1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30
31 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 /*
36 * Start with fault_pending_wqh and fault_wqh so they're more likely
37 * to be in the same cacheline.
38 *
39 * Locking order:
40 * fd_wqh.lock
41 * fault_pending_wqh.lock
42 * fault_wqh.lock
43 * event_wqh.lock
44 *
45 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
46 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
47 * also taken in IRQ context.
48 */
49 struct userfaultfd_ctx {
50 /* waitqueue head for the pending (i.e. not read) userfaults */
51 wait_queue_head_t fault_pending_wqh;
52 /* waitqueue head for the userfaults */
53 wait_queue_head_t fault_wqh;
54 /* waitqueue head for the pseudo fd to wakeup poll/read */
55 wait_queue_head_t fd_wqh;
56 /* waitqueue head for events */
57 wait_queue_head_t event_wqh;
58 /* a refile sequence protected by fault_pending_wqh lock */
59 seqcount_spinlock_t refile_seq;
60 /* pseudo fd refcounting */
61 refcount_t refcount;
62 /* userfaultfd syscall flags */
63 unsigned int flags;
64 /* features requested from the userspace */
65 unsigned int features;
66 /* released */
67 bool released;
68 /* memory mappings are changing because of non-cooperative event */
69 bool mmap_changing;
70 /* mm with one ore more vmas attached to this userfaultfd_ctx */
71 struct mm_struct *mm;
72 };
73
74 struct userfaultfd_fork_ctx {
75 struct userfaultfd_ctx *orig;
76 struct userfaultfd_ctx *new;
77 struct list_head list;
78 };
79
80 struct userfaultfd_unmap_ctx {
81 struct userfaultfd_ctx *ctx;
82 unsigned long start;
83 unsigned long end;
84 struct list_head list;
85 };
86
87 struct userfaultfd_wait_queue {
88 struct uffd_msg msg;
89 wait_queue_entry_t wq;
90 struct userfaultfd_ctx *ctx;
91 bool waken;
92 };
93
94 struct userfaultfd_wake_range {
95 unsigned long start;
96 unsigned long len;
97 };
98
99 /* internal indication that UFFD_API ioctl was successfully executed */
100 #define UFFD_FEATURE_INITIALIZED (1u << 31)
101
userfaultfd_is_initialized(struct userfaultfd_ctx * ctx)102 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
103 {
104 return ctx->features & UFFD_FEATURE_INITIALIZED;
105 }
106
userfaultfd_wake_function(wait_queue_entry_t * wq,unsigned mode,int wake_flags,void * key)107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
108 int wake_flags, void *key)
109 {
110 struct userfaultfd_wake_range *range = key;
111 int ret;
112 struct userfaultfd_wait_queue *uwq;
113 unsigned long start, len;
114
115 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116 ret = 0;
117 /* len == 0 means wake all */
118 start = range->start;
119 len = range->len;
120 if (len && (start > uwq->msg.arg.pagefault.address ||
121 start + len <= uwq->msg.arg.pagefault.address))
122 goto out;
123 WRITE_ONCE(uwq->waken, true);
124 /*
125 * The Program-Order guarantees provided by the scheduler
126 * ensure uwq->waken is visible before the task is woken.
127 */
128 ret = wake_up_state(wq->private, mode);
129 if (ret) {
130 /*
131 * Wake only once, autoremove behavior.
132 *
133 * After the effect of list_del_init is visible to the other
134 * CPUs, the waitqueue may disappear from under us, see the
135 * !list_empty_careful() in handle_userfault().
136 *
137 * try_to_wake_up() has an implicit smp_mb(), and the
138 * wq->private is read before calling the extern function
139 * "wake_up_state" (which in turns calls try_to_wake_up).
140 */
141 list_del_init(&wq->entry);
142 }
143 out:
144 return ret;
145 }
146
147 /**
148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149 * context.
150 * @ctx: [in] Pointer to the userfaultfd context.
151 */
userfaultfd_ctx_get(struct userfaultfd_ctx * ctx)152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 {
154 refcount_inc(&ctx->refcount);
155 }
156
157 /**
158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159 * context.
160 * @ctx: [in] Pointer to userfaultfd context.
161 *
162 * The userfaultfd context reference must have been previously acquired either
163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164 */
userfaultfd_ctx_put(struct userfaultfd_ctx * ctx)165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166 {
167 if (refcount_dec_and_test(&ctx->refcount)) {
168 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
172 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
174 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
176 mmdrop(ctx->mm);
177 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
178 }
179 }
180
msg_init(struct uffd_msg * msg)181 static inline void msg_init(struct uffd_msg *msg)
182 {
183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 /*
185 * Must use memset to zero out the paddings or kernel data is
186 * leaked to userland.
187 */
188 memset(msg, 0, sizeof(struct uffd_msg));
189 }
190
userfault_msg(unsigned long address,unsigned int flags,unsigned long reason,unsigned int features)191 static inline struct uffd_msg userfault_msg(unsigned long address,
192 unsigned int flags,
193 unsigned long reason,
194 unsigned int features)
195 {
196 struct uffd_msg msg;
197 msg_init(&msg);
198 msg.event = UFFD_EVENT_PAGEFAULT;
199 msg.arg.pagefault.address = address;
200 if (flags & FAULT_FLAG_WRITE)
201 /*
202 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
203 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
204 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
205 * was a read fault, otherwise if set it means it's
206 * a write fault.
207 */
208 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
209 if (reason & VM_UFFD_WP)
210 /*
211 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
212 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
213 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
214 * a missing fault, otherwise if set it means it's a
215 * write protect fault.
216 */
217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218 if (features & UFFD_FEATURE_THREAD_ID)
219 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
220 return msg;
221 }
222
223 #ifdef CONFIG_HUGETLB_PAGE
224 /*
225 * Same functionality as userfaultfd_must_wait below with modifications for
226 * hugepmd ranges.
227 */
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,unsigned long address,unsigned long flags,unsigned long reason)228 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
229 struct vm_area_struct *vma,
230 unsigned long address,
231 unsigned long flags,
232 unsigned long reason)
233 {
234 struct mm_struct *mm = ctx->mm;
235 pte_t *ptep, pte;
236 bool ret = true;
237
238 mmap_assert_locked(mm);
239
240 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
241
242 if (!ptep)
243 goto out;
244
245 ret = false;
246 pte = huge_ptep_get(ptep);
247
248 /*
249 * Lockless access: we're in a wait_event so it's ok if it
250 * changes under us.
251 */
252 if (huge_pte_none(pte))
253 ret = true;
254 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
255 ret = true;
256 out:
257 return ret;
258 }
259 #else
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,unsigned long address,unsigned long flags,unsigned long reason)260 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
261 struct vm_area_struct *vma,
262 unsigned long address,
263 unsigned long flags,
264 unsigned long reason)
265 {
266 return false; /* should never get here */
267 }
268 #endif /* CONFIG_HUGETLB_PAGE */
269
270 /*
271 * Verify the pagetables are still not ok after having reigstered into
272 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
273 * userfault that has already been resolved, if userfaultfd_read and
274 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
275 * threads.
276 */
userfaultfd_must_wait(struct userfaultfd_ctx * ctx,unsigned long address,unsigned long flags,unsigned long reason)277 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
278 unsigned long address,
279 unsigned long flags,
280 unsigned long reason)
281 {
282 struct mm_struct *mm = ctx->mm;
283 pgd_t *pgd;
284 p4d_t *p4d;
285 pud_t *pud;
286 pmd_t *pmd, _pmd;
287 pte_t *pte;
288 bool ret = true;
289
290 mmap_assert_locked(mm);
291
292 pgd = pgd_offset(mm, address);
293 if (!pgd_present(*pgd))
294 goto out;
295 p4d = p4d_offset(pgd, address);
296 if (!p4d_present(*p4d))
297 goto out;
298 pud = pud_offset(p4d, address);
299 if (!pud_present(*pud))
300 goto out;
301 pmd = pmd_offset(pud, address);
302 /*
303 * READ_ONCE must function as a barrier with narrower scope
304 * and it must be equivalent to:
305 * _pmd = *pmd; barrier();
306 *
307 * This is to deal with the instability (as in
308 * pmd_trans_unstable) of the pmd.
309 */
310 _pmd = READ_ONCE(*pmd);
311 if (pmd_none(_pmd))
312 goto out;
313
314 ret = false;
315 if (!pmd_present(_pmd))
316 goto out;
317
318 if (pmd_trans_huge(_pmd)) {
319 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
320 ret = true;
321 goto out;
322 }
323
324 /*
325 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
326 * and use the standard pte_offset_map() instead of parsing _pmd.
327 */
328 pte = pte_offset_map(pmd, address);
329 /*
330 * Lockless access: we're in a wait_event so it's ok if it
331 * changes under us.
332 */
333 if (pte_none(*pte))
334 ret = true;
335 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
336 ret = true;
337 pte_unmap(pte);
338
339 out:
340 return ret;
341 }
342
userfaultfd_get_blocking_state(unsigned int flags)343 static inline long userfaultfd_get_blocking_state(unsigned int flags)
344 {
345 if (flags & FAULT_FLAG_INTERRUPTIBLE)
346 return TASK_INTERRUPTIBLE;
347
348 if (flags & FAULT_FLAG_KILLABLE)
349 return TASK_KILLABLE;
350
351 return TASK_UNINTERRUPTIBLE;
352 }
353
354 /*
355 * The locking rules involved in returning VM_FAULT_RETRY depending on
356 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
357 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
358 * recommendation in __lock_page_or_retry is not an understatement.
359 *
360 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
361 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
362 * not set.
363 *
364 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
365 * set, VM_FAULT_RETRY can still be returned if and only if there are
366 * fatal_signal_pending()s, and the mmap_lock must be released before
367 * returning it.
368 */
handle_userfault(struct vm_fault * vmf,unsigned long reason)369 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
370 {
371 struct mm_struct *mm = vmf->vma->vm_mm;
372 struct userfaultfd_ctx *ctx;
373 struct userfaultfd_wait_queue uwq;
374 vm_fault_t ret = VM_FAULT_SIGBUS;
375 bool must_wait;
376 long blocking_state;
377
378 /*
379 * We don't do userfault handling for the final child pid update.
380 *
381 * We also don't do userfault handling during
382 * coredumping. hugetlbfs has the special
383 * follow_hugetlb_page() to skip missing pages in the
384 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
385 * the no_page_table() helper in follow_page_mask(), but the
386 * shmem_vm_ops->fault method is invoked even during
387 * coredumping without mmap_lock and it ends up here.
388 */
389 if (current->flags & (PF_EXITING|PF_DUMPCORE))
390 goto out;
391
392 /*
393 * Coredumping runs without mmap_lock so we can only check that
394 * the mmap_lock is held, if PF_DUMPCORE was not set.
395 */
396 mmap_assert_locked(mm);
397
398 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
399 if (!ctx)
400 goto out;
401
402 BUG_ON(ctx->mm != mm);
403
404 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
405 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
406
407 if (ctx->features & UFFD_FEATURE_SIGBUS)
408 goto out;
409
410 /*
411 * If it's already released don't get it. This avoids to loop
412 * in __get_user_pages if userfaultfd_release waits on the
413 * caller of handle_userfault to release the mmap_lock.
414 */
415 if (unlikely(READ_ONCE(ctx->released))) {
416 /*
417 * Don't return VM_FAULT_SIGBUS in this case, so a non
418 * cooperative manager can close the uffd after the
419 * last UFFDIO_COPY, without risking to trigger an
420 * involuntary SIGBUS if the process was starting the
421 * userfaultfd while the userfaultfd was still armed
422 * (but after the last UFFDIO_COPY). If the uffd
423 * wasn't already closed when the userfault reached
424 * this point, that would normally be solved by
425 * userfaultfd_must_wait returning 'false'.
426 *
427 * If we were to return VM_FAULT_SIGBUS here, the non
428 * cooperative manager would be instead forced to
429 * always call UFFDIO_UNREGISTER before it can safely
430 * close the uffd.
431 */
432 ret = VM_FAULT_NOPAGE;
433 goto out;
434 }
435
436 /*
437 * Check that we can return VM_FAULT_RETRY.
438 *
439 * NOTE: it should become possible to return VM_FAULT_RETRY
440 * even if FAULT_FLAG_TRIED is set without leading to gup()
441 * -EBUSY failures, if the userfaultfd is to be extended for
442 * VM_UFFD_WP tracking and we intend to arm the userfault
443 * without first stopping userland access to the memory. For
444 * VM_UFFD_MISSING userfaults this is enough for now.
445 */
446 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
447 /*
448 * Validate the invariant that nowait must allow retry
449 * to be sure not to return SIGBUS erroneously on
450 * nowait invocations.
451 */
452 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
453 #ifdef CONFIG_DEBUG_VM
454 if (printk_ratelimit()) {
455 printk(KERN_WARNING
456 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
457 vmf->flags);
458 dump_stack();
459 }
460 #endif
461 goto out;
462 }
463
464 /*
465 * Handle nowait, not much to do other than tell it to retry
466 * and wait.
467 */
468 ret = VM_FAULT_RETRY;
469 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
470 goto out;
471
472 /* take the reference before dropping the mmap_lock */
473 userfaultfd_ctx_get(ctx);
474
475 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
476 uwq.wq.private = current;
477 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
478 ctx->features);
479 uwq.ctx = ctx;
480 uwq.waken = false;
481
482 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
483
484 spin_lock_irq(&ctx->fault_pending_wqh.lock);
485 /*
486 * After the __add_wait_queue the uwq is visible to userland
487 * through poll/read().
488 */
489 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
490 /*
491 * The smp_mb() after __set_current_state prevents the reads
492 * following the spin_unlock to happen before the list_add in
493 * __add_wait_queue.
494 */
495 set_current_state(blocking_state);
496 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
497
498 if (!is_vm_hugetlb_page(vmf->vma))
499 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
500 reason);
501 else
502 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
503 vmf->address,
504 vmf->flags, reason);
505 mmap_read_unlock(mm);
506
507 if (likely(must_wait && !READ_ONCE(ctx->released))) {
508 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
509 schedule();
510 }
511
512 __set_current_state(TASK_RUNNING);
513
514 /*
515 * Here we race with the list_del; list_add in
516 * userfaultfd_ctx_read(), however because we don't ever run
517 * list_del_init() to refile across the two lists, the prev
518 * and next pointers will never point to self. list_add also
519 * would never let any of the two pointers to point to
520 * self. So list_empty_careful won't risk to see both pointers
521 * pointing to self at any time during the list refile. The
522 * only case where list_del_init() is called is the full
523 * removal in the wake function and there we don't re-list_add
524 * and it's fine not to block on the spinlock. The uwq on this
525 * kernel stack can be released after the list_del_init.
526 */
527 if (!list_empty_careful(&uwq.wq.entry)) {
528 spin_lock_irq(&ctx->fault_pending_wqh.lock);
529 /*
530 * No need of list_del_init(), the uwq on the stack
531 * will be freed shortly anyway.
532 */
533 list_del(&uwq.wq.entry);
534 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
535 }
536
537 /*
538 * ctx may go away after this if the userfault pseudo fd is
539 * already released.
540 */
541 userfaultfd_ctx_put(ctx);
542
543 out:
544 return ret;
545 }
546
userfaultfd_event_wait_completion(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)547 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
548 struct userfaultfd_wait_queue *ewq)
549 {
550 struct userfaultfd_ctx *release_new_ctx;
551
552 if (WARN_ON_ONCE(current->flags & PF_EXITING))
553 goto out;
554
555 ewq->ctx = ctx;
556 init_waitqueue_entry(&ewq->wq, current);
557 release_new_ctx = NULL;
558
559 spin_lock_irq(&ctx->event_wqh.lock);
560 /*
561 * After the __add_wait_queue the uwq is visible to userland
562 * through poll/read().
563 */
564 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
565 for (;;) {
566 set_current_state(TASK_KILLABLE);
567 if (ewq->msg.event == 0)
568 break;
569 if (READ_ONCE(ctx->released) ||
570 fatal_signal_pending(current)) {
571 /*
572 * &ewq->wq may be queued in fork_event, but
573 * __remove_wait_queue ignores the head
574 * parameter. It would be a problem if it
575 * didn't.
576 */
577 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
578 if (ewq->msg.event == UFFD_EVENT_FORK) {
579 struct userfaultfd_ctx *new;
580
581 new = (struct userfaultfd_ctx *)
582 (unsigned long)
583 ewq->msg.arg.reserved.reserved1;
584 release_new_ctx = new;
585 }
586 break;
587 }
588
589 spin_unlock_irq(&ctx->event_wqh.lock);
590
591 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
592 schedule();
593
594 spin_lock_irq(&ctx->event_wqh.lock);
595 }
596 __set_current_state(TASK_RUNNING);
597 spin_unlock_irq(&ctx->event_wqh.lock);
598
599 if (release_new_ctx) {
600 struct vm_area_struct *vma;
601 struct mm_struct *mm = release_new_ctx->mm;
602
603 /* the various vma->vm_userfaultfd_ctx still points to it */
604 mmap_write_lock(mm);
605 for (vma = mm->mmap; vma; vma = vma->vm_next)
606 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
607 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
608 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
609 }
610 mmap_write_unlock(mm);
611
612 userfaultfd_ctx_put(release_new_ctx);
613 }
614
615 /*
616 * ctx may go away after this if the userfault pseudo fd is
617 * already released.
618 */
619 out:
620 WRITE_ONCE(ctx->mmap_changing, false);
621 userfaultfd_ctx_put(ctx);
622 }
623
userfaultfd_event_complete(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)624 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
625 struct userfaultfd_wait_queue *ewq)
626 {
627 ewq->msg.event = 0;
628 wake_up_locked(&ctx->event_wqh);
629 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
630 }
631
dup_userfaultfd(struct vm_area_struct * vma,struct list_head * fcs)632 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
633 {
634 struct userfaultfd_ctx *ctx = NULL, *octx;
635 struct userfaultfd_fork_ctx *fctx;
636
637 octx = vma->vm_userfaultfd_ctx.ctx;
638 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
639 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
640 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
641 return 0;
642 }
643
644 list_for_each_entry(fctx, fcs, list)
645 if (fctx->orig == octx) {
646 ctx = fctx->new;
647 break;
648 }
649
650 if (!ctx) {
651 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
652 if (!fctx)
653 return -ENOMEM;
654
655 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
656 if (!ctx) {
657 kfree(fctx);
658 return -ENOMEM;
659 }
660
661 refcount_set(&ctx->refcount, 1);
662 ctx->flags = octx->flags;
663 ctx->features = octx->features;
664 ctx->released = false;
665 ctx->mmap_changing = false;
666 ctx->mm = vma->vm_mm;
667 mmgrab(ctx->mm);
668
669 userfaultfd_ctx_get(octx);
670 WRITE_ONCE(octx->mmap_changing, true);
671 fctx->orig = octx;
672 fctx->new = ctx;
673 list_add_tail(&fctx->list, fcs);
674 }
675
676 vma->vm_userfaultfd_ctx.ctx = ctx;
677 return 0;
678 }
679
dup_fctx(struct userfaultfd_fork_ctx * fctx)680 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
681 {
682 struct userfaultfd_ctx *ctx = fctx->orig;
683 struct userfaultfd_wait_queue ewq;
684
685 msg_init(&ewq.msg);
686
687 ewq.msg.event = UFFD_EVENT_FORK;
688 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
689
690 userfaultfd_event_wait_completion(ctx, &ewq);
691 }
692
dup_userfaultfd_complete(struct list_head * fcs)693 void dup_userfaultfd_complete(struct list_head *fcs)
694 {
695 struct userfaultfd_fork_ctx *fctx, *n;
696
697 list_for_each_entry_safe(fctx, n, fcs, list) {
698 dup_fctx(fctx);
699 list_del(&fctx->list);
700 kfree(fctx);
701 }
702 }
703
mremap_userfaultfd_prep(struct vm_area_struct * vma,struct vm_userfaultfd_ctx * vm_ctx)704 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
705 struct vm_userfaultfd_ctx *vm_ctx)
706 {
707 struct userfaultfd_ctx *ctx;
708
709 ctx = vma->vm_userfaultfd_ctx.ctx;
710
711 if (!ctx)
712 return;
713
714 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
715 vm_ctx->ctx = ctx;
716 userfaultfd_ctx_get(ctx);
717 WRITE_ONCE(ctx->mmap_changing, true);
718 } else {
719 /* Drop uffd context if remap feature not enabled */
720 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
721 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
722 }
723 }
724
mremap_userfaultfd_complete(struct vm_userfaultfd_ctx * vm_ctx,unsigned long from,unsigned long to,unsigned long len)725 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
726 unsigned long from, unsigned long to,
727 unsigned long len)
728 {
729 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
730 struct userfaultfd_wait_queue ewq;
731
732 if (!ctx)
733 return;
734
735 if (to & ~PAGE_MASK) {
736 userfaultfd_ctx_put(ctx);
737 return;
738 }
739
740 msg_init(&ewq.msg);
741
742 ewq.msg.event = UFFD_EVENT_REMAP;
743 ewq.msg.arg.remap.from = from;
744 ewq.msg.arg.remap.to = to;
745 ewq.msg.arg.remap.len = len;
746
747 userfaultfd_event_wait_completion(ctx, &ewq);
748 }
749
userfaultfd_remove(struct vm_area_struct * vma,unsigned long start,unsigned long end)750 bool userfaultfd_remove(struct vm_area_struct *vma,
751 unsigned long start, unsigned long end)
752 {
753 struct mm_struct *mm = vma->vm_mm;
754 struct userfaultfd_ctx *ctx;
755 struct userfaultfd_wait_queue ewq;
756
757 ctx = vma->vm_userfaultfd_ctx.ctx;
758 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
759 return true;
760
761 userfaultfd_ctx_get(ctx);
762 WRITE_ONCE(ctx->mmap_changing, true);
763 mmap_read_unlock(mm);
764
765 msg_init(&ewq.msg);
766
767 ewq.msg.event = UFFD_EVENT_REMOVE;
768 ewq.msg.arg.remove.start = start;
769 ewq.msg.arg.remove.end = end;
770
771 userfaultfd_event_wait_completion(ctx, &ewq);
772
773 return false;
774 }
775
has_unmap_ctx(struct userfaultfd_ctx * ctx,struct list_head * unmaps,unsigned long start,unsigned long end)776 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
777 unsigned long start, unsigned long end)
778 {
779 struct userfaultfd_unmap_ctx *unmap_ctx;
780
781 list_for_each_entry(unmap_ctx, unmaps, list)
782 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
783 unmap_ctx->end == end)
784 return true;
785
786 return false;
787 }
788
userfaultfd_unmap_prep(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * unmaps)789 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
790 unsigned long start, unsigned long end,
791 struct list_head *unmaps)
792 {
793 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
794 struct userfaultfd_unmap_ctx *unmap_ctx;
795 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
796
797 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
798 has_unmap_ctx(ctx, unmaps, start, end))
799 continue;
800
801 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
802 if (!unmap_ctx)
803 return -ENOMEM;
804
805 userfaultfd_ctx_get(ctx);
806 WRITE_ONCE(ctx->mmap_changing, true);
807 unmap_ctx->ctx = ctx;
808 unmap_ctx->start = start;
809 unmap_ctx->end = end;
810 list_add_tail(&unmap_ctx->list, unmaps);
811 }
812
813 return 0;
814 }
815
userfaultfd_unmap_complete(struct mm_struct * mm,struct list_head * uf)816 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
817 {
818 struct userfaultfd_unmap_ctx *ctx, *n;
819 struct userfaultfd_wait_queue ewq;
820
821 list_for_each_entry_safe(ctx, n, uf, list) {
822 msg_init(&ewq.msg);
823
824 ewq.msg.event = UFFD_EVENT_UNMAP;
825 ewq.msg.arg.remove.start = ctx->start;
826 ewq.msg.arg.remove.end = ctx->end;
827
828 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
829
830 list_del(&ctx->list);
831 kfree(ctx);
832 }
833 }
834
userfaultfd_release(struct inode * inode,struct file * file)835 static int userfaultfd_release(struct inode *inode, struct file *file)
836 {
837 struct userfaultfd_ctx *ctx = file->private_data;
838 struct mm_struct *mm = ctx->mm;
839 struct vm_area_struct *vma, *prev;
840 /* len == 0 means wake all */
841 struct userfaultfd_wake_range range = { .len = 0, };
842 unsigned long new_flags;
843
844 WRITE_ONCE(ctx->released, true);
845
846 if (!mmget_not_zero(mm))
847 goto wakeup;
848
849 /*
850 * Flush page faults out of all CPUs. NOTE: all page faults
851 * must be retried without returning VM_FAULT_SIGBUS if
852 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
853 * changes while handle_userfault released the mmap_lock. So
854 * it's critical that released is set to true (above), before
855 * taking the mmap_lock for writing.
856 */
857 mmap_write_lock(mm);
858 prev = NULL;
859 for (vma = mm->mmap; vma; vma = vma->vm_next) {
860 cond_resched();
861 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
862 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
863 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
864 prev = vma;
865 continue;
866 }
867 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
868 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
869 new_flags, vma->anon_vma,
870 vma->vm_file, vma->vm_pgoff,
871 vma_policy(vma),
872 NULL_VM_UFFD_CTX, vma_anon_name(vma));
873 if (prev)
874 vma = prev;
875 else
876 prev = vma;
877 vma->vm_flags = new_flags;
878 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
879 }
880 mmap_write_unlock(mm);
881 mmput(mm);
882 wakeup:
883 /*
884 * After no new page faults can wait on this fault_*wqh, flush
885 * the last page faults that may have been already waiting on
886 * the fault_*wqh.
887 */
888 spin_lock_irq(&ctx->fault_pending_wqh.lock);
889 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
890 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
891 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
892
893 /* Flush pending events that may still wait on event_wqh */
894 wake_up_all(&ctx->event_wqh);
895
896 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
897 userfaultfd_ctx_put(ctx);
898 return 0;
899 }
900
901 /* fault_pending_wqh.lock must be hold by the caller */
find_userfault_in(wait_queue_head_t * wqh)902 static inline struct userfaultfd_wait_queue *find_userfault_in(
903 wait_queue_head_t *wqh)
904 {
905 wait_queue_entry_t *wq;
906 struct userfaultfd_wait_queue *uwq;
907
908 lockdep_assert_held(&wqh->lock);
909
910 uwq = NULL;
911 if (!waitqueue_active(wqh))
912 goto out;
913 /* walk in reverse to provide FIFO behavior to read userfaults */
914 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
915 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
916 out:
917 return uwq;
918 }
919
find_userfault(struct userfaultfd_ctx * ctx)920 static inline struct userfaultfd_wait_queue *find_userfault(
921 struct userfaultfd_ctx *ctx)
922 {
923 return find_userfault_in(&ctx->fault_pending_wqh);
924 }
925
find_userfault_evt(struct userfaultfd_ctx * ctx)926 static inline struct userfaultfd_wait_queue *find_userfault_evt(
927 struct userfaultfd_ctx *ctx)
928 {
929 return find_userfault_in(&ctx->event_wqh);
930 }
931
userfaultfd_poll(struct file * file,poll_table * wait)932 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
933 {
934 struct userfaultfd_ctx *ctx = file->private_data;
935 __poll_t ret;
936
937 poll_wait(file, &ctx->fd_wqh, wait);
938
939 if (!userfaultfd_is_initialized(ctx))
940 return EPOLLERR;
941
942 /*
943 * poll() never guarantees that read won't block.
944 * userfaults can be waken before they're read().
945 */
946 if (unlikely(!(file->f_flags & O_NONBLOCK)))
947 return EPOLLERR;
948 /*
949 * lockless access to see if there are pending faults
950 * __pollwait last action is the add_wait_queue but
951 * the spin_unlock would allow the waitqueue_active to
952 * pass above the actual list_add inside
953 * add_wait_queue critical section. So use a full
954 * memory barrier to serialize the list_add write of
955 * add_wait_queue() with the waitqueue_active read
956 * below.
957 */
958 ret = 0;
959 smp_mb();
960 if (waitqueue_active(&ctx->fault_pending_wqh))
961 ret = EPOLLIN;
962 else if (waitqueue_active(&ctx->event_wqh))
963 ret = EPOLLIN;
964
965 return ret;
966 }
967
968 static const struct file_operations userfaultfd_fops;
969
resolve_userfault_fork(struct userfaultfd_ctx * ctx,struct userfaultfd_ctx * new,struct uffd_msg * msg)970 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
971 struct userfaultfd_ctx *new,
972 struct uffd_msg *msg)
973 {
974 int fd;
975
976 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
977 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
978 if (fd < 0)
979 return fd;
980
981 msg->arg.reserved.reserved1 = 0;
982 msg->arg.fork.ufd = fd;
983 return 0;
984 }
985
userfaultfd_ctx_read(struct userfaultfd_ctx * ctx,int no_wait,struct uffd_msg * msg)986 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
987 struct uffd_msg *msg)
988 {
989 ssize_t ret;
990 DECLARE_WAITQUEUE(wait, current);
991 struct userfaultfd_wait_queue *uwq;
992 /*
993 * Handling fork event requires sleeping operations, so
994 * we drop the event_wqh lock, then do these ops, then
995 * lock it back and wake up the waiter. While the lock is
996 * dropped the ewq may go away so we keep track of it
997 * carefully.
998 */
999 LIST_HEAD(fork_event);
1000 struct userfaultfd_ctx *fork_nctx = NULL;
1001
1002 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1003 spin_lock_irq(&ctx->fd_wqh.lock);
1004 __add_wait_queue(&ctx->fd_wqh, &wait);
1005 for (;;) {
1006 set_current_state(TASK_INTERRUPTIBLE);
1007 spin_lock(&ctx->fault_pending_wqh.lock);
1008 uwq = find_userfault(ctx);
1009 if (uwq) {
1010 /*
1011 * Use a seqcount to repeat the lockless check
1012 * in wake_userfault() to avoid missing
1013 * wakeups because during the refile both
1014 * waitqueue could become empty if this is the
1015 * only userfault.
1016 */
1017 write_seqcount_begin(&ctx->refile_seq);
1018
1019 /*
1020 * The fault_pending_wqh.lock prevents the uwq
1021 * to disappear from under us.
1022 *
1023 * Refile this userfault from
1024 * fault_pending_wqh to fault_wqh, it's not
1025 * pending anymore after we read it.
1026 *
1027 * Use list_del() by hand (as
1028 * userfaultfd_wake_function also uses
1029 * list_del_init() by hand) to be sure nobody
1030 * changes __remove_wait_queue() to use
1031 * list_del_init() in turn breaking the
1032 * !list_empty_careful() check in
1033 * handle_userfault(). The uwq->wq.head list
1034 * must never be empty at any time during the
1035 * refile, or the waitqueue could disappear
1036 * from under us. The "wait_queue_head_t"
1037 * parameter of __remove_wait_queue() is unused
1038 * anyway.
1039 */
1040 list_del(&uwq->wq.entry);
1041 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1042
1043 write_seqcount_end(&ctx->refile_seq);
1044
1045 /* careful to always initialize msg if ret == 0 */
1046 *msg = uwq->msg;
1047 spin_unlock(&ctx->fault_pending_wqh.lock);
1048 ret = 0;
1049 break;
1050 }
1051 spin_unlock(&ctx->fault_pending_wqh.lock);
1052
1053 spin_lock(&ctx->event_wqh.lock);
1054 uwq = find_userfault_evt(ctx);
1055 if (uwq) {
1056 *msg = uwq->msg;
1057
1058 if (uwq->msg.event == UFFD_EVENT_FORK) {
1059 fork_nctx = (struct userfaultfd_ctx *)
1060 (unsigned long)
1061 uwq->msg.arg.reserved.reserved1;
1062 list_move(&uwq->wq.entry, &fork_event);
1063 /*
1064 * fork_nctx can be freed as soon as
1065 * we drop the lock, unless we take a
1066 * reference on it.
1067 */
1068 userfaultfd_ctx_get(fork_nctx);
1069 spin_unlock(&ctx->event_wqh.lock);
1070 ret = 0;
1071 break;
1072 }
1073
1074 userfaultfd_event_complete(ctx, uwq);
1075 spin_unlock(&ctx->event_wqh.lock);
1076 ret = 0;
1077 break;
1078 }
1079 spin_unlock(&ctx->event_wqh.lock);
1080
1081 if (signal_pending(current)) {
1082 ret = -ERESTARTSYS;
1083 break;
1084 }
1085 if (no_wait) {
1086 ret = -EAGAIN;
1087 break;
1088 }
1089 spin_unlock_irq(&ctx->fd_wqh.lock);
1090 schedule();
1091 spin_lock_irq(&ctx->fd_wqh.lock);
1092 }
1093 __remove_wait_queue(&ctx->fd_wqh, &wait);
1094 __set_current_state(TASK_RUNNING);
1095 spin_unlock_irq(&ctx->fd_wqh.lock);
1096
1097 if (!ret && msg->event == UFFD_EVENT_FORK) {
1098 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1099 spin_lock_irq(&ctx->event_wqh.lock);
1100 if (!list_empty(&fork_event)) {
1101 /*
1102 * The fork thread didn't abort, so we can
1103 * drop the temporary refcount.
1104 */
1105 userfaultfd_ctx_put(fork_nctx);
1106
1107 uwq = list_first_entry(&fork_event,
1108 typeof(*uwq),
1109 wq.entry);
1110 /*
1111 * If fork_event list wasn't empty and in turn
1112 * the event wasn't already released by fork
1113 * (the event is allocated on fork kernel
1114 * stack), put the event back to its place in
1115 * the event_wq. fork_event head will be freed
1116 * as soon as we return so the event cannot
1117 * stay queued there no matter the current
1118 * "ret" value.
1119 */
1120 list_del(&uwq->wq.entry);
1121 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1122
1123 /*
1124 * Leave the event in the waitqueue and report
1125 * error to userland if we failed to resolve
1126 * the userfault fork.
1127 */
1128 if (likely(!ret))
1129 userfaultfd_event_complete(ctx, uwq);
1130 } else {
1131 /*
1132 * Here the fork thread aborted and the
1133 * refcount from the fork thread on fork_nctx
1134 * has already been released. We still hold
1135 * the reference we took before releasing the
1136 * lock above. If resolve_userfault_fork
1137 * failed we've to drop it because the
1138 * fork_nctx has to be freed in such case. If
1139 * it succeeded we'll hold it because the new
1140 * uffd references it.
1141 */
1142 if (ret)
1143 userfaultfd_ctx_put(fork_nctx);
1144 }
1145 spin_unlock_irq(&ctx->event_wqh.lock);
1146 }
1147
1148 return ret;
1149 }
1150
userfaultfd_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1151 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1152 size_t count, loff_t *ppos)
1153 {
1154 struct userfaultfd_ctx *ctx = file->private_data;
1155 ssize_t _ret, ret = 0;
1156 struct uffd_msg msg;
1157 int no_wait = file->f_flags & O_NONBLOCK;
1158
1159 if (!userfaultfd_is_initialized(ctx))
1160 return -EINVAL;
1161
1162 for (;;) {
1163 if (count < sizeof(msg))
1164 return ret ? ret : -EINVAL;
1165 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1166 if (_ret < 0)
1167 return ret ? ret : _ret;
1168 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1169 return ret ? ret : -EFAULT;
1170 ret += sizeof(msg);
1171 buf += sizeof(msg);
1172 count -= sizeof(msg);
1173 /*
1174 * Allow to read more than one fault at time but only
1175 * block if waiting for the very first one.
1176 */
1177 no_wait = O_NONBLOCK;
1178 }
1179 }
1180
__wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1181 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1182 struct userfaultfd_wake_range *range)
1183 {
1184 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1185 /* wake all in the range and autoremove */
1186 if (waitqueue_active(&ctx->fault_pending_wqh))
1187 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1188 range);
1189 if (waitqueue_active(&ctx->fault_wqh))
1190 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1191 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1192 }
1193
wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1194 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1195 struct userfaultfd_wake_range *range)
1196 {
1197 unsigned seq;
1198 bool need_wakeup;
1199
1200 /*
1201 * To be sure waitqueue_active() is not reordered by the CPU
1202 * before the pagetable update, use an explicit SMP memory
1203 * barrier here. PT lock release or mmap_read_unlock(mm) still
1204 * have release semantics that can allow the
1205 * waitqueue_active() to be reordered before the pte update.
1206 */
1207 smp_mb();
1208
1209 /*
1210 * Use waitqueue_active because it's very frequent to
1211 * change the address space atomically even if there are no
1212 * userfaults yet. So we take the spinlock only when we're
1213 * sure we've userfaults to wake.
1214 */
1215 do {
1216 seq = read_seqcount_begin(&ctx->refile_seq);
1217 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1218 waitqueue_active(&ctx->fault_wqh);
1219 cond_resched();
1220 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1221 if (need_wakeup)
1222 __wake_userfault(ctx, range);
1223 }
1224
validate_range(struct mm_struct * mm,__u64 start,__u64 len)1225 static __always_inline int validate_range(struct mm_struct *mm,
1226 __u64 start, __u64 len)
1227 {
1228 __u64 task_size = mm->task_size;
1229
1230 if (start & ~PAGE_MASK)
1231 return -EINVAL;
1232 if (len & ~PAGE_MASK)
1233 return -EINVAL;
1234 if (!len)
1235 return -EINVAL;
1236 if (start < mmap_min_addr)
1237 return -EINVAL;
1238 if (start >= task_size)
1239 return -EINVAL;
1240 if (len > task_size - start)
1241 return -EINVAL;
1242 return 0;
1243 }
1244
vma_can_userfault(struct vm_area_struct * vma,unsigned long vm_flags)1245 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1246 unsigned long vm_flags)
1247 {
1248 /* FIXME: add WP support to hugetlbfs and shmem */
1249 return vma_is_anonymous(vma) ||
1250 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
1251 !(vm_flags & VM_UFFD_WP));
1252 }
1253
userfaultfd_register(struct userfaultfd_ctx * ctx,unsigned long arg)1254 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1255 unsigned long arg)
1256 {
1257 struct mm_struct *mm = ctx->mm;
1258 struct vm_area_struct *vma, *prev, *cur;
1259 int ret;
1260 struct uffdio_register uffdio_register;
1261 struct uffdio_register __user *user_uffdio_register;
1262 unsigned long vm_flags, new_flags;
1263 bool found;
1264 bool basic_ioctls;
1265 unsigned long start, end, vma_end;
1266
1267 user_uffdio_register = (struct uffdio_register __user *) arg;
1268
1269 ret = -EFAULT;
1270 if (copy_from_user(&uffdio_register, user_uffdio_register,
1271 sizeof(uffdio_register)-sizeof(__u64)))
1272 goto out;
1273
1274 ret = -EINVAL;
1275 if (!uffdio_register.mode)
1276 goto out;
1277 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1278 UFFDIO_REGISTER_MODE_WP))
1279 goto out;
1280 vm_flags = 0;
1281 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1282 vm_flags |= VM_UFFD_MISSING;
1283 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1284 vm_flags |= VM_UFFD_WP;
1285
1286 ret = validate_range(mm, uffdio_register.range.start,
1287 uffdio_register.range.len);
1288 if (ret)
1289 goto out;
1290
1291 start = uffdio_register.range.start;
1292 end = start + uffdio_register.range.len;
1293
1294 ret = -ENOMEM;
1295 if (!mmget_not_zero(mm))
1296 goto out;
1297
1298 mmap_write_lock(mm);
1299 vma = find_vma_prev(mm, start, &prev);
1300 if (!vma)
1301 goto out_unlock;
1302
1303 /* check that there's at least one vma in the range */
1304 ret = -EINVAL;
1305 if (vma->vm_start >= end)
1306 goto out_unlock;
1307
1308 /*
1309 * If the first vma contains huge pages, make sure start address
1310 * is aligned to huge page size.
1311 */
1312 if (is_vm_hugetlb_page(vma)) {
1313 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1314
1315 if (start & (vma_hpagesize - 1))
1316 goto out_unlock;
1317 }
1318
1319 /*
1320 * Search for not compatible vmas.
1321 */
1322 found = false;
1323 basic_ioctls = false;
1324 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1325 cond_resched();
1326
1327 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1328 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1329
1330 /* check not compatible vmas */
1331 ret = -EINVAL;
1332 if (!vma_can_userfault(cur, vm_flags))
1333 goto out_unlock;
1334
1335 /*
1336 * UFFDIO_COPY will fill file holes even without
1337 * PROT_WRITE. This check enforces that if this is a
1338 * MAP_SHARED, the process has write permission to the backing
1339 * file. If VM_MAYWRITE is set it also enforces that on a
1340 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1341 * F_WRITE_SEAL can be taken until the vma is destroyed.
1342 */
1343 ret = -EPERM;
1344 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1345 goto out_unlock;
1346
1347 /*
1348 * If this vma contains ending address, and huge pages
1349 * check alignment.
1350 */
1351 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1352 end > cur->vm_start) {
1353 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1354
1355 ret = -EINVAL;
1356
1357 if (end & (vma_hpagesize - 1))
1358 goto out_unlock;
1359 }
1360 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1361 goto out_unlock;
1362
1363 /*
1364 * Check that this vma isn't already owned by a
1365 * different userfaultfd. We can't allow more than one
1366 * userfaultfd to own a single vma simultaneously or we
1367 * wouldn't know which one to deliver the userfaults to.
1368 */
1369 ret = -EBUSY;
1370 if (cur->vm_userfaultfd_ctx.ctx &&
1371 cur->vm_userfaultfd_ctx.ctx != ctx)
1372 goto out_unlock;
1373
1374 /*
1375 * Note vmas containing huge pages
1376 */
1377 if (is_vm_hugetlb_page(cur))
1378 basic_ioctls = true;
1379
1380 found = true;
1381 }
1382 BUG_ON(!found);
1383
1384 if (vma->vm_start < start)
1385 prev = vma;
1386
1387 ret = 0;
1388 do {
1389 cond_resched();
1390
1391 BUG_ON(!vma_can_userfault(vma, vm_flags));
1392 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1393 vma->vm_userfaultfd_ctx.ctx != ctx);
1394 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1395
1396 /*
1397 * Nothing to do: this vma is already registered into this
1398 * userfaultfd and with the right tracking mode too.
1399 */
1400 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1401 (vma->vm_flags & vm_flags) == vm_flags)
1402 goto skip;
1403
1404 if (vma->vm_start > start)
1405 start = vma->vm_start;
1406 vma_end = min(end, vma->vm_end);
1407
1408 new_flags = (vma->vm_flags &
1409 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1410 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1411 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1412 vma_policy(vma),
1413 ((struct vm_userfaultfd_ctx){ ctx }),
1414 vma_anon_name(vma));
1415 if (prev) {
1416 vma = prev;
1417 goto next;
1418 }
1419 if (vma->vm_start < start) {
1420 ret = split_vma(mm, vma, start, 1);
1421 if (ret)
1422 break;
1423 }
1424 if (vma->vm_end > end) {
1425 ret = split_vma(mm, vma, end, 0);
1426 if (ret)
1427 break;
1428 }
1429 next:
1430 /*
1431 * In the vma_merge() successful mprotect-like case 8:
1432 * the next vma was merged into the current one and
1433 * the current one has not been updated yet.
1434 */
1435 vma->vm_flags = new_flags;
1436 vma->vm_userfaultfd_ctx.ctx = ctx;
1437
1438 skip:
1439 prev = vma;
1440 start = vma->vm_end;
1441 vma = vma->vm_next;
1442 } while (vma && vma->vm_start < end);
1443 out_unlock:
1444 mmap_write_unlock(mm);
1445 mmput(mm);
1446 if (!ret) {
1447 __u64 ioctls_out;
1448
1449 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1450 UFFD_API_RANGE_IOCTLS;
1451
1452 /*
1453 * Declare the WP ioctl only if the WP mode is
1454 * specified and all checks passed with the range
1455 */
1456 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1457 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1458
1459 /*
1460 * Now that we scanned all vmas we can already tell
1461 * userland which ioctls methods are guaranteed to
1462 * succeed on this range.
1463 */
1464 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1465 ret = -EFAULT;
1466 }
1467 out:
1468 return ret;
1469 }
1470
userfaultfd_unregister(struct userfaultfd_ctx * ctx,unsigned long arg)1471 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1472 unsigned long arg)
1473 {
1474 struct mm_struct *mm = ctx->mm;
1475 struct vm_area_struct *vma, *prev, *cur;
1476 int ret;
1477 struct uffdio_range uffdio_unregister;
1478 unsigned long new_flags;
1479 bool found;
1480 unsigned long start, end, vma_end;
1481 const void __user *buf = (void __user *)arg;
1482
1483 ret = -EFAULT;
1484 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1485 goto out;
1486
1487 ret = validate_range(mm, uffdio_unregister.start,
1488 uffdio_unregister.len);
1489 if (ret)
1490 goto out;
1491
1492 start = uffdio_unregister.start;
1493 end = start + uffdio_unregister.len;
1494
1495 ret = -ENOMEM;
1496 if (!mmget_not_zero(mm))
1497 goto out;
1498
1499 mmap_write_lock(mm);
1500 vma = find_vma_prev(mm, start, &prev);
1501 if (!vma)
1502 goto out_unlock;
1503
1504 /* check that there's at least one vma in the range */
1505 ret = -EINVAL;
1506 if (vma->vm_start >= end)
1507 goto out_unlock;
1508
1509 /*
1510 * If the first vma contains huge pages, make sure start address
1511 * is aligned to huge page size.
1512 */
1513 if (is_vm_hugetlb_page(vma)) {
1514 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1515
1516 if (start & (vma_hpagesize - 1))
1517 goto out_unlock;
1518 }
1519
1520 /*
1521 * Search for not compatible vmas.
1522 */
1523 found = false;
1524 ret = -EINVAL;
1525 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1526 cond_resched();
1527
1528 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1529 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1530
1531 /*
1532 * Check not compatible vmas, not strictly required
1533 * here as not compatible vmas cannot have an
1534 * userfaultfd_ctx registered on them, but this
1535 * provides for more strict behavior to notice
1536 * unregistration errors.
1537 */
1538 if (!vma_can_userfault(cur, cur->vm_flags))
1539 goto out_unlock;
1540
1541 found = true;
1542 }
1543 BUG_ON(!found);
1544
1545 if (vma->vm_start < start)
1546 prev = vma;
1547
1548 ret = 0;
1549 do {
1550 cond_resched();
1551
1552 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1553
1554 /*
1555 * Nothing to do: this vma is already registered into this
1556 * userfaultfd and with the right tracking mode too.
1557 */
1558 if (!vma->vm_userfaultfd_ctx.ctx)
1559 goto skip;
1560
1561 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1562
1563 if (vma->vm_start > start)
1564 start = vma->vm_start;
1565 vma_end = min(end, vma->vm_end);
1566
1567 if (userfaultfd_missing(vma)) {
1568 /*
1569 * Wake any concurrent pending userfault while
1570 * we unregister, so they will not hang
1571 * permanently and it avoids userland to call
1572 * UFFDIO_WAKE explicitly.
1573 */
1574 struct userfaultfd_wake_range range;
1575 range.start = start;
1576 range.len = vma_end - start;
1577 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1578 }
1579
1580 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1581 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1582 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1583 vma_policy(vma),
1584 NULL_VM_UFFD_CTX, vma_anon_name(vma));
1585 if (prev) {
1586 vma = prev;
1587 goto next;
1588 }
1589 if (vma->vm_start < start) {
1590 ret = split_vma(mm, vma, start, 1);
1591 if (ret)
1592 break;
1593 }
1594 if (vma->vm_end > end) {
1595 ret = split_vma(mm, vma, end, 0);
1596 if (ret)
1597 break;
1598 }
1599 next:
1600 /*
1601 * In the vma_merge() successful mprotect-like case 8:
1602 * the next vma was merged into the current one and
1603 * the current one has not been updated yet.
1604 */
1605 vma->vm_flags = new_flags;
1606 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1607
1608 skip:
1609 prev = vma;
1610 start = vma->vm_end;
1611 vma = vma->vm_next;
1612 } while (vma && vma->vm_start < end);
1613 out_unlock:
1614 mmap_write_unlock(mm);
1615 mmput(mm);
1616 out:
1617 return ret;
1618 }
1619
1620 /*
1621 * userfaultfd_wake may be used in combination with the
1622 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1623 */
userfaultfd_wake(struct userfaultfd_ctx * ctx,unsigned long arg)1624 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1625 unsigned long arg)
1626 {
1627 int ret;
1628 struct uffdio_range uffdio_wake;
1629 struct userfaultfd_wake_range range;
1630 const void __user *buf = (void __user *)arg;
1631
1632 ret = -EFAULT;
1633 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1634 goto out;
1635
1636 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1637 if (ret)
1638 goto out;
1639
1640 range.start = uffdio_wake.start;
1641 range.len = uffdio_wake.len;
1642
1643 /*
1644 * len == 0 means wake all and we don't want to wake all here,
1645 * so check it again to be sure.
1646 */
1647 VM_BUG_ON(!range.len);
1648
1649 wake_userfault(ctx, &range);
1650 ret = 0;
1651
1652 out:
1653 return ret;
1654 }
1655
userfaultfd_copy(struct userfaultfd_ctx * ctx,unsigned long arg)1656 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1657 unsigned long arg)
1658 {
1659 __s64 ret;
1660 struct uffdio_copy uffdio_copy;
1661 struct uffdio_copy __user *user_uffdio_copy;
1662 struct userfaultfd_wake_range range;
1663
1664 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1665
1666 ret = -EAGAIN;
1667 if (READ_ONCE(ctx->mmap_changing))
1668 goto out;
1669
1670 ret = -EFAULT;
1671 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1672 /* don't copy "copy" last field */
1673 sizeof(uffdio_copy)-sizeof(__s64)))
1674 goto out;
1675
1676 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1677 if (ret)
1678 goto out;
1679 /*
1680 * double check for wraparound just in case. copy_from_user()
1681 * will later check uffdio_copy.src + uffdio_copy.len to fit
1682 * in the userland range.
1683 */
1684 ret = -EINVAL;
1685 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1686 goto out;
1687 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1688 goto out;
1689 if (mmget_not_zero(ctx->mm)) {
1690 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1691 uffdio_copy.len, &ctx->mmap_changing,
1692 uffdio_copy.mode);
1693 mmput(ctx->mm);
1694 } else {
1695 return -ESRCH;
1696 }
1697 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1698 return -EFAULT;
1699 if (ret < 0)
1700 goto out;
1701 BUG_ON(!ret);
1702 /* len == 0 would wake all */
1703 range.len = ret;
1704 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1705 range.start = uffdio_copy.dst;
1706 wake_userfault(ctx, &range);
1707 }
1708 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1709 out:
1710 return ret;
1711 }
1712
userfaultfd_zeropage(struct userfaultfd_ctx * ctx,unsigned long arg)1713 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1714 unsigned long arg)
1715 {
1716 __s64 ret;
1717 struct uffdio_zeropage uffdio_zeropage;
1718 struct uffdio_zeropage __user *user_uffdio_zeropage;
1719 struct userfaultfd_wake_range range;
1720
1721 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1722
1723 ret = -EAGAIN;
1724 if (READ_ONCE(ctx->mmap_changing))
1725 goto out;
1726
1727 ret = -EFAULT;
1728 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1729 /* don't copy "zeropage" last field */
1730 sizeof(uffdio_zeropage)-sizeof(__s64)))
1731 goto out;
1732
1733 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1734 uffdio_zeropage.range.len);
1735 if (ret)
1736 goto out;
1737 ret = -EINVAL;
1738 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1739 goto out;
1740
1741 if (mmget_not_zero(ctx->mm)) {
1742 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1743 uffdio_zeropage.range.len,
1744 &ctx->mmap_changing);
1745 mmput(ctx->mm);
1746 } else {
1747 return -ESRCH;
1748 }
1749 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1750 return -EFAULT;
1751 if (ret < 0)
1752 goto out;
1753 /* len == 0 would wake all */
1754 BUG_ON(!ret);
1755 range.len = ret;
1756 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1757 range.start = uffdio_zeropage.range.start;
1758 wake_userfault(ctx, &range);
1759 }
1760 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1761 out:
1762 return ret;
1763 }
1764
userfaultfd_writeprotect(struct userfaultfd_ctx * ctx,unsigned long arg)1765 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1766 unsigned long arg)
1767 {
1768 int ret;
1769 struct uffdio_writeprotect uffdio_wp;
1770 struct uffdio_writeprotect __user *user_uffdio_wp;
1771 struct userfaultfd_wake_range range;
1772 bool mode_wp, mode_dontwake;
1773
1774 if (READ_ONCE(ctx->mmap_changing))
1775 return -EAGAIN;
1776
1777 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1778
1779 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1780 sizeof(struct uffdio_writeprotect)))
1781 return -EFAULT;
1782
1783 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1784 uffdio_wp.range.len);
1785 if (ret)
1786 return ret;
1787
1788 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1789 UFFDIO_WRITEPROTECT_MODE_WP))
1790 return -EINVAL;
1791
1792 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1793 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1794
1795 if (mode_wp && mode_dontwake)
1796 return -EINVAL;
1797
1798 if (mmget_not_zero(ctx->mm)) {
1799 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1800 uffdio_wp.range.len, mode_wp,
1801 &ctx->mmap_changing);
1802 mmput(ctx->mm);
1803 } else {
1804 return -ESRCH;
1805 }
1806
1807 if (ret)
1808 return ret;
1809
1810 if (!mode_wp && !mode_dontwake) {
1811 range.start = uffdio_wp.range.start;
1812 range.len = uffdio_wp.range.len;
1813 wake_userfault(ctx, &range);
1814 }
1815 return ret;
1816 }
1817
uffd_ctx_features(__u64 user_features)1818 static inline unsigned int uffd_ctx_features(__u64 user_features)
1819 {
1820 /*
1821 * For the current set of features the bits just coincide. Set
1822 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1823 */
1824 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1825 }
1826
1827 /*
1828 * userland asks for a certain API version and we return which bits
1829 * and ioctl commands are implemented in this kernel for such API
1830 * version or -EINVAL if unknown.
1831 */
userfaultfd_api(struct userfaultfd_ctx * ctx,unsigned long arg)1832 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1833 unsigned long arg)
1834 {
1835 struct uffdio_api uffdio_api;
1836 void __user *buf = (void __user *)arg;
1837 unsigned int ctx_features;
1838 int ret;
1839 __u64 features;
1840
1841 ret = -EFAULT;
1842 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1843 goto out;
1844 features = uffdio_api.features;
1845 ret = -EINVAL;
1846 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1847 goto err_out;
1848 ret = -EPERM;
1849 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1850 goto err_out;
1851 /* report all available features and ioctls to userland */
1852 uffdio_api.features = UFFD_API_FEATURES;
1853 uffdio_api.ioctls = UFFD_API_IOCTLS;
1854 ret = -EFAULT;
1855 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1856 goto out;
1857
1858 /* only enable the requested features for this uffd context */
1859 ctx_features = uffd_ctx_features(features);
1860 ret = -EINVAL;
1861 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1862 goto err_out;
1863
1864 ret = 0;
1865 out:
1866 return ret;
1867 err_out:
1868 memset(&uffdio_api, 0, sizeof(uffdio_api));
1869 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1870 ret = -EFAULT;
1871 goto out;
1872 }
1873
userfaultfd_ioctl(struct file * file,unsigned cmd,unsigned long arg)1874 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1875 unsigned long arg)
1876 {
1877 int ret = -EINVAL;
1878 struct userfaultfd_ctx *ctx = file->private_data;
1879
1880 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1881 return -EINVAL;
1882
1883 switch(cmd) {
1884 case UFFDIO_API:
1885 ret = userfaultfd_api(ctx, arg);
1886 break;
1887 case UFFDIO_REGISTER:
1888 ret = userfaultfd_register(ctx, arg);
1889 break;
1890 case UFFDIO_UNREGISTER:
1891 ret = userfaultfd_unregister(ctx, arg);
1892 break;
1893 case UFFDIO_WAKE:
1894 ret = userfaultfd_wake(ctx, arg);
1895 break;
1896 case UFFDIO_COPY:
1897 ret = userfaultfd_copy(ctx, arg);
1898 break;
1899 case UFFDIO_ZEROPAGE:
1900 ret = userfaultfd_zeropage(ctx, arg);
1901 break;
1902 case UFFDIO_WRITEPROTECT:
1903 ret = userfaultfd_writeprotect(ctx, arg);
1904 break;
1905 }
1906 return ret;
1907 }
1908
1909 #ifdef CONFIG_PROC_FS
userfaultfd_show_fdinfo(struct seq_file * m,struct file * f)1910 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1911 {
1912 struct userfaultfd_ctx *ctx = f->private_data;
1913 wait_queue_entry_t *wq;
1914 unsigned long pending = 0, total = 0;
1915
1916 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1917 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1918 pending++;
1919 total++;
1920 }
1921 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1922 total++;
1923 }
1924 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1925
1926 /*
1927 * If more protocols will be added, there will be all shown
1928 * separated by a space. Like this:
1929 * protocols: aa:... bb:...
1930 */
1931 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1932 pending, total, UFFD_API, ctx->features,
1933 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1934 }
1935 #endif
1936
1937 static const struct file_operations userfaultfd_fops = {
1938 #ifdef CONFIG_PROC_FS
1939 .show_fdinfo = userfaultfd_show_fdinfo,
1940 #endif
1941 .release = userfaultfd_release,
1942 .poll = userfaultfd_poll,
1943 .read = userfaultfd_read,
1944 .unlocked_ioctl = userfaultfd_ioctl,
1945 .compat_ioctl = compat_ptr_ioctl,
1946 .llseek = noop_llseek,
1947 };
1948
init_once_userfaultfd_ctx(void * mem)1949 static void init_once_userfaultfd_ctx(void *mem)
1950 {
1951 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1952
1953 init_waitqueue_head(&ctx->fault_pending_wqh);
1954 init_waitqueue_head(&ctx->fault_wqh);
1955 init_waitqueue_head(&ctx->event_wqh);
1956 init_waitqueue_head(&ctx->fd_wqh);
1957 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
1958 }
1959
SYSCALL_DEFINE1(userfaultfd,int,flags)1960 SYSCALL_DEFINE1(userfaultfd, int, flags)
1961 {
1962 struct userfaultfd_ctx *ctx;
1963 int fd;
1964
1965 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1966 return -EPERM;
1967
1968 BUG_ON(!current->mm);
1969
1970 /* Check the UFFD_* constants for consistency. */
1971 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1972 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1973
1974 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1975 return -EINVAL;
1976
1977 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1978 if (!ctx)
1979 return -ENOMEM;
1980
1981 refcount_set(&ctx->refcount, 1);
1982 ctx->flags = flags;
1983 ctx->features = 0;
1984 ctx->released = false;
1985 ctx->mmap_changing = false;
1986 ctx->mm = current->mm;
1987 /* prevent the mm struct to be freed */
1988 mmgrab(ctx->mm);
1989
1990 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1991 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1992 if (fd < 0) {
1993 mmdrop(ctx->mm);
1994 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1995 }
1996 return fd;
1997 }
1998
userfaultfd_init(void)1999 static int __init userfaultfd_init(void)
2000 {
2001 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2002 sizeof(struct userfaultfd_ctx),
2003 0,
2004 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2005 init_once_userfaultfd_ctx);
2006 return 0;
2007 }
2008 __initcall(userfaultfd_init);
2009