• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    https://www.ecma.ch/
15  *    https://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 enum {
68 	VDS_POS_PRIMARY_VOL_DESC,
69 	VDS_POS_UNALLOC_SPACE_DESC,
70 	VDS_POS_LOGICAL_VOL_DESC,
71 	VDS_POS_IMP_USE_VOL_DESC,
72 	VDS_POS_LENGTH
73 };
74 
75 #define VSD_FIRST_SECTOR_OFFSET		32768
76 #define VSD_MAX_SECTOR_OFFSET		0x800000
77 
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86 
87 enum { UDF_MAX_LINKS = 0xffff };
88 
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
100 
udf_sb_lvidiu(struct super_block * sb)101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102 {
103 	struct logicalVolIntegrityDesc *lvid;
104 	unsigned int partnum;
105 	unsigned int offset;
106 
107 	if (!UDF_SB(sb)->s_lvid_bh)
108 		return NULL;
109 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110 	partnum = le32_to_cpu(lvid->numOfPartitions);
111 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
112 	offset = partnum * 2 * sizeof(uint32_t);
113 	return (struct logicalVolIntegrityDescImpUse *)
114 					(((uint8_t *)(lvid + 1)) + offset);
115 }
116 
117 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)118 static struct dentry *udf_mount(struct file_system_type *fs_type,
119 		      int flags, const char *dev_name, void *data)
120 {
121 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
122 }
123 
124 static struct file_system_type udf_fstype = {
125 	.owner		= THIS_MODULE,
126 	.name		= "udf",
127 	.mount		= udf_mount,
128 	.kill_sb	= kill_block_super,
129 	.fs_flags	= FS_REQUIRES_DEV,
130 };
131 MODULE_ALIAS_FS("udf");
132 
133 static struct kmem_cache *udf_inode_cachep;
134 
udf_alloc_inode(struct super_block * sb)135 static struct inode *udf_alloc_inode(struct super_block *sb)
136 {
137 	struct udf_inode_info *ei;
138 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
139 	if (!ei)
140 		return NULL;
141 
142 	ei->i_unique = 0;
143 	ei->i_lenExtents = 0;
144 	ei->i_lenStreams = 0;
145 	ei->i_next_alloc_block = 0;
146 	ei->i_next_alloc_goal = 0;
147 	ei->i_strat4096 = 0;
148 	ei->i_streamdir = 0;
149 	init_rwsem(&ei->i_data_sem);
150 	ei->cached_extent.lstart = -1;
151 	spin_lock_init(&ei->i_extent_cache_lock);
152 
153 	return &ei->vfs_inode;
154 }
155 
udf_free_in_core_inode(struct inode * inode)156 static void udf_free_in_core_inode(struct inode *inode)
157 {
158 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
159 }
160 
init_once(void * foo)161 static void init_once(void *foo)
162 {
163 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
164 
165 	ei->i_data = NULL;
166 	inode_init_once(&ei->vfs_inode);
167 }
168 
init_inodecache(void)169 static int __init init_inodecache(void)
170 {
171 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
172 					     sizeof(struct udf_inode_info),
173 					     0, (SLAB_RECLAIM_ACCOUNT |
174 						 SLAB_MEM_SPREAD |
175 						 SLAB_ACCOUNT),
176 					     init_once);
177 	if (!udf_inode_cachep)
178 		return -ENOMEM;
179 	return 0;
180 }
181 
destroy_inodecache(void)182 static void destroy_inodecache(void)
183 {
184 	/*
185 	 * Make sure all delayed rcu free inodes are flushed before we
186 	 * destroy cache.
187 	 */
188 	rcu_barrier();
189 	kmem_cache_destroy(udf_inode_cachep);
190 }
191 
192 /* Superblock operations */
193 static const struct super_operations udf_sb_ops = {
194 	.alloc_inode	= udf_alloc_inode,
195 	.free_inode	= udf_free_in_core_inode,
196 	.write_inode	= udf_write_inode,
197 	.evict_inode	= udf_evict_inode,
198 	.put_super	= udf_put_super,
199 	.sync_fs	= udf_sync_fs,
200 	.statfs		= udf_statfs,
201 	.remount_fs	= udf_remount_fs,
202 	.show_options	= udf_show_options,
203 };
204 
205 struct udf_options {
206 	unsigned char novrs;
207 	unsigned int blocksize;
208 	unsigned int session;
209 	unsigned int lastblock;
210 	unsigned int anchor;
211 	unsigned int flags;
212 	umode_t umask;
213 	kgid_t gid;
214 	kuid_t uid;
215 	umode_t fmode;
216 	umode_t dmode;
217 	struct nls_table *nls_map;
218 };
219 
init_udf_fs(void)220 static int __init init_udf_fs(void)
221 {
222 	int err;
223 
224 	err = init_inodecache();
225 	if (err)
226 		goto out1;
227 	err = register_filesystem(&udf_fstype);
228 	if (err)
229 		goto out;
230 
231 	return 0;
232 
233 out:
234 	destroy_inodecache();
235 
236 out1:
237 	return err;
238 }
239 
exit_udf_fs(void)240 static void __exit exit_udf_fs(void)
241 {
242 	unregister_filesystem(&udf_fstype);
243 	destroy_inodecache();
244 }
245 
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)246 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
247 {
248 	struct udf_sb_info *sbi = UDF_SB(sb);
249 
250 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
251 	if (!sbi->s_partmaps) {
252 		sbi->s_partitions = 0;
253 		return -ENOMEM;
254 	}
255 
256 	sbi->s_partitions = count;
257 	return 0;
258 }
259 
udf_sb_free_bitmap(struct udf_bitmap * bitmap)260 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
261 {
262 	int i;
263 	int nr_groups = bitmap->s_nr_groups;
264 
265 	for (i = 0; i < nr_groups; i++)
266 		brelse(bitmap->s_block_bitmap[i]);
267 
268 	kvfree(bitmap);
269 }
270 
udf_free_partition(struct udf_part_map * map)271 static void udf_free_partition(struct udf_part_map *map)
272 {
273 	int i;
274 	struct udf_meta_data *mdata;
275 
276 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
277 		iput(map->s_uspace.s_table);
278 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
279 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
280 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
281 		for (i = 0; i < 4; i++)
282 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
283 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
284 		mdata = &map->s_type_specific.s_metadata;
285 		iput(mdata->s_metadata_fe);
286 		mdata->s_metadata_fe = NULL;
287 
288 		iput(mdata->s_mirror_fe);
289 		mdata->s_mirror_fe = NULL;
290 
291 		iput(mdata->s_bitmap_fe);
292 		mdata->s_bitmap_fe = NULL;
293 	}
294 }
295 
udf_sb_free_partitions(struct super_block * sb)296 static void udf_sb_free_partitions(struct super_block *sb)
297 {
298 	struct udf_sb_info *sbi = UDF_SB(sb);
299 	int i;
300 
301 	if (!sbi->s_partmaps)
302 		return;
303 	for (i = 0; i < sbi->s_partitions; i++)
304 		udf_free_partition(&sbi->s_partmaps[i]);
305 	kfree(sbi->s_partmaps);
306 	sbi->s_partmaps = NULL;
307 }
308 
udf_show_options(struct seq_file * seq,struct dentry * root)309 static int udf_show_options(struct seq_file *seq, struct dentry *root)
310 {
311 	struct super_block *sb = root->d_sb;
312 	struct udf_sb_info *sbi = UDF_SB(sb);
313 
314 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
315 		seq_puts(seq, ",nostrict");
316 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
317 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
318 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
319 		seq_puts(seq, ",unhide");
320 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
321 		seq_puts(seq, ",undelete");
322 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
323 		seq_puts(seq, ",noadinicb");
324 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
325 		seq_puts(seq, ",shortad");
326 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
327 		seq_puts(seq, ",uid=forget");
328 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
329 		seq_puts(seq, ",gid=forget");
330 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
331 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
332 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
333 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
334 	if (sbi->s_umask != 0)
335 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
336 	if (sbi->s_fmode != UDF_INVALID_MODE)
337 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
338 	if (sbi->s_dmode != UDF_INVALID_MODE)
339 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
340 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
341 		seq_printf(seq, ",session=%d", sbi->s_session);
342 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
343 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
344 	if (sbi->s_anchor != 0)
345 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
346 	if (sbi->s_nls_map)
347 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
348 	else
349 		seq_puts(seq, ",iocharset=utf8");
350 
351 	return 0;
352 }
353 
354 /*
355  * udf_parse_options
356  *
357  * PURPOSE
358  *	Parse mount options.
359  *
360  * DESCRIPTION
361  *	The following mount options are supported:
362  *
363  *	gid=		Set the default group.
364  *	umask=		Set the default umask.
365  *	mode=		Set the default file permissions.
366  *	dmode=		Set the default directory permissions.
367  *	uid=		Set the default user.
368  *	bs=		Set the block size.
369  *	unhide		Show otherwise hidden files.
370  *	undelete	Show deleted files in lists.
371  *	adinicb		Embed data in the inode (default)
372  *	noadinicb	Don't embed data in the inode
373  *	shortad		Use short ad's
374  *	longad		Use long ad's (default)
375  *	nostrict	Unset strict conformance
376  *	iocharset=	Set the NLS character set
377  *
378  *	The remaining are for debugging and disaster recovery:
379  *
380  *	novrs		Skip volume sequence recognition
381  *
382  *	The following expect a offset from 0.
383  *
384  *	session=	Set the CDROM session (default= last session)
385  *	anchor=		Override standard anchor location. (default= 256)
386  *	volume=		Override the VolumeDesc location. (unused)
387  *	partition=	Override the PartitionDesc location. (unused)
388  *	lastblock=	Set the last block of the filesystem/
389  *
390  *	The following expect a offset from the partition root.
391  *
392  *	fileset=	Override the fileset block location. (unused)
393  *	rootdir=	Override the root directory location. (unused)
394  *		WARNING: overriding the rootdir to a non-directory may
395  *		yield highly unpredictable results.
396  *
397  * PRE-CONDITIONS
398  *	options		Pointer to mount options string.
399  *	uopts		Pointer to mount options variable.
400  *
401  * POST-CONDITIONS
402  *	<return>	1	Mount options parsed okay.
403  *	<return>	0	Error parsing mount options.
404  *
405  * HISTORY
406  *	July 1, 1997 - Andrew E. Mileski
407  *	Written, tested, and released.
408  */
409 
410 enum {
411 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
412 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
413 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
414 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
415 	Opt_rootdir, Opt_utf8, Opt_iocharset,
416 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
417 	Opt_fmode, Opt_dmode
418 };
419 
420 static const match_table_t tokens = {
421 	{Opt_novrs,	"novrs"},
422 	{Opt_nostrict,	"nostrict"},
423 	{Opt_bs,	"bs=%u"},
424 	{Opt_unhide,	"unhide"},
425 	{Opt_undelete,	"undelete"},
426 	{Opt_noadinicb,	"noadinicb"},
427 	{Opt_adinicb,	"adinicb"},
428 	{Opt_shortad,	"shortad"},
429 	{Opt_longad,	"longad"},
430 	{Opt_uforget,	"uid=forget"},
431 	{Opt_uignore,	"uid=ignore"},
432 	{Opt_gforget,	"gid=forget"},
433 	{Opt_gignore,	"gid=ignore"},
434 	{Opt_gid,	"gid=%u"},
435 	{Opt_uid,	"uid=%u"},
436 	{Opt_umask,	"umask=%o"},
437 	{Opt_session,	"session=%u"},
438 	{Opt_lastblock,	"lastblock=%u"},
439 	{Opt_anchor,	"anchor=%u"},
440 	{Opt_volume,	"volume=%u"},
441 	{Opt_partition,	"partition=%u"},
442 	{Opt_fileset,	"fileset=%u"},
443 	{Opt_rootdir,	"rootdir=%u"},
444 	{Opt_utf8,	"utf8"},
445 	{Opt_iocharset,	"iocharset=%s"},
446 	{Opt_fmode,     "mode=%o"},
447 	{Opt_dmode,     "dmode=%o"},
448 	{Opt_err,	NULL}
449 };
450 
udf_parse_options(char * options,struct udf_options * uopt,bool remount)451 static int udf_parse_options(char *options, struct udf_options *uopt,
452 			     bool remount)
453 {
454 	char *p;
455 	int option;
456 
457 	uopt->novrs = 0;
458 	uopt->session = 0xFFFFFFFF;
459 	uopt->lastblock = 0;
460 	uopt->anchor = 0;
461 
462 	if (!options)
463 		return 1;
464 
465 	while ((p = strsep(&options, ",")) != NULL) {
466 		substring_t args[MAX_OPT_ARGS];
467 		int token;
468 		unsigned n;
469 		if (!*p)
470 			continue;
471 
472 		token = match_token(p, tokens, args);
473 		switch (token) {
474 		case Opt_novrs:
475 			uopt->novrs = 1;
476 			break;
477 		case Opt_bs:
478 			if (match_int(&args[0], &option))
479 				return 0;
480 			n = option;
481 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
482 				return 0;
483 			uopt->blocksize = n;
484 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
485 			break;
486 		case Opt_unhide:
487 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
488 			break;
489 		case Opt_undelete:
490 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
491 			break;
492 		case Opt_noadinicb:
493 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
494 			break;
495 		case Opt_adinicb:
496 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
497 			break;
498 		case Opt_shortad:
499 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
500 			break;
501 		case Opt_longad:
502 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
503 			break;
504 		case Opt_gid:
505 			if (match_int(args, &option))
506 				return 0;
507 			uopt->gid = make_kgid(current_user_ns(), option);
508 			if (!gid_valid(uopt->gid))
509 				return 0;
510 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
511 			break;
512 		case Opt_uid:
513 			if (match_int(args, &option))
514 				return 0;
515 			uopt->uid = make_kuid(current_user_ns(), option);
516 			if (!uid_valid(uopt->uid))
517 				return 0;
518 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
519 			break;
520 		case Opt_umask:
521 			if (match_octal(args, &option))
522 				return 0;
523 			uopt->umask = option;
524 			break;
525 		case Opt_nostrict:
526 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
527 			break;
528 		case Opt_session:
529 			if (match_int(args, &option))
530 				return 0;
531 			uopt->session = option;
532 			if (!remount)
533 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
534 			break;
535 		case Opt_lastblock:
536 			if (match_int(args, &option))
537 				return 0;
538 			uopt->lastblock = option;
539 			if (!remount)
540 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
541 			break;
542 		case Opt_anchor:
543 			if (match_int(args, &option))
544 				return 0;
545 			uopt->anchor = option;
546 			break;
547 		case Opt_volume:
548 		case Opt_partition:
549 		case Opt_fileset:
550 		case Opt_rootdir:
551 			/* Ignored (never implemented properly) */
552 			break;
553 		case Opt_utf8:
554 			if (!remount) {
555 				unload_nls(uopt->nls_map);
556 				uopt->nls_map = NULL;
557 			}
558 			break;
559 		case Opt_iocharset:
560 			if (!remount) {
561 				unload_nls(uopt->nls_map);
562 				uopt->nls_map = NULL;
563 			}
564 			/* When nls_map is not loaded then UTF-8 is used */
565 			if (!remount && strcmp(args[0].from, "utf8") != 0) {
566 				uopt->nls_map = load_nls(args[0].from);
567 				if (!uopt->nls_map) {
568 					pr_err("iocharset %s not found\n",
569 						args[0].from);
570 					return 0;
571 				}
572 			}
573 			break;
574 		case Opt_uforget:
575 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
576 			break;
577 		case Opt_uignore:
578 		case Opt_gignore:
579 			/* These options are superseeded by uid=<number> */
580 			break;
581 		case Opt_gforget:
582 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
583 			break;
584 		case Opt_fmode:
585 			if (match_octal(args, &option))
586 				return 0;
587 			uopt->fmode = option & 0777;
588 			break;
589 		case Opt_dmode:
590 			if (match_octal(args, &option))
591 				return 0;
592 			uopt->dmode = option & 0777;
593 			break;
594 		default:
595 			pr_err("bad mount option \"%s\" or missing value\n", p);
596 			return 0;
597 		}
598 	}
599 	return 1;
600 }
601 
udf_remount_fs(struct super_block * sb,int * flags,char * options)602 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
603 {
604 	struct udf_options uopt;
605 	struct udf_sb_info *sbi = UDF_SB(sb);
606 	int error = 0;
607 
608 	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
609 		return -EACCES;
610 
611 	sync_filesystem(sb);
612 
613 	uopt.flags = sbi->s_flags;
614 	uopt.uid   = sbi->s_uid;
615 	uopt.gid   = sbi->s_gid;
616 	uopt.umask = sbi->s_umask;
617 	uopt.fmode = sbi->s_fmode;
618 	uopt.dmode = sbi->s_dmode;
619 	uopt.nls_map = NULL;
620 
621 	if (!udf_parse_options(options, &uopt, true))
622 		return -EINVAL;
623 
624 	write_lock(&sbi->s_cred_lock);
625 	sbi->s_flags = uopt.flags;
626 	sbi->s_uid   = uopt.uid;
627 	sbi->s_gid   = uopt.gid;
628 	sbi->s_umask = uopt.umask;
629 	sbi->s_fmode = uopt.fmode;
630 	sbi->s_dmode = uopt.dmode;
631 	write_unlock(&sbi->s_cred_lock);
632 
633 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
634 		goto out_unlock;
635 
636 	if (*flags & SB_RDONLY)
637 		udf_close_lvid(sb);
638 	else
639 		udf_open_lvid(sb);
640 
641 out_unlock:
642 	return error;
643 }
644 
645 /*
646  * Check VSD descriptor. Returns -1 in case we are at the end of volume
647  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
648  * we found one of NSR descriptors we are looking for.
649  */
identify_vsd(const struct volStructDesc * vsd)650 static int identify_vsd(const struct volStructDesc *vsd)
651 {
652 	int ret = 0;
653 
654 	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
655 		switch (vsd->structType) {
656 		case 0:
657 			udf_debug("ISO9660 Boot Record found\n");
658 			break;
659 		case 1:
660 			udf_debug("ISO9660 Primary Volume Descriptor found\n");
661 			break;
662 		case 2:
663 			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
664 			break;
665 		case 3:
666 			udf_debug("ISO9660 Volume Partition Descriptor found\n");
667 			break;
668 		case 255:
669 			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
670 			break;
671 		default:
672 			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
673 			break;
674 		}
675 	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
676 		; /* ret = 0 */
677 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
678 		ret = 1;
679 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
680 		ret = 1;
681 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
682 		; /* ret = 0 */
683 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
684 		; /* ret = 0 */
685 	else {
686 		/* TEA01 or invalid id : end of volume recognition area */
687 		ret = -1;
688 	}
689 
690 	return ret;
691 }
692 
693 /*
694  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
695  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
696  * @return   1 if NSR02 or NSR03 found,
697  *	    -1 if first sector read error, 0 otherwise
698  */
udf_check_vsd(struct super_block * sb)699 static int udf_check_vsd(struct super_block *sb)
700 {
701 	struct volStructDesc *vsd = NULL;
702 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
703 	int sectorsize;
704 	struct buffer_head *bh = NULL;
705 	int nsr = 0;
706 	struct udf_sb_info *sbi;
707 	loff_t session_offset;
708 
709 	sbi = UDF_SB(sb);
710 	if (sb->s_blocksize < sizeof(struct volStructDesc))
711 		sectorsize = sizeof(struct volStructDesc);
712 	else
713 		sectorsize = sb->s_blocksize;
714 
715 	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
716 	sector += session_offset;
717 
718 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
719 		  (unsigned int)(sector >> sb->s_blocksize_bits),
720 		  sb->s_blocksize);
721 	/* Process the sequence (if applicable). The hard limit on the sector
722 	 * offset is arbitrary, hopefully large enough so that all valid UDF
723 	 * filesystems will be recognised. There is no mention of an upper
724 	 * bound to the size of the volume recognition area in the standard.
725 	 *  The limit will prevent the code to read all the sectors of a
726 	 * specially crafted image (like a bluray disc full of CD001 sectors),
727 	 * potentially causing minutes or even hours of uninterruptible I/O
728 	 * activity. This actually happened with uninitialised SSD partitions
729 	 * (all 0xFF) before the check for the limit and all valid IDs were
730 	 * added */
731 	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
732 		/* Read a block */
733 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
734 		if (!bh)
735 			break;
736 
737 		vsd = (struct volStructDesc *)(bh->b_data +
738 					      (sector & (sb->s_blocksize - 1)));
739 		nsr = identify_vsd(vsd);
740 		/* Found NSR or end? */
741 		if (nsr) {
742 			brelse(bh);
743 			break;
744 		}
745 		/*
746 		 * Special handling for improperly formatted VRS (e.g., Win10)
747 		 * where components are separated by 2048 bytes even though
748 		 * sectors are 4K
749 		 */
750 		if (sb->s_blocksize == 4096) {
751 			nsr = identify_vsd(vsd + 1);
752 			/* Ignore unknown IDs... */
753 			if (nsr < 0)
754 				nsr = 0;
755 		}
756 		brelse(bh);
757 	}
758 
759 	if (nsr > 0)
760 		return 1;
761 	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
762 		return -1;
763 	else
764 		return 0;
765 }
766 
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)767 static int udf_verify_domain_identifier(struct super_block *sb,
768 					struct regid *ident, char *dname)
769 {
770 	struct domainIdentSuffix *suffix;
771 
772 	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
773 		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
774 		goto force_ro;
775 	}
776 	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
777 		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
778 			 dname);
779 		goto force_ro;
780 	}
781 	suffix = (struct domainIdentSuffix *)ident->identSuffix;
782 	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
783 	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
784 		if (!sb_rdonly(sb)) {
785 			udf_warn(sb, "Descriptor for %s marked write protected."
786 				 " Forcing read only mount.\n", dname);
787 		}
788 		goto force_ro;
789 	}
790 	return 0;
791 
792 force_ro:
793 	if (!sb_rdonly(sb))
794 		return -EACCES;
795 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
796 	return 0;
797 }
798 
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)799 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
800 			    struct kernel_lb_addr *root)
801 {
802 	int ret;
803 
804 	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
805 	if (ret < 0)
806 		return ret;
807 
808 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
809 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
810 
811 	udf_debug("Rootdir at block=%u, partition=%u\n",
812 		  root->logicalBlockNum, root->partitionReferenceNum);
813 	return 0;
814 }
815 
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)816 static int udf_find_fileset(struct super_block *sb,
817 			    struct kernel_lb_addr *fileset,
818 			    struct kernel_lb_addr *root)
819 {
820 	struct buffer_head *bh = NULL;
821 	uint16_t ident;
822 	int ret;
823 
824 	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
825 	    fileset->partitionReferenceNum == 0xFFFF)
826 		return -EINVAL;
827 
828 	bh = udf_read_ptagged(sb, fileset, 0, &ident);
829 	if (!bh)
830 		return -EIO;
831 	if (ident != TAG_IDENT_FSD) {
832 		brelse(bh);
833 		return -EINVAL;
834 	}
835 
836 	udf_debug("Fileset at block=%u, partition=%u\n",
837 		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
838 
839 	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
840 	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
841 	brelse(bh);
842 	return ret;
843 }
844 
845 /*
846  * Load primary Volume Descriptor Sequence
847  *
848  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
849  * should be tried.
850  */
udf_load_pvoldesc(struct super_block * sb,sector_t block)851 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
852 {
853 	struct primaryVolDesc *pvoldesc;
854 	uint8_t *outstr;
855 	struct buffer_head *bh;
856 	uint16_t ident;
857 	int ret;
858 	struct timestamp *ts;
859 
860 	outstr = kmalloc(128, GFP_NOFS);
861 	if (!outstr)
862 		return -ENOMEM;
863 
864 	bh = udf_read_tagged(sb, block, block, &ident);
865 	if (!bh) {
866 		ret = -EAGAIN;
867 		goto out2;
868 	}
869 
870 	if (ident != TAG_IDENT_PVD) {
871 		ret = -EIO;
872 		goto out_bh;
873 	}
874 
875 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
876 
877 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
878 			      pvoldesc->recordingDateAndTime);
879 	ts = &pvoldesc->recordingDateAndTime;
880 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
881 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
882 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
883 
884 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
885 	if (ret < 0) {
886 		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
887 		pr_warn("incorrect volume identification, setting to "
888 			"'InvalidName'\n");
889 	} else {
890 		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
891 	}
892 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
893 
894 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
895 	if (ret < 0) {
896 		ret = 0;
897 		goto out_bh;
898 	}
899 	outstr[ret] = 0;
900 	udf_debug("volSetIdent[] = '%s'\n", outstr);
901 
902 	ret = 0;
903 out_bh:
904 	brelse(bh);
905 out2:
906 	kfree(outstr);
907 	return ret;
908 }
909 
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)910 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
911 					u32 meta_file_loc, u32 partition_ref)
912 {
913 	struct kernel_lb_addr addr;
914 	struct inode *metadata_fe;
915 
916 	addr.logicalBlockNum = meta_file_loc;
917 	addr.partitionReferenceNum = partition_ref;
918 
919 	metadata_fe = udf_iget_special(sb, &addr);
920 
921 	if (IS_ERR(metadata_fe)) {
922 		udf_warn(sb, "metadata inode efe not found\n");
923 		return metadata_fe;
924 	}
925 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
926 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
927 		iput(metadata_fe);
928 		return ERR_PTR(-EIO);
929 	}
930 
931 	return metadata_fe;
932 }
933 
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)934 static int udf_load_metadata_files(struct super_block *sb, int partition,
935 				   int type1_index)
936 {
937 	struct udf_sb_info *sbi = UDF_SB(sb);
938 	struct udf_part_map *map;
939 	struct udf_meta_data *mdata;
940 	struct kernel_lb_addr addr;
941 	struct inode *fe;
942 
943 	map = &sbi->s_partmaps[partition];
944 	mdata = &map->s_type_specific.s_metadata;
945 	mdata->s_phys_partition_ref = type1_index;
946 
947 	/* metadata address */
948 	udf_debug("Metadata file location: block = %u part = %u\n",
949 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
950 
951 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
952 					 mdata->s_phys_partition_ref);
953 	if (IS_ERR(fe)) {
954 		/* mirror file entry */
955 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
956 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
957 
958 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
959 						 mdata->s_phys_partition_ref);
960 
961 		if (IS_ERR(fe)) {
962 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
963 			return PTR_ERR(fe);
964 		}
965 		mdata->s_mirror_fe = fe;
966 	} else
967 		mdata->s_metadata_fe = fe;
968 
969 
970 	/*
971 	 * bitmap file entry
972 	 * Note:
973 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
974 	*/
975 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
976 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
977 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
978 
979 		udf_debug("Bitmap file location: block = %u part = %u\n",
980 			  addr.logicalBlockNum, addr.partitionReferenceNum);
981 
982 		fe = udf_iget_special(sb, &addr);
983 		if (IS_ERR(fe)) {
984 			if (sb_rdonly(sb))
985 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
986 			else {
987 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
988 				return PTR_ERR(fe);
989 			}
990 		} else
991 			mdata->s_bitmap_fe = fe;
992 	}
993 
994 	udf_debug("udf_load_metadata_files Ok\n");
995 	return 0;
996 }
997 
udf_compute_nr_groups(struct super_block * sb,u32 partition)998 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
999 {
1000 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1001 	return DIV_ROUND_UP(map->s_partition_len +
1002 			    (sizeof(struct spaceBitmapDesc) << 3),
1003 			    sb->s_blocksize * 8);
1004 }
1005 
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1006 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1007 {
1008 	struct udf_bitmap *bitmap;
1009 	int nr_groups = udf_compute_nr_groups(sb, index);
1010 
1011 	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1012 			  GFP_KERNEL);
1013 	if (!bitmap)
1014 		return NULL;
1015 
1016 	bitmap->s_nr_groups = nr_groups;
1017 	return bitmap;
1018 }
1019 
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1020 static int check_partition_desc(struct super_block *sb,
1021 				struct partitionDesc *p,
1022 				struct udf_part_map *map)
1023 {
1024 	bool umap, utable, fmap, ftable;
1025 	struct partitionHeaderDesc *phd;
1026 
1027 	switch (le32_to_cpu(p->accessType)) {
1028 	case PD_ACCESS_TYPE_READ_ONLY:
1029 	case PD_ACCESS_TYPE_WRITE_ONCE:
1030 	case PD_ACCESS_TYPE_NONE:
1031 		goto force_ro;
1032 	}
1033 
1034 	/* No Partition Header Descriptor? */
1035 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1036 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1037 		goto force_ro;
1038 
1039 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1040 	utable = phd->unallocSpaceTable.extLength;
1041 	umap = phd->unallocSpaceBitmap.extLength;
1042 	ftable = phd->freedSpaceTable.extLength;
1043 	fmap = phd->freedSpaceBitmap.extLength;
1044 
1045 	/* No allocation info? */
1046 	if (!utable && !umap && !ftable && !fmap)
1047 		goto force_ro;
1048 
1049 	/* We don't support blocks that require erasing before overwrite */
1050 	if (ftable || fmap)
1051 		goto force_ro;
1052 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1053 	if (utable && umap)
1054 		goto force_ro;
1055 
1056 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1057 	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1058 	    map->s_partition_type == UDF_METADATA_MAP25)
1059 		goto force_ro;
1060 
1061 	return 0;
1062 force_ro:
1063 	if (!sb_rdonly(sb))
1064 		return -EACCES;
1065 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1066 	return 0;
1067 }
1068 
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1069 static int udf_fill_partdesc_info(struct super_block *sb,
1070 		struct partitionDesc *p, int p_index)
1071 {
1072 	struct udf_part_map *map;
1073 	struct udf_sb_info *sbi = UDF_SB(sb);
1074 	struct partitionHeaderDesc *phd;
1075 	int err;
1076 
1077 	map = &sbi->s_partmaps[p_index];
1078 
1079 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1080 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1081 
1082 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1083 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1084 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1085 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1086 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1087 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1088 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1089 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1090 
1091 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1092 		  p_index, map->s_partition_type,
1093 		  map->s_partition_root, map->s_partition_len);
1094 
1095 	err = check_partition_desc(sb, p, map);
1096 	if (err)
1097 		return err;
1098 
1099 	/*
1100 	 * Skip loading allocation info it we cannot ever write to the fs.
1101 	 * This is a correctness thing as we may have decided to force ro mount
1102 	 * to avoid allocation info we don't support.
1103 	 */
1104 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1105 		return 0;
1106 
1107 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1108 	if (phd->unallocSpaceTable.extLength) {
1109 		struct kernel_lb_addr loc = {
1110 			.logicalBlockNum = le32_to_cpu(
1111 				phd->unallocSpaceTable.extPosition),
1112 			.partitionReferenceNum = p_index,
1113 		};
1114 		struct inode *inode;
1115 
1116 		inode = udf_iget_special(sb, &loc);
1117 		if (IS_ERR(inode)) {
1118 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1119 				  p_index);
1120 			return PTR_ERR(inode);
1121 		}
1122 		map->s_uspace.s_table = inode;
1123 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1124 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1125 			  p_index, map->s_uspace.s_table->i_ino);
1126 	}
1127 
1128 	if (phd->unallocSpaceBitmap.extLength) {
1129 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1130 		if (!bitmap)
1131 			return -ENOMEM;
1132 		map->s_uspace.s_bitmap = bitmap;
1133 		bitmap->s_extPosition = le32_to_cpu(
1134 				phd->unallocSpaceBitmap.extPosition);
1135 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1136 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1137 			  p_index, bitmap->s_extPosition);
1138 	}
1139 
1140 	return 0;
1141 }
1142 
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1143 static void udf_find_vat_block(struct super_block *sb, int p_index,
1144 			       int type1_index, sector_t start_block)
1145 {
1146 	struct udf_sb_info *sbi = UDF_SB(sb);
1147 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1148 	sector_t vat_block;
1149 	struct kernel_lb_addr ino;
1150 	struct inode *inode;
1151 
1152 	/*
1153 	 * VAT file entry is in the last recorded block. Some broken disks have
1154 	 * it a few blocks before so try a bit harder...
1155 	 */
1156 	ino.partitionReferenceNum = type1_index;
1157 	for (vat_block = start_block;
1158 	     vat_block >= map->s_partition_root &&
1159 	     vat_block >= start_block - 3; vat_block--) {
1160 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1161 		inode = udf_iget_special(sb, &ino);
1162 		if (!IS_ERR(inode)) {
1163 			sbi->s_vat_inode = inode;
1164 			break;
1165 		}
1166 	}
1167 }
1168 
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1169 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1170 {
1171 	struct udf_sb_info *sbi = UDF_SB(sb);
1172 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1173 	struct buffer_head *bh = NULL;
1174 	struct udf_inode_info *vati;
1175 	uint32_t pos;
1176 	struct virtualAllocationTable20 *vat20;
1177 	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1178 			  sb->s_blocksize_bits;
1179 
1180 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1181 	if (!sbi->s_vat_inode &&
1182 	    sbi->s_last_block != blocks - 1) {
1183 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1184 			  (unsigned long)sbi->s_last_block,
1185 			  (unsigned long)blocks - 1);
1186 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1187 	}
1188 	if (!sbi->s_vat_inode)
1189 		return -EIO;
1190 
1191 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1192 		map->s_type_specific.s_virtual.s_start_offset = 0;
1193 		map->s_type_specific.s_virtual.s_num_entries =
1194 			(sbi->s_vat_inode->i_size - 36) >> 2;
1195 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1196 		vati = UDF_I(sbi->s_vat_inode);
1197 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1198 			pos = udf_block_map(sbi->s_vat_inode, 0);
1199 			bh = sb_bread(sb, pos);
1200 			if (!bh)
1201 				return -EIO;
1202 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1203 		} else {
1204 			vat20 = (struct virtualAllocationTable20 *)
1205 							vati->i_data;
1206 		}
1207 
1208 		map->s_type_specific.s_virtual.s_start_offset =
1209 			le16_to_cpu(vat20->lengthHeader);
1210 		map->s_type_specific.s_virtual.s_num_entries =
1211 			(sbi->s_vat_inode->i_size -
1212 				map->s_type_specific.s_virtual.
1213 					s_start_offset) >> 2;
1214 		brelse(bh);
1215 	}
1216 	return 0;
1217 }
1218 
1219 /*
1220  * Load partition descriptor block
1221  *
1222  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1223  * sequence.
1224  */
udf_load_partdesc(struct super_block * sb,sector_t block)1225 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1226 {
1227 	struct buffer_head *bh;
1228 	struct partitionDesc *p;
1229 	struct udf_part_map *map;
1230 	struct udf_sb_info *sbi = UDF_SB(sb);
1231 	int i, type1_idx;
1232 	uint16_t partitionNumber;
1233 	uint16_t ident;
1234 	int ret;
1235 
1236 	bh = udf_read_tagged(sb, block, block, &ident);
1237 	if (!bh)
1238 		return -EAGAIN;
1239 	if (ident != TAG_IDENT_PD) {
1240 		ret = 0;
1241 		goto out_bh;
1242 	}
1243 
1244 	p = (struct partitionDesc *)bh->b_data;
1245 	partitionNumber = le16_to_cpu(p->partitionNumber);
1246 
1247 	/* First scan for TYPE1 and SPARABLE partitions */
1248 	for (i = 0; i < sbi->s_partitions; i++) {
1249 		map = &sbi->s_partmaps[i];
1250 		udf_debug("Searching map: (%u == %u)\n",
1251 			  map->s_partition_num, partitionNumber);
1252 		if (map->s_partition_num == partitionNumber &&
1253 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1254 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1255 			break;
1256 	}
1257 
1258 	if (i >= sbi->s_partitions) {
1259 		udf_debug("Partition (%u) not found in partition map\n",
1260 			  partitionNumber);
1261 		ret = 0;
1262 		goto out_bh;
1263 	}
1264 
1265 	ret = udf_fill_partdesc_info(sb, p, i);
1266 	if (ret < 0)
1267 		goto out_bh;
1268 
1269 	/*
1270 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1271 	 * PHYSICAL partitions are already set up
1272 	 */
1273 	type1_idx = i;
1274 	map = NULL; /* supress 'maybe used uninitialized' warning */
1275 	for (i = 0; i < sbi->s_partitions; i++) {
1276 		map = &sbi->s_partmaps[i];
1277 
1278 		if (map->s_partition_num == partitionNumber &&
1279 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1280 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1281 		     map->s_partition_type == UDF_METADATA_MAP25))
1282 			break;
1283 	}
1284 
1285 	if (i >= sbi->s_partitions) {
1286 		ret = 0;
1287 		goto out_bh;
1288 	}
1289 
1290 	ret = udf_fill_partdesc_info(sb, p, i);
1291 	if (ret < 0)
1292 		goto out_bh;
1293 
1294 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1295 		ret = udf_load_metadata_files(sb, i, type1_idx);
1296 		if (ret < 0) {
1297 			udf_err(sb, "error loading MetaData partition map %d\n",
1298 				i);
1299 			goto out_bh;
1300 		}
1301 	} else {
1302 		/*
1303 		 * If we have a partition with virtual map, we don't handle
1304 		 * writing to it (we overwrite blocks instead of relocating
1305 		 * them).
1306 		 */
1307 		if (!sb_rdonly(sb)) {
1308 			ret = -EACCES;
1309 			goto out_bh;
1310 		}
1311 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1312 		ret = udf_load_vat(sb, i, type1_idx);
1313 		if (ret < 0)
1314 			goto out_bh;
1315 	}
1316 	ret = 0;
1317 out_bh:
1318 	/* In case loading failed, we handle cleanup in udf_fill_super */
1319 	brelse(bh);
1320 	return ret;
1321 }
1322 
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1323 static int udf_load_sparable_map(struct super_block *sb,
1324 				 struct udf_part_map *map,
1325 				 struct sparablePartitionMap *spm)
1326 {
1327 	uint32_t loc;
1328 	uint16_t ident;
1329 	struct sparingTable *st;
1330 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1331 	int i;
1332 	struct buffer_head *bh;
1333 
1334 	map->s_partition_type = UDF_SPARABLE_MAP15;
1335 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1336 	if (!is_power_of_2(sdata->s_packet_len)) {
1337 		udf_err(sb, "error loading logical volume descriptor: "
1338 			"Invalid packet length %u\n",
1339 			(unsigned)sdata->s_packet_len);
1340 		return -EIO;
1341 	}
1342 	if (spm->numSparingTables > 4) {
1343 		udf_err(sb, "error loading logical volume descriptor: "
1344 			"Too many sparing tables (%d)\n",
1345 			(int)spm->numSparingTables);
1346 		return -EIO;
1347 	}
1348 	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1349 		udf_err(sb, "error loading logical volume descriptor: "
1350 			"Too big sparing table size (%u)\n",
1351 			le32_to_cpu(spm->sizeSparingTable));
1352 		return -EIO;
1353 	}
1354 
1355 	for (i = 0; i < spm->numSparingTables; i++) {
1356 		loc = le32_to_cpu(spm->locSparingTable[i]);
1357 		bh = udf_read_tagged(sb, loc, loc, &ident);
1358 		if (!bh)
1359 			continue;
1360 
1361 		st = (struct sparingTable *)bh->b_data;
1362 		if (ident != 0 ||
1363 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1364 			    strlen(UDF_ID_SPARING)) ||
1365 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1366 							sb->s_blocksize) {
1367 			brelse(bh);
1368 			continue;
1369 		}
1370 
1371 		sdata->s_spar_map[i] = bh;
1372 	}
1373 	map->s_partition_func = udf_get_pblock_spar15;
1374 	return 0;
1375 }
1376 
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1377 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1378 			       struct kernel_lb_addr *fileset)
1379 {
1380 	struct logicalVolDesc *lvd;
1381 	int i, offset;
1382 	uint8_t type;
1383 	struct udf_sb_info *sbi = UDF_SB(sb);
1384 	struct genericPartitionMap *gpm;
1385 	uint16_t ident;
1386 	struct buffer_head *bh;
1387 	unsigned int table_len;
1388 	int ret;
1389 
1390 	bh = udf_read_tagged(sb, block, block, &ident);
1391 	if (!bh)
1392 		return -EAGAIN;
1393 	BUG_ON(ident != TAG_IDENT_LVD);
1394 	lvd = (struct logicalVolDesc *)bh->b_data;
1395 	table_len = le32_to_cpu(lvd->mapTableLength);
1396 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1397 		udf_err(sb, "error loading logical volume descriptor: "
1398 			"Partition table too long (%u > %lu)\n", table_len,
1399 			sb->s_blocksize - sizeof(*lvd));
1400 		ret = -EIO;
1401 		goto out_bh;
1402 	}
1403 
1404 	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1405 					   "logical volume");
1406 	if (ret)
1407 		goto out_bh;
1408 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1409 	if (ret)
1410 		goto out_bh;
1411 
1412 	for (i = 0, offset = 0;
1413 	     i < sbi->s_partitions && offset < table_len;
1414 	     i++, offset += gpm->partitionMapLength) {
1415 		struct udf_part_map *map = &sbi->s_partmaps[i];
1416 		gpm = (struct genericPartitionMap *)
1417 				&(lvd->partitionMaps[offset]);
1418 		type = gpm->partitionMapType;
1419 		if (type == 1) {
1420 			struct genericPartitionMap1 *gpm1 =
1421 				(struct genericPartitionMap1 *)gpm;
1422 			map->s_partition_type = UDF_TYPE1_MAP15;
1423 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1424 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1425 			map->s_partition_func = NULL;
1426 		} else if (type == 2) {
1427 			struct udfPartitionMap2 *upm2 =
1428 						(struct udfPartitionMap2 *)gpm;
1429 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1430 						strlen(UDF_ID_VIRTUAL))) {
1431 				u16 suf =
1432 					le16_to_cpu(((__le16 *)upm2->partIdent.
1433 							identSuffix)[0]);
1434 				if (suf < 0x0200) {
1435 					map->s_partition_type =
1436 							UDF_VIRTUAL_MAP15;
1437 					map->s_partition_func =
1438 							udf_get_pblock_virt15;
1439 				} else {
1440 					map->s_partition_type =
1441 							UDF_VIRTUAL_MAP20;
1442 					map->s_partition_func =
1443 							udf_get_pblock_virt20;
1444 				}
1445 			} else if (!strncmp(upm2->partIdent.ident,
1446 						UDF_ID_SPARABLE,
1447 						strlen(UDF_ID_SPARABLE))) {
1448 				ret = udf_load_sparable_map(sb, map,
1449 					(struct sparablePartitionMap *)gpm);
1450 				if (ret < 0)
1451 					goto out_bh;
1452 			} else if (!strncmp(upm2->partIdent.ident,
1453 						UDF_ID_METADATA,
1454 						strlen(UDF_ID_METADATA))) {
1455 				struct udf_meta_data *mdata =
1456 					&map->s_type_specific.s_metadata;
1457 				struct metadataPartitionMap *mdm =
1458 						(struct metadataPartitionMap *)
1459 						&(lvd->partitionMaps[offset]);
1460 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1461 					  i, type, UDF_ID_METADATA);
1462 
1463 				map->s_partition_type = UDF_METADATA_MAP25;
1464 				map->s_partition_func = udf_get_pblock_meta25;
1465 
1466 				mdata->s_meta_file_loc   =
1467 					le32_to_cpu(mdm->metadataFileLoc);
1468 				mdata->s_mirror_file_loc =
1469 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1470 				mdata->s_bitmap_file_loc =
1471 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1472 				mdata->s_alloc_unit_size =
1473 					le32_to_cpu(mdm->allocUnitSize);
1474 				mdata->s_align_unit_size =
1475 					le16_to_cpu(mdm->alignUnitSize);
1476 				if (mdm->flags & 0x01)
1477 					mdata->s_flags |= MF_DUPLICATE_MD;
1478 
1479 				udf_debug("Metadata Ident suffix=0x%x\n",
1480 					  le16_to_cpu(*(__le16 *)
1481 						      mdm->partIdent.identSuffix));
1482 				udf_debug("Metadata part num=%u\n",
1483 					  le16_to_cpu(mdm->partitionNum));
1484 				udf_debug("Metadata part alloc unit size=%u\n",
1485 					  le32_to_cpu(mdm->allocUnitSize));
1486 				udf_debug("Metadata file loc=%u\n",
1487 					  le32_to_cpu(mdm->metadataFileLoc));
1488 				udf_debug("Mirror file loc=%u\n",
1489 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1490 				udf_debug("Bitmap file loc=%u\n",
1491 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1492 				udf_debug("Flags: %d %u\n",
1493 					  mdata->s_flags, mdm->flags);
1494 			} else {
1495 				udf_debug("Unknown ident: %s\n",
1496 					  upm2->partIdent.ident);
1497 				continue;
1498 			}
1499 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1500 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1501 		}
1502 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1503 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1504 	}
1505 
1506 	if (fileset) {
1507 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1508 
1509 		*fileset = lelb_to_cpu(la->extLocation);
1510 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1511 			  fileset->logicalBlockNum,
1512 			  fileset->partitionReferenceNum);
1513 	}
1514 	if (lvd->integritySeqExt.extLength)
1515 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1516 	ret = 0;
1517 
1518 	if (!sbi->s_lvid_bh) {
1519 		/* We can't generate unique IDs without a valid LVID */
1520 		if (sb_rdonly(sb)) {
1521 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1522 		} else {
1523 			udf_warn(sb, "Damaged or missing LVID, forcing "
1524 				     "readonly mount\n");
1525 			ret = -EACCES;
1526 		}
1527 	}
1528 out_bh:
1529 	brelse(bh);
1530 	return ret;
1531 }
1532 
1533 /*
1534  * Find the prevailing Logical Volume Integrity Descriptor.
1535  */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1536 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1537 {
1538 	struct buffer_head *bh, *final_bh;
1539 	uint16_t ident;
1540 	struct udf_sb_info *sbi = UDF_SB(sb);
1541 	struct logicalVolIntegrityDesc *lvid;
1542 	int indirections = 0;
1543 	u32 parts, impuselen;
1544 
1545 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1546 		final_bh = NULL;
1547 		while (loc.extLength > 0 &&
1548 			(bh = udf_read_tagged(sb, loc.extLocation,
1549 					loc.extLocation, &ident))) {
1550 			if (ident != TAG_IDENT_LVID) {
1551 				brelse(bh);
1552 				break;
1553 			}
1554 
1555 			brelse(final_bh);
1556 			final_bh = bh;
1557 
1558 			loc.extLength -= sb->s_blocksize;
1559 			loc.extLocation++;
1560 		}
1561 
1562 		if (!final_bh)
1563 			return;
1564 
1565 		brelse(sbi->s_lvid_bh);
1566 		sbi->s_lvid_bh = final_bh;
1567 
1568 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1569 		if (lvid->nextIntegrityExt.extLength == 0)
1570 			goto check;
1571 
1572 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1573 	}
1574 
1575 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1576 		UDF_MAX_LVID_NESTING);
1577 out_err:
1578 	brelse(sbi->s_lvid_bh);
1579 	sbi->s_lvid_bh = NULL;
1580 	return;
1581 check:
1582 	parts = le32_to_cpu(lvid->numOfPartitions);
1583 	impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1584 	if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1585 	    sizeof(struct logicalVolIntegrityDesc) + impuselen +
1586 	    2 * parts * sizeof(u32) > sb->s_blocksize) {
1587 		udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1588 			 "ignoring.\n", parts, impuselen);
1589 		goto out_err;
1590 	}
1591 }
1592 
1593 /*
1594  * Step for reallocation of table of partition descriptor sequence numbers.
1595  * Must be power of 2.
1596  */
1597 #define PART_DESC_ALLOC_STEP 32
1598 
1599 struct part_desc_seq_scan_data {
1600 	struct udf_vds_record rec;
1601 	u32 partnum;
1602 };
1603 
1604 struct desc_seq_scan_data {
1605 	struct udf_vds_record vds[VDS_POS_LENGTH];
1606 	unsigned int size_part_descs;
1607 	unsigned int num_part_descs;
1608 	struct part_desc_seq_scan_data *part_descs_loc;
1609 };
1610 
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1611 static struct udf_vds_record *handle_partition_descriptor(
1612 				struct buffer_head *bh,
1613 				struct desc_seq_scan_data *data)
1614 {
1615 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1616 	int partnum;
1617 	int i;
1618 
1619 	partnum = le16_to_cpu(desc->partitionNumber);
1620 	for (i = 0; i < data->num_part_descs; i++)
1621 		if (partnum == data->part_descs_loc[i].partnum)
1622 			return &(data->part_descs_loc[i].rec);
1623 	if (data->num_part_descs >= data->size_part_descs) {
1624 		struct part_desc_seq_scan_data *new_loc;
1625 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1626 
1627 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1628 		if (!new_loc)
1629 			return ERR_PTR(-ENOMEM);
1630 		memcpy(new_loc, data->part_descs_loc,
1631 		       data->size_part_descs * sizeof(*new_loc));
1632 		kfree(data->part_descs_loc);
1633 		data->part_descs_loc = new_loc;
1634 		data->size_part_descs = new_size;
1635 	}
1636 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1637 }
1638 
1639 
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1640 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1641 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1642 {
1643 	switch (ident) {
1644 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1645 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1646 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1647 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1648 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1649 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1650 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1651 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1652 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1653 		return handle_partition_descriptor(bh, data);
1654 	}
1655 	return NULL;
1656 }
1657 
1658 /*
1659  * Process a main/reserve volume descriptor sequence.
1660  *   @block		First block of first extent of the sequence.
1661  *   @lastblock		Lastblock of first extent of the sequence.
1662  *   @fileset		There we store extent containing root fileset
1663  *
1664  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1665  * sequence
1666  */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1667 static noinline int udf_process_sequence(
1668 		struct super_block *sb,
1669 		sector_t block, sector_t lastblock,
1670 		struct kernel_lb_addr *fileset)
1671 {
1672 	struct buffer_head *bh = NULL;
1673 	struct udf_vds_record *curr;
1674 	struct generic_desc *gd;
1675 	struct volDescPtr *vdp;
1676 	bool done = false;
1677 	uint32_t vdsn;
1678 	uint16_t ident;
1679 	int ret;
1680 	unsigned int indirections = 0;
1681 	struct desc_seq_scan_data data;
1682 	unsigned int i;
1683 
1684 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1685 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1686 	data.num_part_descs = 0;
1687 	data.part_descs_loc = kcalloc(data.size_part_descs,
1688 				      sizeof(*data.part_descs_loc),
1689 				      GFP_KERNEL);
1690 	if (!data.part_descs_loc)
1691 		return -ENOMEM;
1692 
1693 	/*
1694 	 * Read the main descriptor sequence and find which descriptors
1695 	 * are in it.
1696 	 */
1697 	for (; (!done && block <= lastblock); block++) {
1698 		bh = udf_read_tagged(sb, block, block, &ident);
1699 		if (!bh)
1700 			break;
1701 
1702 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1703 		gd = (struct generic_desc *)bh->b_data;
1704 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1705 		switch (ident) {
1706 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1707 			if (++indirections > UDF_MAX_TD_NESTING) {
1708 				udf_err(sb, "too many Volume Descriptor "
1709 					"Pointers (max %u supported)\n",
1710 					UDF_MAX_TD_NESTING);
1711 				brelse(bh);
1712 				ret = -EIO;
1713 				goto out;
1714 			}
1715 
1716 			vdp = (struct volDescPtr *)bh->b_data;
1717 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1718 			lastblock = le32_to_cpu(
1719 				vdp->nextVolDescSeqExt.extLength) >>
1720 				sb->s_blocksize_bits;
1721 			lastblock += block - 1;
1722 			/* For loop is going to increment 'block' again */
1723 			block--;
1724 			break;
1725 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1726 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1727 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1728 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1729 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1730 			curr = get_volume_descriptor_record(ident, bh, &data);
1731 			if (IS_ERR(curr)) {
1732 				brelse(bh);
1733 				ret = PTR_ERR(curr);
1734 				goto out;
1735 			}
1736 			/* Descriptor we don't care about? */
1737 			if (!curr)
1738 				break;
1739 			if (vdsn >= curr->volDescSeqNum) {
1740 				curr->volDescSeqNum = vdsn;
1741 				curr->block = block;
1742 			}
1743 			break;
1744 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1745 			done = true;
1746 			break;
1747 		}
1748 		brelse(bh);
1749 	}
1750 	/*
1751 	 * Now read interesting descriptors again and process them
1752 	 * in a suitable order
1753 	 */
1754 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1755 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1756 		ret = -EAGAIN;
1757 		goto out;
1758 	}
1759 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1760 	if (ret < 0)
1761 		goto out;
1762 
1763 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1764 		ret = udf_load_logicalvol(sb,
1765 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1766 				fileset);
1767 		if (ret < 0)
1768 			goto out;
1769 	}
1770 
1771 	/* Now handle prevailing Partition Descriptors */
1772 	for (i = 0; i < data.num_part_descs; i++) {
1773 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1774 		if (ret < 0)
1775 			goto out;
1776 	}
1777 	ret = 0;
1778 out:
1779 	kfree(data.part_descs_loc);
1780 	return ret;
1781 }
1782 
1783 /*
1784  * Load Volume Descriptor Sequence described by anchor in bh
1785  *
1786  * Returns <0 on error, 0 on success
1787  */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1788 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1789 			     struct kernel_lb_addr *fileset)
1790 {
1791 	struct anchorVolDescPtr *anchor;
1792 	sector_t main_s, main_e, reserve_s, reserve_e;
1793 	int ret;
1794 
1795 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1796 
1797 	/* Locate the main sequence */
1798 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1799 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1800 	main_e = main_e >> sb->s_blocksize_bits;
1801 	main_e += main_s - 1;
1802 
1803 	/* Locate the reserve sequence */
1804 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1805 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1806 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1807 	reserve_e += reserve_s - 1;
1808 
1809 	/* Process the main & reserve sequences */
1810 	/* responsible for finding the PartitionDesc(s) */
1811 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1812 	if (ret != -EAGAIN)
1813 		return ret;
1814 	udf_sb_free_partitions(sb);
1815 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1816 	if (ret < 0) {
1817 		udf_sb_free_partitions(sb);
1818 		/* No sequence was OK, return -EIO */
1819 		if (ret == -EAGAIN)
1820 			ret = -EIO;
1821 	}
1822 	return ret;
1823 }
1824 
1825 /*
1826  * Check whether there is an anchor block in the given block and
1827  * load Volume Descriptor Sequence if so.
1828  *
1829  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1830  * block
1831  */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1832 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1833 				  struct kernel_lb_addr *fileset)
1834 {
1835 	struct buffer_head *bh;
1836 	uint16_t ident;
1837 	int ret;
1838 
1839 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1840 	    udf_fixed_to_variable(block) >=
1841 	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1842 		return -EAGAIN;
1843 
1844 	bh = udf_read_tagged(sb, block, block, &ident);
1845 	if (!bh)
1846 		return -EAGAIN;
1847 	if (ident != TAG_IDENT_AVDP) {
1848 		brelse(bh);
1849 		return -EAGAIN;
1850 	}
1851 	ret = udf_load_sequence(sb, bh, fileset);
1852 	brelse(bh);
1853 	return ret;
1854 }
1855 
1856 /*
1857  * Search for an anchor volume descriptor pointer.
1858  *
1859  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1860  * of anchors.
1861  */
udf_scan_anchors(struct super_block * sb,sector_t * lastblock,struct kernel_lb_addr * fileset)1862 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1863 			    struct kernel_lb_addr *fileset)
1864 {
1865 	sector_t last[6];
1866 	int i;
1867 	struct udf_sb_info *sbi = UDF_SB(sb);
1868 	int last_count = 0;
1869 	int ret;
1870 
1871 	/* First try user provided anchor */
1872 	if (sbi->s_anchor) {
1873 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1874 		if (ret != -EAGAIN)
1875 			return ret;
1876 	}
1877 	/*
1878 	 * according to spec, anchor is in either:
1879 	 *     block 256
1880 	 *     lastblock-256
1881 	 *     lastblock
1882 	 *  however, if the disc isn't closed, it could be 512.
1883 	 */
1884 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1885 	if (ret != -EAGAIN)
1886 		return ret;
1887 	/*
1888 	 * The trouble is which block is the last one. Drives often misreport
1889 	 * this so we try various possibilities.
1890 	 */
1891 	last[last_count++] = *lastblock;
1892 	if (*lastblock >= 1)
1893 		last[last_count++] = *lastblock - 1;
1894 	last[last_count++] = *lastblock + 1;
1895 	if (*lastblock >= 2)
1896 		last[last_count++] = *lastblock - 2;
1897 	if (*lastblock >= 150)
1898 		last[last_count++] = *lastblock - 150;
1899 	if (*lastblock >= 152)
1900 		last[last_count++] = *lastblock - 152;
1901 
1902 	for (i = 0; i < last_count; i++) {
1903 		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1904 				sb->s_blocksize_bits)
1905 			continue;
1906 		ret = udf_check_anchor_block(sb, last[i], fileset);
1907 		if (ret != -EAGAIN) {
1908 			if (!ret)
1909 				*lastblock = last[i];
1910 			return ret;
1911 		}
1912 		if (last[i] < 256)
1913 			continue;
1914 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1915 		if (ret != -EAGAIN) {
1916 			if (!ret)
1917 				*lastblock = last[i];
1918 			return ret;
1919 		}
1920 	}
1921 
1922 	/* Finally try block 512 in case media is open */
1923 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1924 }
1925 
1926 /*
1927  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1928  * area specified by it. The function expects sbi->s_lastblock to be the last
1929  * block on the media.
1930  *
1931  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1932  * was not found.
1933  */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1934 static int udf_find_anchor(struct super_block *sb,
1935 			   struct kernel_lb_addr *fileset)
1936 {
1937 	struct udf_sb_info *sbi = UDF_SB(sb);
1938 	sector_t lastblock = sbi->s_last_block;
1939 	int ret;
1940 
1941 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1942 	if (ret != -EAGAIN)
1943 		goto out;
1944 
1945 	/* No anchor found? Try VARCONV conversion of block numbers */
1946 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1947 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1948 	/* Firstly, we try to not convert number of the last block */
1949 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1950 	if (ret != -EAGAIN)
1951 		goto out;
1952 
1953 	lastblock = sbi->s_last_block;
1954 	/* Secondly, we try with converted number of the last block */
1955 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1956 	if (ret < 0) {
1957 		/* VARCONV didn't help. Clear it. */
1958 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1959 	}
1960 out:
1961 	if (ret == 0)
1962 		sbi->s_last_block = lastblock;
1963 	return ret;
1964 }
1965 
1966 /*
1967  * Check Volume Structure Descriptor, find Anchor block and load Volume
1968  * Descriptor Sequence.
1969  *
1970  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1971  * block was not found.
1972  */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1973 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1974 			int silent, struct kernel_lb_addr *fileset)
1975 {
1976 	struct udf_sb_info *sbi = UDF_SB(sb);
1977 	int nsr = 0;
1978 	int ret;
1979 
1980 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1981 		if (!silent)
1982 			udf_warn(sb, "Bad block size\n");
1983 		return -EINVAL;
1984 	}
1985 	sbi->s_last_block = uopt->lastblock;
1986 	if (!uopt->novrs) {
1987 		/* Check that it is NSR02 compliant */
1988 		nsr = udf_check_vsd(sb);
1989 		if (!nsr) {
1990 			if (!silent)
1991 				udf_warn(sb, "No VRS found\n");
1992 			return -EINVAL;
1993 		}
1994 		if (nsr == -1)
1995 			udf_debug("Failed to read sector at offset %d. "
1996 				  "Assuming open disc. Skipping validity "
1997 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1998 		if (!sbi->s_last_block)
1999 			sbi->s_last_block = udf_get_last_block(sb);
2000 	} else {
2001 		udf_debug("Validity check skipped because of novrs option\n");
2002 	}
2003 
2004 	/* Look for anchor block and load Volume Descriptor Sequence */
2005 	sbi->s_anchor = uopt->anchor;
2006 	ret = udf_find_anchor(sb, fileset);
2007 	if (ret < 0) {
2008 		if (!silent && ret == -EAGAIN)
2009 			udf_warn(sb, "No anchor found\n");
2010 		return ret;
2011 	}
2012 	return 0;
2013 }
2014 
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)2015 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2016 {
2017 	struct timespec64 ts;
2018 
2019 	ktime_get_real_ts64(&ts);
2020 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2021 	lvid->descTag.descCRC = cpu_to_le16(
2022 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023 			le16_to_cpu(lvid->descTag.descCRCLength)));
2024 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2025 }
2026 
udf_open_lvid(struct super_block * sb)2027 static void udf_open_lvid(struct super_block *sb)
2028 {
2029 	struct udf_sb_info *sbi = UDF_SB(sb);
2030 	struct buffer_head *bh = sbi->s_lvid_bh;
2031 	struct logicalVolIntegrityDesc *lvid;
2032 	struct logicalVolIntegrityDescImpUse *lvidiu;
2033 
2034 	if (!bh)
2035 		return;
2036 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2037 	lvidiu = udf_sb_lvidiu(sb);
2038 	if (!lvidiu)
2039 		return;
2040 
2041 	mutex_lock(&sbi->s_alloc_mutex);
2042 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2043 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2044 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2045 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2046 	else
2047 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2048 
2049 	udf_finalize_lvid(lvid);
2050 	mark_buffer_dirty(bh);
2051 	sbi->s_lvid_dirty = 0;
2052 	mutex_unlock(&sbi->s_alloc_mutex);
2053 	/* Make opening of filesystem visible on the media immediately */
2054 	sync_dirty_buffer(bh);
2055 }
2056 
udf_close_lvid(struct super_block * sb)2057 static void udf_close_lvid(struct super_block *sb)
2058 {
2059 	struct udf_sb_info *sbi = UDF_SB(sb);
2060 	struct buffer_head *bh = sbi->s_lvid_bh;
2061 	struct logicalVolIntegrityDesc *lvid;
2062 	struct logicalVolIntegrityDescImpUse *lvidiu;
2063 
2064 	if (!bh)
2065 		return;
2066 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2067 	lvidiu = udf_sb_lvidiu(sb);
2068 	if (!lvidiu)
2069 		return;
2070 
2071 	mutex_lock(&sbi->s_alloc_mutex);
2072 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2073 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2074 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2075 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2076 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2077 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2078 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2079 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2080 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2081 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2082 
2083 	/*
2084 	 * We set buffer uptodate unconditionally here to avoid spurious
2085 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2086 	 * the buffer as !uptodate
2087 	 */
2088 	set_buffer_uptodate(bh);
2089 	udf_finalize_lvid(lvid);
2090 	mark_buffer_dirty(bh);
2091 	sbi->s_lvid_dirty = 0;
2092 	mutex_unlock(&sbi->s_alloc_mutex);
2093 	/* Make closing of filesystem visible on the media immediately */
2094 	sync_dirty_buffer(bh);
2095 }
2096 
lvid_get_unique_id(struct super_block * sb)2097 u64 lvid_get_unique_id(struct super_block *sb)
2098 {
2099 	struct buffer_head *bh;
2100 	struct udf_sb_info *sbi = UDF_SB(sb);
2101 	struct logicalVolIntegrityDesc *lvid;
2102 	struct logicalVolHeaderDesc *lvhd;
2103 	u64 uniqueID;
2104 	u64 ret;
2105 
2106 	bh = sbi->s_lvid_bh;
2107 	if (!bh)
2108 		return 0;
2109 
2110 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2111 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2112 
2113 	mutex_lock(&sbi->s_alloc_mutex);
2114 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2115 	if (!(++uniqueID & 0xFFFFFFFF))
2116 		uniqueID += 16;
2117 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2118 	udf_updated_lvid(sb);
2119 	mutex_unlock(&sbi->s_alloc_mutex);
2120 
2121 	return ret;
2122 }
2123 
udf_fill_super(struct super_block * sb,void * options,int silent)2124 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2125 {
2126 	int ret = -EINVAL;
2127 	struct inode *inode = NULL;
2128 	struct udf_options uopt;
2129 	struct kernel_lb_addr rootdir, fileset;
2130 	struct udf_sb_info *sbi;
2131 	bool lvid_open = false;
2132 
2133 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2134 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2135 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2136 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2137 	uopt.umask = 0;
2138 	uopt.fmode = UDF_INVALID_MODE;
2139 	uopt.dmode = UDF_INVALID_MODE;
2140 	uopt.nls_map = NULL;
2141 
2142 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2143 	if (!sbi)
2144 		return -ENOMEM;
2145 
2146 	sb->s_fs_info = sbi;
2147 
2148 	mutex_init(&sbi->s_alloc_mutex);
2149 
2150 	if (!udf_parse_options((char *)options, &uopt, false))
2151 		goto parse_options_failure;
2152 
2153 	fileset.logicalBlockNum = 0xFFFFFFFF;
2154 	fileset.partitionReferenceNum = 0xFFFF;
2155 
2156 	sbi->s_flags = uopt.flags;
2157 	sbi->s_uid = uopt.uid;
2158 	sbi->s_gid = uopt.gid;
2159 	sbi->s_umask = uopt.umask;
2160 	sbi->s_fmode = uopt.fmode;
2161 	sbi->s_dmode = uopt.dmode;
2162 	sbi->s_nls_map = uopt.nls_map;
2163 	rwlock_init(&sbi->s_cred_lock);
2164 
2165 	if (uopt.session == 0xFFFFFFFF)
2166 		sbi->s_session = udf_get_last_session(sb);
2167 	else
2168 		sbi->s_session = uopt.session;
2169 
2170 	udf_debug("Multi-session=%d\n", sbi->s_session);
2171 
2172 	/* Fill in the rest of the superblock */
2173 	sb->s_op = &udf_sb_ops;
2174 	sb->s_export_op = &udf_export_ops;
2175 
2176 	sb->s_magic = UDF_SUPER_MAGIC;
2177 	sb->s_time_gran = 1000;
2178 
2179 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2180 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2181 	} else {
2182 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2183 		while (uopt.blocksize <= 4096) {
2184 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2185 			if (ret < 0) {
2186 				if (!silent && ret != -EACCES) {
2187 					pr_notice("Scanning with blocksize %u failed\n",
2188 						  uopt.blocksize);
2189 				}
2190 				brelse(sbi->s_lvid_bh);
2191 				sbi->s_lvid_bh = NULL;
2192 				/*
2193 				 * EACCES is special - we want to propagate to
2194 				 * upper layers that we cannot handle RW mount.
2195 				 */
2196 				if (ret == -EACCES)
2197 					break;
2198 			} else
2199 				break;
2200 
2201 			uopt.blocksize <<= 1;
2202 		}
2203 	}
2204 	if (ret < 0) {
2205 		if (ret == -EAGAIN) {
2206 			udf_warn(sb, "No partition found (1)\n");
2207 			ret = -EINVAL;
2208 		}
2209 		goto error_out;
2210 	}
2211 
2212 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2213 
2214 	if (sbi->s_lvid_bh) {
2215 		struct logicalVolIntegrityDescImpUse *lvidiu =
2216 							udf_sb_lvidiu(sb);
2217 		uint16_t minUDFReadRev;
2218 		uint16_t minUDFWriteRev;
2219 
2220 		if (!lvidiu) {
2221 			ret = -EINVAL;
2222 			goto error_out;
2223 		}
2224 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2225 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2226 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2227 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2228 				minUDFReadRev,
2229 				UDF_MAX_READ_VERSION);
2230 			ret = -EINVAL;
2231 			goto error_out;
2232 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2233 			if (!sb_rdonly(sb)) {
2234 				ret = -EACCES;
2235 				goto error_out;
2236 			}
2237 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2238 		}
2239 
2240 		sbi->s_udfrev = minUDFWriteRev;
2241 
2242 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2243 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2244 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2245 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2246 	}
2247 
2248 	if (!sbi->s_partitions) {
2249 		udf_warn(sb, "No partition found (2)\n");
2250 		ret = -EINVAL;
2251 		goto error_out;
2252 	}
2253 
2254 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2255 			UDF_PART_FLAG_READ_ONLY) {
2256 		if (!sb_rdonly(sb)) {
2257 			ret = -EACCES;
2258 			goto error_out;
2259 		}
2260 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2261 	}
2262 
2263 	ret = udf_find_fileset(sb, &fileset, &rootdir);
2264 	if (ret < 0) {
2265 		udf_warn(sb, "No fileset found\n");
2266 		goto error_out;
2267 	}
2268 
2269 	if (!silent) {
2270 		struct timestamp ts;
2271 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2272 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2273 			 sbi->s_volume_ident,
2274 			 le16_to_cpu(ts.year), ts.month, ts.day,
2275 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2276 	}
2277 	if (!sb_rdonly(sb)) {
2278 		udf_open_lvid(sb);
2279 		lvid_open = true;
2280 	}
2281 
2282 	/* Assign the root inode */
2283 	/* assign inodes by physical block number */
2284 	/* perhaps it's not extensible enough, but for now ... */
2285 	inode = udf_iget(sb, &rootdir);
2286 	if (IS_ERR(inode)) {
2287 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2288 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2289 		ret = PTR_ERR(inode);
2290 		goto error_out;
2291 	}
2292 
2293 	/* Allocate a dentry for the root inode */
2294 	sb->s_root = d_make_root(inode);
2295 	if (!sb->s_root) {
2296 		udf_err(sb, "Couldn't allocate root dentry\n");
2297 		ret = -ENOMEM;
2298 		goto error_out;
2299 	}
2300 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2301 	sb->s_max_links = UDF_MAX_LINKS;
2302 	return 0;
2303 
2304 error_out:
2305 	iput(sbi->s_vat_inode);
2306 parse_options_failure:
2307 	unload_nls(uopt.nls_map);
2308 	if (lvid_open)
2309 		udf_close_lvid(sb);
2310 	brelse(sbi->s_lvid_bh);
2311 	udf_sb_free_partitions(sb);
2312 	kfree(sbi);
2313 	sb->s_fs_info = NULL;
2314 
2315 	return ret;
2316 }
2317 
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2318 void _udf_err(struct super_block *sb, const char *function,
2319 	      const char *fmt, ...)
2320 {
2321 	struct va_format vaf;
2322 	va_list args;
2323 
2324 	va_start(args, fmt);
2325 
2326 	vaf.fmt = fmt;
2327 	vaf.va = &args;
2328 
2329 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2330 
2331 	va_end(args);
2332 }
2333 
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2334 void _udf_warn(struct super_block *sb, const char *function,
2335 	       const char *fmt, ...)
2336 {
2337 	struct va_format vaf;
2338 	va_list args;
2339 
2340 	va_start(args, fmt);
2341 
2342 	vaf.fmt = fmt;
2343 	vaf.va = &args;
2344 
2345 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2346 
2347 	va_end(args);
2348 }
2349 
udf_put_super(struct super_block * sb)2350 static void udf_put_super(struct super_block *sb)
2351 {
2352 	struct udf_sb_info *sbi;
2353 
2354 	sbi = UDF_SB(sb);
2355 
2356 	iput(sbi->s_vat_inode);
2357 	unload_nls(sbi->s_nls_map);
2358 	if (!sb_rdonly(sb))
2359 		udf_close_lvid(sb);
2360 	brelse(sbi->s_lvid_bh);
2361 	udf_sb_free_partitions(sb);
2362 	mutex_destroy(&sbi->s_alloc_mutex);
2363 	kfree(sb->s_fs_info);
2364 	sb->s_fs_info = NULL;
2365 }
2366 
udf_sync_fs(struct super_block * sb,int wait)2367 static int udf_sync_fs(struct super_block *sb, int wait)
2368 {
2369 	struct udf_sb_info *sbi = UDF_SB(sb);
2370 
2371 	mutex_lock(&sbi->s_alloc_mutex);
2372 	if (sbi->s_lvid_dirty) {
2373 		struct buffer_head *bh = sbi->s_lvid_bh;
2374 		struct logicalVolIntegrityDesc *lvid;
2375 
2376 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2377 		udf_finalize_lvid(lvid);
2378 
2379 		/*
2380 		 * Blockdevice will be synced later so we don't have to submit
2381 		 * the buffer for IO
2382 		 */
2383 		mark_buffer_dirty(bh);
2384 		sbi->s_lvid_dirty = 0;
2385 	}
2386 	mutex_unlock(&sbi->s_alloc_mutex);
2387 
2388 	return 0;
2389 }
2390 
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2391 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2392 {
2393 	struct super_block *sb = dentry->d_sb;
2394 	struct udf_sb_info *sbi = UDF_SB(sb);
2395 	struct logicalVolIntegrityDescImpUse *lvidiu;
2396 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2397 
2398 	lvidiu = udf_sb_lvidiu(sb);
2399 	buf->f_type = UDF_SUPER_MAGIC;
2400 	buf->f_bsize = sb->s_blocksize;
2401 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2402 	buf->f_bfree = udf_count_free(sb);
2403 	buf->f_bavail = buf->f_bfree;
2404 	/*
2405 	 * Let's pretend each free block is also a free 'inode' since UDF does
2406 	 * not have separate preallocated table of inodes.
2407 	 */
2408 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2409 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2410 			+ buf->f_bfree;
2411 	buf->f_ffree = buf->f_bfree;
2412 	buf->f_namelen = UDF_NAME_LEN;
2413 	buf->f_fsid = u64_to_fsid(id);
2414 
2415 	return 0;
2416 }
2417 
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2418 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2419 					  struct udf_bitmap *bitmap)
2420 {
2421 	struct buffer_head *bh = NULL;
2422 	unsigned int accum = 0;
2423 	int index;
2424 	udf_pblk_t block = 0, newblock;
2425 	struct kernel_lb_addr loc;
2426 	uint32_t bytes;
2427 	uint8_t *ptr;
2428 	uint16_t ident;
2429 	struct spaceBitmapDesc *bm;
2430 
2431 	loc.logicalBlockNum = bitmap->s_extPosition;
2432 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2433 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2434 
2435 	if (!bh) {
2436 		udf_err(sb, "udf_count_free failed\n");
2437 		goto out;
2438 	} else if (ident != TAG_IDENT_SBD) {
2439 		brelse(bh);
2440 		udf_err(sb, "udf_count_free failed\n");
2441 		goto out;
2442 	}
2443 
2444 	bm = (struct spaceBitmapDesc *)bh->b_data;
2445 	bytes = le32_to_cpu(bm->numOfBytes);
2446 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2447 	ptr = (uint8_t *)bh->b_data;
2448 
2449 	while (bytes > 0) {
2450 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2451 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2452 					cur_bytes * 8);
2453 		bytes -= cur_bytes;
2454 		if (bytes) {
2455 			brelse(bh);
2456 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2457 			bh = udf_tread(sb, newblock);
2458 			if (!bh) {
2459 				udf_debug("read failed\n");
2460 				goto out;
2461 			}
2462 			index = 0;
2463 			ptr = (uint8_t *)bh->b_data;
2464 		}
2465 	}
2466 	brelse(bh);
2467 out:
2468 	return accum;
2469 }
2470 
udf_count_free_table(struct super_block * sb,struct inode * table)2471 static unsigned int udf_count_free_table(struct super_block *sb,
2472 					 struct inode *table)
2473 {
2474 	unsigned int accum = 0;
2475 	uint32_t elen;
2476 	struct kernel_lb_addr eloc;
2477 	int8_t etype;
2478 	struct extent_position epos;
2479 
2480 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2481 	epos.block = UDF_I(table)->i_location;
2482 	epos.offset = sizeof(struct unallocSpaceEntry);
2483 	epos.bh = NULL;
2484 
2485 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2486 		accum += (elen >> table->i_sb->s_blocksize_bits);
2487 
2488 	brelse(epos.bh);
2489 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2490 
2491 	return accum;
2492 }
2493 
udf_count_free(struct super_block * sb)2494 static unsigned int udf_count_free(struct super_block *sb)
2495 {
2496 	unsigned int accum = 0;
2497 	struct udf_sb_info *sbi = UDF_SB(sb);
2498 	struct udf_part_map *map;
2499 	unsigned int part = sbi->s_partition;
2500 	int ptype = sbi->s_partmaps[part].s_partition_type;
2501 
2502 	if (ptype == UDF_METADATA_MAP25) {
2503 		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2504 							s_phys_partition_ref;
2505 	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2506 		/*
2507 		 * Filesystems with VAT are append-only and we cannot write to
2508  		 * them. Let's just report 0 here.
2509 		 */
2510 		return 0;
2511 	}
2512 
2513 	if (sbi->s_lvid_bh) {
2514 		struct logicalVolIntegrityDesc *lvid =
2515 			(struct logicalVolIntegrityDesc *)
2516 			sbi->s_lvid_bh->b_data;
2517 		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2518 			accum = le32_to_cpu(
2519 					lvid->freeSpaceTable[part]);
2520 			if (accum == 0xFFFFFFFF)
2521 				accum = 0;
2522 		}
2523 	}
2524 
2525 	if (accum)
2526 		return accum;
2527 
2528 	map = &sbi->s_partmaps[part];
2529 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2530 		accum += udf_count_free_bitmap(sb,
2531 					       map->s_uspace.s_bitmap);
2532 	}
2533 	if (accum)
2534 		return accum;
2535 
2536 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2537 		accum += udf_count_free_table(sb,
2538 					      map->s_uspace.s_table);
2539 	}
2540 	return accum;
2541 }
2542 
2543 MODULE_AUTHOR("Ben Fennema");
2544 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2545 MODULE_LICENSE("GPL");
2546 module_init(init_udf_fs)
2547 module_exit(exit_udf_fs)
2548