
402 * <return> 1 Mount options parsed okay.
403 * <return> 0 Error parsing mount options.
404 *
405 * HISTORY
406 * July 1, 1997 - Andrew E. Mileski
407 * Written, tested, and released.
408 */
409
410 enum {
411 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
412 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
413 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
414 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
415 Opt_rootdir, Opt_utf8, Opt_iocharset,
416 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
417 Opt_fmode, Opt_dmode
418 };
419
420 static const match_table_t tokens = {
421 {Opt_novrs, "novrs"},
422 {Opt_nostrict, "nostrict"},
423 {Opt_bs, "bs=%u"},
424 {Opt_unhide, "unhide"},
425 {Opt_undelete, "undelete"},
426 {Opt_noadinicb, "noadinicb"},
427 {Opt_adinicb, "adinicb"},
428 {Opt_shortad, "shortad"},
429 {Opt_longad, "longad"},
430 {Opt_uforget, "uid=forget"},
431 {Opt_uignore, "uid=ignore"},
432 {Opt_gforget, "gid=forget"},
433 {Opt_gignore, "gid=ignore"},
434 {Opt_gid, "gid=%u"},
435 {Opt_uid, "uid=%u"},
436 {Opt_umask, "umask=%o"},
437 {Opt_session, "session=%u"},
438 {Opt_lastblock, "lastblock=%u"},
439 {Opt_anchor, "anchor=%u"},
440 {Opt_volume, "volume=%u"},
441 {Opt_partition, "partition=%u"},
442 {Opt_fileset, "fileset=%u"},
443 {Opt_rootdir, "rootdir=%u"},
444 {Opt_utf8, "utf8"},
445 {Opt_iocharset, "iocharset=%s"},
446 {Opt_fmode, "mode=%o"},
447 {Opt_dmode, "dmode=%o"},
448 {Opt_err, NULL}
449 };
450
udf_parse_options(char * options,struct udf_options * uopt,bool remount)451 static int udf_parse_options(char *options, struct udf_options *uopt,
452 bool remount)
453 {
454 char *p;
455 int option;
456
457 uopt->novrs = 0;
458 uopt->session = 0xFFFFFFFF;
459 uopt->lastblock = 0;
460 uopt->anchor = 0;
461
462 if (!options)
463 return 1;
464
465 while ((p = strsep(&options, ",")) != NULL) {
466 substring_t args[MAX_OPT_ARGS];
467 int token;
468 unsigned n;
469 if (!*p)
470 continue;
471
472 token = match_token(p, tokens, args);
473 switch (token) {
474 case Opt_novrs:
475 uopt->novrs = 1;
476 break;
477 case Opt_bs:
478 if (match_int(&args[0], &option))
479 return 0;
480 n = option;
481 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
482 return 0;
483 uopt->blocksize = n;
484 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
485 break;
486 case Opt_unhide:
487 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
488 break;
489 case Opt_undelete:
490 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
491 break;
492 case Opt_noadinicb:
493 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
494 break;
495 case Opt_adinicb:
496 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
497 break;
498 case Opt_shortad:
499 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
500 break;
501 case Opt_longad:
502 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
503 break;
504 case Opt_gid:
505 if (match_int(args, &option))
506 return 0;
507 uopt->gid = make_kgid(current_user_ns(), option);
508 if (!gid_valid(uopt->gid))
509 return 0;
510 uopt->flags |= (1 << UDF_FLAG_GID_SET);
511 break;
512 case Opt_uid:
513 if (match_int(args, &option))
514 return 0;
515 uopt->uid = make_kuid(current_user_ns(), option);
516 if (!uid_valid(uopt->uid))
517 return 0;
518 uopt->flags |= (1 << UDF_FLAG_UID_SET);
519 break;
520 case Opt_umask:
521 if (match_octal(args, &option))
522 return 0;
523 uopt->umask = option;
524 break;
525 case Opt_nostrict:
526 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
527 break;
528 case Opt_session:
529 if (match_int(args, &option))
530 return 0;
531 uopt->session = option;
532 if (!remount)
533 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
534 break;
535 case Opt_lastblock:
536 if (match_int(args, &option))
537 return 0;
538 uopt->lastblock = option;
539 if (!remount)
540 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
541 break;
542 case Opt_anchor:
543 if (match_int(args, &option))
544 return 0;
545 uopt->anchor = option;
546 break;
547 case Opt_volume:
548 case Opt_partition:
549 case Opt_fileset:
550 case Opt_rootdir:
551 /* Ignored (never implemented properly) */
552 break;
553 case Opt_utf8:
554 if (!remount) {
555 unload_nls(uopt->nls_map);
556 uopt->nls_map = NULL;
557 }
558 break;
559 case Opt_iocharset:
560 if (!remount) {
561 unload_nls(uopt->nls_map);
562 uopt->nls_map = NULL;
563 }
564 /* When nls_map is not loaded then UTF-8 is used */
565 if (!remount && strcmp(args[0].from, "utf8") != 0) {
566 uopt->nls_map = load_nls(args[0].from);
567 if (!uopt->nls_map) {
568 pr_err("iocharset %s not found\n",
569 args[0].from);
570 return 0;
571 }
572 }
573 break;
574 case Opt_uforget:
575 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
576 break;
577 case Opt_uignore:
578 case Opt_gignore:
579 /* These options are superseeded by uid=<number> */
580 break;
581 case Opt_gforget:
582 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
583 break;
584 case Opt_fmode:
585 if (match_octal(args, &option))
586 return 0;
587 uopt->fmode = option & 0777;
588 break;
589 case Opt_dmode:
590 if (match_octal(args, &option))
591 return 0;
592 uopt->dmode = option & 0777;
593 break;
594 default:
595 pr_err("bad mount option \"%s\" or missing value\n", p);
596 return 0;
597 }
598 }
599 return 1;
600 }
601
udf_remount_fs(struct super_block * sb,int * flags,char * options)602 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
603 {
604 struct udf_options uopt;
605 struct udf_sb_info *sbi = UDF_SB(sb);
606 int error = 0;
607
608 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
609 return -EACCES;
610
611 sync_filesystem(sb);
612
613 uopt.flags = sbi->s_flags;
614 uopt.uid = sbi->s_uid;
615 uopt.gid = sbi->s_gid;
616 uopt.umask = sbi->s_umask;
617 uopt.fmode = sbi->s_fmode;
618 uopt.dmode = sbi->s_dmode;
619 uopt.nls_map = NULL;
620
621 if (!udf_parse_options(options, &uopt, true))
622 return -EINVAL;
623
624 write_lock(&sbi->s_cred_lock);
625 sbi->s_flags = uopt.flags;
626 sbi->s_uid = uopt.uid;
627 sbi->s_gid = uopt.gid;
628 sbi->s_umask = uopt.umask;
629 sbi->s_fmode = uopt.fmode;
630 sbi->s_dmode = uopt.dmode;
631 write_unlock(&sbi->s_cred_lock);
632
633 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
634 goto out_unlock;
635
636 if (*flags & SB_RDONLY)
637 udf_close_lvid(sb);
638 else
639 udf_open_lvid(sb);
640
641 out_unlock:
642 return error;
643 }
644
645 /*
646 * Check VSD descriptor. Returns -1 in case we are at the end of volume
647 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
648 * we found one of NSR descriptors we are looking for.
649 */
identify_vsd(const struct volStructDesc * vsd)650 static int identify_vsd(const struct volStructDesc *vsd)
651 {
652 int ret = 0;
653
654 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
655 switch (vsd->structType) {
656 case 0:
657 udf_debug("ISO9660 Boot Record found\n");
658 break;
659 case 1:
660 udf_debug("ISO9660 Primary Volume Descriptor found\n");
661 break;
662 case 2:
663 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
664 break;
665 case 3:
666 udf_debug("ISO9660 Volume Partition Descriptor found\n");
667 break;
668 case 255:
669 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
670 break;
671 default:
672 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
673 break;
674 }
675 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
676 ; /* ret = 0 */
677 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
678 ret = 1;
679 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
680 ret = 1;
681 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
682 ; /* ret = 0 */
683 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
684 ; /* ret = 0 */
685 else {
686 /* TEA01 or invalid id : end of volume recognition area */
687 ret = -1;
688 }
689
690 return ret;
691 }
692
693 /*
694 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
695 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
696 * @return 1 if NSR02 or NSR03 found,
697 * -1 if first sector read error, 0 otherwise
698 */
udf_check_vsd(struct super_block * sb)699 static int udf_check_vsd(struct super_block *sb)
700 {
701 struct volStructDesc *vsd = NULL;
702 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
703 int sectorsize;
704 struct buffer_head *bh = NULL;
705 int nsr = 0;
706 struct udf_sb_info *sbi;
707 loff_t session_offset;
708
709 sbi = UDF_SB(sb);
710 if (sb->s_blocksize < sizeof(struct volStructDesc))
711 sectorsize = sizeof(struct volStructDesc);
712 else
713 sectorsize = sb->s_blocksize;
714
715 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
716 sector += session_offset;
717
718 udf_debug("Starting at sector %u (%lu byte sectors)\n",
719 (unsigned int)(sector >> sb->s_blocksize_bits),
720 sb->s_blocksize);
721 /* Process the sequence (if applicable). The hard limit on the sector
722 * offset is arbitrary, hopefully large enough so that all valid UDF
723 * filesystems will be recognised. There is no mention of an upper
724 * bound to the size of the volume recognition area in the standard.
725 * The limit will prevent the code to read all the sectors of a
726 * specially crafted image (like a bluray disc full of CD001 sectors),
727 * potentially causing minutes or even hours of uninterruptible I/O
728 * activity. This actually happened with uninitialised SSD partitions
729 * (all 0xFF) before the check for the limit and all valid IDs were
730 * added */
731 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
732 /* Read a block */
733 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
734 if (!bh)
735 break;
736
737 vsd = (struct volStructDesc *)(bh->b_data +
738 (sector & (sb->s_blocksize - 1)));
739 nsr = identify_vsd(vsd);
740 /* Found NSR or end? */
741 if (nsr) {
742 brelse(bh);
743 break;
744 }
745 /*
746 * Special handling for improperly formatted VRS (e.g., Win10)
747 * where components are separated by 2048 bytes even though
748 * sectors are 4K
749 */
750 if (sb->s_blocksize == 4096) {
751 nsr = identify_vsd(vsd + 1);
752 /* Ignore unknown IDs... */
753 if (nsr < 0)
754 nsr = 0;
755 }
756 brelse(bh);
757 }
758
759 if (nsr > 0)
760 return 1;
761 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
762 return -1;
763 else
764 return 0;
765 }
766
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)767 static int udf_verify_domain_identifier(struct super_block *sb,
768 struct regid *ident, char *dname)
769 {
770 struct domainIdentSuffix *suffix;
771
772 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
773 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
774 goto force_ro;
775 }
776 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
777 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
778 dname);
779 goto force_ro;
780 }
781 suffix = (struct domainIdentSuffix *)ident->identSuffix;
782 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
783 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
784 if (!sb_rdonly(sb)) {
785 udf_warn(sb, "Descriptor for %s marked write protected."
786 " Forcing read only mount.\n", dname);
787 }
788 goto force_ro;
789 }
790 return 0;
791
792 force_ro:
793 if (!sb_rdonly(sb))
794 return -EACCES;
795 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
796 return 0;
797 }
798
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)799 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
800 struct kernel_lb_addr *root)
801 {
802 int ret;
803
804 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
805 if (ret < 0)
806 return ret;
807
808 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
809 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
810
811 udf_debug("Rootdir at block=%u, partition=%u\n",
812 root->logicalBlockNum, root->partitionReferenceNum);
813 return 0;
814 }
815
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)816 static int udf_find_fileset(struct super_block *sb,
817 struct kernel_lb_addr *fileset,
818 struct kernel_lb_addr *root)
819 {
820 struct buffer_head *bh = NULL;
821 uint16_t ident;
822 int ret;
823
824 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
825 fileset->partitionReferenceNum == 0xFFFF)
826 return -EINVAL;
827
828 bh = udf_read_ptagged(sb, fileset, 0, &ident);
829 if (!bh)
830 return -EIO;
831 if (ident != TAG_IDENT_FSD) {
832 brelse(bh);
833 return -EINVAL;
834 }
835
836 udf_debug("Fileset at block=%u, partition=%u\n",
837 fileset->logicalBlockNum, fileset->partitionReferenceNum);
838
839 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
840 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
841 brelse(bh);
842 return ret;
843 }
844
845 /*
846 * Load primary Volume Descriptor Sequence
847 *
848 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
849 * should be tried.
850 */
udf_load_pvoldesc(struct super_block * sb,sector_t block)851 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
852 {
853 struct primaryVolDesc *pvoldesc;
854 uint8_t *outstr;
855 struct buffer_head *bh;
856 uint16_t ident;
857 int ret;
858 struct timestamp *ts;
859
860 outstr = kmalloc(128, GFP_NOFS);
861 if (!outstr)
862 return -ENOMEM;
863
864 bh = udf_read_tagged(sb, block, block, &ident);
865 if (!bh) {
866 ret = -EAGAIN;
867 goto out2;
868 }
869
870 if (ident != TAG_IDENT_PVD) {
871 ret = -EIO;
872 goto out_bh;
873 }
874
875 pvoldesc = (struct primaryVolDesc *)bh->b_data;
876
877 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
878 pvoldesc->recordingDateAndTime);
879 ts = &pvoldesc->recordingDateAndTime;
880 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
881 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
882 ts->minute, le16_to_cpu(ts->typeAndTimezone));
883
884 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
885 if (ret < 0) {
886 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
887 pr_warn("incorrect volume identification, setting to "
888 "'InvalidName'\n");
889 } else {
890 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
891 }
892 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
893
894 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
895 if (ret < 0) {
896 ret = 0;
897 goto out_bh;
898 }
899 outstr[ret] = 0;
900 udf_debug("volSetIdent[] = '%s'\n", outstr);
901
902 ret = 0;
903 out_bh:
904 brelse(bh);
905 out2:
906 kfree(outstr);
907 return ret;
908 }
909
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)910 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
911 u32 meta_file_loc, u32 partition_ref)
912 {
913 struct kernel_lb_addr addr;
914 struct inode *metadata_fe;
915
916 addr.logicalBlockNum = meta_file_loc;
917 addr.partitionReferenceNum = partition_ref;
918
919 metadata_fe = udf_iget_special(sb, &addr);
920
921 if (IS_ERR(metadata_fe)) {
922 udf_warn(sb, "metadata inode efe not found\n");
923 return metadata_fe;
924 }
925 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
926 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
927 iput(metadata_fe);
928 return ERR_PTR(-EIO);
929 }
930
931 return metadata_fe;
932 }
933
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)934 static int udf_load_metadata_files(struct super_block *sb, int partition,
935 int type1_index)
936 {
937 struct udf_sb_info *sbi = UDF_SB(sb);
938 struct udf_part_map *map;
939 struct udf_meta_data *mdata;
940 struct kernel_lb_addr addr;
941 struct inode *fe;
942
943 map = &sbi->s_partmaps[partition];
944 mdata = &map->s_type_specific.s_metadata;
945 mdata->s_phys_partition_ref = type1_index;
946
947 /* metadata address */
948 udf_debug("Metadata file location: block = %u part = %u\n",
949 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
950
951 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
952 mdata->s_phys_partition_ref);
953 if (IS_ERR(fe)) {
954 /* mirror file entry */
955 udf_debug("Mirror metadata file location: block = %u part = %u\n",
956 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
957
958 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
959 mdata->s_phys_partition_ref);
960
961 if (IS_ERR(fe)) {
962 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
963 return PTR_ERR(fe);
964 }
965 mdata->s_mirror_fe = fe;
966 } else
967 mdata->s_metadata_fe = fe;
968
969
970 /*
971 * bitmap file entry
972 * Note:
973 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
974 */
975 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
976 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
977 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
978
979 udf_debug("Bitmap file location: block = %u part = %u\n",
980 addr.logicalBlockNum, addr.partitionReferenceNum);
981
982 fe = udf_iget_special(sb, &addr);
983 if (IS_ERR(fe)) {
984 if (sb_rdonly(sb))
985 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
986 else {
987 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
988 return PTR_ERR(fe);
989 }
990 } else
991 mdata->s_bitmap_fe = fe;
992 }
993
994 udf_debug("udf_load_metadata_files Ok\n");
995 return 0;
996 }
997
udf_compute_nr_groups(struct super_block * sb,u32 partition)998 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
999 {
1000 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1001 return DIV_ROUND_UP(map->s_partition_len +
1002 (sizeof(struct spaceBitmapDesc) << 3),
1003 sb->s_blocksize * 8);
1004 }
1005
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1006 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1007 {
1008 struct udf_bitmap *bitmap;
1009 int nr_groups = udf_compute_nr_groups(sb, index);
1010
1011 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1012 GFP_KERNEL);
1013 if (!bitmap)
1014 return NULL;
1015
1016 bitmap->s_nr_groups = nr_groups;
1017 return bitmap;
1018 }
1019
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1020 static int check_partition_desc(struct super_block *sb,
1021 struct partitionDesc *p,
1022 struct udf_part_map *map)
1023 {
1024 bool umap, utable, fmap, ftable;
1025 struct partitionHeaderDesc *phd;
1026
1027 switch (le32_to_cpu(p->accessType)) {
1028 case PD_ACCESS_TYPE_READ_ONLY:
1029 case PD_ACCESS_TYPE_WRITE_ONCE:
1030 case PD_ACCESS_TYPE_NONE:
1031 goto force_ro;
1032 }
1033
1034 /* No Partition Header Descriptor? */
1035 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1036 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1037 goto force_ro;
1038
1039 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1040 utable = phd->unallocSpaceTable.extLength;
1041 umap = phd->unallocSpaceBitmap.extLength;
1042 ftable = phd->freedSpaceTable.extLength;
1043 fmap = phd->freedSpaceBitmap.extLength;
1044
1045 /* No allocation info? */
1046 if (!utable && !umap && !ftable && !fmap)
1047 goto force_ro;
1048
1049 /* We don't support blocks that require erasing before overwrite */
1050 if (ftable || fmap)
1051 goto force_ro;
1052 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1053 if (utable && umap)
1054 goto force_ro;
1055
1056 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1057 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1058 map->s_partition_type == UDF_METADATA_MAP25)
1059 goto force_ro;
1060
1061 return 0;
1062 force_ro:
1063 if (!sb_rdonly(sb))
1064 return -EACCES;
1065 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1066 return 0;
1067 }
1068
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1069 static int udf_fill_partdesc_info(struct super_block *sb,
1070 struct partitionDesc *p, int p_index)
1071 {
1072 struct udf_part_map *map;
1073 struct udf_sb_info *sbi = UDF_SB(sb);
1074 struct partitionHeaderDesc *phd;
1075 int err;
1076
1077 map = &sbi->s_partmaps[p_index];
1078
1079 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1080 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1081
1082 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1083 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1084 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1085 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1086 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1087 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1088 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1089 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1090
1091 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1092 p_index, map->s_partition_type,
1093 map->s_partition_root, map->s_partition_len);
1094
1095 err = check_partition_desc(sb, p, map);
1096 if (err)
1097 return err;
1098
1099 /*
1100 * Skip loading allocation info it we cannot ever write to the fs.
1101 * This is a correctness thing as we may have decided to force ro mount
1102 * to avoid allocation info we don't support.
1103 */
1104 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1105 return 0;
1106
1107 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1108 if (phd->unallocSpaceTable.extLength) {
1109 struct kernel_lb_addr loc = {
1110 .logicalBlockNum = le32_to_cpu(
1111 phd->unallocSpaceTable.extPosition),
1112 .partitionReferenceNum = p_index,
1113 };
1114 struct inode *inode;
1115
1116 inode = udf_iget_special(sb, &loc);
1117 if (IS_ERR(inode)) {
1118 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1119 p_index);
1120 return PTR_ERR(inode);
1121 }
1122 map->s_uspace.s_table = inode;
1123 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1124 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1125 p_index, map->s_uspace.s_table->i_ino);
1126 }
1127
1128 if (phd->unallocSpaceBitmap.extLength) {
1129 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1130 if (!bitmap)
1131 return -ENOMEM;
1132 map->s_uspace.s_bitmap = bitmap;
1133 bitmap->s_extPosition = le32_to_cpu(
1134 phd->unallocSpaceBitmap.extPosition);
1135 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1136 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1137 p_index, bitmap->s_extPosition);
1138 }
1139
1140 return 0;
1141 }
1142
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1143 static void udf_find_vat_block(struct super_block *sb, int p_index,
1144 int type1_index, sector_t start_block)
1145 {
1146 struct udf_sb_info *sbi = UDF_SB(sb);
1147 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1148 sector_t vat_block;
1149 struct kernel_lb_addr ino;
1150 struct inode *inode;
1151
1152 /*
1153 * VAT file entry is in the last recorded block. Some broken disks have
1154 * it a few blocks before so try a bit harder...
1155 */
1156 ino.partitionReferenceNum = type1_index;
1157 for (vat_block = start_block;
1158 vat_block >= map->s_partition_root &&
1159 vat_block >= start_block - 3; vat_block--) {
1160 ino.logicalBlockNum = vat_block - map->s_partition_root;
1161 inode = udf_iget_special(sb, &ino);
1162 if (!IS_ERR(inode)) {
1163 sbi->s_vat_inode = inode;
1164 break;
1165 }
1166 }
1167 }
1168
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1169 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1170 {
1171 struct udf_sb_info *sbi = UDF_SB(sb);
1172 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1173 struct buffer_head *bh = NULL;
1174 struct udf_inode_info *vati;
1175 uint32_t pos;
1176 struct virtualAllocationTable20 *vat20;
1177 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1178 sb->s_blocksize_bits;
1179
1180 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1181 if (!sbi->s_vat_inode &&
1182 sbi->s_last_block != blocks - 1) {
1183 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1184 (unsigned long)sbi->s_last_block,
1185 (unsigned long)blocks - 1);
1186 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1187 }
1188 if (!sbi->s_vat_inode)
1189 return -EIO;
1190
1191 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1192 map->s_type_specific.s_virtual.s_start_offset = 0;
1193 map->s_type_specific.s_virtual.s_num_entries =
1194 (sbi->s_vat_inode->i_size - 36) >> 2;
1195 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1196 vati = UDF_I(sbi->s_vat_inode);
1197 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1198 pos = udf_block_map(sbi->s_vat_inode, 0);
1199 bh = sb_bread(sb, pos);
1200 if (!bh)
1201 return -EIO;
1202 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1203 } else {
1204 vat20 = (struct virtualAllocationTable20 *)
1205 vati->i_data;
1206 }
1207
1208 map->s_type_specific.s_virtual.s_start_offset =
1209 le16_to_cpu(vat20->lengthHeader);
1210 map->s_type_specific.s_virtual.s_num_entries =
1211 (sbi->s_vat_inode->i_size -
1212 map->s_type_specific.s_virtual.
1213 s_start_offset) >> 2;
1214 brelse(bh);
1215 }
1216 return 0;
1217 }
1218
1219 /*
1220 * Load partition descriptor block
1221 *
1222 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1223 * sequence.
1224 */
udf_load_partdesc(struct super_block * sb,sector_t block)1225 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1226 {
1227 struct buffer_head *bh;
1228 struct partitionDesc *p;
1229 struct udf_part_map *map;
1230 struct udf_sb_info *sbi = UDF_SB(sb);
1231 int i, type1_idx;
1232 uint16_t partitionNumber;
1233 uint16_t ident;
1234 int ret;
1235
1236 bh = udf_read_tagged(sb, block, block, &ident);
1237 if (!bh)
1238 return -EAGAIN;
1239 if (ident != TAG_IDENT_PD) {
1240 ret = 0;
1241 goto out_bh;
1242 }
1243
1244 p = (struct partitionDesc *)bh->b_data;
1245 partitionNumber = le16_to_cpu(p->partitionNumber);
1246
1247 /* First scan for TYPE1 and SPARABLE partitions */
1248 for (i = 0; i < sbi->s_partitions; i++) {
1249 map = &sbi->s_partmaps[i];
1250 udf_debug("Searching map: (%u == %u)\n",
1251 map->s_partition_num, partitionNumber);
1252 if (map->s_partition_num == partitionNumber &&
1253 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1254 map->s_partition_type == UDF_SPARABLE_MAP15))
1255 break;
1256 }
1257
1258 if (i >= sbi->s_partitions) {
1259 udf_debug("Partition (%u) not found in partition map\n",
1260 partitionNumber);
1261 ret = 0;
1262 goto out_bh;
1263 }
1264
1265 ret = udf_fill_partdesc_info(sb, p, i);
1266 if (ret < 0)
1267 goto out_bh;
1268
1269 /*
1270 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1271 * PHYSICAL partitions are already set up
1272 */
1273 type1_idx = i;
1274 map = NULL; /* supress 'maybe used uninitialized' warning */
1275 for (i = 0; i < sbi->s_partitions; i++) {
1276 map = &sbi->s_partmaps[i];
1277
1278 if (map->s_partition_num == partitionNumber &&
1279 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1280 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1281 map->s_partition_type == UDF_METADATA_MAP25))
1282 break;
1283 }
1284
1285 if (i >= sbi->s_partitions) {
1286 ret = 0;
1287 goto out_bh;
1288 }
1289
1290 ret = udf_fill_partdesc_info(sb, p, i);
1291 if (ret < 0)
1292 goto out_bh;
1293
1294 if (map->s_partition_type == UDF_METADATA_MAP25) {
1295 ret = udf_load_metadata_files(sb, i, type1_idx);
1296 if (ret < 0) {
1297 udf_err(sb, "error loading MetaData partition map %d\n",
1298 i);
1299 goto out_bh;
1300 }
1301 } else {
1302 /*
1303 * If we have a partition with virtual map, we don't handle
1304 * writing to it (we overwrite blocks instead of relocating
1305 * them).
1306 */
1307 if (!sb_rdonly(sb)) {
1308 ret = -EACCES;
1309 goto out_bh;
1310 }
1311 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1312 ret = udf_load_vat(sb, i, type1_idx);
1313 if (ret < 0)
1314 goto out_bh;
1315 }
1316 ret = 0;
1317 out_bh:
1318 /* In case loading failed, we handle cleanup in udf_fill_super */
1319 brelse(bh);
1320 return ret;
1321 }
1322
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1323 static int udf_load_sparable_map(struct super_block *sb,
1324 struct udf_part_map *map,
1325 struct sparablePartitionMap *spm)
1326 {
1327 uint32_t loc;
1328 uint16_t ident;
1329 struct sparingTable *st;
1330 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1331 int i;
1332 struct buffer_head *bh;
1333
1334 map->s_partition_type = UDF_SPARABLE_MAP15;
1335 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1336 if (!is_power_of_2(sdata->s_packet_len)) {
1337 udf_err(sb, "error loading logical volume descriptor: "
1338 "Invalid packet length %u\n",
1339 (unsigned)sdata->s_packet_len);
1340 return -EIO;
1341 }
1342 if (spm->numSparingTables > 4) {
1343 udf_err(sb, "error loading logical volume descriptor: "
1344 "Too many sparing tables (%d)\n",
1345 (int)spm->numSparingTables);
1346 return -EIO;
1347 }
1348 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1349 udf_err(sb, "error loading logical volume descriptor: "
1350 "Too big sparing table size (%u)\n",
1351 le32_to_cpu(spm->sizeSparingTable));
1352 return -EIO;
1353 }
1354
1355 for (i = 0; i < spm->numSparingTables; i++) {
1356 loc = le32_to_cpu(spm->locSparingTable[i]);
1357 bh = udf_read_tagged(sb, loc, loc, &ident);
1358 if (!bh)
1359 continue;
1360
1361 st = (struct sparingTable *)bh->b_data;
1362 if (ident != 0 ||
1363 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1364 strlen(UDF_ID_SPARING)) ||
1365 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1366 sb->s_blocksize) {
1367 brelse(bh);
1368 continue;
1369 }
1370
1371 sdata->s_spar_map[i] = bh;
1372 }
1373 map->s_partition_func = udf_get_pblock_spar15;
1374 return 0;
1375 }
1376
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1377 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1378 struct kernel_lb_addr *fileset)
1379 {
1380 struct logicalVolDesc *lvd;
1381 int i, offset;
1382 uint8_t type;
1383 struct udf_sb_info *sbi = UDF_SB(sb);
1384 struct genericPartitionMap *gpm;
1385 uint16_t ident;
1386 struct buffer_head *bh;
1387 unsigned int table_len;
1388 int ret;
1389
1390 bh = udf_read_tagged(sb, block, block, &ident);
1391 if (!bh)
1392 return -EAGAIN;
1393 BUG_ON(ident != TAG_IDENT_LVD);
1394 lvd = (struct logicalVolDesc *)bh->b_data;
1395 table_len = le32_to_cpu(lvd->mapTableLength);
1396 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1397 udf_err(sb, "error loading logical volume descriptor: "
1398 "Partition table too long (%u > %lu)\n", table_len,
1399 sb->s_blocksize - sizeof(*lvd));
1400 ret = -EIO;
1401 goto out_bh;
1402 }
1403
1404 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1405 "logical volume");
1406 if (ret)
1407 goto out_bh;
1408 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1409 if (ret)
1410 goto out_bh;
1411
1412 for (i = 0, offset = 0;
1413 i < sbi->s_partitions && offset < table_len;
1414 i++, offset += gpm->partitionMapLength) {
1415 struct udf_part_map *map = &sbi->s_partmaps[i];
1416 gpm = (struct genericPartitionMap *)
1417 &(lvd->partitionMaps[offset]);
1418 type = gpm->partitionMapType;
1419 if (type == 1) {
1420 struct genericPartitionMap1 *gpm1 =
1421 (struct genericPartitionMap1 *)gpm;
1422 map->s_partition_type = UDF_TYPE1_MAP15;
1423 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1424 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1425 map->s_partition_func = NULL;
1426 } else if (type == 2) {
1427 struct udfPartitionMap2 *upm2 =
1428 (struct udfPartitionMap2 *)gpm;
1429 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1430 strlen(UDF_ID_VIRTUAL))) {
1431 u16 suf =
1432 le16_to_cpu(((__le16 *)upm2->partIdent.
1433 identSuffix)[0]);
1434 if (suf < 0x0200) {
1435 map->s_partition_type =
1436 UDF_VIRTUAL_MAP15;
1437 map->s_partition_func =
1438 udf_get_pblock_virt15;
1439 } else {
1440 map->s_partition_type =
1441 UDF_VIRTUAL_MAP20;
1442 map->s_partition_func =
1443 udf_get_pblock_virt20;
1444 }
1445 } else if (!strncmp(upm2->partIdent.ident,
1446 UDF_ID_SPARABLE,
1447 strlen(UDF_ID_SPARABLE))) {
1448 ret = udf_load_sparable_map(sb, map,
1449 (struct sparablePartitionMap *)gpm);
1450 if (ret < 0)
1451 goto out_bh;
1452 } else if (!strncmp(upm2->partIdent.ident,
1453 UDF_ID_METADATA,
1454 strlen(UDF_ID_METADATA))) {
1455 struct udf_meta_data *mdata =
1456 &map->s_type_specific.s_metadata;
1457 struct metadataPartitionMap *mdm =
1458 (struct metadataPartitionMap *)
1459 &(lvd->partitionMaps[offset]);
1460 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1461 i, type, UDF_ID_METADATA);
1462
1463 map->s_partition_type = UDF_METADATA_MAP25;
1464 map->s_partition_func = udf_get_pblock_meta25;
1465
1466 mdata->s_meta_file_loc =
1467 le32_to_cpu(mdm->metadataFileLoc);
1468 mdata->s_mirror_file_loc =
1469 le32_to_cpu(mdm->metadataMirrorFileLoc);
1470 mdata->s_bitmap_file_loc =
1471 le32_to_cpu(mdm->metadataBitmapFileLoc);
1472 mdata->s_alloc_unit_size =
1473 le32_to_cpu(mdm->allocUnitSize);
1474 mdata->s_align_unit_size =
1475 le16_to_cpu(mdm->alignUnitSize);
1476 if (mdm->flags & 0x01)
1477 mdata->s_flags |= MF_DUPLICATE_MD;
1478
1479 udf_debug("Metadata Ident suffix=0x%x\n",
1480 le16_to_cpu(*(__le16 *)
1481 mdm->partIdent.identSuffix));
1482 udf_debug("Metadata part num=%u\n",
1483 le16_to_cpu(mdm->partitionNum));
1484 udf_debug("Metadata part alloc unit size=%u\n",
1485 le32_to_cpu(mdm->allocUnitSize));
1486 udf_debug("Metadata file loc=%u\n",
1487 le32_to_cpu(mdm->metadataFileLoc));
1488 udf_debug("Mirror file loc=%u\n",
1489 le32_to_cpu(mdm->metadataMirrorFileLoc));
1490 udf_debug("Bitmap file loc=%u\n",
1491 le32_to_cpu(mdm->metadataBitmapFileLoc));
1492 udf_debug("Flags: %d %u\n",
1493 mdata->s_flags, mdm->flags);
1494 } else {
1495 udf_debug("Unknown ident: %s\n",
1496 upm2->partIdent.ident);
1497 continue;
1498 }
1499 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1500 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1501 }
1502 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1503 i, map->s_partition_num, type, map->s_volumeseqnum);
1504 }
1505
1506 if (fileset) {
1507 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1508
1509 *fileset = lelb_to_cpu(la->extLocation);
1510 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1511 fileset->logicalBlockNum,
1512 fileset->partitionReferenceNum);
1513 }
1514 if (lvd->integritySeqExt.extLength)
1515 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1516 ret = 0;
1517
1518 if (!sbi->s_lvid_bh) {
1519 /* We can't generate unique IDs without a valid LVID */
1520 if (sb_rdonly(sb)) {
1521 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1522 } else {
1523 udf_warn(sb, "Damaged or missing LVID, forcing "
1524 "readonly mount\n");
1525 ret = -EACCES;
1526 }
1527 }
1528 out_bh:
1529 brelse(bh);
1530 return ret;
1531 }
1532
1533 /*
1534 * Find the prevailing Logical Volume Integrity Descriptor.
1535 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1536 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1537 {
1538 struct buffer_head *bh, *final_bh;
1539 uint16_t ident;
1540 struct udf_sb_info *sbi = UDF_SB(sb);
1541 struct logicalVolIntegrityDesc *lvid;
1542 int indirections = 0;
1543 u32 parts, impuselen;
1544
1545 while (++indirections <= UDF_MAX_LVID_NESTING) {
1546 final_bh = NULL;
1547 while (loc.extLength > 0 &&
1548 (bh = udf_read_tagged(sb, loc.extLocation,
1549 loc.extLocation, &ident))) {
1550 if (ident != TAG_IDENT_LVID) {
1551 brelse(bh);
1552 break;
1553 }
1554
1555 brelse(final_bh);
1556 final_bh = bh;
1557
1558 loc.extLength -= sb->s_blocksize;
1559 loc.extLocation++;
1560 }
1561
1562 if (!final_bh)
1563 return;
1564
1565 brelse(sbi->s_lvid_bh);
1566 sbi->s_lvid_bh = final_bh;
1567
1568 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1569 if (lvid->nextIntegrityExt.extLength == 0)
1570 goto check;
1571
1572 loc = leea_to_cpu(lvid->nextIntegrityExt);
1573 }
1574
1575 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1576 UDF_MAX_LVID_NESTING);
1577 out_err:
1578 brelse(sbi->s_lvid_bh);
1579 sbi->s_lvid_bh = NULL;
1580 return;
1581 check:
1582 parts = le32_to_cpu(lvid->numOfPartitions);
1583 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1584 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1585 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1586 2 * parts * sizeof(u32) > sb->s_blocksize) {
1587 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1588 "ignoring.\n", parts, impuselen);
1589 goto out_err;
1590 }
1591 }
1592
1593 /*
1594 * Step for reallocation of table of partition descriptor sequence numbers.
1595 * Must be power of 2.
1596 */
1597 #define PART_DESC_ALLOC_STEP 32
1598
1599 struct part_desc_seq_scan_data {
1600 struct udf_vds_record rec;
1601 u32 partnum;
1602 };
1603
1604 struct desc_seq_scan_data {
1605 struct udf_vds_record vds[VDS_POS_LENGTH];
1606 unsigned int size_part_descs;
1607 unsigned int num_part_descs;
1608 struct part_desc_seq_scan_data *part_descs_loc;
1609 };
1610
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1611 static struct udf_vds_record *handle_partition_descriptor(
1612 struct buffer_head *bh,
1613 struct desc_seq_scan_data *data)
1614 {
1615 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1616 int partnum;
1617 int i;
1618
1619 partnum = le16_to_cpu(desc->partitionNumber);
1620 for (i = 0; i < data->num_part_descs; i++)
1621 if (partnum == data->part_descs_loc[i].partnum)
1622 return &(data->part_descs_loc[i].rec);
1623 if (data->num_part_descs >= data->size_part_descs) {
1624 struct part_desc_seq_scan_data *new_loc;
1625 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1626
1627 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1628 if (!new_loc)
1629 return ERR_PTR(-ENOMEM);
1630 memcpy(new_loc, data->part_descs_loc,
1631 data->size_part_descs * sizeof(*new_loc));
1632 kfree(data->part_descs_loc);
1633 data->part_descs_loc = new_loc;
1634 data->size_part_descs = new_size;
1635 }
1636 return &(data->part_descs_loc[data->num_part_descs++].rec);
1637 }
1638
1639
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1640 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1641 struct buffer_head *bh, struct desc_seq_scan_data *data)
1642 {
1643 switch (ident) {
1644 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1645 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1646 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1647 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1648 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1649 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1650 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1651 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1652 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1653 return handle_partition_descriptor(bh, data);
1654 }
1655 return NULL;
1656 }
1657
1658 /*
1659 * Process a main/reserve volume descriptor sequence.
1660 * @block First block of first extent of the sequence.
1661 * @lastblock Lastblock of first extent of the sequence.
1662 * @fileset There we store extent containing root fileset
1663 *
1664 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1665 * sequence
1666 */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1667 static noinline int udf_process_sequence(
1668 struct super_block *sb,
1669 sector_t block, sector_t lastblock,
1670 struct kernel_lb_addr *fileset)
1671 {
1672 struct buffer_head *bh = NULL;
1673 struct udf_vds_record *curr;
1674 struct generic_desc *gd;
1675 struct volDescPtr *vdp;
1676 bool done = false;
1677 uint32_t vdsn;
1678 uint16_t ident;
1679 int ret;
1680 unsigned int indirections = 0;
1681 struct desc_seq_scan_data data;
1682 unsigned int i;
1683
1684 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1685 data.size_part_descs = PART_DESC_ALLOC_STEP;
1686 data.num_part_descs = 0;
1687 data.part_descs_loc = kcalloc(data.size_part_descs,
1688 sizeof(*data.part_descs_loc),
1689 GFP_KERNEL);
1690 if (!data.part_descs_loc)
1691 return -ENOMEM;
1692
1693 /*
1694 * Read the main descriptor sequence and find which descriptors
1695 * are in it.
1696 */
1697 for (; (!done && block <= lastblock); block++) {
1698 bh = udf_read_tagged(sb, block, block, &ident);
1699 if (!bh)
1700 break;
1701
1702 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1703 gd = (struct generic_desc *)bh->b_data;
1704 vdsn = le32_to_cpu(gd->volDescSeqNum);
1705 switch (ident) {
1706 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1707 if (++indirections > UDF_MAX_TD_NESTING) {
1708 udf_err(sb, "too many Volume Descriptor "
1709 "Pointers (max %u supported)\n",
1710 UDF_MAX_TD_NESTING);
1711 brelse(bh);
1712 ret = -EIO;
1713 goto out;
1714 }
1715
1716 vdp = (struct volDescPtr *)bh->b_data;
1717 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1718 lastblock = le32_to_cpu(
1719 vdp->nextVolDescSeqExt.extLength) >>
1720 sb->s_blocksize_bits;
1721 lastblock += block - 1;
1722 /* For loop is going to increment 'block' again */
1723 block--;
1724 break;
1725 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1726 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1727 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1728 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1729 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1730 curr = get_volume_descriptor_record(ident, bh, &data);
1731 if (IS_ERR(curr)) {
1732 brelse(bh);
1733 ret = PTR_ERR(curr);
1734 goto out;
1735 }
1736 /* Descriptor we don't care about? */
1737 if (!curr)
1738 break;
1739 if (vdsn >= curr->volDescSeqNum) {
1740 curr->volDescSeqNum = vdsn;
1741 curr->block = block;
1742 }
1743 break;
1744 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1745 done = true;
1746 break;
1747 }
1748 brelse(bh);
1749 }
1750 /*
1751 * Now read interesting descriptors again and process them
1752 * in a suitable order
1753 */
1754 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1755 udf_err(sb, "Primary Volume Descriptor not found!\n");
1756 ret = -EAGAIN;
1757 goto out;
1758 }
1759 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1760 if (ret < 0)
1761 goto out;
1762
1763 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1764 ret = udf_load_logicalvol(sb,
1765 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1766 fileset);
1767 if (ret < 0)
1768 goto out;
1769 }
1770
1771 /* Now handle prevailing Partition Descriptors */
1772 for (i = 0; i < data.num_part_descs; i++) {
1773 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1774 if (ret < 0)
1775 goto out;
1776 }
1777 ret = 0;
1778 out:
1779 kfree(data.part_descs_loc);
1780 return ret;
1781 }
1782
1783 /*
1784 * Load Volume Descriptor Sequence described by anchor in bh
1785 *
1786 * Returns <0 on error, 0 on success
1787 */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1788 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1789 struct kernel_lb_addr *fileset)
1790 {
1791 struct anchorVolDescPtr *anchor;
1792 sector_t main_s, main_e, reserve_s, reserve_e;
1793 int ret;
1794
1795 anchor = (struct anchorVolDescPtr *)bh->b_data;
1796
1797 /* Locate the main sequence */
1798 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1799 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1800 main_e = main_e >> sb->s_blocksize_bits;
1801 main_e += main_s - 1;
1802
1803 /* Locate the reserve sequence */
1804 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1805 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1806 reserve_e = reserve_e >> sb->s_blocksize_bits;
1807 reserve_e += reserve_s - 1;
1808
1809 /* Process the main & reserve sequences */
1810 /* responsible for finding the PartitionDesc(s) */
1811 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1812 if (ret != -EAGAIN)
1813 return ret;
1814 udf_sb_free_partitions(sb);
1815 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1816 if (ret < 0) {
1817 udf_sb_free_partitions(sb);
1818 /* No sequence was OK, return -EIO */
1819 if (ret == -EAGAIN)
1820 ret = -EIO;
1821 }
1822 return ret;
1823 }
1824
1825 /*
1826 * Check whether there is an anchor block in the given block and
1827 * load Volume Descriptor Sequence if so.
1828 *
1829 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1830 * block
1831 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1832 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1833 struct kernel_lb_addr *fileset)
1834 {
1835 struct buffer_head *bh;
1836 uint16_t ident;
1837 int ret;
1838
1839 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1840 udf_fixed_to_variable(block) >=
1841 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1842 return -EAGAIN;
1843
1844 bh = udf_read_tagged(sb, block, block, &ident);
1845 if (!bh)
1846 return -EAGAIN;
1847 if (ident != TAG_IDENT_AVDP) {
1848 brelse(bh);
1849 return -EAGAIN;
1850 }
1851 ret = udf_load_sequence(sb, bh, fileset);
1852 brelse(bh);
1853 return ret;
1854 }
1855
1856 /*
1857 * Search for an anchor volume descriptor pointer.
1858 *
1859 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1860 * of anchors.
1861 */
udf_scan_anchors(struct super_block * sb,sector_t * lastblock,struct kernel_lb_addr * fileset)1862 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1863 struct kernel_lb_addr *fileset)
1864 {
1865 sector_t last[6];
1866 int i;
1867 struct udf_sb_info *sbi = UDF_SB(sb);
1868 int last_count = 0;
1869 int ret;
1870
1871 /* First try user provided anchor */
1872 if (sbi->s_anchor) {
1873 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1874 if (ret != -EAGAIN)
1875 return ret;
1876 }
1877 /*
1878 * according to spec, anchor is in either:
1879 * block 256
1880 * lastblock-256
1881 * lastblock
1882 * however, if the disc isn't closed, it could be 512.
1883 */
1884 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1885 if (ret != -EAGAIN)
1886 return ret;
1887 /*
1888 * The trouble is which block is the last one. Drives often misreport
1889 * this so we try various possibilities.
1890 */
1891 last[last_count++] = *lastblock;
1892 if (*lastblock >= 1)
1893 last[last_count++] = *lastblock - 1;
1894 last[last_count++] = *lastblock + 1;
1895 if (*lastblock >= 2)
1896 last[last_count++] = *lastblock - 2;
1897 if (*lastblock >= 150)
1898 last[last_count++] = *lastblock - 150;
1899 if (*lastblock >= 152)
1900 last[last_count++] = *lastblock - 152;
1901
1902 for (i = 0; i < last_count; i++) {
1903 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1904 sb->s_blocksize_bits)
1905 continue;
1906 ret = udf_check_anchor_block(sb, last[i], fileset);
1907 if (ret != -EAGAIN) {
1908 if (!ret)
1909 *lastblock = last[i];
1910 return ret;
1911 }
1912 if (last[i] < 256)
1913 continue;
1914 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1915 if (ret != -EAGAIN) {
1916 if (!ret)
1917 *lastblock = last[i];
1918 return ret;
1919 }
1920 }
1921
1922 /* Finally try block 512 in case media is open */
1923 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1924 }
1925
1926 /*
1927 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1928 * area specified by it. The function expects sbi->s_lastblock to be the last
1929 * block on the media.
1930 *
1931 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1932 * was not found.
1933 */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1934 static int udf_find_anchor(struct super_block *sb,
1935 struct kernel_lb_addr *fileset)
1936 {
1937 struct udf_sb_info *sbi = UDF_SB(sb);
1938 sector_t lastblock = sbi->s_last_block;
1939 int ret;
1940
1941 ret = udf_scan_anchors(sb, &lastblock, fileset);
1942 if (ret != -EAGAIN)
1943 goto out;
1944
1945 /* No anchor found? Try VARCONV conversion of block numbers */
1946 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1947 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1948 /* Firstly, we try to not convert number of the last block */
1949 ret = udf_scan_anchors(sb, &lastblock, fileset);
1950 if (ret != -EAGAIN)
1951 goto out;
1952
1953 lastblock = sbi->s_last_block;
1954 /* Secondly, we try with converted number of the last block */
1955 ret = udf_scan_anchors(sb, &lastblock, fileset);
1956 if (ret < 0) {
1957 /* VARCONV didn't help. Clear it. */
1958 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1959 }
1960 out:
1961 if (ret == 0)
1962 sbi->s_last_block = lastblock;
1963 return ret;
1964 }
1965
1966 /*
1967 * Check Volume Structure Descriptor, find Anchor block and load Volume
1968 * Descriptor Sequence.
1969 *
1970 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1971 * block was not found.
1972 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1973 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1974 int silent, struct kernel_lb_addr *fileset)
1975 {
1976 struct udf_sb_info *sbi = UDF_SB(sb);
1977 int nsr = 0;
1978 int ret;
1979
1980 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1981 if (!silent)
1982 udf_warn(sb, "Bad block size\n");
1983 return -EINVAL;
1984 }
1985 sbi->s_last_block = uopt->lastblock;
1986 if (!uopt->novrs) {
1987 /* Check that it is NSR02 compliant */
1988 nsr = udf_check_vsd(sb);
1989 if (!nsr) {
1990 if (!silent)
1991 udf_warn(sb, "No VRS found\n");
1992 return -EINVAL;
1993 }
1994 if (nsr == -1)
1995 udf_debug("Failed to read sector at offset %d. "
1996 "Assuming open disc. Skipping validity "
1997 "check\n", VSD_FIRST_SECTOR_OFFSET);
1998 if (!sbi->s_last_block)
1999 sbi->s_last_block = udf_get_last_block(sb);
2000 } else {
2001 udf_debug("Validity check skipped because of novrs option\n");
2002 }
2003
2004 /* Look for anchor block and load Volume Descriptor Sequence */
2005 sbi->s_anchor = uopt->anchor;
2006 ret = udf_find_anchor(sb, fileset);
2007 if (ret < 0) {
2008 if (!silent && ret == -EAGAIN)
2009 udf_warn(sb, "No anchor found\n");
2010 return ret;
2011 }
2012 return 0;
2013 }
2014
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)2015 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2016 {
2017 struct timespec64 ts;
2018
2019 ktime_get_real_ts64(&ts);
2020 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2021 lvid->descTag.descCRC = cpu_to_le16(
2022 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023 le16_to_cpu(lvid->descTag.descCRCLength)));
2024 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2025 }
2026
udf_open_lvid(struct super_block * sb)2027 static void udf_open_lvid(struct super_block *sb)
2028 {
2029 struct udf_sb_info *sbi = UDF_SB(sb);
2030 struct buffer_head *bh = sbi->s_lvid_bh;
2031 struct logicalVolIntegrityDesc *lvid;
2032 struct logicalVolIntegrityDescImpUse *lvidiu;
2033
2034 if (!bh)
2035 return;
2036 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2037 lvidiu = udf_sb_lvidiu(sb);
2038 if (!lvidiu)
2039 return;
2040
2041 mutex_lock(&sbi->s_alloc_mutex);
2042 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2043 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2044 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2045 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2046 else
2047 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2048
2049 udf_finalize_lvid(lvid);
2050 mark_buffer_dirty(bh);
2051 sbi->s_lvid_dirty = 0;
2052 mutex_unlock(&sbi->s_alloc_mutex);
2053 /* Make opening of filesystem visible on the media immediately */
2054 sync_dirty_buffer(bh);
2055 }
2056
udf_close_lvid(struct super_block * sb)2057 static void udf_close_lvid(struct super_block *sb)
2058 {
2059 struct udf_sb_info *sbi = UDF_SB(sb);
2060 struct buffer_head *bh = sbi->s_lvid_bh;
2061 struct logicalVolIntegrityDesc *lvid;
2062 struct logicalVolIntegrityDescImpUse *lvidiu;
2063
2064 if (!bh)
2065 return;
2066 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2067 lvidiu = udf_sb_lvidiu(sb);
2068 if (!lvidiu)
2069 return;
2070
2071 mutex_lock(&sbi->s_alloc_mutex);
2072 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2073 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2074 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2075 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2076 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2077 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2078 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2079 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2080 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2081 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2082
2083 /*
2084 * We set buffer uptodate unconditionally here to avoid spurious
2085 * warnings from mark_buffer_dirty() when previous EIO has marked
2086 * the buffer as !uptodate
2087 */
2088 set_buffer_uptodate(bh);
2089 udf_finalize_lvid(lvid);
2090 mark_buffer_dirty(bh);
2091 sbi->s_lvid_dirty = 0;
2092 mutex_unlock(&sbi->s_alloc_mutex);
2093 /* Make closing of filesystem visible on the media immediately */
2094 sync_dirty_buffer(bh);
2095 }
2096
lvid_get_unique_id(struct super_block * sb)2097 u64 lvid_get_unique_id(struct super_block *sb)
2098 {
2099 struct buffer_head *bh;
2100 struct udf_sb_info *sbi = UDF_SB(sb);
2101 struct logicalVolIntegrityDesc *lvid;
2102 struct logicalVolHeaderDesc *lvhd;
2103 u64 uniqueID;
2104 u64 ret;
2105
2106 bh = sbi->s_lvid_bh;
2107 if (!bh)
2108 return 0;
2109
2110 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2111 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2112
2113 mutex_lock(&sbi->s_alloc_mutex);
2114 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2115 if (!(++uniqueID & 0xFFFFFFFF))
2116 uniqueID += 16;
2117 lvhd->uniqueID = cpu_to_le64(uniqueID);
2118 udf_updated_lvid(sb);
2119 mutex_unlock(&sbi->s_alloc_mutex);
2120
2121 return ret;
2122 }
2123
udf_fill_super(struct super_block * sb,void * options,int silent)2124 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2125 {
2126 int ret = -EINVAL;
2127 struct inode *inode = NULL;
2128 struct udf_options uopt;
2129 struct kernel_lb_addr rootdir, fileset;
2130 struct udf_sb_info *sbi;
2131 bool lvid_open = false;
2132
2133 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2134 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2135 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2136 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2137 uopt.umask = 0;
2138 uopt.fmode = UDF_INVALID_MODE;
2139 uopt.dmode = UDF_INVALID_MODE;
2140 uopt.nls_map = NULL;
2141
2142 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2143 if (!sbi)
2144 return -ENOMEM;
2145
2146 sb->s_fs_info = sbi;
2147
2148 mutex_init(&sbi->s_alloc_mutex);
2149
2150 if (!udf_parse_options((char *)options, &uopt, false))
2151 goto parse_options_failure;
2152
2153 fileset.logicalBlockNum = 0xFFFFFFFF;
2154 fileset.partitionReferenceNum = 0xFFFF;
2155
2156 sbi->s_flags = uopt.flags;
2157 sbi->s_uid = uopt.uid;
2158 sbi->s_gid = uopt.gid;
2159 sbi->s_umask = uopt.umask;
2160 sbi->s_fmode = uopt.fmode;
2161 sbi->s_dmode = uopt.dmode;
2162 sbi->s_nls_map = uopt.nls_map;
2163 rwlock_init(&sbi->s_cred_lock);
2164
2165 if (uopt.session == 0xFFFFFFFF)
2166 sbi->s_session = udf_get_last_session(sb);
2167 else
2168 sbi->s_session = uopt.session;
2169
2170 udf_debug("Multi-session=%d\n", sbi->s_session);
2171
2172 /* Fill in the rest of the superblock */
2173 sb->s_op = &udf_sb_ops;
2174 sb->s_export_op = &udf_export_ops;
2175
2176 sb->s_magic = UDF_SUPER_MAGIC;
2177 sb->s_time_gran = 1000;
2178
2179 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2180 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2181 } else {
2182 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2183 while (uopt.blocksize <= 4096) {
2184 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2185 if (ret < 0) {
2186 if (!silent && ret != -EACCES) {
2187 pr_notice("Scanning with blocksize %u failed\n",
2188 uopt.blocksize);
2189 }
2190 brelse(sbi->s_lvid_bh);
2191 sbi->s_lvid_bh = NULL;
2192 /*
2193 * EACCES is special - we want to propagate to
2194 * upper layers that we cannot handle RW mount.
2195 */
2196 if (ret == -EACCES)
2197 break;
2198 } else
2199 break;
2200
2201 uopt.blocksize <<= 1;
2202 }
2203 }
2204 if (ret < 0) {
2205 if (ret == -EAGAIN) {
2206 udf_warn(sb, "No partition found (1)\n");
2207 ret = -EINVAL;
2208 }
2209 goto error_out;
2210 }
2211
2212 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2213
2214 if (sbi->s_lvid_bh) {
2215 struct logicalVolIntegrityDescImpUse *lvidiu =
2216 udf_sb_lvidiu(sb);
2217 uint16_t minUDFReadRev;
2218 uint16_t minUDFWriteRev;
2219
2220 if (!lvidiu) {
2221 ret = -EINVAL;
2222 goto error_out;
2223 }
2224 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2225 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2226 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2227 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2228 minUDFReadRev,
2229 UDF_MAX_READ_VERSION);
2230 ret = -EINVAL;
2231 goto error_out;
2232 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2233 if (!sb_rdonly(sb)) {
2234 ret = -EACCES;
2235 goto error_out;
2236 }
2237 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2238 }
2239
2240 sbi->s_udfrev = minUDFWriteRev;
2241
2242 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2243 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2244 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2245 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2246 }
2247
2248 if (!sbi->s_partitions) {
2249 udf_warn(sb, "No partition found (2)\n");
2250 ret = -EINVAL;
2251 goto error_out;
2252 }
2253
2254 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2255 UDF_PART_FLAG_READ_ONLY) {
2256 if (!sb_rdonly(sb)) {
2257 ret = -EACCES;
2258 goto error_out;
2259 }
2260 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2261 }
2262
2263 ret = udf_find_fileset(sb, &fileset, &rootdir);
2264 if (ret < 0) {
2265 udf_warn(sb, "No fileset found\n");
2266 goto error_out;
2267 }
2268
2269 if (!silent) {
2270 struct timestamp ts;
2271 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2272 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2273 sbi->s_volume_ident,
2274 le16_to_cpu(ts.year), ts.month, ts.day,
2275 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2276 }
2277 if (!sb_rdonly(sb)) {
2278 udf_open_lvid(sb);
2279 lvid_open = true;
2280 }
2281
2282 /* Assign the root inode */
2283 /* assign inodes by physical block number */
2284 /* perhaps it's not extensible enough, but for now ... */
2285 inode = udf_iget(sb, &rootdir);
2286 if (IS_ERR(inode)) {
2287 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2288 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2289 ret = PTR_ERR(inode);
2290 goto error_out;
2291 }
2292
2293 /* Allocate a dentry for the root inode */
2294 sb->s_root = d_make_root(inode);
2295 if (!sb->s_root) {
2296 udf_err(sb, "Couldn't allocate root dentry\n");
2297 ret = -ENOMEM;
2298 goto error_out;
2299 }
2300 sb->s_maxbytes = MAX_LFS_FILESIZE;
2301 sb->s_max_links = UDF_MAX_LINKS;
2302 return 0;
2303
2304 error_out:
2305 iput(sbi->s_vat_inode);
2306 parse_options_failure:
2307 unload_nls(uopt.nls_map);
2308 if (lvid_open)
2309 udf_close_lvid(sb);
2310 brelse(sbi->s_lvid_bh);
2311 udf_sb_free_partitions(sb);
2312 kfree(sbi);
2313 sb->s_fs_info = NULL;
2314
2315 return ret;
2316 }
2317
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2318 void _udf_err(struct super_block *sb, const char *function,
2319 const char *fmt, ...)
2320 {
2321 struct va_format vaf;
2322 va_list args;
2323
2324 va_start(args, fmt);
2325
2326 vaf.fmt = fmt;
2327 vaf.va = &args;
2328
2329 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2330
2331 va_end(args);
2332 }
2333
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2334 void _udf_warn(struct super_block *sb, const char *function,
2335 const char *fmt, ...)
2336 {
2337 struct va_format vaf;
2338 va_list args;
2339
2340 va_start(args, fmt);
2341
2342 vaf.fmt = fmt;
2343 vaf.va = &args;
2344
2345 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2346
2347 va_end(args);
2348 }
2349
udf_put_super(struct super_block * sb)2350 static void udf_put_super(struct super_block *sb)
2351 {
2352 struct udf_sb_info *sbi;
2353
2354 sbi = UDF_SB(sb);
2355
2356 iput(sbi->s_vat_inode);
2357 unload_nls(sbi->s_nls_map);
2358 if (!sb_rdonly(sb))
2359 udf_close_lvid(sb);
2360 brelse(sbi->s_lvid_bh);
2361 udf_sb_free_partitions(sb);
2362 mutex_destroy(&sbi->s_alloc_mutex);
2363 kfree(sb->s_fs_info);
2364 sb->s_fs_info = NULL;
2365 }
2366
udf_sync_fs(struct super_block * sb,int wait)2367 static int udf_sync_fs(struct super_block *sb, int wait)
2368 {
2369 struct udf_sb_info *sbi = UDF_SB(sb);
2370
2371 mutex_lock(&sbi->s_alloc_mutex);
2372 if (sbi->s_lvid_dirty) {
2373 struct buffer_head *bh = sbi->s_lvid_bh;
2374 struct logicalVolIntegrityDesc *lvid;
2375
2376 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2377 udf_finalize_lvid(lvid);
2378
2379 /*
2380 * Blockdevice will be synced later so we don't have to submit
2381 * the buffer for IO
2382 */
2383 mark_buffer_dirty(bh);
2384 sbi->s_lvid_dirty = 0;
2385 }
2386 mutex_unlock(&sbi->s_alloc_mutex);
2387
2388 return 0;
2389 }
2390
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2391 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2392 {
2393 struct super_block *sb = dentry->d_sb;
2394 struct udf_sb_info *sbi = UDF_SB(sb);
2395 struct logicalVolIntegrityDescImpUse *lvidiu;
2396 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2397
2398 lvidiu = udf_sb_lvidiu(sb);
2399 buf->f_type = UDF_SUPER_MAGIC;
2400 buf->f_bsize = sb->s_blocksize;
2401 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2402 buf->f_bfree = udf_count_free(sb);
2403 buf->f_bavail = buf->f_bfree;
2404 /*
2405 * Let's pretend each free block is also a free 'inode' since UDF does
2406 * not have separate preallocated table of inodes.
2407 */
2408 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2409 le32_to_cpu(lvidiu->numDirs)) : 0)
2410 + buf->f_bfree;
2411 buf->f_ffree = buf->f_bfree;
2412 buf->f_namelen = UDF_NAME_LEN;
2413 buf->f_fsid = u64_to_fsid(id);
2414
2415 return 0;
2416 }
2417
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2418 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2419 struct udf_bitmap *bitmap)
2420 {
2421 struct buffer_head *bh = NULL;
2422 unsigned int accum = 0;
2423 int index;
2424 udf_pblk_t block = 0, newblock;
2425 struct kernel_lb_addr loc;
2426 uint32_t bytes;
2427 uint8_t *ptr;
2428 uint16_t ident;
2429 struct spaceBitmapDesc *bm;
2430
2431 loc.logicalBlockNum = bitmap->s_extPosition;
2432 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2433 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2434
2435 if (!bh) {
2436 udf_err(sb, "udf_count_free failed\n");
2437 goto out;
2438 } else if (ident != TAG_IDENT_SBD) {
2439 brelse(bh);
2440 udf_err(sb, "udf_count_free failed\n");
2441 goto out;
2442 }
2443
2444 bm = (struct spaceBitmapDesc *)bh->b_data;
2445 bytes = le32_to_cpu(bm->numOfBytes);
2446 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2447 ptr = (uint8_t *)bh->b_data;
2448
2449 while (bytes > 0) {
2450 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2451 accum += bitmap_weight((const unsigned long *)(ptr + index),
2452 cur_bytes * 8);
2453 bytes -= cur_bytes;
2454 if (bytes) {
2455 brelse(bh);
2456 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2457 bh = udf_tread(sb, newblock);
2458 if (!bh) {
2459 udf_debug("read failed\n");
2460 goto out;
2461 }
2462 index = 0;
2463 ptr = (uint8_t *)bh->b_data;
2464 }
2465 }
2466 brelse(bh);
2467 out:
2468 return accum;
2469 }
2470
udf_count_free_table(struct super_block * sb,struct inode * table)2471 static unsigned int udf_count_free_table(struct super_block *sb,
2472 struct inode *table)
2473 {
2474 unsigned int accum = 0;
2475 uint32_t elen;
2476 struct kernel_lb_addr eloc;
2477 int8_t etype;
2478 struct extent_position epos;
2479
2480 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2481 epos.block = UDF_I(table)->i_location;
2482 epos.offset = sizeof(struct unallocSpaceEntry);
2483 epos.bh = NULL;
2484
2485 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2486 accum += (elen >> table->i_sb->s_blocksize_bits);
2487
2488 brelse(epos.bh);
2489 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2490
2491 return accum;
2492 }
2493
udf_count_free(struct super_block * sb)2494 static unsigned int udf_count_free(struct super_block *sb)
2495 {
2496 unsigned int accum = 0;
2497 struct udf_sb_info *sbi = UDF_SB(sb);
2498 struct udf_part_map *map;
2499 unsigned int part = sbi->s_partition;
2500 int ptype = sbi->s_partmaps[part].s_partition_type;
2501
2502 if (ptype == UDF_METADATA_MAP25) {
2503 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2504 s_phys_partition_ref;
2505 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2506 /*
2507 * Filesystems with VAT are append-only and we cannot write to
2508 * them. Let's just report 0 here.
2509 */
2510 return 0;
2511 }
2512
2513 if (sbi->s_lvid_bh) {
2514 struct logicalVolIntegrityDesc *lvid =
2515 (struct logicalVolIntegrityDesc *)
2516 sbi->s_lvid_bh->b_data;
2517 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2518 accum = le32_to_cpu(
2519 lvid->freeSpaceTable[part]);
2520 if (accum == 0xFFFFFFFF)
2521 accum = 0;
2522 }
2523 }
2524
2525 if (accum)
2526 return accum;
2527
2528 map = &sbi->s_partmaps[part];
2529 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2530 accum += udf_count_free_bitmap(sb,
2531 map->s_uspace.s_bitmap);
2532 }
2533 if (accum)
2534 return accum;
2535
2536 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2537 accum += udf_count_free_table(sb,
2538 map->s_uspace.s_table);
2539 }
2540 return accum;
2541 }
2542
2543 MODULE_AUTHOR("Ben Fennema");
2544 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2545 MODULE_LICENSE("GPL");
2546 module_init(init_udf_fs)
2547 module_exit(exit_udf_fs)
2548