1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71
72 /*
73 * This structure really needs to be cleaned up.
74 * Most of it is for TCP, and not used by any of
75 * the other protocols.
76 */
77
78 /* Define this to get the SOCK_DBG debugging facility. */
79 #define SOCK_DEBUGGING
80 #ifdef SOCK_DEBUGGING
81 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
82 printk(KERN_DEBUG msg); } while (0)
83 #else
84 /* Validate arguments and do nothing */
85 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)86 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
87 {
88 }
89 #endif
90
91 /* This is the per-socket lock. The spinlock provides a synchronization
92 * between user contexts and software interrupt processing, whereas the
93 * mini-semaphore synchronizes multiple users amongst themselves.
94 */
95 typedef struct {
96 spinlock_t slock;
97 int owned;
98 wait_queue_head_t wq;
99 /*
100 * We express the mutex-alike socket_lock semantics
101 * to the lock validator by explicitly managing
102 * the slock as a lock variant (in addition to
103 * the slock itself):
104 */
105 #ifdef CONFIG_DEBUG_LOCK_ALLOC
106 struct lockdep_map dep_map;
107 #endif
108 } socket_lock_t;
109
110 struct sock;
111 struct proto;
112 struct net;
113
114 typedef __u32 __bitwise __portpair;
115 typedef __u64 __bitwise __addrpair;
116
117 /**
118 * struct sock_common - minimal network layer representation of sockets
119 * @skc_daddr: Foreign IPv4 addr
120 * @skc_rcv_saddr: Bound local IPv4 addr
121 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
122 * @skc_hash: hash value used with various protocol lookup tables
123 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
124 * @skc_dport: placeholder for inet_dport/tw_dport
125 * @skc_num: placeholder for inet_num/tw_num
126 * @skc_portpair: __u32 union of @skc_dport & @skc_num
127 * @skc_family: network address family
128 * @skc_state: Connection state
129 * @skc_reuse: %SO_REUSEADDR setting
130 * @skc_reuseport: %SO_REUSEPORT setting
131 * @skc_ipv6only: socket is IPV6 only
132 * @skc_net_refcnt: socket is using net ref counting
133 * @skc_bound_dev_if: bound device index if != 0
134 * @skc_bind_node: bind hash linkage for various protocol lookup tables
135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136 * @skc_prot: protocol handlers inside a network family
137 * @skc_net: reference to the network namespace of this socket
138 * @skc_v6_daddr: IPV6 destination address
139 * @skc_v6_rcv_saddr: IPV6 source address
140 * @skc_cookie: socket's cookie value
141 * @skc_node: main hash linkage for various protocol lookup tables
142 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
143 * @skc_tx_queue_mapping: tx queue number for this connection
144 * @skc_rx_queue_mapping: rx queue number for this connection
145 * @skc_flags: place holder for sk_flags
146 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
147 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
148 * @skc_listener: connection request listener socket (aka rsk_listener)
149 * [union with @skc_flags]
150 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
151 * [union with @skc_flags]
152 * @skc_incoming_cpu: record/match cpu processing incoming packets
153 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
154 * [union with @skc_incoming_cpu]
155 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
156 * [union with @skc_incoming_cpu]
157 * @skc_refcnt: reference count
158 *
159 * This is the minimal network layer representation of sockets, the header
160 * for struct sock and struct inet_timewait_sock.
161 */
162 struct sock_common {
163 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 * address on 64bit arches : cf INET_MATCH()
165 */
166 union {
167 __addrpair skc_addrpair;
168 struct {
169 __be32 skc_daddr;
170 __be32 skc_rcv_saddr;
171 };
172 };
173 union {
174 unsigned int skc_hash;
175 __u16 skc_u16hashes[2];
176 };
177 /* skc_dport && skc_num must be grouped as well */
178 union {
179 __portpair skc_portpair;
180 struct {
181 __be16 skc_dport;
182 __u16 skc_num;
183 };
184 };
185
186 unsigned short skc_family;
187 volatile unsigned char skc_state;
188 unsigned char skc_reuse:4;
189 unsigned char skc_reuseport:1;
190 unsigned char skc_ipv6only:1;
191 unsigned char skc_net_refcnt:1;
192 int skc_bound_dev_if;
193 union {
194 struct hlist_node skc_bind_node;
195 struct hlist_node skc_portaddr_node;
196 };
197 struct proto *skc_prot;
198 possible_net_t skc_net;
199
200 #if IS_ENABLED(CONFIG_IPV6)
201 struct in6_addr skc_v6_daddr;
202 struct in6_addr skc_v6_rcv_saddr;
203 #endif
204
205 atomic64_t skc_cookie;
206
207 /* following fields are padding to force
208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 * assuming IPV6 is enabled. We use this padding differently
210 * for different kind of 'sockets'
211 */
212 union {
213 unsigned long skc_flags;
214 struct sock *skc_listener; /* request_sock */
215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 };
217 /*
218 * fields between dontcopy_begin/dontcopy_end
219 * are not copied in sock_copy()
220 */
221 /* private: */
222 int skc_dontcopy_begin[0];
223 /* public: */
224 union {
225 struct hlist_node skc_node;
226 struct hlist_nulls_node skc_nulls_node;
227 };
228 unsigned short skc_tx_queue_mapping;
229 #ifdef CONFIG_XPS
230 unsigned short skc_rx_queue_mapping;
231 #endif
232 union {
233 int skc_incoming_cpu;
234 u32 skc_rcv_wnd;
235 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
236 };
237
238 refcount_t skc_refcnt;
239 /* private: */
240 int skc_dontcopy_end[0];
241 union {
242 u32 skc_rxhash;
243 u32 skc_window_clamp;
244 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
245 };
246 /* public: */
247 };
248
249 struct bpf_local_storage;
250
251 /**
252 * struct sock - network layer representation of sockets
253 * @__sk_common: shared layout with inet_timewait_sock
254 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
255 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
256 * @sk_lock: synchronizer
257 * @sk_kern_sock: True if sock is using kernel lock classes
258 * @sk_rcvbuf: size of receive buffer in bytes
259 * @sk_wq: sock wait queue and async head
260 * @sk_rx_dst: receive input route used by early demux
261 * @sk_dst_cache: destination cache
262 * @sk_dst_pending_confirm: need to confirm neighbour
263 * @sk_policy: flow policy
264 * @sk_rx_skb_cache: cache copy of recently accessed RX skb
265 * @sk_receive_queue: incoming packets
266 * @sk_wmem_alloc: transmit queue bytes committed
267 * @sk_tsq_flags: TCP Small Queues flags
268 * @sk_write_queue: Packet sending queue
269 * @sk_omem_alloc: "o" is "option" or "other"
270 * @sk_wmem_queued: persistent queue size
271 * @sk_forward_alloc: space allocated forward
272 * @sk_napi_id: id of the last napi context to receive data for sk
273 * @sk_ll_usec: usecs to busypoll when there is no data
274 * @sk_allocation: allocation mode
275 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
276 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
277 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
278 * @sk_sndbuf: size of send buffer in bytes
279 * @__sk_flags_offset: empty field used to determine location of bitfield
280 * @sk_padding: unused element for alignment
281 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
282 * @sk_no_check_rx: allow zero checksum in RX packets
283 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
284 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
285 * @sk_route_forced_caps: static, forced route capabilities
286 * (set in tcp_init_sock())
287 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
288 * @sk_gso_max_size: Maximum GSO segment size to build
289 * @sk_gso_max_segs: Maximum number of GSO segments
290 * @sk_pacing_shift: scaling factor for TCP Small Queues
291 * @sk_lingertime: %SO_LINGER l_linger setting
292 * @sk_backlog: always used with the per-socket spinlock held
293 * @sk_callback_lock: used with the callbacks in the end of this struct
294 * @sk_error_queue: rarely used
295 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
296 * IPV6_ADDRFORM for instance)
297 * @sk_err: last error
298 * @sk_err_soft: errors that don't cause failure but are the cause of a
299 * persistent failure not just 'timed out'
300 * @sk_drops: raw/udp drops counter
301 * @sk_ack_backlog: current listen backlog
302 * @sk_max_ack_backlog: listen backlog set in listen()
303 * @sk_uid: user id of owner
304 * @sk_priority: %SO_PRIORITY setting
305 * @sk_type: socket type (%SOCK_STREAM, etc)
306 * @sk_protocol: which protocol this socket belongs in this network family
307 * @sk_peer_pid: &struct pid for this socket's peer
308 * @sk_peer_cred: %SO_PEERCRED setting
309 * @sk_rcvlowat: %SO_RCVLOWAT setting
310 * @sk_rcvtimeo: %SO_RCVTIMEO setting
311 * @sk_sndtimeo: %SO_SNDTIMEO setting
312 * @sk_txhash: computed flow hash for use on transmit
313 * @sk_filter: socket filtering instructions
314 * @sk_timer: sock cleanup timer
315 * @sk_stamp: time stamp of last packet received
316 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
317 * @sk_tsflags: SO_TIMESTAMPING socket options
318 * @sk_tskey: counter to disambiguate concurrent tstamp requests
319 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
320 * @sk_socket: Identd and reporting IO signals
321 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
322 * @sk_frag: cached page frag
323 * @sk_peek_off: current peek_offset value
324 * @sk_send_head: front of stuff to transmit
325 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
326 * @sk_tx_skb_cache: cache copy of recently accessed TX skb
327 * @sk_security: used by security modules
328 * @sk_mark: generic packet mark
329 * @sk_cgrp_data: cgroup data for this cgroup
330 * @sk_memcg: this socket's memory cgroup association
331 * @sk_write_pending: a write to stream socket waits to start
332 * @sk_state_change: callback to indicate change in the state of the sock
333 * @sk_data_ready: callback to indicate there is data to be processed
334 * @sk_write_space: callback to indicate there is bf sending space available
335 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
336 * @sk_backlog_rcv: callback to process the backlog
337 * @sk_validate_xmit_skb: ptr to an optional validate function
338 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
339 * @sk_reuseport_cb: reuseport group container
340 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
341 * @sk_rcu: used during RCU grace period
342 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
343 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
344 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
345 * @sk_txtime_unused: unused txtime flags
346 */
347 struct sock {
348 /*
349 * Now struct inet_timewait_sock also uses sock_common, so please just
350 * don't add nothing before this first member (__sk_common) --acme
351 */
352 struct sock_common __sk_common;
353 #define sk_node __sk_common.skc_node
354 #define sk_nulls_node __sk_common.skc_nulls_node
355 #define sk_refcnt __sk_common.skc_refcnt
356 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
357 #ifdef CONFIG_XPS
358 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
359 #endif
360
361 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
362 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
363 #define sk_hash __sk_common.skc_hash
364 #define sk_portpair __sk_common.skc_portpair
365 #define sk_num __sk_common.skc_num
366 #define sk_dport __sk_common.skc_dport
367 #define sk_addrpair __sk_common.skc_addrpair
368 #define sk_daddr __sk_common.skc_daddr
369 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
370 #define sk_family __sk_common.skc_family
371 #define sk_state __sk_common.skc_state
372 #define sk_reuse __sk_common.skc_reuse
373 #define sk_reuseport __sk_common.skc_reuseport
374 #define sk_ipv6only __sk_common.skc_ipv6only
375 #define sk_net_refcnt __sk_common.skc_net_refcnt
376 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
377 #define sk_bind_node __sk_common.skc_bind_node
378 #define sk_prot __sk_common.skc_prot
379 #define sk_net __sk_common.skc_net
380 #define sk_v6_daddr __sk_common.skc_v6_daddr
381 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
382 #define sk_cookie __sk_common.skc_cookie
383 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
384 #define sk_flags __sk_common.skc_flags
385 #define sk_rxhash __sk_common.skc_rxhash
386
387 socket_lock_t sk_lock;
388 atomic_t sk_drops;
389 int sk_rcvlowat;
390 struct sk_buff_head sk_error_queue;
391 struct sk_buff *sk_rx_skb_cache;
392 struct sk_buff_head sk_receive_queue;
393 /*
394 * The backlog queue is special, it is always used with
395 * the per-socket spinlock held and requires low latency
396 * access. Therefore we special case it's implementation.
397 * Note : rmem_alloc is in this structure to fill a hole
398 * on 64bit arches, not because its logically part of
399 * backlog.
400 */
401 struct {
402 atomic_t rmem_alloc;
403 int len;
404 struct sk_buff *head;
405 struct sk_buff *tail;
406 } sk_backlog;
407 #define sk_rmem_alloc sk_backlog.rmem_alloc
408
409 int sk_forward_alloc;
410 #ifdef CONFIG_NET_RX_BUSY_POLL
411 unsigned int sk_ll_usec;
412 /* ===== mostly read cache line ===== */
413 unsigned int sk_napi_id;
414 #endif
415 int sk_rcvbuf;
416
417 struct sk_filter __rcu *sk_filter;
418 union {
419 struct socket_wq __rcu *sk_wq;
420 /* private: */
421 struct socket_wq *sk_wq_raw;
422 /* public: */
423 };
424 #ifdef CONFIG_XFRM
425 struct xfrm_policy __rcu *sk_policy[2];
426 #endif
427 struct dst_entry *sk_rx_dst;
428 struct dst_entry __rcu *sk_dst_cache;
429 atomic_t sk_omem_alloc;
430 int sk_sndbuf;
431
432 /* ===== cache line for TX ===== */
433 int sk_wmem_queued;
434 refcount_t sk_wmem_alloc;
435 unsigned long sk_tsq_flags;
436 union {
437 struct sk_buff *sk_send_head;
438 struct rb_root tcp_rtx_queue;
439 };
440 struct sk_buff *sk_tx_skb_cache;
441 struct sk_buff_head sk_write_queue;
442 __s32 sk_peek_off;
443 int sk_write_pending;
444 __u32 sk_dst_pending_confirm;
445 u32 sk_pacing_status; /* see enum sk_pacing */
446 long sk_sndtimeo;
447 struct timer_list sk_timer;
448 __u32 sk_priority;
449 __u32 sk_mark;
450 unsigned long sk_pacing_rate; /* bytes per second */
451 unsigned long sk_max_pacing_rate;
452 struct page_frag sk_frag;
453 netdev_features_t sk_route_caps;
454 netdev_features_t sk_route_nocaps;
455 netdev_features_t sk_route_forced_caps;
456 int sk_gso_type;
457 unsigned int sk_gso_max_size;
458 gfp_t sk_allocation;
459 __u32 sk_txhash;
460
461 /*
462 * Because of non atomicity rules, all
463 * changes are protected by socket lock.
464 */
465 u8 sk_padding : 1,
466 sk_kern_sock : 1,
467 sk_no_check_tx : 1,
468 sk_no_check_rx : 1,
469 sk_userlocks : 4;
470 u8 sk_pacing_shift;
471 u16 sk_type;
472 u16 sk_protocol;
473 u16 sk_gso_max_segs;
474 unsigned long sk_lingertime;
475 struct proto *sk_prot_creator;
476 rwlock_t sk_callback_lock;
477 int sk_err,
478 sk_err_soft;
479 u32 sk_ack_backlog;
480 u32 sk_max_ack_backlog;
481 kuid_t sk_uid;
482 spinlock_t sk_peer_lock;
483 struct pid *sk_peer_pid;
484 const struct cred *sk_peer_cred;
485
486 long sk_rcvtimeo;
487 ktime_t sk_stamp;
488 #if BITS_PER_LONG==32
489 seqlock_t sk_stamp_seq;
490 #endif
491 u16 sk_tsflags;
492 u8 sk_shutdown;
493 u32 sk_tskey;
494 atomic_t sk_zckey;
495
496 u8 sk_clockid;
497 u8 sk_txtime_deadline_mode : 1,
498 sk_txtime_report_errors : 1,
499 sk_txtime_unused : 6;
500
501 struct socket *sk_socket;
502 void *sk_user_data;
503 #ifdef CONFIG_SECURITY
504 void *sk_security;
505 #endif
506 struct sock_cgroup_data sk_cgrp_data;
507 struct mem_cgroup *sk_memcg;
508 void (*sk_state_change)(struct sock *sk);
509 void (*sk_data_ready)(struct sock *sk);
510 void (*sk_write_space)(struct sock *sk);
511 void (*sk_error_report)(struct sock *sk);
512 int (*sk_backlog_rcv)(struct sock *sk,
513 struct sk_buff *skb);
514 #ifdef CONFIG_SOCK_VALIDATE_XMIT
515 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
516 struct net_device *dev,
517 struct sk_buff *skb);
518 #endif
519 void (*sk_destruct)(struct sock *sk);
520 struct sock_reuseport __rcu *sk_reuseport_cb;
521 #ifdef CONFIG_BPF_SYSCALL
522 struct bpf_local_storage __rcu *sk_bpf_storage;
523 #endif
524 struct rcu_head sk_rcu;
525 };
526
527 enum sk_pacing {
528 SK_PACING_NONE = 0,
529 SK_PACING_NEEDED = 1,
530 SK_PACING_FQ = 2,
531 };
532
533 /* Pointer stored in sk_user_data might not be suitable for copying
534 * when cloning the socket. For instance, it can point to a reference
535 * counted object. sk_user_data bottom bit is set if pointer must not
536 * be copied.
537 */
538 #define SK_USER_DATA_NOCOPY 1UL
539 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */
540 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
541
542 /**
543 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
544 * @sk: socket
545 */
sk_user_data_is_nocopy(const struct sock * sk)546 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
547 {
548 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
549 }
550
551 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
552
553 #define rcu_dereference_sk_user_data(sk) \
554 ({ \
555 void *__tmp = rcu_dereference(__sk_user_data((sk))); \
556 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \
557 })
558 #define rcu_assign_sk_user_data(sk, ptr) \
559 ({ \
560 uintptr_t __tmp = (uintptr_t)(ptr); \
561 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
562 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \
563 })
564 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \
565 ({ \
566 uintptr_t __tmp = (uintptr_t)(ptr); \
567 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
568 rcu_assign_pointer(__sk_user_data((sk)), \
569 __tmp | SK_USER_DATA_NOCOPY); \
570 })
571
572 /*
573 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
574 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
575 * on a socket means that the socket will reuse everybody else's port
576 * without looking at the other's sk_reuse value.
577 */
578
579 #define SK_NO_REUSE 0
580 #define SK_CAN_REUSE 1
581 #define SK_FORCE_REUSE 2
582
583 int sk_set_peek_off(struct sock *sk, int val);
584
sk_peek_offset(struct sock * sk,int flags)585 static inline int sk_peek_offset(struct sock *sk, int flags)
586 {
587 if (unlikely(flags & MSG_PEEK)) {
588 return READ_ONCE(sk->sk_peek_off);
589 }
590
591 return 0;
592 }
593
sk_peek_offset_bwd(struct sock * sk,int val)594 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
595 {
596 s32 off = READ_ONCE(sk->sk_peek_off);
597
598 if (unlikely(off >= 0)) {
599 off = max_t(s32, off - val, 0);
600 WRITE_ONCE(sk->sk_peek_off, off);
601 }
602 }
603
sk_peek_offset_fwd(struct sock * sk,int val)604 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
605 {
606 sk_peek_offset_bwd(sk, -val);
607 }
608
609 /*
610 * Hashed lists helper routines
611 */
sk_entry(const struct hlist_node * node)612 static inline struct sock *sk_entry(const struct hlist_node *node)
613 {
614 return hlist_entry(node, struct sock, sk_node);
615 }
616
__sk_head(const struct hlist_head * head)617 static inline struct sock *__sk_head(const struct hlist_head *head)
618 {
619 return hlist_entry(head->first, struct sock, sk_node);
620 }
621
sk_head(const struct hlist_head * head)622 static inline struct sock *sk_head(const struct hlist_head *head)
623 {
624 return hlist_empty(head) ? NULL : __sk_head(head);
625 }
626
__sk_nulls_head(const struct hlist_nulls_head * head)627 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
628 {
629 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
630 }
631
sk_nulls_head(const struct hlist_nulls_head * head)632 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
633 {
634 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
635 }
636
sk_next(const struct sock * sk)637 static inline struct sock *sk_next(const struct sock *sk)
638 {
639 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
640 }
641
sk_nulls_next(const struct sock * sk)642 static inline struct sock *sk_nulls_next(const struct sock *sk)
643 {
644 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
645 hlist_nulls_entry(sk->sk_nulls_node.next,
646 struct sock, sk_nulls_node) :
647 NULL;
648 }
649
sk_unhashed(const struct sock * sk)650 static inline bool sk_unhashed(const struct sock *sk)
651 {
652 return hlist_unhashed(&sk->sk_node);
653 }
654
sk_hashed(const struct sock * sk)655 static inline bool sk_hashed(const struct sock *sk)
656 {
657 return !sk_unhashed(sk);
658 }
659
sk_node_init(struct hlist_node * node)660 static inline void sk_node_init(struct hlist_node *node)
661 {
662 node->pprev = NULL;
663 }
664
sk_nulls_node_init(struct hlist_nulls_node * node)665 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
666 {
667 node->pprev = NULL;
668 }
669
__sk_del_node(struct sock * sk)670 static inline void __sk_del_node(struct sock *sk)
671 {
672 __hlist_del(&sk->sk_node);
673 }
674
675 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)676 static inline bool __sk_del_node_init(struct sock *sk)
677 {
678 if (sk_hashed(sk)) {
679 __sk_del_node(sk);
680 sk_node_init(&sk->sk_node);
681 return true;
682 }
683 return false;
684 }
685
686 /* Grab socket reference count. This operation is valid only
687 when sk is ALREADY grabbed f.e. it is found in hash table
688 or a list and the lookup is made under lock preventing hash table
689 modifications.
690 */
691
sock_hold(struct sock * sk)692 static __always_inline void sock_hold(struct sock *sk)
693 {
694 refcount_inc(&sk->sk_refcnt);
695 }
696
697 /* Ungrab socket in the context, which assumes that socket refcnt
698 cannot hit zero, f.e. it is true in context of any socketcall.
699 */
__sock_put(struct sock * sk)700 static __always_inline void __sock_put(struct sock *sk)
701 {
702 refcount_dec(&sk->sk_refcnt);
703 }
704
sk_del_node_init(struct sock * sk)705 static inline bool sk_del_node_init(struct sock *sk)
706 {
707 bool rc = __sk_del_node_init(sk);
708
709 if (rc) {
710 /* paranoid for a while -acme */
711 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
712 __sock_put(sk);
713 }
714 return rc;
715 }
716 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
717
__sk_nulls_del_node_init_rcu(struct sock * sk)718 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
719 {
720 if (sk_hashed(sk)) {
721 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
722 return true;
723 }
724 return false;
725 }
726
sk_nulls_del_node_init_rcu(struct sock * sk)727 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
728 {
729 bool rc = __sk_nulls_del_node_init_rcu(sk);
730
731 if (rc) {
732 /* paranoid for a while -acme */
733 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
734 __sock_put(sk);
735 }
736 return rc;
737 }
738
__sk_add_node(struct sock * sk,struct hlist_head * list)739 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
740 {
741 hlist_add_head(&sk->sk_node, list);
742 }
743
sk_add_node(struct sock * sk,struct hlist_head * list)744 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
745 {
746 sock_hold(sk);
747 __sk_add_node(sk, list);
748 }
749
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)750 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
751 {
752 sock_hold(sk);
753 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
754 sk->sk_family == AF_INET6)
755 hlist_add_tail_rcu(&sk->sk_node, list);
756 else
757 hlist_add_head_rcu(&sk->sk_node, list);
758 }
759
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)760 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
761 {
762 sock_hold(sk);
763 hlist_add_tail_rcu(&sk->sk_node, list);
764 }
765
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)766 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
767 {
768 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
769 }
770
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)771 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
772 {
773 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
774 }
775
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)776 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
777 {
778 sock_hold(sk);
779 __sk_nulls_add_node_rcu(sk, list);
780 }
781
__sk_del_bind_node(struct sock * sk)782 static inline void __sk_del_bind_node(struct sock *sk)
783 {
784 __hlist_del(&sk->sk_bind_node);
785 }
786
sk_add_bind_node(struct sock * sk,struct hlist_head * list)787 static inline void sk_add_bind_node(struct sock *sk,
788 struct hlist_head *list)
789 {
790 hlist_add_head(&sk->sk_bind_node, list);
791 }
792
793 #define sk_for_each(__sk, list) \
794 hlist_for_each_entry(__sk, list, sk_node)
795 #define sk_for_each_rcu(__sk, list) \
796 hlist_for_each_entry_rcu(__sk, list, sk_node)
797 #define sk_nulls_for_each(__sk, node, list) \
798 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
799 #define sk_nulls_for_each_rcu(__sk, node, list) \
800 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
801 #define sk_for_each_from(__sk) \
802 hlist_for_each_entry_from(__sk, sk_node)
803 #define sk_nulls_for_each_from(__sk, node) \
804 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
805 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
806 #define sk_for_each_safe(__sk, tmp, list) \
807 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
808 #define sk_for_each_bound(__sk, list) \
809 hlist_for_each_entry(__sk, list, sk_bind_node)
810
811 /**
812 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
813 * @tpos: the type * to use as a loop cursor.
814 * @pos: the &struct hlist_node to use as a loop cursor.
815 * @head: the head for your list.
816 * @offset: offset of hlist_node within the struct.
817 *
818 */
819 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
820 for (pos = rcu_dereference(hlist_first_rcu(head)); \
821 pos != NULL && \
822 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
823 pos = rcu_dereference(hlist_next_rcu(pos)))
824
sk_user_ns(struct sock * sk)825 static inline struct user_namespace *sk_user_ns(struct sock *sk)
826 {
827 /* Careful only use this in a context where these parameters
828 * can not change and must all be valid, such as recvmsg from
829 * userspace.
830 */
831 return sk->sk_socket->file->f_cred->user_ns;
832 }
833
834 /* Sock flags */
835 enum sock_flags {
836 SOCK_DEAD,
837 SOCK_DONE,
838 SOCK_URGINLINE,
839 SOCK_KEEPOPEN,
840 SOCK_LINGER,
841 SOCK_DESTROY,
842 SOCK_BROADCAST,
843 SOCK_TIMESTAMP,
844 SOCK_ZAPPED,
845 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
846 SOCK_DBG, /* %SO_DEBUG setting */
847 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
848 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
849 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
850 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
851 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
852 SOCK_FASYNC, /* fasync() active */
853 SOCK_RXQ_OVFL,
854 SOCK_ZEROCOPY, /* buffers from userspace */
855 SOCK_WIFI_STATUS, /* push wifi status to userspace */
856 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
857 * Will use last 4 bytes of packet sent from
858 * user-space instead.
859 */
860 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
861 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
862 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
863 SOCK_TXTIME,
864 SOCK_XDP, /* XDP is attached */
865 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
866 };
867
868 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
869
sock_copy_flags(struct sock * nsk,struct sock * osk)870 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
871 {
872 nsk->sk_flags = osk->sk_flags;
873 }
874
sock_set_flag(struct sock * sk,enum sock_flags flag)875 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
876 {
877 __set_bit(flag, &sk->sk_flags);
878 }
879
sock_reset_flag(struct sock * sk,enum sock_flags flag)880 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
881 {
882 __clear_bit(flag, &sk->sk_flags);
883 }
884
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)885 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
886 int valbool)
887 {
888 if (valbool)
889 sock_set_flag(sk, bit);
890 else
891 sock_reset_flag(sk, bit);
892 }
893
sock_flag(const struct sock * sk,enum sock_flags flag)894 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
895 {
896 return test_bit(flag, &sk->sk_flags);
897 }
898
899 #ifdef CONFIG_NET
900 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)901 static inline int sk_memalloc_socks(void)
902 {
903 return static_branch_unlikely(&memalloc_socks_key);
904 }
905
906 void __receive_sock(struct file *file);
907 #else
908
sk_memalloc_socks(void)909 static inline int sk_memalloc_socks(void)
910 {
911 return 0;
912 }
913
__receive_sock(struct file * file)914 static inline void __receive_sock(struct file *file)
915 { }
916 #endif
917
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)918 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
919 {
920 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
921 }
922
sk_acceptq_removed(struct sock * sk)923 static inline void sk_acceptq_removed(struct sock *sk)
924 {
925 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
926 }
927
sk_acceptq_added(struct sock * sk)928 static inline void sk_acceptq_added(struct sock *sk)
929 {
930 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
931 }
932
sk_acceptq_is_full(const struct sock * sk)933 static inline bool sk_acceptq_is_full(const struct sock *sk)
934 {
935 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
936 }
937
938 /*
939 * Compute minimal free write space needed to queue new packets.
940 */
sk_stream_min_wspace(const struct sock * sk)941 static inline int sk_stream_min_wspace(const struct sock *sk)
942 {
943 return READ_ONCE(sk->sk_wmem_queued) >> 1;
944 }
945
sk_stream_wspace(const struct sock * sk)946 static inline int sk_stream_wspace(const struct sock *sk)
947 {
948 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
949 }
950
sk_wmem_queued_add(struct sock * sk,int val)951 static inline void sk_wmem_queued_add(struct sock *sk, int val)
952 {
953 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
954 }
955
956 void sk_stream_write_space(struct sock *sk);
957
958 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)959 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
960 {
961 /* dont let skb dst not refcounted, we are going to leave rcu lock */
962 skb_dst_force(skb);
963
964 if (!sk->sk_backlog.tail)
965 WRITE_ONCE(sk->sk_backlog.head, skb);
966 else
967 sk->sk_backlog.tail->next = skb;
968
969 WRITE_ONCE(sk->sk_backlog.tail, skb);
970 skb->next = NULL;
971 }
972
973 /*
974 * Take into account size of receive queue and backlog queue
975 * Do not take into account this skb truesize,
976 * to allow even a single big packet to come.
977 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)978 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
979 {
980 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
981
982 return qsize > limit;
983 }
984
985 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)986 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
987 unsigned int limit)
988 {
989 if (sk_rcvqueues_full(sk, limit))
990 return -ENOBUFS;
991
992 /*
993 * If the skb was allocated from pfmemalloc reserves, only
994 * allow SOCK_MEMALLOC sockets to use it as this socket is
995 * helping free memory
996 */
997 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
998 return -ENOMEM;
999
1000 __sk_add_backlog(sk, skb);
1001 sk->sk_backlog.len += skb->truesize;
1002 return 0;
1003 }
1004
1005 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1006
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1007 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1008 {
1009 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1010 return __sk_backlog_rcv(sk, skb);
1011
1012 return sk->sk_backlog_rcv(sk, skb);
1013 }
1014
sk_incoming_cpu_update(struct sock * sk)1015 static inline void sk_incoming_cpu_update(struct sock *sk)
1016 {
1017 int cpu = raw_smp_processor_id();
1018
1019 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1020 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1021 }
1022
sock_rps_record_flow_hash(__u32 hash)1023 static inline void sock_rps_record_flow_hash(__u32 hash)
1024 {
1025 #ifdef CONFIG_RPS
1026 struct rps_sock_flow_table *sock_flow_table;
1027
1028 rcu_read_lock();
1029 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1030 rps_record_sock_flow(sock_flow_table, hash);
1031 rcu_read_unlock();
1032 #endif
1033 }
1034
sock_rps_record_flow(const struct sock * sk)1035 static inline void sock_rps_record_flow(const struct sock *sk)
1036 {
1037 #ifdef CONFIG_RPS
1038 if (static_branch_unlikely(&rfs_needed)) {
1039 /* Reading sk->sk_rxhash might incur an expensive cache line
1040 * miss.
1041 *
1042 * TCP_ESTABLISHED does cover almost all states where RFS
1043 * might be useful, and is cheaper [1] than testing :
1044 * IPv4: inet_sk(sk)->inet_daddr
1045 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1046 * OR an additional socket flag
1047 * [1] : sk_state and sk_prot are in the same cache line.
1048 */
1049 if (sk->sk_state == TCP_ESTABLISHED)
1050 sock_rps_record_flow_hash(sk->sk_rxhash);
1051 }
1052 #endif
1053 }
1054
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1055 static inline void sock_rps_save_rxhash(struct sock *sk,
1056 const struct sk_buff *skb)
1057 {
1058 #ifdef CONFIG_RPS
1059 if (unlikely(sk->sk_rxhash != skb->hash))
1060 sk->sk_rxhash = skb->hash;
1061 #endif
1062 }
1063
sock_rps_reset_rxhash(struct sock * sk)1064 static inline void sock_rps_reset_rxhash(struct sock *sk)
1065 {
1066 #ifdef CONFIG_RPS
1067 sk->sk_rxhash = 0;
1068 #endif
1069 }
1070
1071 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1072 ({ int __rc; \
1073 release_sock(__sk); \
1074 __rc = __condition; \
1075 if (!__rc) { \
1076 *(__timeo) = wait_woken(__wait, \
1077 TASK_INTERRUPTIBLE, \
1078 *(__timeo)); \
1079 } \
1080 sched_annotate_sleep(); \
1081 lock_sock(__sk); \
1082 __rc = __condition; \
1083 __rc; \
1084 })
1085
1086 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1087 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1088 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1089 int sk_stream_error(struct sock *sk, int flags, int err);
1090 void sk_stream_kill_queues(struct sock *sk);
1091 void sk_set_memalloc(struct sock *sk);
1092 void sk_clear_memalloc(struct sock *sk);
1093
1094 void __sk_flush_backlog(struct sock *sk);
1095
sk_flush_backlog(struct sock * sk)1096 static inline bool sk_flush_backlog(struct sock *sk)
1097 {
1098 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1099 __sk_flush_backlog(sk);
1100 return true;
1101 }
1102 return false;
1103 }
1104
1105 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1106
1107 struct request_sock_ops;
1108 struct timewait_sock_ops;
1109 struct inet_hashinfo;
1110 struct raw_hashinfo;
1111 struct smc_hashinfo;
1112 struct module;
1113
1114 /*
1115 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1116 * un-modified. Special care is taken when initializing object to zero.
1117 */
sk_prot_clear_nulls(struct sock * sk,int size)1118 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1119 {
1120 if (offsetof(struct sock, sk_node.next) != 0)
1121 memset(sk, 0, offsetof(struct sock, sk_node.next));
1122 memset(&sk->sk_node.pprev, 0,
1123 size - offsetof(struct sock, sk_node.pprev));
1124 }
1125
1126 /* Networking protocol blocks we attach to sockets.
1127 * socket layer -> transport layer interface
1128 */
1129 struct proto {
1130 void (*close)(struct sock *sk,
1131 long timeout);
1132 int (*pre_connect)(struct sock *sk,
1133 struct sockaddr *uaddr,
1134 int addr_len);
1135 int (*connect)(struct sock *sk,
1136 struct sockaddr *uaddr,
1137 int addr_len);
1138 int (*disconnect)(struct sock *sk, int flags);
1139
1140 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1141 bool kern);
1142
1143 int (*ioctl)(struct sock *sk, int cmd,
1144 unsigned long arg);
1145 int (*init)(struct sock *sk);
1146 void (*destroy)(struct sock *sk);
1147 void (*shutdown)(struct sock *sk, int how);
1148 int (*setsockopt)(struct sock *sk, int level,
1149 int optname, sockptr_t optval,
1150 unsigned int optlen);
1151 int (*getsockopt)(struct sock *sk, int level,
1152 int optname, char __user *optval,
1153 int __user *option);
1154 void (*keepalive)(struct sock *sk, int valbool);
1155 #ifdef CONFIG_COMPAT
1156 int (*compat_ioctl)(struct sock *sk,
1157 unsigned int cmd, unsigned long arg);
1158 #endif
1159 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1160 size_t len);
1161 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1162 size_t len, int noblock, int flags,
1163 int *addr_len);
1164 int (*sendpage)(struct sock *sk, struct page *page,
1165 int offset, size_t size, int flags);
1166 int (*bind)(struct sock *sk,
1167 struct sockaddr *addr, int addr_len);
1168 int (*bind_add)(struct sock *sk,
1169 struct sockaddr *addr, int addr_len);
1170
1171 int (*backlog_rcv) (struct sock *sk,
1172 struct sk_buff *skb);
1173
1174 void (*release_cb)(struct sock *sk);
1175
1176 /* Keeping track of sk's, looking them up, and port selection methods. */
1177 int (*hash)(struct sock *sk);
1178 void (*unhash)(struct sock *sk);
1179 void (*rehash)(struct sock *sk);
1180 int (*get_port)(struct sock *sk, unsigned short snum);
1181
1182 /* Keeping track of sockets in use */
1183 #ifdef CONFIG_PROC_FS
1184 unsigned int inuse_idx;
1185 #endif
1186
1187 bool (*stream_memory_free)(const struct sock *sk, int wake);
1188 bool (*stream_memory_read)(const struct sock *sk);
1189 /* Memory pressure */
1190 void (*enter_memory_pressure)(struct sock *sk);
1191 void (*leave_memory_pressure)(struct sock *sk);
1192 atomic_long_t *memory_allocated; /* Current allocated memory. */
1193 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1194 /*
1195 * Pressure flag: try to collapse.
1196 * Technical note: it is used by multiple contexts non atomically.
1197 * All the __sk_mem_schedule() is of this nature: accounting
1198 * is strict, actions are advisory and have some latency.
1199 */
1200 unsigned long *memory_pressure;
1201 long *sysctl_mem;
1202
1203 int *sysctl_wmem;
1204 int *sysctl_rmem;
1205 u32 sysctl_wmem_offset;
1206 u32 sysctl_rmem_offset;
1207
1208 int max_header;
1209 bool no_autobind;
1210
1211 struct kmem_cache *slab;
1212 unsigned int obj_size;
1213 slab_flags_t slab_flags;
1214 unsigned int useroffset; /* Usercopy region offset */
1215 unsigned int usersize; /* Usercopy region size */
1216
1217 struct percpu_counter *orphan_count;
1218
1219 struct request_sock_ops *rsk_prot;
1220 struct timewait_sock_ops *twsk_prot;
1221
1222 union {
1223 struct inet_hashinfo *hashinfo;
1224 struct udp_table *udp_table;
1225 struct raw_hashinfo *raw_hash;
1226 struct smc_hashinfo *smc_hash;
1227 } h;
1228
1229 struct module *owner;
1230
1231 char name[32];
1232
1233 struct list_head node;
1234 #ifdef SOCK_REFCNT_DEBUG
1235 atomic_t socks;
1236 #endif
1237 int (*diag_destroy)(struct sock *sk, int err);
1238 } __randomize_layout;
1239
1240 int proto_register(struct proto *prot, int alloc_slab);
1241 void proto_unregister(struct proto *prot);
1242 int sock_load_diag_module(int family, int protocol);
1243
1244 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1245 static inline void sk_refcnt_debug_inc(struct sock *sk)
1246 {
1247 atomic_inc(&sk->sk_prot->socks);
1248 }
1249
sk_refcnt_debug_dec(struct sock * sk)1250 static inline void sk_refcnt_debug_dec(struct sock *sk)
1251 {
1252 atomic_dec(&sk->sk_prot->socks);
1253 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1254 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1255 }
1256
sk_refcnt_debug_release(const struct sock * sk)1257 static inline void sk_refcnt_debug_release(const struct sock *sk)
1258 {
1259 if (refcount_read(&sk->sk_refcnt) != 1)
1260 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1261 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1262 }
1263 #else /* SOCK_REFCNT_DEBUG */
1264 #define sk_refcnt_debug_inc(sk) do { } while (0)
1265 #define sk_refcnt_debug_dec(sk) do { } while (0)
1266 #define sk_refcnt_debug_release(sk) do { } while (0)
1267 #endif /* SOCK_REFCNT_DEBUG */
1268
__sk_stream_memory_free(const struct sock * sk,int wake)1269 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1270 {
1271 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1272 return false;
1273
1274 return sk->sk_prot->stream_memory_free ?
1275 sk->sk_prot->stream_memory_free(sk, wake) : true;
1276 }
1277
sk_stream_memory_free(const struct sock * sk)1278 static inline bool sk_stream_memory_free(const struct sock *sk)
1279 {
1280 return __sk_stream_memory_free(sk, 0);
1281 }
1282
__sk_stream_is_writeable(const struct sock * sk,int wake)1283 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1284 {
1285 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1286 __sk_stream_memory_free(sk, wake);
1287 }
1288
sk_stream_is_writeable(const struct sock * sk)1289 static inline bool sk_stream_is_writeable(const struct sock *sk)
1290 {
1291 return __sk_stream_is_writeable(sk, 0);
1292 }
1293
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1294 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1295 struct cgroup *ancestor)
1296 {
1297 #ifdef CONFIG_SOCK_CGROUP_DATA
1298 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1299 ancestor);
1300 #else
1301 return -ENOTSUPP;
1302 #endif
1303 }
1304
sk_has_memory_pressure(const struct sock * sk)1305 static inline bool sk_has_memory_pressure(const struct sock *sk)
1306 {
1307 return sk->sk_prot->memory_pressure != NULL;
1308 }
1309
sk_under_memory_pressure(const struct sock * sk)1310 static inline bool sk_under_memory_pressure(const struct sock *sk)
1311 {
1312 if (!sk->sk_prot->memory_pressure)
1313 return false;
1314
1315 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1316 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1317 return true;
1318
1319 return !!*sk->sk_prot->memory_pressure;
1320 }
1321
1322 static inline long
sk_memory_allocated(const struct sock * sk)1323 sk_memory_allocated(const struct sock *sk)
1324 {
1325 return atomic_long_read(sk->sk_prot->memory_allocated);
1326 }
1327
1328 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1329 sk_memory_allocated_add(struct sock *sk, int amt)
1330 {
1331 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1332 }
1333
1334 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1335 sk_memory_allocated_sub(struct sock *sk, int amt)
1336 {
1337 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1338 }
1339
sk_sockets_allocated_dec(struct sock * sk)1340 static inline void sk_sockets_allocated_dec(struct sock *sk)
1341 {
1342 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1343 }
1344
sk_sockets_allocated_inc(struct sock * sk)1345 static inline void sk_sockets_allocated_inc(struct sock *sk)
1346 {
1347 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1348 }
1349
1350 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1351 sk_sockets_allocated_read_positive(struct sock *sk)
1352 {
1353 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1354 }
1355
1356 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1357 proto_sockets_allocated_sum_positive(struct proto *prot)
1358 {
1359 return percpu_counter_sum_positive(prot->sockets_allocated);
1360 }
1361
1362 static inline long
proto_memory_allocated(struct proto * prot)1363 proto_memory_allocated(struct proto *prot)
1364 {
1365 return atomic_long_read(prot->memory_allocated);
1366 }
1367
1368 static inline bool
proto_memory_pressure(struct proto * prot)1369 proto_memory_pressure(struct proto *prot)
1370 {
1371 if (!prot->memory_pressure)
1372 return false;
1373 return !!*prot->memory_pressure;
1374 }
1375
1376
1377 #ifdef CONFIG_PROC_FS
1378 /* Called with local bh disabled */
1379 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1380 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1381 int sock_inuse_get(struct net *net);
1382 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1383 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1384 int inc)
1385 {
1386 }
1387 #endif
1388
1389
1390 /* With per-bucket locks this operation is not-atomic, so that
1391 * this version is not worse.
1392 */
__sk_prot_rehash(struct sock * sk)1393 static inline int __sk_prot_rehash(struct sock *sk)
1394 {
1395 sk->sk_prot->unhash(sk);
1396 return sk->sk_prot->hash(sk);
1397 }
1398
1399 /* About 10 seconds */
1400 #define SOCK_DESTROY_TIME (10*HZ)
1401
1402 /* Sockets 0-1023 can't be bound to unless you are superuser */
1403 #define PROT_SOCK 1024
1404
1405 #define SHUTDOWN_MASK 3
1406 #define RCV_SHUTDOWN 1
1407 #define SEND_SHUTDOWN 2
1408
1409 #define SOCK_SNDBUF_LOCK 1
1410 #define SOCK_RCVBUF_LOCK 2
1411 #define SOCK_BINDADDR_LOCK 4
1412 #define SOCK_BINDPORT_LOCK 8
1413
1414 struct socket_alloc {
1415 struct socket socket;
1416 struct inode vfs_inode;
1417 };
1418
SOCKET_I(struct inode * inode)1419 static inline struct socket *SOCKET_I(struct inode *inode)
1420 {
1421 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1422 }
1423
SOCK_INODE(struct socket * socket)1424 static inline struct inode *SOCK_INODE(struct socket *socket)
1425 {
1426 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1427 }
1428
1429 /*
1430 * Functions for memory accounting
1431 */
1432 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1433 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1434 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1435 void __sk_mem_reclaim(struct sock *sk, int amount);
1436
1437 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1438 * do not necessarily have 16x time more memory than 4KB ones.
1439 */
1440 #define SK_MEM_QUANTUM 4096
1441 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1442 #define SK_MEM_SEND 0
1443 #define SK_MEM_RECV 1
1444
1445 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1446 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1447 {
1448 long val = sk->sk_prot->sysctl_mem[index];
1449
1450 #if PAGE_SIZE > SK_MEM_QUANTUM
1451 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1452 #elif PAGE_SIZE < SK_MEM_QUANTUM
1453 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1454 #endif
1455 return val;
1456 }
1457
sk_mem_pages(int amt)1458 static inline int sk_mem_pages(int amt)
1459 {
1460 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1461 }
1462
sk_has_account(struct sock * sk)1463 static inline bool sk_has_account(struct sock *sk)
1464 {
1465 /* return true if protocol supports memory accounting */
1466 return !!sk->sk_prot->memory_allocated;
1467 }
1468
sk_wmem_schedule(struct sock * sk,int size)1469 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1470 {
1471 if (!sk_has_account(sk))
1472 return true;
1473 return size <= sk->sk_forward_alloc ||
1474 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1475 }
1476
1477 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1478 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1479 {
1480 if (!sk_has_account(sk))
1481 return true;
1482 return size <= sk->sk_forward_alloc ||
1483 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1484 skb_pfmemalloc(skb);
1485 }
1486
sk_mem_reclaim(struct sock * sk)1487 static inline void sk_mem_reclaim(struct sock *sk)
1488 {
1489 if (!sk_has_account(sk))
1490 return;
1491 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1492 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1493 }
1494
sk_mem_reclaim_partial(struct sock * sk)1495 static inline void sk_mem_reclaim_partial(struct sock *sk)
1496 {
1497 if (!sk_has_account(sk))
1498 return;
1499 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1500 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1501 }
1502
sk_mem_charge(struct sock * sk,int size)1503 static inline void sk_mem_charge(struct sock *sk, int size)
1504 {
1505 if (!sk_has_account(sk))
1506 return;
1507 sk->sk_forward_alloc -= size;
1508 }
1509
sk_mem_uncharge(struct sock * sk,int size)1510 static inline void sk_mem_uncharge(struct sock *sk, int size)
1511 {
1512 if (!sk_has_account(sk))
1513 return;
1514 sk->sk_forward_alloc += size;
1515
1516 /* Avoid a possible overflow.
1517 * TCP send queues can make this happen, if sk_mem_reclaim()
1518 * is not called and more than 2 GBytes are released at once.
1519 *
1520 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1521 * no need to hold that much forward allocation anyway.
1522 */
1523 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1524 __sk_mem_reclaim(sk, 1 << 20);
1525 }
1526
1527 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1528 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1529 {
1530 sk_wmem_queued_add(sk, -skb->truesize);
1531 sk_mem_uncharge(sk, skb->truesize);
1532 if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1533 !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1534 skb_ext_reset(skb);
1535 skb_zcopy_clear(skb, true);
1536 sk->sk_tx_skb_cache = skb;
1537 return;
1538 }
1539 __kfree_skb(skb);
1540 }
1541
sock_release_ownership(struct sock * sk)1542 static inline void sock_release_ownership(struct sock *sk)
1543 {
1544 if (sk->sk_lock.owned) {
1545 sk->sk_lock.owned = 0;
1546
1547 /* The sk_lock has mutex_unlock() semantics: */
1548 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1549 }
1550 }
1551
1552 /*
1553 * Macro so as to not evaluate some arguments when
1554 * lockdep is not enabled.
1555 *
1556 * Mark both the sk_lock and the sk_lock.slock as a
1557 * per-address-family lock class.
1558 */
1559 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1560 do { \
1561 sk->sk_lock.owned = 0; \
1562 init_waitqueue_head(&sk->sk_lock.wq); \
1563 spin_lock_init(&(sk)->sk_lock.slock); \
1564 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1565 sizeof((sk)->sk_lock)); \
1566 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1567 (skey), (sname)); \
1568 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1569 } while (0)
1570
1571 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * sk)1572 static inline bool lockdep_sock_is_held(const struct sock *sk)
1573 {
1574 return lockdep_is_held(&sk->sk_lock) ||
1575 lockdep_is_held(&sk->sk_lock.slock);
1576 }
1577 #endif
1578
1579 void lock_sock_nested(struct sock *sk, int subclass);
1580
lock_sock(struct sock * sk)1581 static inline void lock_sock(struct sock *sk)
1582 {
1583 lock_sock_nested(sk, 0);
1584 }
1585
1586 void __release_sock(struct sock *sk);
1587 void release_sock(struct sock *sk);
1588
1589 /* BH context may only use the following locking interface. */
1590 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1591 #define bh_lock_sock_nested(__sk) \
1592 spin_lock_nested(&((__sk)->sk_lock.slock), \
1593 SINGLE_DEPTH_NESTING)
1594 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1595
1596 bool lock_sock_fast(struct sock *sk);
1597 /**
1598 * unlock_sock_fast - complement of lock_sock_fast
1599 * @sk: socket
1600 * @slow: slow mode
1601 *
1602 * fast unlock socket for user context.
1603 * If slow mode is on, we call regular release_sock()
1604 */
unlock_sock_fast(struct sock * sk,bool slow)1605 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1606 {
1607 if (slow)
1608 release_sock(sk);
1609 else
1610 spin_unlock_bh(&sk->sk_lock.slock);
1611 }
1612
1613 /* Used by processes to "lock" a socket state, so that
1614 * interrupts and bottom half handlers won't change it
1615 * from under us. It essentially blocks any incoming
1616 * packets, so that we won't get any new data or any
1617 * packets that change the state of the socket.
1618 *
1619 * While locked, BH processing will add new packets to
1620 * the backlog queue. This queue is processed by the
1621 * owner of the socket lock right before it is released.
1622 *
1623 * Since ~2.3.5 it is also exclusive sleep lock serializing
1624 * accesses from user process context.
1625 */
1626
sock_owned_by_me(const struct sock * sk)1627 static inline void sock_owned_by_me(const struct sock *sk)
1628 {
1629 #ifdef CONFIG_LOCKDEP
1630 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1631 #endif
1632 }
1633
sock_owned_by_user(const struct sock * sk)1634 static inline bool sock_owned_by_user(const struct sock *sk)
1635 {
1636 sock_owned_by_me(sk);
1637 return sk->sk_lock.owned;
1638 }
1639
sock_owned_by_user_nocheck(const struct sock * sk)1640 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1641 {
1642 return sk->sk_lock.owned;
1643 }
1644
1645 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1646 static inline bool sock_allow_reclassification(const struct sock *csk)
1647 {
1648 struct sock *sk = (struct sock *)csk;
1649
1650 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1651 }
1652
1653 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1654 struct proto *prot, int kern);
1655 void sk_free(struct sock *sk);
1656 void sk_destruct(struct sock *sk);
1657 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1658 void sk_free_unlock_clone(struct sock *sk);
1659
1660 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1661 gfp_t priority);
1662 void __sock_wfree(struct sk_buff *skb);
1663 void sock_wfree(struct sk_buff *skb);
1664 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1665 gfp_t priority);
1666 void skb_orphan_partial(struct sk_buff *skb);
1667 void sock_rfree(struct sk_buff *skb);
1668 void sock_efree(struct sk_buff *skb);
1669 #ifdef CONFIG_INET
1670 void sock_edemux(struct sk_buff *skb);
1671 void sock_pfree(struct sk_buff *skb);
1672 #else
1673 #define sock_edemux sock_efree
1674 #endif
1675
1676 int sock_setsockopt(struct socket *sock, int level, int op,
1677 sockptr_t optval, unsigned int optlen);
1678
1679 int sock_getsockopt(struct socket *sock, int level, int op,
1680 char __user *optval, int __user *optlen);
1681 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1682 bool timeval, bool time32);
1683 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1684 int noblock, int *errcode);
1685 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1686 unsigned long data_len, int noblock,
1687 int *errcode, int max_page_order);
1688 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1689 void sock_kfree_s(struct sock *sk, void *mem, int size);
1690 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1691 void sk_send_sigurg(struct sock *sk);
1692
1693 struct sockcm_cookie {
1694 u64 transmit_time;
1695 u32 mark;
1696 u16 tsflags;
1697 };
1698
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1699 static inline void sockcm_init(struct sockcm_cookie *sockc,
1700 const struct sock *sk)
1701 {
1702 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1703 }
1704
1705 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1706 struct sockcm_cookie *sockc);
1707 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1708 struct sockcm_cookie *sockc);
1709
1710 /*
1711 * Functions to fill in entries in struct proto_ops when a protocol
1712 * does not implement a particular function.
1713 */
1714 int sock_no_bind(struct socket *, struct sockaddr *, int);
1715 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1716 int sock_no_socketpair(struct socket *, struct socket *);
1717 int sock_no_accept(struct socket *, struct socket *, int, bool);
1718 int sock_no_getname(struct socket *, struct sockaddr *, int);
1719 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1720 int sock_no_listen(struct socket *, int);
1721 int sock_no_shutdown(struct socket *, int);
1722 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1723 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1724 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1725 int sock_no_mmap(struct file *file, struct socket *sock,
1726 struct vm_area_struct *vma);
1727 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1728 size_t size, int flags);
1729 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1730 int offset, size_t size, int flags);
1731
1732 /*
1733 * Functions to fill in entries in struct proto_ops when a protocol
1734 * uses the inet style.
1735 */
1736 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1737 char __user *optval, int __user *optlen);
1738 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1739 int flags);
1740 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1741 sockptr_t optval, unsigned int optlen);
1742
1743 void sk_common_release(struct sock *sk);
1744
1745 /*
1746 * Default socket callbacks and setup code
1747 */
1748
1749 /* Initialise core socket variables */
1750 void sock_init_data(struct socket *sock, struct sock *sk);
1751
1752 /*
1753 * Socket reference counting postulates.
1754 *
1755 * * Each user of socket SHOULD hold a reference count.
1756 * * Each access point to socket (an hash table bucket, reference from a list,
1757 * running timer, skb in flight MUST hold a reference count.
1758 * * When reference count hits 0, it means it will never increase back.
1759 * * When reference count hits 0, it means that no references from
1760 * outside exist to this socket and current process on current CPU
1761 * is last user and may/should destroy this socket.
1762 * * sk_free is called from any context: process, BH, IRQ. When
1763 * it is called, socket has no references from outside -> sk_free
1764 * may release descendant resources allocated by the socket, but
1765 * to the time when it is called, socket is NOT referenced by any
1766 * hash tables, lists etc.
1767 * * Packets, delivered from outside (from network or from another process)
1768 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1769 * when they sit in queue. Otherwise, packets will leak to hole, when
1770 * socket is looked up by one cpu and unhasing is made by another CPU.
1771 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1772 * (leak to backlog). Packet socket does all the processing inside
1773 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1774 * use separate SMP lock, so that they are prone too.
1775 */
1776
1777 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1778 static inline void sock_put(struct sock *sk)
1779 {
1780 if (refcount_dec_and_test(&sk->sk_refcnt))
1781 sk_free(sk);
1782 }
1783 /* Generic version of sock_put(), dealing with all sockets
1784 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1785 */
1786 void sock_gen_put(struct sock *sk);
1787
1788 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1789 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1790 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1791 const int nested)
1792 {
1793 return __sk_receive_skb(sk, skb, nested, 1, true);
1794 }
1795
sk_tx_queue_set(struct sock * sk,int tx_queue)1796 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1797 {
1798 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1799 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1800 return;
1801 sk->sk_tx_queue_mapping = tx_queue;
1802 }
1803
1804 #define NO_QUEUE_MAPPING USHRT_MAX
1805
sk_tx_queue_clear(struct sock * sk)1806 static inline void sk_tx_queue_clear(struct sock *sk)
1807 {
1808 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1809 }
1810
sk_tx_queue_get(const struct sock * sk)1811 static inline int sk_tx_queue_get(const struct sock *sk)
1812 {
1813 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1814 return sk->sk_tx_queue_mapping;
1815
1816 return -1;
1817 }
1818
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1819 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1820 {
1821 #ifdef CONFIG_XPS
1822 if (skb_rx_queue_recorded(skb)) {
1823 u16 rx_queue = skb_get_rx_queue(skb);
1824
1825 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1826 return;
1827
1828 sk->sk_rx_queue_mapping = rx_queue;
1829 }
1830 #endif
1831 }
1832
sk_rx_queue_clear(struct sock * sk)1833 static inline void sk_rx_queue_clear(struct sock *sk)
1834 {
1835 #ifdef CONFIG_XPS
1836 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1837 #endif
1838 }
1839
1840 #ifdef CONFIG_XPS
sk_rx_queue_get(const struct sock * sk)1841 static inline int sk_rx_queue_get(const struct sock *sk)
1842 {
1843 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1844 return sk->sk_rx_queue_mapping;
1845
1846 return -1;
1847 }
1848 #endif
1849
sk_set_socket(struct sock * sk,struct socket * sock)1850 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1851 {
1852 sk->sk_socket = sock;
1853 }
1854
sk_sleep(struct sock * sk)1855 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1856 {
1857 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1858 return &rcu_dereference_raw(sk->sk_wq)->wait;
1859 }
1860 /* Detach socket from process context.
1861 * Announce socket dead, detach it from wait queue and inode.
1862 * Note that parent inode held reference count on this struct sock,
1863 * we do not release it in this function, because protocol
1864 * probably wants some additional cleanups or even continuing
1865 * to work with this socket (TCP).
1866 */
sock_orphan(struct sock * sk)1867 static inline void sock_orphan(struct sock *sk)
1868 {
1869 write_lock_bh(&sk->sk_callback_lock);
1870 sock_set_flag(sk, SOCK_DEAD);
1871 sk_set_socket(sk, NULL);
1872 sk->sk_wq = NULL;
1873 write_unlock_bh(&sk->sk_callback_lock);
1874 }
1875
sock_graft(struct sock * sk,struct socket * parent)1876 static inline void sock_graft(struct sock *sk, struct socket *parent)
1877 {
1878 WARN_ON(parent->sk);
1879 write_lock_bh(&sk->sk_callback_lock);
1880 rcu_assign_pointer(sk->sk_wq, &parent->wq);
1881 parent->sk = sk;
1882 sk_set_socket(sk, parent);
1883 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1884 security_sock_graft(sk, parent);
1885 write_unlock_bh(&sk->sk_callback_lock);
1886 }
1887
1888 kuid_t sock_i_uid(struct sock *sk);
1889 unsigned long sock_i_ino(struct sock *sk);
1890
sock_net_uid(const struct net * net,const struct sock * sk)1891 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1892 {
1893 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1894 }
1895
net_tx_rndhash(void)1896 static inline u32 net_tx_rndhash(void)
1897 {
1898 u32 v = prandom_u32();
1899
1900 return v ?: 1;
1901 }
1902
sk_set_txhash(struct sock * sk)1903 static inline void sk_set_txhash(struct sock *sk)
1904 {
1905 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1906 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1907 }
1908
sk_rethink_txhash(struct sock * sk)1909 static inline bool sk_rethink_txhash(struct sock *sk)
1910 {
1911 if (sk->sk_txhash) {
1912 sk_set_txhash(sk);
1913 return true;
1914 }
1915 return false;
1916 }
1917
1918 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1919 __sk_dst_get(struct sock *sk)
1920 {
1921 return rcu_dereference_check(sk->sk_dst_cache,
1922 lockdep_sock_is_held(sk));
1923 }
1924
1925 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1926 sk_dst_get(struct sock *sk)
1927 {
1928 struct dst_entry *dst;
1929
1930 rcu_read_lock();
1931 dst = rcu_dereference(sk->sk_dst_cache);
1932 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1933 dst = NULL;
1934 rcu_read_unlock();
1935 return dst;
1936 }
1937
__dst_negative_advice(struct sock * sk)1938 static inline void __dst_negative_advice(struct sock *sk)
1939 {
1940 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1941
1942 if (dst && dst->ops->negative_advice) {
1943 ndst = dst->ops->negative_advice(dst);
1944
1945 if (ndst != dst) {
1946 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1947 sk_tx_queue_clear(sk);
1948 sk->sk_dst_pending_confirm = 0;
1949 }
1950 }
1951 }
1952
dst_negative_advice(struct sock * sk)1953 static inline void dst_negative_advice(struct sock *sk)
1954 {
1955 sk_rethink_txhash(sk);
1956 __dst_negative_advice(sk);
1957 }
1958
1959 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1960 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1961 {
1962 struct dst_entry *old_dst;
1963
1964 sk_tx_queue_clear(sk);
1965 sk->sk_dst_pending_confirm = 0;
1966 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1967 lockdep_sock_is_held(sk));
1968 rcu_assign_pointer(sk->sk_dst_cache, dst);
1969 dst_release(old_dst);
1970 }
1971
1972 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1973 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1974 {
1975 struct dst_entry *old_dst;
1976
1977 sk_tx_queue_clear(sk);
1978 sk->sk_dst_pending_confirm = 0;
1979 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1980 dst_release(old_dst);
1981 }
1982
1983 static inline void
__sk_dst_reset(struct sock * sk)1984 __sk_dst_reset(struct sock *sk)
1985 {
1986 __sk_dst_set(sk, NULL);
1987 }
1988
1989 static inline void
sk_dst_reset(struct sock * sk)1990 sk_dst_reset(struct sock *sk)
1991 {
1992 sk_dst_set(sk, NULL);
1993 }
1994
1995 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1996
1997 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1998
sk_dst_confirm(struct sock * sk)1999 static inline void sk_dst_confirm(struct sock *sk)
2000 {
2001 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2002 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2003 }
2004
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2005 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2006 {
2007 if (skb_get_dst_pending_confirm(skb)) {
2008 struct sock *sk = skb->sk;
2009 unsigned long now = jiffies;
2010
2011 /* avoid dirtying neighbour */
2012 if (READ_ONCE(n->confirmed) != now)
2013 WRITE_ONCE(n->confirmed, now);
2014 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2015 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2016 }
2017 }
2018
2019 bool sk_mc_loop(struct sock *sk);
2020
sk_can_gso(const struct sock * sk)2021 static inline bool sk_can_gso(const struct sock *sk)
2022 {
2023 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2024 }
2025
2026 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2027
sk_nocaps_add(struct sock * sk,netdev_features_t flags)2028 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2029 {
2030 sk->sk_route_nocaps |= flags;
2031 sk->sk_route_caps &= ~flags;
2032 }
2033
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2034 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2035 struct iov_iter *from, char *to,
2036 int copy, int offset)
2037 {
2038 if (skb->ip_summed == CHECKSUM_NONE) {
2039 __wsum csum = 0;
2040 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2041 return -EFAULT;
2042 skb->csum = csum_block_add(skb->csum, csum, offset);
2043 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2044 if (!copy_from_iter_full_nocache(to, copy, from))
2045 return -EFAULT;
2046 } else if (!copy_from_iter_full(to, copy, from))
2047 return -EFAULT;
2048
2049 return 0;
2050 }
2051
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2052 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2053 struct iov_iter *from, int copy)
2054 {
2055 int err, offset = skb->len;
2056
2057 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2058 copy, offset);
2059 if (err)
2060 __skb_trim(skb, offset);
2061
2062 return err;
2063 }
2064
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2065 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2066 struct sk_buff *skb,
2067 struct page *page,
2068 int off, int copy)
2069 {
2070 int err;
2071
2072 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2073 copy, skb->len);
2074 if (err)
2075 return err;
2076
2077 skb->len += copy;
2078 skb->data_len += copy;
2079 skb->truesize += copy;
2080 sk_wmem_queued_add(sk, copy);
2081 sk_mem_charge(sk, copy);
2082 return 0;
2083 }
2084
2085 /**
2086 * sk_wmem_alloc_get - returns write allocations
2087 * @sk: socket
2088 *
2089 * Return: sk_wmem_alloc minus initial offset of one
2090 */
sk_wmem_alloc_get(const struct sock * sk)2091 static inline int sk_wmem_alloc_get(const struct sock *sk)
2092 {
2093 return refcount_read(&sk->sk_wmem_alloc) - 1;
2094 }
2095
2096 /**
2097 * sk_rmem_alloc_get - returns read allocations
2098 * @sk: socket
2099 *
2100 * Return: sk_rmem_alloc
2101 */
sk_rmem_alloc_get(const struct sock * sk)2102 static inline int sk_rmem_alloc_get(const struct sock *sk)
2103 {
2104 return atomic_read(&sk->sk_rmem_alloc);
2105 }
2106
2107 /**
2108 * sk_has_allocations - check if allocations are outstanding
2109 * @sk: socket
2110 *
2111 * Return: true if socket has write or read allocations
2112 */
sk_has_allocations(const struct sock * sk)2113 static inline bool sk_has_allocations(const struct sock *sk)
2114 {
2115 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2116 }
2117
2118 /**
2119 * skwq_has_sleeper - check if there are any waiting processes
2120 * @wq: struct socket_wq
2121 *
2122 * Return: true if socket_wq has waiting processes
2123 *
2124 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2125 * barrier call. They were added due to the race found within the tcp code.
2126 *
2127 * Consider following tcp code paths::
2128 *
2129 * CPU1 CPU2
2130 * sys_select receive packet
2131 * ... ...
2132 * __add_wait_queue update tp->rcv_nxt
2133 * ... ...
2134 * tp->rcv_nxt check sock_def_readable
2135 * ... {
2136 * schedule rcu_read_lock();
2137 * wq = rcu_dereference(sk->sk_wq);
2138 * if (wq && waitqueue_active(&wq->wait))
2139 * wake_up_interruptible(&wq->wait)
2140 * ...
2141 * }
2142 *
2143 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2144 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2145 * could then endup calling schedule and sleep forever if there are no more
2146 * data on the socket.
2147 *
2148 */
skwq_has_sleeper(struct socket_wq * wq)2149 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2150 {
2151 return wq && wq_has_sleeper(&wq->wait);
2152 }
2153
2154 /**
2155 * sock_poll_wait - place memory barrier behind the poll_wait call.
2156 * @filp: file
2157 * @sock: socket to wait on
2158 * @p: poll_table
2159 *
2160 * See the comments in the wq_has_sleeper function.
2161 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2162 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2163 poll_table *p)
2164 {
2165 if (!poll_does_not_wait(p)) {
2166 poll_wait(filp, &sock->wq.wait, p);
2167 /* We need to be sure we are in sync with the
2168 * socket flags modification.
2169 *
2170 * This memory barrier is paired in the wq_has_sleeper.
2171 */
2172 smp_mb();
2173 }
2174 }
2175
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2176 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2177 {
2178 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2179 u32 txhash = READ_ONCE(sk->sk_txhash);
2180
2181 if (txhash) {
2182 skb->l4_hash = 1;
2183 skb->hash = txhash;
2184 }
2185 }
2186
2187 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2188
2189 /*
2190 * Queue a received datagram if it will fit. Stream and sequenced
2191 * protocols can't normally use this as they need to fit buffers in
2192 * and play with them.
2193 *
2194 * Inlined as it's very short and called for pretty much every
2195 * packet ever received.
2196 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2197 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2198 {
2199 skb_orphan(skb);
2200 skb->sk = sk;
2201 skb->destructor = sock_rfree;
2202 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2203 sk_mem_charge(sk, skb->truesize);
2204 }
2205
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2206 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2207 {
2208 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2209 skb_orphan(skb);
2210 skb->destructor = sock_efree;
2211 skb->sk = sk;
2212 return true;
2213 }
2214 return false;
2215 }
2216
2217 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2218 unsigned long expires);
2219
2220 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2221
2222 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2223
2224 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2225 struct sk_buff *skb, unsigned int flags,
2226 void (*destructor)(struct sock *sk,
2227 struct sk_buff *skb));
2228 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2229 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2230
2231 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2232 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2233
2234 /*
2235 * Recover an error report and clear atomically
2236 */
2237
sock_error(struct sock * sk)2238 static inline int sock_error(struct sock *sk)
2239 {
2240 int err;
2241
2242 /* Avoid an atomic operation for the common case.
2243 * This is racy since another cpu/thread can change sk_err under us.
2244 */
2245 if (likely(data_race(!sk->sk_err)))
2246 return 0;
2247
2248 err = xchg(&sk->sk_err, 0);
2249 return -err;
2250 }
2251
sock_wspace(struct sock * sk)2252 static inline unsigned long sock_wspace(struct sock *sk)
2253 {
2254 int amt = 0;
2255
2256 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2257 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2258 if (amt < 0)
2259 amt = 0;
2260 }
2261 return amt;
2262 }
2263
2264 /* Note:
2265 * We use sk->sk_wq_raw, from contexts knowing this
2266 * pointer is not NULL and cannot disappear/change.
2267 */
sk_set_bit(int nr,struct sock * sk)2268 static inline void sk_set_bit(int nr, struct sock *sk)
2269 {
2270 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2271 !sock_flag(sk, SOCK_FASYNC))
2272 return;
2273
2274 set_bit(nr, &sk->sk_wq_raw->flags);
2275 }
2276
sk_clear_bit(int nr,struct sock * sk)2277 static inline void sk_clear_bit(int nr, struct sock *sk)
2278 {
2279 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2280 !sock_flag(sk, SOCK_FASYNC))
2281 return;
2282
2283 clear_bit(nr, &sk->sk_wq_raw->flags);
2284 }
2285
sk_wake_async(const struct sock * sk,int how,int band)2286 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2287 {
2288 if (sock_flag(sk, SOCK_FASYNC)) {
2289 rcu_read_lock();
2290 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2291 rcu_read_unlock();
2292 }
2293 }
2294
2295 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2296 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2297 * Note: for send buffers, TCP works better if we can build two skbs at
2298 * minimum.
2299 */
2300 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2301
2302 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2303 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2304
sk_stream_moderate_sndbuf(struct sock * sk)2305 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2306 {
2307 u32 val;
2308
2309 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2310 return;
2311
2312 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2313
2314 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2315 }
2316
2317 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2318 bool force_schedule);
2319
2320 /**
2321 * sk_page_frag - return an appropriate page_frag
2322 * @sk: socket
2323 *
2324 * Use the per task page_frag instead of the per socket one for
2325 * optimization when we know that we're in the normal context and owns
2326 * everything that's associated with %current.
2327 *
2328 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2329 * inside other socket operations and end up recursing into sk_page_frag()
2330 * while it's already in use.
2331 *
2332 * Return: a per task page_frag if context allows that,
2333 * otherwise a per socket one.
2334 */
sk_page_frag(struct sock * sk)2335 static inline struct page_frag *sk_page_frag(struct sock *sk)
2336 {
2337 if (gfpflags_normal_context(sk->sk_allocation))
2338 return ¤t->task_frag;
2339
2340 return &sk->sk_frag;
2341 }
2342
2343 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2344
2345 /*
2346 * Default write policy as shown to user space via poll/select/SIGIO
2347 */
sock_writeable(const struct sock * sk)2348 static inline bool sock_writeable(const struct sock *sk)
2349 {
2350 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2351 }
2352
gfp_any(void)2353 static inline gfp_t gfp_any(void)
2354 {
2355 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2356 }
2357
sock_rcvtimeo(const struct sock * sk,bool noblock)2358 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2359 {
2360 return noblock ? 0 : sk->sk_rcvtimeo;
2361 }
2362
sock_sndtimeo(const struct sock * sk,bool noblock)2363 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2364 {
2365 return noblock ? 0 : sk->sk_sndtimeo;
2366 }
2367
sock_rcvlowat(const struct sock * sk,int waitall,int len)2368 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2369 {
2370 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2371
2372 return v ?: 1;
2373 }
2374
2375 /* Alas, with timeout socket operations are not restartable.
2376 * Compare this to poll().
2377 */
sock_intr_errno(long timeo)2378 static inline int sock_intr_errno(long timeo)
2379 {
2380 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2381 }
2382
2383 struct sock_skb_cb {
2384 u32 dropcount;
2385 };
2386
2387 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2388 * using skb->cb[] would keep using it directly and utilize its
2389 * alignement guarantee.
2390 */
2391 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2392 sizeof(struct sock_skb_cb)))
2393
2394 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2395 SOCK_SKB_CB_OFFSET))
2396
2397 #define sock_skb_cb_check_size(size) \
2398 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2399
2400 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2401 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2402 {
2403 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2404 atomic_read(&sk->sk_drops) : 0;
2405 }
2406
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2407 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2408 {
2409 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2410
2411 atomic_add(segs, &sk->sk_drops);
2412 }
2413
sock_read_timestamp(struct sock * sk)2414 static inline ktime_t sock_read_timestamp(struct sock *sk)
2415 {
2416 #if BITS_PER_LONG==32
2417 unsigned int seq;
2418 ktime_t kt;
2419
2420 do {
2421 seq = read_seqbegin(&sk->sk_stamp_seq);
2422 kt = sk->sk_stamp;
2423 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2424
2425 return kt;
2426 #else
2427 return READ_ONCE(sk->sk_stamp);
2428 #endif
2429 }
2430
sock_write_timestamp(struct sock * sk,ktime_t kt)2431 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2432 {
2433 #if BITS_PER_LONG==32
2434 write_seqlock(&sk->sk_stamp_seq);
2435 sk->sk_stamp = kt;
2436 write_sequnlock(&sk->sk_stamp_seq);
2437 #else
2438 WRITE_ONCE(sk->sk_stamp, kt);
2439 #endif
2440 }
2441
2442 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2443 struct sk_buff *skb);
2444 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2445 struct sk_buff *skb);
2446
2447 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2448 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2449 {
2450 ktime_t kt = skb->tstamp;
2451 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2452
2453 /*
2454 * generate control messages if
2455 * - receive time stamping in software requested
2456 * - software time stamp available and wanted
2457 * - hardware time stamps available and wanted
2458 */
2459 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2460 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2461 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2462 (hwtstamps->hwtstamp &&
2463 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2464 __sock_recv_timestamp(msg, sk, skb);
2465 else
2466 sock_write_timestamp(sk, kt);
2467
2468 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2469 __sock_recv_wifi_status(msg, sk, skb);
2470 }
2471
2472 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2473 struct sk_buff *skb);
2474
2475 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2476 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2477 struct sk_buff *skb)
2478 {
2479 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2480 (1UL << SOCK_RCVTSTAMP))
2481 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2482 SOF_TIMESTAMPING_RAW_HARDWARE)
2483
2484 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2485 __sock_recv_ts_and_drops(msg, sk, skb);
2486 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2487 sock_write_timestamp(sk, skb->tstamp);
2488 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2489 sock_write_timestamp(sk, 0);
2490 }
2491
2492 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2493
2494 /**
2495 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2496 * @sk: socket sending this packet
2497 * @tsflags: timestamping flags to use
2498 * @tx_flags: completed with instructions for time stamping
2499 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2500 *
2501 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2502 */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2503 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2504 __u8 *tx_flags, __u32 *tskey)
2505 {
2506 if (unlikely(tsflags)) {
2507 __sock_tx_timestamp(tsflags, tx_flags);
2508 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2509 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2510 *tskey = sk->sk_tskey++;
2511 }
2512 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2513 *tx_flags |= SKBTX_WIFI_STATUS;
2514 }
2515
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2516 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2517 __u8 *tx_flags)
2518 {
2519 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2520 }
2521
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2522 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2523 {
2524 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2525 &skb_shinfo(skb)->tskey);
2526 }
2527
2528 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2529 /**
2530 * sk_eat_skb - Release a skb if it is no longer needed
2531 * @sk: socket to eat this skb from
2532 * @skb: socket buffer to eat
2533 *
2534 * This routine must be called with interrupts disabled or with the socket
2535 * locked so that the sk_buff queue operation is ok.
2536 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2537 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2538 {
2539 __skb_unlink(skb, &sk->sk_receive_queue);
2540 if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2541 !sk->sk_rx_skb_cache) {
2542 sk->sk_rx_skb_cache = skb;
2543 skb_orphan(skb);
2544 return;
2545 }
2546 __kfree_skb(skb);
2547 }
2548
2549 static inline
sock_net(const struct sock * sk)2550 struct net *sock_net(const struct sock *sk)
2551 {
2552 return read_pnet(&sk->sk_net);
2553 }
2554
2555 static inline
sock_net_set(struct sock * sk,struct net * net)2556 void sock_net_set(struct sock *sk, struct net *net)
2557 {
2558 write_pnet(&sk->sk_net, net);
2559 }
2560
2561 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2562 skb_sk_is_prefetched(struct sk_buff *skb)
2563 {
2564 #ifdef CONFIG_INET
2565 return skb->destructor == sock_pfree;
2566 #else
2567 return false;
2568 #endif /* CONFIG_INET */
2569 }
2570
2571 /* This helper checks if a socket is a full socket,
2572 * ie _not_ a timewait or request socket.
2573 */
sk_fullsock(const struct sock * sk)2574 static inline bool sk_fullsock(const struct sock *sk)
2575 {
2576 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2577 }
2578
2579 static inline bool
sk_is_refcounted(struct sock * sk)2580 sk_is_refcounted(struct sock *sk)
2581 {
2582 /* Only full sockets have sk->sk_flags. */
2583 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2584 }
2585
2586 /**
2587 * skb_steal_sock - steal a socket from an sk_buff
2588 * @skb: sk_buff to steal the socket from
2589 * @refcounted: is set to true if the socket is reference-counted
2590 */
2591 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted)2592 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2593 {
2594 if (skb->sk) {
2595 struct sock *sk = skb->sk;
2596
2597 *refcounted = true;
2598 if (skb_sk_is_prefetched(skb))
2599 *refcounted = sk_is_refcounted(sk);
2600 skb->destructor = NULL;
2601 skb->sk = NULL;
2602 return sk;
2603 }
2604 *refcounted = false;
2605 return NULL;
2606 }
2607
2608 /* Checks if this SKB belongs to an HW offloaded socket
2609 * and whether any SW fallbacks are required based on dev.
2610 * Check decrypted mark in case skb_orphan() cleared socket.
2611 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2612 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2613 struct net_device *dev)
2614 {
2615 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2616 struct sock *sk = skb->sk;
2617
2618 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2619 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2620 #ifdef CONFIG_TLS_DEVICE
2621 } else if (unlikely(skb->decrypted)) {
2622 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2623 kfree_skb(skb);
2624 skb = NULL;
2625 #endif
2626 }
2627 #endif
2628
2629 return skb;
2630 }
2631
2632 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2633 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2634 */
sk_listener(const struct sock * sk)2635 static inline bool sk_listener(const struct sock *sk)
2636 {
2637 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2638 }
2639
2640 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2641 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2642 int type);
2643
2644 bool sk_ns_capable(const struct sock *sk,
2645 struct user_namespace *user_ns, int cap);
2646 bool sk_capable(const struct sock *sk, int cap);
2647 bool sk_net_capable(const struct sock *sk, int cap);
2648
2649 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2650
2651 /* Take into consideration the size of the struct sk_buff overhead in the
2652 * determination of these values, since that is non-constant across
2653 * platforms. This makes socket queueing behavior and performance
2654 * not depend upon such differences.
2655 */
2656 #define _SK_MEM_PACKETS 256
2657 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2658 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2659 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2660
2661 extern __u32 sysctl_wmem_max;
2662 extern __u32 sysctl_rmem_max;
2663
2664 extern int sysctl_tstamp_allow_data;
2665 extern int sysctl_optmem_max;
2666
2667 extern __u32 sysctl_wmem_default;
2668 extern __u32 sysctl_rmem_default;
2669
2670 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2671 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2672
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2673 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2674 {
2675 /* Does this proto have per netns sysctl_wmem ? */
2676 if (proto->sysctl_wmem_offset)
2677 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2678
2679 return *proto->sysctl_wmem;
2680 }
2681
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2682 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2683 {
2684 /* Does this proto have per netns sysctl_rmem ? */
2685 if (proto->sysctl_rmem_offset)
2686 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2687
2688 return *proto->sysctl_rmem;
2689 }
2690
2691 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2692 * Some wifi drivers need to tweak it to get more chunks.
2693 * They can use this helper from their ndo_start_xmit()
2694 */
sk_pacing_shift_update(struct sock * sk,int val)2695 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2696 {
2697 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2698 return;
2699 WRITE_ONCE(sk->sk_pacing_shift, val);
2700 }
2701
2702 /* if a socket is bound to a device, check that the given device
2703 * index is either the same or that the socket is bound to an L3
2704 * master device and the given device index is also enslaved to
2705 * that L3 master
2706 */
sk_dev_equal_l3scope(struct sock * sk,int dif)2707 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2708 {
2709 int mdif;
2710
2711 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2712 return true;
2713
2714 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2715 if (mdif && mdif == sk->sk_bound_dev_if)
2716 return true;
2717
2718 return false;
2719 }
2720
2721 void sock_def_readable(struct sock *sk);
2722
2723 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2724 void sock_enable_timestamps(struct sock *sk);
2725 void sock_no_linger(struct sock *sk);
2726 void sock_set_keepalive(struct sock *sk);
2727 void sock_set_priority(struct sock *sk, u32 priority);
2728 void sock_set_rcvbuf(struct sock *sk, int val);
2729 void sock_set_mark(struct sock *sk, u32 val);
2730 void sock_set_reuseaddr(struct sock *sk);
2731 void sock_set_reuseport(struct sock *sk);
2732 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2733
2734 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2735
2736 #endif /* _SOCK_H */
2737